]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/namei.c
Allow d_manage() to be used in RCU-walk mode
[mirror_ubuntu-zesty-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36
37 #include "internal.h"
38
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
44 *
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
51 *
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
55 *
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
58 *
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
65 */
66
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
74 *
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
82 */
83
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
86 *
87 * [10-Sep-98 Alan Modra] Another symlink change.
88 */
89
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
97 *
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
103 */
104 /*
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
108 */
109
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
113 *
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
116 */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 int retval;
120 unsigned long len = PATH_MAX;
121
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
127 }
128
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
137 }
138
139 char * getname(const char __user * filename)
140 {
141 char *tmp, *result;
142
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
147
148 result = tmp;
149 if (retval < 0) {
150 __putname(tmp);
151 result = ERR_PTR(retval);
152 }
153 }
154 audit_getname(result);
155 return result;
156 }
157
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168
169 /*
170 * This does basic POSIX ACL permission checking
171 */
172 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
173 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
174 {
175 umode_t mode = inode->i_mode;
176
177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
178
179 if (current_fsuid() == inode->i_uid)
180 mode >>= 6;
181 else {
182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 int error = check_acl(inode, mask, flags);
184 if (error != -EAGAIN)
185 return error;
186 }
187
188 if (in_group_p(inode->i_gid))
189 mode >>= 3;
190 }
191
192 /*
193 * If the DACs are ok we don't need any capability check.
194 */
195 if ((mask & ~mode) == 0)
196 return 0;
197 return -EACCES;
198 }
199
200 /**
201 * generic_permission - check for access rights on a Posix-like filesystem
202 * @inode: inode to check access rights for
203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204 * @check_acl: optional callback to check for Posix ACLs
205 * @flags: IPERM_FLAG_ flags.
206 *
207 * Used to check for read/write/execute permissions on a file.
208 * We use "fsuid" for this, letting us set arbitrary permissions
209 * for filesystem access without changing the "normal" uids which
210 * are used for other things.
211 *
212 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
213 * request cannot be satisfied (eg. requires blocking or too much complexity).
214 * It would then be called again in ref-walk mode.
215 */
216 int generic_permission(struct inode *inode, int mask, unsigned int flags,
217 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
218 {
219 int ret;
220
221 /*
222 * Do the basic POSIX ACL permission checks.
223 */
224 ret = acl_permission_check(inode, mask, flags, check_acl);
225 if (ret != -EACCES)
226 return ret;
227
228 /*
229 * Read/write DACs are always overridable.
230 * Executable DACs are overridable if at least one exec bit is set.
231 */
232 if (!(mask & MAY_EXEC) || execute_ok(inode))
233 if (capable(CAP_DAC_OVERRIDE))
234 return 0;
235
236 /*
237 * Searching includes executable on directories, else just read.
238 */
239 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
240 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
241 if (capable(CAP_DAC_READ_SEARCH))
242 return 0;
243
244 return -EACCES;
245 }
246
247 /**
248 * inode_permission - check for access rights to a given inode
249 * @inode: inode to check permission on
250 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
251 *
252 * Used to check for read/write/execute permissions on an inode.
253 * We use "fsuid" for this, letting us set arbitrary permissions
254 * for filesystem access without changing the "normal" uids which
255 * are used for other things.
256 */
257 int inode_permission(struct inode *inode, int mask)
258 {
259 int retval;
260
261 if (mask & MAY_WRITE) {
262 umode_t mode = inode->i_mode;
263
264 /*
265 * Nobody gets write access to a read-only fs.
266 */
267 if (IS_RDONLY(inode) &&
268 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
269 return -EROFS;
270
271 /*
272 * Nobody gets write access to an immutable file.
273 */
274 if (IS_IMMUTABLE(inode))
275 return -EACCES;
276 }
277
278 if (inode->i_op->permission)
279 retval = inode->i_op->permission(inode, mask, 0);
280 else
281 retval = generic_permission(inode, mask, 0,
282 inode->i_op->check_acl);
283
284 if (retval)
285 return retval;
286
287 retval = devcgroup_inode_permission(inode, mask);
288 if (retval)
289 return retval;
290
291 return security_inode_permission(inode, mask);
292 }
293
294 /**
295 * file_permission - check for additional access rights to a given file
296 * @file: file to check access rights for
297 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
298 *
299 * Used to check for read/write/execute permissions on an already opened
300 * file.
301 *
302 * Note:
303 * Do not use this function in new code. All access checks should
304 * be done using inode_permission().
305 */
306 int file_permission(struct file *file, int mask)
307 {
308 return inode_permission(file->f_path.dentry->d_inode, mask);
309 }
310
311 /*
312 * get_write_access() gets write permission for a file.
313 * put_write_access() releases this write permission.
314 * This is used for regular files.
315 * We cannot support write (and maybe mmap read-write shared) accesses and
316 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
317 * can have the following values:
318 * 0: no writers, no VM_DENYWRITE mappings
319 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
320 * > 0: (i_writecount) users are writing to the file.
321 *
322 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
323 * except for the cases where we don't hold i_writecount yet. Then we need to
324 * use {get,deny}_write_access() - these functions check the sign and refuse
325 * to do the change if sign is wrong. Exclusion between them is provided by
326 * the inode->i_lock spinlock.
327 */
328
329 int get_write_access(struct inode * inode)
330 {
331 spin_lock(&inode->i_lock);
332 if (atomic_read(&inode->i_writecount) < 0) {
333 spin_unlock(&inode->i_lock);
334 return -ETXTBSY;
335 }
336 atomic_inc(&inode->i_writecount);
337 spin_unlock(&inode->i_lock);
338
339 return 0;
340 }
341
342 int deny_write_access(struct file * file)
343 {
344 struct inode *inode = file->f_path.dentry->d_inode;
345
346 spin_lock(&inode->i_lock);
347 if (atomic_read(&inode->i_writecount) > 0) {
348 spin_unlock(&inode->i_lock);
349 return -ETXTBSY;
350 }
351 atomic_dec(&inode->i_writecount);
352 spin_unlock(&inode->i_lock);
353
354 return 0;
355 }
356
357 /**
358 * path_get - get a reference to a path
359 * @path: path to get the reference to
360 *
361 * Given a path increment the reference count to the dentry and the vfsmount.
362 */
363 void path_get(struct path *path)
364 {
365 mntget(path->mnt);
366 dget(path->dentry);
367 }
368 EXPORT_SYMBOL(path_get);
369
370 /**
371 * path_get_long - get a long reference to a path
372 * @path: path to get the reference to
373 *
374 * Given a path increment the reference count to the dentry and the vfsmount.
375 */
376 void path_get_long(struct path *path)
377 {
378 mntget_long(path->mnt);
379 dget(path->dentry);
380 }
381
382 /**
383 * path_put - put a reference to a path
384 * @path: path to put the reference to
385 *
386 * Given a path decrement the reference count to the dentry and the vfsmount.
387 */
388 void path_put(struct path *path)
389 {
390 dput(path->dentry);
391 mntput(path->mnt);
392 }
393 EXPORT_SYMBOL(path_put);
394
395 /**
396 * path_put_long - put a long reference to a path
397 * @path: path to put the reference to
398 *
399 * Given a path decrement the reference count to the dentry and the vfsmount.
400 */
401 void path_put_long(struct path *path)
402 {
403 dput(path->dentry);
404 mntput_long(path->mnt);
405 }
406
407 /**
408 * nameidata_drop_rcu - drop this nameidata out of rcu-walk
409 * @nd: nameidata pathwalk data to drop
410 * Returns: 0 on success, -ECHILD on failure
411 *
412 * Path walking has 2 modes, rcu-walk and ref-walk (see
413 * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt
414 * to drop out of rcu-walk mode and take normal reference counts on dentries
415 * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take
416 * refcounts at the last known good point before rcu-walk got stuck, so
417 * ref-walk may continue from there. If this is not successful (eg. a seqcount
418 * has changed), then failure is returned and path walk restarts from the
419 * beginning in ref-walk mode.
420 *
421 * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into
422 * ref-walk. Must be called from rcu-walk context.
423 */
424 static int nameidata_drop_rcu(struct nameidata *nd)
425 {
426 struct fs_struct *fs = current->fs;
427 struct dentry *dentry = nd->path.dentry;
428
429 BUG_ON(!(nd->flags & LOOKUP_RCU));
430 if (nd->root.mnt) {
431 spin_lock(&fs->lock);
432 if (nd->root.mnt != fs->root.mnt ||
433 nd->root.dentry != fs->root.dentry)
434 goto err_root;
435 }
436 spin_lock(&dentry->d_lock);
437 if (!__d_rcu_to_refcount(dentry, nd->seq))
438 goto err;
439 BUG_ON(nd->inode != dentry->d_inode);
440 spin_unlock(&dentry->d_lock);
441 if (nd->root.mnt) {
442 path_get(&nd->root);
443 spin_unlock(&fs->lock);
444 }
445 mntget(nd->path.mnt);
446
447 rcu_read_unlock();
448 br_read_unlock(vfsmount_lock);
449 nd->flags &= ~LOOKUP_RCU;
450 return 0;
451 err:
452 spin_unlock(&dentry->d_lock);
453 err_root:
454 if (nd->root.mnt)
455 spin_unlock(&fs->lock);
456 return -ECHILD;
457 }
458
459 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
460 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd)
461 {
462 if (nd->flags & LOOKUP_RCU)
463 return nameidata_drop_rcu(nd);
464 return 0;
465 }
466
467 /**
468 * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk
469 * @nd: nameidata pathwalk data to drop
470 * @dentry: dentry to drop
471 * Returns: 0 on success, -ECHILD on failure
472 *
473 * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root,
474 * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on
475 * @nd. Must be called from rcu-walk context.
476 */
477 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry)
478 {
479 struct fs_struct *fs = current->fs;
480 struct dentry *parent = nd->path.dentry;
481
482 /*
483 * It can be possible to revalidate the dentry that we started
484 * the path walk with. force_reval_path may also revalidate the
485 * dentry already committed to the nameidata.
486 */
487 if (unlikely(parent == dentry))
488 return nameidata_drop_rcu(nd);
489
490 BUG_ON(!(nd->flags & LOOKUP_RCU));
491 if (nd->root.mnt) {
492 spin_lock(&fs->lock);
493 if (nd->root.mnt != fs->root.mnt ||
494 nd->root.dentry != fs->root.dentry)
495 goto err_root;
496 }
497 spin_lock(&parent->d_lock);
498 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
499 if (!__d_rcu_to_refcount(dentry, nd->seq))
500 goto err;
501 /*
502 * If the sequence check on the child dentry passed, then the child has
503 * not been removed from its parent. This means the parent dentry must
504 * be valid and able to take a reference at this point.
505 */
506 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
507 BUG_ON(!parent->d_count);
508 parent->d_count++;
509 spin_unlock(&dentry->d_lock);
510 spin_unlock(&parent->d_lock);
511 if (nd->root.mnt) {
512 path_get(&nd->root);
513 spin_unlock(&fs->lock);
514 }
515 mntget(nd->path.mnt);
516
517 rcu_read_unlock();
518 br_read_unlock(vfsmount_lock);
519 nd->flags &= ~LOOKUP_RCU;
520 return 0;
521 err:
522 spin_unlock(&dentry->d_lock);
523 spin_unlock(&parent->d_lock);
524 err_root:
525 if (nd->root.mnt)
526 spin_unlock(&fs->lock);
527 return -ECHILD;
528 }
529
530 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
531 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry)
532 {
533 if (nd->flags & LOOKUP_RCU)
534 return nameidata_dentry_drop_rcu(nd, dentry);
535 return 0;
536 }
537
538 /**
539 * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk
540 * @nd: nameidata pathwalk data to drop
541 * Returns: 0 on success, -ECHILD on failure
542 *
543 * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk.
544 * nd->path should be the final element of the lookup, so nd->root is discarded.
545 * Must be called from rcu-walk context.
546 */
547 static int nameidata_drop_rcu_last(struct nameidata *nd)
548 {
549 struct dentry *dentry = nd->path.dentry;
550
551 BUG_ON(!(nd->flags & LOOKUP_RCU));
552 nd->flags &= ~LOOKUP_RCU;
553 nd->root.mnt = NULL;
554 spin_lock(&dentry->d_lock);
555 if (!__d_rcu_to_refcount(dentry, nd->seq))
556 goto err_unlock;
557 BUG_ON(nd->inode != dentry->d_inode);
558 spin_unlock(&dentry->d_lock);
559
560 mntget(nd->path.mnt);
561
562 rcu_read_unlock();
563 br_read_unlock(vfsmount_lock);
564
565 return 0;
566
567 err_unlock:
568 spin_unlock(&dentry->d_lock);
569 rcu_read_unlock();
570 br_read_unlock(vfsmount_lock);
571 return -ECHILD;
572 }
573
574 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
575 static inline int nameidata_drop_rcu_last_maybe(struct nameidata *nd)
576 {
577 if (likely(nd->flags & LOOKUP_RCU))
578 return nameidata_drop_rcu_last(nd);
579 return 0;
580 }
581
582 /**
583 * release_open_intent - free up open intent resources
584 * @nd: pointer to nameidata
585 */
586 void release_open_intent(struct nameidata *nd)
587 {
588 if (nd->intent.open.file->f_path.dentry == NULL)
589 put_filp(nd->intent.open.file);
590 else
591 fput(nd->intent.open.file);
592 }
593
594 /*
595 * Call d_revalidate and handle filesystems that request rcu-walk
596 * to be dropped. This may be called and return in rcu-walk mode,
597 * regardless of success or error. If -ECHILD is returned, the caller
598 * must return -ECHILD back up the path walk stack so path walk may
599 * be restarted in ref-walk mode.
600 */
601 static int d_revalidate(struct dentry *dentry, struct nameidata *nd)
602 {
603 int status;
604
605 status = dentry->d_op->d_revalidate(dentry, nd);
606 if (status == -ECHILD) {
607 if (nameidata_dentry_drop_rcu(nd, dentry))
608 return status;
609 status = dentry->d_op->d_revalidate(dentry, nd);
610 }
611
612 return status;
613 }
614
615 static inline struct dentry *
616 do_revalidate(struct dentry *dentry, struct nameidata *nd)
617 {
618 int status;
619
620 status = d_revalidate(dentry, nd);
621 if (unlikely(status <= 0)) {
622 /*
623 * The dentry failed validation.
624 * If d_revalidate returned 0 attempt to invalidate
625 * the dentry otherwise d_revalidate is asking us
626 * to return a fail status.
627 */
628 if (status < 0) {
629 /* If we're in rcu-walk, we don't have a ref */
630 if (!(nd->flags & LOOKUP_RCU))
631 dput(dentry);
632 dentry = ERR_PTR(status);
633
634 } else {
635 /* Don't d_invalidate in rcu-walk mode */
636 if (nameidata_dentry_drop_rcu_maybe(nd, dentry))
637 return ERR_PTR(-ECHILD);
638 if (!d_invalidate(dentry)) {
639 dput(dentry);
640 dentry = NULL;
641 }
642 }
643 }
644 return dentry;
645 }
646
647 static inline int need_reval_dot(struct dentry *dentry)
648 {
649 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
650 return 0;
651
652 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
653 return 0;
654
655 return 1;
656 }
657
658 /*
659 * force_reval_path - force revalidation of a dentry
660 *
661 * In some situations the path walking code will trust dentries without
662 * revalidating them. This causes problems for filesystems that depend on
663 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
664 * (which indicates that it's possible for the dentry to go stale), force
665 * a d_revalidate call before proceeding.
666 *
667 * Returns 0 if the revalidation was successful. If the revalidation fails,
668 * either return the error returned by d_revalidate or -ESTALE if the
669 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
670 * invalidate the dentry. It's up to the caller to handle putting references
671 * to the path if necessary.
672 */
673 static int
674 force_reval_path(struct path *path, struct nameidata *nd)
675 {
676 int status;
677 struct dentry *dentry = path->dentry;
678
679 /*
680 * only check on filesystems where it's possible for the dentry to
681 * become stale.
682 */
683 if (!need_reval_dot(dentry))
684 return 0;
685
686 status = d_revalidate(dentry, nd);
687 if (status > 0)
688 return 0;
689
690 if (!status) {
691 /* Don't d_invalidate in rcu-walk mode */
692 if (nameidata_drop_rcu(nd))
693 return -ECHILD;
694 d_invalidate(dentry);
695 status = -ESTALE;
696 }
697 return status;
698 }
699
700 /*
701 * Short-cut version of permission(), for calling on directories
702 * during pathname resolution. Combines parts of permission()
703 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
704 *
705 * If appropriate, check DAC only. If not appropriate, or
706 * short-cut DAC fails, then call ->permission() to do more
707 * complete permission check.
708 */
709 static inline int exec_permission(struct inode *inode, unsigned int flags)
710 {
711 int ret;
712
713 if (inode->i_op->permission) {
714 ret = inode->i_op->permission(inode, MAY_EXEC, flags);
715 } else {
716 ret = acl_permission_check(inode, MAY_EXEC, flags,
717 inode->i_op->check_acl);
718 }
719 if (likely(!ret))
720 goto ok;
721 if (ret == -ECHILD)
722 return ret;
723
724 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
725 goto ok;
726
727 return ret;
728 ok:
729 return security_inode_exec_permission(inode, flags);
730 }
731
732 static __always_inline void set_root(struct nameidata *nd)
733 {
734 if (!nd->root.mnt)
735 get_fs_root(current->fs, &nd->root);
736 }
737
738 static int link_path_walk(const char *, struct nameidata *);
739
740 static __always_inline void set_root_rcu(struct nameidata *nd)
741 {
742 if (!nd->root.mnt) {
743 struct fs_struct *fs = current->fs;
744 unsigned seq;
745
746 do {
747 seq = read_seqcount_begin(&fs->seq);
748 nd->root = fs->root;
749 } while (read_seqcount_retry(&fs->seq, seq));
750 }
751 }
752
753 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
754 {
755 int ret;
756
757 if (IS_ERR(link))
758 goto fail;
759
760 if (*link == '/') {
761 set_root(nd);
762 path_put(&nd->path);
763 nd->path = nd->root;
764 path_get(&nd->root);
765 }
766 nd->inode = nd->path.dentry->d_inode;
767
768 ret = link_path_walk(link, nd);
769 return ret;
770 fail:
771 path_put(&nd->path);
772 return PTR_ERR(link);
773 }
774
775 static void path_put_conditional(struct path *path, struct nameidata *nd)
776 {
777 dput(path->dentry);
778 if (path->mnt != nd->path.mnt)
779 mntput(path->mnt);
780 }
781
782 static inline void path_to_nameidata(const struct path *path,
783 struct nameidata *nd)
784 {
785 if (!(nd->flags & LOOKUP_RCU)) {
786 dput(nd->path.dentry);
787 if (nd->path.mnt != path->mnt)
788 mntput(nd->path.mnt);
789 }
790 nd->path.mnt = path->mnt;
791 nd->path.dentry = path->dentry;
792 }
793
794 static __always_inline int
795 __do_follow_link(const struct path *link, struct nameidata *nd, void **p)
796 {
797 int error;
798 struct dentry *dentry = link->dentry;
799
800 touch_atime(link->mnt, dentry);
801 nd_set_link(nd, NULL);
802
803 if (link->mnt == nd->path.mnt)
804 mntget(link->mnt);
805
806 nd->last_type = LAST_BIND;
807 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
808 error = PTR_ERR(*p);
809 if (!IS_ERR(*p)) {
810 char *s = nd_get_link(nd);
811 error = 0;
812 if (s)
813 error = __vfs_follow_link(nd, s);
814 else if (nd->last_type == LAST_BIND) {
815 error = force_reval_path(&nd->path, nd);
816 if (error)
817 path_put(&nd->path);
818 }
819 }
820 return error;
821 }
822
823 /*
824 * This limits recursive symlink follows to 8, while
825 * limiting consecutive symlinks to 40.
826 *
827 * Without that kind of total limit, nasty chains of consecutive
828 * symlinks can cause almost arbitrarily long lookups.
829 */
830 static inline int do_follow_link(struct path *path, struct nameidata *nd)
831 {
832 void *cookie;
833 int err = -ELOOP;
834 if (current->link_count >= MAX_NESTED_LINKS)
835 goto loop;
836 if (current->total_link_count >= 40)
837 goto loop;
838 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
839 cond_resched();
840 err = security_inode_follow_link(path->dentry, nd);
841 if (err)
842 goto loop;
843 current->link_count++;
844 current->total_link_count++;
845 nd->depth++;
846 err = __do_follow_link(path, nd, &cookie);
847 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
848 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
849 path_put(path);
850 current->link_count--;
851 nd->depth--;
852 return err;
853 loop:
854 path_put_conditional(path, nd);
855 path_put(&nd->path);
856 return err;
857 }
858
859 static int follow_up_rcu(struct path *path)
860 {
861 struct vfsmount *parent;
862 struct dentry *mountpoint;
863
864 parent = path->mnt->mnt_parent;
865 if (parent == path->mnt)
866 return 0;
867 mountpoint = path->mnt->mnt_mountpoint;
868 path->dentry = mountpoint;
869 path->mnt = parent;
870 return 1;
871 }
872
873 int follow_up(struct path *path)
874 {
875 struct vfsmount *parent;
876 struct dentry *mountpoint;
877
878 br_read_lock(vfsmount_lock);
879 parent = path->mnt->mnt_parent;
880 if (parent == path->mnt) {
881 br_read_unlock(vfsmount_lock);
882 return 0;
883 }
884 mntget(parent);
885 mountpoint = dget(path->mnt->mnt_mountpoint);
886 br_read_unlock(vfsmount_lock);
887 dput(path->dentry);
888 path->dentry = mountpoint;
889 mntput(path->mnt);
890 path->mnt = parent;
891 return 1;
892 }
893
894 /*
895 * Perform an automount
896 * - return -EISDIR to tell follow_managed() to stop and return the path we
897 * were called with.
898 */
899 static int follow_automount(struct path *path, unsigned flags,
900 bool *need_mntput)
901 {
902 struct vfsmount *mnt;
903
904 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
905 return -EREMOTE;
906
907 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
908 * and this is the terminal part of the path.
909 */
910 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
911 return -EISDIR; /* we actually want to stop here */
912
913 /* We want to mount if someone is trying to open/create a file of any
914 * type under the mountpoint, wants to traverse through the mountpoint
915 * or wants to open the mounted directory.
916 *
917 * We don't want to mount if someone's just doing a stat and they've
918 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
919 * appended a '/' to the name.
920 */
921 if (!(flags & LOOKUP_FOLLOW) &&
922 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
923 LOOKUP_OPEN | LOOKUP_CREATE)))
924 return -EISDIR;
925
926 current->total_link_count++;
927 if (current->total_link_count >= 40)
928 return -ELOOP;
929
930 mnt = path->dentry->d_op->d_automount(path);
931 if (IS_ERR(mnt)) {
932 /*
933 * The filesystem is allowed to return -EISDIR here to indicate
934 * it doesn't want to automount. For instance, autofs would do
935 * this so that its userspace daemon can mount on this dentry.
936 *
937 * However, we can only permit this if it's a terminal point in
938 * the path being looked up; if it wasn't then the remainder of
939 * the path is inaccessible and we should say so.
940 */
941 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
942 return -EREMOTE;
943 return PTR_ERR(mnt);
944 }
945 if (!mnt) /* mount collision */
946 return 0;
947
948 if (mnt->mnt_sb == path->mnt->mnt_sb &&
949 mnt->mnt_root == path->dentry) {
950 mntput(mnt);
951 return -ELOOP;
952 }
953
954 dput(path->dentry);
955 if (*need_mntput)
956 mntput(path->mnt);
957 path->mnt = mnt;
958 path->dentry = dget(mnt->mnt_root);
959 *need_mntput = true;
960 return 0;
961 }
962
963 /*
964 * Handle a dentry that is managed in some way.
965 * - Flagged for transit management (autofs)
966 * - Flagged as mountpoint
967 * - Flagged as automount point
968 *
969 * This may only be called in refwalk mode.
970 *
971 * Serialization is taken care of in namespace.c
972 */
973 static int follow_managed(struct path *path, unsigned flags)
974 {
975 unsigned managed;
976 bool need_mntput = false;
977 int ret;
978
979 /* Given that we're not holding a lock here, we retain the value in a
980 * local variable for each dentry as we look at it so that we don't see
981 * the components of that value change under us */
982 while (managed = ACCESS_ONCE(path->dentry->d_flags),
983 managed &= DCACHE_MANAGED_DENTRY,
984 unlikely(managed != 0)) {
985 /* Allow the filesystem to manage the transit without i_mutex
986 * being held. */
987 if (managed & DCACHE_MANAGE_TRANSIT) {
988 BUG_ON(!path->dentry->d_op);
989 BUG_ON(!path->dentry->d_op->d_manage);
990 ret = path->dentry->d_op->d_manage(path->dentry,
991 false, false);
992 if (ret < 0)
993 return ret == -EISDIR ? 0 : ret;
994 }
995
996 /* Transit to a mounted filesystem. */
997 if (managed & DCACHE_MOUNTED) {
998 struct vfsmount *mounted = lookup_mnt(path);
999 if (mounted) {
1000 dput(path->dentry);
1001 if (need_mntput)
1002 mntput(path->mnt);
1003 path->mnt = mounted;
1004 path->dentry = dget(mounted->mnt_root);
1005 need_mntput = true;
1006 continue;
1007 }
1008
1009 /* Something is mounted on this dentry in another
1010 * namespace and/or whatever was mounted there in this
1011 * namespace got unmounted before we managed to get the
1012 * vfsmount_lock */
1013 }
1014
1015 /* Handle an automount point */
1016 if (managed & DCACHE_NEED_AUTOMOUNT) {
1017 ret = follow_automount(path, flags, &need_mntput);
1018 if (ret < 0)
1019 return ret == -EISDIR ? 0 : ret;
1020 continue;
1021 }
1022
1023 /* We didn't change the current path point */
1024 break;
1025 }
1026 return 0;
1027 }
1028
1029 int follow_down_one(struct path *path)
1030 {
1031 struct vfsmount *mounted;
1032
1033 mounted = lookup_mnt(path);
1034 if (mounted) {
1035 dput(path->dentry);
1036 mntput(path->mnt);
1037 path->mnt = mounted;
1038 path->dentry = dget(mounted->mnt_root);
1039 return 1;
1040 }
1041 return 0;
1042 }
1043
1044 /*
1045 * Skip to top of mountpoint pile in rcuwalk mode. We abort the rcu-walk if we
1046 * meet a managed dentry and we're not walking to "..". True is returned to
1047 * continue, false to abort.
1048 */
1049 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1050 struct inode **inode, bool reverse_transit)
1051 {
1052 while (d_mountpoint(path->dentry)) {
1053 struct vfsmount *mounted;
1054 if (unlikely(path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) &&
1055 !reverse_transit &&
1056 path->dentry->d_op->d_manage(path->dentry, false, true) < 0)
1057 return false;
1058 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1059 if (!mounted)
1060 break;
1061 path->mnt = mounted;
1062 path->dentry = mounted->mnt_root;
1063 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1064 *inode = path->dentry->d_inode;
1065 }
1066
1067 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1068 return reverse_transit;
1069 return true;
1070 }
1071
1072 static int follow_dotdot_rcu(struct nameidata *nd)
1073 {
1074 struct inode *inode = nd->inode;
1075
1076 set_root_rcu(nd);
1077
1078 while (1) {
1079 if (nd->path.dentry == nd->root.dentry &&
1080 nd->path.mnt == nd->root.mnt) {
1081 break;
1082 }
1083 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1084 struct dentry *old = nd->path.dentry;
1085 struct dentry *parent = old->d_parent;
1086 unsigned seq;
1087
1088 seq = read_seqcount_begin(&parent->d_seq);
1089 if (read_seqcount_retry(&old->d_seq, nd->seq))
1090 return -ECHILD;
1091 inode = parent->d_inode;
1092 nd->path.dentry = parent;
1093 nd->seq = seq;
1094 break;
1095 }
1096 if (!follow_up_rcu(&nd->path))
1097 break;
1098 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1099 inode = nd->path.dentry->d_inode;
1100 }
1101 __follow_mount_rcu(nd, &nd->path, &inode, true);
1102 nd->inode = inode;
1103
1104 return 0;
1105 }
1106
1107 /*
1108 * Follow down to the covering mount currently visible to userspace. At each
1109 * point, the filesystem owning that dentry may be queried as to whether the
1110 * caller is permitted to proceed or not.
1111 *
1112 * Care must be taken as namespace_sem may be held (indicated by mounting_here
1113 * being true).
1114 */
1115 int follow_down(struct path *path, bool mounting_here)
1116 {
1117 unsigned managed;
1118 int ret;
1119
1120 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1121 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1122 /* Allow the filesystem to manage the transit without i_mutex
1123 * being held.
1124 *
1125 * We indicate to the filesystem if someone is trying to mount
1126 * something here. This gives autofs the chance to deny anyone
1127 * other than its daemon the right to mount on its
1128 * superstructure.
1129 *
1130 * The filesystem may sleep at this point.
1131 */
1132 if (managed & DCACHE_MANAGE_TRANSIT) {
1133 BUG_ON(!path->dentry->d_op);
1134 BUG_ON(!path->dentry->d_op->d_manage);
1135 ret = path->dentry->d_op->d_manage(
1136 path->dentry, mounting_here, false);
1137 if (ret < 0)
1138 return ret == -EISDIR ? 0 : ret;
1139 }
1140
1141 /* Transit to a mounted filesystem. */
1142 if (managed & DCACHE_MOUNTED) {
1143 struct vfsmount *mounted = lookup_mnt(path);
1144 if (!mounted)
1145 break;
1146 dput(path->dentry);
1147 mntput(path->mnt);
1148 path->mnt = mounted;
1149 path->dentry = dget(mounted->mnt_root);
1150 continue;
1151 }
1152
1153 /* Don't handle automount points here */
1154 break;
1155 }
1156 return 0;
1157 }
1158
1159 /*
1160 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1161 */
1162 static void follow_mount(struct path *path)
1163 {
1164 while (d_mountpoint(path->dentry)) {
1165 struct vfsmount *mounted = lookup_mnt(path);
1166 if (!mounted)
1167 break;
1168 dput(path->dentry);
1169 mntput(path->mnt);
1170 path->mnt = mounted;
1171 path->dentry = dget(mounted->mnt_root);
1172 }
1173 }
1174
1175 static void follow_dotdot(struct nameidata *nd)
1176 {
1177 set_root(nd);
1178
1179 while(1) {
1180 struct dentry *old = nd->path.dentry;
1181
1182 if (nd->path.dentry == nd->root.dentry &&
1183 nd->path.mnt == nd->root.mnt) {
1184 break;
1185 }
1186 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1187 /* rare case of legitimate dget_parent()... */
1188 nd->path.dentry = dget_parent(nd->path.dentry);
1189 dput(old);
1190 break;
1191 }
1192 if (!follow_up(&nd->path))
1193 break;
1194 }
1195 follow_mount(&nd->path);
1196 nd->inode = nd->path.dentry->d_inode;
1197 }
1198
1199 /*
1200 * Allocate a dentry with name and parent, and perform a parent
1201 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1202 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1203 * have verified that no child exists while under i_mutex.
1204 */
1205 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1206 struct qstr *name, struct nameidata *nd)
1207 {
1208 struct inode *inode = parent->d_inode;
1209 struct dentry *dentry;
1210 struct dentry *old;
1211
1212 /* Don't create child dentry for a dead directory. */
1213 if (unlikely(IS_DEADDIR(inode)))
1214 return ERR_PTR(-ENOENT);
1215
1216 dentry = d_alloc(parent, name);
1217 if (unlikely(!dentry))
1218 return ERR_PTR(-ENOMEM);
1219
1220 old = inode->i_op->lookup(inode, dentry, nd);
1221 if (unlikely(old)) {
1222 dput(dentry);
1223 dentry = old;
1224 }
1225 return dentry;
1226 }
1227
1228 /*
1229 * It's more convoluted than I'd like it to be, but... it's still fairly
1230 * small and for now I'd prefer to have fast path as straight as possible.
1231 * It _is_ time-critical.
1232 */
1233 static int do_lookup(struct nameidata *nd, struct qstr *name,
1234 struct path *path, struct inode **inode)
1235 {
1236 struct vfsmount *mnt = nd->path.mnt;
1237 struct dentry *dentry, *parent = nd->path.dentry;
1238 struct inode *dir;
1239 int err;
1240
1241 /*
1242 * See if the low-level filesystem might want
1243 * to use its own hash..
1244 */
1245 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1246 err = parent->d_op->d_hash(parent, nd->inode, name);
1247 if (err < 0)
1248 return err;
1249 }
1250
1251 /*
1252 * Rename seqlock is not required here because in the off chance
1253 * of a false negative due to a concurrent rename, we're going to
1254 * do the non-racy lookup, below.
1255 */
1256 if (nd->flags & LOOKUP_RCU) {
1257 unsigned seq;
1258
1259 *inode = nd->inode;
1260 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1261 if (!dentry) {
1262 if (nameidata_drop_rcu(nd))
1263 return -ECHILD;
1264 goto need_lookup;
1265 }
1266 /* Memory barrier in read_seqcount_begin of child is enough */
1267 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1268 return -ECHILD;
1269
1270 nd->seq = seq;
1271 if (dentry->d_flags & DCACHE_OP_REVALIDATE)
1272 goto need_revalidate;
1273 done2:
1274 path->mnt = mnt;
1275 path->dentry = dentry;
1276 if (likely(__follow_mount_rcu(nd, path, inode, false)))
1277 return 0;
1278 if (nameidata_drop_rcu(nd))
1279 return -ECHILD;
1280 /* fallthru */
1281 }
1282 dentry = __d_lookup(parent, name);
1283 if (!dentry)
1284 goto need_lookup;
1285 found:
1286 if (dentry->d_flags & DCACHE_OP_REVALIDATE)
1287 goto need_revalidate;
1288 done:
1289 path->mnt = mnt;
1290 path->dentry = dentry;
1291 err = follow_managed(path, nd->flags);
1292 if (unlikely(err < 0))
1293 return err;
1294 *inode = path->dentry->d_inode;
1295 return 0;
1296
1297 need_lookup:
1298 dir = parent->d_inode;
1299 BUG_ON(nd->inode != dir);
1300
1301 mutex_lock(&dir->i_mutex);
1302 /*
1303 * First re-do the cached lookup just in case it was created
1304 * while we waited for the directory semaphore, or the first
1305 * lookup failed due to an unrelated rename.
1306 *
1307 * This could use version numbering or similar to avoid unnecessary
1308 * cache lookups, but then we'd have to do the first lookup in the
1309 * non-racy way. However in the common case here, everything should
1310 * be hot in cache, so would it be a big win?
1311 */
1312 dentry = d_lookup(parent, name);
1313 if (likely(!dentry)) {
1314 dentry = d_alloc_and_lookup(parent, name, nd);
1315 mutex_unlock(&dir->i_mutex);
1316 if (IS_ERR(dentry))
1317 goto fail;
1318 goto done;
1319 }
1320 /*
1321 * Uhhuh! Nasty case: the cache was re-populated while
1322 * we waited on the semaphore. Need to revalidate.
1323 */
1324 mutex_unlock(&dir->i_mutex);
1325 goto found;
1326
1327 need_revalidate:
1328 dentry = do_revalidate(dentry, nd);
1329 if (!dentry)
1330 goto need_lookup;
1331 if (IS_ERR(dentry))
1332 goto fail;
1333 if (nd->flags & LOOKUP_RCU)
1334 goto done2;
1335 goto done;
1336
1337 fail:
1338 return PTR_ERR(dentry);
1339 }
1340
1341 /*
1342 * Name resolution.
1343 * This is the basic name resolution function, turning a pathname into
1344 * the final dentry. We expect 'base' to be positive and a directory.
1345 *
1346 * Returns 0 and nd will have valid dentry and mnt on success.
1347 * Returns error and drops reference to input namei data on failure.
1348 */
1349 static int link_path_walk(const char *name, struct nameidata *nd)
1350 {
1351 struct path next;
1352 int err;
1353 unsigned int lookup_flags = nd->flags;
1354
1355 while (*name=='/')
1356 name++;
1357 if (!*name)
1358 goto return_reval;
1359
1360 if (nd->depth)
1361 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
1362
1363 /* At this point we know we have a real path component. */
1364 for(;;) {
1365 struct inode *inode;
1366 unsigned long hash;
1367 struct qstr this;
1368 unsigned int c;
1369
1370 nd->flags |= LOOKUP_CONTINUE;
1371 if (nd->flags & LOOKUP_RCU) {
1372 err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1373 if (err == -ECHILD) {
1374 if (nameidata_drop_rcu(nd))
1375 return -ECHILD;
1376 goto exec_again;
1377 }
1378 } else {
1379 exec_again:
1380 err = exec_permission(nd->inode, 0);
1381 }
1382 if (err)
1383 break;
1384
1385 this.name = name;
1386 c = *(const unsigned char *)name;
1387
1388 hash = init_name_hash();
1389 do {
1390 name++;
1391 hash = partial_name_hash(c, hash);
1392 c = *(const unsigned char *)name;
1393 } while (c && (c != '/'));
1394 this.len = name - (const char *) this.name;
1395 this.hash = end_name_hash(hash);
1396
1397 /* remove trailing slashes? */
1398 if (!c)
1399 goto last_component;
1400 while (*++name == '/');
1401 if (!*name)
1402 goto last_with_slashes;
1403
1404 /*
1405 * "." and ".." are special - ".." especially so because it has
1406 * to be able to know about the current root directory and
1407 * parent relationships.
1408 */
1409 if (this.name[0] == '.') switch (this.len) {
1410 default:
1411 break;
1412 case 2:
1413 if (this.name[1] != '.')
1414 break;
1415 if (nd->flags & LOOKUP_RCU) {
1416 if (follow_dotdot_rcu(nd))
1417 return -ECHILD;
1418 } else
1419 follow_dotdot(nd);
1420 /* fallthrough */
1421 case 1:
1422 continue;
1423 }
1424 /* This does the actual lookups.. */
1425 err = do_lookup(nd, &this, &next, &inode);
1426 if (err)
1427 break;
1428 err = -ENOENT;
1429 if (!inode)
1430 goto out_dput;
1431
1432 if (inode->i_op->follow_link) {
1433 /* We commonly drop rcu-walk here */
1434 if (nameidata_dentry_drop_rcu_maybe(nd, next.dentry))
1435 return -ECHILD;
1436 BUG_ON(inode != next.dentry->d_inode);
1437 err = do_follow_link(&next, nd);
1438 if (err)
1439 goto return_err;
1440 nd->inode = nd->path.dentry->d_inode;
1441 err = -ENOENT;
1442 if (!nd->inode)
1443 break;
1444 } else {
1445 path_to_nameidata(&next, nd);
1446 nd->inode = inode;
1447 }
1448 err = -ENOTDIR;
1449 if (!nd->inode->i_op->lookup)
1450 break;
1451 continue;
1452 /* here ends the main loop */
1453
1454 last_with_slashes:
1455 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1456 last_component:
1457 /* Clear LOOKUP_CONTINUE iff it was previously unset */
1458 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1459 if (lookup_flags & LOOKUP_PARENT)
1460 goto lookup_parent;
1461 if (this.name[0] == '.') switch (this.len) {
1462 default:
1463 break;
1464 case 2:
1465 if (this.name[1] != '.')
1466 break;
1467 if (nd->flags & LOOKUP_RCU) {
1468 if (follow_dotdot_rcu(nd))
1469 return -ECHILD;
1470 } else
1471 follow_dotdot(nd);
1472 /* fallthrough */
1473 case 1:
1474 goto return_reval;
1475 }
1476 err = do_lookup(nd, &this, &next, &inode);
1477 if (err)
1478 break;
1479 if (inode && unlikely(inode->i_op->follow_link) &&
1480 (lookup_flags & LOOKUP_FOLLOW)) {
1481 if (nameidata_dentry_drop_rcu_maybe(nd, next.dentry))
1482 return -ECHILD;
1483 BUG_ON(inode != next.dentry->d_inode);
1484 err = do_follow_link(&next, nd);
1485 if (err)
1486 goto return_err;
1487 nd->inode = nd->path.dentry->d_inode;
1488 } else {
1489 path_to_nameidata(&next, nd);
1490 nd->inode = inode;
1491 }
1492 err = -ENOENT;
1493 if (!nd->inode)
1494 break;
1495 if (lookup_flags & LOOKUP_DIRECTORY) {
1496 err = -ENOTDIR;
1497 if (!nd->inode->i_op->lookup)
1498 break;
1499 }
1500 goto return_base;
1501 lookup_parent:
1502 nd->last = this;
1503 nd->last_type = LAST_NORM;
1504 if (this.name[0] != '.')
1505 goto return_base;
1506 if (this.len == 1)
1507 nd->last_type = LAST_DOT;
1508 else if (this.len == 2 && this.name[1] == '.')
1509 nd->last_type = LAST_DOTDOT;
1510 else
1511 goto return_base;
1512 return_reval:
1513 /*
1514 * We bypassed the ordinary revalidation routines.
1515 * We may need to check the cached dentry for staleness.
1516 */
1517 if (need_reval_dot(nd->path.dentry)) {
1518 /* Note: we do not d_invalidate() */
1519 err = d_revalidate(nd->path.dentry, nd);
1520 if (!err)
1521 err = -ESTALE;
1522 if (err < 0)
1523 break;
1524 }
1525 return_base:
1526 if (nameidata_drop_rcu_last_maybe(nd))
1527 return -ECHILD;
1528 return 0;
1529 out_dput:
1530 if (!(nd->flags & LOOKUP_RCU))
1531 path_put_conditional(&next, nd);
1532 break;
1533 }
1534 if (!(nd->flags & LOOKUP_RCU))
1535 path_put(&nd->path);
1536 return_err:
1537 return err;
1538 }
1539
1540 static inline int path_walk_rcu(const char *name, struct nameidata *nd)
1541 {
1542 current->total_link_count = 0;
1543
1544 return link_path_walk(name, nd);
1545 }
1546
1547 static inline int path_walk_simple(const char *name, struct nameidata *nd)
1548 {
1549 current->total_link_count = 0;
1550
1551 return link_path_walk(name, nd);
1552 }
1553
1554 static int path_walk(const char *name, struct nameidata *nd)
1555 {
1556 struct path save = nd->path;
1557 int result;
1558
1559 current->total_link_count = 0;
1560
1561 /* make sure the stuff we saved doesn't go away */
1562 path_get(&save);
1563
1564 result = link_path_walk(name, nd);
1565 if (result == -ESTALE) {
1566 /* nd->path had been dropped */
1567 current->total_link_count = 0;
1568 nd->path = save;
1569 path_get(&nd->path);
1570 nd->flags |= LOOKUP_REVAL;
1571 result = link_path_walk(name, nd);
1572 }
1573
1574 path_put(&save);
1575
1576 return result;
1577 }
1578
1579 static void path_finish_rcu(struct nameidata *nd)
1580 {
1581 if (nd->flags & LOOKUP_RCU) {
1582 /* RCU dangling. Cancel it. */
1583 nd->flags &= ~LOOKUP_RCU;
1584 nd->root.mnt = NULL;
1585 rcu_read_unlock();
1586 br_read_unlock(vfsmount_lock);
1587 }
1588 if (nd->file)
1589 fput(nd->file);
1590 }
1591
1592 static int path_init_rcu(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1593 {
1594 int retval = 0;
1595 int fput_needed;
1596 struct file *file;
1597
1598 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1599 nd->flags = flags | LOOKUP_RCU;
1600 nd->depth = 0;
1601 nd->root.mnt = NULL;
1602 nd->file = NULL;
1603
1604 if (*name=='/') {
1605 struct fs_struct *fs = current->fs;
1606 unsigned seq;
1607
1608 br_read_lock(vfsmount_lock);
1609 rcu_read_lock();
1610
1611 do {
1612 seq = read_seqcount_begin(&fs->seq);
1613 nd->root = fs->root;
1614 nd->path = nd->root;
1615 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1616 } while (read_seqcount_retry(&fs->seq, seq));
1617
1618 } else if (dfd == AT_FDCWD) {
1619 struct fs_struct *fs = current->fs;
1620 unsigned seq;
1621
1622 br_read_lock(vfsmount_lock);
1623 rcu_read_lock();
1624
1625 do {
1626 seq = read_seqcount_begin(&fs->seq);
1627 nd->path = fs->pwd;
1628 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1629 } while (read_seqcount_retry(&fs->seq, seq));
1630
1631 } else {
1632 struct dentry *dentry;
1633
1634 file = fget_light(dfd, &fput_needed);
1635 retval = -EBADF;
1636 if (!file)
1637 goto out_fail;
1638
1639 dentry = file->f_path.dentry;
1640
1641 retval = -ENOTDIR;
1642 if (!S_ISDIR(dentry->d_inode->i_mode))
1643 goto fput_fail;
1644
1645 retval = file_permission(file, MAY_EXEC);
1646 if (retval)
1647 goto fput_fail;
1648
1649 nd->path = file->f_path;
1650 if (fput_needed)
1651 nd->file = file;
1652
1653 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1654 br_read_lock(vfsmount_lock);
1655 rcu_read_lock();
1656 }
1657 nd->inode = nd->path.dentry->d_inode;
1658 return 0;
1659
1660 fput_fail:
1661 fput_light(file, fput_needed);
1662 out_fail:
1663 return retval;
1664 }
1665
1666 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1667 {
1668 int retval = 0;
1669 int fput_needed;
1670 struct file *file;
1671
1672 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1673 nd->flags = flags;
1674 nd->depth = 0;
1675 nd->root.mnt = NULL;
1676
1677 if (*name=='/') {
1678 set_root(nd);
1679 nd->path = nd->root;
1680 path_get(&nd->root);
1681 } else if (dfd == AT_FDCWD) {
1682 get_fs_pwd(current->fs, &nd->path);
1683 } else {
1684 struct dentry *dentry;
1685
1686 file = fget_light(dfd, &fput_needed);
1687 retval = -EBADF;
1688 if (!file)
1689 goto out_fail;
1690
1691 dentry = file->f_path.dentry;
1692
1693 retval = -ENOTDIR;
1694 if (!S_ISDIR(dentry->d_inode->i_mode))
1695 goto fput_fail;
1696
1697 retval = file_permission(file, MAY_EXEC);
1698 if (retval)
1699 goto fput_fail;
1700
1701 nd->path = file->f_path;
1702 path_get(&file->f_path);
1703
1704 fput_light(file, fput_needed);
1705 }
1706 nd->inode = nd->path.dentry->d_inode;
1707 return 0;
1708
1709 fput_fail:
1710 fput_light(file, fput_needed);
1711 out_fail:
1712 return retval;
1713 }
1714
1715 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1716 static int do_path_lookup(int dfd, const char *name,
1717 unsigned int flags, struct nameidata *nd)
1718 {
1719 int retval;
1720
1721 /*
1722 * Path walking is largely split up into 2 different synchronisation
1723 * schemes, rcu-walk and ref-walk (explained in
1724 * Documentation/filesystems/path-lookup.txt). These share much of the
1725 * path walk code, but some things particularly setup, cleanup, and
1726 * following mounts are sufficiently divergent that functions are
1727 * duplicated. Typically there is a function foo(), and its RCU
1728 * analogue, foo_rcu().
1729 *
1730 * -ECHILD is the error number of choice (just to avoid clashes) that
1731 * is returned if some aspect of an rcu-walk fails. Such an error must
1732 * be handled by restarting a traditional ref-walk (which will always
1733 * be able to complete).
1734 */
1735 retval = path_init_rcu(dfd, name, flags, nd);
1736 if (unlikely(retval))
1737 return retval;
1738 retval = path_walk_rcu(name, nd);
1739 path_finish_rcu(nd);
1740 if (nd->root.mnt) {
1741 path_put(&nd->root);
1742 nd->root.mnt = NULL;
1743 }
1744
1745 if (unlikely(retval == -ECHILD || retval == -ESTALE)) {
1746 /* slower, locked walk */
1747 if (retval == -ESTALE)
1748 flags |= LOOKUP_REVAL;
1749 retval = path_init(dfd, name, flags, nd);
1750 if (unlikely(retval))
1751 return retval;
1752 retval = path_walk(name, nd);
1753 if (nd->root.mnt) {
1754 path_put(&nd->root);
1755 nd->root.mnt = NULL;
1756 }
1757 }
1758
1759 if (likely(!retval)) {
1760 if (unlikely(!audit_dummy_context())) {
1761 if (nd->path.dentry && nd->inode)
1762 audit_inode(name, nd->path.dentry);
1763 }
1764 }
1765
1766 return retval;
1767 }
1768
1769 int path_lookup(const char *name, unsigned int flags,
1770 struct nameidata *nd)
1771 {
1772 return do_path_lookup(AT_FDCWD, name, flags, nd);
1773 }
1774
1775 int kern_path(const char *name, unsigned int flags, struct path *path)
1776 {
1777 struct nameidata nd;
1778 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1779 if (!res)
1780 *path = nd.path;
1781 return res;
1782 }
1783
1784 /**
1785 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1786 * @dentry: pointer to dentry of the base directory
1787 * @mnt: pointer to vfs mount of the base directory
1788 * @name: pointer to file name
1789 * @flags: lookup flags
1790 * @nd: pointer to nameidata
1791 */
1792 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1793 const char *name, unsigned int flags,
1794 struct nameidata *nd)
1795 {
1796 int retval;
1797
1798 /* same as do_path_lookup */
1799 nd->last_type = LAST_ROOT;
1800 nd->flags = flags;
1801 nd->depth = 0;
1802
1803 nd->path.dentry = dentry;
1804 nd->path.mnt = mnt;
1805 path_get(&nd->path);
1806 nd->root = nd->path;
1807 path_get(&nd->root);
1808 nd->inode = nd->path.dentry->d_inode;
1809
1810 retval = path_walk(name, nd);
1811 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1812 nd->inode))
1813 audit_inode(name, nd->path.dentry);
1814
1815 path_put(&nd->root);
1816 nd->root.mnt = NULL;
1817
1818 return retval;
1819 }
1820
1821 static struct dentry *__lookup_hash(struct qstr *name,
1822 struct dentry *base, struct nameidata *nd)
1823 {
1824 struct inode *inode = base->d_inode;
1825 struct dentry *dentry;
1826 int err;
1827
1828 err = exec_permission(inode, 0);
1829 if (err)
1830 return ERR_PTR(err);
1831
1832 /*
1833 * See if the low-level filesystem might want
1834 * to use its own hash..
1835 */
1836 if (base->d_flags & DCACHE_OP_HASH) {
1837 err = base->d_op->d_hash(base, inode, name);
1838 dentry = ERR_PTR(err);
1839 if (err < 0)
1840 goto out;
1841 }
1842
1843 /*
1844 * Don't bother with __d_lookup: callers are for creat as
1845 * well as unlink, so a lot of the time it would cost
1846 * a double lookup.
1847 */
1848 dentry = d_lookup(base, name);
1849
1850 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1851 dentry = do_revalidate(dentry, nd);
1852
1853 if (!dentry)
1854 dentry = d_alloc_and_lookup(base, name, nd);
1855 out:
1856 return dentry;
1857 }
1858
1859 /*
1860 * Restricted form of lookup. Doesn't follow links, single-component only,
1861 * needs parent already locked. Doesn't follow mounts.
1862 * SMP-safe.
1863 */
1864 static struct dentry *lookup_hash(struct nameidata *nd)
1865 {
1866 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1867 }
1868
1869 static int __lookup_one_len(const char *name, struct qstr *this,
1870 struct dentry *base, int len)
1871 {
1872 unsigned long hash;
1873 unsigned int c;
1874
1875 this->name = name;
1876 this->len = len;
1877 if (!len)
1878 return -EACCES;
1879
1880 hash = init_name_hash();
1881 while (len--) {
1882 c = *(const unsigned char *)name++;
1883 if (c == '/' || c == '\0')
1884 return -EACCES;
1885 hash = partial_name_hash(c, hash);
1886 }
1887 this->hash = end_name_hash(hash);
1888 return 0;
1889 }
1890
1891 /**
1892 * lookup_one_len - filesystem helper to lookup single pathname component
1893 * @name: pathname component to lookup
1894 * @base: base directory to lookup from
1895 * @len: maximum length @len should be interpreted to
1896 *
1897 * Note that this routine is purely a helper for filesystem usage and should
1898 * not be called by generic code. Also note that by using this function the
1899 * nameidata argument is passed to the filesystem methods and a filesystem
1900 * using this helper needs to be prepared for that.
1901 */
1902 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1903 {
1904 int err;
1905 struct qstr this;
1906
1907 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1908
1909 err = __lookup_one_len(name, &this, base, len);
1910 if (err)
1911 return ERR_PTR(err);
1912
1913 return __lookup_hash(&this, base, NULL);
1914 }
1915
1916 int user_path_at(int dfd, const char __user *name, unsigned flags,
1917 struct path *path)
1918 {
1919 struct nameidata nd;
1920 char *tmp = getname(name);
1921 int err = PTR_ERR(tmp);
1922 if (!IS_ERR(tmp)) {
1923
1924 BUG_ON(flags & LOOKUP_PARENT);
1925
1926 err = do_path_lookup(dfd, tmp, flags, &nd);
1927 putname(tmp);
1928 if (!err)
1929 *path = nd.path;
1930 }
1931 return err;
1932 }
1933
1934 static int user_path_parent(int dfd, const char __user *path,
1935 struct nameidata *nd, char **name)
1936 {
1937 char *s = getname(path);
1938 int error;
1939
1940 if (IS_ERR(s))
1941 return PTR_ERR(s);
1942
1943 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1944 if (error)
1945 putname(s);
1946 else
1947 *name = s;
1948
1949 return error;
1950 }
1951
1952 /*
1953 * It's inline, so penalty for filesystems that don't use sticky bit is
1954 * minimal.
1955 */
1956 static inline int check_sticky(struct inode *dir, struct inode *inode)
1957 {
1958 uid_t fsuid = current_fsuid();
1959
1960 if (!(dir->i_mode & S_ISVTX))
1961 return 0;
1962 if (inode->i_uid == fsuid)
1963 return 0;
1964 if (dir->i_uid == fsuid)
1965 return 0;
1966 return !capable(CAP_FOWNER);
1967 }
1968
1969 /*
1970 * Check whether we can remove a link victim from directory dir, check
1971 * whether the type of victim is right.
1972 * 1. We can't do it if dir is read-only (done in permission())
1973 * 2. We should have write and exec permissions on dir
1974 * 3. We can't remove anything from append-only dir
1975 * 4. We can't do anything with immutable dir (done in permission())
1976 * 5. If the sticky bit on dir is set we should either
1977 * a. be owner of dir, or
1978 * b. be owner of victim, or
1979 * c. have CAP_FOWNER capability
1980 * 6. If the victim is append-only or immutable we can't do antyhing with
1981 * links pointing to it.
1982 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1983 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1984 * 9. We can't remove a root or mountpoint.
1985 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1986 * nfs_async_unlink().
1987 */
1988 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1989 {
1990 int error;
1991
1992 if (!victim->d_inode)
1993 return -ENOENT;
1994
1995 BUG_ON(victim->d_parent->d_inode != dir);
1996 audit_inode_child(victim, dir);
1997
1998 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1999 if (error)
2000 return error;
2001 if (IS_APPEND(dir))
2002 return -EPERM;
2003 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2004 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2005 return -EPERM;
2006 if (isdir) {
2007 if (!S_ISDIR(victim->d_inode->i_mode))
2008 return -ENOTDIR;
2009 if (IS_ROOT(victim))
2010 return -EBUSY;
2011 } else if (S_ISDIR(victim->d_inode->i_mode))
2012 return -EISDIR;
2013 if (IS_DEADDIR(dir))
2014 return -ENOENT;
2015 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2016 return -EBUSY;
2017 return 0;
2018 }
2019
2020 /* Check whether we can create an object with dentry child in directory
2021 * dir.
2022 * 1. We can't do it if child already exists (open has special treatment for
2023 * this case, but since we are inlined it's OK)
2024 * 2. We can't do it if dir is read-only (done in permission())
2025 * 3. We should have write and exec permissions on dir
2026 * 4. We can't do it if dir is immutable (done in permission())
2027 */
2028 static inline int may_create(struct inode *dir, struct dentry *child)
2029 {
2030 if (child->d_inode)
2031 return -EEXIST;
2032 if (IS_DEADDIR(dir))
2033 return -ENOENT;
2034 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2035 }
2036
2037 /*
2038 * p1 and p2 should be directories on the same fs.
2039 */
2040 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2041 {
2042 struct dentry *p;
2043
2044 if (p1 == p2) {
2045 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2046 return NULL;
2047 }
2048
2049 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2050
2051 p = d_ancestor(p2, p1);
2052 if (p) {
2053 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2054 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2055 return p;
2056 }
2057
2058 p = d_ancestor(p1, p2);
2059 if (p) {
2060 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2061 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2062 return p;
2063 }
2064
2065 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2066 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2067 return NULL;
2068 }
2069
2070 void unlock_rename(struct dentry *p1, struct dentry *p2)
2071 {
2072 mutex_unlock(&p1->d_inode->i_mutex);
2073 if (p1 != p2) {
2074 mutex_unlock(&p2->d_inode->i_mutex);
2075 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2076 }
2077 }
2078
2079 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
2080 struct nameidata *nd)
2081 {
2082 int error = may_create(dir, dentry);
2083
2084 if (error)
2085 return error;
2086
2087 if (!dir->i_op->create)
2088 return -EACCES; /* shouldn't it be ENOSYS? */
2089 mode &= S_IALLUGO;
2090 mode |= S_IFREG;
2091 error = security_inode_create(dir, dentry, mode);
2092 if (error)
2093 return error;
2094 error = dir->i_op->create(dir, dentry, mode, nd);
2095 if (!error)
2096 fsnotify_create(dir, dentry);
2097 return error;
2098 }
2099
2100 int may_open(struct path *path, int acc_mode, int flag)
2101 {
2102 struct dentry *dentry = path->dentry;
2103 struct inode *inode = dentry->d_inode;
2104 int error;
2105
2106 if (!inode)
2107 return -ENOENT;
2108
2109 switch (inode->i_mode & S_IFMT) {
2110 case S_IFLNK:
2111 return -ELOOP;
2112 case S_IFDIR:
2113 if (acc_mode & MAY_WRITE)
2114 return -EISDIR;
2115 break;
2116 case S_IFBLK:
2117 case S_IFCHR:
2118 if (path->mnt->mnt_flags & MNT_NODEV)
2119 return -EACCES;
2120 /*FALLTHRU*/
2121 case S_IFIFO:
2122 case S_IFSOCK:
2123 flag &= ~O_TRUNC;
2124 break;
2125 }
2126
2127 error = inode_permission(inode, acc_mode);
2128 if (error)
2129 return error;
2130
2131 /*
2132 * An append-only file must be opened in append mode for writing.
2133 */
2134 if (IS_APPEND(inode)) {
2135 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2136 return -EPERM;
2137 if (flag & O_TRUNC)
2138 return -EPERM;
2139 }
2140
2141 /* O_NOATIME can only be set by the owner or superuser */
2142 if (flag & O_NOATIME && !is_owner_or_cap(inode))
2143 return -EPERM;
2144
2145 /*
2146 * Ensure there are no outstanding leases on the file.
2147 */
2148 return break_lease(inode, flag);
2149 }
2150
2151 static int handle_truncate(struct file *filp)
2152 {
2153 struct path *path = &filp->f_path;
2154 struct inode *inode = path->dentry->d_inode;
2155 int error = get_write_access(inode);
2156 if (error)
2157 return error;
2158 /*
2159 * Refuse to truncate files with mandatory locks held on them.
2160 */
2161 error = locks_verify_locked(inode);
2162 if (!error)
2163 error = security_path_truncate(path);
2164 if (!error) {
2165 error = do_truncate(path->dentry, 0,
2166 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2167 filp);
2168 }
2169 put_write_access(inode);
2170 return error;
2171 }
2172
2173 /*
2174 * Be careful about ever adding any more callers of this
2175 * function. Its flags must be in the namei format, not
2176 * what get passed to sys_open().
2177 */
2178 static int __open_namei_create(struct nameidata *nd, struct path *path,
2179 int open_flag, int mode)
2180 {
2181 int error;
2182 struct dentry *dir = nd->path.dentry;
2183
2184 if (!IS_POSIXACL(dir->d_inode))
2185 mode &= ~current_umask();
2186 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
2187 if (error)
2188 goto out_unlock;
2189 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
2190 out_unlock:
2191 mutex_unlock(&dir->d_inode->i_mutex);
2192 dput(nd->path.dentry);
2193 nd->path.dentry = path->dentry;
2194
2195 if (error)
2196 return error;
2197 /* Don't check for write permission, don't truncate */
2198 return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
2199 }
2200
2201 /*
2202 * Note that while the flag value (low two bits) for sys_open means:
2203 * 00 - read-only
2204 * 01 - write-only
2205 * 10 - read-write
2206 * 11 - special
2207 * it is changed into
2208 * 00 - no permissions needed
2209 * 01 - read-permission
2210 * 10 - write-permission
2211 * 11 - read-write
2212 * for the internal routines (ie open_namei()/follow_link() etc)
2213 * This is more logical, and also allows the 00 "no perm needed"
2214 * to be used for symlinks (where the permissions are checked
2215 * later).
2216 *
2217 */
2218 static inline int open_to_namei_flags(int flag)
2219 {
2220 if ((flag+1) & O_ACCMODE)
2221 flag++;
2222 return flag;
2223 }
2224
2225 static int open_will_truncate(int flag, struct inode *inode)
2226 {
2227 /*
2228 * We'll never write to the fs underlying
2229 * a device file.
2230 */
2231 if (special_file(inode->i_mode))
2232 return 0;
2233 return (flag & O_TRUNC);
2234 }
2235
2236 static struct file *finish_open(struct nameidata *nd,
2237 int open_flag, int acc_mode)
2238 {
2239 struct file *filp;
2240 int will_truncate;
2241 int error;
2242
2243 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
2244 if (will_truncate) {
2245 error = mnt_want_write(nd->path.mnt);
2246 if (error)
2247 goto exit;
2248 }
2249 error = may_open(&nd->path, acc_mode, open_flag);
2250 if (error) {
2251 if (will_truncate)
2252 mnt_drop_write(nd->path.mnt);
2253 goto exit;
2254 }
2255 filp = nameidata_to_filp(nd);
2256 if (!IS_ERR(filp)) {
2257 error = ima_file_check(filp, acc_mode);
2258 if (error) {
2259 fput(filp);
2260 filp = ERR_PTR(error);
2261 }
2262 }
2263 if (!IS_ERR(filp)) {
2264 if (will_truncate) {
2265 error = handle_truncate(filp);
2266 if (error) {
2267 fput(filp);
2268 filp = ERR_PTR(error);
2269 }
2270 }
2271 }
2272 /*
2273 * It is now safe to drop the mnt write
2274 * because the filp has had a write taken
2275 * on its behalf.
2276 */
2277 if (will_truncate)
2278 mnt_drop_write(nd->path.mnt);
2279 path_put(&nd->path);
2280 return filp;
2281
2282 exit:
2283 if (!IS_ERR(nd->intent.open.file))
2284 release_open_intent(nd);
2285 path_put(&nd->path);
2286 return ERR_PTR(error);
2287 }
2288
2289 /*
2290 * Handle O_CREAT case for do_filp_open
2291 */
2292 static struct file *do_last(struct nameidata *nd, struct path *path,
2293 int open_flag, int acc_mode,
2294 int mode, const char *pathname)
2295 {
2296 struct dentry *dir = nd->path.dentry;
2297 struct file *filp;
2298 int error = -EISDIR;
2299
2300 switch (nd->last_type) {
2301 case LAST_DOTDOT:
2302 follow_dotdot(nd);
2303 dir = nd->path.dentry;
2304 case LAST_DOT:
2305 if (need_reval_dot(dir)) {
2306 int status = d_revalidate(nd->path.dentry, nd);
2307 if (!status)
2308 status = -ESTALE;
2309 if (status < 0) {
2310 error = status;
2311 goto exit;
2312 }
2313 }
2314 /* fallthrough */
2315 case LAST_ROOT:
2316 goto exit;
2317 case LAST_BIND:
2318 audit_inode(pathname, dir);
2319 goto ok;
2320 }
2321
2322 /* trailing slashes? */
2323 if (nd->last.name[nd->last.len])
2324 goto exit;
2325
2326 mutex_lock(&dir->d_inode->i_mutex);
2327
2328 path->dentry = lookup_hash(nd);
2329 path->mnt = nd->path.mnt;
2330
2331 error = PTR_ERR(path->dentry);
2332 if (IS_ERR(path->dentry)) {
2333 mutex_unlock(&dir->d_inode->i_mutex);
2334 goto exit;
2335 }
2336
2337 if (IS_ERR(nd->intent.open.file)) {
2338 error = PTR_ERR(nd->intent.open.file);
2339 goto exit_mutex_unlock;
2340 }
2341
2342 /* Negative dentry, just create the file */
2343 if (!path->dentry->d_inode) {
2344 /*
2345 * This write is needed to ensure that a
2346 * ro->rw transition does not occur between
2347 * the time when the file is created and when
2348 * a permanent write count is taken through
2349 * the 'struct file' in nameidata_to_filp().
2350 */
2351 error = mnt_want_write(nd->path.mnt);
2352 if (error)
2353 goto exit_mutex_unlock;
2354 error = __open_namei_create(nd, path, open_flag, mode);
2355 if (error) {
2356 mnt_drop_write(nd->path.mnt);
2357 goto exit;
2358 }
2359 filp = nameidata_to_filp(nd);
2360 mnt_drop_write(nd->path.mnt);
2361 path_put(&nd->path);
2362 if (!IS_ERR(filp)) {
2363 error = ima_file_check(filp, acc_mode);
2364 if (error) {
2365 fput(filp);
2366 filp = ERR_PTR(error);
2367 }
2368 }
2369 return filp;
2370 }
2371
2372 /*
2373 * It already exists.
2374 */
2375 mutex_unlock(&dir->d_inode->i_mutex);
2376 audit_inode(pathname, path->dentry);
2377
2378 error = -EEXIST;
2379 if (open_flag & O_EXCL)
2380 goto exit_dput;
2381
2382 error = follow_managed(path, nd->flags);
2383 if (error < 0)
2384 goto exit_dput;
2385
2386 error = -ENOENT;
2387 if (!path->dentry->d_inode)
2388 goto exit_dput;
2389
2390 if (path->dentry->d_inode->i_op->follow_link)
2391 return NULL;
2392
2393 path_to_nameidata(path, nd);
2394 nd->inode = path->dentry->d_inode;
2395 error = -EISDIR;
2396 if (S_ISDIR(nd->inode->i_mode))
2397 goto exit;
2398 ok:
2399 filp = finish_open(nd, open_flag, acc_mode);
2400 return filp;
2401
2402 exit_mutex_unlock:
2403 mutex_unlock(&dir->d_inode->i_mutex);
2404 exit_dput:
2405 path_put_conditional(path, nd);
2406 exit:
2407 if (!IS_ERR(nd->intent.open.file))
2408 release_open_intent(nd);
2409 path_put(&nd->path);
2410 return ERR_PTR(error);
2411 }
2412
2413 /*
2414 * Note that the low bits of the passed in "open_flag"
2415 * are not the same as in the local variable "flag". See
2416 * open_to_namei_flags() for more details.
2417 */
2418 struct file *do_filp_open(int dfd, const char *pathname,
2419 int open_flag, int mode, int acc_mode)
2420 {
2421 struct file *filp;
2422 struct nameidata nd;
2423 int error;
2424 struct path path;
2425 int count = 0;
2426 int flag = open_to_namei_flags(open_flag);
2427 int flags;
2428
2429 if (!(open_flag & O_CREAT))
2430 mode = 0;
2431
2432 /* Must never be set by userspace */
2433 open_flag &= ~FMODE_NONOTIFY;
2434
2435 /*
2436 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
2437 * check for O_DSYNC if the need any syncing at all we enforce it's
2438 * always set instead of having to deal with possibly weird behaviour
2439 * for malicious applications setting only __O_SYNC.
2440 */
2441 if (open_flag & __O_SYNC)
2442 open_flag |= O_DSYNC;
2443
2444 if (!acc_mode)
2445 acc_mode = MAY_OPEN | ACC_MODE(open_flag);
2446
2447 /* O_TRUNC implies we need access checks for write permissions */
2448 if (open_flag & O_TRUNC)
2449 acc_mode |= MAY_WRITE;
2450
2451 /* Allow the LSM permission hook to distinguish append
2452 access from general write access. */
2453 if (open_flag & O_APPEND)
2454 acc_mode |= MAY_APPEND;
2455
2456 flags = LOOKUP_OPEN;
2457 if (open_flag & O_CREAT) {
2458 flags |= LOOKUP_CREATE;
2459 if (open_flag & O_EXCL)
2460 flags |= LOOKUP_EXCL;
2461 }
2462 if (open_flag & O_DIRECTORY)
2463 flags |= LOOKUP_DIRECTORY;
2464 if (!(open_flag & O_NOFOLLOW))
2465 flags |= LOOKUP_FOLLOW;
2466
2467 filp = get_empty_filp();
2468 if (!filp)
2469 return ERR_PTR(-ENFILE);
2470
2471 filp->f_flags = open_flag;
2472 nd.intent.open.file = filp;
2473 nd.intent.open.flags = flag;
2474 nd.intent.open.create_mode = mode;
2475
2476 if (open_flag & O_CREAT)
2477 goto creat;
2478
2479 /* !O_CREAT, simple open */
2480 error = do_path_lookup(dfd, pathname, flags, &nd);
2481 if (unlikely(error))
2482 goto out_filp;
2483 error = -ELOOP;
2484 if (!(nd.flags & LOOKUP_FOLLOW)) {
2485 if (nd.inode->i_op->follow_link)
2486 goto out_path;
2487 }
2488 error = -ENOTDIR;
2489 if (nd.flags & LOOKUP_DIRECTORY) {
2490 if (!nd.inode->i_op->lookup)
2491 goto out_path;
2492 }
2493 audit_inode(pathname, nd.path.dentry);
2494 filp = finish_open(&nd, open_flag, acc_mode);
2495 return filp;
2496
2497 creat:
2498 /* OK, have to create the file. Find the parent. */
2499 error = path_init_rcu(dfd, pathname,
2500 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2501 if (error)
2502 goto out_filp;
2503 error = path_walk_rcu(pathname, &nd);
2504 path_finish_rcu(&nd);
2505 if (unlikely(error == -ECHILD || error == -ESTALE)) {
2506 /* slower, locked walk */
2507 if (error == -ESTALE) {
2508 reval:
2509 flags |= LOOKUP_REVAL;
2510 }
2511 error = path_init(dfd, pathname,
2512 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2513 if (error)
2514 goto out_filp;
2515
2516 error = path_walk_simple(pathname, &nd);
2517 }
2518 if (unlikely(error))
2519 goto out_filp;
2520 if (unlikely(!audit_dummy_context()))
2521 audit_inode(pathname, nd.path.dentry);
2522
2523 /*
2524 * We have the parent and last component.
2525 */
2526 nd.flags = flags;
2527 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2528 while (unlikely(!filp)) { /* trailing symlink */
2529 struct path link = path;
2530 struct inode *linki = link.dentry->d_inode;
2531 void *cookie;
2532 error = -ELOOP;
2533 if (!(nd.flags & LOOKUP_FOLLOW))
2534 goto exit_dput;
2535 if (count++ == 32)
2536 goto exit_dput;
2537 /*
2538 * This is subtle. Instead of calling do_follow_link() we do
2539 * the thing by hands. The reason is that this way we have zero
2540 * link_count and path_walk() (called from ->follow_link)
2541 * honoring LOOKUP_PARENT. After that we have the parent and
2542 * last component, i.e. we are in the same situation as after
2543 * the first path_walk(). Well, almost - if the last component
2544 * is normal we get its copy stored in nd->last.name and we will
2545 * have to putname() it when we are done. Procfs-like symlinks
2546 * just set LAST_BIND.
2547 */
2548 nd.flags |= LOOKUP_PARENT;
2549 error = security_inode_follow_link(link.dentry, &nd);
2550 if (error)
2551 goto exit_dput;
2552 error = __do_follow_link(&link, &nd, &cookie);
2553 if (unlikely(error)) {
2554 if (!IS_ERR(cookie) && linki->i_op->put_link)
2555 linki->i_op->put_link(link.dentry, &nd, cookie);
2556 /* nd.path had been dropped */
2557 nd.path = link;
2558 goto out_path;
2559 }
2560 nd.flags &= ~LOOKUP_PARENT;
2561 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2562 if (linki->i_op->put_link)
2563 linki->i_op->put_link(link.dentry, &nd, cookie);
2564 path_put(&link);
2565 }
2566 out:
2567 if (nd.root.mnt)
2568 path_put(&nd.root);
2569 if (filp == ERR_PTR(-ESTALE) && !(flags & LOOKUP_REVAL))
2570 goto reval;
2571 return filp;
2572
2573 exit_dput:
2574 path_put_conditional(&path, &nd);
2575 out_path:
2576 path_put(&nd.path);
2577 out_filp:
2578 if (!IS_ERR(nd.intent.open.file))
2579 release_open_intent(&nd);
2580 filp = ERR_PTR(error);
2581 goto out;
2582 }
2583
2584 /**
2585 * filp_open - open file and return file pointer
2586 *
2587 * @filename: path to open
2588 * @flags: open flags as per the open(2) second argument
2589 * @mode: mode for the new file if O_CREAT is set, else ignored
2590 *
2591 * This is the helper to open a file from kernelspace if you really
2592 * have to. But in generally you should not do this, so please move
2593 * along, nothing to see here..
2594 */
2595 struct file *filp_open(const char *filename, int flags, int mode)
2596 {
2597 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
2598 }
2599 EXPORT_SYMBOL(filp_open);
2600
2601 /**
2602 * lookup_create - lookup a dentry, creating it if it doesn't exist
2603 * @nd: nameidata info
2604 * @is_dir: directory flag
2605 *
2606 * Simple function to lookup and return a dentry and create it
2607 * if it doesn't exist. Is SMP-safe.
2608 *
2609 * Returns with nd->path.dentry->d_inode->i_mutex locked.
2610 */
2611 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2612 {
2613 struct dentry *dentry = ERR_PTR(-EEXIST);
2614
2615 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2616 /*
2617 * Yucky last component or no last component at all?
2618 * (foo/., foo/.., /////)
2619 */
2620 if (nd->last_type != LAST_NORM)
2621 goto fail;
2622 nd->flags &= ~LOOKUP_PARENT;
2623 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2624 nd->intent.open.flags = O_EXCL;
2625
2626 /*
2627 * Do the final lookup.
2628 */
2629 dentry = lookup_hash(nd);
2630 if (IS_ERR(dentry))
2631 goto fail;
2632
2633 if (dentry->d_inode)
2634 goto eexist;
2635 /*
2636 * Special case - lookup gave negative, but... we had foo/bar/
2637 * From the vfs_mknod() POV we just have a negative dentry -
2638 * all is fine. Let's be bastards - you had / on the end, you've
2639 * been asking for (non-existent) directory. -ENOENT for you.
2640 */
2641 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2642 dput(dentry);
2643 dentry = ERR_PTR(-ENOENT);
2644 }
2645 return dentry;
2646 eexist:
2647 dput(dentry);
2648 dentry = ERR_PTR(-EEXIST);
2649 fail:
2650 return dentry;
2651 }
2652 EXPORT_SYMBOL_GPL(lookup_create);
2653
2654 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2655 {
2656 int error = may_create(dir, dentry);
2657
2658 if (error)
2659 return error;
2660
2661 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2662 return -EPERM;
2663
2664 if (!dir->i_op->mknod)
2665 return -EPERM;
2666
2667 error = devcgroup_inode_mknod(mode, dev);
2668 if (error)
2669 return error;
2670
2671 error = security_inode_mknod(dir, dentry, mode, dev);
2672 if (error)
2673 return error;
2674
2675 error = dir->i_op->mknod(dir, dentry, mode, dev);
2676 if (!error)
2677 fsnotify_create(dir, dentry);
2678 return error;
2679 }
2680
2681 static int may_mknod(mode_t mode)
2682 {
2683 switch (mode & S_IFMT) {
2684 case S_IFREG:
2685 case S_IFCHR:
2686 case S_IFBLK:
2687 case S_IFIFO:
2688 case S_IFSOCK:
2689 case 0: /* zero mode translates to S_IFREG */
2690 return 0;
2691 case S_IFDIR:
2692 return -EPERM;
2693 default:
2694 return -EINVAL;
2695 }
2696 }
2697
2698 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2699 unsigned, dev)
2700 {
2701 int error;
2702 char *tmp;
2703 struct dentry *dentry;
2704 struct nameidata nd;
2705
2706 if (S_ISDIR(mode))
2707 return -EPERM;
2708
2709 error = user_path_parent(dfd, filename, &nd, &tmp);
2710 if (error)
2711 return error;
2712
2713 dentry = lookup_create(&nd, 0);
2714 if (IS_ERR(dentry)) {
2715 error = PTR_ERR(dentry);
2716 goto out_unlock;
2717 }
2718 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2719 mode &= ~current_umask();
2720 error = may_mknod(mode);
2721 if (error)
2722 goto out_dput;
2723 error = mnt_want_write(nd.path.mnt);
2724 if (error)
2725 goto out_dput;
2726 error = security_path_mknod(&nd.path, dentry, mode, dev);
2727 if (error)
2728 goto out_drop_write;
2729 switch (mode & S_IFMT) {
2730 case 0: case S_IFREG:
2731 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2732 break;
2733 case S_IFCHR: case S_IFBLK:
2734 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2735 new_decode_dev(dev));
2736 break;
2737 case S_IFIFO: case S_IFSOCK:
2738 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2739 break;
2740 }
2741 out_drop_write:
2742 mnt_drop_write(nd.path.mnt);
2743 out_dput:
2744 dput(dentry);
2745 out_unlock:
2746 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2747 path_put(&nd.path);
2748 putname(tmp);
2749
2750 return error;
2751 }
2752
2753 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2754 {
2755 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2756 }
2757
2758 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2759 {
2760 int error = may_create(dir, dentry);
2761
2762 if (error)
2763 return error;
2764
2765 if (!dir->i_op->mkdir)
2766 return -EPERM;
2767
2768 mode &= (S_IRWXUGO|S_ISVTX);
2769 error = security_inode_mkdir(dir, dentry, mode);
2770 if (error)
2771 return error;
2772
2773 error = dir->i_op->mkdir(dir, dentry, mode);
2774 if (!error)
2775 fsnotify_mkdir(dir, dentry);
2776 return error;
2777 }
2778
2779 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2780 {
2781 int error = 0;
2782 char * tmp;
2783 struct dentry *dentry;
2784 struct nameidata nd;
2785
2786 error = user_path_parent(dfd, pathname, &nd, &tmp);
2787 if (error)
2788 goto out_err;
2789
2790 dentry = lookup_create(&nd, 1);
2791 error = PTR_ERR(dentry);
2792 if (IS_ERR(dentry))
2793 goto out_unlock;
2794
2795 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2796 mode &= ~current_umask();
2797 error = mnt_want_write(nd.path.mnt);
2798 if (error)
2799 goto out_dput;
2800 error = security_path_mkdir(&nd.path, dentry, mode);
2801 if (error)
2802 goto out_drop_write;
2803 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2804 out_drop_write:
2805 mnt_drop_write(nd.path.mnt);
2806 out_dput:
2807 dput(dentry);
2808 out_unlock:
2809 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2810 path_put(&nd.path);
2811 putname(tmp);
2812 out_err:
2813 return error;
2814 }
2815
2816 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2817 {
2818 return sys_mkdirat(AT_FDCWD, pathname, mode);
2819 }
2820
2821 /*
2822 * We try to drop the dentry early: we should have
2823 * a usage count of 2 if we're the only user of this
2824 * dentry, and if that is true (possibly after pruning
2825 * the dcache), then we drop the dentry now.
2826 *
2827 * A low-level filesystem can, if it choses, legally
2828 * do a
2829 *
2830 * if (!d_unhashed(dentry))
2831 * return -EBUSY;
2832 *
2833 * if it cannot handle the case of removing a directory
2834 * that is still in use by something else..
2835 */
2836 void dentry_unhash(struct dentry *dentry)
2837 {
2838 dget(dentry);
2839 shrink_dcache_parent(dentry);
2840 spin_lock(&dentry->d_lock);
2841 if (dentry->d_count == 2)
2842 __d_drop(dentry);
2843 spin_unlock(&dentry->d_lock);
2844 }
2845
2846 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2847 {
2848 int error = may_delete(dir, dentry, 1);
2849
2850 if (error)
2851 return error;
2852
2853 if (!dir->i_op->rmdir)
2854 return -EPERM;
2855
2856 mutex_lock(&dentry->d_inode->i_mutex);
2857 dentry_unhash(dentry);
2858 if (d_mountpoint(dentry))
2859 error = -EBUSY;
2860 else {
2861 error = security_inode_rmdir(dir, dentry);
2862 if (!error) {
2863 error = dir->i_op->rmdir(dir, dentry);
2864 if (!error) {
2865 dentry->d_inode->i_flags |= S_DEAD;
2866 dont_mount(dentry);
2867 }
2868 }
2869 }
2870 mutex_unlock(&dentry->d_inode->i_mutex);
2871 if (!error) {
2872 d_delete(dentry);
2873 }
2874 dput(dentry);
2875
2876 return error;
2877 }
2878
2879 static long do_rmdir(int dfd, const char __user *pathname)
2880 {
2881 int error = 0;
2882 char * name;
2883 struct dentry *dentry;
2884 struct nameidata nd;
2885
2886 error = user_path_parent(dfd, pathname, &nd, &name);
2887 if (error)
2888 return error;
2889
2890 switch(nd.last_type) {
2891 case LAST_DOTDOT:
2892 error = -ENOTEMPTY;
2893 goto exit1;
2894 case LAST_DOT:
2895 error = -EINVAL;
2896 goto exit1;
2897 case LAST_ROOT:
2898 error = -EBUSY;
2899 goto exit1;
2900 }
2901
2902 nd.flags &= ~LOOKUP_PARENT;
2903
2904 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2905 dentry = lookup_hash(&nd);
2906 error = PTR_ERR(dentry);
2907 if (IS_ERR(dentry))
2908 goto exit2;
2909 error = mnt_want_write(nd.path.mnt);
2910 if (error)
2911 goto exit3;
2912 error = security_path_rmdir(&nd.path, dentry);
2913 if (error)
2914 goto exit4;
2915 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2916 exit4:
2917 mnt_drop_write(nd.path.mnt);
2918 exit3:
2919 dput(dentry);
2920 exit2:
2921 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2922 exit1:
2923 path_put(&nd.path);
2924 putname(name);
2925 return error;
2926 }
2927
2928 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2929 {
2930 return do_rmdir(AT_FDCWD, pathname);
2931 }
2932
2933 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2934 {
2935 int error = may_delete(dir, dentry, 0);
2936
2937 if (error)
2938 return error;
2939
2940 if (!dir->i_op->unlink)
2941 return -EPERM;
2942
2943 mutex_lock(&dentry->d_inode->i_mutex);
2944 if (d_mountpoint(dentry))
2945 error = -EBUSY;
2946 else {
2947 error = security_inode_unlink(dir, dentry);
2948 if (!error) {
2949 error = dir->i_op->unlink(dir, dentry);
2950 if (!error)
2951 dont_mount(dentry);
2952 }
2953 }
2954 mutex_unlock(&dentry->d_inode->i_mutex);
2955
2956 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2957 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2958 fsnotify_link_count(dentry->d_inode);
2959 d_delete(dentry);
2960 }
2961
2962 return error;
2963 }
2964
2965 /*
2966 * Make sure that the actual truncation of the file will occur outside its
2967 * directory's i_mutex. Truncate can take a long time if there is a lot of
2968 * writeout happening, and we don't want to prevent access to the directory
2969 * while waiting on the I/O.
2970 */
2971 static long do_unlinkat(int dfd, const char __user *pathname)
2972 {
2973 int error;
2974 char *name;
2975 struct dentry *dentry;
2976 struct nameidata nd;
2977 struct inode *inode = NULL;
2978
2979 error = user_path_parent(dfd, pathname, &nd, &name);
2980 if (error)
2981 return error;
2982
2983 error = -EISDIR;
2984 if (nd.last_type != LAST_NORM)
2985 goto exit1;
2986
2987 nd.flags &= ~LOOKUP_PARENT;
2988
2989 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2990 dentry = lookup_hash(&nd);
2991 error = PTR_ERR(dentry);
2992 if (!IS_ERR(dentry)) {
2993 /* Why not before? Because we want correct error value */
2994 if (nd.last.name[nd.last.len])
2995 goto slashes;
2996 inode = dentry->d_inode;
2997 if (inode)
2998 ihold(inode);
2999 error = mnt_want_write(nd.path.mnt);
3000 if (error)
3001 goto exit2;
3002 error = security_path_unlink(&nd.path, dentry);
3003 if (error)
3004 goto exit3;
3005 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3006 exit3:
3007 mnt_drop_write(nd.path.mnt);
3008 exit2:
3009 dput(dentry);
3010 }
3011 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3012 if (inode)
3013 iput(inode); /* truncate the inode here */
3014 exit1:
3015 path_put(&nd.path);
3016 putname(name);
3017 return error;
3018
3019 slashes:
3020 error = !dentry->d_inode ? -ENOENT :
3021 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3022 goto exit2;
3023 }
3024
3025 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3026 {
3027 if ((flag & ~AT_REMOVEDIR) != 0)
3028 return -EINVAL;
3029
3030 if (flag & AT_REMOVEDIR)
3031 return do_rmdir(dfd, pathname);
3032
3033 return do_unlinkat(dfd, pathname);
3034 }
3035
3036 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3037 {
3038 return do_unlinkat(AT_FDCWD, pathname);
3039 }
3040
3041 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3042 {
3043 int error = may_create(dir, dentry);
3044
3045 if (error)
3046 return error;
3047
3048 if (!dir->i_op->symlink)
3049 return -EPERM;
3050
3051 error = security_inode_symlink(dir, dentry, oldname);
3052 if (error)
3053 return error;
3054
3055 error = dir->i_op->symlink(dir, dentry, oldname);
3056 if (!error)
3057 fsnotify_create(dir, dentry);
3058 return error;
3059 }
3060
3061 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3062 int, newdfd, const char __user *, newname)
3063 {
3064 int error;
3065 char *from;
3066 char *to;
3067 struct dentry *dentry;
3068 struct nameidata nd;
3069
3070 from = getname(oldname);
3071 if (IS_ERR(from))
3072 return PTR_ERR(from);
3073
3074 error = user_path_parent(newdfd, newname, &nd, &to);
3075 if (error)
3076 goto out_putname;
3077
3078 dentry = lookup_create(&nd, 0);
3079 error = PTR_ERR(dentry);
3080 if (IS_ERR(dentry))
3081 goto out_unlock;
3082
3083 error = mnt_want_write(nd.path.mnt);
3084 if (error)
3085 goto out_dput;
3086 error = security_path_symlink(&nd.path, dentry, from);
3087 if (error)
3088 goto out_drop_write;
3089 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
3090 out_drop_write:
3091 mnt_drop_write(nd.path.mnt);
3092 out_dput:
3093 dput(dentry);
3094 out_unlock:
3095 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3096 path_put(&nd.path);
3097 putname(to);
3098 out_putname:
3099 putname(from);
3100 return error;
3101 }
3102
3103 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3104 {
3105 return sys_symlinkat(oldname, AT_FDCWD, newname);
3106 }
3107
3108 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3109 {
3110 struct inode *inode = old_dentry->d_inode;
3111 int error;
3112
3113 if (!inode)
3114 return -ENOENT;
3115
3116 error = may_create(dir, new_dentry);
3117 if (error)
3118 return error;
3119
3120 if (dir->i_sb != inode->i_sb)
3121 return -EXDEV;
3122
3123 /*
3124 * A link to an append-only or immutable file cannot be created.
3125 */
3126 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3127 return -EPERM;
3128 if (!dir->i_op->link)
3129 return -EPERM;
3130 if (S_ISDIR(inode->i_mode))
3131 return -EPERM;
3132
3133 error = security_inode_link(old_dentry, dir, new_dentry);
3134 if (error)
3135 return error;
3136
3137 mutex_lock(&inode->i_mutex);
3138 error = dir->i_op->link(old_dentry, dir, new_dentry);
3139 mutex_unlock(&inode->i_mutex);
3140 if (!error)
3141 fsnotify_link(dir, inode, new_dentry);
3142 return error;
3143 }
3144
3145 /*
3146 * Hardlinks are often used in delicate situations. We avoid
3147 * security-related surprises by not following symlinks on the
3148 * newname. --KAB
3149 *
3150 * We don't follow them on the oldname either to be compatible
3151 * with linux 2.0, and to avoid hard-linking to directories
3152 * and other special files. --ADM
3153 */
3154 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3155 int, newdfd, const char __user *, newname, int, flags)
3156 {
3157 struct dentry *new_dentry;
3158 struct nameidata nd;
3159 struct path old_path;
3160 int error;
3161 char *to;
3162
3163 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
3164 return -EINVAL;
3165
3166 error = user_path_at(olddfd, oldname,
3167 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
3168 &old_path);
3169 if (error)
3170 return error;
3171
3172 error = user_path_parent(newdfd, newname, &nd, &to);
3173 if (error)
3174 goto out;
3175 error = -EXDEV;
3176 if (old_path.mnt != nd.path.mnt)
3177 goto out_release;
3178 new_dentry = lookup_create(&nd, 0);
3179 error = PTR_ERR(new_dentry);
3180 if (IS_ERR(new_dentry))
3181 goto out_unlock;
3182 error = mnt_want_write(nd.path.mnt);
3183 if (error)
3184 goto out_dput;
3185 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
3186 if (error)
3187 goto out_drop_write;
3188 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
3189 out_drop_write:
3190 mnt_drop_write(nd.path.mnt);
3191 out_dput:
3192 dput(new_dentry);
3193 out_unlock:
3194 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3195 out_release:
3196 path_put(&nd.path);
3197 putname(to);
3198 out:
3199 path_put(&old_path);
3200
3201 return error;
3202 }
3203
3204 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3205 {
3206 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3207 }
3208
3209 /*
3210 * The worst of all namespace operations - renaming directory. "Perverted"
3211 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3212 * Problems:
3213 * a) we can get into loop creation. Check is done in is_subdir().
3214 * b) race potential - two innocent renames can create a loop together.
3215 * That's where 4.4 screws up. Current fix: serialization on
3216 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3217 * story.
3218 * c) we have to lock _three_ objects - parents and victim (if it exists).
3219 * And that - after we got ->i_mutex on parents (until then we don't know
3220 * whether the target exists). Solution: try to be smart with locking
3221 * order for inodes. We rely on the fact that tree topology may change
3222 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3223 * move will be locked. Thus we can rank directories by the tree
3224 * (ancestors first) and rank all non-directories after them.
3225 * That works since everybody except rename does "lock parent, lookup,
3226 * lock child" and rename is under ->s_vfs_rename_mutex.
3227 * HOWEVER, it relies on the assumption that any object with ->lookup()
3228 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3229 * we'd better make sure that there's no link(2) for them.
3230 * d) some filesystems don't support opened-but-unlinked directories,
3231 * either because of layout or because they are not ready to deal with
3232 * all cases correctly. The latter will be fixed (taking this sort of
3233 * stuff into VFS), but the former is not going away. Solution: the same
3234 * trick as in rmdir().
3235 * e) conversion from fhandle to dentry may come in the wrong moment - when
3236 * we are removing the target. Solution: we will have to grab ->i_mutex
3237 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3238 * ->i_mutex on parents, which works but leads to some truly excessive
3239 * locking].
3240 */
3241 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3242 struct inode *new_dir, struct dentry *new_dentry)
3243 {
3244 int error = 0;
3245 struct inode *target;
3246
3247 /*
3248 * If we are going to change the parent - check write permissions,
3249 * we'll need to flip '..'.
3250 */
3251 if (new_dir != old_dir) {
3252 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3253 if (error)
3254 return error;
3255 }
3256
3257 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3258 if (error)
3259 return error;
3260
3261 target = new_dentry->d_inode;
3262 if (target)
3263 mutex_lock(&target->i_mutex);
3264 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3265 error = -EBUSY;
3266 else {
3267 if (target)
3268 dentry_unhash(new_dentry);
3269 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3270 }
3271 if (target) {
3272 if (!error) {
3273 target->i_flags |= S_DEAD;
3274 dont_mount(new_dentry);
3275 }
3276 mutex_unlock(&target->i_mutex);
3277 if (d_unhashed(new_dentry))
3278 d_rehash(new_dentry);
3279 dput(new_dentry);
3280 }
3281 if (!error)
3282 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3283 d_move(old_dentry,new_dentry);
3284 return error;
3285 }
3286
3287 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3288 struct inode *new_dir, struct dentry *new_dentry)
3289 {
3290 struct inode *target;
3291 int error;
3292
3293 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3294 if (error)
3295 return error;
3296
3297 dget(new_dentry);
3298 target = new_dentry->d_inode;
3299 if (target)
3300 mutex_lock(&target->i_mutex);
3301 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3302 error = -EBUSY;
3303 else
3304 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3305 if (!error) {
3306 if (target)
3307 dont_mount(new_dentry);
3308 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3309 d_move(old_dentry, new_dentry);
3310 }
3311 if (target)
3312 mutex_unlock(&target->i_mutex);
3313 dput(new_dentry);
3314 return error;
3315 }
3316
3317 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3318 struct inode *new_dir, struct dentry *new_dentry)
3319 {
3320 int error;
3321 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3322 const unsigned char *old_name;
3323
3324 if (old_dentry->d_inode == new_dentry->d_inode)
3325 return 0;
3326
3327 error = may_delete(old_dir, old_dentry, is_dir);
3328 if (error)
3329 return error;
3330
3331 if (!new_dentry->d_inode)
3332 error = may_create(new_dir, new_dentry);
3333 else
3334 error = may_delete(new_dir, new_dentry, is_dir);
3335 if (error)
3336 return error;
3337
3338 if (!old_dir->i_op->rename)
3339 return -EPERM;
3340
3341 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3342
3343 if (is_dir)
3344 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3345 else
3346 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3347 if (!error)
3348 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3349 new_dentry->d_inode, old_dentry);
3350 fsnotify_oldname_free(old_name);
3351
3352 return error;
3353 }
3354
3355 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3356 int, newdfd, const char __user *, newname)
3357 {
3358 struct dentry *old_dir, *new_dir;
3359 struct dentry *old_dentry, *new_dentry;
3360 struct dentry *trap;
3361 struct nameidata oldnd, newnd;
3362 char *from;
3363 char *to;
3364 int error;
3365
3366 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3367 if (error)
3368 goto exit;
3369
3370 error = user_path_parent(newdfd, newname, &newnd, &to);
3371 if (error)
3372 goto exit1;
3373
3374 error = -EXDEV;
3375 if (oldnd.path.mnt != newnd.path.mnt)
3376 goto exit2;
3377
3378 old_dir = oldnd.path.dentry;
3379 error = -EBUSY;
3380 if (oldnd.last_type != LAST_NORM)
3381 goto exit2;
3382
3383 new_dir = newnd.path.dentry;
3384 if (newnd.last_type != LAST_NORM)
3385 goto exit2;
3386
3387 oldnd.flags &= ~LOOKUP_PARENT;
3388 newnd.flags &= ~LOOKUP_PARENT;
3389 newnd.flags |= LOOKUP_RENAME_TARGET;
3390
3391 trap = lock_rename(new_dir, old_dir);
3392
3393 old_dentry = lookup_hash(&oldnd);
3394 error = PTR_ERR(old_dentry);
3395 if (IS_ERR(old_dentry))
3396 goto exit3;
3397 /* source must exist */
3398 error = -ENOENT;
3399 if (!old_dentry->d_inode)
3400 goto exit4;
3401 /* unless the source is a directory trailing slashes give -ENOTDIR */
3402 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3403 error = -ENOTDIR;
3404 if (oldnd.last.name[oldnd.last.len])
3405 goto exit4;
3406 if (newnd.last.name[newnd.last.len])
3407 goto exit4;
3408 }
3409 /* source should not be ancestor of target */
3410 error = -EINVAL;
3411 if (old_dentry == trap)
3412 goto exit4;
3413 new_dentry = lookup_hash(&newnd);
3414 error = PTR_ERR(new_dentry);
3415 if (IS_ERR(new_dentry))
3416 goto exit4;
3417 /* target should not be an ancestor of source */
3418 error = -ENOTEMPTY;
3419 if (new_dentry == trap)
3420 goto exit5;
3421
3422 error = mnt_want_write(oldnd.path.mnt);
3423 if (error)
3424 goto exit5;
3425 error = security_path_rename(&oldnd.path, old_dentry,
3426 &newnd.path, new_dentry);
3427 if (error)
3428 goto exit6;
3429 error = vfs_rename(old_dir->d_inode, old_dentry,
3430 new_dir->d_inode, new_dentry);
3431 exit6:
3432 mnt_drop_write(oldnd.path.mnt);
3433 exit5:
3434 dput(new_dentry);
3435 exit4:
3436 dput(old_dentry);
3437 exit3:
3438 unlock_rename(new_dir, old_dir);
3439 exit2:
3440 path_put(&newnd.path);
3441 putname(to);
3442 exit1:
3443 path_put(&oldnd.path);
3444 putname(from);
3445 exit:
3446 return error;
3447 }
3448
3449 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3450 {
3451 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3452 }
3453
3454 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3455 {
3456 int len;
3457
3458 len = PTR_ERR(link);
3459 if (IS_ERR(link))
3460 goto out;
3461
3462 len = strlen(link);
3463 if (len > (unsigned) buflen)
3464 len = buflen;
3465 if (copy_to_user(buffer, link, len))
3466 len = -EFAULT;
3467 out:
3468 return len;
3469 }
3470
3471 /*
3472 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3473 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3474 * using) it for any given inode is up to filesystem.
3475 */
3476 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3477 {
3478 struct nameidata nd;
3479 void *cookie;
3480 int res;
3481
3482 nd.depth = 0;
3483 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3484 if (IS_ERR(cookie))
3485 return PTR_ERR(cookie);
3486
3487 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3488 if (dentry->d_inode->i_op->put_link)
3489 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3490 return res;
3491 }
3492
3493 int vfs_follow_link(struct nameidata *nd, const char *link)
3494 {
3495 return __vfs_follow_link(nd, link);
3496 }
3497
3498 /* get the link contents into pagecache */
3499 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3500 {
3501 char *kaddr;
3502 struct page *page;
3503 struct address_space *mapping = dentry->d_inode->i_mapping;
3504 page = read_mapping_page(mapping, 0, NULL);
3505 if (IS_ERR(page))
3506 return (char*)page;
3507 *ppage = page;
3508 kaddr = kmap(page);
3509 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3510 return kaddr;
3511 }
3512
3513 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3514 {
3515 struct page *page = NULL;
3516 char *s = page_getlink(dentry, &page);
3517 int res = vfs_readlink(dentry,buffer,buflen,s);
3518 if (page) {
3519 kunmap(page);
3520 page_cache_release(page);
3521 }
3522 return res;
3523 }
3524
3525 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3526 {
3527 struct page *page = NULL;
3528 nd_set_link(nd, page_getlink(dentry, &page));
3529 return page;
3530 }
3531
3532 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3533 {
3534 struct page *page = cookie;
3535
3536 if (page) {
3537 kunmap(page);
3538 page_cache_release(page);
3539 }
3540 }
3541
3542 /*
3543 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3544 */
3545 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3546 {
3547 struct address_space *mapping = inode->i_mapping;
3548 struct page *page;
3549 void *fsdata;
3550 int err;
3551 char *kaddr;
3552 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3553 if (nofs)
3554 flags |= AOP_FLAG_NOFS;
3555
3556 retry:
3557 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3558 flags, &page, &fsdata);
3559 if (err)
3560 goto fail;
3561
3562 kaddr = kmap_atomic(page, KM_USER0);
3563 memcpy(kaddr, symname, len-1);
3564 kunmap_atomic(kaddr, KM_USER0);
3565
3566 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3567 page, fsdata);
3568 if (err < 0)
3569 goto fail;
3570 if (err < len-1)
3571 goto retry;
3572
3573 mark_inode_dirty(inode);
3574 return 0;
3575 fail:
3576 return err;
3577 }
3578
3579 int page_symlink(struct inode *inode, const char *symname, int len)
3580 {
3581 return __page_symlink(inode, symname, len,
3582 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3583 }
3584
3585 const struct inode_operations page_symlink_inode_operations = {
3586 .readlink = generic_readlink,
3587 .follow_link = page_follow_link_light,
3588 .put_link = page_put_link,
3589 };
3590
3591 EXPORT_SYMBOL(user_path_at);
3592 EXPORT_SYMBOL(follow_down_one);
3593 EXPORT_SYMBOL(follow_down);
3594 EXPORT_SYMBOL(follow_up);
3595 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3596 EXPORT_SYMBOL(getname);
3597 EXPORT_SYMBOL(lock_rename);
3598 EXPORT_SYMBOL(lookup_one_len);
3599 EXPORT_SYMBOL(page_follow_link_light);
3600 EXPORT_SYMBOL(page_put_link);
3601 EXPORT_SYMBOL(page_readlink);
3602 EXPORT_SYMBOL(__page_symlink);
3603 EXPORT_SYMBOL(page_symlink);
3604 EXPORT_SYMBOL(page_symlink_inode_operations);
3605 EXPORT_SYMBOL(path_lookup);
3606 EXPORT_SYMBOL(kern_path);
3607 EXPORT_SYMBOL(vfs_path_lookup);
3608 EXPORT_SYMBOL(inode_permission);
3609 EXPORT_SYMBOL(file_permission);
3610 EXPORT_SYMBOL(unlock_rename);
3611 EXPORT_SYMBOL(vfs_create);
3612 EXPORT_SYMBOL(vfs_follow_link);
3613 EXPORT_SYMBOL(vfs_link);
3614 EXPORT_SYMBOL(vfs_mkdir);
3615 EXPORT_SYMBOL(vfs_mknod);
3616 EXPORT_SYMBOL(generic_permission);
3617 EXPORT_SYMBOL(vfs_readlink);
3618 EXPORT_SYMBOL(vfs_rename);
3619 EXPORT_SYMBOL(vfs_rmdir);
3620 EXPORT_SYMBOL(vfs_symlink);
3621 EXPORT_SYMBOL(vfs_unlink);
3622 EXPORT_SYMBOL(dentry_unhash);
3623 EXPORT_SYMBOL(generic_readlink);