]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/namei.c
block: drbd: avoid to use BIO_MAX_SIZE
[mirror_ubuntu-zesty-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <linux/bitops.h>
39 #include <asm/uaccess.h>
40
41 #include "internal.h"
42 #include "mount.h"
43
44 /* [Feb-1997 T. Schoebel-Theuer]
45 * Fundamental changes in the pathname lookup mechanisms (namei)
46 * were necessary because of omirr. The reason is that omirr needs
47 * to know the _real_ pathname, not the user-supplied one, in case
48 * of symlinks (and also when transname replacements occur).
49 *
50 * The new code replaces the old recursive symlink resolution with
51 * an iterative one (in case of non-nested symlink chains). It does
52 * this with calls to <fs>_follow_link().
53 * As a side effect, dir_namei(), _namei() and follow_link() are now
54 * replaced with a single function lookup_dentry() that can handle all
55 * the special cases of the former code.
56 *
57 * With the new dcache, the pathname is stored at each inode, at least as
58 * long as the refcount of the inode is positive. As a side effect, the
59 * size of the dcache depends on the inode cache and thus is dynamic.
60 *
61 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
62 * resolution to correspond with current state of the code.
63 *
64 * Note that the symlink resolution is not *completely* iterative.
65 * There is still a significant amount of tail- and mid- recursion in
66 * the algorithm. Also, note that <fs>_readlink() is not used in
67 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
68 * may return different results than <fs>_follow_link(). Many virtual
69 * filesystems (including /proc) exhibit this behavior.
70 */
71
72 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
73 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
74 * and the name already exists in form of a symlink, try to create the new
75 * name indicated by the symlink. The old code always complained that the
76 * name already exists, due to not following the symlink even if its target
77 * is nonexistent. The new semantics affects also mknod() and link() when
78 * the name is a symlink pointing to a non-existent name.
79 *
80 * I don't know which semantics is the right one, since I have no access
81 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
82 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
83 * "old" one. Personally, I think the new semantics is much more logical.
84 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
85 * file does succeed in both HP-UX and SunOs, but not in Solaris
86 * and in the old Linux semantics.
87 */
88
89 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
90 * semantics. See the comments in "open_namei" and "do_link" below.
91 *
92 * [10-Sep-98 Alan Modra] Another symlink change.
93 */
94
95 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
96 * inside the path - always follow.
97 * in the last component in creation/removal/renaming - never follow.
98 * if LOOKUP_FOLLOW passed - follow.
99 * if the pathname has trailing slashes - follow.
100 * otherwise - don't follow.
101 * (applied in that order).
102 *
103 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
104 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
105 * During the 2.4 we need to fix the userland stuff depending on it -
106 * hopefully we will be able to get rid of that wart in 2.5. So far only
107 * XEmacs seems to be relying on it...
108 */
109 /*
110 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
111 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
112 * any extra contention...
113 */
114
115 /* In order to reduce some races, while at the same time doing additional
116 * checking and hopefully speeding things up, we copy filenames to the
117 * kernel data space before using them..
118 *
119 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
120 * PATH_MAX includes the nul terminator --RR.
121 */
122
123 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
124
125 struct filename *
126 getname_flags(const char __user *filename, int flags, int *empty)
127 {
128 struct filename *result;
129 char *kname;
130 int len;
131
132 result = audit_reusename(filename);
133 if (result)
134 return result;
135
136 result = __getname();
137 if (unlikely(!result))
138 return ERR_PTR(-ENOMEM);
139
140 /*
141 * First, try to embed the struct filename inside the names_cache
142 * allocation
143 */
144 kname = (char *)result->iname;
145 result->name = kname;
146
147 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
148 if (unlikely(len < 0)) {
149 __putname(result);
150 return ERR_PTR(len);
151 }
152
153 /*
154 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
155 * separate struct filename so we can dedicate the entire
156 * names_cache allocation for the pathname, and re-do the copy from
157 * userland.
158 */
159 if (unlikely(len == EMBEDDED_NAME_MAX)) {
160 const size_t size = offsetof(struct filename, iname[1]);
161 kname = (char *)result;
162
163 /*
164 * size is chosen that way we to guarantee that
165 * result->iname[0] is within the same object and that
166 * kname can't be equal to result->iname, no matter what.
167 */
168 result = kzalloc(size, GFP_KERNEL);
169 if (unlikely(!result)) {
170 __putname(kname);
171 return ERR_PTR(-ENOMEM);
172 }
173 result->name = kname;
174 len = strncpy_from_user(kname, filename, PATH_MAX);
175 if (unlikely(len < 0)) {
176 __putname(kname);
177 kfree(result);
178 return ERR_PTR(len);
179 }
180 if (unlikely(len == PATH_MAX)) {
181 __putname(kname);
182 kfree(result);
183 return ERR_PTR(-ENAMETOOLONG);
184 }
185 }
186
187 result->refcnt = 1;
188 /* The empty path is special. */
189 if (unlikely(!len)) {
190 if (empty)
191 *empty = 1;
192 if (!(flags & LOOKUP_EMPTY)) {
193 putname(result);
194 return ERR_PTR(-ENOENT);
195 }
196 }
197
198 result->uptr = filename;
199 result->aname = NULL;
200 audit_getname(result);
201 return result;
202 }
203
204 struct filename *
205 getname(const char __user * filename)
206 {
207 return getname_flags(filename, 0, NULL);
208 }
209
210 struct filename *
211 getname_kernel(const char * filename)
212 {
213 struct filename *result;
214 int len = strlen(filename) + 1;
215
216 result = __getname();
217 if (unlikely(!result))
218 return ERR_PTR(-ENOMEM);
219
220 if (len <= EMBEDDED_NAME_MAX) {
221 result->name = (char *)result->iname;
222 } else if (len <= PATH_MAX) {
223 struct filename *tmp;
224
225 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
226 if (unlikely(!tmp)) {
227 __putname(result);
228 return ERR_PTR(-ENOMEM);
229 }
230 tmp->name = (char *)result;
231 result = tmp;
232 } else {
233 __putname(result);
234 return ERR_PTR(-ENAMETOOLONG);
235 }
236 memcpy((char *)result->name, filename, len);
237 result->uptr = NULL;
238 result->aname = NULL;
239 result->refcnt = 1;
240 audit_getname(result);
241
242 return result;
243 }
244
245 void putname(struct filename *name)
246 {
247 BUG_ON(name->refcnt <= 0);
248
249 if (--name->refcnt > 0)
250 return;
251
252 if (name->name != name->iname) {
253 __putname(name->name);
254 kfree(name);
255 } else
256 __putname(name);
257 }
258
259 static int check_acl(struct inode *inode, int mask)
260 {
261 #ifdef CONFIG_FS_POSIX_ACL
262 struct posix_acl *acl;
263
264 if (mask & MAY_NOT_BLOCK) {
265 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
266 if (!acl)
267 return -EAGAIN;
268 /* no ->get_acl() calls in RCU mode... */
269 if (is_uncached_acl(acl))
270 return -ECHILD;
271 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
272 }
273
274 acl = get_acl(inode, ACL_TYPE_ACCESS);
275 if (IS_ERR(acl))
276 return PTR_ERR(acl);
277 if (acl) {
278 int error = posix_acl_permission(inode, acl, mask);
279 posix_acl_release(acl);
280 return error;
281 }
282 #endif
283
284 return -EAGAIN;
285 }
286
287 /*
288 * This does the basic permission checking
289 */
290 static int acl_permission_check(struct inode *inode, int mask)
291 {
292 unsigned int mode = inode->i_mode;
293
294 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
295 mode >>= 6;
296 else {
297 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
298 int error = check_acl(inode, mask);
299 if (error != -EAGAIN)
300 return error;
301 }
302
303 if (in_group_p(inode->i_gid))
304 mode >>= 3;
305 }
306
307 /*
308 * If the DACs are ok we don't need any capability check.
309 */
310 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
311 return 0;
312 return -EACCES;
313 }
314
315 /**
316 * generic_permission - check for access rights on a Posix-like filesystem
317 * @inode: inode to check access rights for
318 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
319 *
320 * Used to check for read/write/execute permissions on a file.
321 * We use "fsuid" for this, letting us set arbitrary permissions
322 * for filesystem access without changing the "normal" uids which
323 * are used for other things.
324 *
325 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
326 * request cannot be satisfied (eg. requires blocking or too much complexity).
327 * It would then be called again in ref-walk mode.
328 */
329 int generic_permission(struct inode *inode, int mask)
330 {
331 int ret;
332
333 /*
334 * Do the basic permission checks.
335 */
336 ret = acl_permission_check(inode, mask);
337 if (ret != -EACCES)
338 return ret;
339
340 if (S_ISDIR(inode->i_mode)) {
341 /* DACs are overridable for directories */
342 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
343 return 0;
344 if (!(mask & MAY_WRITE))
345 if (capable_wrt_inode_uidgid(inode,
346 CAP_DAC_READ_SEARCH))
347 return 0;
348 return -EACCES;
349 }
350 /*
351 * Read/write DACs are always overridable.
352 * Executable DACs are overridable when there is
353 * at least one exec bit set.
354 */
355 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
356 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
357 return 0;
358
359 /*
360 * Searching includes executable on directories, else just read.
361 */
362 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
363 if (mask == MAY_READ)
364 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
365 return 0;
366
367 return -EACCES;
368 }
369 EXPORT_SYMBOL(generic_permission);
370
371 /*
372 * We _really_ want to just do "generic_permission()" without
373 * even looking at the inode->i_op values. So we keep a cache
374 * flag in inode->i_opflags, that says "this has not special
375 * permission function, use the fast case".
376 */
377 static inline int do_inode_permission(struct inode *inode, int mask)
378 {
379 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
380 if (likely(inode->i_op->permission))
381 return inode->i_op->permission(inode, mask);
382
383 /* This gets set once for the inode lifetime */
384 spin_lock(&inode->i_lock);
385 inode->i_opflags |= IOP_FASTPERM;
386 spin_unlock(&inode->i_lock);
387 }
388 return generic_permission(inode, mask);
389 }
390
391 /**
392 * __inode_permission - Check for access rights to a given inode
393 * @inode: Inode to check permission on
394 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
395 *
396 * Check for read/write/execute permissions on an inode.
397 *
398 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
399 *
400 * This does not check for a read-only file system. You probably want
401 * inode_permission().
402 */
403 int __inode_permission(struct inode *inode, int mask)
404 {
405 int retval;
406
407 if (unlikely(mask & MAY_WRITE)) {
408 /*
409 * Nobody gets write access to an immutable file.
410 */
411 if (IS_IMMUTABLE(inode))
412 return -EACCES;
413 }
414
415 retval = do_inode_permission(inode, mask);
416 if (retval)
417 return retval;
418
419 retval = devcgroup_inode_permission(inode, mask);
420 if (retval)
421 return retval;
422
423 return security_inode_permission(inode, mask);
424 }
425 EXPORT_SYMBOL(__inode_permission);
426
427 /**
428 * sb_permission - Check superblock-level permissions
429 * @sb: Superblock of inode to check permission on
430 * @inode: Inode to check permission on
431 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
432 *
433 * Separate out file-system wide checks from inode-specific permission checks.
434 */
435 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
436 {
437 if (unlikely(mask & MAY_WRITE)) {
438 umode_t mode = inode->i_mode;
439
440 /* Nobody gets write access to a read-only fs. */
441 if ((sb->s_flags & MS_RDONLY) &&
442 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
443 return -EROFS;
444 }
445 return 0;
446 }
447
448 /**
449 * inode_permission - Check for access rights to a given inode
450 * @inode: Inode to check permission on
451 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
452 *
453 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
454 * this, letting us set arbitrary permissions for filesystem access without
455 * changing the "normal" UIDs which are used for other things.
456 *
457 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
458 */
459 int inode_permission(struct inode *inode, int mask)
460 {
461 int retval;
462
463 retval = sb_permission(inode->i_sb, inode, mask);
464 if (retval)
465 return retval;
466 return __inode_permission(inode, mask);
467 }
468 EXPORT_SYMBOL(inode_permission);
469
470 /**
471 * path_get - get a reference to a path
472 * @path: path to get the reference to
473 *
474 * Given a path increment the reference count to the dentry and the vfsmount.
475 */
476 void path_get(const struct path *path)
477 {
478 mntget(path->mnt);
479 dget(path->dentry);
480 }
481 EXPORT_SYMBOL(path_get);
482
483 /**
484 * path_put - put a reference to a path
485 * @path: path to put the reference to
486 *
487 * Given a path decrement the reference count to the dentry and the vfsmount.
488 */
489 void path_put(const struct path *path)
490 {
491 dput(path->dentry);
492 mntput(path->mnt);
493 }
494 EXPORT_SYMBOL(path_put);
495
496 #define EMBEDDED_LEVELS 2
497 struct nameidata {
498 struct path path;
499 struct qstr last;
500 struct path root;
501 struct inode *inode; /* path.dentry.d_inode */
502 unsigned int flags;
503 unsigned seq, m_seq;
504 int last_type;
505 unsigned depth;
506 int total_link_count;
507 struct saved {
508 struct path link;
509 struct delayed_call done;
510 const char *name;
511 unsigned seq;
512 } *stack, internal[EMBEDDED_LEVELS];
513 struct filename *name;
514 struct nameidata *saved;
515 struct inode *link_inode;
516 unsigned root_seq;
517 int dfd;
518 };
519
520 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
521 {
522 struct nameidata *old = current->nameidata;
523 p->stack = p->internal;
524 p->dfd = dfd;
525 p->name = name;
526 p->total_link_count = old ? old->total_link_count : 0;
527 p->saved = old;
528 current->nameidata = p;
529 }
530
531 static void restore_nameidata(void)
532 {
533 struct nameidata *now = current->nameidata, *old = now->saved;
534
535 current->nameidata = old;
536 if (old)
537 old->total_link_count = now->total_link_count;
538 if (now->stack != now->internal)
539 kfree(now->stack);
540 }
541
542 static int __nd_alloc_stack(struct nameidata *nd)
543 {
544 struct saved *p;
545
546 if (nd->flags & LOOKUP_RCU) {
547 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
548 GFP_ATOMIC);
549 if (unlikely(!p))
550 return -ECHILD;
551 } else {
552 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
553 GFP_KERNEL);
554 if (unlikely(!p))
555 return -ENOMEM;
556 }
557 memcpy(p, nd->internal, sizeof(nd->internal));
558 nd->stack = p;
559 return 0;
560 }
561
562 /**
563 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
564 * @path: nameidate to verify
565 *
566 * Rename can sometimes move a file or directory outside of a bind
567 * mount, path_connected allows those cases to be detected.
568 */
569 static bool path_connected(const struct path *path)
570 {
571 struct vfsmount *mnt = path->mnt;
572
573 /* Only bind mounts can have disconnected paths */
574 if (mnt->mnt_root == mnt->mnt_sb->s_root)
575 return true;
576
577 return is_subdir(path->dentry, mnt->mnt_root);
578 }
579
580 static inline int nd_alloc_stack(struct nameidata *nd)
581 {
582 if (likely(nd->depth != EMBEDDED_LEVELS))
583 return 0;
584 if (likely(nd->stack != nd->internal))
585 return 0;
586 return __nd_alloc_stack(nd);
587 }
588
589 static void drop_links(struct nameidata *nd)
590 {
591 int i = nd->depth;
592 while (i--) {
593 struct saved *last = nd->stack + i;
594 do_delayed_call(&last->done);
595 clear_delayed_call(&last->done);
596 }
597 }
598
599 static void terminate_walk(struct nameidata *nd)
600 {
601 drop_links(nd);
602 if (!(nd->flags & LOOKUP_RCU)) {
603 int i;
604 path_put(&nd->path);
605 for (i = 0; i < nd->depth; i++)
606 path_put(&nd->stack[i].link);
607 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
608 path_put(&nd->root);
609 nd->root.mnt = NULL;
610 }
611 } else {
612 nd->flags &= ~LOOKUP_RCU;
613 if (!(nd->flags & LOOKUP_ROOT))
614 nd->root.mnt = NULL;
615 rcu_read_unlock();
616 }
617 nd->depth = 0;
618 }
619
620 /* path_put is needed afterwards regardless of success or failure */
621 static bool legitimize_path(struct nameidata *nd,
622 struct path *path, unsigned seq)
623 {
624 int res = __legitimize_mnt(path->mnt, nd->m_seq);
625 if (unlikely(res)) {
626 if (res > 0)
627 path->mnt = NULL;
628 path->dentry = NULL;
629 return false;
630 }
631 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
632 path->dentry = NULL;
633 return false;
634 }
635 return !read_seqcount_retry(&path->dentry->d_seq, seq);
636 }
637
638 static bool legitimize_links(struct nameidata *nd)
639 {
640 int i;
641 for (i = 0; i < nd->depth; i++) {
642 struct saved *last = nd->stack + i;
643 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
644 drop_links(nd);
645 nd->depth = i + 1;
646 return false;
647 }
648 }
649 return true;
650 }
651
652 /*
653 * Path walking has 2 modes, rcu-walk and ref-walk (see
654 * Documentation/filesystems/path-lookup.txt). In situations when we can't
655 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
656 * normal reference counts on dentries and vfsmounts to transition to ref-walk
657 * mode. Refcounts are grabbed at the last known good point before rcu-walk
658 * got stuck, so ref-walk may continue from there. If this is not successful
659 * (eg. a seqcount has changed), then failure is returned and it's up to caller
660 * to restart the path walk from the beginning in ref-walk mode.
661 */
662
663 /**
664 * unlazy_walk - try to switch to ref-walk mode.
665 * @nd: nameidata pathwalk data
666 * @dentry: child of nd->path.dentry or NULL
667 * @seq: seq number to check dentry against
668 * Returns: 0 on success, -ECHILD on failure
669 *
670 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
671 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
672 * @nd or NULL. Must be called from rcu-walk context.
673 * Nothing should touch nameidata between unlazy_walk() failure and
674 * terminate_walk().
675 */
676 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
677 {
678 struct dentry *parent = nd->path.dentry;
679
680 BUG_ON(!(nd->flags & LOOKUP_RCU));
681
682 nd->flags &= ~LOOKUP_RCU;
683 if (unlikely(!legitimize_links(nd)))
684 goto out2;
685 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
686 goto out2;
687 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
688 goto out1;
689
690 /*
691 * For a negative lookup, the lookup sequence point is the parents
692 * sequence point, and it only needs to revalidate the parent dentry.
693 *
694 * For a positive lookup, we need to move both the parent and the
695 * dentry from the RCU domain to be properly refcounted. And the
696 * sequence number in the dentry validates *both* dentry counters,
697 * since we checked the sequence number of the parent after we got
698 * the child sequence number. So we know the parent must still
699 * be valid if the child sequence number is still valid.
700 */
701 if (!dentry) {
702 if (read_seqcount_retry(&parent->d_seq, nd->seq))
703 goto out;
704 BUG_ON(nd->inode != parent->d_inode);
705 } else {
706 if (!lockref_get_not_dead(&dentry->d_lockref))
707 goto out;
708 if (read_seqcount_retry(&dentry->d_seq, seq))
709 goto drop_dentry;
710 }
711
712 /*
713 * Sequence counts matched. Now make sure that the root is
714 * still valid and get it if required.
715 */
716 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
717 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
718 rcu_read_unlock();
719 dput(dentry);
720 return -ECHILD;
721 }
722 }
723
724 rcu_read_unlock();
725 return 0;
726
727 drop_dentry:
728 rcu_read_unlock();
729 dput(dentry);
730 goto drop_root_mnt;
731 out2:
732 nd->path.mnt = NULL;
733 out1:
734 nd->path.dentry = NULL;
735 out:
736 rcu_read_unlock();
737 drop_root_mnt:
738 if (!(nd->flags & LOOKUP_ROOT))
739 nd->root.mnt = NULL;
740 return -ECHILD;
741 }
742
743 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
744 {
745 if (unlikely(!legitimize_path(nd, link, seq))) {
746 drop_links(nd);
747 nd->depth = 0;
748 nd->flags &= ~LOOKUP_RCU;
749 nd->path.mnt = NULL;
750 nd->path.dentry = NULL;
751 if (!(nd->flags & LOOKUP_ROOT))
752 nd->root.mnt = NULL;
753 rcu_read_unlock();
754 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
755 return 0;
756 }
757 path_put(link);
758 return -ECHILD;
759 }
760
761 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
762 {
763 return dentry->d_op->d_revalidate(dentry, flags);
764 }
765
766 /**
767 * complete_walk - successful completion of path walk
768 * @nd: pointer nameidata
769 *
770 * If we had been in RCU mode, drop out of it and legitimize nd->path.
771 * Revalidate the final result, unless we'd already done that during
772 * the path walk or the filesystem doesn't ask for it. Return 0 on
773 * success, -error on failure. In case of failure caller does not
774 * need to drop nd->path.
775 */
776 static int complete_walk(struct nameidata *nd)
777 {
778 struct dentry *dentry = nd->path.dentry;
779 int status;
780
781 if (nd->flags & LOOKUP_RCU) {
782 if (!(nd->flags & LOOKUP_ROOT))
783 nd->root.mnt = NULL;
784 if (unlikely(unlazy_walk(nd, NULL, 0)))
785 return -ECHILD;
786 }
787
788 if (likely(!(nd->flags & LOOKUP_JUMPED)))
789 return 0;
790
791 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
792 return 0;
793
794 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
795 if (status > 0)
796 return 0;
797
798 if (!status)
799 status = -ESTALE;
800
801 return status;
802 }
803
804 static void set_root(struct nameidata *nd)
805 {
806 struct fs_struct *fs = current->fs;
807
808 if (nd->flags & LOOKUP_RCU) {
809 unsigned seq;
810
811 do {
812 seq = read_seqcount_begin(&fs->seq);
813 nd->root = fs->root;
814 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
815 } while (read_seqcount_retry(&fs->seq, seq));
816 } else {
817 get_fs_root(fs, &nd->root);
818 }
819 }
820
821 static void path_put_conditional(struct path *path, struct nameidata *nd)
822 {
823 dput(path->dentry);
824 if (path->mnt != nd->path.mnt)
825 mntput(path->mnt);
826 }
827
828 static inline void path_to_nameidata(const struct path *path,
829 struct nameidata *nd)
830 {
831 if (!(nd->flags & LOOKUP_RCU)) {
832 dput(nd->path.dentry);
833 if (nd->path.mnt != path->mnt)
834 mntput(nd->path.mnt);
835 }
836 nd->path.mnt = path->mnt;
837 nd->path.dentry = path->dentry;
838 }
839
840 static int nd_jump_root(struct nameidata *nd)
841 {
842 if (nd->flags & LOOKUP_RCU) {
843 struct dentry *d;
844 nd->path = nd->root;
845 d = nd->path.dentry;
846 nd->inode = d->d_inode;
847 nd->seq = nd->root_seq;
848 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
849 return -ECHILD;
850 } else {
851 path_put(&nd->path);
852 nd->path = nd->root;
853 path_get(&nd->path);
854 nd->inode = nd->path.dentry->d_inode;
855 }
856 nd->flags |= LOOKUP_JUMPED;
857 return 0;
858 }
859
860 /*
861 * Helper to directly jump to a known parsed path from ->get_link,
862 * caller must have taken a reference to path beforehand.
863 */
864 void nd_jump_link(struct path *path)
865 {
866 struct nameidata *nd = current->nameidata;
867 path_put(&nd->path);
868
869 nd->path = *path;
870 nd->inode = nd->path.dentry->d_inode;
871 nd->flags |= LOOKUP_JUMPED;
872 }
873
874 static inline void put_link(struct nameidata *nd)
875 {
876 struct saved *last = nd->stack + --nd->depth;
877 do_delayed_call(&last->done);
878 if (!(nd->flags & LOOKUP_RCU))
879 path_put(&last->link);
880 }
881
882 int sysctl_protected_symlinks __read_mostly = 0;
883 int sysctl_protected_hardlinks __read_mostly = 0;
884
885 /**
886 * may_follow_link - Check symlink following for unsafe situations
887 * @nd: nameidata pathwalk data
888 *
889 * In the case of the sysctl_protected_symlinks sysctl being enabled,
890 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
891 * in a sticky world-writable directory. This is to protect privileged
892 * processes from failing races against path names that may change out
893 * from under them by way of other users creating malicious symlinks.
894 * It will permit symlinks to be followed only when outside a sticky
895 * world-writable directory, or when the uid of the symlink and follower
896 * match, or when the directory owner matches the symlink's owner.
897 *
898 * Returns 0 if following the symlink is allowed, -ve on error.
899 */
900 static inline int may_follow_link(struct nameidata *nd)
901 {
902 const struct inode *inode;
903 const struct inode *parent;
904
905 if (!sysctl_protected_symlinks)
906 return 0;
907
908 /* Allowed if owner and follower match. */
909 inode = nd->link_inode;
910 if (uid_eq(current_cred()->fsuid, inode->i_uid))
911 return 0;
912
913 /* Allowed if parent directory not sticky and world-writable. */
914 parent = nd->inode;
915 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
916 return 0;
917
918 /* Allowed if parent directory and link owner match. */
919 if (uid_eq(parent->i_uid, inode->i_uid))
920 return 0;
921
922 if (nd->flags & LOOKUP_RCU)
923 return -ECHILD;
924
925 audit_log_link_denied("follow_link", &nd->stack[0].link);
926 return -EACCES;
927 }
928
929 /**
930 * safe_hardlink_source - Check for safe hardlink conditions
931 * @inode: the source inode to hardlink from
932 *
933 * Return false if at least one of the following conditions:
934 * - inode is not a regular file
935 * - inode is setuid
936 * - inode is setgid and group-exec
937 * - access failure for read and write
938 *
939 * Otherwise returns true.
940 */
941 static bool safe_hardlink_source(struct inode *inode)
942 {
943 umode_t mode = inode->i_mode;
944
945 /* Special files should not get pinned to the filesystem. */
946 if (!S_ISREG(mode))
947 return false;
948
949 /* Setuid files should not get pinned to the filesystem. */
950 if (mode & S_ISUID)
951 return false;
952
953 /* Executable setgid files should not get pinned to the filesystem. */
954 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
955 return false;
956
957 /* Hardlinking to unreadable or unwritable sources is dangerous. */
958 if (inode_permission(inode, MAY_READ | MAY_WRITE))
959 return false;
960
961 return true;
962 }
963
964 /**
965 * may_linkat - Check permissions for creating a hardlink
966 * @link: the source to hardlink from
967 *
968 * Block hardlink when all of:
969 * - sysctl_protected_hardlinks enabled
970 * - fsuid does not match inode
971 * - hardlink source is unsafe (see safe_hardlink_source() above)
972 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
973 *
974 * Returns 0 if successful, -ve on error.
975 */
976 static int may_linkat(struct path *link)
977 {
978 struct inode *inode;
979
980 if (!sysctl_protected_hardlinks)
981 return 0;
982
983 inode = link->dentry->d_inode;
984
985 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
986 * otherwise, it must be a safe source.
987 */
988 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
989 return 0;
990
991 audit_log_link_denied("linkat", link);
992 return -EPERM;
993 }
994
995 static __always_inline
996 const char *get_link(struct nameidata *nd)
997 {
998 struct saved *last = nd->stack + nd->depth - 1;
999 struct dentry *dentry = last->link.dentry;
1000 struct inode *inode = nd->link_inode;
1001 int error;
1002 const char *res;
1003
1004 if (!(nd->flags & LOOKUP_RCU)) {
1005 touch_atime(&last->link);
1006 cond_resched();
1007 } else if (atime_needs_update(&last->link, inode)) {
1008 if (unlikely(unlazy_walk(nd, NULL, 0)))
1009 return ERR_PTR(-ECHILD);
1010 touch_atime(&last->link);
1011 }
1012
1013 error = security_inode_follow_link(dentry, inode,
1014 nd->flags & LOOKUP_RCU);
1015 if (unlikely(error))
1016 return ERR_PTR(error);
1017
1018 nd->last_type = LAST_BIND;
1019 res = inode->i_link;
1020 if (!res) {
1021 const char * (*get)(struct dentry *, struct inode *,
1022 struct delayed_call *);
1023 get = inode->i_op->get_link;
1024 if (nd->flags & LOOKUP_RCU) {
1025 res = get(NULL, inode, &last->done);
1026 if (res == ERR_PTR(-ECHILD)) {
1027 if (unlikely(unlazy_walk(nd, NULL, 0)))
1028 return ERR_PTR(-ECHILD);
1029 res = get(dentry, inode, &last->done);
1030 }
1031 } else {
1032 res = get(dentry, inode, &last->done);
1033 }
1034 if (IS_ERR_OR_NULL(res))
1035 return res;
1036 }
1037 if (*res == '/') {
1038 if (!nd->root.mnt)
1039 set_root(nd);
1040 if (unlikely(nd_jump_root(nd)))
1041 return ERR_PTR(-ECHILD);
1042 while (unlikely(*++res == '/'))
1043 ;
1044 }
1045 if (!*res)
1046 res = NULL;
1047 return res;
1048 }
1049
1050 /*
1051 * follow_up - Find the mountpoint of path's vfsmount
1052 *
1053 * Given a path, find the mountpoint of its source file system.
1054 * Replace @path with the path of the mountpoint in the parent mount.
1055 * Up is towards /.
1056 *
1057 * Return 1 if we went up a level and 0 if we were already at the
1058 * root.
1059 */
1060 int follow_up(struct path *path)
1061 {
1062 struct mount *mnt = real_mount(path->mnt);
1063 struct mount *parent;
1064 struct dentry *mountpoint;
1065
1066 read_seqlock_excl(&mount_lock);
1067 parent = mnt->mnt_parent;
1068 if (parent == mnt) {
1069 read_sequnlock_excl(&mount_lock);
1070 return 0;
1071 }
1072 mntget(&parent->mnt);
1073 mountpoint = dget(mnt->mnt_mountpoint);
1074 read_sequnlock_excl(&mount_lock);
1075 dput(path->dentry);
1076 path->dentry = mountpoint;
1077 mntput(path->mnt);
1078 path->mnt = &parent->mnt;
1079 return 1;
1080 }
1081 EXPORT_SYMBOL(follow_up);
1082
1083 /*
1084 * Perform an automount
1085 * - return -EISDIR to tell follow_managed() to stop and return the path we
1086 * were called with.
1087 */
1088 static int follow_automount(struct path *path, struct nameidata *nd,
1089 bool *need_mntput)
1090 {
1091 struct vfsmount *mnt;
1092 int err;
1093
1094 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1095 return -EREMOTE;
1096
1097 /* We don't want to mount if someone's just doing a stat -
1098 * unless they're stat'ing a directory and appended a '/' to
1099 * the name.
1100 *
1101 * We do, however, want to mount if someone wants to open or
1102 * create a file of any type under the mountpoint, wants to
1103 * traverse through the mountpoint or wants to open the
1104 * mounted directory. Also, autofs may mark negative dentries
1105 * as being automount points. These will need the attentions
1106 * of the daemon to instantiate them before they can be used.
1107 */
1108 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1109 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1110 path->dentry->d_inode)
1111 return -EISDIR;
1112
1113 nd->total_link_count++;
1114 if (nd->total_link_count >= 40)
1115 return -ELOOP;
1116
1117 mnt = path->dentry->d_op->d_automount(path);
1118 if (IS_ERR(mnt)) {
1119 /*
1120 * The filesystem is allowed to return -EISDIR here to indicate
1121 * it doesn't want to automount. For instance, autofs would do
1122 * this so that its userspace daemon can mount on this dentry.
1123 *
1124 * However, we can only permit this if it's a terminal point in
1125 * the path being looked up; if it wasn't then the remainder of
1126 * the path is inaccessible and we should say so.
1127 */
1128 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1129 return -EREMOTE;
1130 return PTR_ERR(mnt);
1131 }
1132
1133 if (!mnt) /* mount collision */
1134 return 0;
1135
1136 if (!*need_mntput) {
1137 /* lock_mount() may release path->mnt on error */
1138 mntget(path->mnt);
1139 *need_mntput = true;
1140 }
1141 err = finish_automount(mnt, path);
1142
1143 switch (err) {
1144 case -EBUSY:
1145 /* Someone else made a mount here whilst we were busy */
1146 return 0;
1147 case 0:
1148 path_put(path);
1149 path->mnt = mnt;
1150 path->dentry = dget(mnt->mnt_root);
1151 return 0;
1152 default:
1153 return err;
1154 }
1155
1156 }
1157
1158 /*
1159 * Handle a dentry that is managed in some way.
1160 * - Flagged for transit management (autofs)
1161 * - Flagged as mountpoint
1162 * - Flagged as automount point
1163 *
1164 * This may only be called in refwalk mode.
1165 *
1166 * Serialization is taken care of in namespace.c
1167 */
1168 static int follow_managed(struct path *path, struct nameidata *nd)
1169 {
1170 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1171 unsigned managed;
1172 bool need_mntput = false;
1173 int ret = 0;
1174
1175 /* Given that we're not holding a lock here, we retain the value in a
1176 * local variable for each dentry as we look at it so that we don't see
1177 * the components of that value change under us */
1178 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1179 managed &= DCACHE_MANAGED_DENTRY,
1180 unlikely(managed != 0)) {
1181 /* Allow the filesystem to manage the transit without i_mutex
1182 * being held. */
1183 if (managed & DCACHE_MANAGE_TRANSIT) {
1184 BUG_ON(!path->dentry->d_op);
1185 BUG_ON(!path->dentry->d_op->d_manage);
1186 ret = path->dentry->d_op->d_manage(path->dentry, false);
1187 if (ret < 0)
1188 break;
1189 }
1190
1191 /* Transit to a mounted filesystem. */
1192 if (managed & DCACHE_MOUNTED) {
1193 struct vfsmount *mounted = lookup_mnt(path);
1194 if (mounted) {
1195 dput(path->dentry);
1196 if (need_mntput)
1197 mntput(path->mnt);
1198 path->mnt = mounted;
1199 path->dentry = dget(mounted->mnt_root);
1200 need_mntput = true;
1201 continue;
1202 }
1203
1204 /* Something is mounted on this dentry in another
1205 * namespace and/or whatever was mounted there in this
1206 * namespace got unmounted before lookup_mnt() could
1207 * get it */
1208 }
1209
1210 /* Handle an automount point */
1211 if (managed & DCACHE_NEED_AUTOMOUNT) {
1212 ret = follow_automount(path, nd, &need_mntput);
1213 if (ret < 0)
1214 break;
1215 continue;
1216 }
1217
1218 /* We didn't change the current path point */
1219 break;
1220 }
1221
1222 if (need_mntput && path->mnt == mnt)
1223 mntput(path->mnt);
1224 if (ret == -EISDIR || !ret)
1225 ret = 1;
1226 if (need_mntput)
1227 nd->flags |= LOOKUP_JUMPED;
1228 if (unlikely(ret < 0))
1229 path_put_conditional(path, nd);
1230 return ret;
1231 }
1232
1233 int follow_down_one(struct path *path)
1234 {
1235 struct vfsmount *mounted;
1236
1237 mounted = lookup_mnt(path);
1238 if (mounted) {
1239 dput(path->dentry);
1240 mntput(path->mnt);
1241 path->mnt = mounted;
1242 path->dentry = dget(mounted->mnt_root);
1243 return 1;
1244 }
1245 return 0;
1246 }
1247 EXPORT_SYMBOL(follow_down_one);
1248
1249 static inline int managed_dentry_rcu(struct dentry *dentry)
1250 {
1251 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1252 dentry->d_op->d_manage(dentry, true) : 0;
1253 }
1254
1255 /*
1256 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1257 * we meet a managed dentry that would need blocking.
1258 */
1259 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1260 struct inode **inode, unsigned *seqp)
1261 {
1262 for (;;) {
1263 struct mount *mounted;
1264 /*
1265 * Don't forget we might have a non-mountpoint managed dentry
1266 * that wants to block transit.
1267 */
1268 switch (managed_dentry_rcu(path->dentry)) {
1269 case -ECHILD:
1270 default:
1271 return false;
1272 case -EISDIR:
1273 return true;
1274 case 0:
1275 break;
1276 }
1277
1278 if (!d_mountpoint(path->dentry))
1279 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1280
1281 mounted = __lookup_mnt(path->mnt, path->dentry);
1282 if (!mounted)
1283 break;
1284 path->mnt = &mounted->mnt;
1285 path->dentry = mounted->mnt.mnt_root;
1286 nd->flags |= LOOKUP_JUMPED;
1287 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1288 /*
1289 * Update the inode too. We don't need to re-check the
1290 * dentry sequence number here after this d_inode read,
1291 * because a mount-point is always pinned.
1292 */
1293 *inode = path->dentry->d_inode;
1294 }
1295 return !read_seqretry(&mount_lock, nd->m_seq) &&
1296 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1297 }
1298
1299 static int follow_dotdot_rcu(struct nameidata *nd)
1300 {
1301 struct inode *inode = nd->inode;
1302
1303 while (1) {
1304 if (path_equal(&nd->path, &nd->root))
1305 break;
1306 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1307 struct dentry *old = nd->path.dentry;
1308 struct dentry *parent = old->d_parent;
1309 unsigned seq;
1310
1311 inode = parent->d_inode;
1312 seq = read_seqcount_begin(&parent->d_seq);
1313 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1314 return -ECHILD;
1315 nd->path.dentry = parent;
1316 nd->seq = seq;
1317 if (unlikely(!path_connected(&nd->path)))
1318 return -ENOENT;
1319 break;
1320 } else {
1321 struct mount *mnt = real_mount(nd->path.mnt);
1322 struct mount *mparent = mnt->mnt_parent;
1323 struct dentry *mountpoint = mnt->mnt_mountpoint;
1324 struct inode *inode2 = mountpoint->d_inode;
1325 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1326 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1327 return -ECHILD;
1328 if (&mparent->mnt == nd->path.mnt)
1329 break;
1330 /* we know that mountpoint was pinned */
1331 nd->path.dentry = mountpoint;
1332 nd->path.mnt = &mparent->mnt;
1333 inode = inode2;
1334 nd->seq = seq;
1335 }
1336 }
1337 while (unlikely(d_mountpoint(nd->path.dentry))) {
1338 struct mount *mounted;
1339 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1340 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1341 return -ECHILD;
1342 if (!mounted)
1343 break;
1344 nd->path.mnt = &mounted->mnt;
1345 nd->path.dentry = mounted->mnt.mnt_root;
1346 inode = nd->path.dentry->d_inode;
1347 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1348 }
1349 nd->inode = inode;
1350 return 0;
1351 }
1352
1353 /*
1354 * Follow down to the covering mount currently visible to userspace. At each
1355 * point, the filesystem owning that dentry may be queried as to whether the
1356 * caller is permitted to proceed or not.
1357 */
1358 int follow_down(struct path *path)
1359 {
1360 unsigned managed;
1361 int ret;
1362
1363 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1364 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1365 /* Allow the filesystem to manage the transit without i_mutex
1366 * being held.
1367 *
1368 * We indicate to the filesystem if someone is trying to mount
1369 * something here. This gives autofs the chance to deny anyone
1370 * other than its daemon the right to mount on its
1371 * superstructure.
1372 *
1373 * The filesystem may sleep at this point.
1374 */
1375 if (managed & DCACHE_MANAGE_TRANSIT) {
1376 BUG_ON(!path->dentry->d_op);
1377 BUG_ON(!path->dentry->d_op->d_manage);
1378 ret = path->dentry->d_op->d_manage(
1379 path->dentry, false);
1380 if (ret < 0)
1381 return ret == -EISDIR ? 0 : ret;
1382 }
1383
1384 /* Transit to a mounted filesystem. */
1385 if (managed & DCACHE_MOUNTED) {
1386 struct vfsmount *mounted = lookup_mnt(path);
1387 if (!mounted)
1388 break;
1389 dput(path->dentry);
1390 mntput(path->mnt);
1391 path->mnt = mounted;
1392 path->dentry = dget(mounted->mnt_root);
1393 continue;
1394 }
1395
1396 /* Don't handle automount points here */
1397 break;
1398 }
1399 return 0;
1400 }
1401 EXPORT_SYMBOL(follow_down);
1402
1403 /*
1404 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1405 */
1406 static void follow_mount(struct path *path)
1407 {
1408 while (d_mountpoint(path->dentry)) {
1409 struct vfsmount *mounted = lookup_mnt(path);
1410 if (!mounted)
1411 break;
1412 dput(path->dentry);
1413 mntput(path->mnt);
1414 path->mnt = mounted;
1415 path->dentry = dget(mounted->mnt_root);
1416 }
1417 }
1418
1419 static int path_parent_directory(struct path *path)
1420 {
1421 struct dentry *old = path->dentry;
1422 /* rare case of legitimate dget_parent()... */
1423 path->dentry = dget_parent(path->dentry);
1424 dput(old);
1425 if (unlikely(!path_connected(path)))
1426 return -ENOENT;
1427 return 0;
1428 }
1429
1430 static int follow_dotdot(struct nameidata *nd)
1431 {
1432 while(1) {
1433 if (nd->path.dentry == nd->root.dentry &&
1434 nd->path.mnt == nd->root.mnt) {
1435 break;
1436 }
1437 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1438 int ret = path_parent_directory(&nd->path);
1439 if (ret)
1440 return ret;
1441 break;
1442 }
1443 if (!follow_up(&nd->path))
1444 break;
1445 }
1446 follow_mount(&nd->path);
1447 nd->inode = nd->path.dentry->d_inode;
1448 return 0;
1449 }
1450
1451 /*
1452 * This looks up the name in dcache, possibly revalidates the old dentry and
1453 * allocates a new one if not found or not valid. In the need_lookup argument
1454 * returns whether i_op->lookup is necessary.
1455 */
1456 static struct dentry *lookup_dcache(const struct qstr *name,
1457 struct dentry *dir,
1458 unsigned int flags)
1459 {
1460 struct dentry *dentry;
1461 int error;
1462
1463 dentry = d_lookup(dir, name);
1464 if (dentry) {
1465 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1466 error = d_revalidate(dentry, flags);
1467 if (unlikely(error <= 0)) {
1468 if (!error)
1469 d_invalidate(dentry);
1470 dput(dentry);
1471 return ERR_PTR(error);
1472 }
1473 }
1474 }
1475 return dentry;
1476 }
1477
1478 /*
1479 * Call i_op->lookup on the dentry. The dentry must be negative and
1480 * unhashed.
1481 *
1482 * dir->d_inode->i_mutex must be held
1483 */
1484 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1485 unsigned int flags)
1486 {
1487 struct dentry *old;
1488
1489 /* Don't create child dentry for a dead directory. */
1490 if (unlikely(IS_DEADDIR(dir))) {
1491 dput(dentry);
1492 return ERR_PTR(-ENOENT);
1493 }
1494
1495 old = dir->i_op->lookup(dir, dentry, flags);
1496 if (unlikely(old)) {
1497 dput(dentry);
1498 dentry = old;
1499 }
1500 return dentry;
1501 }
1502
1503 static struct dentry *__lookup_hash(const struct qstr *name,
1504 struct dentry *base, unsigned int flags)
1505 {
1506 struct dentry *dentry = lookup_dcache(name, base, flags);
1507
1508 if (dentry)
1509 return dentry;
1510
1511 dentry = d_alloc(base, name);
1512 if (unlikely(!dentry))
1513 return ERR_PTR(-ENOMEM);
1514
1515 return lookup_real(base->d_inode, dentry, flags);
1516 }
1517
1518 static int lookup_fast(struct nameidata *nd,
1519 struct path *path, struct inode **inode,
1520 unsigned *seqp)
1521 {
1522 struct vfsmount *mnt = nd->path.mnt;
1523 struct dentry *dentry, *parent = nd->path.dentry;
1524 int status = 1;
1525 int err;
1526
1527 /*
1528 * Rename seqlock is not required here because in the off chance
1529 * of a false negative due to a concurrent rename, the caller is
1530 * going to fall back to non-racy lookup.
1531 */
1532 if (nd->flags & LOOKUP_RCU) {
1533 unsigned seq;
1534 bool negative;
1535 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1536 if (unlikely(!dentry)) {
1537 if (unlazy_walk(nd, NULL, 0))
1538 return -ECHILD;
1539 return 0;
1540 }
1541
1542 /*
1543 * This sequence count validates that the inode matches
1544 * the dentry name information from lookup.
1545 */
1546 *inode = d_backing_inode(dentry);
1547 negative = d_is_negative(dentry);
1548 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1549 return -ECHILD;
1550
1551 /*
1552 * This sequence count validates that the parent had no
1553 * changes while we did the lookup of the dentry above.
1554 *
1555 * The memory barrier in read_seqcount_begin of child is
1556 * enough, we can use __read_seqcount_retry here.
1557 */
1558 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1559 return -ECHILD;
1560
1561 *seqp = seq;
1562 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1563 status = d_revalidate(dentry, nd->flags);
1564 if (unlikely(status <= 0)) {
1565 if (unlazy_walk(nd, dentry, seq))
1566 return -ECHILD;
1567 if (status == -ECHILD)
1568 status = d_revalidate(dentry, nd->flags);
1569 } else {
1570 /*
1571 * Note: do negative dentry check after revalidation in
1572 * case that drops it.
1573 */
1574 if (unlikely(negative))
1575 return -ENOENT;
1576 path->mnt = mnt;
1577 path->dentry = dentry;
1578 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1579 return 1;
1580 if (unlazy_walk(nd, dentry, seq))
1581 return -ECHILD;
1582 }
1583 } else {
1584 dentry = __d_lookup(parent, &nd->last);
1585 if (unlikely(!dentry))
1586 return 0;
1587 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1588 status = d_revalidate(dentry, nd->flags);
1589 }
1590 if (unlikely(status <= 0)) {
1591 if (!status)
1592 d_invalidate(dentry);
1593 dput(dentry);
1594 return status;
1595 }
1596 if (unlikely(d_is_negative(dentry))) {
1597 dput(dentry);
1598 return -ENOENT;
1599 }
1600
1601 path->mnt = mnt;
1602 path->dentry = dentry;
1603 err = follow_managed(path, nd);
1604 if (likely(err > 0))
1605 *inode = d_backing_inode(path->dentry);
1606 return err;
1607 }
1608
1609 /* Fast lookup failed, do it the slow way */
1610 static struct dentry *lookup_slow(const struct qstr *name,
1611 struct dentry *dir,
1612 unsigned int flags)
1613 {
1614 struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1615 struct inode *inode = dir->d_inode;
1616 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1617
1618 inode_lock_shared(inode);
1619 /* Don't go there if it's already dead */
1620 if (unlikely(IS_DEADDIR(inode)))
1621 goto out;
1622 again:
1623 dentry = d_alloc_parallel(dir, name, &wq);
1624 if (IS_ERR(dentry))
1625 goto out;
1626 if (unlikely(!d_in_lookup(dentry))) {
1627 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1628 !(flags & LOOKUP_NO_REVAL)) {
1629 int error = d_revalidate(dentry, flags);
1630 if (unlikely(error <= 0)) {
1631 if (!error) {
1632 d_invalidate(dentry);
1633 dput(dentry);
1634 goto again;
1635 }
1636 dput(dentry);
1637 dentry = ERR_PTR(error);
1638 }
1639 }
1640 } else {
1641 old = inode->i_op->lookup(inode, dentry, flags);
1642 d_lookup_done(dentry);
1643 if (unlikely(old)) {
1644 dput(dentry);
1645 dentry = old;
1646 }
1647 }
1648 out:
1649 inode_unlock_shared(inode);
1650 return dentry;
1651 }
1652
1653 static inline int may_lookup(struct nameidata *nd)
1654 {
1655 if (nd->flags & LOOKUP_RCU) {
1656 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1657 if (err != -ECHILD)
1658 return err;
1659 if (unlazy_walk(nd, NULL, 0))
1660 return -ECHILD;
1661 }
1662 return inode_permission(nd->inode, MAY_EXEC);
1663 }
1664
1665 static inline int handle_dots(struct nameidata *nd, int type)
1666 {
1667 if (type == LAST_DOTDOT) {
1668 if (!nd->root.mnt)
1669 set_root(nd);
1670 if (nd->flags & LOOKUP_RCU) {
1671 return follow_dotdot_rcu(nd);
1672 } else
1673 return follow_dotdot(nd);
1674 }
1675 return 0;
1676 }
1677
1678 static int pick_link(struct nameidata *nd, struct path *link,
1679 struct inode *inode, unsigned seq)
1680 {
1681 int error;
1682 struct saved *last;
1683 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1684 path_to_nameidata(link, nd);
1685 return -ELOOP;
1686 }
1687 if (!(nd->flags & LOOKUP_RCU)) {
1688 if (link->mnt == nd->path.mnt)
1689 mntget(link->mnt);
1690 }
1691 error = nd_alloc_stack(nd);
1692 if (unlikely(error)) {
1693 if (error == -ECHILD) {
1694 if (unlikely(unlazy_link(nd, link, seq)))
1695 return -ECHILD;
1696 error = nd_alloc_stack(nd);
1697 }
1698 if (error) {
1699 path_put(link);
1700 return error;
1701 }
1702 }
1703
1704 last = nd->stack + nd->depth++;
1705 last->link = *link;
1706 clear_delayed_call(&last->done);
1707 nd->link_inode = inode;
1708 last->seq = seq;
1709 return 1;
1710 }
1711
1712 /*
1713 * Do we need to follow links? We _really_ want to be able
1714 * to do this check without having to look at inode->i_op,
1715 * so we keep a cache of "no, this doesn't need follow_link"
1716 * for the common case.
1717 */
1718 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1719 int follow,
1720 struct inode *inode, unsigned seq)
1721 {
1722 if (likely(!d_is_symlink(link->dentry)))
1723 return 0;
1724 if (!follow)
1725 return 0;
1726 /* make sure that d_is_symlink above matches inode */
1727 if (nd->flags & LOOKUP_RCU) {
1728 if (read_seqcount_retry(&link->dentry->d_seq, seq))
1729 return -ECHILD;
1730 }
1731 return pick_link(nd, link, inode, seq);
1732 }
1733
1734 enum {WALK_GET = 1, WALK_PUT = 2};
1735
1736 static int walk_component(struct nameidata *nd, int flags)
1737 {
1738 struct path path;
1739 struct inode *inode;
1740 unsigned seq;
1741 int err;
1742 /*
1743 * "." and ".." are special - ".." especially so because it has
1744 * to be able to know about the current root directory and
1745 * parent relationships.
1746 */
1747 if (unlikely(nd->last_type != LAST_NORM)) {
1748 err = handle_dots(nd, nd->last_type);
1749 if (flags & WALK_PUT)
1750 put_link(nd);
1751 return err;
1752 }
1753 err = lookup_fast(nd, &path, &inode, &seq);
1754 if (unlikely(err <= 0)) {
1755 if (err < 0)
1756 return err;
1757 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1758 nd->flags);
1759 if (IS_ERR(path.dentry))
1760 return PTR_ERR(path.dentry);
1761
1762 path.mnt = nd->path.mnt;
1763 err = follow_managed(&path, nd);
1764 if (unlikely(err < 0))
1765 return err;
1766
1767 if (unlikely(d_is_negative(path.dentry))) {
1768 path_to_nameidata(&path, nd);
1769 return -ENOENT;
1770 }
1771
1772 seq = 0; /* we are already out of RCU mode */
1773 inode = d_backing_inode(path.dentry);
1774 }
1775
1776 if (flags & WALK_PUT)
1777 put_link(nd);
1778 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1779 if (unlikely(err))
1780 return err;
1781 path_to_nameidata(&path, nd);
1782 nd->inode = inode;
1783 nd->seq = seq;
1784 return 0;
1785 }
1786
1787 /*
1788 * We can do the critical dentry name comparison and hashing
1789 * operations one word at a time, but we are limited to:
1790 *
1791 * - Architectures with fast unaligned word accesses. We could
1792 * do a "get_unaligned()" if this helps and is sufficiently
1793 * fast.
1794 *
1795 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1796 * do not trap on the (extremely unlikely) case of a page
1797 * crossing operation.
1798 *
1799 * - Furthermore, we need an efficient 64-bit compile for the
1800 * 64-bit case in order to generate the "number of bytes in
1801 * the final mask". Again, that could be replaced with a
1802 * efficient population count instruction or similar.
1803 */
1804 #ifdef CONFIG_DCACHE_WORD_ACCESS
1805
1806 #include <asm/word-at-a-time.h>
1807
1808 #ifdef HASH_MIX
1809
1810 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1811
1812 #elif defined(CONFIG_64BIT)
1813 /*
1814 * Register pressure in the mixing function is an issue, particularly
1815 * on 32-bit x86, but almost any function requires one state value and
1816 * one temporary. Instead, use a function designed for two state values
1817 * and no temporaries.
1818 *
1819 * This function cannot create a collision in only two iterations, so
1820 * we have two iterations to achieve avalanche. In those two iterations,
1821 * we have six layers of mixing, which is enough to spread one bit's
1822 * influence out to 2^6 = 64 state bits.
1823 *
1824 * Rotate constants are scored by considering either 64 one-bit input
1825 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1826 * probability of that delta causing a change to each of the 128 output
1827 * bits, using a sample of random initial states.
1828 *
1829 * The Shannon entropy of the computed probabilities is then summed
1830 * to produce a score. Ideally, any input change has a 50% chance of
1831 * toggling any given output bit.
1832 *
1833 * Mixing scores (in bits) for (12,45):
1834 * Input delta: 1-bit 2-bit
1835 * 1 round: 713.3 42542.6
1836 * 2 rounds: 2753.7 140389.8
1837 * 3 rounds: 5954.1 233458.2
1838 * 4 rounds: 7862.6 256672.2
1839 * Perfect: 8192 258048
1840 * (64*128) (64*63/2 * 128)
1841 */
1842 #define HASH_MIX(x, y, a) \
1843 ( x ^= (a), \
1844 y ^= x, x = rol64(x,12),\
1845 x += y, y = rol64(y,45),\
1846 y *= 9 )
1847
1848 /*
1849 * Fold two longs into one 32-bit hash value. This must be fast, but
1850 * latency isn't quite as critical, as there is a fair bit of additional
1851 * work done before the hash value is used.
1852 */
1853 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1854 {
1855 y ^= x * GOLDEN_RATIO_64;
1856 y *= GOLDEN_RATIO_64;
1857 return y >> 32;
1858 }
1859
1860 #else /* 32-bit case */
1861
1862 /*
1863 * Mixing scores (in bits) for (7,20):
1864 * Input delta: 1-bit 2-bit
1865 * 1 round: 330.3 9201.6
1866 * 2 rounds: 1246.4 25475.4
1867 * 3 rounds: 1907.1 31295.1
1868 * 4 rounds: 2042.3 31718.6
1869 * Perfect: 2048 31744
1870 * (32*64) (32*31/2 * 64)
1871 */
1872 #define HASH_MIX(x, y, a) \
1873 ( x ^= (a), \
1874 y ^= x, x = rol32(x, 7),\
1875 x += y, y = rol32(y,20),\
1876 y *= 9 )
1877
1878 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1879 {
1880 /* Use arch-optimized multiply if one exists */
1881 return __hash_32(y ^ __hash_32(x));
1882 }
1883
1884 #endif
1885
1886 /*
1887 * Return the hash of a string of known length. This is carfully
1888 * designed to match hash_name(), which is the more critical function.
1889 * In particular, we must end by hashing a final word containing 0..7
1890 * payload bytes, to match the way that hash_name() iterates until it
1891 * finds the delimiter after the name.
1892 */
1893 unsigned int full_name_hash(const char *name, unsigned int len)
1894 {
1895 unsigned long a, x = 0, y = 0;
1896
1897 for (;;) {
1898 if (!len)
1899 goto done;
1900 a = load_unaligned_zeropad(name);
1901 if (len < sizeof(unsigned long))
1902 break;
1903 HASH_MIX(x, y, a);
1904 name += sizeof(unsigned long);
1905 len -= sizeof(unsigned long);
1906 }
1907 x ^= a & bytemask_from_count(len);
1908 done:
1909 return fold_hash(x, y);
1910 }
1911 EXPORT_SYMBOL(full_name_hash);
1912
1913 /* Return the "hash_len" (hash and length) of a null-terminated string */
1914 u64 hashlen_string(const char *name)
1915 {
1916 unsigned long a = 0, x = 0, y = 0, adata, mask, len;
1917 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1918
1919 len = -sizeof(unsigned long);
1920 do {
1921 HASH_MIX(x, y, a);
1922 len += sizeof(unsigned long);
1923 a = load_unaligned_zeropad(name+len);
1924 } while (!has_zero(a, &adata, &constants));
1925
1926 adata = prep_zero_mask(a, adata, &constants);
1927 mask = create_zero_mask(adata);
1928 x ^= a & zero_bytemask(mask);
1929
1930 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1931 }
1932 EXPORT_SYMBOL(hashlen_string);
1933
1934 /*
1935 * Calculate the length and hash of the path component, and
1936 * return the "hash_len" as the result.
1937 */
1938 static inline u64 hash_name(const char *name)
1939 {
1940 unsigned long a = 0, b, x = 0, y = 0, adata, bdata, mask, len;
1941 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1942
1943 len = -sizeof(unsigned long);
1944 do {
1945 HASH_MIX(x, y, a);
1946 len += sizeof(unsigned long);
1947 a = load_unaligned_zeropad(name+len);
1948 b = a ^ REPEAT_BYTE('/');
1949 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1950
1951 adata = prep_zero_mask(a, adata, &constants);
1952 bdata = prep_zero_mask(b, bdata, &constants);
1953 mask = create_zero_mask(adata | bdata);
1954 x ^= a & zero_bytemask(mask);
1955
1956 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1957 }
1958
1959 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1960
1961 /* Return the hash of a string of known length */
1962 unsigned int full_name_hash(const char *name, unsigned int len)
1963 {
1964 unsigned long hash = init_name_hash();
1965 while (len--)
1966 hash = partial_name_hash((unsigned char)*name++, hash);
1967 return end_name_hash(hash);
1968 }
1969 EXPORT_SYMBOL(full_name_hash);
1970
1971 /* Return the "hash_len" (hash and length) of a null-terminated string */
1972 u64 hashlen_string(const char *name)
1973 {
1974 unsigned long hash = init_name_hash();
1975 unsigned long len = 0, c;
1976
1977 c = (unsigned char)*name;
1978 while (c) {
1979 len++;
1980 hash = partial_name_hash(c, hash);
1981 c = (unsigned char)name[len];
1982 }
1983 return hashlen_create(end_name_hash(hash), len);
1984 }
1985 EXPORT_SYMBOL(hashlen_string);
1986
1987 /*
1988 * We know there's a real path component here of at least
1989 * one character.
1990 */
1991 static inline u64 hash_name(const char *name)
1992 {
1993 unsigned long hash = init_name_hash();
1994 unsigned long len = 0, c;
1995
1996 c = (unsigned char)*name;
1997 do {
1998 len++;
1999 hash = partial_name_hash(c, hash);
2000 c = (unsigned char)name[len];
2001 } while (c && c != '/');
2002 return hashlen_create(end_name_hash(hash), len);
2003 }
2004
2005 #endif
2006
2007 /*
2008 * Name resolution.
2009 * This is the basic name resolution function, turning a pathname into
2010 * the final dentry. We expect 'base' to be positive and a directory.
2011 *
2012 * Returns 0 and nd will have valid dentry and mnt on success.
2013 * Returns error and drops reference to input namei data on failure.
2014 */
2015 static int link_path_walk(const char *name, struct nameidata *nd)
2016 {
2017 int err;
2018
2019 while (*name=='/')
2020 name++;
2021 if (!*name)
2022 return 0;
2023
2024 /* At this point we know we have a real path component. */
2025 for(;;) {
2026 u64 hash_len;
2027 int type;
2028
2029 err = may_lookup(nd);
2030 if (err)
2031 return err;
2032
2033 hash_len = hash_name(name);
2034
2035 type = LAST_NORM;
2036 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2037 case 2:
2038 if (name[1] == '.') {
2039 type = LAST_DOTDOT;
2040 nd->flags |= LOOKUP_JUMPED;
2041 }
2042 break;
2043 case 1:
2044 type = LAST_DOT;
2045 }
2046 if (likely(type == LAST_NORM)) {
2047 struct dentry *parent = nd->path.dentry;
2048 nd->flags &= ~LOOKUP_JUMPED;
2049 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2050 struct qstr this = { { .hash_len = hash_len }, .name = name };
2051 err = parent->d_op->d_hash(parent, &this);
2052 if (err < 0)
2053 return err;
2054 hash_len = this.hash_len;
2055 name = this.name;
2056 }
2057 }
2058
2059 nd->last.hash_len = hash_len;
2060 nd->last.name = name;
2061 nd->last_type = type;
2062
2063 name += hashlen_len(hash_len);
2064 if (!*name)
2065 goto OK;
2066 /*
2067 * If it wasn't NUL, we know it was '/'. Skip that
2068 * slash, and continue until no more slashes.
2069 */
2070 do {
2071 name++;
2072 } while (unlikely(*name == '/'));
2073 if (unlikely(!*name)) {
2074 OK:
2075 /* pathname body, done */
2076 if (!nd->depth)
2077 return 0;
2078 name = nd->stack[nd->depth - 1].name;
2079 /* trailing symlink, done */
2080 if (!name)
2081 return 0;
2082 /* last component of nested symlink */
2083 err = walk_component(nd, WALK_GET | WALK_PUT);
2084 } else {
2085 err = walk_component(nd, WALK_GET);
2086 }
2087 if (err < 0)
2088 return err;
2089
2090 if (err) {
2091 const char *s = get_link(nd);
2092
2093 if (IS_ERR(s))
2094 return PTR_ERR(s);
2095 err = 0;
2096 if (unlikely(!s)) {
2097 /* jumped */
2098 put_link(nd);
2099 } else {
2100 nd->stack[nd->depth - 1].name = name;
2101 name = s;
2102 continue;
2103 }
2104 }
2105 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2106 if (nd->flags & LOOKUP_RCU) {
2107 if (unlazy_walk(nd, NULL, 0))
2108 return -ECHILD;
2109 }
2110 return -ENOTDIR;
2111 }
2112 }
2113 }
2114
2115 static const char *path_init(struct nameidata *nd, unsigned flags)
2116 {
2117 int retval = 0;
2118 const char *s = nd->name->name;
2119
2120 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2121 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2122 nd->depth = 0;
2123 if (flags & LOOKUP_ROOT) {
2124 struct dentry *root = nd->root.dentry;
2125 struct inode *inode = root->d_inode;
2126 if (*s) {
2127 if (!d_can_lookup(root))
2128 return ERR_PTR(-ENOTDIR);
2129 retval = inode_permission(inode, MAY_EXEC);
2130 if (retval)
2131 return ERR_PTR(retval);
2132 }
2133 nd->path = nd->root;
2134 nd->inode = inode;
2135 if (flags & LOOKUP_RCU) {
2136 rcu_read_lock();
2137 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2138 nd->root_seq = nd->seq;
2139 nd->m_seq = read_seqbegin(&mount_lock);
2140 } else {
2141 path_get(&nd->path);
2142 }
2143 return s;
2144 }
2145
2146 nd->root.mnt = NULL;
2147 nd->path.mnt = NULL;
2148 nd->path.dentry = NULL;
2149
2150 nd->m_seq = read_seqbegin(&mount_lock);
2151 if (*s == '/') {
2152 if (flags & LOOKUP_RCU)
2153 rcu_read_lock();
2154 set_root(nd);
2155 if (likely(!nd_jump_root(nd)))
2156 return s;
2157 nd->root.mnt = NULL;
2158 rcu_read_unlock();
2159 return ERR_PTR(-ECHILD);
2160 } else if (nd->dfd == AT_FDCWD) {
2161 if (flags & LOOKUP_RCU) {
2162 struct fs_struct *fs = current->fs;
2163 unsigned seq;
2164
2165 rcu_read_lock();
2166
2167 do {
2168 seq = read_seqcount_begin(&fs->seq);
2169 nd->path = fs->pwd;
2170 nd->inode = nd->path.dentry->d_inode;
2171 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2172 } while (read_seqcount_retry(&fs->seq, seq));
2173 } else {
2174 get_fs_pwd(current->fs, &nd->path);
2175 nd->inode = nd->path.dentry->d_inode;
2176 }
2177 return s;
2178 } else {
2179 /* Caller must check execute permissions on the starting path component */
2180 struct fd f = fdget_raw(nd->dfd);
2181 struct dentry *dentry;
2182
2183 if (!f.file)
2184 return ERR_PTR(-EBADF);
2185
2186 dentry = f.file->f_path.dentry;
2187
2188 if (*s) {
2189 if (!d_can_lookup(dentry)) {
2190 fdput(f);
2191 return ERR_PTR(-ENOTDIR);
2192 }
2193 }
2194
2195 nd->path = f.file->f_path;
2196 if (flags & LOOKUP_RCU) {
2197 rcu_read_lock();
2198 nd->inode = nd->path.dentry->d_inode;
2199 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2200 } else {
2201 path_get(&nd->path);
2202 nd->inode = nd->path.dentry->d_inode;
2203 }
2204 fdput(f);
2205 return s;
2206 }
2207 }
2208
2209 static const char *trailing_symlink(struct nameidata *nd)
2210 {
2211 const char *s;
2212 int error = may_follow_link(nd);
2213 if (unlikely(error))
2214 return ERR_PTR(error);
2215 nd->flags |= LOOKUP_PARENT;
2216 nd->stack[0].name = NULL;
2217 s = get_link(nd);
2218 return s ? s : "";
2219 }
2220
2221 static inline int lookup_last(struct nameidata *nd)
2222 {
2223 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2224 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2225
2226 nd->flags &= ~LOOKUP_PARENT;
2227 return walk_component(nd,
2228 nd->flags & LOOKUP_FOLLOW
2229 ? nd->depth
2230 ? WALK_PUT | WALK_GET
2231 : WALK_GET
2232 : 0);
2233 }
2234
2235 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2236 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2237 {
2238 const char *s = path_init(nd, flags);
2239 int err;
2240
2241 if (IS_ERR(s))
2242 return PTR_ERR(s);
2243 while (!(err = link_path_walk(s, nd))
2244 && ((err = lookup_last(nd)) > 0)) {
2245 s = trailing_symlink(nd);
2246 if (IS_ERR(s)) {
2247 err = PTR_ERR(s);
2248 break;
2249 }
2250 }
2251 if (!err)
2252 err = complete_walk(nd);
2253
2254 if (!err && nd->flags & LOOKUP_DIRECTORY)
2255 if (!d_can_lookup(nd->path.dentry))
2256 err = -ENOTDIR;
2257 if (!err) {
2258 *path = nd->path;
2259 nd->path.mnt = NULL;
2260 nd->path.dentry = NULL;
2261 }
2262 terminate_walk(nd);
2263 return err;
2264 }
2265
2266 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2267 struct path *path, struct path *root)
2268 {
2269 int retval;
2270 struct nameidata nd;
2271 if (IS_ERR(name))
2272 return PTR_ERR(name);
2273 if (unlikely(root)) {
2274 nd.root = *root;
2275 flags |= LOOKUP_ROOT;
2276 }
2277 set_nameidata(&nd, dfd, name);
2278 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2279 if (unlikely(retval == -ECHILD))
2280 retval = path_lookupat(&nd, flags, path);
2281 if (unlikely(retval == -ESTALE))
2282 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2283
2284 if (likely(!retval))
2285 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2286 restore_nameidata();
2287 putname(name);
2288 return retval;
2289 }
2290
2291 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2292 static int path_parentat(struct nameidata *nd, unsigned flags,
2293 struct path *parent)
2294 {
2295 const char *s = path_init(nd, flags);
2296 int err;
2297 if (IS_ERR(s))
2298 return PTR_ERR(s);
2299 err = link_path_walk(s, nd);
2300 if (!err)
2301 err = complete_walk(nd);
2302 if (!err) {
2303 *parent = nd->path;
2304 nd->path.mnt = NULL;
2305 nd->path.dentry = NULL;
2306 }
2307 terminate_walk(nd);
2308 return err;
2309 }
2310
2311 static struct filename *filename_parentat(int dfd, struct filename *name,
2312 unsigned int flags, struct path *parent,
2313 struct qstr *last, int *type)
2314 {
2315 int retval;
2316 struct nameidata nd;
2317
2318 if (IS_ERR(name))
2319 return name;
2320 set_nameidata(&nd, dfd, name);
2321 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2322 if (unlikely(retval == -ECHILD))
2323 retval = path_parentat(&nd, flags, parent);
2324 if (unlikely(retval == -ESTALE))
2325 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2326 if (likely(!retval)) {
2327 *last = nd.last;
2328 *type = nd.last_type;
2329 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2330 } else {
2331 putname(name);
2332 name = ERR_PTR(retval);
2333 }
2334 restore_nameidata();
2335 return name;
2336 }
2337
2338 /* does lookup, returns the object with parent locked */
2339 struct dentry *kern_path_locked(const char *name, struct path *path)
2340 {
2341 struct filename *filename;
2342 struct dentry *d;
2343 struct qstr last;
2344 int type;
2345
2346 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2347 &last, &type);
2348 if (IS_ERR(filename))
2349 return ERR_CAST(filename);
2350 if (unlikely(type != LAST_NORM)) {
2351 path_put(path);
2352 putname(filename);
2353 return ERR_PTR(-EINVAL);
2354 }
2355 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2356 d = __lookup_hash(&last, path->dentry, 0);
2357 if (IS_ERR(d)) {
2358 inode_unlock(path->dentry->d_inode);
2359 path_put(path);
2360 }
2361 putname(filename);
2362 return d;
2363 }
2364
2365 int kern_path(const char *name, unsigned int flags, struct path *path)
2366 {
2367 return filename_lookup(AT_FDCWD, getname_kernel(name),
2368 flags, path, NULL);
2369 }
2370 EXPORT_SYMBOL(kern_path);
2371
2372 /**
2373 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2374 * @dentry: pointer to dentry of the base directory
2375 * @mnt: pointer to vfs mount of the base directory
2376 * @name: pointer to file name
2377 * @flags: lookup flags
2378 * @path: pointer to struct path to fill
2379 */
2380 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2381 const char *name, unsigned int flags,
2382 struct path *path)
2383 {
2384 struct path root = {.mnt = mnt, .dentry = dentry};
2385 /* the first argument of filename_lookup() is ignored with root */
2386 return filename_lookup(AT_FDCWD, getname_kernel(name),
2387 flags , path, &root);
2388 }
2389 EXPORT_SYMBOL(vfs_path_lookup);
2390
2391 /**
2392 * lookup_hash - lookup single pathname component on already hashed name
2393 * @name: name and hash to lookup
2394 * @base: base directory to lookup from
2395 *
2396 * The name must have been verified and hashed (see lookup_one_len()). Using
2397 * this after just full_name_hash() is unsafe.
2398 *
2399 * This function also doesn't check for search permission on base directory.
2400 *
2401 * Use lookup_one_len_unlocked() instead, unless you really know what you are
2402 * doing.
2403 *
2404 * Do not hold i_mutex; this helper takes i_mutex if necessary.
2405 */
2406 struct dentry *lookup_hash(const struct qstr *name, struct dentry *base)
2407 {
2408 struct dentry *ret;
2409
2410 ret = lookup_dcache(name, base, 0);
2411 if (!ret)
2412 ret = lookup_slow(name, base, 0);
2413
2414 return ret;
2415 }
2416 EXPORT_SYMBOL(lookup_hash);
2417
2418 /**
2419 * lookup_one_len - filesystem helper to lookup single pathname component
2420 * @name: pathname component to lookup
2421 * @base: base directory to lookup from
2422 * @len: maximum length @len should be interpreted to
2423 *
2424 * Note that this routine is purely a helper for filesystem usage and should
2425 * not be called by generic code.
2426 *
2427 * The caller must hold base->i_mutex.
2428 */
2429 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2430 {
2431 struct qstr this;
2432 unsigned int c;
2433 int err;
2434
2435 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2436
2437 this.name = name;
2438 this.len = len;
2439 this.hash = full_name_hash(name, len);
2440 if (!len)
2441 return ERR_PTR(-EACCES);
2442
2443 if (unlikely(name[0] == '.')) {
2444 if (len < 2 || (len == 2 && name[1] == '.'))
2445 return ERR_PTR(-EACCES);
2446 }
2447
2448 while (len--) {
2449 c = *(const unsigned char *)name++;
2450 if (c == '/' || c == '\0')
2451 return ERR_PTR(-EACCES);
2452 }
2453 /*
2454 * See if the low-level filesystem might want
2455 * to use its own hash..
2456 */
2457 if (base->d_flags & DCACHE_OP_HASH) {
2458 int err = base->d_op->d_hash(base, &this);
2459 if (err < 0)
2460 return ERR_PTR(err);
2461 }
2462
2463 err = inode_permission(base->d_inode, MAY_EXEC);
2464 if (err)
2465 return ERR_PTR(err);
2466
2467 return __lookup_hash(&this, base, 0);
2468 }
2469 EXPORT_SYMBOL(lookup_one_len);
2470
2471 /**
2472 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2473 * @name: pathname component to lookup
2474 * @base: base directory to lookup from
2475 * @len: maximum length @len should be interpreted to
2476 *
2477 * Note that this routine is purely a helper for filesystem usage and should
2478 * not be called by generic code.
2479 *
2480 * Unlike lookup_one_len, it should be called without the parent
2481 * i_mutex held, and will take the i_mutex itself if necessary.
2482 */
2483 struct dentry *lookup_one_len_unlocked(const char *name,
2484 struct dentry *base, int len)
2485 {
2486 struct qstr this;
2487 unsigned int c;
2488 int err;
2489
2490 this.name = name;
2491 this.len = len;
2492 this.hash = full_name_hash(name, len);
2493 if (!len)
2494 return ERR_PTR(-EACCES);
2495
2496 if (unlikely(name[0] == '.')) {
2497 if (len < 2 || (len == 2 && name[1] == '.'))
2498 return ERR_PTR(-EACCES);
2499 }
2500
2501 while (len--) {
2502 c = *(const unsigned char *)name++;
2503 if (c == '/' || c == '\0')
2504 return ERR_PTR(-EACCES);
2505 }
2506 /*
2507 * See if the low-level filesystem might want
2508 * to use its own hash..
2509 */
2510 if (base->d_flags & DCACHE_OP_HASH) {
2511 int err = base->d_op->d_hash(base, &this);
2512 if (err < 0)
2513 return ERR_PTR(err);
2514 }
2515
2516 err = inode_permission(base->d_inode, MAY_EXEC);
2517 if (err)
2518 return ERR_PTR(err);
2519
2520 return lookup_hash(&this, base);
2521 }
2522 EXPORT_SYMBOL(lookup_one_len_unlocked);
2523
2524 #ifdef CONFIG_UNIX98_PTYS
2525 int path_pts(struct path *path)
2526 {
2527 /* Find something mounted on "pts" in the same directory as
2528 * the input path.
2529 */
2530 struct dentry *child, *parent;
2531 struct qstr this;
2532 int ret;
2533
2534 ret = path_parent_directory(path);
2535 if (ret)
2536 return ret;
2537
2538 parent = path->dentry;
2539 this.name = "pts";
2540 this.len = 3;
2541 child = d_hash_and_lookup(parent, &this);
2542 if (!child)
2543 return -ENOENT;
2544
2545 path->dentry = child;
2546 dput(parent);
2547 follow_mount(path);
2548 return 0;
2549 }
2550 #endif
2551
2552 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2553 struct path *path, int *empty)
2554 {
2555 return filename_lookup(dfd, getname_flags(name, flags, empty),
2556 flags, path, NULL);
2557 }
2558 EXPORT_SYMBOL(user_path_at_empty);
2559
2560 /*
2561 * NB: most callers don't do anything directly with the reference to the
2562 * to struct filename, but the nd->last pointer points into the name string
2563 * allocated by getname. So we must hold the reference to it until all
2564 * path-walking is complete.
2565 */
2566 static inline struct filename *
2567 user_path_parent(int dfd, const char __user *path,
2568 struct path *parent,
2569 struct qstr *last,
2570 int *type,
2571 unsigned int flags)
2572 {
2573 /* only LOOKUP_REVAL is allowed in extra flags */
2574 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2575 parent, last, type);
2576 }
2577
2578 /**
2579 * mountpoint_last - look up last component for umount
2580 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2581 * @path: pointer to container for result
2582 *
2583 * This is a special lookup_last function just for umount. In this case, we
2584 * need to resolve the path without doing any revalidation.
2585 *
2586 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2587 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2588 * in almost all cases, this lookup will be served out of the dcache. The only
2589 * cases where it won't are if nd->last refers to a symlink or the path is
2590 * bogus and it doesn't exist.
2591 *
2592 * Returns:
2593 * -error: if there was an error during lookup. This includes -ENOENT if the
2594 * lookup found a negative dentry. The nd->path reference will also be
2595 * put in this case.
2596 *
2597 * 0: if we successfully resolved nd->path and found it to not to be a
2598 * symlink that needs to be followed. "path" will also be populated.
2599 * The nd->path reference will also be put.
2600 *
2601 * 1: if we successfully resolved nd->last and found it to be a symlink
2602 * that needs to be followed. "path" will be populated with the path
2603 * to the link, and nd->path will *not* be put.
2604 */
2605 static int
2606 mountpoint_last(struct nameidata *nd, struct path *path)
2607 {
2608 int error = 0;
2609 struct dentry *dentry;
2610 struct dentry *dir = nd->path.dentry;
2611
2612 /* If we're in rcuwalk, drop out of it to handle last component */
2613 if (nd->flags & LOOKUP_RCU) {
2614 if (unlazy_walk(nd, NULL, 0))
2615 return -ECHILD;
2616 }
2617
2618 nd->flags &= ~LOOKUP_PARENT;
2619
2620 if (unlikely(nd->last_type != LAST_NORM)) {
2621 error = handle_dots(nd, nd->last_type);
2622 if (error)
2623 return error;
2624 dentry = dget(nd->path.dentry);
2625 } else {
2626 dentry = d_lookup(dir, &nd->last);
2627 if (!dentry) {
2628 /*
2629 * No cached dentry. Mounted dentries are pinned in the
2630 * cache, so that means that this dentry is probably
2631 * a symlink or the path doesn't actually point
2632 * to a mounted dentry.
2633 */
2634 dentry = lookup_slow(&nd->last, dir,
2635 nd->flags | LOOKUP_NO_REVAL);
2636 if (IS_ERR(dentry))
2637 return PTR_ERR(dentry);
2638 }
2639 }
2640 if (d_is_negative(dentry)) {
2641 dput(dentry);
2642 return -ENOENT;
2643 }
2644 if (nd->depth)
2645 put_link(nd);
2646 path->dentry = dentry;
2647 path->mnt = nd->path.mnt;
2648 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2649 d_backing_inode(dentry), 0);
2650 if (unlikely(error))
2651 return error;
2652 mntget(path->mnt);
2653 follow_mount(path);
2654 return 0;
2655 }
2656
2657 /**
2658 * path_mountpoint - look up a path to be umounted
2659 * @nd: lookup context
2660 * @flags: lookup flags
2661 * @path: pointer to container for result
2662 *
2663 * Look up the given name, but don't attempt to revalidate the last component.
2664 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2665 */
2666 static int
2667 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2668 {
2669 const char *s = path_init(nd, flags);
2670 int err;
2671 if (IS_ERR(s))
2672 return PTR_ERR(s);
2673 while (!(err = link_path_walk(s, nd)) &&
2674 (err = mountpoint_last(nd, path)) > 0) {
2675 s = trailing_symlink(nd);
2676 if (IS_ERR(s)) {
2677 err = PTR_ERR(s);
2678 break;
2679 }
2680 }
2681 terminate_walk(nd);
2682 return err;
2683 }
2684
2685 static int
2686 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2687 unsigned int flags)
2688 {
2689 struct nameidata nd;
2690 int error;
2691 if (IS_ERR(name))
2692 return PTR_ERR(name);
2693 set_nameidata(&nd, dfd, name);
2694 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2695 if (unlikely(error == -ECHILD))
2696 error = path_mountpoint(&nd, flags, path);
2697 if (unlikely(error == -ESTALE))
2698 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2699 if (likely(!error))
2700 audit_inode(name, path->dentry, 0);
2701 restore_nameidata();
2702 putname(name);
2703 return error;
2704 }
2705
2706 /**
2707 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2708 * @dfd: directory file descriptor
2709 * @name: pathname from userland
2710 * @flags: lookup flags
2711 * @path: pointer to container to hold result
2712 *
2713 * A umount is a special case for path walking. We're not actually interested
2714 * in the inode in this situation, and ESTALE errors can be a problem. We
2715 * simply want track down the dentry and vfsmount attached at the mountpoint
2716 * and avoid revalidating the last component.
2717 *
2718 * Returns 0 and populates "path" on success.
2719 */
2720 int
2721 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2722 struct path *path)
2723 {
2724 return filename_mountpoint(dfd, getname(name), path, flags);
2725 }
2726
2727 int
2728 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2729 unsigned int flags)
2730 {
2731 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2732 }
2733 EXPORT_SYMBOL(kern_path_mountpoint);
2734
2735 int __check_sticky(struct inode *dir, struct inode *inode)
2736 {
2737 kuid_t fsuid = current_fsuid();
2738
2739 if (uid_eq(inode->i_uid, fsuid))
2740 return 0;
2741 if (uid_eq(dir->i_uid, fsuid))
2742 return 0;
2743 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2744 }
2745 EXPORT_SYMBOL(__check_sticky);
2746
2747 /*
2748 * Check whether we can remove a link victim from directory dir, check
2749 * whether the type of victim is right.
2750 * 1. We can't do it if dir is read-only (done in permission())
2751 * 2. We should have write and exec permissions on dir
2752 * 3. We can't remove anything from append-only dir
2753 * 4. We can't do anything with immutable dir (done in permission())
2754 * 5. If the sticky bit on dir is set we should either
2755 * a. be owner of dir, or
2756 * b. be owner of victim, or
2757 * c. have CAP_FOWNER capability
2758 * 6. If the victim is append-only or immutable we can't do antyhing with
2759 * links pointing to it.
2760 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2761 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2762 * 9. We can't remove a root or mountpoint.
2763 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2764 * nfs_async_unlink().
2765 */
2766 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2767 {
2768 struct inode *inode = d_backing_inode(victim);
2769 int error;
2770
2771 if (d_is_negative(victim))
2772 return -ENOENT;
2773 BUG_ON(!inode);
2774
2775 BUG_ON(victim->d_parent->d_inode != dir);
2776 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2777
2778 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2779 if (error)
2780 return error;
2781 if (IS_APPEND(dir))
2782 return -EPERM;
2783
2784 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2785 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2786 return -EPERM;
2787 if (isdir) {
2788 if (!d_is_dir(victim))
2789 return -ENOTDIR;
2790 if (IS_ROOT(victim))
2791 return -EBUSY;
2792 } else if (d_is_dir(victim))
2793 return -EISDIR;
2794 if (IS_DEADDIR(dir))
2795 return -ENOENT;
2796 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2797 return -EBUSY;
2798 return 0;
2799 }
2800
2801 /* Check whether we can create an object with dentry child in directory
2802 * dir.
2803 * 1. We can't do it if child already exists (open has special treatment for
2804 * this case, but since we are inlined it's OK)
2805 * 2. We can't do it if dir is read-only (done in permission())
2806 * 3. We should have write and exec permissions on dir
2807 * 4. We can't do it if dir is immutable (done in permission())
2808 */
2809 static inline int may_create(struct inode *dir, struct dentry *child)
2810 {
2811 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2812 if (child->d_inode)
2813 return -EEXIST;
2814 if (IS_DEADDIR(dir))
2815 return -ENOENT;
2816 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2817 }
2818
2819 /*
2820 * p1 and p2 should be directories on the same fs.
2821 */
2822 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2823 {
2824 struct dentry *p;
2825
2826 if (p1 == p2) {
2827 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2828 return NULL;
2829 }
2830
2831 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2832
2833 p = d_ancestor(p2, p1);
2834 if (p) {
2835 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2836 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2837 return p;
2838 }
2839
2840 p = d_ancestor(p1, p2);
2841 if (p) {
2842 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2843 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2844 return p;
2845 }
2846
2847 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2848 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2849 return NULL;
2850 }
2851 EXPORT_SYMBOL(lock_rename);
2852
2853 void unlock_rename(struct dentry *p1, struct dentry *p2)
2854 {
2855 inode_unlock(p1->d_inode);
2856 if (p1 != p2) {
2857 inode_unlock(p2->d_inode);
2858 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2859 }
2860 }
2861 EXPORT_SYMBOL(unlock_rename);
2862
2863 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2864 bool want_excl)
2865 {
2866 int error = may_create(dir, dentry);
2867 if (error)
2868 return error;
2869
2870 if (!dir->i_op->create)
2871 return -EACCES; /* shouldn't it be ENOSYS? */
2872 mode &= S_IALLUGO;
2873 mode |= S_IFREG;
2874 error = security_inode_create(dir, dentry, mode);
2875 if (error)
2876 return error;
2877 error = dir->i_op->create(dir, dentry, mode, want_excl);
2878 if (!error)
2879 fsnotify_create(dir, dentry);
2880 return error;
2881 }
2882 EXPORT_SYMBOL(vfs_create);
2883
2884 static int may_open(struct path *path, int acc_mode, int flag)
2885 {
2886 struct dentry *dentry = path->dentry;
2887 struct inode *inode = dentry->d_inode;
2888 int error;
2889
2890 if (!inode)
2891 return -ENOENT;
2892
2893 switch (inode->i_mode & S_IFMT) {
2894 case S_IFLNK:
2895 return -ELOOP;
2896 case S_IFDIR:
2897 if (acc_mode & MAY_WRITE)
2898 return -EISDIR;
2899 break;
2900 case S_IFBLK:
2901 case S_IFCHR:
2902 if (path->mnt->mnt_flags & MNT_NODEV)
2903 return -EACCES;
2904 /*FALLTHRU*/
2905 case S_IFIFO:
2906 case S_IFSOCK:
2907 flag &= ~O_TRUNC;
2908 break;
2909 }
2910
2911 error = inode_permission(inode, MAY_OPEN | acc_mode);
2912 if (error)
2913 return error;
2914
2915 /*
2916 * An append-only file must be opened in append mode for writing.
2917 */
2918 if (IS_APPEND(inode)) {
2919 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2920 return -EPERM;
2921 if (flag & O_TRUNC)
2922 return -EPERM;
2923 }
2924
2925 /* O_NOATIME can only be set by the owner or superuser */
2926 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2927 return -EPERM;
2928
2929 return 0;
2930 }
2931
2932 static int handle_truncate(struct file *filp)
2933 {
2934 struct path *path = &filp->f_path;
2935 struct inode *inode = path->dentry->d_inode;
2936 int error = get_write_access(inode);
2937 if (error)
2938 return error;
2939 /*
2940 * Refuse to truncate files with mandatory locks held on them.
2941 */
2942 error = locks_verify_locked(filp);
2943 if (!error)
2944 error = security_path_truncate(path);
2945 if (!error) {
2946 error = do_truncate(path->dentry, 0,
2947 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2948 filp);
2949 }
2950 put_write_access(inode);
2951 return error;
2952 }
2953
2954 static inline int open_to_namei_flags(int flag)
2955 {
2956 if ((flag & O_ACCMODE) == 3)
2957 flag--;
2958 return flag;
2959 }
2960
2961 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2962 {
2963 int error = security_path_mknod(dir, dentry, mode, 0);
2964 if (error)
2965 return error;
2966
2967 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2968 if (error)
2969 return error;
2970
2971 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2972 }
2973
2974 /*
2975 * Attempt to atomically look up, create and open a file from a negative
2976 * dentry.
2977 *
2978 * Returns 0 if successful. The file will have been created and attached to
2979 * @file by the filesystem calling finish_open().
2980 *
2981 * Returns 1 if the file was looked up only or didn't need creating. The
2982 * caller will need to perform the open themselves. @path will have been
2983 * updated to point to the new dentry. This may be negative.
2984 *
2985 * Returns an error code otherwise.
2986 */
2987 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2988 struct path *path, struct file *file,
2989 const struct open_flags *op,
2990 int open_flag, umode_t mode,
2991 int *opened)
2992 {
2993 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2994 struct inode *dir = nd->path.dentry->d_inode;
2995 int error;
2996
2997 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
2998 open_flag &= ~O_TRUNC;
2999
3000 if (nd->flags & LOOKUP_DIRECTORY)
3001 open_flag |= O_DIRECTORY;
3002
3003 file->f_path.dentry = DENTRY_NOT_SET;
3004 file->f_path.mnt = nd->path.mnt;
3005 error = dir->i_op->atomic_open(dir, dentry, file,
3006 open_to_namei_flags(open_flag),
3007 mode, opened);
3008 d_lookup_done(dentry);
3009 if (!error) {
3010 /*
3011 * We didn't have the inode before the open, so check open
3012 * permission here.
3013 */
3014 int acc_mode = op->acc_mode;
3015 if (*opened & FILE_CREATED) {
3016 WARN_ON(!(open_flag & O_CREAT));
3017 fsnotify_create(dir, dentry);
3018 acc_mode = 0;
3019 }
3020 error = may_open(&file->f_path, acc_mode, open_flag);
3021 if (WARN_ON(error > 0))
3022 error = -EINVAL;
3023 } else if (error > 0) {
3024 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3025 error = -EIO;
3026 } else {
3027 if (file->f_path.dentry) {
3028 dput(dentry);
3029 dentry = file->f_path.dentry;
3030 }
3031 if (*opened & FILE_CREATED)
3032 fsnotify_create(dir, dentry);
3033 path->dentry = dentry;
3034 path->mnt = nd->path.mnt;
3035 return 1;
3036 }
3037 }
3038 dput(dentry);
3039 return error;
3040 }
3041
3042 /*
3043 * Look up and maybe create and open the last component.
3044 *
3045 * Must be called with i_mutex held on parent.
3046 *
3047 * Returns 0 if the file was successfully atomically created (if necessary) and
3048 * opened. In this case the file will be returned attached to @file.
3049 *
3050 * Returns 1 if the file was not completely opened at this time, though lookups
3051 * and creations will have been performed and the dentry returned in @path will
3052 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3053 * specified then a negative dentry may be returned.
3054 *
3055 * An error code is returned otherwise.
3056 *
3057 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3058 * cleared otherwise prior to returning.
3059 */
3060 static int lookup_open(struct nameidata *nd, struct path *path,
3061 struct file *file,
3062 const struct open_flags *op,
3063 bool got_write, int *opened)
3064 {
3065 struct dentry *dir = nd->path.dentry;
3066 struct inode *dir_inode = dir->d_inode;
3067 int open_flag = op->open_flag;
3068 struct dentry *dentry;
3069 int error, create_error = 0;
3070 umode_t mode = op->mode;
3071 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3072
3073 if (unlikely(IS_DEADDIR(dir_inode)))
3074 return -ENOENT;
3075
3076 *opened &= ~FILE_CREATED;
3077 dentry = d_lookup(dir, &nd->last);
3078 for (;;) {
3079 if (!dentry) {
3080 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3081 if (IS_ERR(dentry))
3082 return PTR_ERR(dentry);
3083 }
3084 if (d_in_lookup(dentry))
3085 break;
3086
3087 if (!(dentry->d_flags & DCACHE_OP_REVALIDATE))
3088 break;
3089
3090 error = d_revalidate(dentry, nd->flags);
3091 if (likely(error > 0))
3092 break;
3093 if (error)
3094 goto out_dput;
3095 d_invalidate(dentry);
3096 dput(dentry);
3097 dentry = NULL;
3098 }
3099 if (dentry->d_inode) {
3100 /* Cached positive dentry: will open in f_op->open */
3101 goto out_no_open;
3102 }
3103
3104 /*
3105 * Checking write permission is tricky, bacuse we don't know if we are
3106 * going to actually need it: O_CREAT opens should work as long as the
3107 * file exists. But checking existence breaks atomicity. The trick is
3108 * to check access and if not granted clear O_CREAT from the flags.
3109 *
3110 * Another problem is returing the "right" error value (e.g. for an
3111 * O_EXCL open we want to return EEXIST not EROFS).
3112 */
3113 if (open_flag & O_CREAT) {
3114 if (!IS_POSIXACL(dir->d_inode))
3115 mode &= ~current_umask();
3116 if (unlikely(!got_write)) {
3117 create_error = -EROFS;
3118 open_flag &= ~O_CREAT;
3119 if (open_flag & (O_EXCL | O_TRUNC))
3120 goto no_open;
3121 /* No side effects, safe to clear O_CREAT */
3122 } else {
3123 create_error = may_o_create(&nd->path, dentry, mode);
3124 if (create_error) {
3125 open_flag &= ~O_CREAT;
3126 if (open_flag & O_EXCL)
3127 goto no_open;
3128 }
3129 }
3130 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3131 unlikely(!got_write)) {
3132 /*
3133 * No O_CREATE -> atomicity not a requirement -> fall
3134 * back to lookup + open
3135 */
3136 goto no_open;
3137 }
3138
3139 if (dir_inode->i_op->atomic_open) {
3140 error = atomic_open(nd, dentry, path, file, op, open_flag,
3141 mode, opened);
3142 if (unlikely(error == -ENOENT) && create_error)
3143 error = create_error;
3144 return error;
3145 }
3146
3147 no_open:
3148 if (d_in_lookup(dentry)) {
3149 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3150 nd->flags);
3151 d_lookup_done(dentry);
3152 if (unlikely(res)) {
3153 if (IS_ERR(res)) {
3154 error = PTR_ERR(res);
3155 goto out_dput;
3156 }
3157 dput(dentry);
3158 dentry = res;
3159 }
3160 }
3161
3162 /* Negative dentry, just create the file */
3163 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3164 *opened |= FILE_CREATED;
3165 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3166 if (!dir_inode->i_op->create) {
3167 error = -EACCES;
3168 goto out_dput;
3169 }
3170 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3171 open_flag & O_EXCL);
3172 if (error)
3173 goto out_dput;
3174 fsnotify_create(dir_inode, dentry);
3175 }
3176 if (unlikely(create_error) && !dentry->d_inode) {
3177 error = create_error;
3178 goto out_dput;
3179 }
3180 out_no_open:
3181 path->dentry = dentry;
3182 path->mnt = nd->path.mnt;
3183 return 1;
3184
3185 out_dput:
3186 dput(dentry);
3187 return error;
3188 }
3189
3190 /*
3191 * Handle the last step of open()
3192 */
3193 static int do_last(struct nameidata *nd,
3194 struct file *file, const struct open_flags *op,
3195 int *opened)
3196 {
3197 struct dentry *dir = nd->path.dentry;
3198 int open_flag = op->open_flag;
3199 bool will_truncate = (open_flag & O_TRUNC) != 0;
3200 bool got_write = false;
3201 int acc_mode = op->acc_mode;
3202 unsigned seq;
3203 struct inode *inode;
3204 struct path save_parent = { .dentry = NULL, .mnt = NULL };
3205 struct path path;
3206 bool retried = false;
3207 int error;
3208
3209 nd->flags &= ~LOOKUP_PARENT;
3210 nd->flags |= op->intent;
3211
3212 if (nd->last_type != LAST_NORM) {
3213 error = handle_dots(nd, nd->last_type);
3214 if (unlikely(error))
3215 return error;
3216 goto finish_open;
3217 }
3218
3219 if (!(open_flag & O_CREAT)) {
3220 if (nd->last.name[nd->last.len])
3221 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3222 /* we _can_ be in RCU mode here */
3223 error = lookup_fast(nd, &path, &inode, &seq);
3224 if (likely(error > 0))
3225 goto finish_lookup;
3226
3227 if (error < 0)
3228 return error;
3229
3230 BUG_ON(nd->inode != dir->d_inode);
3231 BUG_ON(nd->flags & LOOKUP_RCU);
3232 } else {
3233 /* create side of things */
3234 /*
3235 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3236 * has been cleared when we got to the last component we are
3237 * about to look up
3238 */
3239 error = complete_walk(nd);
3240 if (error)
3241 return error;
3242
3243 audit_inode(nd->name, dir, LOOKUP_PARENT);
3244 /* trailing slashes? */
3245 if (unlikely(nd->last.name[nd->last.len]))
3246 return -EISDIR;
3247 }
3248
3249 retry_lookup:
3250 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3251 error = mnt_want_write(nd->path.mnt);
3252 if (!error)
3253 got_write = true;
3254 /*
3255 * do _not_ fail yet - we might not need that or fail with
3256 * a different error; let lookup_open() decide; we'll be
3257 * dropping this one anyway.
3258 */
3259 }
3260 if (open_flag & O_CREAT)
3261 inode_lock(dir->d_inode);
3262 else
3263 inode_lock_shared(dir->d_inode);
3264 error = lookup_open(nd, &path, file, op, got_write, opened);
3265 if (open_flag & O_CREAT)
3266 inode_unlock(dir->d_inode);
3267 else
3268 inode_unlock_shared(dir->d_inode);
3269
3270 if (error <= 0) {
3271 if (error)
3272 goto out;
3273
3274 if ((*opened & FILE_CREATED) ||
3275 !S_ISREG(file_inode(file)->i_mode))
3276 will_truncate = false;
3277
3278 audit_inode(nd->name, file->f_path.dentry, 0);
3279 goto opened;
3280 }
3281
3282 if (*opened & FILE_CREATED) {
3283 /* Don't check for write permission, don't truncate */
3284 open_flag &= ~O_TRUNC;
3285 will_truncate = false;
3286 acc_mode = 0;
3287 path_to_nameidata(&path, nd);
3288 goto finish_open_created;
3289 }
3290
3291 /*
3292 * If atomic_open() acquired write access it is dropped now due to
3293 * possible mount and symlink following (this might be optimized away if
3294 * necessary...)
3295 */
3296 if (got_write) {
3297 mnt_drop_write(nd->path.mnt);
3298 got_write = false;
3299 }
3300
3301 if (unlikely(d_is_negative(path.dentry))) {
3302 path_to_nameidata(&path, nd);
3303 return -ENOENT;
3304 }
3305
3306 /*
3307 * create/update audit record if it already exists.
3308 */
3309 audit_inode(nd->name, path.dentry, 0);
3310
3311 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3312 path_to_nameidata(&path, nd);
3313 return -EEXIST;
3314 }
3315
3316 error = follow_managed(&path, nd);
3317 if (unlikely(error < 0))
3318 return error;
3319
3320 seq = 0; /* out of RCU mode, so the value doesn't matter */
3321 inode = d_backing_inode(path.dentry);
3322 finish_lookup:
3323 if (nd->depth)
3324 put_link(nd);
3325 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3326 inode, seq);
3327 if (unlikely(error))
3328 return error;
3329
3330 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3331 path_to_nameidata(&path, nd);
3332 } else {
3333 save_parent.dentry = nd->path.dentry;
3334 save_parent.mnt = mntget(path.mnt);
3335 nd->path.dentry = path.dentry;
3336
3337 }
3338 nd->inode = inode;
3339 nd->seq = seq;
3340 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3341 finish_open:
3342 error = complete_walk(nd);
3343 if (error) {
3344 path_put(&save_parent);
3345 return error;
3346 }
3347 audit_inode(nd->name, nd->path.dentry, 0);
3348 error = -EISDIR;
3349 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3350 goto out;
3351 error = -ENOTDIR;
3352 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3353 goto out;
3354 if (!d_is_reg(nd->path.dentry))
3355 will_truncate = false;
3356
3357 if (will_truncate) {
3358 error = mnt_want_write(nd->path.mnt);
3359 if (error)
3360 goto out;
3361 got_write = true;
3362 }
3363 finish_open_created:
3364 error = may_open(&nd->path, acc_mode, open_flag);
3365 if (error)
3366 goto out;
3367 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3368 error = vfs_open(&nd->path, file, current_cred());
3369 if (!error) {
3370 *opened |= FILE_OPENED;
3371 } else {
3372 if (error == -EOPENSTALE)
3373 goto stale_open;
3374 goto out;
3375 }
3376 opened:
3377 error = open_check_o_direct(file);
3378 if (!error)
3379 error = ima_file_check(file, op->acc_mode, *opened);
3380 if (!error && will_truncate)
3381 error = handle_truncate(file);
3382 out:
3383 if (unlikely(error) && (*opened & FILE_OPENED))
3384 fput(file);
3385 if (unlikely(error > 0)) {
3386 WARN_ON(1);
3387 error = -EINVAL;
3388 }
3389 if (got_write)
3390 mnt_drop_write(nd->path.mnt);
3391 path_put(&save_parent);
3392 return error;
3393
3394 stale_open:
3395 /* If no saved parent or already retried then can't retry */
3396 if (!save_parent.dentry || retried)
3397 goto out;
3398
3399 BUG_ON(save_parent.dentry != dir);
3400 path_put(&nd->path);
3401 nd->path = save_parent;
3402 nd->inode = dir->d_inode;
3403 save_parent.mnt = NULL;
3404 save_parent.dentry = NULL;
3405 if (got_write) {
3406 mnt_drop_write(nd->path.mnt);
3407 got_write = false;
3408 }
3409 retried = true;
3410 goto retry_lookup;
3411 }
3412
3413 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3414 const struct open_flags *op,
3415 struct file *file, int *opened)
3416 {
3417 static const struct qstr name = QSTR_INIT("/", 1);
3418 struct dentry *child;
3419 struct inode *dir;
3420 struct path path;
3421 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3422 if (unlikely(error))
3423 return error;
3424 error = mnt_want_write(path.mnt);
3425 if (unlikely(error))
3426 goto out;
3427 dir = path.dentry->d_inode;
3428 /* we want directory to be writable */
3429 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3430 if (error)
3431 goto out2;
3432 if (!dir->i_op->tmpfile) {
3433 error = -EOPNOTSUPP;
3434 goto out2;
3435 }
3436 child = d_alloc(path.dentry, &name);
3437 if (unlikely(!child)) {
3438 error = -ENOMEM;
3439 goto out2;
3440 }
3441 dput(path.dentry);
3442 path.dentry = child;
3443 error = dir->i_op->tmpfile(dir, child, op->mode);
3444 if (error)
3445 goto out2;
3446 audit_inode(nd->name, child, 0);
3447 /* Don't check for other permissions, the inode was just created */
3448 error = may_open(&path, 0, op->open_flag);
3449 if (error)
3450 goto out2;
3451 file->f_path.mnt = path.mnt;
3452 error = finish_open(file, child, NULL, opened);
3453 if (error)
3454 goto out2;
3455 error = open_check_o_direct(file);
3456 if (error) {
3457 fput(file);
3458 } else if (!(op->open_flag & O_EXCL)) {
3459 struct inode *inode = file_inode(file);
3460 spin_lock(&inode->i_lock);
3461 inode->i_state |= I_LINKABLE;
3462 spin_unlock(&inode->i_lock);
3463 }
3464 out2:
3465 mnt_drop_write(path.mnt);
3466 out:
3467 path_put(&path);
3468 return error;
3469 }
3470
3471 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3472 {
3473 struct path path;
3474 int error = path_lookupat(nd, flags, &path);
3475 if (!error) {
3476 audit_inode(nd->name, path.dentry, 0);
3477 error = vfs_open(&path, file, current_cred());
3478 path_put(&path);
3479 }
3480 return error;
3481 }
3482
3483 static struct file *path_openat(struct nameidata *nd,
3484 const struct open_flags *op, unsigned flags)
3485 {
3486 const char *s;
3487 struct file *file;
3488 int opened = 0;
3489 int error;
3490
3491 file = get_empty_filp();
3492 if (IS_ERR(file))
3493 return file;
3494
3495 file->f_flags = op->open_flag;
3496
3497 if (unlikely(file->f_flags & __O_TMPFILE)) {
3498 error = do_tmpfile(nd, flags, op, file, &opened);
3499 goto out2;
3500 }
3501
3502 if (unlikely(file->f_flags & O_PATH)) {
3503 error = do_o_path(nd, flags, file);
3504 if (!error)
3505 opened |= FILE_OPENED;
3506 goto out2;
3507 }
3508
3509 s = path_init(nd, flags);
3510 if (IS_ERR(s)) {
3511 put_filp(file);
3512 return ERR_CAST(s);
3513 }
3514 while (!(error = link_path_walk(s, nd)) &&
3515 (error = do_last(nd, file, op, &opened)) > 0) {
3516 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3517 s = trailing_symlink(nd);
3518 if (IS_ERR(s)) {
3519 error = PTR_ERR(s);
3520 break;
3521 }
3522 }
3523 terminate_walk(nd);
3524 out2:
3525 if (!(opened & FILE_OPENED)) {
3526 BUG_ON(!error);
3527 put_filp(file);
3528 }
3529 if (unlikely(error)) {
3530 if (error == -EOPENSTALE) {
3531 if (flags & LOOKUP_RCU)
3532 error = -ECHILD;
3533 else
3534 error = -ESTALE;
3535 }
3536 file = ERR_PTR(error);
3537 }
3538 return file;
3539 }
3540
3541 struct file *do_filp_open(int dfd, struct filename *pathname,
3542 const struct open_flags *op)
3543 {
3544 struct nameidata nd;
3545 int flags = op->lookup_flags;
3546 struct file *filp;
3547
3548 set_nameidata(&nd, dfd, pathname);
3549 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3550 if (unlikely(filp == ERR_PTR(-ECHILD)))
3551 filp = path_openat(&nd, op, flags);
3552 if (unlikely(filp == ERR_PTR(-ESTALE)))
3553 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3554 restore_nameidata();
3555 return filp;
3556 }
3557
3558 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3559 const char *name, const struct open_flags *op)
3560 {
3561 struct nameidata nd;
3562 struct file *file;
3563 struct filename *filename;
3564 int flags = op->lookup_flags | LOOKUP_ROOT;
3565
3566 nd.root.mnt = mnt;
3567 nd.root.dentry = dentry;
3568
3569 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3570 return ERR_PTR(-ELOOP);
3571
3572 filename = getname_kernel(name);
3573 if (IS_ERR(filename))
3574 return ERR_CAST(filename);
3575
3576 set_nameidata(&nd, -1, filename);
3577 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3578 if (unlikely(file == ERR_PTR(-ECHILD)))
3579 file = path_openat(&nd, op, flags);
3580 if (unlikely(file == ERR_PTR(-ESTALE)))
3581 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3582 restore_nameidata();
3583 putname(filename);
3584 return file;
3585 }
3586
3587 static struct dentry *filename_create(int dfd, struct filename *name,
3588 struct path *path, unsigned int lookup_flags)
3589 {
3590 struct dentry *dentry = ERR_PTR(-EEXIST);
3591 struct qstr last;
3592 int type;
3593 int err2;
3594 int error;
3595 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3596
3597 /*
3598 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3599 * other flags passed in are ignored!
3600 */
3601 lookup_flags &= LOOKUP_REVAL;
3602
3603 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3604 if (IS_ERR(name))
3605 return ERR_CAST(name);
3606
3607 /*
3608 * Yucky last component or no last component at all?
3609 * (foo/., foo/.., /////)
3610 */
3611 if (unlikely(type != LAST_NORM))
3612 goto out;
3613
3614 /* don't fail immediately if it's r/o, at least try to report other errors */
3615 err2 = mnt_want_write(path->mnt);
3616 /*
3617 * Do the final lookup.
3618 */
3619 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3620 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3621 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3622 if (IS_ERR(dentry))
3623 goto unlock;
3624
3625 error = -EEXIST;
3626 if (d_is_positive(dentry))
3627 goto fail;
3628
3629 /*
3630 * Special case - lookup gave negative, but... we had foo/bar/
3631 * From the vfs_mknod() POV we just have a negative dentry -
3632 * all is fine. Let's be bastards - you had / on the end, you've
3633 * been asking for (non-existent) directory. -ENOENT for you.
3634 */
3635 if (unlikely(!is_dir && last.name[last.len])) {
3636 error = -ENOENT;
3637 goto fail;
3638 }
3639 if (unlikely(err2)) {
3640 error = err2;
3641 goto fail;
3642 }
3643 putname(name);
3644 return dentry;
3645 fail:
3646 dput(dentry);
3647 dentry = ERR_PTR(error);
3648 unlock:
3649 inode_unlock(path->dentry->d_inode);
3650 if (!err2)
3651 mnt_drop_write(path->mnt);
3652 out:
3653 path_put(path);
3654 putname(name);
3655 return dentry;
3656 }
3657
3658 struct dentry *kern_path_create(int dfd, const char *pathname,
3659 struct path *path, unsigned int lookup_flags)
3660 {
3661 return filename_create(dfd, getname_kernel(pathname),
3662 path, lookup_flags);
3663 }
3664 EXPORT_SYMBOL(kern_path_create);
3665
3666 void done_path_create(struct path *path, struct dentry *dentry)
3667 {
3668 dput(dentry);
3669 inode_unlock(path->dentry->d_inode);
3670 mnt_drop_write(path->mnt);
3671 path_put(path);
3672 }
3673 EXPORT_SYMBOL(done_path_create);
3674
3675 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3676 struct path *path, unsigned int lookup_flags)
3677 {
3678 return filename_create(dfd, getname(pathname), path, lookup_flags);
3679 }
3680 EXPORT_SYMBOL(user_path_create);
3681
3682 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3683 {
3684 int error = may_create(dir, dentry);
3685
3686 if (error)
3687 return error;
3688
3689 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3690 return -EPERM;
3691
3692 if (!dir->i_op->mknod)
3693 return -EPERM;
3694
3695 error = devcgroup_inode_mknod(mode, dev);
3696 if (error)
3697 return error;
3698
3699 error = security_inode_mknod(dir, dentry, mode, dev);
3700 if (error)
3701 return error;
3702
3703 error = dir->i_op->mknod(dir, dentry, mode, dev);
3704 if (!error)
3705 fsnotify_create(dir, dentry);
3706 return error;
3707 }
3708 EXPORT_SYMBOL(vfs_mknod);
3709
3710 static int may_mknod(umode_t mode)
3711 {
3712 switch (mode & S_IFMT) {
3713 case S_IFREG:
3714 case S_IFCHR:
3715 case S_IFBLK:
3716 case S_IFIFO:
3717 case S_IFSOCK:
3718 case 0: /* zero mode translates to S_IFREG */
3719 return 0;
3720 case S_IFDIR:
3721 return -EPERM;
3722 default:
3723 return -EINVAL;
3724 }
3725 }
3726
3727 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3728 unsigned, dev)
3729 {
3730 struct dentry *dentry;
3731 struct path path;
3732 int error;
3733 unsigned int lookup_flags = 0;
3734
3735 error = may_mknod(mode);
3736 if (error)
3737 return error;
3738 retry:
3739 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3740 if (IS_ERR(dentry))
3741 return PTR_ERR(dentry);
3742
3743 if (!IS_POSIXACL(path.dentry->d_inode))
3744 mode &= ~current_umask();
3745 error = security_path_mknod(&path, dentry, mode, dev);
3746 if (error)
3747 goto out;
3748 switch (mode & S_IFMT) {
3749 case 0: case S_IFREG:
3750 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3751 if (!error)
3752 ima_post_path_mknod(dentry);
3753 break;
3754 case S_IFCHR: case S_IFBLK:
3755 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3756 new_decode_dev(dev));
3757 break;
3758 case S_IFIFO: case S_IFSOCK:
3759 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3760 break;
3761 }
3762 out:
3763 done_path_create(&path, dentry);
3764 if (retry_estale(error, lookup_flags)) {
3765 lookup_flags |= LOOKUP_REVAL;
3766 goto retry;
3767 }
3768 return error;
3769 }
3770
3771 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3772 {
3773 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3774 }
3775
3776 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3777 {
3778 int error = may_create(dir, dentry);
3779 unsigned max_links = dir->i_sb->s_max_links;
3780
3781 if (error)
3782 return error;
3783
3784 if (!dir->i_op->mkdir)
3785 return -EPERM;
3786
3787 mode &= (S_IRWXUGO|S_ISVTX);
3788 error = security_inode_mkdir(dir, dentry, mode);
3789 if (error)
3790 return error;
3791
3792 if (max_links && dir->i_nlink >= max_links)
3793 return -EMLINK;
3794
3795 error = dir->i_op->mkdir(dir, dentry, mode);
3796 if (!error)
3797 fsnotify_mkdir(dir, dentry);
3798 return error;
3799 }
3800 EXPORT_SYMBOL(vfs_mkdir);
3801
3802 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3803 {
3804 struct dentry *dentry;
3805 struct path path;
3806 int error;
3807 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3808
3809 retry:
3810 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3811 if (IS_ERR(dentry))
3812 return PTR_ERR(dentry);
3813
3814 if (!IS_POSIXACL(path.dentry->d_inode))
3815 mode &= ~current_umask();
3816 error = security_path_mkdir(&path, dentry, mode);
3817 if (!error)
3818 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3819 done_path_create(&path, dentry);
3820 if (retry_estale(error, lookup_flags)) {
3821 lookup_flags |= LOOKUP_REVAL;
3822 goto retry;
3823 }
3824 return error;
3825 }
3826
3827 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3828 {
3829 return sys_mkdirat(AT_FDCWD, pathname, mode);
3830 }
3831
3832 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3833 {
3834 int error = may_delete(dir, dentry, 1);
3835
3836 if (error)
3837 return error;
3838
3839 if (!dir->i_op->rmdir)
3840 return -EPERM;
3841
3842 dget(dentry);
3843 inode_lock(dentry->d_inode);
3844
3845 error = -EBUSY;
3846 if (is_local_mountpoint(dentry))
3847 goto out;
3848
3849 error = security_inode_rmdir(dir, dentry);
3850 if (error)
3851 goto out;
3852
3853 shrink_dcache_parent(dentry);
3854 error = dir->i_op->rmdir(dir, dentry);
3855 if (error)
3856 goto out;
3857
3858 dentry->d_inode->i_flags |= S_DEAD;
3859 dont_mount(dentry);
3860 detach_mounts(dentry);
3861
3862 out:
3863 inode_unlock(dentry->d_inode);
3864 dput(dentry);
3865 if (!error)
3866 d_delete(dentry);
3867 return error;
3868 }
3869 EXPORT_SYMBOL(vfs_rmdir);
3870
3871 static long do_rmdir(int dfd, const char __user *pathname)
3872 {
3873 int error = 0;
3874 struct filename *name;
3875 struct dentry *dentry;
3876 struct path path;
3877 struct qstr last;
3878 int type;
3879 unsigned int lookup_flags = 0;
3880 retry:
3881 name = user_path_parent(dfd, pathname,
3882 &path, &last, &type, lookup_flags);
3883 if (IS_ERR(name))
3884 return PTR_ERR(name);
3885
3886 switch (type) {
3887 case LAST_DOTDOT:
3888 error = -ENOTEMPTY;
3889 goto exit1;
3890 case LAST_DOT:
3891 error = -EINVAL;
3892 goto exit1;
3893 case LAST_ROOT:
3894 error = -EBUSY;
3895 goto exit1;
3896 }
3897
3898 error = mnt_want_write(path.mnt);
3899 if (error)
3900 goto exit1;
3901
3902 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3903 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3904 error = PTR_ERR(dentry);
3905 if (IS_ERR(dentry))
3906 goto exit2;
3907 if (!dentry->d_inode) {
3908 error = -ENOENT;
3909 goto exit3;
3910 }
3911 error = security_path_rmdir(&path, dentry);
3912 if (error)
3913 goto exit3;
3914 error = vfs_rmdir(path.dentry->d_inode, dentry);
3915 exit3:
3916 dput(dentry);
3917 exit2:
3918 inode_unlock(path.dentry->d_inode);
3919 mnt_drop_write(path.mnt);
3920 exit1:
3921 path_put(&path);
3922 putname(name);
3923 if (retry_estale(error, lookup_flags)) {
3924 lookup_flags |= LOOKUP_REVAL;
3925 goto retry;
3926 }
3927 return error;
3928 }
3929
3930 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3931 {
3932 return do_rmdir(AT_FDCWD, pathname);
3933 }
3934
3935 /**
3936 * vfs_unlink - unlink a filesystem object
3937 * @dir: parent directory
3938 * @dentry: victim
3939 * @delegated_inode: returns victim inode, if the inode is delegated.
3940 *
3941 * The caller must hold dir->i_mutex.
3942 *
3943 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3944 * return a reference to the inode in delegated_inode. The caller
3945 * should then break the delegation on that inode and retry. Because
3946 * breaking a delegation may take a long time, the caller should drop
3947 * dir->i_mutex before doing so.
3948 *
3949 * Alternatively, a caller may pass NULL for delegated_inode. This may
3950 * be appropriate for callers that expect the underlying filesystem not
3951 * to be NFS exported.
3952 */
3953 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3954 {
3955 struct inode *target = dentry->d_inode;
3956 int error = may_delete(dir, dentry, 0);
3957
3958 if (error)
3959 return error;
3960
3961 if (!dir->i_op->unlink)
3962 return -EPERM;
3963
3964 inode_lock(target);
3965 if (is_local_mountpoint(dentry))
3966 error = -EBUSY;
3967 else {
3968 error = security_inode_unlink(dir, dentry);
3969 if (!error) {
3970 error = try_break_deleg(target, delegated_inode);
3971 if (error)
3972 goto out;
3973 error = dir->i_op->unlink(dir, dentry);
3974 if (!error) {
3975 dont_mount(dentry);
3976 detach_mounts(dentry);
3977 }
3978 }
3979 }
3980 out:
3981 inode_unlock(target);
3982
3983 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3984 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3985 fsnotify_link_count(target);
3986 d_delete(dentry);
3987 }
3988
3989 return error;
3990 }
3991 EXPORT_SYMBOL(vfs_unlink);
3992
3993 /*
3994 * Make sure that the actual truncation of the file will occur outside its
3995 * directory's i_mutex. Truncate can take a long time if there is a lot of
3996 * writeout happening, and we don't want to prevent access to the directory
3997 * while waiting on the I/O.
3998 */
3999 static long do_unlinkat(int dfd, const char __user *pathname)
4000 {
4001 int error;
4002 struct filename *name;
4003 struct dentry *dentry;
4004 struct path path;
4005 struct qstr last;
4006 int type;
4007 struct inode *inode = NULL;
4008 struct inode *delegated_inode = NULL;
4009 unsigned int lookup_flags = 0;
4010 retry:
4011 name = user_path_parent(dfd, pathname,
4012 &path, &last, &type, lookup_flags);
4013 if (IS_ERR(name))
4014 return PTR_ERR(name);
4015
4016 error = -EISDIR;
4017 if (type != LAST_NORM)
4018 goto exit1;
4019
4020 error = mnt_want_write(path.mnt);
4021 if (error)
4022 goto exit1;
4023 retry_deleg:
4024 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4025 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4026 error = PTR_ERR(dentry);
4027 if (!IS_ERR(dentry)) {
4028 /* Why not before? Because we want correct error value */
4029 if (last.name[last.len])
4030 goto slashes;
4031 inode = dentry->d_inode;
4032 if (d_is_negative(dentry))
4033 goto slashes;
4034 ihold(inode);
4035 error = security_path_unlink(&path, dentry);
4036 if (error)
4037 goto exit2;
4038 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4039 exit2:
4040 dput(dentry);
4041 }
4042 inode_unlock(path.dentry->d_inode);
4043 if (inode)
4044 iput(inode); /* truncate the inode here */
4045 inode = NULL;
4046 if (delegated_inode) {
4047 error = break_deleg_wait(&delegated_inode);
4048 if (!error)
4049 goto retry_deleg;
4050 }
4051 mnt_drop_write(path.mnt);
4052 exit1:
4053 path_put(&path);
4054 putname(name);
4055 if (retry_estale(error, lookup_flags)) {
4056 lookup_flags |= LOOKUP_REVAL;
4057 inode = NULL;
4058 goto retry;
4059 }
4060 return error;
4061
4062 slashes:
4063 if (d_is_negative(dentry))
4064 error = -ENOENT;
4065 else if (d_is_dir(dentry))
4066 error = -EISDIR;
4067 else
4068 error = -ENOTDIR;
4069 goto exit2;
4070 }
4071
4072 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4073 {
4074 if ((flag & ~AT_REMOVEDIR) != 0)
4075 return -EINVAL;
4076
4077 if (flag & AT_REMOVEDIR)
4078 return do_rmdir(dfd, pathname);
4079
4080 return do_unlinkat(dfd, pathname);
4081 }
4082
4083 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4084 {
4085 return do_unlinkat(AT_FDCWD, pathname);
4086 }
4087
4088 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4089 {
4090 int error = may_create(dir, dentry);
4091
4092 if (error)
4093 return error;
4094
4095 if (!dir->i_op->symlink)
4096 return -EPERM;
4097
4098 error = security_inode_symlink(dir, dentry, oldname);
4099 if (error)
4100 return error;
4101
4102 error = dir->i_op->symlink(dir, dentry, oldname);
4103 if (!error)
4104 fsnotify_create(dir, dentry);
4105 return error;
4106 }
4107 EXPORT_SYMBOL(vfs_symlink);
4108
4109 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4110 int, newdfd, const char __user *, newname)
4111 {
4112 int error;
4113 struct filename *from;
4114 struct dentry *dentry;
4115 struct path path;
4116 unsigned int lookup_flags = 0;
4117
4118 from = getname(oldname);
4119 if (IS_ERR(from))
4120 return PTR_ERR(from);
4121 retry:
4122 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4123 error = PTR_ERR(dentry);
4124 if (IS_ERR(dentry))
4125 goto out_putname;
4126
4127 error = security_path_symlink(&path, dentry, from->name);
4128 if (!error)
4129 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4130 done_path_create(&path, dentry);
4131 if (retry_estale(error, lookup_flags)) {
4132 lookup_flags |= LOOKUP_REVAL;
4133 goto retry;
4134 }
4135 out_putname:
4136 putname(from);
4137 return error;
4138 }
4139
4140 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4141 {
4142 return sys_symlinkat(oldname, AT_FDCWD, newname);
4143 }
4144
4145 /**
4146 * vfs_link - create a new link
4147 * @old_dentry: object to be linked
4148 * @dir: new parent
4149 * @new_dentry: where to create the new link
4150 * @delegated_inode: returns inode needing a delegation break
4151 *
4152 * The caller must hold dir->i_mutex
4153 *
4154 * If vfs_link discovers a delegation on the to-be-linked file in need
4155 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4156 * inode in delegated_inode. The caller should then break the delegation
4157 * and retry. Because breaking a delegation may take a long time, the
4158 * caller should drop the i_mutex before doing so.
4159 *
4160 * Alternatively, a caller may pass NULL for delegated_inode. This may
4161 * be appropriate for callers that expect the underlying filesystem not
4162 * to be NFS exported.
4163 */
4164 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4165 {
4166 struct inode *inode = old_dentry->d_inode;
4167 unsigned max_links = dir->i_sb->s_max_links;
4168 int error;
4169
4170 if (!inode)
4171 return -ENOENT;
4172
4173 error = may_create(dir, new_dentry);
4174 if (error)
4175 return error;
4176
4177 if (dir->i_sb != inode->i_sb)
4178 return -EXDEV;
4179
4180 /*
4181 * A link to an append-only or immutable file cannot be created.
4182 */
4183 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4184 return -EPERM;
4185 if (!dir->i_op->link)
4186 return -EPERM;
4187 if (S_ISDIR(inode->i_mode))
4188 return -EPERM;
4189
4190 error = security_inode_link(old_dentry, dir, new_dentry);
4191 if (error)
4192 return error;
4193
4194 inode_lock(inode);
4195 /* Make sure we don't allow creating hardlink to an unlinked file */
4196 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4197 error = -ENOENT;
4198 else if (max_links && inode->i_nlink >= max_links)
4199 error = -EMLINK;
4200 else {
4201 error = try_break_deleg(inode, delegated_inode);
4202 if (!error)
4203 error = dir->i_op->link(old_dentry, dir, new_dentry);
4204 }
4205
4206 if (!error && (inode->i_state & I_LINKABLE)) {
4207 spin_lock(&inode->i_lock);
4208 inode->i_state &= ~I_LINKABLE;
4209 spin_unlock(&inode->i_lock);
4210 }
4211 inode_unlock(inode);
4212 if (!error)
4213 fsnotify_link(dir, inode, new_dentry);
4214 return error;
4215 }
4216 EXPORT_SYMBOL(vfs_link);
4217
4218 /*
4219 * Hardlinks are often used in delicate situations. We avoid
4220 * security-related surprises by not following symlinks on the
4221 * newname. --KAB
4222 *
4223 * We don't follow them on the oldname either to be compatible
4224 * with linux 2.0, and to avoid hard-linking to directories
4225 * and other special files. --ADM
4226 */
4227 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4228 int, newdfd, const char __user *, newname, int, flags)
4229 {
4230 struct dentry *new_dentry;
4231 struct path old_path, new_path;
4232 struct inode *delegated_inode = NULL;
4233 int how = 0;
4234 int error;
4235
4236 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4237 return -EINVAL;
4238 /*
4239 * To use null names we require CAP_DAC_READ_SEARCH
4240 * This ensures that not everyone will be able to create
4241 * handlink using the passed filedescriptor.
4242 */
4243 if (flags & AT_EMPTY_PATH) {
4244 if (!capable(CAP_DAC_READ_SEARCH))
4245 return -ENOENT;
4246 how = LOOKUP_EMPTY;
4247 }
4248
4249 if (flags & AT_SYMLINK_FOLLOW)
4250 how |= LOOKUP_FOLLOW;
4251 retry:
4252 error = user_path_at(olddfd, oldname, how, &old_path);
4253 if (error)
4254 return error;
4255
4256 new_dentry = user_path_create(newdfd, newname, &new_path,
4257 (how & LOOKUP_REVAL));
4258 error = PTR_ERR(new_dentry);
4259 if (IS_ERR(new_dentry))
4260 goto out;
4261
4262 error = -EXDEV;
4263 if (old_path.mnt != new_path.mnt)
4264 goto out_dput;
4265 error = may_linkat(&old_path);
4266 if (unlikely(error))
4267 goto out_dput;
4268 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4269 if (error)
4270 goto out_dput;
4271 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4272 out_dput:
4273 done_path_create(&new_path, new_dentry);
4274 if (delegated_inode) {
4275 error = break_deleg_wait(&delegated_inode);
4276 if (!error) {
4277 path_put(&old_path);
4278 goto retry;
4279 }
4280 }
4281 if (retry_estale(error, how)) {
4282 path_put(&old_path);
4283 how |= LOOKUP_REVAL;
4284 goto retry;
4285 }
4286 out:
4287 path_put(&old_path);
4288
4289 return error;
4290 }
4291
4292 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4293 {
4294 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4295 }
4296
4297 /**
4298 * vfs_rename - rename a filesystem object
4299 * @old_dir: parent of source
4300 * @old_dentry: source
4301 * @new_dir: parent of destination
4302 * @new_dentry: destination
4303 * @delegated_inode: returns an inode needing a delegation break
4304 * @flags: rename flags
4305 *
4306 * The caller must hold multiple mutexes--see lock_rename()).
4307 *
4308 * If vfs_rename discovers a delegation in need of breaking at either
4309 * the source or destination, it will return -EWOULDBLOCK and return a
4310 * reference to the inode in delegated_inode. The caller should then
4311 * break the delegation and retry. Because breaking a delegation may
4312 * take a long time, the caller should drop all locks before doing
4313 * so.
4314 *
4315 * Alternatively, a caller may pass NULL for delegated_inode. This may
4316 * be appropriate for callers that expect the underlying filesystem not
4317 * to be NFS exported.
4318 *
4319 * The worst of all namespace operations - renaming directory. "Perverted"
4320 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4321 * Problems:
4322 * a) we can get into loop creation.
4323 * b) race potential - two innocent renames can create a loop together.
4324 * That's where 4.4 screws up. Current fix: serialization on
4325 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4326 * story.
4327 * c) we have to lock _four_ objects - parents and victim (if it exists),
4328 * and source (if it is not a directory).
4329 * And that - after we got ->i_mutex on parents (until then we don't know
4330 * whether the target exists). Solution: try to be smart with locking
4331 * order for inodes. We rely on the fact that tree topology may change
4332 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4333 * move will be locked. Thus we can rank directories by the tree
4334 * (ancestors first) and rank all non-directories after them.
4335 * That works since everybody except rename does "lock parent, lookup,
4336 * lock child" and rename is under ->s_vfs_rename_mutex.
4337 * HOWEVER, it relies on the assumption that any object with ->lookup()
4338 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4339 * we'd better make sure that there's no link(2) for them.
4340 * d) conversion from fhandle to dentry may come in the wrong moment - when
4341 * we are removing the target. Solution: we will have to grab ->i_mutex
4342 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4343 * ->i_mutex on parents, which works but leads to some truly excessive
4344 * locking].
4345 */
4346 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4347 struct inode *new_dir, struct dentry *new_dentry,
4348 struct inode **delegated_inode, unsigned int flags)
4349 {
4350 int error;
4351 bool is_dir = d_is_dir(old_dentry);
4352 const unsigned char *old_name;
4353 struct inode *source = old_dentry->d_inode;
4354 struct inode *target = new_dentry->d_inode;
4355 bool new_is_dir = false;
4356 unsigned max_links = new_dir->i_sb->s_max_links;
4357
4358 /*
4359 * Check source == target.
4360 * On overlayfs need to look at underlying inodes.
4361 */
4362 if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0))
4363 return 0;
4364
4365 error = may_delete(old_dir, old_dentry, is_dir);
4366 if (error)
4367 return error;
4368
4369 if (!target) {
4370 error = may_create(new_dir, new_dentry);
4371 } else {
4372 new_is_dir = d_is_dir(new_dentry);
4373
4374 if (!(flags & RENAME_EXCHANGE))
4375 error = may_delete(new_dir, new_dentry, is_dir);
4376 else
4377 error = may_delete(new_dir, new_dentry, new_is_dir);
4378 }
4379 if (error)
4380 return error;
4381
4382 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4383 return -EPERM;
4384
4385 if (flags && !old_dir->i_op->rename2)
4386 return -EINVAL;
4387
4388 /*
4389 * If we are going to change the parent - check write permissions,
4390 * we'll need to flip '..'.
4391 */
4392 if (new_dir != old_dir) {
4393 if (is_dir) {
4394 error = inode_permission(source, MAY_WRITE);
4395 if (error)
4396 return error;
4397 }
4398 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4399 error = inode_permission(target, MAY_WRITE);
4400 if (error)
4401 return error;
4402 }
4403 }
4404
4405 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4406 flags);
4407 if (error)
4408 return error;
4409
4410 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4411 dget(new_dentry);
4412 if (!is_dir || (flags & RENAME_EXCHANGE))
4413 lock_two_nondirectories(source, target);
4414 else if (target)
4415 inode_lock(target);
4416
4417 error = -EBUSY;
4418 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4419 goto out;
4420
4421 if (max_links && new_dir != old_dir) {
4422 error = -EMLINK;
4423 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4424 goto out;
4425 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4426 old_dir->i_nlink >= max_links)
4427 goto out;
4428 }
4429 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4430 shrink_dcache_parent(new_dentry);
4431 if (!is_dir) {
4432 error = try_break_deleg(source, delegated_inode);
4433 if (error)
4434 goto out;
4435 }
4436 if (target && !new_is_dir) {
4437 error = try_break_deleg(target, delegated_inode);
4438 if (error)
4439 goto out;
4440 }
4441 if (!old_dir->i_op->rename2) {
4442 error = old_dir->i_op->rename(old_dir, old_dentry,
4443 new_dir, new_dentry);
4444 } else {
4445 WARN_ON(old_dir->i_op->rename != NULL);
4446 error = old_dir->i_op->rename2(old_dir, old_dentry,
4447 new_dir, new_dentry, flags);
4448 }
4449 if (error)
4450 goto out;
4451
4452 if (!(flags & RENAME_EXCHANGE) && target) {
4453 if (is_dir)
4454 target->i_flags |= S_DEAD;
4455 dont_mount(new_dentry);
4456 detach_mounts(new_dentry);
4457 }
4458 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4459 if (!(flags & RENAME_EXCHANGE))
4460 d_move(old_dentry, new_dentry);
4461 else
4462 d_exchange(old_dentry, new_dentry);
4463 }
4464 out:
4465 if (!is_dir || (flags & RENAME_EXCHANGE))
4466 unlock_two_nondirectories(source, target);
4467 else if (target)
4468 inode_unlock(target);
4469 dput(new_dentry);
4470 if (!error) {
4471 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4472 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4473 if (flags & RENAME_EXCHANGE) {
4474 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4475 new_is_dir, NULL, new_dentry);
4476 }
4477 }
4478 fsnotify_oldname_free(old_name);
4479
4480 return error;
4481 }
4482 EXPORT_SYMBOL(vfs_rename);
4483
4484 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4485 int, newdfd, const char __user *, newname, unsigned int, flags)
4486 {
4487 struct dentry *old_dentry, *new_dentry;
4488 struct dentry *trap;
4489 struct path old_path, new_path;
4490 struct qstr old_last, new_last;
4491 int old_type, new_type;
4492 struct inode *delegated_inode = NULL;
4493 struct filename *from;
4494 struct filename *to;
4495 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4496 bool should_retry = false;
4497 int error;
4498
4499 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4500 return -EINVAL;
4501
4502 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4503 (flags & RENAME_EXCHANGE))
4504 return -EINVAL;
4505
4506 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4507 return -EPERM;
4508
4509 if (flags & RENAME_EXCHANGE)
4510 target_flags = 0;
4511
4512 retry:
4513 from = user_path_parent(olddfd, oldname,
4514 &old_path, &old_last, &old_type, lookup_flags);
4515 if (IS_ERR(from)) {
4516 error = PTR_ERR(from);
4517 goto exit;
4518 }
4519
4520 to = user_path_parent(newdfd, newname,
4521 &new_path, &new_last, &new_type, lookup_flags);
4522 if (IS_ERR(to)) {
4523 error = PTR_ERR(to);
4524 goto exit1;
4525 }
4526
4527 error = -EXDEV;
4528 if (old_path.mnt != new_path.mnt)
4529 goto exit2;
4530
4531 error = -EBUSY;
4532 if (old_type != LAST_NORM)
4533 goto exit2;
4534
4535 if (flags & RENAME_NOREPLACE)
4536 error = -EEXIST;
4537 if (new_type != LAST_NORM)
4538 goto exit2;
4539
4540 error = mnt_want_write(old_path.mnt);
4541 if (error)
4542 goto exit2;
4543
4544 retry_deleg:
4545 trap = lock_rename(new_path.dentry, old_path.dentry);
4546
4547 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4548 error = PTR_ERR(old_dentry);
4549 if (IS_ERR(old_dentry))
4550 goto exit3;
4551 /* source must exist */
4552 error = -ENOENT;
4553 if (d_is_negative(old_dentry))
4554 goto exit4;
4555 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4556 error = PTR_ERR(new_dentry);
4557 if (IS_ERR(new_dentry))
4558 goto exit4;
4559 error = -EEXIST;
4560 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4561 goto exit5;
4562 if (flags & RENAME_EXCHANGE) {
4563 error = -ENOENT;
4564 if (d_is_negative(new_dentry))
4565 goto exit5;
4566
4567 if (!d_is_dir(new_dentry)) {
4568 error = -ENOTDIR;
4569 if (new_last.name[new_last.len])
4570 goto exit5;
4571 }
4572 }
4573 /* unless the source is a directory trailing slashes give -ENOTDIR */
4574 if (!d_is_dir(old_dentry)) {
4575 error = -ENOTDIR;
4576 if (old_last.name[old_last.len])
4577 goto exit5;
4578 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4579 goto exit5;
4580 }
4581 /* source should not be ancestor of target */
4582 error = -EINVAL;
4583 if (old_dentry == trap)
4584 goto exit5;
4585 /* target should not be an ancestor of source */
4586 if (!(flags & RENAME_EXCHANGE))
4587 error = -ENOTEMPTY;
4588 if (new_dentry == trap)
4589 goto exit5;
4590
4591 error = security_path_rename(&old_path, old_dentry,
4592 &new_path, new_dentry, flags);
4593 if (error)
4594 goto exit5;
4595 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4596 new_path.dentry->d_inode, new_dentry,
4597 &delegated_inode, flags);
4598 exit5:
4599 dput(new_dentry);
4600 exit4:
4601 dput(old_dentry);
4602 exit3:
4603 unlock_rename(new_path.dentry, old_path.dentry);
4604 if (delegated_inode) {
4605 error = break_deleg_wait(&delegated_inode);
4606 if (!error)
4607 goto retry_deleg;
4608 }
4609 mnt_drop_write(old_path.mnt);
4610 exit2:
4611 if (retry_estale(error, lookup_flags))
4612 should_retry = true;
4613 path_put(&new_path);
4614 putname(to);
4615 exit1:
4616 path_put(&old_path);
4617 putname(from);
4618 if (should_retry) {
4619 should_retry = false;
4620 lookup_flags |= LOOKUP_REVAL;
4621 goto retry;
4622 }
4623 exit:
4624 return error;
4625 }
4626
4627 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4628 int, newdfd, const char __user *, newname)
4629 {
4630 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4631 }
4632
4633 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4634 {
4635 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4636 }
4637
4638 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4639 {
4640 int error = may_create(dir, dentry);
4641 if (error)
4642 return error;
4643
4644 if (!dir->i_op->mknod)
4645 return -EPERM;
4646
4647 return dir->i_op->mknod(dir, dentry,
4648 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4649 }
4650 EXPORT_SYMBOL(vfs_whiteout);
4651
4652 int readlink_copy(char __user *buffer, int buflen, const char *link)
4653 {
4654 int len = PTR_ERR(link);
4655 if (IS_ERR(link))
4656 goto out;
4657
4658 len = strlen(link);
4659 if (len > (unsigned) buflen)
4660 len = buflen;
4661 if (copy_to_user(buffer, link, len))
4662 len = -EFAULT;
4663 out:
4664 return len;
4665 }
4666
4667 /*
4668 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4669 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4670 * for any given inode is up to filesystem.
4671 */
4672 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4673 {
4674 DEFINE_DELAYED_CALL(done);
4675 struct inode *inode = d_inode(dentry);
4676 const char *link = inode->i_link;
4677 int res;
4678
4679 if (!link) {
4680 link = inode->i_op->get_link(dentry, inode, &done);
4681 if (IS_ERR(link))
4682 return PTR_ERR(link);
4683 }
4684 res = readlink_copy(buffer, buflen, link);
4685 do_delayed_call(&done);
4686 return res;
4687 }
4688 EXPORT_SYMBOL(generic_readlink);
4689
4690 /* get the link contents into pagecache */
4691 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4692 struct delayed_call *callback)
4693 {
4694 char *kaddr;
4695 struct page *page;
4696 struct address_space *mapping = inode->i_mapping;
4697
4698 if (!dentry) {
4699 page = find_get_page(mapping, 0);
4700 if (!page)
4701 return ERR_PTR(-ECHILD);
4702 if (!PageUptodate(page)) {
4703 put_page(page);
4704 return ERR_PTR(-ECHILD);
4705 }
4706 } else {
4707 page = read_mapping_page(mapping, 0, NULL);
4708 if (IS_ERR(page))
4709 return (char*)page;
4710 }
4711 set_delayed_call(callback, page_put_link, page);
4712 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4713 kaddr = page_address(page);
4714 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4715 return kaddr;
4716 }
4717
4718 EXPORT_SYMBOL(page_get_link);
4719
4720 void page_put_link(void *arg)
4721 {
4722 put_page(arg);
4723 }
4724 EXPORT_SYMBOL(page_put_link);
4725
4726 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4727 {
4728 DEFINE_DELAYED_CALL(done);
4729 int res = readlink_copy(buffer, buflen,
4730 page_get_link(dentry, d_inode(dentry),
4731 &done));
4732 do_delayed_call(&done);
4733 return res;
4734 }
4735 EXPORT_SYMBOL(page_readlink);
4736
4737 /*
4738 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4739 */
4740 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4741 {
4742 struct address_space *mapping = inode->i_mapping;
4743 struct page *page;
4744 void *fsdata;
4745 int err;
4746 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4747 if (nofs)
4748 flags |= AOP_FLAG_NOFS;
4749
4750 retry:
4751 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4752 flags, &page, &fsdata);
4753 if (err)
4754 goto fail;
4755
4756 memcpy(page_address(page), symname, len-1);
4757
4758 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4759 page, fsdata);
4760 if (err < 0)
4761 goto fail;
4762 if (err < len-1)
4763 goto retry;
4764
4765 mark_inode_dirty(inode);
4766 return 0;
4767 fail:
4768 return err;
4769 }
4770 EXPORT_SYMBOL(__page_symlink);
4771
4772 int page_symlink(struct inode *inode, const char *symname, int len)
4773 {
4774 return __page_symlink(inode, symname, len,
4775 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4776 }
4777 EXPORT_SYMBOL(page_symlink);
4778
4779 const struct inode_operations page_symlink_inode_operations = {
4780 .readlink = generic_readlink,
4781 .get_link = page_get_link,
4782 };
4783 EXPORT_SYMBOL(page_symlink_inode_operations);