]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/namei.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-jammy-kernel.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 #include <linux/build_bug.h>
43
44 #include "internal.h"
45 #include "mount.h"
46
47 /* [Feb-1997 T. Schoebel-Theuer]
48 * Fundamental changes in the pathname lookup mechanisms (namei)
49 * were necessary because of omirr. The reason is that omirr needs
50 * to know the _real_ pathname, not the user-supplied one, in case
51 * of symlinks (and also when transname replacements occur).
52 *
53 * The new code replaces the old recursive symlink resolution with
54 * an iterative one (in case of non-nested symlink chains). It does
55 * this with calls to <fs>_follow_link().
56 * As a side effect, dir_namei(), _namei() and follow_link() are now
57 * replaced with a single function lookup_dentry() that can handle all
58 * the special cases of the former code.
59 *
60 * With the new dcache, the pathname is stored at each inode, at least as
61 * long as the refcount of the inode is positive. As a side effect, the
62 * size of the dcache depends on the inode cache and thus is dynamic.
63 *
64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65 * resolution to correspond with current state of the code.
66 *
67 * Note that the symlink resolution is not *completely* iterative.
68 * There is still a significant amount of tail- and mid- recursion in
69 * the algorithm. Also, note that <fs>_readlink() is not used in
70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71 * may return different results than <fs>_follow_link(). Many virtual
72 * filesystems (including /proc) exhibit this behavior.
73 */
74
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77 * and the name already exists in form of a symlink, try to create the new
78 * name indicated by the symlink. The old code always complained that the
79 * name already exists, due to not following the symlink even if its target
80 * is nonexistent. The new semantics affects also mknod() and link() when
81 * the name is a symlink pointing to a non-existent name.
82 *
83 * I don't know which semantics is the right one, since I have no access
84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86 * "old" one. Personally, I think the new semantics is much more logical.
87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88 * file does succeed in both HP-UX and SunOs, but not in Solaris
89 * and in the old Linux semantics.
90 */
91
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93 * semantics. See the comments in "open_namei" and "do_link" below.
94 *
95 * [10-Sep-98 Alan Modra] Another symlink change.
96 */
97
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99 * inside the path - always follow.
100 * in the last component in creation/removal/renaming - never follow.
101 * if LOOKUP_FOLLOW passed - follow.
102 * if the pathname has trailing slashes - follow.
103 * otherwise - don't follow.
104 * (applied in that order).
105 *
106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108 * During the 2.4 we need to fix the userland stuff depending on it -
109 * hopefully we will be able to get rid of that wart in 2.5. So far only
110 * XEmacs seems to be relying on it...
111 */
112 /*
113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
115 * any extra contention...
116 */
117
118 /* In order to reduce some races, while at the same time doing additional
119 * checking and hopefully speeding things up, we copy filenames to the
120 * kernel data space before using them..
121 *
122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123 * PATH_MAX includes the nul terminator --RR.
124 */
125
126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
127
128 struct filename *
129 getname_flags(const char __user *filename, int flags, int *empty)
130 {
131 struct filename *result;
132 char *kname;
133 int len;
134 BUILD_BUG_ON(offsetof(struct filename, iname) % sizeof(long) != 0);
135
136 result = audit_reusename(filename);
137 if (result)
138 return result;
139
140 result = __getname();
141 if (unlikely(!result))
142 return ERR_PTR(-ENOMEM);
143
144 /*
145 * First, try to embed the struct filename inside the names_cache
146 * allocation
147 */
148 kname = (char *)result->iname;
149 result->name = kname;
150
151 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
152 if (unlikely(len < 0)) {
153 __putname(result);
154 return ERR_PTR(len);
155 }
156
157 /*
158 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
159 * separate struct filename so we can dedicate the entire
160 * names_cache allocation for the pathname, and re-do the copy from
161 * userland.
162 */
163 if (unlikely(len == EMBEDDED_NAME_MAX)) {
164 const size_t size = offsetof(struct filename, iname[1]);
165 kname = (char *)result;
166
167 /*
168 * size is chosen that way we to guarantee that
169 * result->iname[0] is within the same object and that
170 * kname can't be equal to result->iname, no matter what.
171 */
172 result = kzalloc(size, GFP_KERNEL);
173 if (unlikely(!result)) {
174 __putname(kname);
175 return ERR_PTR(-ENOMEM);
176 }
177 result->name = kname;
178 len = strncpy_from_user(kname, filename, PATH_MAX);
179 if (unlikely(len < 0)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(len);
183 }
184 if (unlikely(len == PATH_MAX)) {
185 __putname(kname);
186 kfree(result);
187 return ERR_PTR(-ENAMETOOLONG);
188 }
189 }
190
191 result->refcnt = 1;
192 /* The empty path is special. */
193 if (unlikely(!len)) {
194 if (empty)
195 *empty = 1;
196 if (!(flags & LOOKUP_EMPTY)) {
197 putname(result);
198 return ERR_PTR(-ENOENT);
199 }
200 }
201
202 result->uptr = filename;
203 result->aname = NULL;
204 audit_getname(result);
205 return result;
206 }
207
208 struct filename *
209 getname(const char __user * filename)
210 {
211 return getname_flags(filename, 0, NULL);
212 }
213
214 struct filename *
215 getname_kernel(const char * filename)
216 {
217 struct filename *result;
218 int len = strlen(filename) + 1;
219
220 result = __getname();
221 if (unlikely(!result))
222 return ERR_PTR(-ENOMEM);
223
224 if (len <= EMBEDDED_NAME_MAX) {
225 result->name = (char *)result->iname;
226 } else if (len <= PATH_MAX) {
227 const size_t size = offsetof(struct filename, iname[1]);
228 struct filename *tmp;
229
230 tmp = kmalloc(size, GFP_KERNEL);
231 if (unlikely(!tmp)) {
232 __putname(result);
233 return ERR_PTR(-ENOMEM);
234 }
235 tmp->name = (char *)result;
236 result = tmp;
237 } else {
238 __putname(result);
239 return ERR_PTR(-ENAMETOOLONG);
240 }
241 memcpy((char *)result->name, filename, len);
242 result->uptr = NULL;
243 result->aname = NULL;
244 result->refcnt = 1;
245 audit_getname(result);
246
247 return result;
248 }
249
250 void putname(struct filename *name)
251 {
252 BUG_ON(name->refcnt <= 0);
253
254 if (--name->refcnt > 0)
255 return;
256
257 if (name->name != name->iname) {
258 __putname(name->name);
259 kfree(name);
260 } else
261 __putname(name);
262 }
263
264 static int check_acl(struct inode *inode, int mask)
265 {
266 #ifdef CONFIG_FS_POSIX_ACL
267 struct posix_acl *acl;
268
269 if (mask & MAY_NOT_BLOCK) {
270 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
271 if (!acl)
272 return -EAGAIN;
273 /* no ->get_acl() calls in RCU mode... */
274 if (is_uncached_acl(acl))
275 return -ECHILD;
276 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
277 }
278
279 acl = get_acl(inode, ACL_TYPE_ACCESS);
280 if (IS_ERR(acl))
281 return PTR_ERR(acl);
282 if (acl) {
283 int error = posix_acl_permission(inode, acl, mask);
284 posix_acl_release(acl);
285 return error;
286 }
287 #endif
288
289 return -EAGAIN;
290 }
291
292 /*
293 * This does the basic permission checking
294 */
295 static int acl_permission_check(struct inode *inode, int mask)
296 {
297 unsigned int mode = inode->i_mode;
298
299 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
300 mode >>= 6;
301 else {
302 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
303 int error = check_acl(inode, mask);
304 if (error != -EAGAIN)
305 return error;
306 }
307
308 if (in_group_p(inode->i_gid))
309 mode >>= 3;
310 }
311
312 /*
313 * If the DACs are ok we don't need any capability check.
314 */
315 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
316 return 0;
317 return -EACCES;
318 }
319
320 /**
321 * generic_permission - check for access rights on a Posix-like filesystem
322 * @inode: inode to check access rights for
323 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
324 *
325 * Used to check for read/write/execute permissions on a file.
326 * We use "fsuid" for this, letting us set arbitrary permissions
327 * for filesystem access without changing the "normal" uids which
328 * are used for other things.
329 *
330 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
331 * request cannot be satisfied (eg. requires blocking or too much complexity).
332 * It would then be called again in ref-walk mode.
333 */
334 int generic_permission(struct inode *inode, int mask)
335 {
336 int ret;
337
338 /*
339 * Do the basic permission checks.
340 */
341 ret = acl_permission_check(inode, mask);
342 if (ret != -EACCES)
343 return ret;
344
345 if (S_ISDIR(inode->i_mode)) {
346 /* DACs are overridable for directories */
347 if (!(mask & MAY_WRITE))
348 if (capable_wrt_inode_uidgid(inode,
349 CAP_DAC_READ_SEARCH))
350 return 0;
351 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
352 return 0;
353 return -EACCES;
354 }
355
356 /*
357 * Searching includes executable on directories, else just read.
358 */
359 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
360 if (mask == MAY_READ)
361 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
362 return 0;
363 /*
364 * Read/write DACs are always overridable.
365 * Executable DACs are overridable when there is
366 * at least one exec bit set.
367 */
368 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
369 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
370 return 0;
371
372 return -EACCES;
373 }
374 EXPORT_SYMBOL(generic_permission);
375
376 /*
377 * We _really_ want to just do "generic_permission()" without
378 * even looking at the inode->i_op values. So we keep a cache
379 * flag in inode->i_opflags, that says "this has not special
380 * permission function, use the fast case".
381 */
382 static inline int do_inode_permission(struct inode *inode, int mask)
383 {
384 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
385 if (likely(inode->i_op->permission))
386 return inode->i_op->permission(inode, mask);
387
388 /* This gets set once for the inode lifetime */
389 spin_lock(&inode->i_lock);
390 inode->i_opflags |= IOP_FASTPERM;
391 spin_unlock(&inode->i_lock);
392 }
393 return generic_permission(inode, mask);
394 }
395
396 /**
397 * sb_permission - Check superblock-level permissions
398 * @sb: Superblock of inode to check permission on
399 * @inode: Inode to check permission on
400 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
401 *
402 * Separate out file-system wide checks from inode-specific permission checks.
403 */
404 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
405 {
406 if (unlikely(mask & MAY_WRITE)) {
407 umode_t mode = inode->i_mode;
408
409 /* Nobody gets write access to a read-only fs. */
410 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
411 return -EROFS;
412 }
413 return 0;
414 }
415
416 /**
417 * inode_permission - Check for access rights to a given inode
418 * @inode: Inode to check permission on
419 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
420 *
421 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
422 * this, letting us set arbitrary permissions for filesystem access without
423 * changing the "normal" UIDs which are used for other things.
424 *
425 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
426 */
427 int inode_permission(struct inode *inode, int mask)
428 {
429 int retval;
430
431 retval = sb_permission(inode->i_sb, inode, mask);
432 if (retval)
433 return retval;
434
435 if (unlikely(mask & MAY_WRITE)) {
436 /*
437 * Nobody gets write access to an immutable file.
438 */
439 if (IS_IMMUTABLE(inode))
440 return -EPERM;
441
442 /*
443 * Updating mtime will likely cause i_uid and i_gid to be
444 * written back improperly if their true value is unknown
445 * to the vfs.
446 */
447 if (HAS_UNMAPPED_ID(inode))
448 return -EACCES;
449 }
450
451 retval = do_inode_permission(inode, mask);
452 if (retval)
453 return retval;
454
455 retval = devcgroup_inode_permission(inode, mask);
456 if (retval)
457 return retval;
458
459 return security_inode_permission(inode, mask);
460 }
461 EXPORT_SYMBOL(inode_permission);
462
463 /**
464 * path_get - get a reference to a path
465 * @path: path to get the reference to
466 *
467 * Given a path increment the reference count to the dentry and the vfsmount.
468 */
469 void path_get(const struct path *path)
470 {
471 mntget(path->mnt);
472 dget(path->dentry);
473 }
474 EXPORT_SYMBOL(path_get);
475
476 /**
477 * path_put - put a reference to a path
478 * @path: path to put the reference to
479 *
480 * Given a path decrement the reference count to the dentry and the vfsmount.
481 */
482 void path_put(const struct path *path)
483 {
484 dput(path->dentry);
485 mntput(path->mnt);
486 }
487 EXPORT_SYMBOL(path_put);
488
489 #define EMBEDDED_LEVELS 2
490 struct nameidata {
491 struct path path;
492 struct qstr last;
493 struct path root;
494 struct inode *inode; /* path.dentry.d_inode */
495 unsigned int flags;
496 unsigned seq, m_seq;
497 int last_type;
498 unsigned depth;
499 int total_link_count;
500 struct saved {
501 struct path link;
502 struct delayed_call done;
503 const char *name;
504 unsigned seq;
505 } *stack, internal[EMBEDDED_LEVELS];
506 struct filename *name;
507 struct nameidata *saved;
508 struct inode *link_inode;
509 unsigned root_seq;
510 int dfd;
511 } __randomize_layout;
512
513 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
514 {
515 struct nameidata *old = current->nameidata;
516 p->stack = p->internal;
517 p->dfd = dfd;
518 p->name = name;
519 p->total_link_count = old ? old->total_link_count : 0;
520 p->saved = old;
521 current->nameidata = p;
522 }
523
524 static void restore_nameidata(void)
525 {
526 struct nameidata *now = current->nameidata, *old = now->saved;
527
528 current->nameidata = old;
529 if (old)
530 old->total_link_count = now->total_link_count;
531 if (now->stack != now->internal)
532 kfree(now->stack);
533 }
534
535 static int __nd_alloc_stack(struct nameidata *nd)
536 {
537 struct saved *p;
538
539 if (nd->flags & LOOKUP_RCU) {
540 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
541 GFP_ATOMIC);
542 if (unlikely(!p))
543 return -ECHILD;
544 } else {
545 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
546 GFP_KERNEL);
547 if (unlikely(!p))
548 return -ENOMEM;
549 }
550 memcpy(p, nd->internal, sizeof(nd->internal));
551 nd->stack = p;
552 return 0;
553 }
554
555 /**
556 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
557 * @path: nameidate to verify
558 *
559 * Rename can sometimes move a file or directory outside of a bind
560 * mount, path_connected allows those cases to be detected.
561 */
562 static bool path_connected(const struct path *path)
563 {
564 struct vfsmount *mnt = path->mnt;
565 struct super_block *sb = mnt->mnt_sb;
566
567 /* Bind mounts and multi-root filesystems can have disconnected paths */
568 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
569 return true;
570
571 return is_subdir(path->dentry, mnt->mnt_root);
572 }
573
574 static inline int nd_alloc_stack(struct nameidata *nd)
575 {
576 if (likely(nd->depth != EMBEDDED_LEVELS))
577 return 0;
578 if (likely(nd->stack != nd->internal))
579 return 0;
580 return __nd_alloc_stack(nd);
581 }
582
583 static void drop_links(struct nameidata *nd)
584 {
585 int i = nd->depth;
586 while (i--) {
587 struct saved *last = nd->stack + i;
588 do_delayed_call(&last->done);
589 clear_delayed_call(&last->done);
590 }
591 }
592
593 static void terminate_walk(struct nameidata *nd)
594 {
595 drop_links(nd);
596 if (!(nd->flags & LOOKUP_RCU)) {
597 int i;
598 path_put(&nd->path);
599 for (i = 0; i < nd->depth; i++)
600 path_put(&nd->stack[i].link);
601 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
602 path_put(&nd->root);
603 nd->root.mnt = NULL;
604 }
605 } else {
606 nd->flags &= ~LOOKUP_RCU;
607 if (!(nd->flags & LOOKUP_ROOT))
608 nd->root.mnt = NULL;
609 rcu_read_unlock();
610 }
611 nd->depth = 0;
612 }
613
614 /* path_put is needed afterwards regardless of success or failure */
615 static bool legitimize_path(struct nameidata *nd,
616 struct path *path, unsigned seq)
617 {
618 int res = __legitimize_mnt(path->mnt, nd->m_seq);
619 if (unlikely(res)) {
620 if (res > 0)
621 path->mnt = NULL;
622 path->dentry = NULL;
623 return false;
624 }
625 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
626 path->dentry = NULL;
627 return false;
628 }
629 return !read_seqcount_retry(&path->dentry->d_seq, seq);
630 }
631
632 static bool legitimize_links(struct nameidata *nd)
633 {
634 int i;
635 for (i = 0; i < nd->depth; i++) {
636 struct saved *last = nd->stack + i;
637 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
638 drop_links(nd);
639 nd->depth = i + 1;
640 return false;
641 }
642 }
643 return true;
644 }
645
646 /*
647 * Path walking has 2 modes, rcu-walk and ref-walk (see
648 * Documentation/filesystems/path-lookup.txt). In situations when we can't
649 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
650 * normal reference counts on dentries and vfsmounts to transition to ref-walk
651 * mode. Refcounts are grabbed at the last known good point before rcu-walk
652 * got stuck, so ref-walk may continue from there. If this is not successful
653 * (eg. a seqcount has changed), then failure is returned and it's up to caller
654 * to restart the path walk from the beginning in ref-walk mode.
655 */
656
657 /**
658 * unlazy_walk - try to switch to ref-walk mode.
659 * @nd: nameidata pathwalk data
660 * Returns: 0 on success, -ECHILD on failure
661 *
662 * unlazy_walk attempts to legitimize the current nd->path and nd->root
663 * for ref-walk mode.
664 * Must be called from rcu-walk context.
665 * Nothing should touch nameidata between unlazy_walk() failure and
666 * terminate_walk().
667 */
668 static int unlazy_walk(struct nameidata *nd)
669 {
670 struct dentry *parent = nd->path.dentry;
671
672 BUG_ON(!(nd->flags & LOOKUP_RCU));
673
674 nd->flags &= ~LOOKUP_RCU;
675 if (unlikely(!legitimize_links(nd)))
676 goto out2;
677 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
678 goto out1;
679 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
680 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
681 goto out;
682 }
683 rcu_read_unlock();
684 BUG_ON(nd->inode != parent->d_inode);
685 return 0;
686
687 out2:
688 nd->path.mnt = NULL;
689 nd->path.dentry = NULL;
690 out1:
691 if (!(nd->flags & LOOKUP_ROOT))
692 nd->root.mnt = NULL;
693 out:
694 rcu_read_unlock();
695 return -ECHILD;
696 }
697
698 /**
699 * unlazy_child - try to switch to ref-walk mode.
700 * @nd: nameidata pathwalk data
701 * @dentry: child of nd->path.dentry
702 * @seq: seq number to check dentry against
703 * Returns: 0 on success, -ECHILD on failure
704 *
705 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
706 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
707 * @nd. Must be called from rcu-walk context.
708 * Nothing should touch nameidata between unlazy_child() failure and
709 * terminate_walk().
710 */
711 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
712 {
713 BUG_ON(!(nd->flags & LOOKUP_RCU));
714
715 nd->flags &= ~LOOKUP_RCU;
716 if (unlikely(!legitimize_links(nd)))
717 goto out2;
718 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
719 goto out2;
720 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
721 goto out1;
722
723 /*
724 * We need to move both the parent and the dentry from the RCU domain
725 * to be properly refcounted. And the sequence number in the dentry
726 * validates *both* dentry counters, since we checked the sequence
727 * number of the parent after we got the child sequence number. So we
728 * know the parent must still be valid if the child sequence number is
729 */
730 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
731 goto out;
732 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
733 rcu_read_unlock();
734 dput(dentry);
735 goto drop_root_mnt;
736 }
737 /*
738 * Sequence counts matched. Now make sure that the root is
739 * still valid and get it if required.
740 */
741 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
742 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
743 rcu_read_unlock();
744 dput(dentry);
745 return -ECHILD;
746 }
747 }
748
749 rcu_read_unlock();
750 return 0;
751
752 out2:
753 nd->path.mnt = NULL;
754 out1:
755 nd->path.dentry = NULL;
756 out:
757 rcu_read_unlock();
758 drop_root_mnt:
759 if (!(nd->flags & LOOKUP_ROOT))
760 nd->root.mnt = NULL;
761 return -ECHILD;
762 }
763
764 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
765 {
766 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
767 return dentry->d_op->d_revalidate(dentry, flags);
768 else
769 return 1;
770 }
771
772 /**
773 * complete_walk - successful completion of path walk
774 * @nd: pointer nameidata
775 *
776 * If we had been in RCU mode, drop out of it and legitimize nd->path.
777 * Revalidate the final result, unless we'd already done that during
778 * the path walk or the filesystem doesn't ask for it. Return 0 on
779 * success, -error on failure. In case of failure caller does not
780 * need to drop nd->path.
781 */
782 static int complete_walk(struct nameidata *nd)
783 {
784 struct dentry *dentry = nd->path.dentry;
785 int status;
786
787 if (nd->flags & LOOKUP_RCU) {
788 if (!(nd->flags & LOOKUP_ROOT))
789 nd->root.mnt = NULL;
790 if (unlikely(unlazy_walk(nd)))
791 return -ECHILD;
792 }
793
794 if (likely(!(nd->flags & LOOKUP_JUMPED)))
795 return 0;
796
797 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
798 return 0;
799
800 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
801 if (status > 0)
802 return 0;
803
804 if (!status)
805 status = -ESTALE;
806
807 return status;
808 }
809
810 static void set_root(struct nameidata *nd)
811 {
812 struct fs_struct *fs = current->fs;
813
814 if (nd->flags & LOOKUP_RCU) {
815 unsigned seq;
816
817 do {
818 seq = read_seqcount_begin(&fs->seq);
819 nd->root = fs->root;
820 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
821 } while (read_seqcount_retry(&fs->seq, seq));
822 } else {
823 get_fs_root(fs, &nd->root);
824 }
825 }
826
827 static void path_put_conditional(struct path *path, struct nameidata *nd)
828 {
829 dput(path->dentry);
830 if (path->mnt != nd->path.mnt)
831 mntput(path->mnt);
832 }
833
834 static inline void path_to_nameidata(const struct path *path,
835 struct nameidata *nd)
836 {
837 if (!(nd->flags & LOOKUP_RCU)) {
838 dput(nd->path.dentry);
839 if (nd->path.mnt != path->mnt)
840 mntput(nd->path.mnt);
841 }
842 nd->path.mnt = path->mnt;
843 nd->path.dentry = path->dentry;
844 }
845
846 static int nd_jump_root(struct nameidata *nd)
847 {
848 if (nd->flags & LOOKUP_RCU) {
849 struct dentry *d;
850 nd->path = nd->root;
851 d = nd->path.dentry;
852 nd->inode = d->d_inode;
853 nd->seq = nd->root_seq;
854 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
855 return -ECHILD;
856 } else {
857 path_put(&nd->path);
858 nd->path = nd->root;
859 path_get(&nd->path);
860 nd->inode = nd->path.dentry->d_inode;
861 }
862 nd->flags |= LOOKUP_JUMPED;
863 return 0;
864 }
865
866 /*
867 * Helper to directly jump to a known parsed path from ->get_link,
868 * caller must have taken a reference to path beforehand.
869 */
870 void nd_jump_link(struct path *path)
871 {
872 struct nameidata *nd = current->nameidata;
873 path_put(&nd->path);
874
875 nd->path = *path;
876 nd->inode = nd->path.dentry->d_inode;
877 nd->flags |= LOOKUP_JUMPED;
878 }
879
880 static inline void put_link(struct nameidata *nd)
881 {
882 struct saved *last = nd->stack + --nd->depth;
883 do_delayed_call(&last->done);
884 if (!(nd->flags & LOOKUP_RCU))
885 path_put(&last->link);
886 }
887
888 int sysctl_protected_symlinks __read_mostly = 0;
889 int sysctl_protected_hardlinks __read_mostly = 0;
890
891 /**
892 * may_follow_link - Check symlink following for unsafe situations
893 * @nd: nameidata pathwalk data
894 *
895 * In the case of the sysctl_protected_symlinks sysctl being enabled,
896 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
897 * in a sticky world-writable directory. This is to protect privileged
898 * processes from failing races against path names that may change out
899 * from under them by way of other users creating malicious symlinks.
900 * It will permit symlinks to be followed only when outside a sticky
901 * world-writable directory, or when the uid of the symlink and follower
902 * match, or when the directory owner matches the symlink's owner.
903 *
904 * Returns 0 if following the symlink is allowed, -ve on error.
905 */
906 static inline int may_follow_link(struct nameidata *nd)
907 {
908 const struct inode *inode;
909 const struct inode *parent;
910 kuid_t puid;
911
912 if (!sysctl_protected_symlinks)
913 return 0;
914
915 /* Allowed if owner and follower match. */
916 inode = nd->link_inode;
917 if (uid_eq(current_cred()->fsuid, inode->i_uid))
918 return 0;
919
920 /* Allowed if parent directory not sticky and world-writable. */
921 parent = nd->inode;
922 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
923 return 0;
924
925 /* Allowed if parent directory and link owner match. */
926 puid = parent->i_uid;
927 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
928 return 0;
929
930 if (nd->flags & LOOKUP_RCU)
931 return -ECHILD;
932
933 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
934 audit_log_link_denied("follow_link");
935 return -EACCES;
936 }
937
938 /**
939 * safe_hardlink_source - Check for safe hardlink conditions
940 * @inode: the source inode to hardlink from
941 *
942 * Return false if at least one of the following conditions:
943 * - inode is not a regular file
944 * - inode is setuid
945 * - inode is setgid and group-exec
946 * - access failure for read and write
947 *
948 * Otherwise returns true.
949 */
950 static bool safe_hardlink_source(struct inode *inode)
951 {
952 umode_t mode = inode->i_mode;
953
954 /* Special files should not get pinned to the filesystem. */
955 if (!S_ISREG(mode))
956 return false;
957
958 /* Setuid files should not get pinned to the filesystem. */
959 if (mode & S_ISUID)
960 return false;
961
962 /* Executable setgid files should not get pinned to the filesystem. */
963 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
964 return false;
965
966 /* Hardlinking to unreadable or unwritable sources is dangerous. */
967 if (inode_permission(inode, MAY_READ | MAY_WRITE))
968 return false;
969
970 return true;
971 }
972
973 /**
974 * may_linkat - Check permissions for creating a hardlink
975 * @link: the source to hardlink from
976 *
977 * Block hardlink when all of:
978 * - sysctl_protected_hardlinks enabled
979 * - fsuid does not match inode
980 * - hardlink source is unsafe (see safe_hardlink_source() above)
981 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
982 *
983 * Returns 0 if successful, -ve on error.
984 */
985 static int may_linkat(struct path *link)
986 {
987 struct inode *inode = link->dentry->d_inode;
988
989 /* Inode writeback is not safe when the uid or gid are invalid. */
990 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
991 return -EOVERFLOW;
992
993 if (!sysctl_protected_hardlinks)
994 return 0;
995
996 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
997 * otherwise, it must be a safe source.
998 */
999 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1000 return 0;
1001
1002 audit_log_link_denied("linkat");
1003 return -EPERM;
1004 }
1005
1006 static __always_inline
1007 const char *get_link(struct nameidata *nd)
1008 {
1009 struct saved *last = nd->stack + nd->depth - 1;
1010 struct dentry *dentry = last->link.dentry;
1011 struct inode *inode = nd->link_inode;
1012 int error;
1013 const char *res;
1014
1015 if (!(nd->flags & LOOKUP_RCU)) {
1016 touch_atime(&last->link);
1017 cond_resched();
1018 } else if (atime_needs_update_rcu(&last->link, inode)) {
1019 if (unlikely(unlazy_walk(nd)))
1020 return ERR_PTR(-ECHILD);
1021 touch_atime(&last->link);
1022 }
1023
1024 error = security_inode_follow_link(dentry, inode,
1025 nd->flags & LOOKUP_RCU);
1026 if (unlikely(error))
1027 return ERR_PTR(error);
1028
1029 nd->last_type = LAST_BIND;
1030 res = inode->i_link;
1031 if (!res) {
1032 const char * (*get)(struct dentry *, struct inode *,
1033 struct delayed_call *);
1034 get = inode->i_op->get_link;
1035 if (nd->flags & LOOKUP_RCU) {
1036 res = get(NULL, inode, &last->done);
1037 if (res == ERR_PTR(-ECHILD)) {
1038 if (unlikely(unlazy_walk(nd)))
1039 return ERR_PTR(-ECHILD);
1040 res = get(dentry, inode, &last->done);
1041 }
1042 } else {
1043 res = get(dentry, inode, &last->done);
1044 }
1045 if (IS_ERR_OR_NULL(res))
1046 return res;
1047 }
1048 if (*res == '/') {
1049 if (!nd->root.mnt)
1050 set_root(nd);
1051 if (unlikely(nd_jump_root(nd)))
1052 return ERR_PTR(-ECHILD);
1053 while (unlikely(*++res == '/'))
1054 ;
1055 }
1056 if (!*res)
1057 res = NULL;
1058 return res;
1059 }
1060
1061 /*
1062 * follow_up - Find the mountpoint of path's vfsmount
1063 *
1064 * Given a path, find the mountpoint of its source file system.
1065 * Replace @path with the path of the mountpoint in the parent mount.
1066 * Up is towards /.
1067 *
1068 * Return 1 if we went up a level and 0 if we were already at the
1069 * root.
1070 */
1071 int follow_up(struct path *path)
1072 {
1073 struct mount *mnt = real_mount(path->mnt);
1074 struct mount *parent;
1075 struct dentry *mountpoint;
1076
1077 read_seqlock_excl(&mount_lock);
1078 parent = mnt->mnt_parent;
1079 if (parent == mnt) {
1080 read_sequnlock_excl(&mount_lock);
1081 return 0;
1082 }
1083 mntget(&parent->mnt);
1084 mountpoint = dget(mnt->mnt_mountpoint);
1085 read_sequnlock_excl(&mount_lock);
1086 dput(path->dentry);
1087 path->dentry = mountpoint;
1088 mntput(path->mnt);
1089 path->mnt = &parent->mnt;
1090 return 1;
1091 }
1092 EXPORT_SYMBOL(follow_up);
1093
1094 /*
1095 * Perform an automount
1096 * - return -EISDIR to tell follow_managed() to stop and return the path we
1097 * were called with.
1098 */
1099 static int follow_automount(struct path *path, struct nameidata *nd,
1100 bool *need_mntput)
1101 {
1102 struct vfsmount *mnt;
1103 int err;
1104
1105 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1106 return -EREMOTE;
1107
1108 /* We don't want to mount if someone's just doing a stat -
1109 * unless they're stat'ing a directory and appended a '/' to
1110 * the name.
1111 *
1112 * We do, however, want to mount if someone wants to open or
1113 * create a file of any type under the mountpoint, wants to
1114 * traverse through the mountpoint or wants to open the
1115 * mounted directory. Also, autofs may mark negative dentries
1116 * as being automount points. These will need the attentions
1117 * of the daemon to instantiate them before they can be used.
1118 */
1119 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1120 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1121 path->dentry->d_inode)
1122 return -EISDIR;
1123
1124 nd->total_link_count++;
1125 if (nd->total_link_count >= 40)
1126 return -ELOOP;
1127
1128 mnt = path->dentry->d_op->d_automount(path);
1129 if (IS_ERR(mnt)) {
1130 /*
1131 * The filesystem is allowed to return -EISDIR here to indicate
1132 * it doesn't want to automount. For instance, autofs would do
1133 * this so that its userspace daemon can mount on this dentry.
1134 *
1135 * However, we can only permit this if it's a terminal point in
1136 * the path being looked up; if it wasn't then the remainder of
1137 * the path is inaccessible and we should say so.
1138 */
1139 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1140 return -EREMOTE;
1141 return PTR_ERR(mnt);
1142 }
1143
1144 if (!mnt) /* mount collision */
1145 return 0;
1146
1147 if (!*need_mntput) {
1148 /* lock_mount() may release path->mnt on error */
1149 mntget(path->mnt);
1150 *need_mntput = true;
1151 }
1152 err = finish_automount(mnt, path);
1153
1154 switch (err) {
1155 case -EBUSY:
1156 /* Someone else made a mount here whilst we were busy */
1157 return 0;
1158 case 0:
1159 path_put(path);
1160 path->mnt = mnt;
1161 path->dentry = dget(mnt->mnt_root);
1162 return 0;
1163 default:
1164 return err;
1165 }
1166
1167 }
1168
1169 /*
1170 * Handle a dentry that is managed in some way.
1171 * - Flagged for transit management (autofs)
1172 * - Flagged as mountpoint
1173 * - Flagged as automount point
1174 *
1175 * This may only be called in refwalk mode.
1176 *
1177 * Serialization is taken care of in namespace.c
1178 */
1179 static int follow_managed(struct path *path, struct nameidata *nd)
1180 {
1181 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1182 unsigned managed;
1183 bool need_mntput = false;
1184 int ret = 0;
1185
1186 /* Given that we're not holding a lock here, we retain the value in a
1187 * local variable for each dentry as we look at it so that we don't see
1188 * the components of that value change under us */
1189 while (managed = READ_ONCE(path->dentry->d_flags),
1190 managed &= DCACHE_MANAGED_DENTRY,
1191 unlikely(managed != 0)) {
1192 /* Allow the filesystem to manage the transit without i_mutex
1193 * being held. */
1194 if (managed & DCACHE_MANAGE_TRANSIT) {
1195 BUG_ON(!path->dentry->d_op);
1196 BUG_ON(!path->dentry->d_op->d_manage);
1197 ret = path->dentry->d_op->d_manage(path, false);
1198 if (ret < 0)
1199 break;
1200 }
1201
1202 /* Transit to a mounted filesystem. */
1203 if (managed & DCACHE_MOUNTED) {
1204 struct vfsmount *mounted = lookup_mnt(path);
1205 if (mounted) {
1206 dput(path->dentry);
1207 if (need_mntput)
1208 mntput(path->mnt);
1209 path->mnt = mounted;
1210 path->dentry = dget(mounted->mnt_root);
1211 need_mntput = true;
1212 continue;
1213 }
1214
1215 /* Something is mounted on this dentry in another
1216 * namespace and/or whatever was mounted there in this
1217 * namespace got unmounted before lookup_mnt() could
1218 * get it */
1219 }
1220
1221 /* Handle an automount point */
1222 if (managed & DCACHE_NEED_AUTOMOUNT) {
1223 ret = follow_automount(path, nd, &need_mntput);
1224 if (ret < 0)
1225 break;
1226 continue;
1227 }
1228
1229 /* We didn't change the current path point */
1230 break;
1231 }
1232
1233 if (need_mntput && path->mnt == mnt)
1234 mntput(path->mnt);
1235 if (ret == -EISDIR || !ret)
1236 ret = 1;
1237 if (need_mntput)
1238 nd->flags |= LOOKUP_JUMPED;
1239 if (unlikely(ret < 0))
1240 path_put_conditional(path, nd);
1241 return ret;
1242 }
1243
1244 int follow_down_one(struct path *path)
1245 {
1246 struct vfsmount *mounted;
1247
1248 mounted = lookup_mnt(path);
1249 if (mounted) {
1250 dput(path->dentry);
1251 mntput(path->mnt);
1252 path->mnt = mounted;
1253 path->dentry = dget(mounted->mnt_root);
1254 return 1;
1255 }
1256 return 0;
1257 }
1258 EXPORT_SYMBOL(follow_down_one);
1259
1260 static inline int managed_dentry_rcu(const struct path *path)
1261 {
1262 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1263 path->dentry->d_op->d_manage(path, true) : 0;
1264 }
1265
1266 /*
1267 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1268 * we meet a managed dentry that would need blocking.
1269 */
1270 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1271 struct inode **inode, unsigned *seqp)
1272 {
1273 for (;;) {
1274 struct mount *mounted;
1275 /*
1276 * Don't forget we might have a non-mountpoint managed dentry
1277 * that wants to block transit.
1278 */
1279 switch (managed_dentry_rcu(path)) {
1280 case -ECHILD:
1281 default:
1282 return false;
1283 case -EISDIR:
1284 return true;
1285 case 0:
1286 break;
1287 }
1288
1289 if (!d_mountpoint(path->dentry))
1290 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1291
1292 mounted = __lookup_mnt(path->mnt, path->dentry);
1293 if (!mounted)
1294 break;
1295 path->mnt = &mounted->mnt;
1296 path->dentry = mounted->mnt.mnt_root;
1297 nd->flags |= LOOKUP_JUMPED;
1298 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1299 /*
1300 * Update the inode too. We don't need to re-check the
1301 * dentry sequence number here after this d_inode read,
1302 * because a mount-point is always pinned.
1303 */
1304 *inode = path->dentry->d_inode;
1305 }
1306 return !read_seqretry(&mount_lock, nd->m_seq) &&
1307 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1308 }
1309
1310 static int follow_dotdot_rcu(struct nameidata *nd)
1311 {
1312 struct inode *inode = nd->inode;
1313
1314 while (1) {
1315 if (path_equal(&nd->path, &nd->root))
1316 break;
1317 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1318 struct dentry *old = nd->path.dentry;
1319 struct dentry *parent = old->d_parent;
1320 unsigned seq;
1321
1322 inode = parent->d_inode;
1323 seq = read_seqcount_begin(&parent->d_seq);
1324 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1325 return -ECHILD;
1326 nd->path.dentry = parent;
1327 nd->seq = seq;
1328 if (unlikely(!path_connected(&nd->path)))
1329 return -ENOENT;
1330 break;
1331 } else {
1332 struct mount *mnt = real_mount(nd->path.mnt);
1333 struct mount *mparent = mnt->mnt_parent;
1334 struct dentry *mountpoint = mnt->mnt_mountpoint;
1335 struct inode *inode2 = mountpoint->d_inode;
1336 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1337 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1338 return -ECHILD;
1339 if (&mparent->mnt == nd->path.mnt)
1340 break;
1341 /* we know that mountpoint was pinned */
1342 nd->path.dentry = mountpoint;
1343 nd->path.mnt = &mparent->mnt;
1344 inode = inode2;
1345 nd->seq = seq;
1346 }
1347 }
1348 while (unlikely(d_mountpoint(nd->path.dentry))) {
1349 struct mount *mounted;
1350 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1351 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1352 return -ECHILD;
1353 if (!mounted)
1354 break;
1355 nd->path.mnt = &mounted->mnt;
1356 nd->path.dentry = mounted->mnt.mnt_root;
1357 inode = nd->path.dentry->d_inode;
1358 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1359 }
1360 nd->inode = inode;
1361 return 0;
1362 }
1363
1364 /*
1365 * Follow down to the covering mount currently visible to userspace. At each
1366 * point, the filesystem owning that dentry may be queried as to whether the
1367 * caller is permitted to proceed or not.
1368 */
1369 int follow_down(struct path *path)
1370 {
1371 unsigned managed;
1372 int ret;
1373
1374 while (managed = READ_ONCE(path->dentry->d_flags),
1375 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1376 /* Allow the filesystem to manage the transit without i_mutex
1377 * being held.
1378 *
1379 * We indicate to the filesystem if someone is trying to mount
1380 * something here. This gives autofs the chance to deny anyone
1381 * other than its daemon the right to mount on its
1382 * superstructure.
1383 *
1384 * The filesystem may sleep at this point.
1385 */
1386 if (managed & DCACHE_MANAGE_TRANSIT) {
1387 BUG_ON(!path->dentry->d_op);
1388 BUG_ON(!path->dentry->d_op->d_manage);
1389 ret = path->dentry->d_op->d_manage(path, false);
1390 if (ret < 0)
1391 return ret == -EISDIR ? 0 : ret;
1392 }
1393
1394 /* Transit to a mounted filesystem. */
1395 if (managed & DCACHE_MOUNTED) {
1396 struct vfsmount *mounted = lookup_mnt(path);
1397 if (!mounted)
1398 break;
1399 dput(path->dentry);
1400 mntput(path->mnt);
1401 path->mnt = mounted;
1402 path->dentry = dget(mounted->mnt_root);
1403 continue;
1404 }
1405
1406 /* Don't handle automount points here */
1407 break;
1408 }
1409 return 0;
1410 }
1411 EXPORT_SYMBOL(follow_down);
1412
1413 /*
1414 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1415 */
1416 static void follow_mount(struct path *path)
1417 {
1418 while (d_mountpoint(path->dentry)) {
1419 struct vfsmount *mounted = lookup_mnt(path);
1420 if (!mounted)
1421 break;
1422 dput(path->dentry);
1423 mntput(path->mnt);
1424 path->mnt = mounted;
1425 path->dentry = dget(mounted->mnt_root);
1426 }
1427 }
1428
1429 static int path_parent_directory(struct path *path)
1430 {
1431 struct dentry *old = path->dentry;
1432 /* rare case of legitimate dget_parent()... */
1433 path->dentry = dget_parent(path->dentry);
1434 dput(old);
1435 if (unlikely(!path_connected(path)))
1436 return -ENOENT;
1437 return 0;
1438 }
1439
1440 static int follow_dotdot(struct nameidata *nd)
1441 {
1442 while(1) {
1443 if (path_equal(&nd->path, &nd->root))
1444 break;
1445 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1446 int ret = path_parent_directory(&nd->path);
1447 if (ret)
1448 return ret;
1449 break;
1450 }
1451 if (!follow_up(&nd->path))
1452 break;
1453 }
1454 follow_mount(&nd->path);
1455 nd->inode = nd->path.dentry->d_inode;
1456 return 0;
1457 }
1458
1459 /*
1460 * This looks up the name in dcache and possibly revalidates the found dentry.
1461 * NULL is returned if the dentry does not exist in the cache.
1462 */
1463 static struct dentry *lookup_dcache(const struct qstr *name,
1464 struct dentry *dir,
1465 unsigned int flags)
1466 {
1467 struct dentry *dentry = d_lookup(dir, name);
1468 if (dentry) {
1469 int error = d_revalidate(dentry, flags);
1470 if (unlikely(error <= 0)) {
1471 if (!error)
1472 d_invalidate(dentry);
1473 dput(dentry);
1474 return ERR_PTR(error);
1475 }
1476 }
1477 return dentry;
1478 }
1479
1480 /*
1481 * Parent directory has inode locked exclusive. This is one
1482 * and only case when ->lookup() gets called on non in-lookup
1483 * dentries - as the matter of fact, this only gets called
1484 * when directory is guaranteed to have no in-lookup children
1485 * at all.
1486 */
1487 static struct dentry *__lookup_hash(const struct qstr *name,
1488 struct dentry *base, unsigned int flags)
1489 {
1490 struct dentry *dentry = lookup_dcache(name, base, flags);
1491 struct dentry *old;
1492 struct inode *dir = base->d_inode;
1493
1494 if (dentry)
1495 return dentry;
1496
1497 /* Don't create child dentry for a dead directory. */
1498 if (unlikely(IS_DEADDIR(dir)))
1499 return ERR_PTR(-ENOENT);
1500
1501 dentry = d_alloc(base, name);
1502 if (unlikely(!dentry))
1503 return ERR_PTR(-ENOMEM);
1504
1505 old = dir->i_op->lookup(dir, dentry, flags);
1506 if (unlikely(old)) {
1507 dput(dentry);
1508 dentry = old;
1509 }
1510 return dentry;
1511 }
1512
1513 static int lookup_fast(struct nameidata *nd,
1514 struct path *path, struct inode **inode,
1515 unsigned *seqp)
1516 {
1517 struct vfsmount *mnt = nd->path.mnt;
1518 struct dentry *dentry, *parent = nd->path.dentry;
1519 int status = 1;
1520 int err;
1521
1522 /*
1523 * Rename seqlock is not required here because in the off chance
1524 * of a false negative due to a concurrent rename, the caller is
1525 * going to fall back to non-racy lookup.
1526 */
1527 if (nd->flags & LOOKUP_RCU) {
1528 unsigned seq;
1529 bool negative;
1530 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1531 if (unlikely(!dentry)) {
1532 if (unlazy_walk(nd))
1533 return -ECHILD;
1534 return 0;
1535 }
1536
1537 /*
1538 * This sequence count validates that the inode matches
1539 * the dentry name information from lookup.
1540 */
1541 *inode = d_backing_inode(dentry);
1542 negative = d_is_negative(dentry);
1543 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1544 return -ECHILD;
1545
1546 /*
1547 * This sequence count validates that the parent had no
1548 * changes while we did the lookup of the dentry above.
1549 *
1550 * The memory barrier in read_seqcount_begin of child is
1551 * enough, we can use __read_seqcount_retry here.
1552 */
1553 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1554 return -ECHILD;
1555
1556 *seqp = seq;
1557 status = d_revalidate(dentry, nd->flags);
1558 if (likely(status > 0)) {
1559 /*
1560 * Note: do negative dentry check after revalidation in
1561 * case that drops it.
1562 */
1563 if (unlikely(negative))
1564 return -ENOENT;
1565 path->mnt = mnt;
1566 path->dentry = dentry;
1567 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1568 return 1;
1569 }
1570 if (unlazy_child(nd, dentry, seq))
1571 return -ECHILD;
1572 if (unlikely(status == -ECHILD))
1573 /* we'd been told to redo it in non-rcu mode */
1574 status = d_revalidate(dentry, nd->flags);
1575 } else {
1576 dentry = __d_lookup(parent, &nd->last);
1577 if (unlikely(!dentry))
1578 return 0;
1579 status = d_revalidate(dentry, nd->flags);
1580 }
1581 if (unlikely(status <= 0)) {
1582 if (!status)
1583 d_invalidate(dentry);
1584 dput(dentry);
1585 return status;
1586 }
1587 if (unlikely(d_is_negative(dentry))) {
1588 dput(dentry);
1589 return -ENOENT;
1590 }
1591
1592 path->mnt = mnt;
1593 path->dentry = dentry;
1594 err = follow_managed(path, nd);
1595 if (likely(err > 0))
1596 *inode = d_backing_inode(path->dentry);
1597 return err;
1598 }
1599
1600 /* Fast lookup failed, do it the slow way */
1601 static struct dentry *__lookup_slow(const struct qstr *name,
1602 struct dentry *dir,
1603 unsigned int flags)
1604 {
1605 struct dentry *dentry, *old;
1606 struct inode *inode = dir->d_inode;
1607 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1608
1609 /* Don't go there if it's already dead */
1610 if (unlikely(IS_DEADDIR(inode)))
1611 return ERR_PTR(-ENOENT);
1612 again:
1613 dentry = d_alloc_parallel(dir, name, &wq);
1614 if (IS_ERR(dentry))
1615 return dentry;
1616 if (unlikely(!d_in_lookup(dentry))) {
1617 if (!(flags & LOOKUP_NO_REVAL)) {
1618 int error = d_revalidate(dentry, flags);
1619 if (unlikely(error <= 0)) {
1620 if (!error) {
1621 d_invalidate(dentry);
1622 dput(dentry);
1623 goto again;
1624 }
1625 dput(dentry);
1626 dentry = ERR_PTR(error);
1627 }
1628 }
1629 } else {
1630 old = inode->i_op->lookup(inode, dentry, flags);
1631 d_lookup_done(dentry);
1632 if (unlikely(old)) {
1633 dput(dentry);
1634 dentry = old;
1635 }
1636 }
1637 return dentry;
1638 }
1639
1640 static struct dentry *lookup_slow(const struct qstr *name,
1641 struct dentry *dir,
1642 unsigned int flags)
1643 {
1644 struct inode *inode = dir->d_inode;
1645 struct dentry *res;
1646 inode_lock_shared(inode);
1647 res = __lookup_slow(name, dir, flags);
1648 inode_unlock_shared(inode);
1649 return res;
1650 }
1651
1652 static inline int may_lookup(struct nameidata *nd)
1653 {
1654 if (nd->flags & LOOKUP_RCU) {
1655 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1656 if (err != -ECHILD)
1657 return err;
1658 if (unlazy_walk(nd))
1659 return -ECHILD;
1660 }
1661 return inode_permission(nd->inode, MAY_EXEC);
1662 }
1663
1664 static inline int handle_dots(struct nameidata *nd, int type)
1665 {
1666 if (type == LAST_DOTDOT) {
1667 if (!nd->root.mnt)
1668 set_root(nd);
1669 if (nd->flags & LOOKUP_RCU) {
1670 return follow_dotdot_rcu(nd);
1671 } else
1672 return follow_dotdot(nd);
1673 }
1674 return 0;
1675 }
1676
1677 static int pick_link(struct nameidata *nd, struct path *link,
1678 struct inode *inode, unsigned seq)
1679 {
1680 int error;
1681 struct saved *last;
1682 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1683 path_to_nameidata(link, nd);
1684 return -ELOOP;
1685 }
1686 if (!(nd->flags & LOOKUP_RCU)) {
1687 if (link->mnt == nd->path.mnt)
1688 mntget(link->mnt);
1689 }
1690 error = nd_alloc_stack(nd);
1691 if (unlikely(error)) {
1692 if (error == -ECHILD) {
1693 if (unlikely(!legitimize_path(nd, link, seq))) {
1694 drop_links(nd);
1695 nd->depth = 0;
1696 nd->flags &= ~LOOKUP_RCU;
1697 nd->path.mnt = NULL;
1698 nd->path.dentry = NULL;
1699 if (!(nd->flags & LOOKUP_ROOT))
1700 nd->root.mnt = NULL;
1701 rcu_read_unlock();
1702 } else if (likely(unlazy_walk(nd)) == 0)
1703 error = nd_alloc_stack(nd);
1704 }
1705 if (error) {
1706 path_put(link);
1707 return error;
1708 }
1709 }
1710
1711 last = nd->stack + nd->depth++;
1712 last->link = *link;
1713 clear_delayed_call(&last->done);
1714 nd->link_inode = inode;
1715 last->seq = seq;
1716 return 1;
1717 }
1718
1719 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1720
1721 /*
1722 * Do we need to follow links? We _really_ want to be able
1723 * to do this check without having to look at inode->i_op,
1724 * so we keep a cache of "no, this doesn't need follow_link"
1725 * for the common case.
1726 */
1727 static inline int step_into(struct nameidata *nd, struct path *path,
1728 int flags, struct inode *inode, unsigned seq)
1729 {
1730 if (!(flags & WALK_MORE) && nd->depth)
1731 put_link(nd);
1732 if (likely(!d_is_symlink(path->dentry)) ||
1733 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1734 /* not a symlink or should not follow */
1735 path_to_nameidata(path, nd);
1736 nd->inode = inode;
1737 nd->seq = seq;
1738 return 0;
1739 }
1740 /* make sure that d_is_symlink above matches inode */
1741 if (nd->flags & LOOKUP_RCU) {
1742 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1743 return -ECHILD;
1744 }
1745 return pick_link(nd, path, inode, seq);
1746 }
1747
1748 static int walk_component(struct nameidata *nd, int flags)
1749 {
1750 struct path path;
1751 struct inode *inode;
1752 unsigned seq;
1753 int err;
1754 /*
1755 * "." and ".." are special - ".." especially so because it has
1756 * to be able to know about the current root directory and
1757 * parent relationships.
1758 */
1759 if (unlikely(nd->last_type != LAST_NORM)) {
1760 err = handle_dots(nd, nd->last_type);
1761 if (!(flags & WALK_MORE) && nd->depth)
1762 put_link(nd);
1763 return err;
1764 }
1765 err = lookup_fast(nd, &path, &inode, &seq);
1766 if (unlikely(err <= 0)) {
1767 if (err < 0)
1768 return err;
1769 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1770 nd->flags);
1771 if (IS_ERR(path.dentry))
1772 return PTR_ERR(path.dentry);
1773
1774 path.mnt = nd->path.mnt;
1775 err = follow_managed(&path, nd);
1776 if (unlikely(err < 0))
1777 return err;
1778
1779 if (unlikely(d_is_negative(path.dentry))) {
1780 path_to_nameidata(&path, nd);
1781 return -ENOENT;
1782 }
1783
1784 seq = 0; /* we are already out of RCU mode */
1785 inode = d_backing_inode(path.dentry);
1786 }
1787
1788 return step_into(nd, &path, flags, inode, seq);
1789 }
1790
1791 /*
1792 * We can do the critical dentry name comparison and hashing
1793 * operations one word at a time, but we are limited to:
1794 *
1795 * - Architectures with fast unaligned word accesses. We could
1796 * do a "get_unaligned()" if this helps and is sufficiently
1797 * fast.
1798 *
1799 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1800 * do not trap on the (extremely unlikely) case of a page
1801 * crossing operation.
1802 *
1803 * - Furthermore, we need an efficient 64-bit compile for the
1804 * 64-bit case in order to generate the "number of bytes in
1805 * the final mask". Again, that could be replaced with a
1806 * efficient population count instruction or similar.
1807 */
1808 #ifdef CONFIG_DCACHE_WORD_ACCESS
1809
1810 #include <asm/word-at-a-time.h>
1811
1812 #ifdef HASH_MIX
1813
1814 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1815
1816 #elif defined(CONFIG_64BIT)
1817 /*
1818 * Register pressure in the mixing function is an issue, particularly
1819 * on 32-bit x86, but almost any function requires one state value and
1820 * one temporary. Instead, use a function designed for two state values
1821 * and no temporaries.
1822 *
1823 * This function cannot create a collision in only two iterations, so
1824 * we have two iterations to achieve avalanche. In those two iterations,
1825 * we have six layers of mixing, which is enough to spread one bit's
1826 * influence out to 2^6 = 64 state bits.
1827 *
1828 * Rotate constants are scored by considering either 64 one-bit input
1829 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1830 * probability of that delta causing a change to each of the 128 output
1831 * bits, using a sample of random initial states.
1832 *
1833 * The Shannon entropy of the computed probabilities is then summed
1834 * to produce a score. Ideally, any input change has a 50% chance of
1835 * toggling any given output bit.
1836 *
1837 * Mixing scores (in bits) for (12,45):
1838 * Input delta: 1-bit 2-bit
1839 * 1 round: 713.3 42542.6
1840 * 2 rounds: 2753.7 140389.8
1841 * 3 rounds: 5954.1 233458.2
1842 * 4 rounds: 7862.6 256672.2
1843 * Perfect: 8192 258048
1844 * (64*128) (64*63/2 * 128)
1845 */
1846 #define HASH_MIX(x, y, a) \
1847 ( x ^= (a), \
1848 y ^= x, x = rol64(x,12),\
1849 x += y, y = rol64(y,45),\
1850 y *= 9 )
1851
1852 /*
1853 * Fold two longs into one 32-bit hash value. This must be fast, but
1854 * latency isn't quite as critical, as there is a fair bit of additional
1855 * work done before the hash value is used.
1856 */
1857 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1858 {
1859 y ^= x * GOLDEN_RATIO_64;
1860 y *= GOLDEN_RATIO_64;
1861 return y >> 32;
1862 }
1863
1864 #else /* 32-bit case */
1865
1866 /*
1867 * Mixing scores (in bits) for (7,20):
1868 * Input delta: 1-bit 2-bit
1869 * 1 round: 330.3 9201.6
1870 * 2 rounds: 1246.4 25475.4
1871 * 3 rounds: 1907.1 31295.1
1872 * 4 rounds: 2042.3 31718.6
1873 * Perfect: 2048 31744
1874 * (32*64) (32*31/2 * 64)
1875 */
1876 #define HASH_MIX(x, y, a) \
1877 ( x ^= (a), \
1878 y ^= x, x = rol32(x, 7),\
1879 x += y, y = rol32(y,20),\
1880 y *= 9 )
1881
1882 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1883 {
1884 /* Use arch-optimized multiply if one exists */
1885 return __hash_32(y ^ __hash_32(x));
1886 }
1887
1888 #endif
1889
1890 /*
1891 * Return the hash of a string of known length. This is carfully
1892 * designed to match hash_name(), which is the more critical function.
1893 * In particular, we must end by hashing a final word containing 0..7
1894 * payload bytes, to match the way that hash_name() iterates until it
1895 * finds the delimiter after the name.
1896 */
1897 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1898 {
1899 unsigned long a, x = 0, y = (unsigned long)salt;
1900
1901 for (;;) {
1902 if (!len)
1903 goto done;
1904 a = load_unaligned_zeropad(name);
1905 if (len < sizeof(unsigned long))
1906 break;
1907 HASH_MIX(x, y, a);
1908 name += sizeof(unsigned long);
1909 len -= sizeof(unsigned long);
1910 }
1911 x ^= a & bytemask_from_count(len);
1912 done:
1913 return fold_hash(x, y);
1914 }
1915 EXPORT_SYMBOL(full_name_hash);
1916
1917 /* Return the "hash_len" (hash and length) of a null-terminated string */
1918 u64 hashlen_string(const void *salt, const char *name)
1919 {
1920 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1921 unsigned long adata, mask, len;
1922 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1923
1924 len = 0;
1925 goto inside;
1926
1927 do {
1928 HASH_MIX(x, y, a);
1929 len += sizeof(unsigned long);
1930 inside:
1931 a = load_unaligned_zeropad(name+len);
1932 } while (!has_zero(a, &adata, &constants));
1933
1934 adata = prep_zero_mask(a, adata, &constants);
1935 mask = create_zero_mask(adata);
1936 x ^= a & zero_bytemask(mask);
1937
1938 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1939 }
1940 EXPORT_SYMBOL(hashlen_string);
1941
1942 /*
1943 * Calculate the length and hash of the path component, and
1944 * return the "hash_len" as the result.
1945 */
1946 static inline u64 hash_name(const void *salt, const char *name)
1947 {
1948 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1949 unsigned long adata, bdata, mask, len;
1950 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1951
1952 len = 0;
1953 goto inside;
1954
1955 do {
1956 HASH_MIX(x, y, a);
1957 len += sizeof(unsigned long);
1958 inside:
1959 a = load_unaligned_zeropad(name+len);
1960 b = a ^ REPEAT_BYTE('/');
1961 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1962
1963 adata = prep_zero_mask(a, adata, &constants);
1964 bdata = prep_zero_mask(b, bdata, &constants);
1965 mask = create_zero_mask(adata | bdata);
1966 x ^= a & zero_bytemask(mask);
1967
1968 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1969 }
1970
1971 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1972
1973 /* Return the hash of a string of known length */
1974 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1975 {
1976 unsigned long hash = init_name_hash(salt);
1977 while (len--)
1978 hash = partial_name_hash((unsigned char)*name++, hash);
1979 return end_name_hash(hash);
1980 }
1981 EXPORT_SYMBOL(full_name_hash);
1982
1983 /* Return the "hash_len" (hash and length) of a null-terminated string */
1984 u64 hashlen_string(const void *salt, const char *name)
1985 {
1986 unsigned long hash = init_name_hash(salt);
1987 unsigned long len = 0, c;
1988
1989 c = (unsigned char)*name;
1990 while (c) {
1991 len++;
1992 hash = partial_name_hash(c, hash);
1993 c = (unsigned char)name[len];
1994 }
1995 return hashlen_create(end_name_hash(hash), len);
1996 }
1997 EXPORT_SYMBOL(hashlen_string);
1998
1999 /*
2000 * We know there's a real path component here of at least
2001 * one character.
2002 */
2003 static inline u64 hash_name(const void *salt, const char *name)
2004 {
2005 unsigned long hash = init_name_hash(salt);
2006 unsigned long len = 0, c;
2007
2008 c = (unsigned char)*name;
2009 do {
2010 len++;
2011 hash = partial_name_hash(c, hash);
2012 c = (unsigned char)name[len];
2013 } while (c && c != '/');
2014 return hashlen_create(end_name_hash(hash), len);
2015 }
2016
2017 #endif
2018
2019 /*
2020 * Name resolution.
2021 * This is the basic name resolution function, turning a pathname into
2022 * the final dentry. We expect 'base' to be positive and a directory.
2023 *
2024 * Returns 0 and nd will have valid dentry and mnt on success.
2025 * Returns error and drops reference to input namei data on failure.
2026 */
2027 static int link_path_walk(const char *name, struct nameidata *nd)
2028 {
2029 int err;
2030
2031 while (*name=='/')
2032 name++;
2033 if (!*name)
2034 return 0;
2035
2036 /* At this point we know we have a real path component. */
2037 for(;;) {
2038 u64 hash_len;
2039 int type;
2040
2041 err = may_lookup(nd);
2042 if (err)
2043 return err;
2044
2045 hash_len = hash_name(nd->path.dentry, name);
2046
2047 type = LAST_NORM;
2048 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2049 case 2:
2050 if (name[1] == '.') {
2051 type = LAST_DOTDOT;
2052 nd->flags |= LOOKUP_JUMPED;
2053 }
2054 break;
2055 case 1:
2056 type = LAST_DOT;
2057 }
2058 if (likely(type == LAST_NORM)) {
2059 struct dentry *parent = nd->path.dentry;
2060 nd->flags &= ~LOOKUP_JUMPED;
2061 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2062 struct qstr this = { { .hash_len = hash_len }, .name = name };
2063 err = parent->d_op->d_hash(parent, &this);
2064 if (err < 0)
2065 return err;
2066 hash_len = this.hash_len;
2067 name = this.name;
2068 }
2069 }
2070
2071 nd->last.hash_len = hash_len;
2072 nd->last.name = name;
2073 nd->last_type = type;
2074
2075 name += hashlen_len(hash_len);
2076 if (!*name)
2077 goto OK;
2078 /*
2079 * If it wasn't NUL, we know it was '/'. Skip that
2080 * slash, and continue until no more slashes.
2081 */
2082 do {
2083 name++;
2084 } while (unlikely(*name == '/'));
2085 if (unlikely(!*name)) {
2086 OK:
2087 /* pathname body, done */
2088 if (!nd->depth)
2089 return 0;
2090 name = nd->stack[nd->depth - 1].name;
2091 /* trailing symlink, done */
2092 if (!name)
2093 return 0;
2094 /* last component of nested symlink */
2095 err = walk_component(nd, WALK_FOLLOW);
2096 } else {
2097 /* not the last component */
2098 err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2099 }
2100 if (err < 0)
2101 return err;
2102
2103 if (err) {
2104 const char *s = get_link(nd);
2105
2106 if (IS_ERR(s))
2107 return PTR_ERR(s);
2108 err = 0;
2109 if (unlikely(!s)) {
2110 /* jumped */
2111 put_link(nd);
2112 } else {
2113 nd->stack[nd->depth - 1].name = name;
2114 name = s;
2115 continue;
2116 }
2117 }
2118 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2119 if (nd->flags & LOOKUP_RCU) {
2120 if (unlazy_walk(nd))
2121 return -ECHILD;
2122 }
2123 return -ENOTDIR;
2124 }
2125 }
2126 }
2127
2128 static const char *path_init(struct nameidata *nd, unsigned flags)
2129 {
2130 const char *s = nd->name->name;
2131
2132 if (!*s)
2133 flags &= ~LOOKUP_RCU;
2134
2135 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2136 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2137 nd->depth = 0;
2138 if (flags & LOOKUP_ROOT) {
2139 struct dentry *root = nd->root.dentry;
2140 struct inode *inode = root->d_inode;
2141 if (*s && unlikely(!d_can_lookup(root)))
2142 return ERR_PTR(-ENOTDIR);
2143 nd->path = nd->root;
2144 nd->inode = inode;
2145 if (flags & LOOKUP_RCU) {
2146 rcu_read_lock();
2147 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2148 nd->root_seq = nd->seq;
2149 nd->m_seq = read_seqbegin(&mount_lock);
2150 } else {
2151 path_get(&nd->path);
2152 }
2153 return s;
2154 }
2155
2156 nd->root.mnt = NULL;
2157 nd->path.mnt = NULL;
2158 nd->path.dentry = NULL;
2159
2160 nd->m_seq = read_seqbegin(&mount_lock);
2161 if (*s == '/') {
2162 if (flags & LOOKUP_RCU)
2163 rcu_read_lock();
2164 set_root(nd);
2165 if (likely(!nd_jump_root(nd)))
2166 return s;
2167 nd->root.mnt = NULL;
2168 rcu_read_unlock();
2169 return ERR_PTR(-ECHILD);
2170 } else if (nd->dfd == AT_FDCWD) {
2171 if (flags & LOOKUP_RCU) {
2172 struct fs_struct *fs = current->fs;
2173 unsigned seq;
2174
2175 rcu_read_lock();
2176
2177 do {
2178 seq = read_seqcount_begin(&fs->seq);
2179 nd->path = fs->pwd;
2180 nd->inode = nd->path.dentry->d_inode;
2181 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2182 } while (read_seqcount_retry(&fs->seq, seq));
2183 } else {
2184 get_fs_pwd(current->fs, &nd->path);
2185 nd->inode = nd->path.dentry->d_inode;
2186 }
2187 return s;
2188 } else {
2189 /* Caller must check execute permissions on the starting path component */
2190 struct fd f = fdget_raw(nd->dfd);
2191 struct dentry *dentry;
2192
2193 if (!f.file)
2194 return ERR_PTR(-EBADF);
2195
2196 dentry = f.file->f_path.dentry;
2197
2198 if (*s) {
2199 if (!d_can_lookup(dentry)) {
2200 fdput(f);
2201 return ERR_PTR(-ENOTDIR);
2202 }
2203 }
2204
2205 nd->path = f.file->f_path;
2206 if (flags & LOOKUP_RCU) {
2207 rcu_read_lock();
2208 nd->inode = nd->path.dentry->d_inode;
2209 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2210 } else {
2211 path_get(&nd->path);
2212 nd->inode = nd->path.dentry->d_inode;
2213 }
2214 fdput(f);
2215 return s;
2216 }
2217 }
2218
2219 static const char *trailing_symlink(struct nameidata *nd)
2220 {
2221 const char *s;
2222 int error = may_follow_link(nd);
2223 if (unlikely(error))
2224 return ERR_PTR(error);
2225 nd->flags |= LOOKUP_PARENT;
2226 nd->stack[0].name = NULL;
2227 s = get_link(nd);
2228 return s ? s : "";
2229 }
2230
2231 static inline int lookup_last(struct nameidata *nd)
2232 {
2233 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2234 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2235
2236 nd->flags &= ~LOOKUP_PARENT;
2237 return walk_component(nd, 0);
2238 }
2239
2240 static int handle_lookup_down(struct nameidata *nd)
2241 {
2242 struct path path = nd->path;
2243 struct inode *inode = nd->inode;
2244 unsigned seq = nd->seq;
2245 int err;
2246
2247 if (nd->flags & LOOKUP_RCU) {
2248 /*
2249 * don't bother with unlazy_walk on failure - we are
2250 * at the very beginning of walk, so we lose nothing
2251 * if we simply redo everything in non-RCU mode
2252 */
2253 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2254 return -ECHILD;
2255 } else {
2256 dget(path.dentry);
2257 err = follow_managed(&path, nd);
2258 if (unlikely(err < 0))
2259 return err;
2260 inode = d_backing_inode(path.dentry);
2261 seq = 0;
2262 }
2263 path_to_nameidata(&path, nd);
2264 nd->inode = inode;
2265 nd->seq = seq;
2266 return 0;
2267 }
2268
2269 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2270 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2271 {
2272 const char *s = path_init(nd, flags);
2273 int err;
2274
2275 if (IS_ERR(s))
2276 return PTR_ERR(s);
2277
2278 if (unlikely(flags & LOOKUP_DOWN)) {
2279 err = handle_lookup_down(nd);
2280 if (unlikely(err < 0)) {
2281 terminate_walk(nd);
2282 return err;
2283 }
2284 }
2285
2286 while (!(err = link_path_walk(s, nd))
2287 && ((err = lookup_last(nd)) > 0)) {
2288 s = trailing_symlink(nd);
2289 if (IS_ERR(s)) {
2290 err = PTR_ERR(s);
2291 break;
2292 }
2293 }
2294 if (!err)
2295 err = complete_walk(nd);
2296
2297 if (!err && nd->flags & LOOKUP_DIRECTORY)
2298 if (!d_can_lookup(nd->path.dentry))
2299 err = -ENOTDIR;
2300 if (!err) {
2301 *path = nd->path;
2302 nd->path.mnt = NULL;
2303 nd->path.dentry = NULL;
2304 }
2305 terminate_walk(nd);
2306 return err;
2307 }
2308
2309 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2310 struct path *path, struct path *root)
2311 {
2312 int retval;
2313 struct nameidata nd;
2314 if (IS_ERR(name))
2315 return PTR_ERR(name);
2316 if (unlikely(root)) {
2317 nd.root = *root;
2318 flags |= LOOKUP_ROOT;
2319 }
2320 set_nameidata(&nd, dfd, name);
2321 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2322 if (unlikely(retval == -ECHILD))
2323 retval = path_lookupat(&nd, flags, path);
2324 if (unlikely(retval == -ESTALE))
2325 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2326
2327 if (likely(!retval))
2328 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2329 restore_nameidata();
2330 putname(name);
2331 return retval;
2332 }
2333
2334 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2335 static int path_parentat(struct nameidata *nd, unsigned flags,
2336 struct path *parent)
2337 {
2338 const char *s = path_init(nd, flags);
2339 int err;
2340 if (IS_ERR(s))
2341 return PTR_ERR(s);
2342 err = link_path_walk(s, nd);
2343 if (!err)
2344 err = complete_walk(nd);
2345 if (!err) {
2346 *parent = nd->path;
2347 nd->path.mnt = NULL;
2348 nd->path.dentry = NULL;
2349 }
2350 terminate_walk(nd);
2351 return err;
2352 }
2353
2354 static struct filename *filename_parentat(int dfd, struct filename *name,
2355 unsigned int flags, struct path *parent,
2356 struct qstr *last, int *type)
2357 {
2358 int retval;
2359 struct nameidata nd;
2360
2361 if (IS_ERR(name))
2362 return name;
2363 set_nameidata(&nd, dfd, name);
2364 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2365 if (unlikely(retval == -ECHILD))
2366 retval = path_parentat(&nd, flags, parent);
2367 if (unlikely(retval == -ESTALE))
2368 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2369 if (likely(!retval)) {
2370 *last = nd.last;
2371 *type = nd.last_type;
2372 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2373 } else {
2374 putname(name);
2375 name = ERR_PTR(retval);
2376 }
2377 restore_nameidata();
2378 return name;
2379 }
2380
2381 /* does lookup, returns the object with parent locked */
2382 struct dentry *kern_path_locked(const char *name, struct path *path)
2383 {
2384 struct filename *filename;
2385 struct dentry *d;
2386 struct qstr last;
2387 int type;
2388
2389 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2390 &last, &type);
2391 if (IS_ERR(filename))
2392 return ERR_CAST(filename);
2393 if (unlikely(type != LAST_NORM)) {
2394 path_put(path);
2395 putname(filename);
2396 return ERR_PTR(-EINVAL);
2397 }
2398 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2399 d = __lookup_hash(&last, path->dentry, 0);
2400 if (IS_ERR(d)) {
2401 inode_unlock(path->dentry->d_inode);
2402 path_put(path);
2403 }
2404 putname(filename);
2405 return d;
2406 }
2407
2408 int kern_path(const char *name, unsigned int flags, struct path *path)
2409 {
2410 return filename_lookup(AT_FDCWD, getname_kernel(name),
2411 flags, path, NULL);
2412 }
2413 EXPORT_SYMBOL(kern_path);
2414
2415 /**
2416 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2417 * @dentry: pointer to dentry of the base directory
2418 * @mnt: pointer to vfs mount of the base directory
2419 * @name: pointer to file name
2420 * @flags: lookup flags
2421 * @path: pointer to struct path to fill
2422 */
2423 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2424 const char *name, unsigned int flags,
2425 struct path *path)
2426 {
2427 struct path root = {.mnt = mnt, .dentry = dentry};
2428 /* the first argument of filename_lookup() is ignored with root */
2429 return filename_lookup(AT_FDCWD, getname_kernel(name),
2430 flags , path, &root);
2431 }
2432 EXPORT_SYMBOL(vfs_path_lookup);
2433
2434 static int lookup_one_len_common(const char *name, struct dentry *base,
2435 int len, struct qstr *this)
2436 {
2437 this->name = name;
2438 this->len = len;
2439 this->hash = full_name_hash(base, name, len);
2440 if (!len)
2441 return -EACCES;
2442
2443 if (unlikely(name[0] == '.')) {
2444 if (len < 2 || (len == 2 && name[1] == '.'))
2445 return -EACCES;
2446 }
2447
2448 while (len--) {
2449 unsigned int c = *(const unsigned char *)name++;
2450 if (c == '/' || c == '\0')
2451 return -EACCES;
2452 }
2453 /*
2454 * See if the low-level filesystem might want
2455 * to use its own hash..
2456 */
2457 if (base->d_flags & DCACHE_OP_HASH) {
2458 int err = base->d_op->d_hash(base, this);
2459 if (err < 0)
2460 return err;
2461 }
2462
2463 return inode_permission(base->d_inode, MAY_EXEC);
2464 }
2465
2466 /**
2467 * try_lookup_one_len - filesystem helper to lookup single pathname component
2468 * @name: pathname component to lookup
2469 * @base: base directory to lookup from
2470 * @len: maximum length @len should be interpreted to
2471 *
2472 * Look up a dentry by name in the dcache, returning NULL if it does not
2473 * currently exist. The function does not try to create a dentry.
2474 *
2475 * Note that this routine is purely a helper for filesystem usage and should
2476 * not be called by generic code.
2477 *
2478 * The caller must hold base->i_mutex.
2479 */
2480 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2481 {
2482 struct qstr this;
2483 int err;
2484
2485 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2486
2487 err = lookup_one_len_common(name, base, len, &this);
2488 if (err)
2489 return ERR_PTR(err);
2490
2491 return lookup_dcache(&this, base, 0);
2492 }
2493 EXPORT_SYMBOL(try_lookup_one_len);
2494
2495 /**
2496 * lookup_one_len - filesystem helper to lookup single pathname component
2497 * @name: pathname component to lookup
2498 * @base: base directory to lookup from
2499 * @len: maximum length @len should be interpreted to
2500 *
2501 * Note that this routine is purely a helper for filesystem usage and should
2502 * not be called by generic code.
2503 *
2504 * The caller must hold base->i_mutex.
2505 */
2506 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2507 {
2508 struct dentry *dentry;
2509 struct qstr this;
2510 int err;
2511
2512 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2513
2514 err = lookup_one_len_common(name, base, len, &this);
2515 if (err)
2516 return ERR_PTR(err);
2517
2518 dentry = lookup_dcache(&this, base, 0);
2519 return dentry ? dentry : __lookup_slow(&this, base, 0);
2520 }
2521 EXPORT_SYMBOL(lookup_one_len);
2522
2523 /**
2524 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2525 * @name: pathname component to lookup
2526 * @base: base directory to lookup from
2527 * @len: maximum length @len should be interpreted to
2528 *
2529 * Note that this routine is purely a helper for filesystem usage and should
2530 * not be called by generic code.
2531 *
2532 * Unlike lookup_one_len, it should be called without the parent
2533 * i_mutex held, and will take the i_mutex itself if necessary.
2534 */
2535 struct dentry *lookup_one_len_unlocked(const char *name,
2536 struct dentry *base, int len)
2537 {
2538 struct qstr this;
2539 int err;
2540 struct dentry *ret;
2541
2542 err = lookup_one_len_common(name, base, len, &this);
2543 if (err)
2544 return ERR_PTR(err);
2545
2546 ret = lookup_dcache(&this, base, 0);
2547 if (!ret)
2548 ret = lookup_slow(&this, base, 0);
2549 return ret;
2550 }
2551 EXPORT_SYMBOL(lookup_one_len_unlocked);
2552
2553 #ifdef CONFIG_UNIX98_PTYS
2554 int path_pts(struct path *path)
2555 {
2556 /* Find something mounted on "pts" in the same directory as
2557 * the input path.
2558 */
2559 struct dentry *child, *parent;
2560 struct qstr this;
2561 int ret;
2562
2563 ret = path_parent_directory(path);
2564 if (ret)
2565 return ret;
2566
2567 parent = path->dentry;
2568 this.name = "pts";
2569 this.len = 3;
2570 child = d_hash_and_lookup(parent, &this);
2571 if (!child)
2572 return -ENOENT;
2573
2574 path->dentry = child;
2575 dput(parent);
2576 follow_mount(path);
2577 return 0;
2578 }
2579 #endif
2580
2581 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2582 struct path *path, int *empty)
2583 {
2584 return filename_lookup(dfd, getname_flags(name, flags, empty),
2585 flags, path, NULL);
2586 }
2587 EXPORT_SYMBOL(user_path_at_empty);
2588
2589 /**
2590 * mountpoint_last - look up last component for umount
2591 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2592 *
2593 * This is a special lookup_last function just for umount. In this case, we
2594 * need to resolve the path without doing any revalidation.
2595 *
2596 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2597 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2598 * in almost all cases, this lookup will be served out of the dcache. The only
2599 * cases where it won't are if nd->last refers to a symlink or the path is
2600 * bogus and it doesn't exist.
2601 *
2602 * Returns:
2603 * -error: if there was an error during lookup. This includes -ENOENT if the
2604 * lookup found a negative dentry.
2605 *
2606 * 0: if we successfully resolved nd->last and found it to not to be a
2607 * symlink that needs to be followed.
2608 *
2609 * 1: if we successfully resolved nd->last and found it to be a symlink
2610 * that needs to be followed.
2611 */
2612 static int
2613 mountpoint_last(struct nameidata *nd)
2614 {
2615 int error = 0;
2616 struct dentry *dir = nd->path.dentry;
2617 struct path path;
2618
2619 /* If we're in rcuwalk, drop out of it to handle last component */
2620 if (nd->flags & LOOKUP_RCU) {
2621 if (unlazy_walk(nd))
2622 return -ECHILD;
2623 }
2624
2625 nd->flags &= ~LOOKUP_PARENT;
2626
2627 if (unlikely(nd->last_type != LAST_NORM)) {
2628 error = handle_dots(nd, nd->last_type);
2629 if (error)
2630 return error;
2631 path.dentry = dget(nd->path.dentry);
2632 } else {
2633 path.dentry = d_lookup(dir, &nd->last);
2634 if (!path.dentry) {
2635 /*
2636 * No cached dentry. Mounted dentries are pinned in the
2637 * cache, so that means that this dentry is probably
2638 * a symlink or the path doesn't actually point
2639 * to a mounted dentry.
2640 */
2641 path.dentry = lookup_slow(&nd->last, dir,
2642 nd->flags | LOOKUP_NO_REVAL);
2643 if (IS_ERR(path.dentry))
2644 return PTR_ERR(path.dentry);
2645 }
2646 }
2647 if (d_is_negative(path.dentry)) {
2648 dput(path.dentry);
2649 return -ENOENT;
2650 }
2651 path.mnt = nd->path.mnt;
2652 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2653 }
2654
2655 /**
2656 * path_mountpoint - look up a path to be umounted
2657 * @nd: lookup context
2658 * @flags: lookup flags
2659 * @path: pointer to container for result
2660 *
2661 * Look up the given name, but don't attempt to revalidate the last component.
2662 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2663 */
2664 static int
2665 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2666 {
2667 const char *s = path_init(nd, flags);
2668 int err;
2669 if (IS_ERR(s))
2670 return PTR_ERR(s);
2671 while (!(err = link_path_walk(s, nd)) &&
2672 (err = mountpoint_last(nd)) > 0) {
2673 s = trailing_symlink(nd);
2674 if (IS_ERR(s)) {
2675 err = PTR_ERR(s);
2676 break;
2677 }
2678 }
2679 if (!err) {
2680 *path = nd->path;
2681 nd->path.mnt = NULL;
2682 nd->path.dentry = NULL;
2683 follow_mount(path);
2684 }
2685 terminate_walk(nd);
2686 return err;
2687 }
2688
2689 static int
2690 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2691 unsigned int flags)
2692 {
2693 struct nameidata nd;
2694 int error;
2695 if (IS_ERR(name))
2696 return PTR_ERR(name);
2697 set_nameidata(&nd, dfd, name);
2698 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2699 if (unlikely(error == -ECHILD))
2700 error = path_mountpoint(&nd, flags, path);
2701 if (unlikely(error == -ESTALE))
2702 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2703 if (likely(!error))
2704 audit_inode(name, path->dentry, 0);
2705 restore_nameidata();
2706 putname(name);
2707 return error;
2708 }
2709
2710 /**
2711 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2712 * @dfd: directory file descriptor
2713 * @name: pathname from userland
2714 * @flags: lookup flags
2715 * @path: pointer to container to hold result
2716 *
2717 * A umount is a special case for path walking. We're not actually interested
2718 * in the inode in this situation, and ESTALE errors can be a problem. We
2719 * simply want track down the dentry and vfsmount attached at the mountpoint
2720 * and avoid revalidating the last component.
2721 *
2722 * Returns 0 and populates "path" on success.
2723 */
2724 int
2725 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2726 struct path *path)
2727 {
2728 return filename_mountpoint(dfd, getname(name), path, flags);
2729 }
2730
2731 int
2732 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2733 unsigned int flags)
2734 {
2735 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2736 }
2737 EXPORT_SYMBOL(kern_path_mountpoint);
2738
2739 int __check_sticky(struct inode *dir, struct inode *inode)
2740 {
2741 kuid_t fsuid = current_fsuid();
2742
2743 if (uid_eq(inode->i_uid, fsuid))
2744 return 0;
2745 if (uid_eq(dir->i_uid, fsuid))
2746 return 0;
2747 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2748 }
2749 EXPORT_SYMBOL(__check_sticky);
2750
2751 /*
2752 * Check whether we can remove a link victim from directory dir, check
2753 * whether the type of victim is right.
2754 * 1. We can't do it if dir is read-only (done in permission())
2755 * 2. We should have write and exec permissions on dir
2756 * 3. We can't remove anything from append-only dir
2757 * 4. We can't do anything with immutable dir (done in permission())
2758 * 5. If the sticky bit on dir is set we should either
2759 * a. be owner of dir, or
2760 * b. be owner of victim, or
2761 * c. have CAP_FOWNER capability
2762 * 6. If the victim is append-only or immutable we can't do antyhing with
2763 * links pointing to it.
2764 * 7. If the victim has an unknown uid or gid we can't change the inode.
2765 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2766 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2767 * 10. We can't remove a root or mountpoint.
2768 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2769 * nfs_async_unlink().
2770 */
2771 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2772 {
2773 struct inode *inode = d_backing_inode(victim);
2774 int error;
2775
2776 if (d_is_negative(victim))
2777 return -ENOENT;
2778 BUG_ON(!inode);
2779
2780 BUG_ON(victim->d_parent->d_inode != dir);
2781
2782 /* Inode writeback is not safe when the uid or gid are invalid. */
2783 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2784 return -EOVERFLOW;
2785
2786 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2787
2788 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2789 if (error)
2790 return error;
2791 if (IS_APPEND(dir))
2792 return -EPERM;
2793
2794 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2795 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2796 return -EPERM;
2797 if (isdir) {
2798 if (!d_is_dir(victim))
2799 return -ENOTDIR;
2800 if (IS_ROOT(victim))
2801 return -EBUSY;
2802 } else if (d_is_dir(victim))
2803 return -EISDIR;
2804 if (IS_DEADDIR(dir))
2805 return -ENOENT;
2806 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2807 return -EBUSY;
2808 return 0;
2809 }
2810
2811 /* Check whether we can create an object with dentry child in directory
2812 * dir.
2813 * 1. We can't do it if child already exists (open has special treatment for
2814 * this case, but since we are inlined it's OK)
2815 * 2. We can't do it if dir is read-only (done in permission())
2816 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2817 * 4. We should have write and exec permissions on dir
2818 * 5. We can't do it if dir is immutable (done in permission())
2819 */
2820 static inline int may_create(struct inode *dir, struct dentry *child)
2821 {
2822 struct user_namespace *s_user_ns;
2823 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2824 if (child->d_inode)
2825 return -EEXIST;
2826 if (IS_DEADDIR(dir))
2827 return -ENOENT;
2828 s_user_ns = dir->i_sb->s_user_ns;
2829 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2830 !kgid_has_mapping(s_user_ns, current_fsgid()))
2831 return -EOVERFLOW;
2832 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2833 }
2834
2835 /*
2836 * p1 and p2 should be directories on the same fs.
2837 */
2838 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2839 {
2840 struct dentry *p;
2841
2842 if (p1 == p2) {
2843 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2844 return NULL;
2845 }
2846
2847 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2848
2849 p = d_ancestor(p2, p1);
2850 if (p) {
2851 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2852 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2853 return p;
2854 }
2855
2856 p = d_ancestor(p1, p2);
2857 if (p) {
2858 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2859 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2860 return p;
2861 }
2862
2863 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2864 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2865 return NULL;
2866 }
2867 EXPORT_SYMBOL(lock_rename);
2868
2869 void unlock_rename(struct dentry *p1, struct dentry *p2)
2870 {
2871 inode_unlock(p1->d_inode);
2872 if (p1 != p2) {
2873 inode_unlock(p2->d_inode);
2874 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2875 }
2876 }
2877 EXPORT_SYMBOL(unlock_rename);
2878
2879 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2880 bool want_excl)
2881 {
2882 int error = may_create(dir, dentry);
2883 if (error)
2884 return error;
2885
2886 if (!dir->i_op->create)
2887 return -EACCES; /* shouldn't it be ENOSYS? */
2888 mode &= S_IALLUGO;
2889 mode |= S_IFREG;
2890 error = security_inode_create(dir, dentry, mode);
2891 if (error)
2892 return error;
2893 error = dir->i_op->create(dir, dentry, mode, want_excl);
2894 if (!error)
2895 fsnotify_create(dir, dentry);
2896 return error;
2897 }
2898 EXPORT_SYMBOL(vfs_create);
2899
2900 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2901 int (*f)(struct dentry *, umode_t, void *),
2902 void *arg)
2903 {
2904 struct inode *dir = dentry->d_parent->d_inode;
2905 int error = may_create(dir, dentry);
2906 if (error)
2907 return error;
2908
2909 mode &= S_IALLUGO;
2910 mode |= S_IFREG;
2911 error = security_inode_create(dir, dentry, mode);
2912 if (error)
2913 return error;
2914 error = f(dentry, mode, arg);
2915 if (!error)
2916 fsnotify_create(dir, dentry);
2917 return error;
2918 }
2919 EXPORT_SYMBOL(vfs_mkobj);
2920
2921 bool may_open_dev(const struct path *path)
2922 {
2923 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2924 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2925 }
2926
2927 static int may_open(const struct path *path, int acc_mode, int flag)
2928 {
2929 struct dentry *dentry = path->dentry;
2930 struct inode *inode = dentry->d_inode;
2931 int error;
2932
2933 if (!inode)
2934 return -ENOENT;
2935
2936 switch (inode->i_mode & S_IFMT) {
2937 case S_IFLNK:
2938 return -ELOOP;
2939 case S_IFDIR:
2940 if (acc_mode & MAY_WRITE)
2941 return -EISDIR;
2942 break;
2943 case S_IFBLK:
2944 case S_IFCHR:
2945 if (!may_open_dev(path))
2946 return -EACCES;
2947 /*FALLTHRU*/
2948 case S_IFIFO:
2949 case S_IFSOCK:
2950 flag &= ~O_TRUNC;
2951 break;
2952 }
2953
2954 error = inode_permission(inode, MAY_OPEN | acc_mode);
2955 if (error)
2956 return error;
2957
2958 /*
2959 * An append-only file must be opened in append mode for writing.
2960 */
2961 if (IS_APPEND(inode)) {
2962 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2963 return -EPERM;
2964 if (flag & O_TRUNC)
2965 return -EPERM;
2966 }
2967
2968 /* O_NOATIME can only be set by the owner or superuser */
2969 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2970 return -EPERM;
2971
2972 return 0;
2973 }
2974
2975 static int handle_truncate(struct file *filp)
2976 {
2977 const struct path *path = &filp->f_path;
2978 struct inode *inode = path->dentry->d_inode;
2979 int error = get_write_access(inode);
2980 if (error)
2981 return error;
2982 /*
2983 * Refuse to truncate files with mandatory locks held on them.
2984 */
2985 error = locks_verify_locked(filp);
2986 if (!error)
2987 error = security_path_truncate(path);
2988 if (!error) {
2989 error = do_truncate(path->dentry, 0,
2990 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2991 filp);
2992 }
2993 put_write_access(inode);
2994 return error;
2995 }
2996
2997 static inline int open_to_namei_flags(int flag)
2998 {
2999 if ((flag & O_ACCMODE) == 3)
3000 flag--;
3001 return flag;
3002 }
3003
3004 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3005 {
3006 struct user_namespace *s_user_ns;
3007 int error = security_path_mknod(dir, dentry, mode, 0);
3008 if (error)
3009 return error;
3010
3011 s_user_ns = dir->dentry->d_sb->s_user_ns;
3012 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3013 !kgid_has_mapping(s_user_ns, current_fsgid()))
3014 return -EOVERFLOW;
3015
3016 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3017 if (error)
3018 return error;
3019
3020 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3021 }
3022
3023 /*
3024 * Attempt to atomically look up, create and open a file from a negative
3025 * dentry.
3026 *
3027 * Returns 0 if successful. The file will have been created and attached to
3028 * @file by the filesystem calling finish_open().
3029 *
3030 * Returns 1 if the file was looked up only or didn't need creating. The
3031 * caller will need to perform the open themselves. @path will have been
3032 * updated to point to the new dentry. This may be negative.
3033 *
3034 * Returns an error code otherwise.
3035 */
3036 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3037 struct path *path, struct file *file,
3038 const struct open_flags *op,
3039 int open_flag, umode_t mode,
3040 int *opened)
3041 {
3042 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3043 struct inode *dir = nd->path.dentry->d_inode;
3044 int error;
3045
3046 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3047 open_flag &= ~O_TRUNC;
3048
3049 if (nd->flags & LOOKUP_DIRECTORY)
3050 open_flag |= O_DIRECTORY;
3051
3052 file->f_path.dentry = DENTRY_NOT_SET;
3053 file->f_path.mnt = nd->path.mnt;
3054 error = dir->i_op->atomic_open(dir, dentry, file,
3055 open_to_namei_flags(open_flag),
3056 mode, opened);
3057 d_lookup_done(dentry);
3058 if (!error) {
3059 /*
3060 * We didn't have the inode before the open, so check open
3061 * permission here.
3062 */
3063 int acc_mode = op->acc_mode;
3064 if (*opened & FILE_CREATED) {
3065 WARN_ON(!(open_flag & O_CREAT));
3066 fsnotify_create(dir, dentry);
3067 acc_mode = 0;
3068 }
3069 error = may_open(&file->f_path, acc_mode, open_flag);
3070 if (WARN_ON(error > 0))
3071 error = -EINVAL;
3072 } else if (error > 0) {
3073 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3074 error = -EIO;
3075 } else {
3076 if (file->f_path.dentry) {
3077 dput(dentry);
3078 dentry = file->f_path.dentry;
3079 }
3080 if (*opened & FILE_CREATED)
3081 fsnotify_create(dir, dentry);
3082 if (unlikely(d_is_negative(dentry))) {
3083 error = -ENOENT;
3084 } else {
3085 path->dentry = dentry;
3086 path->mnt = nd->path.mnt;
3087 return 1;
3088 }
3089 }
3090 }
3091 dput(dentry);
3092 return error;
3093 }
3094
3095 /*
3096 * Look up and maybe create and open the last component.
3097 *
3098 * Must be called with i_mutex held on parent.
3099 *
3100 * Returns 0 if the file was successfully atomically created (if necessary) and
3101 * opened. In this case the file will be returned attached to @file.
3102 *
3103 * Returns 1 if the file was not completely opened at this time, though lookups
3104 * and creations will have been performed and the dentry returned in @path will
3105 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3106 * specified then a negative dentry may be returned.
3107 *
3108 * An error code is returned otherwise.
3109 *
3110 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3111 * cleared otherwise prior to returning.
3112 */
3113 static int lookup_open(struct nameidata *nd, struct path *path,
3114 struct file *file,
3115 const struct open_flags *op,
3116 bool got_write, int *opened)
3117 {
3118 struct dentry *dir = nd->path.dentry;
3119 struct inode *dir_inode = dir->d_inode;
3120 int open_flag = op->open_flag;
3121 struct dentry *dentry;
3122 int error, create_error = 0;
3123 umode_t mode = op->mode;
3124 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3125
3126 if (unlikely(IS_DEADDIR(dir_inode)))
3127 return -ENOENT;
3128
3129 *opened &= ~FILE_CREATED;
3130 dentry = d_lookup(dir, &nd->last);
3131 for (;;) {
3132 if (!dentry) {
3133 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3134 if (IS_ERR(dentry))
3135 return PTR_ERR(dentry);
3136 }
3137 if (d_in_lookup(dentry))
3138 break;
3139
3140 error = d_revalidate(dentry, nd->flags);
3141 if (likely(error > 0))
3142 break;
3143 if (error)
3144 goto out_dput;
3145 d_invalidate(dentry);
3146 dput(dentry);
3147 dentry = NULL;
3148 }
3149 if (dentry->d_inode) {
3150 /* Cached positive dentry: will open in f_op->open */
3151 goto out_no_open;
3152 }
3153
3154 /*
3155 * Checking write permission is tricky, bacuse we don't know if we are
3156 * going to actually need it: O_CREAT opens should work as long as the
3157 * file exists. But checking existence breaks atomicity. The trick is
3158 * to check access and if not granted clear O_CREAT from the flags.
3159 *
3160 * Another problem is returing the "right" error value (e.g. for an
3161 * O_EXCL open we want to return EEXIST not EROFS).
3162 */
3163 if (open_flag & O_CREAT) {
3164 if (!IS_POSIXACL(dir->d_inode))
3165 mode &= ~current_umask();
3166 if (unlikely(!got_write)) {
3167 create_error = -EROFS;
3168 open_flag &= ~O_CREAT;
3169 if (open_flag & (O_EXCL | O_TRUNC))
3170 goto no_open;
3171 /* No side effects, safe to clear O_CREAT */
3172 } else {
3173 create_error = may_o_create(&nd->path, dentry, mode);
3174 if (create_error) {
3175 open_flag &= ~O_CREAT;
3176 if (open_flag & O_EXCL)
3177 goto no_open;
3178 }
3179 }
3180 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3181 unlikely(!got_write)) {
3182 /*
3183 * No O_CREATE -> atomicity not a requirement -> fall
3184 * back to lookup + open
3185 */
3186 goto no_open;
3187 }
3188
3189 if (dir_inode->i_op->atomic_open) {
3190 error = atomic_open(nd, dentry, path, file, op, open_flag,
3191 mode, opened);
3192 if (unlikely(error == -ENOENT) && create_error)
3193 error = create_error;
3194 return error;
3195 }
3196
3197 no_open:
3198 if (d_in_lookup(dentry)) {
3199 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3200 nd->flags);
3201 d_lookup_done(dentry);
3202 if (unlikely(res)) {
3203 if (IS_ERR(res)) {
3204 error = PTR_ERR(res);
3205 goto out_dput;
3206 }
3207 dput(dentry);
3208 dentry = res;
3209 }
3210 }
3211
3212 /* Negative dentry, just create the file */
3213 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3214 *opened |= FILE_CREATED;
3215 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3216 if (!dir_inode->i_op->create) {
3217 error = -EACCES;
3218 goto out_dput;
3219 }
3220 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3221 open_flag & O_EXCL);
3222 if (error)
3223 goto out_dput;
3224 fsnotify_create(dir_inode, dentry);
3225 }
3226 if (unlikely(create_error) && !dentry->d_inode) {
3227 error = create_error;
3228 goto out_dput;
3229 }
3230 out_no_open:
3231 path->dentry = dentry;
3232 path->mnt = nd->path.mnt;
3233 return 1;
3234
3235 out_dput:
3236 dput(dentry);
3237 return error;
3238 }
3239
3240 /*
3241 * Handle the last step of open()
3242 */
3243 static int do_last(struct nameidata *nd,
3244 struct file *file, const struct open_flags *op,
3245 int *opened)
3246 {
3247 struct dentry *dir = nd->path.dentry;
3248 int open_flag = op->open_flag;
3249 bool will_truncate = (open_flag & O_TRUNC) != 0;
3250 bool got_write = false;
3251 int acc_mode = op->acc_mode;
3252 unsigned seq;
3253 struct inode *inode;
3254 struct path path;
3255 int error;
3256
3257 nd->flags &= ~LOOKUP_PARENT;
3258 nd->flags |= op->intent;
3259
3260 if (nd->last_type != LAST_NORM) {
3261 error = handle_dots(nd, nd->last_type);
3262 if (unlikely(error))
3263 return error;
3264 goto finish_open;
3265 }
3266
3267 if (!(open_flag & O_CREAT)) {
3268 if (nd->last.name[nd->last.len])
3269 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3270 /* we _can_ be in RCU mode here */
3271 error = lookup_fast(nd, &path, &inode, &seq);
3272 if (likely(error > 0))
3273 goto finish_lookup;
3274
3275 if (error < 0)
3276 return error;
3277
3278 BUG_ON(nd->inode != dir->d_inode);
3279 BUG_ON(nd->flags & LOOKUP_RCU);
3280 } else {
3281 /* create side of things */
3282 /*
3283 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3284 * has been cleared when we got to the last component we are
3285 * about to look up
3286 */
3287 error = complete_walk(nd);
3288 if (error)
3289 return error;
3290
3291 audit_inode(nd->name, dir, LOOKUP_PARENT);
3292 /* trailing slashes? */
3293 if (unlikely(nd->last.name[nd->last.len]))
3294 return -EISDIR;
3295 }
3296
3297 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3298 error = mnt_want_write(nd->path.mnt);
3299 if (!error)
3300 got_write = true;
3301 /*
3302 * do _not_ fail yet - we might not need that or fail with
3303 * a different error; let lookup_open() decide; we'll be
3304 * dropping this one anyway.
3305 */
3306 }
3307 if (open_flag & O_CREAT)
3308 inode_lock(dir->d_inode);
3309 else
3310 inode_lock_shared(dir->d_inode);
3311 error = lookup_open(nd, &path, file, op, got_write, opened);
3312 if (open_flag & O_CREAT)
3313 inode_unlock(dir->d_inode);
3314 else
3315 inode_unlock_shared(dir->d_inode);
3316
3317 if (error <= 0) {
3318 if (error)
3319 goto out;
3320
3321 if ((*opened & FILE_CREATED) ||
3322 !S_ISREG(file_inode(file)->i_mode))
3323 will_truncate = false;
3324
3325 audit_inode(nd->name, file->f_path.dentry, 0);
3326 goto opened;
3327 }
3328
3329 if (*opened & FILE_CREATED) {
3330 /* Don't check for write permission, don't truncate */
3331 open_flag &= ~O_TRUNC;
3332 will_truncate = false;
3333 acc_mode = 0;
3334 path_to_nameidata(&path, nd);
3335 goto finish_open_created;
3336 }
3337
3338 /*
3339 * If atomic_open() acquired write access it is dropped now due to
3340 * possible mount and symlink following (this might be optimized away if
3341 * necessary...)
3342 */
3343 if (got_write) {
3344 mnt_drop_write(nd->path.mnt);
3345 got_write = false;
3346 }
3347
3348 error = follow_managed(&path, nd);
3349 if (unlikely(error < 0))
3350 return error;
3351
3352 if (unlikely(d_is_negative(path.dentry))) {
3353 path_to_nameidata(&path, nd);
3354 return -ENOENT;
3355 }
3356
3357 /*
3358 * create/update audit record if it already exists.
3359 */
3360 audit_inode(nd->name, path.dentry, 0);
3361
3362 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3363 path_to_nameidata(&path, nd);
3364 return -EEXIST;
3365 }
3366
3367 seq = 0; /* out of RCU mode, so the value doesn't matter */
3368 inode = d_backing_inode(path.dentry);
3369 finish_lookup:
3370 error = step_into(nd, &path, 0, inode, seq);
3371 if (unlikely(error))
3372 return error;
3373 finish_open:
3374 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3375 error = complete_walk(nd);
3376 if (error)
3377 return error;
3378 audit_inode(nd->name, nd->path.dentry, 0);
3379 error = -EISDIR;
3380 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3381 goto out;
3382 error = -ENOTDIR;
3383 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3384 goto out;
3385 if (!d_is_reg(nd->path.dentry))
3386 will_truncate = false;
3387
3388 if (will_truncate) {
3389 error = mnt_want_write(nd->path.mnt);
3390 if (error)
3391 goto out;
3392 got_write = true;
3393 }
3394 finish_open_created:
3395 error = may_open(&nd->path, acc_mode, open_flag);
3396 if (error)
3397 goto out;
3398 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3399 error = vfs_open(&nd->path, file, current_cred());
3400 if (error)
3401 goto out;
3402 *opened |= FILE_OPENED;
3403 opened:
3404 error = open_check_o_direct(file);
3405 if (!error)
3406 error = ima_file_check(file, op->acc_mode, *opened);
3407 if (!error && will_truncate)
3408 error = handle_truncate(file);
3409 out:
3410 if (unlikely(error) && (*opened & FILE_OPENED))
3411 fput(file);
3412 if (unlikely(error > 0)) {
3413 WARN_ON(1);
3414 error = -EINVAL;
3415 }
3416 if (got_write)
3417 mnt_drop_write(nd->path.mnt);
3418 return error;
3419 }
3420
3421 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3422 {
3423 struct dentry *child = NULL;
3424 struct inode *dir = dentry->d_inode;
3425 struct inode *inode;
3426 int error;
3427
3428 /* we want directory to be writable */
3429 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3430 if (error)
3431 goto out_err;
3432 error = -EOPNOTSUPP;
3433 if (!dir->i_op->tmpfile)
3434 goto out_err;
3435 error = -ENOMEM;
3436 child = d_alloc(dentry, &slash_name);
3437 if (unlikely(!child))
3438 goto out_err;
3439 error = dir->i_op->tmpfile(dir, child, mode);
3440 if (error)
3441 goto out_err;
3442 error = -ENOENT;
3443 inode = child->d_inode;
3444 if (unlikely(!inode))
3445 goto out_err;
3446 if (!(open_flag & O_EXCL)) {
3447 spin_lock(&inode->i_lock);
3448 inode->i_state |= I_LINKABLE;
3449 spin_unlock(&inode->i_lock);
3450 }
3451 return child;
3452
3453 out_err:
3454 dput(child);
3455 return ERR_PTR(error);
3456 }
3457 EXPORT_SYMBOL(vfs_tmpfile);
3458
3459 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3460 const struct open_flags *op,
3461 struct file *file, int *opened)
3462 {
3463 struct dentry *child;
3464 struct path path;
3465 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3466 if (unlikely(error))
3467 return error;
3468 error = mnt_want_write(path.mnt);
3469 if (unlikely(error))
3470 goto out;
3471 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3472 error = PTR_ERR(child);
3473 if (IS_ERR(child))
3474 goto out2;
3475 dput(path.dentry);
3476 path.dentry = child;
3477 audit_inode(nd->name, child, 0);
3478 /* Don't check for other permissions, the inode was just created */
3479 error = may_open(&path, 0, op->open_flag);
3480 if (error)
3481 goto out2;
3482 file->f_path.mnt = path.mnt;
3483 error = finish_open(file, child, NULL, opened);
3484 if (error)
3485 goto out2;
3486 error = open_check_o_direct(file);
3487 if (error)
3488 fput(file);
3489 out2:
3490 mnt_drop_write(path.mnt);
3491 out:
3492 path_put(&path);
3493 return error;
3494 }
3495
3496 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3497 {
3498 struct path path;
3499 int error = path_lookupat(nd, flags, &path);
3500 if (!error) {
3501 audit_inode(nd->name, path.dentry, 0);
3502 error = vfs_open(&path, file, current_cred());
3503 path_put(&path);
3504 }
3505 return error;
3506 }
3507
3508 static struct file *path_openat(struct nameidata *nd,
3509 const struct open_flags *op, unsigned flags)
3510 {
3511 const char *s;
3512 struct file *file;
3513 int opened = 0;
3514 int error;
3515
3516 file = get_empty_filp();
3517 if (IS_ERR(file))
3518 return file;
3519
3520 file->f_flags = op->open_flag;
3521
3522 if (unlikely(file->f_flags & __O_TMPFILE)) {
3523 error = do_tmpfile(nd, flags, op, file, &opened);
3524 goto out2;
3525 }
3526
3527 if (unlikely(file->f_flags & O_PATH)) {
3528 error = do_o_path(nd, flags, file);
3529 if (!error)
3530 opened |= FILE_OPENED;
3531 goto out2;
3532 }
3533
3534 s = path_init(nd, flags);
3535 if (IS_ERR(s)) {
3536 put_filp(file);
3537 return ERR_CAST(s);
3538 }
3539 while (!(error = link_path_walk(s, nd)) &&
3540 (error = do_last(nd, file, op, &opened)) > 0) {
3541 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3542 s = trailing_symlink(nd);
3543 if (IS_ERR(s)) {
3544 error = PTR_ERR(s);
3545 break;
3546 }
3547 }
3548 terminate_walk(nd);
3549 out2:
3550 if (!(opened & FILE_OPENED)) {
3551 BUG_ON(!error);
3552 put_filp(file);
3553 }
3554 if (unlikely(error)) {
3555 if (error == -EOPENSTALE) {
3556 if (flags & LOOKUP_RCU)
3557 error = -ECHILD;
3558 else
3559 error = -ESTALE;
3560 }
3561 file = ERR_PTR(error);
3562 }
3563 return file;
3564 }
3565
3566 struct file *do_filp_open(int dfd, struct filename *pathname,
3567 const struct open_flags *op)
3568 {
3569 struct nameidata nd;
3570 int flags = op->lookup_flags;
3571 struct file *filp;
3572
3573 set_nameidata(&nd, dfd, pathname);
3574 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3575 if (unlikely(filp == ERR_PTR(-ECHILD)))
3576 filp = path_openat(&nd, op, flags);
3577 if (unlikely(filp == ERR_PTR(-ESTALE)))
3578 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3579 restore_nameidata();
3580 return filp;
3581 }
3582
3583 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3584 const char *name, const struct open_flags *op)
3585 {
3586 struct nameidata nd;
3587 struct file *file;
3588 struct filename *filename;
3589 int flags = op->lookup_flags | LOOKUP_ROOT;
3590
3591 nd.root.mnt = mnt;
3592 nd.root.dentry = dentry;
3593
3594 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3595 return ERR_PTR(-ELOOP);
3596
3597 filename = getname_kernel(name);
3598 if (IS_ERR(filename))
3599 return ERR_CAST(filename);
3600
3601 set_nameidata(&nd, -1, filename);
3602 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3603 if (unlikely(file == ERR_PTR(-ECHILD)))
3604 file = path_openat(&nd, op, flags);
3605 if (unlikely(file == ERR_PTR(-ESTALE)))
3606 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3607 restore_nameidata();
3608 putname(filename);
3609 return file;
3610 }
3611
3612 static struct dentry *filename_create(int dfd, struct filename *name,
3613 struct path *path, unsigned int lookup_flags)
3614 {
3615 struct dentry *dentry = ERR_PTR(-EEXIST);
3616 struct qstr last;
3617 int type;
3618 int err2;
3619 int error;
3620 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3621
3622 /*
3623 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3624 * other flags passed in are ignored!
3625 */
3626 lookup_flags &= LOOKUP_REVAL;
3627
3628 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3629 if (IS_ERR(name))
3630 return ERR_CAST(name);
3631
3632 /*
3633 * Yucky last component or no last component at all?
3634 * (foo/., foo/.., /////)
3635 */
3636 if (unlikely(type != LAST_NORM))
3637 goto out;
3638
3639 /* don't fail immediately if it's r/o, at least try to report other errors */
3640 err2 = mnt_want_write(path->mnt);
3641 /*
3642 * Do the final lookup.
3643 */
3644 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3645 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3646 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3647 if (IS_ERR(dentry))
3648 goto unlock;
3649
3650 error = -EEXIST;
3651 if (d_is_positive(dentry))
3652 goto fail;
3653
3654 /*
3655 * Special case - lookup gave negative, but... we had foo/bar/
3656 * From the vfs_mknod() POV we just have a negative dentry -
3657 * all is fine. Let's be bastards - you had / on the end, you've
3658 * been asking for (non-existent) directory. -ENOENT for you.
3659 */
3660 if (unlikely(!is_dir && last.name[last.len])) {
3661 error = -ENOENT;
3662 goto fail;
3663 }
3664 if (unlikely(err2)) {
3665 error = err2;
3666 goto fail;
3667 }
3668 putname(name);
3669 return dentry;
3670 fail:
3671 dput(dentry);
3672 dentry = ERR_PTR(error);
3673 unlock:
3674 inode_unlock(path->dentry->d_inode);
3675 if (!err2)
3676 mnt_drop_write(path->mnt);
3677 out:
3678 path_put(path);
3679 putname(name);
3680 return dentry;
3681 }
3682
3683 struct dentry *kern_path_create(int dfd, const char *pathname,
3684 struct path *path, unsigned int lookup_flags)
3685 {
3686 return filename_create(dfd, getname_kernel(pathname),
3687 path, lookup_flags);
3688 }
3689 EXPORT_SYMBOL(kern_path_create);
3690
3691 void done_path_create(struct path *path, struct dentry *dentry)
3692 {
3693 dput(dentry);
3694 inode_unlock(path->dentry->d_inode);
3695 mnt_drop_write(path->mnt);
3696 path_put(path);
3697 }
3698 EXPORT_SYMBOL(done_path_create);
3699
3700 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3701 struct path *path, unsigned int lookup_flags)
3702 {
3703 return filename_create(dfd, getname(pathname), path, lookup_flags);
3704 }
3705 EXPORT_SYMBOL(user_path_create);
3706
3707 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3708 {
3709 int error = may_create(dir, dentry);
3710
3711 if (error)
3712 return error;
3713
3714 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
3715 !ns_capable(dentry->d_sb->s_user_ns, CAP_MKNOD))
3716 return -EPERM;
3717
3718 if (!dir->i_op->mknod)
3719 return -EPERM;
3720
3721 error = devcgroup_inode_mknod(mode, dev);
3722 if (error)
3723 return error;
3724
3725 error = security_inode_mknod(dir, dentry, mode, dev);
3726 if (error)
3727 return error;
3728
3729 error = dir->i_op->mknod(dir, dentry, mode, dev);
3730 if (!error)
3731 fsnotify_create(dir, dentry);
3732 return error;
3733 }
3734 EXPORT_SYMBOL(vfs_mknod);
3735
3736 static int may_mknod(umode_t mode)
3737 {
3738 switch (mode & S_IFMT) {
3739 case S_IFREG:
3740 case S_IFCHR:
3741 case S_IFBLK:
3742 case S_IFIFO:
3743 case S_IFSOCK:
3744 case 0: /* zero mode translates to S_IFREG */
3745 return 0;
3746 case S_IFDIR:
3747 return -EPERM;
3748 default:
3749 return -EINVAL;
3750 }
3751 }
3752
3753 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3754 unsigned int dev)
3755 {
3756 struct dentry *dentry;
3757 struct path path;
3758 int error;
3759 unsigned int lookup_flags = 0;
3760
3761 error = may_mknod(mode);
3762 if (error)
3763 return error;
3764 retry:
3765 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3766 if (IS_ERR(dentry))
3767 return PTR_ERR(dentry);
3768
3769 if (!IS_POSIXACL(path.dentry->d_inode))
3770 mode &= ~current_umask();
3771 error = security_path_mknod(&path, dentry, mode, dev);
3772 if (error)
3773 goto out;
3774 switch (mode & S_IFMT) {
3775 case 0: case S_IFREG:
3776 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3777 if (!error)
3778 ima_post_path_mknod(dentry);
3779 break;
3780 case S_IFCHR: case S_IFBLK:
3781 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3782 new_decode_dev(dev));
3783 break;
3784 case S_IFIFO: case S_IFSOCK:
3785 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3786 break;
3787 }
3788 out:
3789 done_path_create(&path, dentry);
3790 if (retry_estale(error, lookup_flags)) {
3791 lookup_flags |= LOOKUP_REVAL;
3792 goto retry;
3793 }
3794 return error;
3795 }
3796
3797 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3798 unsigned int, dev)
3799 {
3800 return do_mknodat(dfd, filename, mode, dev);
3801 }
3802
3803 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3804 {
3805 return do_mknodat(AT_FDCWD, filename, mode, dev);
3806 }
3807
3808 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3809 {
3810 int error = may_create(dir, dentry);
3811 unsigned max_links = dir->i_sb->s_max_links;
3812
3813 if (error)
3814 return error;
3815
3816 if (!dir->i_op->mkdir)
3817 return -EPERM;
3818
3819 mode &= (S_IRWXUGO|S_ISVTX);
3820 error = security_inode_mkdir(dir, dentry, mode);
3821 if (error)
3822 return error;
3823
3824 if (max_links && dir->i_nlink >= max_links)
3825 return -EMLINK;
3826
3827 error = dir->i_op->mkdir(dir, dentry, mode);
3828 if (!error)
3829 fsnotify_mkdir(dir, dentry);
3830 return error;
3831 }
3832 EXPORT_SYMBOL(vfs_mkdir);
3833
3834 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3835 {
3836 struct dentry *dentry;
3837 struct path path;
3838 int error;
3839 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3840
3841 retry:
3842 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3843 if (IS_ERR(dentry))
3844 return PTR_ERR(dentry);
3845
3846 if (!IS_POSIXACL(path.dentry->d_inode))
3847 mode &= ~current_umask();
3848 error = security_path_mkdir(&path, dentry, mode);
3849 if (!error)
3850 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3851 done_path_create(&path, dentry);
3852 if (retry_estale(error, lookup_flags)) {
3853 lookup_flags |= LOOKUP_REVAL;
3854 goto retry;
3855 }
3856 return error;
3857 }
3858
3859 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3860 {
3861 return do_mkdirat(dfd, pathname, mode);
3862 }
3863
3864 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3865 {
3866 return do_mkdirat(AT_FDCWD, pathname, mode);
3867 }
3868
3869 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3870 {
3871 int error = may_delete(dir, dentry, 1);
3872
3873 if (error)
3874 return error;
3875
3876 if (!dir->i_op->rmdir)
3877 return -EPERM;
3878
3879 dget(dentry);
3880 inode_lock(dentry->d_inode);
3881
3882 error = -EBUSY;
3883 if (is_local_mountpoint(dentry))
3884 goto out;
3885
3886 error = security_inode_rmdir(dir, dentry);
3887 if (error)
3888 goto out;
3889
3890 error = dir->i_op->rmdir(dir, dentry);
3891 if (error)
3892 goto out;
3893
3894 shrink_dcache_parent(dentry);
3895 dentry->d_inode->i_flags |= S_DEAD;
3896 dont_mount(dentry);
3897 detach_mounts(dentry);
3898
3899 out:
3900 inode_unlock(dentry->d_inode);
3901 dput(dentry);
3902 if (!error)
3903 d_delete(dentry);
3904 return error;
3905 }
3906 EXPORT_SYMBOL(vfs_rmdir);
3907
3908 long do_rmdir(int dfd, const char __user *pathname)
3909 {
3910 int error = 0;
3911 struct filename *name;
3912 struct dentry *dentry;
3913 struct path path;
3914 struct qstr last;
3915 int type;
3916 unsigned int lookup_flags = 0;
3917 retry:
3918 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3919 &path, &last, &type);
3920 if (IS_ERR(name))
3921 return PTR_ERR(name);
3922
3923 switch (type) {
3924 case LAST_DOTDOT:
3925 error = -ENOTEMPTY;
3926 goto exit1;
3927 case LAST_DOT:
3928 error = -EINVAL;
3929 goto exit1;
3930 case LAST_ROOT:
3931 error = -EBUSY;
3932 goto exit1;
3933 }
3934
3935 error = mnt_want_write(path.mnt);
3936 if (error)
3937 goto exit1;
3938
3939 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3940 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3941 error = PTR_ERR(dentry);
3942 if (IS_ERR(dentry))
3943 goto exit2;
3944 if (!dentry->d_inode) {
3945 error = -ENOENT;
3946 goto exit3;
3947 }
3948 error = security_path_rmdir(&path, dentry);
3949 if (error)
3950 goto exit3;
3951 error = vfs_rmdir(path.dentry->d_inode, dentry);
3952 exit3:
3953 dput(dentry);
3954 exit2:
3955 inode_unlock(path.dentry->d_inode);
3956 mnt_drop_write(path.mnt);
3957 exit1:
3958 path_put(&path);
3959 putname(name);
3960 if (retry_estale(error, lookup_flags)) {
3961 lookup_flags |= LOOKUP_REVAL;
3962 goto retry;
3963 }
3964 return error;
3965 }
3966
3967 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3968 {
3969 return do_rmdir(AT_FDCWD, pathname);
3970 }
3971
3972 /**
3973 * vfs_unlink - unlink a filesystem object
3974 * @dir: parent directory
3975 * @dentry: victim
3976 * @delegated_inode: returns victim inode, if the inode is delegated.
3977 *
3978 * The caller must hold dir->i_mutex.
3979 *
3980 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3981 * return a reference to the inode in delegated_inode. The caller
3982 * should then break the delegation on that inode and retry. Because
3983 * breaking a delegation may take a long time, the caller should drop
3984 * dir->i_mutex before doing so.
3985 *
3986 * Alternatively, a caller may pass NULL for delegated_inode. This may
3987 * be appropriate for callers that expect the underlying filesystem not
3988 * to be NFS exported.
3989 */
3990 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3991 {
3992 struct inode *target = dentry->d_inode;
3993 int error = may_delete(dir, dentry, 0);
3994
3995 if (error)
3996 return error;
3997
3998 if (!dir->i_op->unlink)
3999 return -EPERM;
4000
4001 inode_lock(target);
4002 if (is_local_mountpoint(dentry))
4003 error = -EBUSY;
4004 else {
4005 error = security_inode_unlink(dir, dentry);
4006 if (!error) {
4007 error = try_break_deleg(target, delegated_inode);
4008 if (error)
4009 goto out;
4010 error = dir->i_op->unlink(dir, dentry);
4011 if (!error) {
4012 dont_mount(dentry);
4013 detach_mounts(dentry);
4014 }
4015 }
4016 }
4017 out:
4018 inode_unlock(target);
4019
4020 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4021 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4022 fsnotify_link_count(target);
4023 d_delete(dentry);
4024 }
4025
4026 return error;
4027 }
4028 EXPORT_SYMBOL(vfs_unlink);
4029
4030 /*
4031 * Make sure that the actual truncation of the file will occur outside its
4032 * directory's i_mutex. Truncate can take a long time if there is a lot of
4033 * writeout happening, and we don't want to prevent access to the directory
4034 * while waiting on the I/O.
4035 */
4036 long do_unlinkat(int dfd, struct filename *name)
4037 {
4038 int error;
4039 struct dentry *dentry;
4040 struct path path;
4041 struct qstr last;
4042 int type;
4043 struct inode *inode = NULL;
4044 struct inode *delegated_inode = NULL;
4045 unsigned int lookup_flags = 0;
4046 retry:
4047 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4048 if (IS_ERR(name))
4049 return PTR_ERR(name);
4050
4051 error = -EISDIR;
4052 if (type != LAST_NORM)
4053 goto exit1;
4054
4055 error = mnt_want_write(path.mnt);
4056 if (error)
4057 goto exit1;
4058 retry_deleg:
4059 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4060 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4061 error = PTR_ERR(dentry);
4062 if (!IS_ERR(dentry)) {
4063 /* Why not before? Because we want correct error value */
4064 if (last.name[last.len])
4065 goto slashes;
4066 inode = dentry->d_inode;
4067 if (d_is_negative(dentry))
4068 goto slashes;
4069 ihold(inode);
4070 error = security_path_unlink(&path, dentry);
4071 if (error)
4072 goto exit2;
4073 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4074 exit2:
4075 dput(dentry);
4076 }
4077 inode_unlock(path.dentry->d_inode);
4078 if (inode)
4079 iput(inode); /* truncate the inode here */
4080 inode = NULL;
4081 if (delegated_inode) {
4082 error = break_deleg_wait(&delegated_inode);
4083 if (!error)
4084 goto retry_deleg;
4085 }
4086 mnt_drop_write(path.mnt);
4087 exit1:
4088 path_put(&path);
4089 if (retry_estale(error, lookup_flags)) {
4090 lookup_flags |= LOOKUP_REVAL;
4091 inode = NULL;
4092 goto retry;
4093 }
4094 putname(name);
4095 return error;
4096
4097 slashes:
4098 if (d_is_negative(dentry))
4099 error = -ENOENT;
4100 else if (d_is_dir(dentry))
4101 error = -EISDIR;
4102 else
4103 error = -ENOTDIR;
4104 goto exit2;
4105 }
4106
4107 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4108 {
4109 if ((flag & ~AT_REMOVEDIR) != 0)
4110 return -EINVAL;
4111
4112 if (flag & AT_REMOVEDIR)
4113 return do_rmdir(dfd, pathname);
4114
4115 return do_unlinkat(dfd, getname(pathname));
4116 }
4117
4118 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4119 {
4120 return do_unlinkat(AT_FDCWD, getname(pathname));
4121 }
4122
4123 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4124 {
4125 int error = may_create(dir, dentry);
4126
4127 if (error)
4128 return error;
4129
4130 if (!dir->i_op->symlink)
4131 return -EPERM;
4132
4133 error = security_inode_symlink(dir, dentry, oldname);
4134 if (error)
4135 return error;
4136
4137 error = dir->i_op->symlink(dir, dentry, oldname);
4138 if (!error)
4139 fsnotify_create(dir, dentry);
4140 return error;
4141 }
4142 EXPORT_SYMBOL(vfs_symlink);
4143
4144 long do_symlinkat(const char __user *oldname, int newdfd,
4145 const char __user *newname)
4146 {
4147 int error;
4148 struct filename *from;
4149 struct dentry *dentry;
4150 struct path path;
4151 unsigned int lookup_flags = 0;
4152
4153 from = getname(oldname);
4154 if (IS_ERR(from))
4155 return PTR_ERR(from);
4156 retry:
4157 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4158 error = PTR_ERR(dentry);
4159 if (IS_ERR(dentry))
4160 goto out_putname;
4161
4162 error = security_path_symlink(&path, dentry, from->name);
4163 if (!error)
4164 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4165 done_path_create(&path, dentry);
4166 if (retry_estale(error, lookup_flags)) {
4167 lookup_flags |= LOOKUP_REVAL;
4168 goto retry;
4169 }
4170 out_putname:
4171 putname(from);
4172 return error;
4173 }
4174
4175 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4176 int, newdfd, const char __user *, newname)
4177 {
4178 return do_symlinkat(oldname, newdfd, newname);
4179 }
4180
4181 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4182 {
4183 return do_symlinkat(oldname, AT_FDCWD, newname);
4184 }
4185
4186 /**
4187 * vfs_link - create a new link
4188 * @old_dentry: object to be linked
4189 * @dir: new parent
4190 * @new_dentry: where to create the new link
4191 * @delegated_inode: returns inode needing a delegation break
4192 *
4193 * The caller must hold dir->i_mutex
4194 *
4195 * If vfs_link discovers a delegation on the to-be-linked file in need
4196 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4197 * inode in delegated_inode. The caller should then break the delegation
4198 * and retry. Because breaking a delegation may take a long time, the
4199 * caller should drop the i_mutex before doing so.
4200 *
4201 * Alternatively, a caller may pass NULL for delegated_inode. This may
4202 * be appropriate for callers that expect the underlying filesystem not
4203 * to be NFS exported.
4204 */
4205 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4206 {
4207 struct inode *inode = old_dentry->d_inode;
4208 unsigned max_links = dir->i_sb->s_max_links;
4209 int error;
4210
4211 if (!inode)
4212 return -ENOENT;
4213
4214 error = may_create(dir, new_dentry);
4215 if (error)
4216 return error;
4217
4218 if (dir->i_sb != inode->i_sb)
4219 return -EXDEV;
4220
4221 /*
4222 * A link to an append-only or immutable file cannot be created.
4223 */
4224 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4225 return -EPERM;
4226 /*
4227 * Updating the link count will likely cause i_uid and i_gid to
4228 * be writen back improperly if their true value is unknown to
4229 * the vfs.
4230 */
4231 if (HAS_UNMAPPED_ID(inode))
4232 return -EPERM;
4233 if (!dir->i_op->link)
4234 return -EPERM;
4235 if (S_ISDIR(inode->i_mode))
4236 return -EPERM;
4237
4238 error = security_inode_link(old_dentry, dir, new_dentry);
4239 if (error)
4240 return error;
4241
4242 inode_lock(inode);
4243 /* Make sure we don't allow creating hardlink to an unlinked file */
4244 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4245 error = -ENOENT;
4246 else if (max_links && inode->i_nlink >= max_links)
4247 error = -EMLINK;
4248 else {
4249 error = try_break_deleg(inode, delegated_inode);
4250 if (!error)
4251 error = dir->i_op->link(old_dentry, dir, new_dentry);
4252 }
4253
4254 if (!error && (inode->i_state & I_LINKABLE)) {
4255 spin_lock(&inode->i_lock);
4256 inode->i_state &= ~I_LINKABLE;
4257 spin_unlock(&inode->i_lock);
4258 }
4259 inode_unlock(inode);
4260 if (!error)
4261 fsnotify_link(dir, inode, new_dentry);
4262 return error;
4263 }
4264 EXPORT_SYMBOL(vfs_link);
4265
4266 /*
4267 * Hardlinks are often used in delicate situations. We avoid
4268 * security-related surprises by not following symlinks on the
4269 * newname. --KAB
4270 *
4271 * We don't follow them on the oldname either to be compatible
4272 * with linux 2.0, and to avoid hard-linking to directories
4273 * and other special files. --ADM
4274 */
4275 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4276 const char __user *newname, int flags)
4277 {
4278 struct dentry *new_dentry;
4279 struct path old_path, new_path;
4280 struct inode *delegated_inode = NULL;
4281 int how = 0;
4282 int error;
4283
4284 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4285 return -EINVAL;
4286 /*
4287 * To use null names we require CAP_DAC_READ_SEARCH
4288 * This ensures that not everyone will be able to create
4289 * handlink using the passed filedescriptor.
4290 */
4291 if (flags & AT_EMPTY_PATH) {
4292 if (!capable(CAP_DAC_READ_SEARCH))
4293 return -ENOENT;
4294 how = LOOKUP_EMPTY;
4295 }
4296
4297 if (flags & AT_SYMLINK_FOLLOW)
4298 how |= LOOKUP_FOLLOW;
4299 retry:
4300 error = user_path_at(olddfd, oldname, how, &old_path);
4301 if (error)
4302 return error;
4303
4304 new_dentry = user_path_create(newdfd, newname, &new_path,
4305 (how & LOOKUP_REVAL));
4306 error = PTR_ERR(new_dentry);
4307 if (IS_ERR(new_dentry))
4308 goto out;
4309
4310 error = -EXDEV;
4311 if (old_path.mnt != new_path.mnt)
4312 goto out_dput;
4313 error = may_linkat(&old_path);
4314 if (unlikely(error))
4315 goto out_dput;
4316 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4317 if (error)
4318 goto out_dput;
4319 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4320 out_dput:
4321 done_path_create(&new_path, new_dentry);
4322 if (delegated_inode) {
4323 error = break_deleg_wait(&delegated_inode);
4324 if (!error) {
4325 path_put(&old_path);
4326 goto retry;
4327 }
4328 }
4329 if (retry_estale(error, how)) {
4330 path_put(&old_path);
4331 how |= LOOKUP_REVAL;
4332 goto retry;
4333 }
4334 out:
4335 path_put(&old_path);
4336
4337 return error;
4338 }
4339
4340 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4341 int, newdfd, const char __user *, newname, int, flags)
4342 {
4343 return do_linkat(olddfd, oldname, newdfd, newname, flags);
4344 }
4345
4346 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4347 {
4348 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4349 }
4350
4351 /**
4352 * vfs_rename - rename a filesystem object
4353 * @old_dir: parent of source
4354 * @old_dentry: source
4355 * @new_dir: parent of destination
4356 * @new_dentry: destination
4357 * @delegated_inode: returns an inode needing a delegation break
4358 * @flags: rename flags
4359 *
4360 * The caller must hold multiple mutexes--see lock_rename()).
4361 *
4362 * If vfs_rename discovers a delegation in need of breaking at either
4363 * the source or destination, it will return -EWOULDBLOCK and return a
4364 * reference to the inode in delegated_inode. The caller should then
4365 * break the delegation and retry. Because breaking a delegation may
4366 * take a long time, the caller should drop all locks before doing
4367 * so.
4368 *
4369 * Alternatively, a caller may pass NULL for delegated_inode. This may
4370 * be appropriate for callers that expect the underlying filesystem not
4371 * to be NFS exported.
4372 *
4373 * The worst of all namespace operations - renaming directory. "Perverted"
4374 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4375 * Problems:
4376 *
4377 * a) we can get into loop creation.
4378 * b) race potential - two innocent renames can create a loop together.
4379 * That's where 4.4 screws up. Current fix: serialization on
4380 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4381 * story.
4382 * c) we have to lock _four_ objects - parents and victim (if it exists),
4383 * and source (if it is not a directory).
4384 * And that - after we got ->i_mutex on parents (until then we don't know
4385 * whether the target exists). Solution: try to be smart with locking
4386 * order for inodes. We rely on the fact that tree topology may change
4387 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4388 * move will be locked. Thus we can rank directories by the tree
4389 * (ancestors first) and rank all non-directories after them.
4390 * That works since everybody except rename does "lock parent, lookup,
4391 * lock child" and rename is under ->s_vfs_rename_mutex.
4392 * HOWEVER, it relies on the assumption that any object with ->lookup()
4393 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4394 * we'd better make sure that there's no link(2) for them.
4395 * d) conversion from fhandle to dentry may come in the wrong moment - when
4396 * we are removing the target. Solution: we will have to grab ->i_mutex
4397 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4398 * ->i_mutex on parents, which works but leads to some truly excessive
4399 * locking].
4400 */
4401 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4402 struct inode *new_dir, struct dentry *new_dentry,
4403 struct inode **delegated_inode, unsigned int flags)
4404 {
4405 int error;
4406 bool is_dir = d_is_dir(old_dentry);
4407 struct inode *source = old_dentry->d_inode;
4408 struct inode *target = new_dentry->d_inode;
4409 bool new_is_dir = false;
4410 unsigned max_links = new_dir->i_sb->s_max_links;
4411 struct name_snapshot old_name;
4412
4413 if (source == target)
4414 return 0;
4415
4416 error = may_delete(old_dir, old_dentry, is_dir);
4417 if (error)
4418 return error;
4419
4420 if (!target) {
4421 error = may_create(new_dir, new_dentry);
4422 } else {
4423 new_is_dir = d_is_dir(new_dentry);
4424
4425 if (!(flags & RENAME_EXCHANGE))
4426 error = may_delete(new_dir, new_dentry, is_dir);
4427 else
4428 error = may_delete(new_dir, new_dentry, new_is_dir);
4429 }
4430 if (error)
4431 return error;
4432
4433 if (!old_dir->i_op->rename)
4434 return -EPERM;
4435
4436 /*
4437 * If we are going to change the parent - check write permissions,
4438 * we'll need to flip '..'.
4439 */
4440 if (new_dir != old_dir) {
4441 if (is_dir) {
4442 error = inode_permission(source, MAY_WRITE);
4443 if (error)
4444 return error;
4445 }
4446 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4447 error = inode_permission(target, MAY_WRITE);
4448 if (error)
4449 return error;
4450 }
4451 }
4452
4453 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4454 flags);
4455 if (error)
4456 return error;
4457
4458 take_dentry_name_snapshot(&old_name, old_dentry);
4459 dget(new_dentry);
4460 if (!is_dir || (flags & RENAME_EXCHANGE))
4461 lock_two_nondirectories(source, target);
4462 else if (target)
4463 inode_lock(target);
4464
4465 error = -EBUSY;
4466 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4467 goto out;
4468
4469 if (max_links && new_dir != old_dir) {
4470 error = -EMLINK;
4471 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4472 goto out;
4473 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4474 old_dir->i_nlink >= max_links)
4475 goto out;
4476 }
4477 if (!is_dir) {
4478 error = try_break_deleg(source, delegated_inode);
4479 if (error)
4480 goto out;
4481 }
4482 if (target && !new_is_dir) {
4483 error = try_break_deleg(target, delegated_inode);
4484 if (error)
4485 goto out;
4486 }
4487 error = old_dir->i_op->rename(old_dir, old_dentry,
4488 new_dir, new_dentry, flags);
4489 if (error)
4490 goto out;
4491
4492 if (!(flags & RENAME_EXCHANGE) && target) {
4493 if (is_dir) {
4494 shrink_dcache_parent(new_dentry);
4495 target->i_flags |= S_DEAD;
4496 }
4497 dont_mount(new_dentry);
4498 detach_mounts(new_dentry);
4499 }
4500 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4501 if (!(flags & RENAME_EXCHANGE))
4502 d_move(old_dentry, new_dentry);
4503 else
4504 d_exchange(old_dentry, new_dentry);
4505 }
4506 out:
4507 if (!is_dir || (flags & RENAME_EXCHANGE))
4508 unlock_two_nondirectories(source, target);
4509 else if (target)
4510 inode_unlock(target);
4511 dput(new_dentry);
4512 if (!error) {
4513 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4514 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4515 if (flags & RENAME_EXCHANGE) {
4516 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4517 new_is_dir, NULL, new_dentry);
4518 }
4519 }
4520 release_dentry_name_snapshot(&old_name);
4521
4522 return error;
4523 }
4524 EXPORT_SYMBOL(vfs_rename);
4525
4526 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4527 const char __user *newname, unsigned int flags)
4528 {
4529 struct dentry *old_dentry, *new_dentry;
4530 struct dentry *trap;
4531 struct path old_path, new_path;
4532 struct qstr old_last, new_last;
4533 int old_type, new_type;
4534 struct inode *delegated_inode = NULL;
4535 struct filename *from;
4536 struct filename *to;
4537 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4538 bool should_retry = false;
4539 int error;
4540
4541 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4542 return -EINVAL;
4543
4544 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4545 (flags & RENAME_EXCHANGE))
4546 return -EINVAL;
4547
4548 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4549 return -EPERM;
4550
4551 if (flags & RENAME_EXCHANGE)
4552 target_flags = 0;
4553
4554 retry:
4555 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4556 &old_path, &old_last, &old_type);
4557 if (IS_ERR(from)) {
4558 error = PTR_ERR(from);
4559 goto exit;
4560 }
4561
4562 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4563 &new_path, &new_last, &new_type);
4564 if (IS_ERR(to)) {
4565 error = PTR_ERR(to);
4566 goto exit1;
4567 }
4568
4569 error = -EXDEV;
4570 if (old_path.mnt != new_path.mnt)
4571 goto exit2;
4572
4573 error = -EBUSY;
4574 if (old_type != LAST_NORM)
4575 goto exit2;
4576
4577 if (flags & RENAME_NOREPLACE)
4578 error = -EEXIST;
4579 if (new_type != LAST_NORM)
4580 goto exit2;
4581
4582 error = mnt_want_write(old_path.mnt);
4583 if (error)
4584 goto exit2;
4585
4586 retry_deleg:
4587 trap = lock_rename(new_path.dentry, old_path.dentry);
4588
4589 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4590 error = PTR_ERR(old_dentry);
4591 if (IS_ERR(old_dentry))
4592 goto exit3;
4593 /* source must exist */
4594 error = -ENOENT;
4595 if (d_is_negative(old_dentry))
4596 goto exit4;
4597 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4598 error = PTR_ERR(new_dentry);
4599 if (IS_ERR(new_dentry))
4600 goto exit4;
4601 error = -EEXIST;
4602 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4603 goto exit5;
4604 if (flags & RENAME_EXCHANGE) {
4605 error = -ENOENT;
4606 if (d_is_negative(new_dentry))
4607 goto exit5;
4608
4609 if (!d_is_dir(new_dentry)) {
4610 error = -ENOTDIR;
4611 if (new_last.name[new_last.len])
4612 goto exit5;
4613 }
4614 }
4615 /* unless the source is a directory trailing slashes give -ENOTDIR */
4616 if (!d_is_dir(old_dentry)) {
4617 error = -ENOTDIR;
4618 if (old_last.name[old_last.len])
4619 goto exit5;
4620 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4621 goto exit5;
4622 }
4623 /* source should not be ancestor of target */
4624 error = -EINVAL;
4625 if (old_dentry == trap)
4626 goto exit5;
4627 /* target should not be an ancestor of source */
4628 if (!(flags & RENAME_EXCHANGE))
4629 error = -ENOTEMPTY;
4630 if (new_dentry == trap)
4631 goto exit5;
4632
4633 error = security_path_rename(&old_path, old_dentry,
4634 &new_path, new_dentry, flags);
4635 if (error)
4636 goto exit5;
4637 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4638 new_path.dentry->d_inode, new_dentry,
4639 &delegated_inode, flags);
4640 exit5:
4641 dput(new_dentry);
4642 exit4:
4643 dput(old_dentry);
4644 exit3:
4645 unlock_rename(new_path.dentry, old_path.dentry);
4646 if (delegated_inode) {
4647 error = break_deleg_wait(&delegated_inode);
4648 if (!error)
4649 goto retry_deleg;
4650 }
4651 mnt_drop_write(old_path.mnt);
4652 exit2:
4653 if (retry_estale(error, lookup_flags))
4654 should_retry = true;
4655 path_put(&new_path);
4656 putname(to);
4657 exit1:
4658 path_put(&old_path);
4659 putname(from);
4660 if (should_retry) {
4661 should_retry = false;
4662 lookup_flags |= LOOKUP_REVAL;
4663 goto retry;
4664 }
4665 exit:
4666 return error;
4667 }
4668
4669 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4670 int, newdfd, const char __user *, newname, unsigned int, flags)
4671 {
4672 return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4673 }
4674
4675 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4676 int, newdfd, const char __user *, newname)
4677 {
4678 return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4679 }
4680
4681 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4682 {
4683 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4684 }
4685
4686 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4687 {
4688 int error = may_create(dir, dentry);
4689 if (error)
4690 return error;
4691
4692 if (!dir->i_op->mknod)
4693 return -EPERM;
4694
4695 return dir->i_op->mknod(dir, dentry,
4696 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4697 }
4698 EXPORT_SYMBOL(vfs_whiteout);
4699
4700 int readlink_copy(char __user *buffer, int buflen, const char *link)
4701 {
4702 int len = PTR_ERR(link);
4703 if (IS_ERR(link))
4704 goto out;
4705
4706 len = strlen(link);
4707 if (len > (unsigned) buflen)
4708 len = buflen;
4709 if (copy_to_user(buffer, link, len))
4710 len = -EFAULT;
4711 out:
4712 return len;
4713 }
4714
4715 /*
4716 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4717 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4718 * for any given inode is up to filesystem.
4719 */
4720 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4721 int buflen)
4722 {
4723 DEFINE_DELAYED_CALL(done);
4724 struct inode *inode = d_inode(dentry);
4725 const char *link = inode->i_link;
4726 int res;
4727
4728 if (!link) {
4729 link = inode->i_op->get_link(dentry, inode, &done);
4730 if (IS_ERR(link))
4731 return PTR_ERR(link);
4732 }
4733 res = readlink_copy(buffer, buflen, link);
4734 do_delayed_call(&done);
4735 return res;
4736 }
4737
4738 /**
4739 * vfs_readlink - copy symlink body into userspace buffer
4740 * @dentry: dentry on which to get symbolic link
4741 * @buffer: user memory pointer
4742 * @buflen: size of buffer
4743 *
4744 * Does not touch atime. That's up to the caller if necessary
4745 *
4746 * Does not call security hook.
4747 */
4748 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4749 {
4750 struct inode *inode = d_inode(dentry);
4751
4752 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4753 if (unlikely(inode->i_op->readlink))
4754 return inode->i_op->readlink(dentry, buffer, buflen);
4755
4756 if (!d_is_symlink(dentry))
4757 return -EINVAL;
4758
4759 spin_lock(&inode->i_lock);
4760 inode->i_opflags |= IOP_DEFAULT_READLINK;
4761 spin_unlock(&inode->i_lock);
4762 }
4763
4764 return generic_readlink(dentry, buffer, buflen);
4765 }
4766 EXPORT_SYMBOL(vfs_readlink);
4767
4768 /**
4769 * vfs_get_link - get symlink body
4770 * @dentry: dentry on which to get symbolic link
4771 * @done: caller needs to free returned data with this
4772 *
4773 * Calls security hook and i_op->get_link() on the supplied inode.
4774 *
4775 * It does not touch atime. That's up to the caller if necessary.
4776 *
4777 * Does not work on "special" symlinks like /proc/$$/fd/N
4778 */
4779 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4780 {
4781 const char *res = ERR_PTR(-EINVAL);
4782 struct inode *inode = d_inode(dentry);
4783
4784 if (d_is_symlink(dentry)) {
4785 res = ERR_PTR(security_inode_readlink(dentry));
4786 if (!res)
4787 res = inode->i_op->get_link(dentry, inode, done);
4788 }
4789 return res;
4790 }
4791 EXPORT_SYMBOL(vfs_get_link);
4792
4793 /* get the link contents into pagecache */
4794 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4795 struct delayed_call *callback)
4796 {
4797 char *kaddr;
4798 struct page *page;
4799 struct address_space *mapping = inode->i_mapping;
4800
4801 if (!dentry) {
4802 page = find_get_page(mapping, 0);
4803 if (!page)
4804 return ERR_PTR(-ECHILD);
4805 if (!PageUptodate(page)) {
4806 put_page(page);
4807 return ERR_PTR(-ECHILD);
4808 }
4809 } else {
4810 page = read_mapping_page(mapping, 0, NULL);
4811 if (IS_ERR(page))
4812 return (char*)page;
4813 }
4814 set_delayed_call(callback, page_put_link, page);
4815 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4816 kaddr = page_address(page);
4817 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4818 return kaddr;
4819 }
4820
4821 EXPORT_SYMBOL(page_get_link);
4822
4823 void page_put_link(void *arg)
4824 {
4825 put_page(arg);
4826 }
4827 EXPORT_SYMBOL(page_put_link);
4828
4829 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4830 {
4831 DEFINE_DELAYED_CALL(done);
4832 int res = readlink_copy(buffer, buflen,
4833 page_get_link(dentry, d_inode(dentry),
4834 &done));
4835 do_delayed_call(&done);
4836 return res;
4837 }
4838 EXPORT_SYMBOL(page_readlink);
4839
4840 /*
4841 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4842 */
4843 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4844 {
4845 struct address_space *mapping = inode->i_mapping;
4846 struct page *page;
4847 void *fsdata;
4848 int err;
4849 unsigned int flags = 0;
4850 if (nofs)
4851 flags |= AOP_FLAG_NOFS;
4852
4853 retry:
4854 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4855 flags, &page, &fsdata);
4856 if (err)
4857 goto fail;
4858
4859 memcpy(page_address(page), symname, len-1);
4860
4861 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4862 page, fsdata);
4863 if (err < 0)
4864 goto fail;
4865 if (err < len-1)
4866 goto retry;
4867
4868 mark_inode_dirty(inode);
4869 return 0;
4870 fail:
4871 return err;
4872 }
4873 EXPORT_SYMBOL(__page_symlink);
4874
4875 int page_symlink(struct inode *inode, const char *symname, int len)
4876 {
4877 return __page_symlink(inode, symname, len,
4878 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4879 }
4880 EXPORT_SYMBOL(page_symlink);
4881
4882 const struct inode_operations page_symlink_inode_operations = {
4883 .get_link = page_get_link,
4884 };
4885 EXPORT_SYMBOL(page_symlink_inode_operations);