]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/namei.c
bpf: Wrap aux data inside bpf_sanitize_info container
[mirror_ubuntu-hirsute-kernel.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /* [Feb-1997 T. Schoebel-Theuer]
47 * Fundamental changes in the pathname lookup mechanisms (namei)
48 * were necessary because of omirr. The reason is that omirr needs
49 * to know the _real_ pathname, not the user-supplied one, in case
50 * of symlinks (and also when transname replacements occur).
51 *
52 * The new code replaces the old recursive symlink resolution with
53 * an iterative one (in case of non-nested symlink chains). It does
54 * this with calls to <fs>_follow_link().
55 * As a side effect, dir_namei(), _namei() and follow_link() are now
56 * replaced with a single function lookup_dentry() that can handle all
57 * the special cases of the former code.
58 *
59 * With the new dcache, the pathname is stored at each inode, at least as
60 * long as the refcount of the inode is positive. As a side effect, the
61 * size of the dcache depends on the inode cache and thus is dynamic.
62 *
63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64 * resolution to correspond with current state of the code.
65 *
66 * Note that the symlink resolution is not *completely* iterative.
67 * There is still a significant amount of tail- and mid- recursion in
68 * the algorithm. Also, note that <fs>_readlink() is not used in
69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70 * may return different results than <fs>_follow_link(). Many virtual
71 * filesystems (including /proc) exhibit this behavior.
72 */
73
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76 * and the name already exists in form of a symlink, try to create the new
77 * name indicated by the symlink. The old code always complained that the
78 * name already exists, due to not following the symlink even if its target
79 * is nonexistent. The new semantics affects also mknod() and link() when
80 * the name is a symlink pointing to a non-existent name.
81 *
82 * I don't know which semantics is the right one, since I have no access
83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85 * "old" one. Personally, I think the new semantics is much more logical.
86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87 * file does succeed in both HP-UX and SunOs, but not in Solaris
88 * and in the old Linux semantics.
89 */
90
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92 * semantics. See the comments in "open_namei" and "do_link" below.
93 *
94 * [10-Sep-98 Alan Modra] Another symlink change.
95 */
96
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98 * inside the path - always follow.
99 * in the last component in creation/removal/renaming - never follow.
100 * if LOOKUP_FOLLOW passed - follow.
101 * if the pathname has trailing slashes - follow.
102 * otherwise - don't follow.
103 * (applied in that order).
104 *
105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107 * During the 2.4 we need to fix the userland stuff depending on it -
108 * hopefully we will be able to get rid of that wart in 2.5. So far only
109 * XEmacs seems to be relying on it...
110 */
111 /*
112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
114 * any extra contention...
115 */
116
117 /* In order to reduce some races, while at the same time doing additional
118 * checking and hopefully speeding things up, we copy filenames to the
119 * kernel data space before using them..
120 *
121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122 * PATH_MAX includes the nul terminator --RR.
123 */
124
125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
126
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 struct filename *result;
131 char *kname;
132 int len;
133
134 result = audit_reusename(filename);
135 if (result)
136 return result;
137
138 result = __getname();
139 if (unlikely(!result))
140 return ERR_PTR(-ENOMEM);
141
142 /*
143 * First, try to embed the struct filename inside the names_cache
144 * allocation
145 */
146 kname = (char *)result->iname;
147 result->name = kname;
148
149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 if (unlikely(len < 0)) {
151 __putname(result);
152 return ERR_PTR(len);
153 }
154
155 /*
156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 * separate struct filename so we can dedicate the entire
158 * names_cache allocation for the pathname, and re-do the copy from
159 * userland.
160 */
161 if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 const size_t size = offsetof(struct filename, iname[1]);
163 kname = (char *)result;
164
165 /*
166 * size is chosen that way we to guarantee that
167 * result->iname[0] is within the same object and that
168 * kname can't be equal to result->iname, no matter what.
169 */
170 result = kzalloc(size, GFP_KERNEL);
171 if (unlikely(!result)) {
172 __putname(kname);
173 return ERR_PTR(-ENOMEM);
174 }
175 result->name = kname;
176 len = strncpy_from_user(kname, filename, PATH_MAX);
177 if (unlikely(len < 0)) {
178 __putname(kname);
179 kfree(result);
180 return ERR_PTR(len);
181 }
182 if (unlikely(len == PATH_MAX)) {
183 __putname(kname);
184 kfree(result);
185 return ERR_PTR(-ENAMETOOLONG);
186 }
187 }
188
189 result->refcnt = 1;
190 /* The empty path is special. */
191 if (unlikely(!len)) {
192 if (empty)
193 *empty = 1;
194 if (!(flags & LOOKUP_EMPTY)) {
195 putname(result);
196 return ERR_PTR(-ENOENT);
197 }
198 }
199
200 result->uptr = filename;
201 result->aname = NULL;
202 audit_getname(result);
203 return result;
204 }
205
206 struct filename *
207 getname(const char __user * filename)
208 {
209 return getname_flags(filename, 0, NULL);
210 }
211
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 struct filename *result;
216 int len = strlen(filename) + 1;
217
218 result = __getname();
219 if (unlikely(!result))
220 return ERR_PTR(-ENOMEM);
221
222 if (len <= EMBEDDED_NAME_MAX) {
223 result->name = (char *)result->iname;
224 } else if (len <= PATH_MAX) {
225 const size_t size = offsetof(struct filename, iname[1]);
226 struct filename *tmp;
227
228 tmp = kmalloc(size, GFP_KERNEL);
229 if (unlikely(!tmp)) {
230 __putname(result);
231 return ERR_PTR(-ENOMEM);
232 }
233 tmp->name = (char *)result;
234 result = tmp;
235 } else {
236 __putname(result);
237 return ERR_PTR(-ENAMETOOLONG);
238 }
239 memcpy((char *)result->name, filename, len);
240 result->uptr = NULL;
241 result->aname = NULL;
242 result->refcnt = 1;
243 audit_getname(result);
244
245 return result;
246 }
247
248 void putname(struct filename *name)
249 {
250 BUG_ON(name->refcnt <= 0);
251
252 if (--name->refcnt > 0)
253 return;
254
255 if (name->name != name->iname) {
256 __putname(name->name);
257 kfree(name);
258 } else
259 __putname(name);
260 }
261
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265 struct posix_acl *acl;
266
267 if (mask & MAY_NOT_BLOCK) {
268 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 if (!acl)
270 return -EAGAIN;
271 /* no ->get_acl() calls in RCU mode... */
272 if (is_uncached_acl(acl))
273 return -ECHILD;
274 return posix_acl_permission(inode, acl, mask);
275 }
276
277 acl = get_acl(inode, ACL_TYPE_ACCESS);
278 if (IS_ERR(acl))
279 return PTR_ERR(acl);
280 if (acl) {
281 int error = posix_acl_permission(inode, acl, mask);
282 posix_acl_release(acl);
283 return error;
284 }
285 #endif
286
287 return -EAGAIN;
288 }
289
290 /*
291 * This does the basic UNIX permission checking.
292 *
293 * Note that the POSIX ACL check cares about the MAY_NOT_BLOCK bit,
294 * for RCU walking.
295 */
296 static int acl_permission_check(struct inode *inode, int mask)
297 {
298 unsigned int mode = inode->i_mode;
299
300 /* Are we the owner? If so, ACL's don't matter */
301 if (likely(uid_eq(current_fsuid(), inode->i_uid))) {
302 mask &= 7;
303 mode >>= 6;
304 return (mask & ~mode) ? -EACCES : 0;
305 }
306
307 /* Do we have ACL's? */
308 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
309 int error = check_acl(inode, mask);
310 if (error != -EAGAIN)
311 return error;
312 }
313
314 /* Only RWX matters for group/other mode bits */
315 mask &= 7;
316
317 /*
318 * Are the group permissions different from
319 * the other permissions in the bits we care
320 * about? Need to check group ownership if so.
321 */
322 if (mask & (mode ^ (mode >> 3))) {
323 if (in_group_p(inode->i_gid))
324 mode >>= 3;
325 }
326
327 /* Bits in 'mode' clear that we require? */
328 return (mask & ~mode) ? -EACCES : 0;
329 }
330
331 /**
332 * generic_permission - check for access rights on a Posix-like filesystem
333 * @inode: inode to check access rights for
334 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
335 * %MAY_NOT_BLOCK ...)
336 *
337 * Used to check for read/write/execute permissions on a file.
338 * We use "fsuid" for this, letting us set arbitrary permissions
339 * for filesystem access without changing the "normal" uids which
340 * are used for other things.
341 *
342 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
343 * request cannot be satisfied (eg. requires blocking or too much complexity).
344 * It would then be called again in ref-walk mode.
345 */
346 int generic_permission(struct inode *inode, int mask)
347 {
348 int ret;
349
350 /*
351 * Do the basic permission checks.
352 */
353 ret = acl_permission_check(inode, mask);
354 if (ret != -EACCES)
355 return ret;
356
357 if (S_ISDIR(inode->i_mode)) {
358 /* DACs are overridable for directories */
359 if (!(mask & MAY_WRITE))
360 if (capable_wrt_inode_uidgid(inode,
361 CAP_DAC_READ_SEARCH))
362 return 0;
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
364 return 0;
365 return -EACCES;
366 }
367
368 /*
369 * Searching includes executable on directories, else just read.
370 */
371 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
372 if (mask == MAY_READ)
373 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
374 return 0;
375 /*
376 * Read/write DACs are always overridable.
377 * Executable DACs are overridable when there is
378 * at least one exec bit set.
379 */
380 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
381 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
382 return 0;
383
384 return -EACCES;
385 }
386 EXPORT_SYMBOL(generic_permission);
387
388 /*
389 * We _really_ want to just do "generic_permission()" without
390 * even looking at the inode->i_op values. So we keep a cache
391 * flag in inode->i_opflags, that says "this has not special
392 * permission function, use the fast case".
393 */
394 static inline int do_inode_permission(struct inode *inode, int mask)
395 {
396 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
397 if (likely(inode->i_op->permission))
398 return inode->i_op->permission(inode, mask);
399
400 /* This gets set once for the inode lifetime */
401 spin_lock(&inode->i_lock);
402 inode->i_opflags |= IOP_FASTPERM;
403 spin_unlock(&inode->i_lock);
404 }
405 return generic_permission(inode, mask);
406 }
407
408 /**
409 * sb_permission - Check superblock-level permissions
410 * @sb: Superblock of inode to check permission on
411 * @inode: Inode to check permission on
412 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
413 *
414 * Separate out file-system wide checks from inode-specific permission checks.
415 */
416 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
417 {
418 if (unlikely(mask & MAY_WRITE)) {
419 umode_t mode = inode->i_mode;
420
421 /* Nobody gets write access to a read-only fs. */
422 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
423 return -EROFS;
424 }
425 return 0;
426 }
427
428 /**
429 * inode_permission - Check for access rights to a given inode
430 * @inode: Inode to check permission on
431 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
432 *
433 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
434 * this, letting us set arbitrary permissions for filesystem access without
435 * changing the "normal" UIDs which are used for other things.
436 *
437 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
438 */
439 int inode_permission(struct inode *inode, int mask)
440 {
441 int retval;
442
443 retval = sb_permission(inode->i_sb, inode, mask);
444 if (retval)
445 return retval;
446
447 if (unlikely(mask & MAY_WRITE)) {
448 /*
449 * Nobody gets write access to an immutable file.
450 */
451 if (IS_IMMUTABLE(inode))
452 return -EPERM;
453
454 /*
455 * Updating mtime will likely cause i_uid and i_gid to be
456 * written back improperly if their true value is unknown
457 * to the vfs.
458 */
459 if (HAS_UNMAPPED_ID(inode))
460 return -EACCES;
461 }
462
463 retval = do_inode_permission(inode, mask);
464 if (retval)
465 return retval;
466
467 retval = devcgroup_inode_permission(inode, mask);
468 if (retval)
469 return retval;
470
471 return security_inode_permission(inode, mask);
472 }
473 EXPORT_SYMBOL(inode_permission);
474
475 /**
476 * path_get - get a reference to a path
477 * @path: path to get the reference to
478 *
479 * Given a path increment the reference count to the dentry and the vfsmount.
480 */
481 void path_get(const struct path *path)
482 {
483 mntget(path->mnt);
484 dget(path->dentry);
485 }
486 EXPORT_SYMBOL(path_get);
487
488 /**
489 * path_put - put a reference to a path
490 * @path: path to put the reference to
491 *
492 * Given a path decrement the reference count to the dentry and the vfsmount.
493 */
494 void path_put(const struct path *path)
495 {
496 dput(path->dentry);
497 mntput(path->mnt);
498 }
499 EXPORT_SYMBOL(path_put);
500
501 #define EMBEDDED_LEVELS 2
502 struct nameidata {
503 struct path path;
504 struct qstr last;
505 struct path root;
506 struct inode *inode; /* path.dentry.d_inode */
507 unsigned int flags;
508 unsigned seq, m_seq, r_seq;
509 int last_type;
510 unsigned depth;
511 int total_link_count;
512 struct saved {
513 struct path link;
514 struct delayed_call done;
515 const char *name;
516 unsigned seq;
517 } *stack, internal[EMBEDDED_LEVELS];
518 struct filename *name;
519 struct nameidata *saved;
520 unsigned root_seq;
521 int dfd;
522 kuid_t dir_uid;
523 umode_t dir_mode;
524 } __randomize_layout;
525
526 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
527 {
528 struct nameidata *old = current->nameidata;
529 p->stack = p->internal;
530 p->dfd = dfd;
531 p->name = name;
532 p->total_link_count = old ? old->total_link_count : 0;
533 p->saved = old;
534 current->nameidata = p;
535 }
536
537 static void restore_nameidata(void)
538 {
539 struct nameidata *now = current->nameidata, *old = now->saved;
540
541 current->nameidata = old;
542 if (old)
543 old->total_link_count = now->total_link_count;
544 if (now->stack != now->internal)
545 kfree(now->stack);
546 }
547
548 static bool nd_alloc_stack(struct nameidata *nd)
549 {
550 struct saved *p;
551
552 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
553 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
554 if (unlikely(!p))
555 return false;
556 memcpy(p, nd->internal, sizeof(nd->internal));
557 nd->stack = p;
558 return true;
559 }
560
561 /**
562 * path_connected - Verify that a dentry is below mnt.mnt_root
563 *
564 * Rename can sometimes move a file or directory outside of a bind
565 * mount, path_connected allows those cases to be detected.
566 */
567 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
568 {
569 struct super_block *sb = mnt->mnt_sb;
570
571 /* Bind mounts can have disconnected paths */
572 if (mnt->mnt_root == sb->s_root)
573 return true;
574
575 return is_subdir(dentry, mnt->mnt_root);
576 }
577
578 static void drop_links(struct nameidata *nd)
579 {
580 int i = nd->depth;
581 while (i--) {
582 struct saved *last = nd->stack + i;
583 do_delayed_call(&last->done);
584 clear_delayed_call(&last->done);
585 }
586 }
587
588 static void terminate_walk(struct nameidata *nd)
589 {
590 drop_links(nd);
591 if (!(nd->flags & LOOKUP_RCU)) {
592 int i;
593 path_put(&nd->path);
594 for (i = 0; i < nd->depth; i++)
595 path_put(&nd->stack[i].link);
596 if (nd->flags & LOOKUP_ROOT_GRABBED) {
597 path_put(&nd->root);
598 nd->flags &= ~LOOKUP_ROOT_GRABBED;
599 }
600 } else {
601 nd->flags &= ~LOOKUP_RCU;
602 rcu_read_unlock();
603 }
604 nd->depth = 0;
605 }
606
607 /* path_put is needed afterwards regardless of success or failure */
608 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
609 {
610 int res = __legitimize_mnt(path->mnt, mseq);
611 if (unlikely(res)) {
612 if (res > 0)
613 path->mnt = NULL;
614 path->dentry = NULL;
615 return false;
616 }
617 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
618 path->dentry = NULL;
619 return false;
620 }
621 return !read_seqcount_retry(&path->dentry->d_seq, seq);
622 }
623
624 static inline bool legitimize_path(struct nameidata *nd,
625 struct path *path, unsigned seq)
626 {
627 return __legitimize_path(path, seq, nd->m_seq);
628 }
629
630 static bool legitimize_links(struct nameidata *nd)
631 {
632 int i;
633 for (i = 0; i < nd->depth; i++) {
634 struct saved *last = nd->stack + i;
635 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
636 drop_links(nd);
637 nd->depth = i + 1;
638 return false;
639 }
640 }
641 return true;
642 }
643
644 static bool legitimize_root(struct nameidata *nd)
645 {
646 /*
647 * For scoped-lookups (where nd->root has been zeroed), we need to
648 * restart the whole lookup from scratch -- because set_root() is wrong
649 * for these lookups (nd->dfd is the root, not the filesystem root).
650 */
651 if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
652 return false;
653 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
654 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
655 return true;
656 nd->flags |= LOOKUP_ROOT_GRABBED;
657 return legitimize_path(nd, &nd->root, nd->root_seq);
658 }
659
660 /*
661 * Path walking has 2 modes, rcu-walk and ref-walk (see
662 * Documentation/filesystems/path-lookup.txt). In situations when we can't
663 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
664 * normal reference counts on dentries and vfsmounts to transition to ref-walk
665 * mode. Refcounts are grabbed at the last known good point before rcu-walk
666 * got stuck, so ref-walk may continue from there. If this is not successful
667 * (eg. a seqcount has changed), then failure is returned and it's up to caller
668 * to restart the path walk from the beginning in ref-walk mode.
669 */
670
671 /**
672 * try_to_unlazy - try to switch to ref-walk mode.
673 * @nd: nameidata pathwalk data
674 * Returns: true on success, false on failure
675 *
676 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
677 * for ref-walk mode.
678 * Must be called from rcu-walk context.
679 * Nothing should touch nameidata between try_to_unlazy() failure and
680 * terminate_walk().
681 */
682 static bool try_to_unlazy(struct nameidata *nd)
683 {
684 struct dentry *parent = nd->path.dentry;
685
686 BUG_ON(!(nd->flags & LOOKUP_RCU));
687
688 nd->flags &= ~LOOKUP_RCU;
689 if (unlikely(!legitimize_links(nd)))
690 goto out1;
691 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
692 goto out;
693 if (unlikely(!legitimize_root(nd)))
694 goto out;
695 rcu_read_unlock();
696 BUG_ON(nd->inode != parent->d_inode);
697 return true;
698
699 out1:
700 nd->path.mnt = NULL;
701 nd->path.dentry = NULL;
702 out:
703 rcu_read_unlock();
704 return false;
705 }
706
707 /**
708 * unlazy_child - try to switch to ref-walk mode.
709 * @nd: nameidata pathwalk data
710 * @dentry: child of nd->path.dentry
711 * @seq: seq number to check dentry against
712 * Returns: 0 on success, -ECHILD on failure
713 *
714 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
715 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
716 * @nd. Must be called from rcu-walk context.
717 * Nothing should touch nameidata between unlazy_child() failure and
718 * terminate_walk().
719 */
720 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
721 {
722 BUG_ON(!(nd->flags & LOOKUP_RCU));
723
724 nd->flags &= ~LOOKUP_RCU;
725 if (unlikely(!legitimize_links(nd)))
726 goto out2;
727 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
728 goto out2;
729 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
730 goto out1;
731
732 /*
733 * We need to move both the parent and the dentry from the RCU domain
734 * to be properly refcounted. And the sequence number in the dentry
735 * validates *both* dentry counters, since we checked the sequence
736 * number of the parent after we got the child sequence number. So we
737 * know the parent must still be valid if the child sequence number is
738 */
739 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
740 goto out;
741 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
742 goto out_dput;
743 /*
744 * Sequence counts matched. Now make sure that the root is
745 * still valid and get it if required.
746 */
747 if (unlikely(!legitimize_root(nd)))
748 goto out_dput;
749 rcu_read_unlock();
750 return 0;
751
752 out2:
753 nd->path.mnt = NULL;
754 out1:
755 nd->path.dentry = NULL;
756 out:
757 rcu_read_unlock();
758 return -ECHILD;
759 out_dput:
760 rcu_read_unlock();
761 dput(dentry);
762 return -ECHILD;
763 }
764
765 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
766 {
767 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
768 return dentry->d_op->d_revalidate(dentry, flags);
769 else
770 return 1;
771 }
772
773 /**
774 * complete_walk - successful completion of path walk
775 * @nd: pointer nameidata
776 *
777 * If we had been in RCU mode, drop out of it and legitimize nd->path.
778 * Revalidate the final result, unless we'd already done that during
779 * the path walk or the filesystem doesn't ask for it. Return 0 on
780 * success, -error on failure. In case of failure caller does not
781 * need to drop nd->path.
782 */
783 static int complete_walk(struct nameidata *nd)
784 {
785 struct dentry *dentry = nd->path.dentry;
786 int status;
787
788 if (nd->flags & LOOKUP_RCU) {
789 /*
790 * We don't want to zero nd->root for scoped-lookups or
791 * externally-managed nd->root.
792 */
793 if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED)))
794 nd->root.mnt = NULL;
795 if (!try_to_unlazy(nd))
796 return -ECHILD;
797 }
798
799 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
800 /*
801 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
802 * ever step outside the root during lookup" and should already
803 * be guaranteed by the rest of namei, we want to avoid a namei
804 * BUG resulting in userspace being given a path that was not
805 * scoped within the root at some point during the lookup.
806 *
807 * So, do a final sanity-check to make sure that in the
808 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
809 * we won't silently return an fd completely outside of the
810 * requested root to userspace.
811 *
812 * Userspace could move the path outside the root after this
813 * check, but as discussed elsewhere this is not a concern (the
814 * resolved file was inside the root at some point).
815 */
816 if (!path_is_under(&nd->path, &nd->root))
817 return -EXDEV;
818 }
819
820 if (likely(!(nd->flags & LOOKUP_JUMPED)))
821 return 0;
822
823 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
824 return 0;
825
826 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
827 if (status > 0)
828 return 0;
829
830 if (!status)
831 status = -ESTALE;
832
833 return status;
834 }
835
836 static int set_root(struct nameidata *nd)
837 {
838 struct fs_struct *fs = current->fs;
839
840 /*
841 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
842 * still have to ensure it doesn't happen because it will cause a breakout
843 * from the dirfd.
844 */
845 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
846 return -ENOTRECOVERABLE;
847
848 if (nd->flags & LOOKUP_RCU) {
849 unsigned seq;
850
851 do {
852 seq = read_seqcount_begin(&fs->seq);
853 nd->root = fs->root;
854 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
855 } while (read_seqcount_retry(&fs->seq, seq));
856 } else {
857 get_fs_root(fs, &nd->root);
858 nd->flags |= LOOKUP_ROOT_GRABBED;
859 }
860 return 0;
861 }
862
863 static int nd_jump_root(struct nameidata *nd)
864 {
865 if (unlikely(nd->flags & LOOKUP_BENEATH))
866 return -EXDEV;
867 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
868 /* Absolute path arguments to path_init() are allowed. */
869 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
870 return -EXDEV;
871 }
872 if (!nd->root.mnt) {
873 int error = set_root(nd);
874 if (error)
875 return error;
876 }
877 if (nd->flags & LOOKUP_RCU) {
878 struct dentry *d;
879 nd->path = nd->root;
880 d = nd->path.dentry;
881 nd->inode = d->d_inode;
882 nd->seq = nd->root_seq;
883 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
884 return -ECHILD;
885 } else {
886 path_put(&nd->path);
887 nd->path = nd->root;
888 path_get(&nd->path);
889 nd->inode = nd->path.dentry->d_inode;
890 }
891 nd->flags |= LOOKUP_JUMPED;
892 return 0;
893 }
894
895 /*
896 * Helper to directly jump to a known parsed path from ->get_link,
897 * caller must have taken a reference to path beforehand.
898 */
899 int nd_jump_link(struct path *path)
900 {
901 int error = -ELOOP;
902 struct nameidata *nd = current->nameidata;
903
904 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
905 goto err;
906
907 error = -EXDEV;
908 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
909 if (nd->path.mnt != path->mnt)
910 goto err;
911 }
912 /* Not currently safe for scoped-lookups. */
913 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
914 goto err;
915
916 path_put(&nd->path);
917 nd->path = *path;
918 nd->inode = nd->path.dentry->d_inode;
919 nd->flags |= LOOKUP_JUMPED;
920 return 0;
921
922 err:
923 path_put(path);
924 return error;
925 }
926
927 static inline void put_link(struct nameidata *nd)
928 {
929 struct saved *last = nd->stack + --nd->depth;
930 do_delayed_call(&last->done);
931 if (!(nd->flags & LOOKUP_RCU))
932 path_put(&last->link);
933 }
934
935 int sysctl_protected_symlinks __read_mostly = 1;
936 int sysctl_protected_hardlinks __read_mostly = 1;
937 int sysctl_protected_fifos __read_mostly;
938 int sysctl_protected_regular __read_mostly;
939
940 /**
941 * may_follow_link - Check symlink following for unsafe situations
942 * @nd: nameidata pathwalk data
943 *
944 * In the case of the sysctl_protected_symlinks sysctl being enabled,
945 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
946 * in a sticky world-writable directory. This is to protect privileged
947 * processes from failing races against path names that may change out
948 * from under them by way of other users creating malicious symlinks.
949 * It will permit symlinks to be followed only when outside a sticky
950 * world-writable directory, or when the uid of the symlink and follower
951 * match, or when the directory owner matches the symlink's owner.
952 *
953 * Returns 0 if following the symlink is allowed, -ve on error.
954 */
955 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
956 {
957 if (!sysctl_protected_symlinks)
958 return 0;
959
960 /* Allowed if owner and follower match. */
961 if (uid_eq(current_cred()->fsuid, inode->i_uid))
962 return 0;
963
964 /* Allowed if parent directory not sticky and world-writable. */
965 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
966 return 0;
967
968 /* Allowed if parent directory and link owner match. */
969 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, inode->i_uid))
970 return 0;
971
972 if (nd->flags & LOOKUP_RCU)
973 return -ECHILD;
974
975 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
976 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
977 return -EACCES;
978 }
979
980 /**
981 * safe_hardlink_source - Check for safe hardlink conditions
982 * @inode: the source inode to hardlink from
983 *
984 * Return false if at least one of the following conditions:
985 * - inode is not a regular file
986 * - inode is setuid
987 * - inode is setgid and group-exec
988 * - access failure for read and write
989 *
990 * Otherwise returns true.
991 */
992 static bool safe_hardlink_source(struct inode *inode)
993 {
994 umode_t mode = inode->i_mode;
995
996 /* Special files should not get pinned to the filesystem. */
997 if (!S_ISREG(mode))
998 return false;
999
1000 /* Setuid files should not get pinned to the filesystem. */
1001 if (mode & S_ISUID)
1002 return false;
1003
1004 /* Executable setgid files should not get pinned to the filesystem. */
1005 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1006 return false;
1007
1008 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1009 if (inode_permission(inode, MAY_READ | MAY_WRITE))
1010 return false;
1011
1012 return true;
1013 }
1014
1015 /**
1016 * may_linkat - Check permissions for creating a hardlink
1017 * @link: the source to hardlink from
1018 *
1019 * Block hardlink when all of:
1020 * - sysctl_protected_hardlinks enabled
1021 * - fsuid does not match inode
1022 * - hardlink source is unsafe (see safe_hardlink_source() above)
1023 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1024 *
1025 * Returns 0 if successful, -ve on error.
1026 */
1027 int may_linkat(struct path *link)
1028 {
1029 struct inode *inode = link->dentry->d_inode;
1030
1031 /* Inode writeback is not safe when the uid or gid are invalid. */
1032 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
1033 return -EOVERFLOW;
1034
1035 if (!sysctl_protected_hardlinks)
1036 return 0;
1037
1038 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1039 * otherwise, it must be a safe source.
1040 */
1041 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1042 return 0;
1043
1044 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1045 return -EPERM;
1046 }
1047
1048 /**
1049 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1050 * should be allowed, or not, on files that already
1051 * exist.
1052 * @dir_mode: mode bits of directory
1053 * @dir_uid: owner of directory
1054 * @inode: the inode of the file to open
1055 *
1056 * Block an O_CREAT open of a FIFO (or a regular file) when:
1057 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1058 * - the file already exists
1059 * - we are in a sticky directory
1060 * - we don't own the file
1061 * - the owner of the directory doesn't own the file
1062 * - the directory is world writable
1063 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1064 * the directory doesn't have to be world writable: being group writable will
1065 * be enough.
1066 *
1067 * Returns 0 if the open is allowed, -ve on error.
1068 */
1069 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1070 struct inode * const inode)
1071 {
1072 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1073 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1074 likely(!(dir_mode & S_ISVTX)) ||
1075 uid_eq(inode->i_uid, dir_uid) ||
1076 uid_eq(current_fsuid(), inode->i_uid))
1077 return 0;
1078
1079 if (likely(dir_mode & 0002) ||
1080 (dir_mode & 0020 &&
1081 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1082 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1083 const char *operation = S_ISFIFO(inode->i_mode) ?
1084 "sticky_create_fifo" :
1085 "sticky_create_regular";
1086 audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1087 return -EACCES;
1088 }
1089 return 0;
1090 }
1091
1092 /*
1093 * follow_up - Find the mountpoint of path's vfsmount
1094 *
1095 * Given a path, find the mountpoint of its source file system.
1096 * Replace @path with the path of the mountpoint in the parent mount.
1097 * Up is towards /.
1098 *
1099 * Return 1 if we went up a level and 0 if we were already at the
1100 * root.
1101 */
1102 int follow_up(struct path *path)
1103 {
1104 struct mount *mnt = real_mount(path->mnt);
1105 struct mount *parent;
1106 struct dentry *mountpoint;
1107
1108 read_seqlock_excl(&mount_lock);
1109 parent = mnt->mnt_parent;
1110 if (parent == mnt) {
1111 read_sequnlock_excl(&mount_lock);
1112 return 0;
1113 }
1114 mntget(&parent->mnt);
1115 mountpoint = dget(mnt->mnt_mountpoint);
1116 read_sequnlock_excl(&mount_lock);
1117 dput(path->dentry);
1118 path->dentry = mountpoint;
1119 mntput(path->mnt);
1120 path->mnt = &parent->mnt;
1121 return 1;
1122 }
1123 EXPORT_SYMBOL(follow_up);
1124
1125 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1126 struct path *path, unsigned *seqp)
1127 {
1128 while (mnt_has_parent(m)) {
1129 struct dentry *mountpoint = m->mnt_mountpoint;
1130
1131 m = m->mnt_parent;
1132 if (unlikely(root->dentry == mountpoint &&
1133 root->mnt == &m->mnt))
1134 break;
1135 if (mountpoint != m->mnt.mnt_root) {
1136 path->mnt = &m->mnt;
1137 path->dentry = mountpoint;
1138 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1139 return true;
1140 }
1141 }
1142 return false;
1143 }
1144
1145 static bool choose_mountpoint(struct mount *m, const struct path *root,
1146 struct path *path)
1147 {
1148 bool found;
1149
1150 rcu_read_lock();
1151 while (1) {
1152 unsigned seq, mseq = read_seqbegin(&mount_lock);
1153
1154 found = choose_mountpoint_rcu(m, root, path, &seq);
1155 if (unlikely(!found)) {
1156 if (!read_seqretry(&mount_lock, mseq))
1157 break;
1158 } else {
1159 if (likely(__legitimize_path(path, seq, mseq)))
1160 break;
1161 rcu_read_unlock();
1162 path_put(path);
1163 rcu_read_lock();
1164 }
1165 }
1166 rcu_read_unlock();
1167 return found;
1168 }
1169
1170 /*
1171 * Perform an automount
1172 * - return -EISDIR to tell follow_managed() to stop and return the path we
1173 * were called with.
1174 */
1175 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1176 {
1177 struct dentry *dentry = path->dentry;
1178
1179 /* We don't want to mount if someone's just doing a stat -
1180 * unless they're stat'ing a directory and appended a '/' to
1181 * the name.
1182 *
1183 * We do, however, want to mount if someone wants to open or
1184 * create a file of any type under the mountpoint, wants to
1185 * traverse through the mountpoint or wants to open the
1186 * mounted directory. Also, autofs may mark negative dentries
1187 * as being automount points. These will need the attentions
1188 * of the daemon to instantiate them before they can be used.
1189 */
1190 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1191 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1192 dentry->d_inode)
1193 return -EISDIR;
1194
1195 if (count && (*count)++ >= MAXSYMLINKS)
1196 return -ELOOP;
1197
1198 return finish_automount(dentry->d_op->d_automount(path), path);
1199 }
1200
1201 /*
1202 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1203 * dentries are pinned but not locked here, so negative dentry can go
1204 * positive right under us. Use of smp_load_acquire() provides a barrier
1205 * sufficient for ->d_inode and ->d_flags consistency.
1206 */
1207 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1208 int *count, unsigned lookup_flags)
1209 {
1210 struct vfsmount *mnt = path->mnt;
1211 bool need_mntput = false;
1212 int ret = 0;
1213
1214 while (flags & DCACHE_MANAGED_DENTRY) {
1215 /* Allow the filesystem to manage the transit without i_mutex
1216 * being held. */
1217 if (flags & DCACHE_MANAGE_TRANSIT) {
1218 ret = path->dentry->d_op->d_manage(path, false);
1219 flags = smp_load_acquire(&path->dentry->d_flags);
1220 if (ret < 0)
1221 break;
1222 }
1223
1224 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1225 struct vfsmount *mounted = lookup_mnt(path);
1226 if (mounted) { // ... in our namespace
1227 dput(path->dentry);
1228 if (need_mntput)
1229 mntput(path->mnt);
1230 path->mnt = mounted;
1231 path->dentry = dget(mounted->mnt_root);
1232 // here we know it's positive
1233 flags = path->dentry->d_flags;
1234 need_mntput = true;
1235 continue;
1236 }
1237 }
1238
1239 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1240 break;
1241
1242 // uncovered automount point
1243 ret = follow_automount(path, count, lookup_flags);
1244 flags = smp_load_acquire(&path->dentry->d_flags);
1245 if (ret < 0)
1246 break;
1247 }
1248
1249 if (ret == -EISDIR)
1250 ret = 0;
1251 // possible if you race with several mount --move
1252 if (need_mntput && path->mnt == mnt)
1253 mntput(path->mnt);
1254 if (!ret && unlikely(d_flags_negative(flags)))
1255 ret = -ENOENT;
1256 *jumped = need_mntput;
1257 return ret;
1258 }
1259
1260 static inline int traverse_mounts(struct path *path, bool *jumped,
1261 int *count, unsigned lookup_flags)
1262 {
1263 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1264
1265 /* fastpath */
1266 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1267 *jumped = false;
1268 if (unlikely(d_flags_negative(flags)))
1269 return -ENOENT;
1270 return 0;
1271 }
1272 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1273 }
1274
1275 int follow_down_one(struct path *path)
1276 {
1277 struct vfsmount *mounted;
1278
1279 mounted = lookup_mnt(path);
1280 if (mounted) {
1281 dput(path->dentry);
1282 mntput(path->mnt);
1283 path->mnt = mounted;
1284 path->dentry = dget(mounted->mnt_root);
1285 return 1;
1286 }
1287 return 0;
1288 }
1289 EXPORT_SYMBOL(follow_down_one);
1290
1291 /*
1292 * Follow down to the covering mount currently visible to userspace. At each
1293 * point, the filesystem owning that dentry may be queried as to whether the
1294 * caller is permitted to proceed or not.
1295 */
1296 int follow_down(struct path *path)
1297 {
1298 struct vfsmount *mnt = path->mnt;
1299 bool jumped;
1300 int ret = traverse_mounts(path, &jumped, NULL, 0);
1301
1302 if (path->mnt != mnt)
1303 mntput(mnt);
1304 return ret;
1305 }
1306 EXPORT_SYMBOL(follow_down);
1307
1308 /*
1309 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1310 * we meet a managed dentry that would need blocking.
1311 */
1312 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1313 struct inode **inode, unsigned *seqp)
1314 {
1315 struct dentry *dentry = path->dentry;
1316 unsigned int flags = dentry->d_flags;
1317
1318 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1319 return true;
1320
1321 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1322 return false;
1323
1324 for (;;) {
1325 /*
1326 * Don't forget we might have a non-mountpoint managed dentry
1327 * that wants to block transit.
1328 */
1329 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1330 int res = dentry->d_op->d_manage(path, true);
1331 if (res)
1332 return res == -EISDIR;
1333 flags = dentry->d_flags;
1334 }
1335
1336 if (flags & DCACHE_MOUNTED) {
1337 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1338 if (mounted) {
1339 path->mnt = &mounted->mnt;
1340 dentry = path->dentry = mounted->mnt.mnt_root;
1341 nd->flags |= LOOKUP_JUMPED;
1342 *seqp = read_seqcount_begin(&dentry->d_seq);
1343 *inode = dentry->d_inode;
1344 /*
1345 * We don't need to re-check ->d_seq after this
1346 * ->d_inode read - there will be an RCU delay
1347 * between mount hash removal and ->mnt_root
1348 * becoming unpinned.
1349 */
1350 flags = dentry->d_flags;
1351 continue;
1352 }
1353 if (read_seqretry(&mount_lock, nd->m_seq))
1354 return false;
1355 }
1356 return !(flags & DCACHE_NEED_AUTOMOUNT);
1357 }
1358 }
1359
1360 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1361 struct path *path, struct inode **inode,
1362 unsigned int *seqp)
1363 {
1364 bool jumped;
1365 int ret;
1366
1367 path->mnt = nd->path.mnt;
1368 path->dentry = dentry;
1369 if (nd->flags & LOOKUP_RCU) {
1370 unsigned int seq = *seqp;
1371 if (unlikely(!*inode))
1372 return -ENOENT;
1373 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1374 return 0;
1375 if (unlazy_child(nd, dentry, seq))
1376 return -ECHILD;
1377 // *path might've been clobbered by __follow_mount_rcu()
1378 path->mnt = nd->path.mnt;
1379 path->dentry = dentry;
1380 }
1381 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1382 if (jumped) {
1383 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1384 ret = -EXDEV;
1385 else
1386 nd->flags |= LOOKUP_JUMPED;
1387 }
1388 if (unlikely(ret)) {
1389 dput(path->dentry);
1390 if (path->mnt != nd->path.mnt)
1391 mntput(path->mnt);
1392 } else {
1393 *inode = d_backing_inode(path->dentry);
1394 *seqp = 0; /* out of RCU mode, so the value doesn't matter */
1395 }
1396 return ret;
1397 }
1398
1399 /*
1400 * This looks up the name in dcache and possibly revalidates the found dentry.
1401 * NULL is returned if the dentry does not exist in the cache.
1402 */
1403 static struct dentry *lookup_dcache(const struct qstr *name,
1404 struct dentry *dir,
1405 unsigned int flags)
1406 {
1407 struct dentry *dentry = d_lookup(dir, name);
1408 if (dentry) {
1409 int error = d_revalidate(dentry, flags);
1410 if (unlikely(error <= 0)) {
1411 if (!error)
1412 d_invalidate(dentry);
1413 dput(dentry);
1414 return ERR_PTR(error);
1415 }
1416 }
1417 return dentry;
1418 }
1419
1420 /*
1421 * Parent directory has inode locked exclusive. This is one
1422 * and only case when ->lookup() gets called on non in-lookup
1423 * dentries - as the matter of fact, this only gets called
1424 * when directory is guaranteed to have no in-lookup children
1425 * at all.
1426 */
1427 static struct dentry *__lookup_hash(const struct qstr *name,
1428 struct dentry *base, unsigned int flags)
1429 {
1430 struct dentry *dentry = lookup_dcache(name, base, flags);
1431 struct dentry *old;
1432 struct inode *dir = base->d_inode;
1433
1434 if (dentry)
1435 return dentry;
1436
1437 /* Don't create child dentry for a dead directory. */
1438 if (unlikely(IS_DEADDIR(dir)))
1439 return ERR_PTR(-ENOENT);
1440
1441 dentry = d_alloc(base, name);
1442 if (unlikely(!dentry))
1443 return ERR_PTR(-ENOMEM);
1444
1445 old = dir->i_op->lookup(dir, dentry, flags);
1446 if (unlikely(old)) {
1447 dput(dentry);
1448 dentry = old;
1449 }
1450 return dentry;
1451 }
1452
1453 static struct dentry *lookup_fast(struct nameidata *nd,
1454 struct inode **inode,
1455 unsigned *seqp)
1456 {
1457 struct dentry *dentry, *parent = nd->path.dentry;
1458 int status = 1;
1459
1460 /*
1461 * Rename seqlock is not required here because in the off chance
1462 * of a false negative due to a concurrent rename, the caller is
1463 * going to fall back to non-racy lookup.
1464 */
1465 if (nd->flags & LOOKUP_RCU) {
1466 unsigned seq;
1467 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1468 if (unlikely(!dentry)) {
1469 if (!try_to_unlazy(nd))
1470 return ERR_PTR(-ECHILD);
1471 return NULL;
1472 }
1473
1474 /*
1475 * This sequence count validates that the inode matches
1476 * the dentry name information from lookup.
1477 */
1478 *inode = d_backing_inode(dentry);
1479 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1480 return ERR_PTR(-ECHILD);
1481
1482 /*
1483 * This sequence count validates that the parent had no
1484 * changes while we did the lookup of the dentry above.
1485 *
1486 * The memory barrier in read_seqcount_begin of child is
1487 * enough, we can use __read_seqcount_retry here.
1488 */
1489 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1490 return ERR_PTR(-ECHILD);
1491
1492 *seqp = seq;
1493 status = d_revalidate(dentry, nd->flags);
1494 if (likely(status > 0))
1495 return dentry;
1496 if (unlazy_child(nd, dentry, seq))
1497 return ERR_PTR(-ECHILD);
1498 if (unlikely(status == -ECHILD))
1499 /* we'd been told to redo it in non-rcu mode */
1500 status = d_revalidate(dentry, nd->flags);
1501 } else {
1502 dentry = __d_lookup(parent, &nd->last);
1503 if (unlikely(!dentry))
1504 return NULL;
1505 status = d_revalidate(dentry, nd->flags);
1506 }
1507 if (unlikely(status <= 0)) {
1508 if (!status)
1509 d_invalidate(dentry);
1510 dput(dentry);
1511 return ERR_PTR(status);
1512 }
1513 return dentry;
1514 }
1515
1516 /* Fast lookup failed, do it the slow way */
1517 static struct dentry *__lookup_slow(const struct qstr *name,
1518 struct dentry *dir,
1519 unsigned int flags)
1520 {
1521 struct dentry *dentry, *old;
1522 struct inode *inode = dir->d_inode;
1523 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1524
1525 /* Don't go there if it's already dead */
1526 if (unlikely(IS_DEADDIR(inode)))
1527 return ERR_PTR(-ENOENT);
1528 again:
1529 dentry = d_alloc_parallel(dir, name, &wq);
1530 if (IS_ERR(dentry))
1531 return dentry;
1532 if (unlikely(!d_in_lookup(dentry))) {
1533 int error = d_revalidate(dentry, flags);
1534 if (unlikely(error <= 0)) {
1535 if (!error) {
1536 d_invalidate(dentry);
1537 dput(dentry);
1538 goto again;
1539 }
1540 dput(dentry);
1541 dentry = ERR_PTR(error);
1542 }
1543 } else {
1544 old = inode->i_op->lookup(inode, dentry, flags);
1545 d_lookup_done(dentry);
1546 if (unlikely(old)) {
1547 dput(dentry);
1548 dentry = old;
1549 }
1550 }
1551 return dentry;
1552 }
1553
1554 static struct dentry *lookup_slow(const struct qstr *name,
1555 struct dentry *dir,
1556 unsigned int flags)
1557 {
1558 struct inode *inode = dir->d_inode;
1559 struct dentry *res;
1560 inode_lock_shared(inode);
1561 res = __lookup_slow(name, dir, flags);
1562 inode_unlock_shared(inode);
1563 return res;
1564 }
1565
1566 static inline int may_lookup(struct nameidata *nd)
1567 {
1568 if (nd->flags & LOOKUP_RCU) {
1569 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1570 if (err != -ECHILD || !try_to_unlazy(nd))
1571 return err;
1572 }
1573 return inode_permission(nd->inode, MAY_EXEC);
1574 }
1575
1576 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1577 {
1578 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1579 return -ELOOP;
1580
1581 if (likely(nd->depth != EMBEDDED_LEVELS))
1582 return 0;
1583 if (likely(nd->stack != nd->internal))
1584 return 0;
1585 if (likely(nd_alloc_stack(nd)))
1586 return 0;
1587
1588 if (nd->flags & LOOKUP_RCU) {
1589 // we need to grab link before we do unlazy. And we can't skip
1590 // unlazy even if we fail to grab the link - cleanup needs it
1591 bool grabbed_link = legitimize_path(nd, link, seq);
1592
1593 if (!try_to_unlazy(nd) != 0 || !grabbed_link)
1594 return -ECHILD;
1595
1596 if (nd_alloc_stack(nd))
1597 return 0;
1598 }
1599 return -ENOMEM;
1600 }
1601
1602 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1603
1604 static const char *pick_link(struct nameidata *nd, struct path *link,
1605 struct inode *inode, unsigned seq, int flags)
1606 {
1607 struct saved *last;
1608 const char *res;
1609 int error = reserve_stack(nd, link, seq);
1610
1611 if (unlikely(error)) {
1612 if (!(nd->flags & LOOKUP_RCU))
1613 path_put(link);
1614 return ERR_PTR(error);
1615 }
1616 last = nd->stack + nd->depth++;
1617 last->link = *link;
1618 clear_delayed_call(&last->done);
1619 last->seq = seq;
1620
1621 if (flags & WALK_TRAILING) {
1622 error = may_follow_link(nd, inode);
1623 if (unlikely(error))
1624 return ERR_PTR(error);
1625 }
1626
1627 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1628 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1629 return ERR_PTR(-ELOOP);
1630
1631 if (!(nd->flags & LOOKUP_RCU)) {
1632 touch_atime(&last->link);
1633 cond_resched();
1634 } else if (atime_needs_update(&last->link, inode)) {
1635 if (!try_to_unlazy(nd))
1636 return ERR_PTR(-ECHILD);
1637 touch_atime(&last->link);
1638 }
1639
1640 error = security_inode_follow_link(link->dentry, inode,
1641 nd->flags & LOOKUP_RCU);
1642 if (unlikely(error))
1643 return ERR_PTR(error);
1644
1645 res = READ_ONCE(inode->i_link);
1646 if (!res) {
1647 const char * (*get)(struct dentry *, struct inode *,
1648 struct delayed_call *);
1649 get = inode->i_op->get_link;
1650 if (nd->flags & LOOKUP_RCU) {
1651 res = get(NULL, inode, &last->done);
1652 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1653 res = get(link->dentry, inode, &last->done);
1654 } else {
1655 res = get(link->dentry, inode, &last->done);
1656 }
1657 if (!res)
1658 goto all_done;
1659 if (IS_ERR(res))
1660 return res;
1661 }
1662 if (*res == '/') {
1663 error = nd_jump_root(nd);
1664 if (unlikely(error))
1665 return ERR_PTR(error);
1666 while (unlikely(*++res == '/'))
1667 ;
1668 }
1669 if (*res)
1670 return res;
1671 all_done: // pure jump
1672 put_link(nd);
1673 return NULL;
1674 }
1675
1676 /*
1677 * Do we need to follow links? We _really_ want to be able
1678 * to do this check without having to look at inode->i_op,
1679 * so we keep a cache of "no, this doesn't need follow_link"
1680 * for the common case.
1681 */
1682 static const char *step_into(struct nameidata *nd, int flags,
1683 struct dentry *dentry, struct inode *inode, unsigned seq)
1684 {
1685 struct path path;
1686 int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1687
1688 if (err < 0)
1689 return ERR_PTR(err);
1690 if (likely(!d_is_symlink(path.dentry)) ||
1691 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1692 (flags & WALK_NOFOLLOW)) {
1693 /* not a symlink or should not follow */
1694 if (!(nd->flags & LOOKUP_RCU)) {
1695 dput(nd->path.dentry);
1696 if (nd->path.mnt != path.mnt)
1697 mntput(nd->path.mnt);
1698 }
1699 nd->path = path;
1700 nd->inode = inode;
1701 nd->seq = seq;
1702 return NULL;
1703 }
1704 if (nd->flags & LOOKUP_RCU) {
1705 /* make sure that d_is_symlink above matches inode */
1706 if (read_seqcount_retry(&path.dentry->d_seq, seq))
1707 return ERR_PTR(-ECHILD);
1708 } else {
1709 if (path.mnt == nd->path.mnt)
1710 mntget(path.mnt);
1711 }
1712 return pick_link(nd, &path, inode, seq, flags);
1713 }
1714
1715 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1716 struct inode **inodep,
1717 unsigned *seqp)
1718 {
1719 struct dentry *parent, *old;
1720
1721 if (path_equal(&nd->path, &nd->root))
1722 goto in_root;
1723 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1724 struct path path;
1725 unsigned seq;
1726 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1727 &nd->root, &path, &seq))
1728 goto in_root;
1729 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1730 return ERR_PTR(-ECHILD);
1731 nd->path = path;
1732 nd->inode = path.dentry->d_inode;
1733 nd->seq = seq;
1734 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1735 return ERR_PTR(-ECHILD);
1736 /* we know that mountpoint was pinned */
1737 }
1738 old = nd->path.dentry;
1739 parent = old->d_parent;
1740 *inodep = parent->d_inode;
1741 *seqp = read_seqcount_begin(&parent->d_seq);
1742 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1743 return ERR_PTR(-ECHILD);
1744 if (unlikely(!path_connected(nd->path.mnt, parent)))
1745 return ERR_PTR(-ECHILD);
1746 return parent;
1747 in_root:
1748 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1749 return ERR_PTR(-ECHILD);
1750 if (unlikely(nd->flags & LOOKUP_BENEATH))
1751 return ERR_PTR(-ECHILD);
1752 return NULL;
1753 }
1754
1755 static struct dentry *follow_dotdot(struct nameidata *nd,
1756 struct inode **inodep,
1757 unsigned *seqp)
1758 {
1759 struct dentry *parent;
1760
1761 if (path_equal(&nd->path, &nd->root))
1762 goto in_root;
1763 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1764 struct path path;
1765
1766 if (!choose_mountpoint(real_mount(nd->path.mnt),
1767 &nd->root, &path))
1768 goto in_root;
1769 path_put(&nd->path);
1770 nd->path = path;
1771 nd->inode = path.dentry->d_inode;
1772 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1773 return ERR_PTR(-EXDEV);
1774 }
1775 /* rare case of legitimate dget_parent()... */
1776 parent = dget_parent(nd->path.dentry);
1777 if (unlikely(!path_connected(nd->path.mnt, parent))) {
1778 dput(parent);
1779 return ERR_PTR(-ENOENT);
1780 }
1781 *seqp = 0;
1782 *inodep = parent->d_inode;
1783 return parent;
1784
1785 in_root:
1786 if (unlikely(nd->flags & LOOKUP_BENEATH))
1787 return ERR_PTR(-EXDEV);
1788 dget(nd->path.dentry);
1789 return NULL;
1790 }
1791
1792 static const char *handle_dots(struct nameidata *nd, int type)
1793 {
1794 if (type == LAST_DOTDOT) {
1795 const char *error = NULL;
1796 struct dentry *parent;
1797 struct inode *inode;
1798 unsigned seq;
1799
1800 if (!nd->root.mnt) {
1801 error = ERR_PTR(set_root(nd));
1802 if (error)
1803 return error;
1804 }
1805 if (nd->flags & LOOKUP_RCU)
1806 parent = follow_dotdot_rcu(nd, &inode, &seq);
1807 else
1808 parent = follow_dotdot(nd, &inode, &seq);
1809 if (IS_ERR(parent))
1810 return ERR_CAST(parent);
1811 if (unlikely(!parent))
1812 error = step_into(nd, WALK_NOFOLLOW,
1813 nd->path.dentry, nd->inode, nd->seq);
1814 else
1815 error = step_into(nd, WALK_NOFOLLOW,
1816 parent, inode, seq);
1817 if (unlikely(error))
1818 return error;
1819
1820 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1821 /*
1822 * If there was a racing rename or mount along our
1823 * path, then we can't be sure that ".." hasn't jumped
1824 * above nd->root (and so userspace should retry or use
1825 * some fallback).
1826 */
1827 smp_rmb();
1828 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1829 return ERR_PTR(-EAGAIN);
1830 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1831 return ERR_PTR(-EAGAIN);
1832 }
1833 }
1834 return NULL;
1835 }
1836
1837 static const char *walk_component(struct nameidata *nd, int flags)
1838 {
1839 struct dentry *dentry;
1840 struct inode *inode;
1841 unsigned seq;
1842 /*
1843 * "." and ".." are special - ".." especially so because it has
1844 * to be able to know about the current root directory and
1845 * parent relationships.
1846 */
1847 if (unlikely(nd->last_type != LAST_NORM)) {
1848 if (!(flags & WALK_MORE) && nd->depth)
1849 put_link(nd);
1850 return handle_dots(nd, nd->last_type);
1851 }
1852 dentry = lookup_fast(nd, &inode, &seq);
1853 if (IS_ERR(dentry))
1854 return ERR_CAST(dentry);
1855 if (unlikely(!dentry)) {
1856 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1857 if (IS_ERR(dentry))
1858 return ERR_CAST(dentry);
1859 }
1860 if (!(flags & WALK_MORE) && nd->depth)
1861 put_link(nd);
1862 return step_into(nd, flags, dentry, inode, seq);
1863 }
1864
1865 /*
1866 * We can do the critical dentry name comparison and hashing
1867 * operations one word at a time, but we are limited to:
1868 *
1869 * - Architectures with fast unaligned word accesses. We could
1870 * do a "get_unaligned()" if this helps and is sufficiently
1871 * fast.
1872 *
1873 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1874 * do not trap on the (extremely unlikely) case of a page
1875 * crossing operation.
1876 *
1877 * - Furthermore, we need an efficient 64-bit compile for the
1878 * 64-bit case in order to generate the "number of bytes in
1879 * the final mask". Again, that could be replaced with a
1880 * efficient population count instruction or similar.
1881 */
1882 #ifdef CONFIG_DCACHE_WORD_ACCESS
1883
1884 #include <asm/word-at-a-time.h>
1885
1886 #ifdef HASH_MIX
1887
1888 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1889
1890 #elif defined(CONFIG_64BIT)
1891 /*
1892 * Register pressure in the mixing function is an issue, particularly
1893 * on 32-bit x86, but almost any function requires one state value and
1894 * one temporary. Instead, use a function designed for two state values
1895 * and no temporaries.
1896 *
1897 * This function cannot create a collision in only two iterations, so
1898 * we have two iterations to achieve avalanche. In those two iterations,
1899 * we have six layers of mixing, which is enough to spread one bit's
1900 * influence out to 2^6 = 64 state bits.
1901 *
1902 * Rotate constants are scored by considering either 64 one-bit input
1903 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1904 * probability of that delta causing a change to each of the 128 output
1905 * bits, using a sample of random initial states.
1906 *
1907 * The Shannon entropy of the computed probabilities is then summed
1908 * to produce a score. Ideally, any input change has a 50% chance of
1909 * toggling any given output bit.
1910 *
1911 * Mixing scores (in bits) for (12,45):
1912 * Input delta: 1-bit 2-bit
1913 * 1 round: 713.3 42542.6
1914 * 2 rounds: 2753.7 140389.8
1915 * 3 rounds: 5954.1 233458.2
1916 * 4 rounds: 7862.6 256672.2
1917 * Perfect: 8192 258048
1918 * (64*128) (64*63/2 * 128)
1919 */
1920 #define HASH_MIX(x, y, a) \
1921 ( x ^= (a), \
1922 y ^= x, x = rol64(x,12),\
1923 x += y, y = rol64(y,45),\
1924 y *= 9 )
1925
1926 /*
1927 * Fold two longs into one 32-bit hash value. This must be fast, but
1928 * latency isn't quite as critical, as there is a fair bit of additional
1929 * work done before the hash value is used.
1930 */
1931 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1932 {
1933 y ^= x * GOLDEN_RATIO_64;
1934 y *= GOLDEN_RATIO_64;
1935 return y >> 32;
1936 }
1937
1938 #else /* 32-bit case */
1939
1940 /*
1941 * Mixing scores (in bits) for (7,20):
1942 * Input delta: 1-bit 2-bit
1943 * 1 round: 330.3 9201.6
1944 * 2 rounds: 1246.4 25475.4
1945 * 3 rounds: 1907.1 31295.1
1946 * 4 rounds: 2042.3 31718.6
1947 * Perfect: 2048 31744
1948 * (32*64) (32*31/2 * 64)
1949 */
1950 #define HASH_MIX(x, y, a) \
1951 ( x ^= (a), \
1952 y ^= x, x = rol32(x, 7),\
1953 x += y, y = rol32(y,20),\
1954 y *= 9 )
1955
1956 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1957 {
1958 /* Use arch-optimized multiply if one exists */
1959 return __hash_32(y ^ __hash_32(x));
1960 }
1961
1962 #endif
1963
1964 /*
1965 * Return the hash of a string of known length. This is carfully
1966 * designed to match hash_name(), which is the more critical function.
1967 * In particular, we must end by hashing a final word containing 0..7
1968 * payload bytes, to match the way that hash_name() iterates until it
1969 * finds the delimiter after the name.
1970 */
1971 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1972 {
1973 unsigned long a, x = 0, y = (unsigned long)salt;
1974
1975 for (;;) {
1976 if (!len)
1977 goto done;
1978 a = load_unaligned_zeropad(name);
1979 if (len < sizeof(unsigned long))
1980 break;
1981 HASH_MIX(x, y, a);
1982 name += sizeof(unsigned long);
1983 len -= sizeof(unsigned long);
1984 }
1985 x ^= a & bytemask_from_count(len);
1986 done:
1987 return fold_hash(x, y);
1988 }
1989 EXPORT_SYMBOL(full_name_hash);
1990
1991 /* Return the "hash_len" (hash and length) of a null-terminated string */
1992 u64 hashlen_string(const void *salt, const char *name)
1993 {
1994 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1995 unsigned long adata, mask, len;
1996 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1997
1998 len = 0;
1999 goto inside;
2000
2001 do {
2002 HASH_MIX(x, y, a);
2003 len += sizeof(unsigned long);
2004 inside:
2005 a = load_unaligned_zeropad(name+len);
2006 } while (!has_zero(a, &adata, &constants));
2007
2008 adata = prep_zero_mask(a, adata, &constants);
2009 mask = create_zero_mask(adata);
2010 x ^= a & zero_bytemask(mask);
2011
2012 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2013 }
2014 EXPORT_SYMBOL(hashlen_string);
2015
2016 /*
2017 * Calculate the length and hash of the path component, and
2018 * return the "hash_len" as the result.
2019 */
2020 static inline u64 hash_name(const void *salt, const char *name)
2021 {
2022 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2023 unsigned long adata, bdata, mask, len;
2024 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2025
2026 len = 0;
2027 goto inside;
2028
2029 do {
2030 HASH_MIX(x, y, a);
2031 len += sizeof(unsigned long);
2032 inside:
2033 a = load_unaligned_zeropad(name+len);
2034 b = a ^ REPEAT_BYTE('/');
2035 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2036
2037 adata = prep_zero_mask(a, adata, &constants);
2038 bdata = prep_zero_mask(b, bdata, &constants);
2039 mask = create_zero_mask(adata | bdata);
2040 x ^= a & zero_bytemask(mask);
2041
2042 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2043 }
2044
2045 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2046
2047 /* Return the hash of a string of known length */
2048 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2049 {
2050 unsigned long hash = init_name_hash(salt);
2051 while (len--)
2052 hash = partial_name_hash((unsigned char)*name++, hash);
2053 return end_name_hash(hash);
2054 }
2055 EXPORT_SYMBOL(full_name_hash);
2056
2057 /* Return the "hash_len" (hash and length) of a null-terminated string */
2058 u64 hashlen_string(const void *salt, const char *name)
2059 {
2060 unsigned long hash = init_name_hash(salt);
2061 unsigned long len = 0, c;
2062
2063 c = (unsigned char)*name;
2064 while (c) {
2065 len++;
2066 hash = partial_name_hash(c, hash);
2067 c = (unsigned char)name[len];
2068 }
2069 return hashlen_create(end_name_hash(hash), len);
2070 }
2071 EXPORT_SYMBOL(hashlen_string);
2072
2073 /*
2074 * We know there's a real path component here of at least
2075 * one character.
2076 */
2077 static inline u64 hash_name(const void *salt, const char *name)
2078 {
2079 unsigned long hash = init_name_hash(salt);
2080 unsigned long len = 0, c;
2081
2082 c = (unsigned char)*name;
2083 do {
2084 len++;
2085 hash = partial_name_hash(c, hash);
2086 c = (unsigned char)name[len];
2087 } while (c && c != '/');
2088 return hashlen_create(end_name_hash(hash), len);
2089 }
2090
2091 #endif
2092
2093 /*
2094 * Name resolution.
2095 * This is the basic name resolution function, turning a pathname into
2096 * the final dentry. We expect 'base' to be positive and a directory.
2097 *
2098 * Returns 0 and nd will have valid dentry and mnt on success.
2099 * Returns error and drops reference to input namei data on failure.
2100 */
2101 static int link_path_walk(const char *name, struct nameidata *nd)
2102 {
2103 int depth = 0; // depth <= nd->depth
2104 int err;
2105
2106 nd->last_type = LAST_ROOT;
2107 nd->flags |= LOOKUP_PARENT;
2108 if (IS_ERR(name))
2109 return PTR_ERR(name);
2110 while (*name=='/')
2111 name++;
2112 if (!*name) {
2113 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2114 return 0;
2115 }
2116
2117 /* At this point we know we have a real path component. */
2118 for(;;) {
2119 const char *link;
2120 u64 hash_len;
2121 int type;
2122
2123 err = may_lookup(nd);
2124 if (err)
2125 return err;
2126
2127 hash_len = hash_name(nd->path.dentry, name);
2128
2129 type = LAST_NORM;
2130 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2131 case 2:
2132 if (name[1] == '.') {
2133 type = LAST_DOTDOT;
2134 nd->flags |= LOOKUP_JUMPED;
2135 }
2136 break;
2137 case 1:
2138 type = LAST_DOT;
2139 }
2140 if (likely(type == LAST_NORM)) {
2141 struct dentry *parent = nd->path.dentry;
2142 nd->flags &= ~LOOKUP_JUMPED;
2143 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2144 struct qstr this = { { .hash_len = hash_len }, .name = name };
2145 err = parent->d_op->d_hash(parent, &this);
2146 if (err < 0)
2147 return err;
2148 hash_len = this.hash_len;
2149 name = this.name;
2150 }
2151 }
2152
2153 nd->last.hash_len = hash_len;
2154 nd->last.name = name;
2155 nd->last_type = type;
2156
2157 name += hashlen_len(hash_len);
2158 if (!*name)
2159 goto OK;
2160 /*
2161 * If it wasn't NUL, we know it was '/'. Skip that
2162 * slash, and continue until no more slashes.
2163 */
2164 do {
2165 name++;
2166 } while (unlikely(*name == '/'));
2167 if (unlikely(!*name)) {
2168 OK:
2169 /* pathname or trailing symlink, done */
2170 if (!depth) {
2171 nd->dir_uid = nd->inode->i_uid;
2172 nd->dir_mode = nd->inode->i_mode;
2173 nd->flags &= ~LOOKUP_PARENT;
2174 return 0;
2175 }
2176 /* last component of nested symlink */
2177 name = nd->stack[--depth].name;
2178 link = walk_component(nd, 0);
2179 } else {
2180 /* not the last component */
2181 link = walk_component(nd, WALK_MORE);
2182 }
2183 if (unlikely(link)) {
2184 if (IS_ERR(link))
2185 return PTR_ERR(link);
2186 /* a symlink to follow */
2187 nd->stack[depth++].name = name;
2188 name = link;
2189 continue;
2190 }
2191 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2192 if (nd->flags & LOOKUP_RCU) {
2193 if (!try_to_unlazy(nd))
2194 return -ECHILD;
2195 }
2196 return -ENOTDIR;
2197 }
2198 }
2199 }
2200
2201 /* must be paired with terminate_walk() */
2202 static const char *path_init(struct nameidata *nd, unsigned flags)
2203 {
2204 int error;
2205 const char *s = nd->name->name;
2206
2207 if (!*s)
2208 flags &= ~LOOKUP_RCU;
2209 if (flags & LOOKUP_RCU)
2210 rcu_read_lock();
2211
2212 nd->flags = flags | LOOKUP_JUMPED;
2213 nd->depth = 0;
2214
2215 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2216 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2217 smp_rmb();
2218
2219 if (flags & LOOKUP_ROOT) {
2220 struct dentry *root = nd->root.dentry;
2221 struct inode *inode = root->d_inode;
2222 if (*s && unlikely(!d_can_lookup(root)))
2223 return ERR_PTR(-ENOTDIR);
2224 nd->path = nd->root;
2225 nd->inode = inode;
2226 if (flags & LOOKUP_RCU) {
2227 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2228 nd->root_seq = nd->seq;
2229 } else {
2230 path_get(&nd->path);
2231 }
2232 return s;
2233 }
2234
2235 nd->root.mnt = NULL;
2236 nd->path.mnt = NULL;
2237 nd->path.dentry = NULL;
2238
2239 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2240 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2241 error = nd_jump_root(nd);
2242 if (unlikely(error))
2243 return ERR_PTR(error);
2244 return s;
2245 }
2246
2247 /* Relative pathname -- get the starting-point it is relative to. */
2248 if (nd->dfd == AT_FDCWD) {
2249 if (flags & LOOKUP_RCU) {
2250 struct fs_struct *fs = current->fs;
2251 unsigned seq;
2252
2253 do {
2254 seq = read_seqcount_begin(&fs->seq);
2255 nd->path = fs->pwd;
2256 nd->inode = nd->path.dentry->d_inode;
2257 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2258 } while (read_seqcount_retry(&fs->seq, seq));
2259 } else {
2260 get_fs_pwd(current->fs, &nd->path);
2261 nd->inode = nd->path.dentry->d_inode;
2262 }
2263 } else {
2264 /* Caller must check execute permissions on the starting path component */
2265 struct fd f = fdget_raw(nd->dfd);
2266 struct dentry *dentry;
2267
2268 if (!f.file)
2269 return ERR_PTR(-EBADF);
2270
2271 dentry = f.file->f_path.dentry;
2272
2273 if (*s && unlikely(!d_can_lookup(dentry))) {
2274 fdput(f);
2275 return ERR_PTR(-ENOTDIR);
2276 }
2277
2278 nd->path = f.file->f_path;
2279 if (flags & LOOKUP_RCU) {
2280 nd->inode = nd->path.dentry->d_inode;
2281 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2282 } else {
2283 path_get(&nd->path);
2284 nd->inode = nd->path.dentry->d_inode;
2285 }
2286 fdput(f);
2287 }
2288
2289 /* For scoped-lookups we need to set the root to the dirfd as well. */
2290 if (flags & LOOKUP_IS_SCOPED) {
2291 nd->root = nd->path;
2292 if (flags & LOOKUP_RCU) {
2293 nd->root_seq = nd->seq;
2294 } else {
2295 path_get(&nd->root);
2296 nd->flags |= LOOKUP_ROOT_GRABBED;
2297 }
2298 }
2299 return s;
2300 }
2301
2302 static inline const char *lookup_last(struct nameidata *nd)
2303 {
2304 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2305 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2306
2307 return walk_component(nd, WALK_TRAILING);
2308 }
2309
2310 static int handle_lookup_down(struct nameidata *nd)
2311 {
2312 if (!(nd->flags & LOOKUP_RCU))
2313 dget(nd->path.dentry);
2314 return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2315 nd->path.dentry, nd->inode, nd->seq));
2316 }
2317
2318 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2319 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2320 {
2321 const char *s = path_init(nd, flags);
2322 int err;
2323
2324 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2325 err = handle_lookup_down(nd);
2326 if (unlikely(err < 0))
2327 s = ERR_PTR(err);
2328 }
2329
2330 while (!(err = link_path_walk(s, nd)) &&
2331 (s = lookup_last(nd)) != NULL)
2332 ;
2333 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2334 err = handle_lookup_down(nd);
2335 nd->flags &= ~LOOKUP_JUMPED; // no d_weak_revalidate(), please...
2336 }
2337 if (!err)
2338 err = complete_walk(nd);
2339
2340 if (!err && nd->flags & LOOKUP_DIRECTORY)
2341 if (!d_can_lookup(nd->path.dentry))
2342 err = -ENOTDIR;
2343 if (!err) {
2344 *path = nd->path;
2345 nd->path.mnt = NULL;
2346 nd->path.dentry = NULL;
2347 }
2348 terminate_walk(nd);
2349 return err;
2350 }
2351
2352 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2353 struct path *path, struct path *root)
2354 {
2355 int retval;
2356 struct nameidata nd;
2357 if (IS_ERR(name))
2358 return PTR_ERR(name);
2359 if (unlikely(root)) {
2360 nd.root = *root;
2361 flags |= LOOKUP_ROOT;
2362 }
2363 set_nameidata(&nd, dfd, name);
2364 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2365 if (unlikely(retval == -ECHILD))
2366 retval = path_lookupat(&nd, flags, path);
2367 if (unlikely(retval == -ESTALE))
2368 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2369
2370 if (likely(!retval))
2371 audit_inode(name, path->dentry,
2372 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2373 restore_nameidata();
2374 putname(name);
2375 return retval;
2376 }
2377
2378 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2379 static int path_parentat(struct nameidata *nd, unsigned flags,
2380 struct path *parent)
2381 {
2382 const char *s = path_init(nd, flags);
2383 int err = link_path_walk(s, nd);
2384 if (!err)
2385 err = complete_walk(nd);
2386 if (!err) {
2387 *parent = nd->path;
2388 nd->path.mnt = NULL;
2389 nd->path.dentry = NULL;
2390 }
2391 terminate_walk(nd);
2392 return err;
2393 }
2394
2395 static struct filename *filename_parentat(int dfd, struct filename *name,
2396 unsigned int flags, struct path *parent,
2397 struct qstr *last, int *type)
2398 {
2399 int retval;
2400 struct nameidata nd;
2401
2402 if (IS_ERR(name))
2403 return name;
2404 set_nameidata(&nd, dfd, name);
2405 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2406 if (unlikely(retval == -ECHILD))
2407 retval = path_parentat(&nd, flags, parent);
2408 if (unlikely(retval == -ESTALE))
2409 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2410 if (likely(!retval)) {
2411 *last = nd.last;
2412 *type = nd.last_type;
2413 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2414 } else {
2415 putname(name);
2416 name = ERR_PTR(retval);
2417 }
2418 restore_nameidata();
2419 return name;
2420 }
2421
2422 /* does lookup, returns the object with parent locked */
2423 struct dentry *kern_path_locked(const char *name, struct path *path)
2424 {
2425 struct filename *filename;
2426 struct dentry *d;
2427 struct qstr last;
2428 int type;
2429
2430 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2431 &last, &type);
2432 if (IS_ERR(filename))
2433 return ERR_CAST(filename);
2434 if (unlikely(type != LAST_NORM)) {
2435 path_put(path);
2436 putname(filename);
2437 return ERR_PTR(-EINVAL);
2438 }
2439 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2440 d = __lookup_hash(&last, path->dentry, 0);
2441 if (IS_ERR(d)) {
2442 inode_unlock(path->dentry->d_inode);
2443 path_put(path);
2444 }
2445 putname(filename);
2446 return d;
2447 }
2448
2449 int kern_path(const char *name, unsigned int flags, struct path *path)
2450 {
2451 return filename_lookup(AT_FDCWD, getname_kernel(name),
2452 flags, path, NULL);
2453 }
2454 EXPORT_SYMBOL(kern_path);
2455
2456 /**
2457 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2458 * @dentry: pointer to dentry of the base directory
2459 * @mnt: pointer to vfs mount of the base directory
2460 * @name: pointer to file name
2461 * @flags: lookup flags
2462 * @path: pointer to struct path to fill
2463 */
2464 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2465 const char *name, unsigned int flags,
2466 struct path *path)
2467 {
2468 struct path root = {.mnt = mnt, .dentry = dentry};
2469 /* the first argument of filename_lookup() is ignored with root */
2470 return filename_lookup(AT_FDCWD, getname_kernel(name),
2471 flags , path, &root);
2472 }
2473 EXPORT_SYMBOL(vfs_path_lookup);
2474
2475 static int lookup_one_len_common(const char *name, struct dentry *base,
2476 int len, struct qstr *this)
2477 {
2478 this->name = name;
2479 this->len = len;
2480 this->hash = full_name_hash(base, name, len);
2481 if (!len)
2482 return -EACCES;
2483
2484 if (unlikely(name[0] == '.')) {
2485 if (len < 2 || (len == 2 && name[1] == '.'))
2486 return -EACCES;
2487 }
2488
2489 while (len--) {
2490 unsigned int c = *(const unsigned char *)name++;
2491 if (c == '/' || c == '\0')
2492 return -EACCES;
2493 }
2494 /*
2495 * See if the low-level filesystem might want
2496 * to use its own hash..
2497 */
2498 if (base->d_flags & DCACHE_OP_HASH) {
2499 int err = base->d_op->d_hash(base, this);
2500 if (err < 0)
2501 return err;
2502 }
2503
2504 return inode_permission(base->d_inode, MAY_EXEC);
2505 }
2506
2507 /**
2508 * try_lookup_one_len - filesystem helper to lookup single pathname component
2509 * @name: pathname component to lookup
2510 * @base: base directory to lookup from
2511 * @len: maximum length @len should be interpreted to
2512 *
2513 * Look up a dentry by name in the dcache, returning NULL if it does not
2514 * currently exist. The function does not try to create a dentry.
2515 *
2516 * Note that this routine is purely a helper for filesystem usage and should
2517 * not be called by generic code.
2518 *
2519 * The caller must hold base->i_mutex.
2520 */
2521 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2522 {
2523 struct qstr this;
2524 int err;
2525
2526 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2527
2528 err = lookup_one_len_common(name, base, len, &this);
2529 if (err)
2530 return ERR_PTR(err);
2531
2532 return lookup_dcache(&this, base, 0);
2533 }
2534 EXPORT_SYMBOL(try_lookup_one_len);
2535
2536 /**
2537 * lookup_one_len - filesystem helper to lookup single pathname component
2538 * @name: pathname component to lookup
2539 * @base: base directory to lookup from
2540 * @len: maximum length @len should be interpreted to
2541 *
2542 * Note that this routine is purely a helper for filesystem usage and should
2543 * not be called by generic code.
2544 *
2545 * The caller must hold base->i_mutex.
2546 */
2547 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2548 {
2549 struct dentry *dentry;
2550 struct qstr this;
2551 int err;
2552
2553 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2554
2555 err = lookup_one_len_common(name, base, len, &this);
2556 if (err)
2557 return ERR_PTR(err);
2558
2559 dentry = lookup_dcache(&this, base, 0);
2560 return dentry ? dentry : __lookup_slow(&this, base, 0);
2561 }
2562 EXPORT_SYMBOL(lookup_one_len);
2563
2564 /**
2565 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2566 * @name: pathname component to lookup
2567 * @base: base directory to lookup from
2568 * @len: maximum length @len should be interpreted to
2569 *
2570 * Note that this routine is purely a helper for filesystem usage and should
2571 * not be called by generic code.
2572 *
2573 * Unlike lookup_one_len, it should be called without the parent
2574 * i_mutex held, and will take the i_mutex itself if necessary.
2575 */
2576 struct dentry *lookup_one_len_unlocked(const char *name,
2577 struct dentry *base, int len)
2578 {
2579 struct qstr this;
2580 int err;
2581 struct dentry *ret;
2582
2583 err = lookup_one_len_common(name, base, len, &this);
2584 if (err)
2585 return ERR_PTR(err);
2586
2587 ret = lookup_dcache(&this, base, 0);
2588 if (!ret)
2589 ret = lookup_slow(&this, base, 0);
2590 return ret;
2591 }
2592 EXPORT_SYMBOL(lookup_one_len_unlocked);
2593
2594 /*
2595 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2596 * on negatives. Returns known positive or ERR_PTR(); that's what
2597 * most of the users want. Note that pinned negative with unlocked parent
2598 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2599 * need to be very careful; pinned positives have ->d_inode stable, so
2600 * this one avoids such problems.
2601 */
2602 struct dentry *lookup_positive_unlocked(const char *name,
2603 struct dentry *base, int len)
2604 {
2605 struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2606 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2607 dput(ret);
2608 ret = ERR_PTR(-ENOENT);
2609 }
2610 return ret;
2611 }
2612 EXPORT_SYMBOL(lookup_positive_unlocked);
2613
2614 #ifdef CONFIG_UNIX98_PTYS
2615 int path_pts(struct path *path)
2616 {
2617 /* Find something mounted on "pts" in the same directory as
2618 * the input path.
2619 */
2620 struct dentry *parent = dget_parent(path->dentry);
2621 struct dentry *child;
2622 struct qstr this = QSTR_INIT("pts", 3);
2623
2624 if (unlikely(!path_connected(path->mnt, parent))) {
2625 dput(parent);
2626 return -ENOENT;
2627 }
2628 dput(path->dentry);
2629 path->dentry = parent;
2630 child = d_hash_and_lookup(parent, &this);
2631 if (!child)
2632 return -ENOENT;
2633
2634 path->dentry = child;
2635 dput(parent);
2636 follow_down(path);
2637 return 0;
2638 }
2639 #endif
2640
2641 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2642 struct path *path, int *empty)
2643 {
2644 return filename_lookup(dfd, getname_flags(name, flags, empty),
2645 flags, path, NULL);
2646 }
2647 EXPORT_SYMBOL(user_path_at_empty);
2648
2649 int __check_sticky(struct inode *dir, struct inode *inode)
2650 {
2651 kuid_t fsuid = current_fsuid();
2652
2653 if (uid_eq(inode->i_uid, fsuid))
2654 return 0;
2655 if (uid_eq(dir->i_uid, fsuid))
2656 return 0;
2657 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2658 }
2659 EXPORT_SYMBOL(__check_sticky);
2660
2661 /*
2662 * Check whether we can remove a link victim from directory dir, check
2663 * whether the type of victim is right.
2664 * 1. We can't do it if dir is read-only (done in permission())
2665 * 2. We should have write and exec permissions on dir
2666 * 3. We can't remove anything from append-only dir
2667 * 4. We can't do anything with immutable dir (done in permission())
2668 * 5. If the sticky bit on dir is set we should either
2669 * a. be owner of dir, or
2670 * b. be owner of victim, or
2671 * c. have CAP_FOWNER capability
2672 * 6. If the victim is append-only or immutable we can't do antyhing with
2673 * links pointing to it.
2674 * 7. If the victim has an unknown uid or gid we can't change the inode.
2675 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2676 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2677 * 10. We can't remove a root or mountpoint.
2678 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2679 * nfs_async_unlink().
2680 */
2681 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2682 {
2683 struct inode *inode = d_backing_inode(victim);
2684 int error;
2685
2686 if (d_is_negative(victim))
2687 return -ENOENT;
2688 BUG_ON(!inode);
2689
2690 BUG_ON(victim->d_parent->d_inode != dir);
2691
2692 /* Inode writeback is not safe when the uid or gid are invalid. */
2693 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2694 return -EOVERFLOW;
2695
2696 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2697
2698 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2699 if (error)
2700 return error;
2701 if (IS_APPEND(dir))
2702 return -EPERM;
2703
2704 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2705 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2706 return -EPERM;
2707 if (isdir) {
2708 if (!d_is_dir(victim))
2709 return -ENOTDIR;
2710 if (IS_ROOT(victim))
2711 return -EBUSY;
2712 } else if (d_is_dir(victim))
2713 return -EISDIR;
2714 if (IS_DEADDIR(dir))
2715 return -ENOENT;
2716 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2717 return -EBUSY;
2718 return 0;
2719 }
2720
2721 /* Check whether we can create an object with dentry child in directory
2722 * dir.
2723 * 1. We can't do it if child already exists (open has special treatment for
2724 * this case, but since we are inlined it's OK)
2725 * 2. We can't do it if dir is read-only (done in permission())
2726 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2727 * 4. We should have write and exec permissions on dir
2728 * 5. We can't do it if dir is immutable (done in permission())
2729 */
2730 static inline int may_create(struct inode *dir, struct dentry *child)
2731 {
2732 struct user_namespace *s_user_ns;
2733 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2734 if (child->d_inode)
2735 return -EEXIST;
2736 if (IS_DEADDIR(dir))
2737 return -ENOENT;
2738 s_user_ns = dir->i_sb->s_user_ns;
2739 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2740 !kgid_has_mapping(s_user_ns, current_fsgid()))
2741 return -EOVERFLOW;
2742 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2743 }
2744
2745 /*
2746 * p1 and p2 should be directories on the same fs.
2747 */
2748 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2749 {
2750 struct dentry *p;
2751
2752 if (p1 == p2) {
2753 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2754 return NULL;
2755 }
2756
2757 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2758
2759 p = d_ancestor(p2, p1);
2760 if (p) {
2761 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2762 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2763 return p;
2764 }
2765
2766 p = d_ancestor(p1, p2);
2767 if (p) {
2768 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2769 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2770 return p;
2771 }
2772
2773 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2774 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2775 return NULL;
2776 }
2777 EXPORT_SYMBOL(lock_rename);
2778
2779 void unlock_rename(struct dentry *p1, struct dentry *p2)
2780 {
2781 inode_unlock(p1->d_inode);
2782 if (p1 != p2) {
2783 inode_unlock(p2->d_inode);
2784 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2785 }
2786 }
2787 EXPORT_SYMBOL(unlock_rename);
2788
2789 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2790 bool want_excl)
2791 {
2792 int error = may_create(dir, dentry);
2793 if (error)
2794 return error;
2795
2796 if (!dir->i_op->create)
2797 return -EACCES; /* shouldn't it be ENOSYS? */
2798 mode &= S_IALLUGO;
2799 mode |= S_IFREG;
2800 error = security_inode_create(dir, dentry, mode);
2801 if (error)
2802 return error;
2803 error = dir->i_op->create(dir, dentry, mode, want_excl);
2804 if (!error)
2805 fsnotify_create(dir, dentry);
2806 return error;
2807 }
2808 EXPORT_SYMBOL(vfs_create);
2809
2810 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2811 int (*f)(struct dentry *, umode_t, void *),
2812 void *arg)
2813 {
2814 struct inode *dir = dentry->d_parent->d_inode;
2815 int error = may_create(dir, dentry);
2816 if (error)
2817 return error;
2818
2819 mode &= S_IALLUGO;
2820 mode |= S_IFREG;
2821 error = security_inode_create(dir, dentry, mode);
2822 if (error)
2823 return error;
2824 error = f(dentry, mode, arg);
2825 if (!error)
2826 fsnotify_create(dir, dentry);
2827 return error;
2828 }
2829 EXPORT_SYMBOL(vfs_mkobj);
2830
2831 bool may_open_dev(const struct path *path)
2832 {
2833 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2834 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2835 }
2836
2837 static int may_open(const struct path *path, int acc_mode, int flag)
2838 {
2839 struct dentry *dentry = path->dentry;
2840 struct inode *inode = dentry->d_inode;
2841 int error;
2842
2843 if (!inode)
2844 return -ENOENT;
2845
2846 switch (inode->i_mode & S_IFMT) {
2847 case S_IFLNK:
2848 return -ELOOP;
2849 case S_IFDIR:
2850 if (acc_mode & MAY_WRITE)
2851 return -EISDIR;
2852 if (acc_mode & MAY_EXEC)
2853 return -EACCES;
2854 break;
2855 case S_IFBLK:
2856 case S_IFCHR:
2857 if (!may_open_dev(path))
2858 return -EACCES;
2859 fallthrough;
2860 case S_IFIFO:
2861 case S_IFSOCK:
2862 if (acc_mode & MAY_EXEC)
2863 return -EACCES;
2864 flag &= ~O_TRUNC;
2865 break;
2866 case S_IFREG:
2867 if ((acc_mode & MAY_EXEC) && path_noexec(path))
2868 return -EACCES;
2869 break;
2870 }
2871
2872 error = inode_permission(inode, MAY_OPEN | acc_mode);
2873 if (error)
2874 return error;
2875
2876 /*
2877 * An append-only file must be opened in append mode for writing.
2878 */
2879 if (IS_APPEND(inode)) {
2880 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2881 return -EPERM;
2882 if (flag & O_TRUNC)
2883 return -EPERM;
2884 }
2885
2886 /* O_NOATIME can only be set by the owner or superuser */
2887 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2888 return -EPERM;
2889
2890 return 0;
2891 }
2892
2893 static int handle_truncate(struct file *filp)
2894 {
2895 const struct path *path = &filp->f_path;
2896 struct inode *inode = path->dentry->d_inode;
2897 int error = get_write_access(inode);
2898 if (error)
2899 return error;
2900 /*
2901 * Refuse to truncate files with mandatory locks held on them.
2902 */
2903 error = locks_verify_locked(filp);
2904 if (!error)
2905 error = security_path_truncate(path);
2906 if (!error) {
2907 error = do_truncate(path->dentry, 0,
2908 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2909 filp);
2910 }
2911 put_write_access(inode);
2912 return error;
2913 }
2914
2915 static inline int open_to_namei_flags(int flag)
2916 {
2917 if ((flag & O_ACCMODE) == 3)
2918 flag--;
2919 return flag;
2920 }
2921
2922 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2923 {
2924 struct user_namespace *s_user_ns;
2925 int error = security_path_mknod(dir, dentry, mode, 0);
2926 if (error)
2927 return error;
2928
2929 s_user_ns = dir->dentry->d_sb->s_user_ns;
2930 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2931 !kgid_has_mapping(s_user_ns, current_fsgid()))
2932 return -EOVERFLOW;
2933
2934 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2935 if (error)
2936 return error;
2937
2938 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2939 }
2940
2941 /*
2942 * Attempt to atomically look up, create and open a file from a negative
2943 * dentry.
2944 *
2945 * Returns 0 if successful. The file will have been created and attached to
2946 * @file by the filesystem calling finish_open().
2947 *
2948 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
2949 * be set. The caller will need to perform the open themselves. @path will
2950 * have been updated to point to the new dentry. This may be negative.
2951 *
2952 * Returns an error code otherwise.
2953 */
2954 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
2955 struct file *file,
2956 int open_flag, umode_t mode)
2957 {
2958 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2959 struct inode *dir = nd->path.dentry->d_inode;
2960 int error;
2961
2962 if (nd->flags & LOOKUP_DIRECTORY)
2963 open_flag |= O_DIRECTORY;
2964
2965 file->f_path.dentry = DENTRY_NOT_SET;
2966 file->f_path.mnt = nd->path.mnt;
2967 error = dir->i_op->atomic_open(dir, dentry, file,
2968 open_to_namei_flags(open_flag), mode);
2969 d_lookup_done(dentry);
2970 if (!error) {
2971 if (file->f_mode & FMODE_OPENED) {
2972 if (unlikely(dentry != file->f_path.dentry)) {
2973 dput(dentry);
2974 dentry = dget(file->f_path.dentry);
2975 }
2976 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2977 error = -EIO;
2978 } else {
2979 if (file->f_path.dentry) {
2980 dput(dentry);
2981 dentry = file->f_path.dentry;
2982 }
2983 if (unlikely(d_is_negative(dentry)))
2984 error = -ENOENT;
2985 }
2986 }
2987 if (error) {
2988 dput(dentry);
2989 dentry = ERR_PTR(error);
2990 }
2991 return dentry;
2992 }
2993
2994 /*
2995 * Look up and maybe create and open the last component.
2996 *
2997 * Must be called with parent locked (exclusive in O_CREAT case).
2998 *
2999 * Returns 0 on success, that is, if
3000 * the file was successfully atomically created (if necessary) and opened, or
3001 * the file was not completely opened at this time, though lookups and
3002 * creations were performed.
3003 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3004 * In the latter case dentry returned in @path might be negative if O_CREAT
3005 * hadn't been specified.
3006 *
3007 * An error code is returned on failure.
3008 */
3009 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3010 const struct open_flags *op,
3011 bool got_write)
3012 {
3013 struct dentry *dir = nd->path.dentry;
3014 struct inode *dir_inode = dir->d_inode;
3015 int open_flag = op->open_flag;
3016 struct dentry *dentry;
3017 int error, create_error = 0;
3018 umode_t mode = op->mode;
3019 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3020
3021 if (unlikely(IS_DEADDIR(dir_inode)))
3022 return ERR_PTR(-ENOENT);
3023
3024 file->f_mode &= ~FMODE_CREATED;
3025 dentry = d_lookup(dir, &nd->last);
3026 for (;;) {
3027 if (!dentry) {
3028 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3029 if (IS_ERR(dentry))
3030 return dentry;
3031 }
3032 if (d_in_lookup(dentry))
3033 break;
3034
3035 error = d_revalidate(dentry, nd->flags);
3036 if (likely(error > 0))
3037 break;
3038 if (error)
3039 goto out_dput;
3040 d_invalidate(dentry);
3041 dput(dentry);
3042 dentry = NULL;
3043 }
3044 if (dentry->d_inode) {
3045 /* Cached positive dentry: will open in f_op->open */
3046 return dentry;
3047 }
3048
3049 /*
3050 * Checking write permission is tricky, bacuse we don't know if we are
3051 * going to actually need it: O_CREAT opens should work as long as the
3052 * file exists. But checking existence breaks atomicity. The trick is
3053 * to check access and if not granted clear O_CREAT from the flags.
3054 *
3055 * Another problem is returing the "right" error value (e.g. for an
3056 * O_EXCL open we want to return EEXIST not EROFS).
3057 */
3058 if (unlikely(!got_write))
3059 open_flag &= ~O_TRUNC;
3060 if (open_flag & O_CREAT) {
3061 if (open_flag & O_EXCL)
3062 open_flag &= ~O_TRUNC;
3063 if (!IS_POSIXACL(dir->d_inode))
3064 mode &= ~current_umask();
3065 if (likely(got_write))
3066 create_error = may_o_create(&nd->path, dentry, mode);
3067 else
3068 create_error = -EROFS;
3069 }
3070 if (create_error)
3071 open_flag &= ~O_CREAT;
3072 if (dir_inode->i_op->atomic_open) {
3073 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3074 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3075 dentry = ERR_PTR(create_error);
3076 return dentry;
3077 }
3078
3079 if (d_in_lookup(dentry)) {
3080 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3081 nd->flags);
3082 d_lookup_done(dentry);
3083 if (unlikely(res)) {
3084 if (IS_ERR(res)) {
3085 error = PTR_ERR(res);
3086 goto out_dput;
3087 }
3088 dput(dentry);
3089 dentry = res;
3090 }
3091 }
3092
3093 /* Negative dentry, just create the file */
3094 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3095 file->f_mode |= FMODE_CREATED;
3096 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3097 if (!dir_inode->i_op->create) {
3098 error = -EACCES;
3099 goto out_dput;
3100 }
3101 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3102 open_flag & O_EXCL);
3103 if (error)
3104 goto out_dput;
3105 }
3106 if (unlikely(create_error) && !dentry->d_inode) {
3107 error = create_error;
3108 goto out_dput;
3109 }
3110 return dentry;
3111
3112 out_dput:
3113 dput(dentry);
3114 return ERR_PTR(error);
3115 }
3116
3117 static const char *open_last_lookups(struct nameidata *nd,
3118 struct file *file, const struct open_flags *op)
3119 {
3120 struct dentry *dir = nd->path.dentry;
3121 int open_flag = op->open_flag;
3122 bool got_write = false;
3123 unsigned seq;
3124 struct inode *inode;
3125 struct dentry *dentry;
3126 const char *res;
3127
3128 nd->flags |= op->intent;
3129
3130 if (nd->last_type != LAST_NORM) {
3131 if (nd->depth)
3132 put_link(nd);
3133 return handle_dots(nd, nd->last_type);
3134 }
3135
3136 if (!(open_flag & O_CREAT)) {
3137 if (nd->last.name[nd->last.len])
3138 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3139 /* we _can_ be in RCU mode here */
3140 dentry = lookup_fast(nd, &inode, &seq);
3141 if (IS_ERR(dentry))
3142 return ERR_CAST(dentry);
3143 if (likely(dentry))
3144 goto finish_lookup;
3145
3146 BUG_ON(nd->flags & LOOKUP_RCU);
3147 } else {
3148 /* create side of things */
3149 if (nd->flags & LOOKUP_RCU) {
3150 if (!try_to_unlazy(nd))
3151 return ERR_PTR(-ECHILD);
3152 }
3153 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3154 /* trailing slashes? */
3155 if (unlikely(nd->last.name[nd->last.len]))
3156 return ERR_PTR(-EISDIR);
3157 }
3158
3159 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3160 got_write = !mnt_want_write(nd->path.mnt);
3161 /*
3162 * do _not_ fail yet - we might not need that or fail with
3163 * a different error; let lookup_open() decide; we'll be
3164 * dropping this one anyway.
3165 */
3166 }
3167 if (open_flag & O_CREAT)
3168 inode_lock(dir->d_inode);
3169 else
3170 inode_lock_shared(dir->d_inode);
3171 dentry = lookup_open(nd, file, op, got_write);
3172 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3173 fsnotify_create(dir->d_inode, dentry);
3174 if (open_flag & O_CREAT)
3175 inode_unlock(dir->d_inode);
3176 else
3177 inode_unlock_shared(dir->d_inode);
3178
3179 if (got_write)
3180 mnt_drop_write(nd->path.mnt);
3181
3182 if (IS_ERR(dentry))
3183 return ERR_CAST(dentry);
3184
3185 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3186 dput(nd->path.dentry);
3187 nd->path.dentry = dentry;
3188 return NULL;
3189 }
3190
3191 finish_lookup:
3192 if (nd->depth)
3193 put_link(nd);
3194 res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3195 if (unlikely(res))
3196 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3197 return res;
3198 }
3199
3200 /*
3201 * Handle the last step of open()
3202 */
3203 static int do_open(struct nameidata *nd,
3204 struct file *file, const struct open_flags *op)
3205 {
3206 int open_flag = op->open_flag;
3207 bool do_truncate;
3208 int acc_mode;
3209 int error;
3210
3211 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3212 error = complete_walk(nd);
3213 if (error)
3214 return error;
3215 }
3216 if (!(file->f_mode & FMODE_CREATED))
3217 audit_inode(nd->name, nd->path.dentry, 0);
3218 if (open_flag & O_CREAT) {
3219 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3220 return -EEXIST;
3221 if (d_is_dir(nd->path.dentry))
3222 return -EISDIR;
3223 error = may_create_in_sticky(nd->dir_mode, nd->dir_uid,
3224 d_backing_inode(nd->path.dentry));
3225 if (unlikely(error))
3226 return error;
3227 }
3228 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3229 return -ENOTDIR;
3230
3231 do_truncate = false;
3232 acc_mode = op->acc_mode;
3233 if (file->f_mode & FMODE_CREATED) {
3234 /* Don't check for write permission, don't truncate */
3235 open_flag &= ~O_TRUNC;
3236 acc_mode = 0;
3237 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3238 error = mnt_want_write(nd->path.mnt);
3239 if (error)
3240 return error;
3241 do_truncate = true;
3242 }
3243 error = may_open(&nd->path, acc_mode, open_flag);
3244 if (!error && !(file->f_mode & FMODE_OPENED))
3245 error = vfs_open(&nd->path, file);
3246 if (!error)
3247 error = ima_file_check(file, op->acc_mode);
3248 if (!error && do_truncate)
3249 error = handle_truncate(file);
3250 if (unlikely(error > 0)) {
3251 WARN_ON(1);
3252 error = -EINVAL;
3253 }
3254 if (do_truncate)
3255 mnt_drop_write(nd->path.mnt);
3256 return error;
3257 }
3258
3259 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3260 {
3261 struct dentry *child = NULL;
3262 struct inode *dir = dentry->d_inode;
3263 struct inode *inode;
3264 int error;
3265
3266 /* we want directory to be writable */
3267 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3268 if (error)
3269 goto out_err;
3270 error = -EOPNOTSUPP;
3271 if (!dir->i_op->tmpfile)
3272 goto out_err;
3273 error = -ENOMEM;
3274 child = d_alloc(dentry, &slash_name);
3275 if (unlikely(!child))
3276 goto out_err;
3277 error = dir->i_op->tmpfile(dir, child, mode);
3278 if (error)
3279 goto out_err;
3280 error = -ENOENT;
3281 inode = child->d_inode;
3282 if (unlikely(!inode))
3283 goto out_err;
3284 if (!(open_flag & O_EXCL)) {
3285 spin_lock(&inode->i_lock);
3286 inode->i_state |= I_LINKABLE;
3287 spin_unlock(&inode->i_lock);
3288 }
3289 ima_post_create_tmpfile(inode);
3290 return child;
3291
3292 out_err:
3293 dput(child);
3294 return ERR_PTR(error);
3295 }
3296 EXPORT_SYMBOL(vfs_tmpfile);
3297
3298 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3299 const struct open_flags *op,
3300 struct file *file)
3301 {
3302 struct dentry *child;
3303 struct path path;
3304 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3305 if (unlikely(error))
3306 return error;
3307 error = mnt_want_write(path.mnt);
3308 if (unlikely(error))
3309 goto out;
3310 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3311 error = PTR_ERR(child);
3312 if (IS_ERR(child))
3313 goto out2;
3314 dput(path.dentry);
3315 path.dentry = child;
3316 audit_inode(nd->name, child, 0);
3317 /* Don't check for other permissions, the inode was just created */
3318 error = may_open(&path, 0, op->open_flag);
3319 if (error)
3320 goto out2;
3321 file->f_path.mnt = path.mnt;
3322 error = finish_open(file, child, NULL);
3323 out2:
3324 mnt_drop_write(path.mnt);
3325 out:
3326 path_put(&path);
3327 return error;
3328 }
3329
3330 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3331 {
3332 struct path path;
3333 int error = path_lookupat(nd, flags, &path);
3334 if (!error) {
3335 audit_inode(nd->name, path.dentry, 0);
3336 error = vfs_open(&path, file);
3337 path_put(&path);
3338 }
3339 return error;
3340 }
3341
3342 static struct file *path_openat(struct nameidata *nd,
3343 const struct open_flags *op, unsigned flags)
3344 {
3345 struct file *file;
3346 int error;
3347
3348 file = alloc_empty_file(op->open_flag, current_cred());
3349 if (IS_ERR(file))
3350 return file;
3351
3352 if (unlikely(file->f_flags & __O_TMPFILE)) {
3353 error = do_tmpfile(nd, flags, op, file);
3354 } else if (unlikely(file->f_flags & O_PATH)) {
3355 error = do_o_path(nd, flags, file);
3356 } else {
3357 const char *s = path_init(nd, flags);
3358 while (!(error = link_path_walk(s, nd)) &&
3359 (s = open_last_lookups(nd, file, op)) != NULL)
3360 ;
3361 if (!error)
3362 error = do_open(nd, file, op);
3363 terminate_walk(nd);
3364 }
3365 if (likely(!error)) {
3366 if (likely(file->f_mode & FMODE_OPENED))
3367 return file;
3368 WARN_ON(1);
3369 error = -EINVAL;
3370 }
3371 fput(file);
3372 if (error == -EOPENSTALE) {
3373 if (flags & LOOKUP_RCU)
3374 error = -ECHILD;
3375 else
3376 error = -ESTALE;
3377 }
3378 return ERR_PTR(error);
3379 }
3380
3381 struct file *do_filp_open(int dfd, struct filename *pathname,
3382 const struct open_flags *op)
3383 {
3384 struct nameidata nd;
3385 int flags = op->lookup_flags;
3386 struct file *filp;
3387
3388 set_nameidata(&nd, dfd, pathname);
3389 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3390 if (unlikely(filp == ERR_PTR(-ECHILD)))
3391 filp = path_openat(&nd, op, flags);
3392 if (unlikely(filp == ERR_PTR(-ESTALE)))
3393 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3394 restore_nameidata();
3395 return filp;
3396 }
3397
3398 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3399 const char *name, const struct open_flags *op)
3400 {
3401 struct nameidata nd;
3402 struct file *file;
3403 struct filename *filename;
3404 int flags = op->lookup_flags | LOOKUP_ROOT;
3405
3406 nd.root.mnt = mnt;
3407 nd.root.dentry = dentry;
3408
3409 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3410 return ERR_PTR(-ELOOP);
3411
3412 filename = getname_kernel(name);
3413 if (IS_ERR(filename))
3414 return ERR_CAST(filename);
3415
3416 set_nameidata(&nd, -1, filename);
3417 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3418 if (unlikely(file == ERR_PTR(-ECHILD)))
3419 file = path_openat(&nd, op, flags);
3420 if (unlikely(file == ERR_PTR(-ESTALE)))
3421 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3422 restore_nameidata();
3423 putname(filename);
3424 return file;
3425 }
3426
3427 static struct dentry *filename_create(int dfd, struct filename *name,
3428 struct path *path, unsigned int lookup_flags)
3429 {
3430 struct dentry *dentry = ERR_PTR(-EEXIST);
3431 struct qstr last;
3432 int type;
3433 int err2;
3434 int error;
3435 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3436
3437 /*
3438 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3439 * other flags passed in are ignored!
3440 */
3441 lookup_flags &= LOOKUP_REVAL;
3442
3443 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3444 if (IS_ERR(name))
3445 return ERR_CAST(name);
3446
3447 /*
3448 * Yucky last component or no last component at all?
3449 * (foo/., foo/.., /////)
3450 */
3451 if (unlikely(type != LAST_NORM))
3452 goto out;
3453
3454 /* don't fail immediately if it's r/o, at least try to report other errors */
3455 err2 = mnt_want_write(path->mnt);
3456 /*
3457 * Do the final lookup.
3458 */
3459 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3460 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3461 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3462 if (IS_ERR(dentry))
3463 goto unlock;
3464
3465 error = -EEXIST;
3466 if (d_is_positive(dentry))
3467 goto fail;
3468
3469 /*
3470 * Special case - lookup gave negative, but... we had foo/bar/
3471 * From the vfs_mknod() POV we just have a negative dentry -
3472 * all is fine. Let's be bastards - you had / on the end, you've
3473 * been asking for (non-existent) directory. -ENOENT for you.
3474 */
3475 if (unlikely(!is_dir && last.name[last.len])) {
3476 error = -ENOENT;
3477 goto fail;
3478 }
3479 if (unlikely(err2)) {
3480 error = err2;
3481 goto fail;
3482 }
3483 putname(name);
3484 return dentry;
3485 fail:
3486 dput(dentry);
3487 dentry = ERR_PTR(error);
3488 unlock:
3489 inode_unlock(path->dentry->d_inode);
3490 if (!err2)
3491 mnt_drop_write(path->mnt);
3492 out:
3493 path_put(path);
3494 putname(name);
3495 return dentry;
3496 }
3497
3498 struct dentry *kern_path_create(int dfd, const char *pathname,
3499 struct path *path, unsigned int lookup_flags)
3500 {
3501 return filename_create(dfd, getname_kernel(pathname),
3502 path, lookup_flags);
3503 }
3504 EXPORT_SYMBOL(kern_path_create);
3505
3506 void done_path_create(struct path *path, struct dentry *dentry)
3507 {
3508 dput(dentry);
3509 inode_unlock(path->dentry->d_inode);
3510 mnt_drop_write(path->mnt);
3511 path_put(path);
3512 }
3513 EXPORT_SYMBOL(done_path_create);
3514
3515 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3516 struct path *path, unsigned int lookup_flags)
3517 {
3518 return filename_create(dfd, getname(pathname), path, lookup_flags);
3519 }
3520 EXPORT_SYMBOL(user_path_create);
3521
3522 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3523 {
3524 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3525 int error = may_create(dir, dentry);
3526
3527 if (error)
3528 return error;
3529
3530 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3531 !capable(CAP_MKNOD))
3532 return -EPERM;
3533
3534 if (!dir->i_op->mknod)
3535 return -EPERM;
3536
3537 error = devcgroup_inode_mknod(mode, dev);
3538 if (error)
3539 return error;
3540
3541 error = security_inode_mknod(dir, dentry, mode, dev);
3542 if (error)
3543 return error;
3544
3545 error = dir->i_op->mknod(dir, dentry, mode, dev);
3546 if (!error)
3547 fsnotify_create(dir, dentry);
3548 return error;
3549 }
3550 EXPORT_SYMBOL(vfs_mknod);
3551
3552 static int may_mknod(umode_t mode)
3553 {
3554 switch (mode & S_IFMT) {
3555 case S_IFREG:
3556 case S_IFCHR:
3557 case S_IFBLK:
3558 case S_IFIFO:
3559 case S_IFSOCK:
3560 case 0: /* zero mode translates to S_IFREG */
3561 return 0;
3562 case S_IFDIR:
3563 return -EPERM;
3564 default:
3565 return -EINVAL;
3566 }
3567 }
3568
3569 static long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3570 unsigned int dev)
3571 {
3572 struct dentry *dentry;
3573 struct path path;
3574 int error;
3575 unsigned int lookup_flags = 0;
3576
3577 error = may_mknod(mode);
3578 if (error)
3579 return error;
3580 retry:
3581 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3582 if (IS_ERR(dentry))
3583 return PTR_ERR(dentry);
3584
3585 if (!IS_POSIXACL(path.dentry->d_inode))
3586 mode &= ~current_umask();
3587 error = security_path_mknod(&path, dentry, mode, dev);
3588 if (error)
3589 goto out;
3590 switch (mode & S_IFMT) {
3591 case 0: case S_IFREG:
3592 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3593 if (!error)
3594 ima_post_path_mknod(dentry);
3595 break;
3596 case S_IFCHR: case S_IFBLK:
3597 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3598 new_decode_dev(dev));
3599 break;
3600 case S_IFIFO: case S_IFSOCK:
3601 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3602 break;
3603 }
3604 out:
3605 done_path_create(&path, dentry);
3606 if (retry_estale(error, lookup_flags)) {
3607 lookup_flags |= LOOKUP_REVAL;
3608 goto retry;
3609 }
3610 return error;
3611 }
3612
3613 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3614 unsigned int, dev)
3615 {
3616 return do_mknodat(dfd, filename, mode, dev);
3617 }
3618
3619 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3620 {
3621 return do_mknodat(AT_FDCWD, filename, mode, dev);
3622 }
3623
3624 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3625 {
3626 int error = may_create(dir, dentry);
3627 unsigned max_links = dir->i_sb->s_max_links;
3628
3629 if (error)
3630 return error;
3631
3632 if (!dir->i_op->mkdir)
3633 return -EPERM;
3634
3635 mode &= (S_IRWXUGO|S_ISVTX);
3636 error = security_inode_mkdir(dir, dentry, mode);
3637 if (error)
3638 return error;
3639
3640 if (max_links && dir->i_nlink >= max_links)
3641 return -EMLINK;
3642
3643 error = dir->i_op->mkdir(dir, dentry, mode);
3644 if (!error)
3645 fsnotify_mkdir(dir, dentry);
3646 return error;
3647 }
3648 EXPORT_SYMBOL(vfs_mkdir);
3649
3650 static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3651 {
3652 struct dentry *dentry;
3653 struct path path;
3654 int error;
3655 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3656
3657 retry:
3658 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3659 if (IS_ERR(dentry))
3660 return PTR_ERR(dentry);
3661
3662 if (!IS_POSIXACL(path.dentry->d_inode))
3663 mode &= ~current_umask();
3664 error = security_path_mkdir(&path, dentry, mode);
3665 if (!error)
3666 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3667 done_path_create(&path, dentry);
3668 if (retry_estale(error, lookup_flags)) {
3669 lookup_flags |= LOOKUP_REVAL;
3670 goto retry;
3671 }
3672 return error;
3673 }
3674
3675 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3676 {
3677 return do_mkdirat(dfd, pathname, mode);
3678 }
3679
3680 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3681 {
3682 return do_mkdirat(AT_FDCWD, pathname, mode);
3683 }
3684
3685 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3686 {
3687 int error = may_delete(dir, dentry, 1);
3688
3689 if (error)
3690 return error;
3691
3692 if (!dir->i_op->rmdir)
3693 return -EPERM;
3694
3695 dget(dentry);
3696 inode_lock(dentry->d_inode);
3697
3698 error = -EBUSY;
3699 if (is_local_mountpoint(dentry))
3700 goto out;
3701
3702 error = security_inode_rmdir(dir, dentry);
3703 if (error)
3704 goto out;
3705
3706 error = dir->i_op->rmdir(dir, dentry);
3707 if (error)
3708 goto out;
3709
3710 shrink_dcache_parent(dentry);
3711 dentry->d_inode->i_flags |= S_DEAD;
3712 dont_mount(dentry);
3713 detach_mounts(dentry);
3714 fsnotify_rmdir(dir, dentry);
3715
3716 out:
3717 inode_unlock(dentry->d_inode);
3718 dput(dentry);
3719 if (!error)
3720 d_delete(dentry);
3721 return error;
3722 }
3723 EXPORT_SYMBOL(vfs_rmdir);
3724
3725 long do_rmdir(int dfd, struct filename *name)
3726 {
3727 int error = 0;
3728 struct dentry *dentry;
3729 struct path path;
3730 struct qstr last;
3731 int type;
3732 unsigned int lookup_flags = 0;
3733 retry:
3734 name = filename_parentat(dfd, name, lookup_flags,
3735 &path, &last, &type);
3736 if (IS_ERR(name))
3737 return PTR_ERR(name);
3738
3739 switch (type) {
3740 case LAST_DOTDOT:
3741 error = -ENOTEMPTY;
3742 goto exit1;
3743 case LAST_DOT:
3744 error = -EINVAL;
3745 goto exit1;
3746 case LAST_ROOT:
3747 error = -EBUSY;
3748 goto exit1;
3749 }
3750
3751 error = mnt_want_write(path.mnt);
3752 if (error)
3753 goto exit1;
3754
3755 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3756 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3757 error = PTR_ERR(dentry);
3758 if (IS_ERR(dentry))
3759 goto exit2;
3760 if (!dentry->d_inode) {
3761 error = -ENOENT;
3762 goto exit3;
3763 }
3764 error = security_path_rmdir(&path, dentry);
3765 if (error)
3766 goto exit3;
3767 error = vfs_rmdir(path.dentry->d_inode, dentry);
3768 exit3:
3769 dput(dentry);
3770 exit2:
3771 inode_unlock(path.dentry->d_inode);
3772 mnt_drop_write(path.mnt);
3773 exit1:
3774 path_put(&path);
3775 if (retry_estale(error, lookup_flags)) {
3776 lookup_flags |= LOOKUP_REVAL;
3777 goto retry;
3778 }
3779 putname(name);
3780 return error;
3781 }
3782
3783 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3784 {
3785 return do_rmdir(AT_FDCWD, getname(pathname));
3786 }
3787
3788 /**
3789 * vfs_unlink - unlink a filesystem object
3790 * @dir: parent directory
3791 * @dentry: victim
3792 * @delegated_inode: returns victim inode, if the inode is delegated.
3793 *
3794 * The caller must hold dir->i_mutex.
3795 *
3796 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3797 * return a reference to the inode in delegated_inode. The caller
3798 * should then break the delegation on that inode and retry. Because
3799 * breaking a delegation may take a long time, the caller should drop
3800 * dir->i_mutex before doing so.
3801 *
3802 * Alternatively, a caller may pass NULL for delegated_inode. This may
3803 * be appropriate for callers that expect the underlying filesystem not
3804 * to be NFS exported.
3805 */
3806 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3807 {
3808 struct inode *target = dentry->d_inode;
3809 int error = may_delete(dir, dentry, 0);
3810
3811 if (error)
3812 return error;
3813
3814 if (!dir->i_op->unlink)
3815 return -EPERM;
3816
3817 inode_lock(target);
3818 if (is_local_mountpoint(dentry))
3819 error = -EBUSY;
3820 else {
3821 error = security_inode_unlink(dir, dentry);
3822 if (!error) {
3823 error = try_break_deleg(target, delegated_inode);
3824 if (error)
3825 goto out;
3826 error = dir->i_op->unlink(dir, dentry);
3827 if (!error) {
3828 dont_mount(dentry);
3829 detach_mounts(dentry);
3830 fsnotify_unlink(dir, dentry);
3831 }
3832 }
3833 }
3834 out:
3835 inode_unlock(target);
3836
3837 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3838 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3839 fsnotify_link_count(target);
3840 d_delete(dentry);
3841 }
3842
3843 return error;
3844 }
3845 EXPORT_SYMBOL(vfs_unlink);
3846
3847 /*
3848 * Make sure that the actual truncation of the file will occur outside its
3849 * directory's i_mutex. Truncate can take a long time if there is a lot of
3850 * writeout happening, and we don't want to prevent access to the directory
3851 * while waiting on the I/O.
3852 */
3853 long do_unlinkat(int dfd, struct filename *name)
3854 {
3855 int error;
3856 struct dentry *dentry;
3857 struct path path;
3858 struct qstr last;
3859 int type;
3860 struct inode *inode = NULL;
3861 struct inode *delegated_inode = NULL;
3862 unsigned int lookup_flags = 0;
3863 retry:
3864 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
3865 if (IS_ERR(name))
3866 return PTR_ERR(name);
3867
3868 error = -EISDIR;
3869 if (type != LAST_NORM)
3870 goto exit1;
3871
3872 error = mnt_want_write(path.mnt);
3873 if (error)
3874 goto exit1;
3875 retry_deleg:
3876 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3877 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3878 error = PTR_ERR(dentry);
3879 if (!IS_ERR(dentry)) {
3880 /* Why not before? Because we want correct error value */
3881 if (last.name[last.len])
3882 goto slashes;
3883 inode = dentry->d_inode;
3884 if (d_is_negative(dentry))
3885 goto slashes;
3886 ihold(inode);
3887 error = security_path_unlink(&path, dentry);
3888 if (error)
3889 goto exit2;
3890 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3891 exit2:
3892 dput(dentry);
3893 }
3894 inode_unlock(path.dentry->d_inode);
3895 if (inode)
3896 iput(inode); /* truncate the inode here */
3897 inode = NULL;
3898 if (delegated_inode) {
3899 error = break_deleg_wait(&delegated_inode);
3900 if (!error)
3901 goto retry_deleg;
3902 }
3903 mnt_drop_write(path.mnt);
3904 exit1:
3905 path_put(&path);
3906 if (retry_estale(error, lookup_flags)) {
3907 lookup_flags |= LOOKUP_REVAL;
3908 inode = NULL;
3909 goto retry;
3910 }
3911 putname(name);
3912 return error;
3913
3914 slashes:
3915 if (d_is_negative(dentry))
3916 error = -ENOENT;
3917 else if (d_is_dir(dentry))
3918 error = -EISDIR;
3919 else
3920 error = -ENOTDIR;
3921 goto exit2;
3922 }
3923
3924 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3925 {
3926 if ((flag & ~AT_REMOVEDIR) != 0)
3927 return -EINVAL;
3928
3929 if (flag & AT_REMOVEDIR)
3930 return do_rmdir(dfd, getname(pathname));
3931 return do_unlinkat(dfd, getname(pathname));
3932 }
3933
3934 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3935 {
3936 return do_unlinkat(AT_FDCWD, getname(pathname));
3937 }
3938
3939 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3940 {
3941 int error = may_create(dir, dentry);
3942
3943 if (error)
3944 return error;
3945
3946 if (!dir->i_op->symlink)
3947 return -EPERM;
3948
3949 error = security_inode_symlink(dir, dentry, oldname);
3950 if (error)
3951 return error;
3952
3953 error = dir->i_op->symlink(dir, dentry, oldname);
3954 if (!error)
3955 fsnotify_create(dir, dentry);
3956 return error;
3957 }
3958 EXPORT_SYMBOL(vfs_symlink);
3959
3960 static long do_symlinkat(const char __user *oldname, int newdfd,
3961 const char __user *newname)
3962 {
3963 int error;
3964 struct filename *from;
3965 struct dentry *dentry;
3966 struct path path;
3967 unsigned int lookup_flags = 0;
3968
3969 from = getname(oldname);
3970 if (IS_ERR(from))
3971 return PTR_ERR(from);
3972 retry:
3973 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3974 error = PTR_ERR(dentry);
3975 if (IS_ERR(dentry))
3976 goto out_putname;
3977
3978 error = security_path_symlink(&path, dentry, from->name);
3979 if (!error)
3980 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3981 done_path_create(&path, dentry);
3982 if (retry_estale(error, lookup_flags)) {
3983 lookup_flags |= LOOKUP_REVAL;
3984 goto retry;
3985 }
3986 out_putname:
3987 putname(from);
3988 return error;
3989 }
3990
3991 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3992 int, newdfd, const char __user *, newname)
3993 {
3994 return do_symlinkat(oldname, newdfd, newname);
3995 }
3996
3997 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3998 {
3999 return do_symlinkat(oldname, AT_FDCWD, newname);
4000 }
4001
4002 /**
4003 * vfs_link - create a new link
4004 * @old_dentry: object to be linked
4005 * @dir: new parent
4006 * @new_dentry: where to create the new link
4007 * @delegated_inode: returns inode needing a delegation break
4008 *
4009 * The caller must hold dir->i_mutex
4010 *
4011 * If vfs_link discovers a delegation on the to-be-linked file in need
4012 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4013 * inode in delegated_inode. The caller should then break the delegation
4014 * and retry. Because breaking a delegation may take a long time, the
4015 * caller should drop the i_mutex before doing so.
4016 *
4017 * Alternatively, a caller may pass NULL for delegated_inode. This may
4018 * be appropriate for callers that expect the underlying filesystem not
4019 * to be NFS exported.
4020 */
4021 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4022 {
4023 struct inode *inode = old_dentry->d_inode;
4024 unsigned max_links = dir->i_sb->s_max_links;
4025 int error;
4026
4027 if (!inode)
4028 return -ENOENT;
4029
4030 error = may_create(dir, new_dentry);
4031 if (error)
4032 return error;
4033
4034 if (dir->i_sb != inode->i_sb)
4035 return -EXDEV;
4036
4037 /*
4038 * A link to an append-only or immutable file cannot be created.
4039 */
4040 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4041 return -EPERM;
4042 /*
4043 * Updating the link count will likely cause i_uid and i_gid to
4044 * be writen back improperly if their true value is unknown to
4045 * the vfs.
4046 */
4047 if (HAS_UNMAPPED_ID(inode))
4048 return -EPERM;
4049 if (!dir->i_op->link)
4050 return -EPERM;
4051 if (S_ISDIR(inode->i_mode))
4052 return -EPERM;
4053
4054 error = security_inode_link(old_dentry, dir, new_dentry);
4055 if (error)
4056 return error;
4057
4058 inode_lock(inode);
4059 /* Make sure we don't allow creating hardlink to an unlinked file */
4060 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4061 error = -ENOENT;
4062 else if (max_links && inode->i_nlink >= max_links)
4063 error = -EMLINK;
4064 else {
4065 error = try_break_deleg(inode, delegated_inode);
4066 if (!error)
4067 error = dir->i_op->link(old_dentry, dir, new_dentry);
4068 }
4069
4070 if (!error && (inode->i_state & I_LINKABLE)) {
4071 spin_lock(&inode->i_lock);
4072 inode->i_state &= ~I_LINKABLE;
4073 spin_unlock(&inode->i_lock);
4074 }
4075 inode_unlock(inode);
4076 if (!error)
4077 fsnotify_link(dir, inode, new_dentry);
4078 return error;
4079 }
4080 EXPORT_SYMBOL(vfs_link);
4081
4082 /*
4083 * Hardlinks are often used in delicate situations. We avoid
4084 * security-related surprises by not following symlinks on the
4085 * newname. --KAB
4086 *
4087 * We don't follow them on the oldname either to be compatible
4088 * with linux 2.0, and to avoid hard-linking to directories
4089 * and other special files. --ADM
4090 */
4091 static int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4092 const char __user *newname, int flags)
4093 {
4094 struct dentry *new_dentry;
4095 struct path old_path, new_path;
4096 struct inode *delegated_inode = NULL;
4097 int how = 0;
4098 int error;
4099
4100 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4101 return -EINVAL;
4102 /*
4103 * To use null names we require CAP_DAC_READ_SEARCH
4104 * This ensures that not everyone will be able to create
4105 * handlink using the passed filedescriptor.
4106 */
4107 if (flags & AT_EMPTY_PATH) {
4108 if (!capable(CAP_DAC_READ_SEARCH))
4109 return -ENOENT;
4110 how = LOOKUP_EMPTY;
4111 }
4112
4113 if (flags & AT_SYMLINK_FOLLOW)
4114 how |= LOOKUP_FOLLOW;
4115 retry:
4116 error = user_path_at(olddfd, oldname, how, &old_path);
4117 if (error)
4118 return error;
4119
4120 new_dentry = user_path_create(newdfd, newname, &new_path,
4121 (how & LOOKUP_REVAL));
4122 error = PTR_ERR(new_dentry);
4123 if (IS_ERR(new_dentry))
4124 goto out;
4125
4126 error = -EXDEV;
4127 if (old_path.mnt != new_path.mnt)
4128 goto out_dput;
4129 error = may_linkat(&old_path);
4130 if (unlikely(error))
4131 goto out_dput;
4132 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4133 if (error)
4134 goto out_dput;
4135 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4136 out_dput:
4137 done_path_create(&new_path, new_dentry);
4138 if (delegated_inode) {
4139 error = break_deleg_wait(&delegated_inode);
4140 if (!error) {
4141 path_put(&old_path);
4142 goto retry;
4143 }
4144 }
4145 if (retry_estale(error, how)) {
4146 path_put(&old_path);
4147 how |= LOOKUP_REVAL;
4148 goto retry;
4149 }
4150 out:
4151 path_put(&old_path);
4152
4153 return error;
4154 }
4155
4156 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4157 int, newdfd, const char __user *, newname, int, flags)
4158 {
4159 return do_linkat(olddfd, oldname, newdfd, newname, flags);
4160 }
4161
4162 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4163 {
4164 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4165 }
4166
4167 /**
4168 * vfs_rename - rename a filesystem object
4169 * @old_dir: parent of source
4170 * @old_dentry: source
4171 * @new_dir: parent of destination
4172 * @new_dentry: destination
4173 * @delegated_inode: returns an inode needing a delegation break
4174 * @flags: rename flags
4175 *
4176 * The caller must hold multiple mutexes--see lock_rename()).
4177 *
4178 * If vfs_rename discovers a delegation in need of breaking at either
4179 * the source or destination, it will return -EWOULDBLOCK and return a
4180 * reference to the inode in delegated_inode. The caller should then
4181 * break the delegation and retry. Because breaking a delegation may
4182 * take a long time, the caller should drop all locks before doing
4183 * so.
4184 *
4185 * Alternatively, a caller may pass NULL for delegated_inode. This may
4186 * be appropriate for callers that expect the underlying filesystem not
4187 * to be NFS exported.
4188 *
4189 * The worst of all namespace operations - renaming directory. "Perverted"
4190 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4191 * Problems:
4192 *
4193 * a) we can get into loop creation.
4194 * b) race potential - two innocent renames can create a loop together.
4195 * That's where 4.4 screws up. Current fix: serialization on
4196 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4197 * story.
4198 * c) we have to lock _four_ objects - parents and victim (if it exists),
4199 * and source (if it is not a directory).
4200 * And that - after we got ->i_mutex on parents (until then we don't know
4201 * whether the target exists). Solution: try to be smart with locking
4202 * order for inodes. We rely on the fact that tree topology may change
4203 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4204 * move will be locked. Thus we can rank directories by the tree
4205 * (ancestors first) and rank all non-directories after them.
4206 * That works since everybody except rename does "lock parent, lookup,
4207 * lock child" and rename is under ->s_vfs_rename_mutex.
4208 * HOWEVER, it relies on the assumption that any object with ->lookup()
4209 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4210 * we'd better make sure that there's no link(2) for them.
4211 * d) conversion from fhandle to dentry may come in the wrong moment - when
4212 * we are removing the target. Solution: we will have to grab ->i_mutex
4213 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4214 * ->i_mutex on parents, which works but leads to some truly excessive
4215 * locking].
4216 */
4217 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4218 struct inode *new_dir, struct dentry *new_dentry,
4219 struct inode **delegated_inode, unsigned int flags)
4220 {
4221 int error;
4222 bool is_dir = d_is_dir(old_dentry);
4223 struct inode *source = old_dentry->d_inode;
4224 struct inode *target = new_dentry->d_inode;
4225 bool new_is_dir = false;
4226 unsigned max_links = new_dir->i_sb->s_max_links;
4227 struct name_snapshot old_name;
4228
4229 if (source == target)
4230 return 0;
4231
4232 error = may_delete(old_dir, old_dentry, is_dir);
4233 if (error)
4234 return error;
4235
4236 if (!target) {
4237 error = may_create(new_dir, new_dentry);
4238 } else {
4239 new_is_dir = d_is_dir(new_dentry);
4240
4241 if (!(flags & RENAME_EXCHANGE))
4242 error = may_delete(new_dir, new_dentry, is_dir);
4243 else
4244 error = may_delete(new_dir, new_dentry, new_is_dir);
4245 }
4246 if (error)
4247 return error;
4248
4249 if (!old_dir->i_op->rename)
4250 return -EPERM;
4251
4252 /*
4253 * If we are going to change the parent - check write permissions,
4254 * we'll need to flip '..'.
4255 */
4256 if (new_dir != old_dir) {
4257 if (is_dir) {
4258 error = inode_permission(source, MAY_WRITE);
4259 if (error)
4260 return error;
4261 }
4262 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4263 error = inode_permission(target, MAY_WRITE);
4264 if (error)
4265 return error;
4266 }
4267 }
4268
4269 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4270 flags);
4271 if (error)
4272 return error;
4273
4274 take_dentry_name_snapshot(&old_name, old_dentry);
4275 dget(new_dentry);
4276 if (!is_dir || (flags & RENAME_EXCHANGE))
4277 lock_two_nondirectories(source, target);
4278 else if (target)
4279 inode_lock(target);
4280
4281 error = -EBUSY;
4282 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4283 goto out;
4284
4285 if (max_links && new_dir != old_dir) {
4286 error = -EMLINK;
4287 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4288 goto out;
4289 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4290 old_dir->i_nlink >= max_links)
4291 goto out;
4292 }
4293 if (!is_dir) {
4294 error = try_break_deleg(source, delegated_inode);
4295 if (error)
4296 goto out;
4297 }
4298 if (target && !new_is_dir) {
4299 error = try_break_deleg(target, delegated_inode);
4300 if (error)
4301 goto out;
4302 }
4303 error = old_dir->i_op->rename(old_dir, old_dentry,
4304 new_dir, new_dentry, flags);
4305 if (error)
4306 goto out;
4307
4308 if (!(flags & RENAME_EXCHANGE) && target) {
4309 if (is_dir) {
4310 shrink_dcache_parent(new_dentry);
4311 target->i_flags |= S_DEAD;
4312 }
4313 dont_mount(new_dentry);
4314 detach_mounts(new_dentry);
4315 }
4316 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4317 if (!(flags & RENAME_EXCHANGE))
4318 d_move(old_dentry, new_dentry);
4319 else
4320 d_exchange(old_dentry, new_dentry);
4321 }
4322 out:
4323 if (!is_dir || (flags & RENAME_EXCHANGE))
4324 unlock_two_nondirectories(source, target);
4325 else if (target)
4326 inode_unlock(target);
4327 dput(new_dentry);
4328 if (!error) {
4329 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4330 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4331 if (flags & RENAME_EXCHANGE) {
4332 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4333 new_is_dir, NULL, new_dentry);
4334 }
4335 }
4336 release_dentry_name_snapshot(&old_name);
4337
4338 return error;
4339 }
4340 EXPORT_SYMBOL(vfs_rename);
4341
4342 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4343 struct filename *to, unsigned int flags)
4344 {
4345 struct dentry *old_dentry, *new_dentry;
4346 struct dentry *trap;
4347 struct path old_path, new_path;
4348 struct qstr old_last, new_last;
4349 int old_type, new_type;
4350 struct inode *delegated_inode = NULL;
4351 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4352 bool should_retry = false;
4353 int error = -EINVAL;
4354
4355 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4356 goto put_both;
4357
4358 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4359 (flags & RENAME_EXCHANGE))
4360 goto put_both;
4361
4362 if (flags & RENAME_EXCHANGE)
4363 target_flags = 0;
4364
4365 retry:
4366 from = filename_parentat(olddfd, from, lookup_flags, &old_path,
4367 &old_last, &old_type);
4368 if (IS_ERR(from)) {
4369 error = PTR_ERR(from);
4370 goto put_new;
4371 }
4372
4373 to = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4374 &new_type);
4375 if (IS_ERR(to)) {
4376 error = PTR_ERR(to);
4377 goto exit1;
4378 }
4379
4380 error = -EXDEV;
4381 if (old_path.mnt != new_path.mnt)
4382 goto exit2;
4383
4384 error = -EBUSY;
4385 if (old_type != LAST_NORM)
4386 goto exit2;
4387
4388 if (flags & RENAME_NOREPLACE)
4389 error = -EEXIST;
4390 if (new_type != LAST_NORM)
4391 goto exit2;
4392
4393 error = mnt_want_write(old_path.mnt);
4394 if (error)
4395 goto exit2;
4396
4397 retry_deleg:
4398 trap = lock_rename(new_path.dentry, old_path.dentry);
4399
4400 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4401 error = PTR_ERR(old_dentry);
4402 if (IS_ERR(old_dentry))
4403 goto exit3;
4404 /* source must exist */
4405 error = -ENOENT;
4406 if (d_is_negative(old_dentry))
4407 goto exit4;
4408 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4409 error = PTR_ERR(new_dentry);
4410 if (IS_ERR(new_dentry))
4411 goto exit4;
4412 error = -EEXIST;
4413 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4414 goto exit5;
4415 if (flags & RENAME_EXCHANGE) {
4416 error = -ENOENT;
4417 if (d_is_negative(new_dentry))
4418 goto exit5;
4419
4420 if (!d_is_dir(new_dentry)) {
4421 error = -ENOTDIR;
4422 if (new_last.name[new_last.len])
4423 goto exit5;
4424 }
4425 }
4426 /* unless the source is a directory trailing slashes give -ENOTDIR */
4427 if (!d_is_dir(old_dentry)) {
4428 error = -ENOTDIR;
4429 if (old_last.name[old_last.len])
4430 goto exit5;
4431 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4432 goto exit5;
4433 }
4434 /* source should not be ancestor of target */
4435 error = -EINVAL;
4436 if (old_dentry == trap)
4437 goto exit5;
4438 /* target should not be an ancestor of source */
4439 if (!(flags & RENAME_EXCHANGE))
4440 error = -ENOTEMPTY;
4441 if (new_dentry == trap)
4442 goto exit5;
4443
4444 error = security_path_rename(&old_path, old_dentry,
4445 &new_path, new_dentry, flags);
4446 if (error)
4447 goto exit5;
4448 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4449 new_path.dentry->d_inode, new_dentry,
4450 &delegated_inode, flags);
4451 exit5:
4452 dput(new_dentry);
4453 exit4:
4454 dput(old_dentry);
4455 exit3:
4456 unlock_rename(new_path.dentry, old_path.dentry);
4457 if (delegated_inode) {
4458 error = break_deleg_wait(&delegated_inode);
4459 if (!error)
4460 goto retry_deleg;
4461 }
4462 mnt_drop_write(old_path.mnt);
4463 exit2:
4464 if (retry_estale(error, lookup_flags))
4465 should_retry = true;
4466 path_put(&new_path);
4467 exit1:
4468 path_put(&old_path);
4469 if (should_retry) {
4470 should_retry = false;
4471 lookup_flags |= LOOKUP_REVAL;
4472 goto retry;
4473 }
4474 put_both:
4475 if (!IS_ERR(from))
4476 putname(from);
4477 put_new:
4478 if (!IS_ERR(to))
4479 putname(to);
4480 return error;
4481 }
4482
4483 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4484 int, newdfd, const char __user *, newname, unsigned int, flags)
4485 {
4486 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4487 flags);
4488 }
4489
4490 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4491 int, newdfd, const char __user *, newname)
4492 {
4493 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4494 0);
4495 }
4496
4497 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4498 {
4499 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4500 getname(newname), 0);
4501 }
4502
4503 int readlink_copy(char __user *buffer, int buflen, const char *link)
4504 {
4505 int len = PTR_ERR(link);
4506 if (IS_ERR(link))
4507 goto out;
4508
4509 len = strlen(link);
4510 if (len > (unsigned) buflen)
4511 len = buflen;
4512 if (copy_to_user(buffer, link, len))
4513 len = -EFAULT;
4514 out:
4515 return len;
4516 }
4517
4518 /**
4519 * vfs_readlink - copy symlink body into userspace buffer
4520 * @dentry: dentry on which to get symbolic link
4521 * @buffer: user memory pointer
4522 * @buflen: size of buffer
4523 *
4524 * Does not touch atime. That's up to the caller if necessary
4525 *
4526 * Does not call security hook.
4527 */
4528 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4529 {
4530 struct inode *inode = d_inode(dentry);
4531 DEFINE_DELAYED_CALL(done);
4532 const char *link;
4533 int res;
4534
4535 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4536 if (unlikely(inode->i_op->readlink))
4537 return inode->i_op->readlink(dentry, buffer, buflen);
4538
4539 if (!d_is_symlink(dentry))
4540 return -EINVAL;
4541
4542 spin_lock(&inode->i_lock);
4543 inode->i_opflags |= IOP_DEFAULT_READLINK;
4544 spin_unlock(&inode->i_lock);
4545 }
4546
4547 link = READ_ONCE(inode->i_link);
4548 if (!link) {
4549 link = inode->i_op->get_link(dentry, inode, &done);
4550 if (IS_ERR(link))
4551 return PTR_ERR(link);
4552 }
4553 res = readlink_copy(buffer, buflen, link);
4554 do_delayed_call(&done);
4555 return res;
4556 }
4557 EXPORT_SYMBOL(vfs_readlink);
4558
4559 /**
4560 * vfs_get_link - get symlink body
4561 * @dentry: dentry on which to get symbolic link
4562 * @done: caller needs to free returned data with this
4563 *
4564 * Calls security hook and i_op->get_link() on the supplied inode.
4565 *
4566 * It does not touch atime. That's up to the caller if necessary.
4567 *
4568 * Does not work on "special" symlinks like /proc/$$/fd/N
4569 */
4570 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4571 {
4572 const char *res = ERR_PTR(-EINVAL);
4573 struct inode *inode = d_inode(dentry);
4574
4575 if (d_is_symlink(dentry)) {
4576 res = ERR_PTR(security_inode_readlink(dentry));
4577 if (!res)
4578 res = inode->i_op->get_link(dentry, inode, done);
4579 }
4580 return res;
4581 }
4582 EXPORT_SYMBOL(vfs_get_link);
4583
4584 /* get the link contents into pagecache */
4585 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4586 struct delayed_call *callback)
4587 {
4588 char *kaddr;
4589 struct page *page;
4590 struct address_space *mapping = inode->i_mapping;
4591
4592 if (!dentry) {
4593 page = find_get_page(mapping, 0);
4594 if (!page)
4595 return ERR_PTR(-ECHILD);
4596 if (!PageUptodate(page)) {
4597 put_page(page);
4598 return ERR_PTR(-ECHILD);
4599 }
4600 } else {
4601 page = read_mapping_page(mapping, 0, NULL);
4602 if (IS_ERR(page))
4603 return (char*)page;
4604 }
4605 set_delayed_call(callback, page_put_link, page);
4606 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4607 kaddr = page_address(page);
4608 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4609 return kaddr;
4610 }
4611
4612 EXPORT_SYMBOL(page_get_link);
4613
4614 void page_put_link(void *arg)
4615 {
4616 put_page(arg);
4617 }
4618 EXPORT_SYMBOL(page_put_link);
4619
4620 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4621 {
4622 DEFINE_DELAYED_CALL(done);
4623 int res = readlink_copy(buffer, buflen,
4624 page_get_link(dentry, d_inode(dentry),
4625 &done));
4626 do_delayed_call(&done);
4627 return res;
4628 }
4629 EXPORT_SYMBOL(page_readlink);
4630
4631 /*
4632 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4633 */
4634 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4635 {
4636 struct address_space *mapping = inode->i_mapping;
4637 struct page *page;
4638 void *fsdata;
4639 int err;
4640 unsigned int flags = 0;
4641 if (nofs)
4642 flags |= AOP_FLAG_NOFS;
4643
4644 retry:
4645 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4646 flags, &page, &fsdata);
4647 if (err)
4648 goto fail;
4649
4650 memcpy(page_address(page), symname, len-1);
4651
4652 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4653 page, fsdata);
4654 if (err < 0)
4655 goto fail;
4656 if (err < len-1)
4657 goto retry;
4658
4659 mark_inode_dirty(inode);
4660 return 0;
4661 fail:
4662 return err;
4663 }
4664 EXPORT_SYMBOL(__page_symlink);
4665
4666 int page_symlink(struct inode *inode, const char *symname, int len)
4667 {
4668 return __page_symlink(inode, symname, len,
4669 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4670 }
4671 EXPORT_SYMBOL(page_symlink);
4672
4673 const struct inode_operations page_symlink_inode_operations = {
4674 .get_link = page_get_link,
4675 };
4676 EXPORT_SYMBOL(page_symlink_inode_operations);