]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/namei.c
/dev/mem: Add bounce buffer for copy-out
[mirror_ubuntu-bionic-kernel.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /* [Feb-1997 T. Schoebel-Theuer]
47 * Fundamental changes in the pathname lookup mechanisms (namei)
48 * were necessary because of omirr. The reason is that omirr needs
49 * to know the _real_ pathname, not the user-supplied one, in case
50 * of symlinks (and also when transname replacements occur).
51 *
52 * The new code replaces the old recursive symlink resolution with
53 * an iterative one (in case of non-nested symlink chains). It does
54 * this with calls to <fs>_follow_link().
55 * As a side effect, dir_namei(), _namei() and follow_link() are now
56 * replaced with a single function lookup_dentry() that can handle all
57 * the special cases of the former code.
58 *
59 * With the new dcache, the pathname is stored at each inode, at least as
60 * long as the refcount of the inode is positive. As a side effect, the
61 * size of the dcache depends on the inode cache and thus is dynamic.
62 *
63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64 * resolution to correspond with current state of the code.
65 *
66 * Note that the symlink resolution is not *completely* iterative.
67 * There is still a significant amount of tail- and mid- recursion in
68 * the algorithm. Also, note that <fs>_readlink() is not used in
69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70 * may return different results than <fs>_follow_link(). Many virtual
71 * filesystems (including /proc) exhibit this behavior.
72 */
73
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76 * and the name already exists in form of a symlink, try to create the new
77 * name indicated by the symlink. The old code always complained that the
78 * name already exists, due to not following the symlink even if its target
79 * is nonexistent. The new semantics affects also mknod() and link() when
80 * the name is a symlink pointing to a non-existent name.
81 *
82 * I don't know which semantics is the right one, since I have no access
83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85 * "old" one. Personally, I think the new semantics is much more logical.
86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87 * file does succeed in both HP-UX and SunOs, but not in Solaris
88 * and in the old Linux semantics.
89 */
90
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92 * semantics. See the comments in "open_namei" and "do_link" below.
93 *
94 * [10-Sep-98 Alan Modra] Another symlink change.
95 */
96
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98 * inside the path - always follow.
99 * in the last component in creation/removal/renaming - never follow.
100 * if LOOKUP_FOLLOW passed - follow.
101 * if the pathname has trailing slashes - follow.
102 * otherwise - don't follow.
103 * (applied in that order).
104 *
105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107 * During the 2.4 we need to fix the userland stuff depending on it -
108 * hopefully we will be able to get rid of that wart in 2.5. So far only
109 * XEmacs seems to be relying on it...
110 */
111 /*
112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
114 * any extra contention...
115 */
116
117 /* In order to reduce some races, while at the same time doing additional
118 * checking and hopefully speeding things up, we copy filenames to the
119 * kernel data space before using them..
120 *
121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122 * PATH_MAX includes the nul terminator --RR.
123 */
124
125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
126
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 struct filename *result;
131 char *kname;
132 int len;
133
134 result = audit_reusename(filename);
135 if (result)
136 return result;
137
138 result = __getname();
139 if (unlikely(!result))
140 return ERR_PTR(-ENOMEM);
141
142 /*
143 * First, try to embed the struct filename inside the names_cache
144 * allocation
145 */
146 kname = (char *)result->iname;
147 result->name = kname;
148
149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 if (unlikely(len < 0)) {
151 __putname(result);
152 return ERR_PTR(len);
153 }
154
155 /*
156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 * separate struct filename so we can dedicate the entire
158 * names_cache allocation for the pathname, and re-do the copy from
159 * userland.
160 */
161 if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 const size_t size = offsetof(struct filename, iname[1]);
163 kname = (char *)result;
164
165 /*
166 * size is chosen that way we to guarantee that
167 * result->iname[0] is within the same object and that
168 * kname can't be equal to result->iname, no matter what.
169 */
170 result = kzalloc(size, GFP_KERNEL);
171 if (unlikely(!result)) {
172 __putname(kname);
173 return ERR_PTR(-ENOMEM);
174 }
175 result->name = kname;
176 len = strncpy_from_user(kname, filename, PATH_MAX);
177 if (unlikely(len < 0)) {
178 __putname(kname);
179 kfree(result);
180 return ERR_PTR(len);
181 }
182 if (unlikely(len == PATH_MAX)) {
183 __putname(kname);
184 kfree(result);
185 return ERR_PTR(-ENAMETOOLONG);
186 }
187 }
188
189 result->refcnt = 1;
190 /* The empty path is special. */
191 if (unlikely(!len)) {
192 if (empty)
193 *empty = 1;
194 if (!(flags & LOOKUP_EMPTY)) {
195 putname(result);
196 return ERR_PTR(-ENOENT);
197 }
198 }
199
200 result->uptr = filename;
201 result->aname = NULL;
202 audit_getname(result);
203 return result;
204 }
205
206 struct filename *
207 getname(const char __user * filename)
208 {
209 return getname_flags(filename, 0, NULL);
210 }
211
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 struct filename *result;
216 int len = strlen(filename) + 1;
217
218 result = __getname();
219 if (unlikely(!result))
220 return ERR_PTR(-ENOMEM);
221
222 if (len <= EMBEDDED_NAME_MAX) {
223 result->name = (char *)result->iname;
224 } else if (len <= PATH_MAX) {
225 struct filename *tmp;
226
227 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
228 if (unlikely(!tmp)) {
229 __putname(result);
230 return ERR_PTR(-ENOMEM);
231 }
232 tmp->name = (char *)result;
233 result = tmp;
234 } else {
235 __putname(result);
236 return ERR_PTR(-ENAMETOOLONG);
237 }
238 memcpy((char *)result->name, filename, len);
239 result->uptr = NULL;
240 result->aname = NULL;
241 result->refcnt = 1;
242 audit_getname(result);
243
244 return result;
245 }
246
247 void putname(struct filename *name)
248 {
249 BUG_ON(name->refcnt <= 0);
250
251 if (--name->refcnt > 0)
252 return;
253
254 if (name->name != name->iname) {
255 __putname(name->name);
256 kfree(name);
257 } else
258 __putname(name);
259 }
260
261 static int check_acl(struct inode *inode, int mask)
262 {
263 #ifdef CONFIG_FS_POSIX_ACL
264 struct posix_acl *acl;
265
266 if (mask & MAY_NOT_BLOCK) {
267 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
268 if (!acl)
269 return -EAGAIN;
270 /* no ->get_acl() calls in RCU mode... */
271 if (is_uncached_acl(acl))
272 return -ECHILD;
273 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
274 }
275
276 acl = get_acl(inode, ACL_TYPE_ACCESS);
277 if (IS_ERR(acl))
278 return PTR_ERR(acl);
279 if (acl) {
280 int error = posix_acl_permission(inode, acl, mask);
281 posix_acl_release(acl);
282 return error;
283 }
284 #endif
285
286 return -EAGAIN;
287 }
288
289 /*
290 * This does the basic permission checking
291 */
292 static int acl_permission_check(struct inode *inode, int mask)
293 {
294 unsigned int mode = inode->i_mode;
295
296 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
297 mode >>= 6;
298 else {
299 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
300 int error = check_acl(inode, mask);
301 if (error != -EAGAIN)
302 return error;
303 }
304
305 if (in_group_p(inode->i_gid))
306 mode >>= 3;
307 }
308
309 /*
310 * If the DACs are ok we don't need any capability check.
311 */
312 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
313 return 0;
314 return -EACCES;
315 }
316
317 /**
318 * generic_permission - check for access rights on a Posix-like filesystem
319 * @inode: inode to check access rights for
320 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
321 *
322 * Used to check for read/write/execute permissions on a file.
323 * We use "fsuid" for this, letting us set arbitrary permissions
324 * for filesystem access without changing the "normal" uids which
325 * are used for other things.
326 *
327 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
328 * request cannot be satisfied (eg. requires blocking or too much complexity).
329 * It would then be called again in ref-walk mode.
330 */
331 int generic_permission(struct inode *inode, int mask)
332 {
333 int ret;
334
335 /*
336 * Do the basic permission checks.
337 */
338 ret = acl_permission_check(inode, mask);
339 if (ret != -EACCES)
340 return ret;
341
342 if (S_ISDIR(inode->i_mode)) {
343 /* DACs are overridable for directories */
344 if (!(mask & MAY_WRITE))
345 if (capable_wrt_inode_uidgid(inode,
346 CAP_DAC_READ_SEARCH))
347 return 0;
348 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
349 return 0;
350 return -EACCES;
351 }
352
353 /*
354 * Searching includes executable on directories, else just read.
355 */
356 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
357 if (mask == MAY_READ)
358 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
359 return 0;
360 /*
361 * Read/write DACs are always overridable.
362 * Executable DACs are overridable when there is
363 * at least one exec bit set.
364 */
365 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
366 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
367 return 0;
368
369 return -EACCES;
370 }
371 EXPORT_SYMBOL(generic_permission);
372
373 /*
374 * We _really_ want to just do "generic_permission()" without
375 * even looking at the inode->i_op values. So we keep a cache
376 * flag in inode->i_opflags, that says "this has not special
377 * permission function, use the fast case".
378 */
379 static inline int do_inode_permission(struct inode *inode, int mask)
380 {
381 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
382 if (likely(inode->i_op->permission))
383 return inode->i_op->permission(inode, mask);
384
385 /* This gets set once for the inode lifetime */
386 spin_lock(&inode->i_lock);
387 inode->i_opflags |= IOP_FASTPERM;
388 spin_unlock(&inode->i_lock);
389 }
390 return generic_permission(inode, mask);
391 }
392
393 /**
394 * __inode_permission - Check for access rights to a given inode
395 * @inode: Inode to check permission on
396 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
397 *
398 * Check for read/write/execute permissions on an inode.
399 *
400 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
401 *
402 * This does not check for a read-only file system. You probably want
403 * inode_permission().
404 */
405 int __inode_permission(struct inode *inode, int mask)
406 {
407 int retval;
408
409 if (unlikely(mask & MAY_WRITE)) {
410 /*
411 * Nobody gets write access to an immutable file.
412 */
413 if (IS_IMMUTABLE(inode))
414 return -EPERM;
415
416 /*
417 * Updating mtime will likely cause i_uid and i_gid to be
418 * written back improperly if their true value is unknown
419 * to the vfs.
420 */
421 if (HAS_UNMAPPED_ID(inode))
422 return -EACCES;
423 }
424
425 retval = do_inode_permission(inode, mask);
426 if (retval)
427 return retval;
428
429 retval = devcgroup_inode_permission(inode, mask);
430 if (retval)
431 return retval;
432
433 return security_inode_permission(inode, mask);
434 }
435 EXPORT_SYMBOL(__inode_permission);
436
437 /**
438 * sb_permission - Check superblock-level permissions
439 * @sb: Superblock of inode to check permission on
440 * @inode: Inode to check permission on
441 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
442 *
443 * Separate out file-system wide checks from inode-specific permission checks.
444 */
445 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
446 {
447 if (unlikely(mask & MAY_WRITE)) {
448 umode_t mode = inode->i_mode;
449
450 /* Nobody gets write access to a read-only fs. */
451 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
452 return -EROFS;
453 }
454 return 0;
455 }
456
457 /**
458 * inode_permission - Check for access rights to a given inode
459 * @inode: Inode to check permission on
460 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
461 *
462 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
463 * this, letting us set arbitrary permissions for filesystem access without
464 * changing the "normal" UIDs which are used for other things.
465 *
466 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
467 */
468 int inode_permission(struct inode *inode, int mask)
469 {
470 int retval;
471
472 retval = sb_permission(inode->i_sb, inode, mask);
473 if (retval)
474 return retval;
475 return __inode_permission(inode, mask);
476 }
477 EXPORT_SYMBOL(inode_permission);
478
479 /**
480 * path_get - get a reference to a path
481 * @path: path to get the reference to
482 *
483 * Given a path increment the reference count to the dentry and the vfsmount.
484 */
485 void path_get(const struct path *path)
486 {
487 mntget(path->mnt);
488 dget(path->dentry);
489 }
490 EXPORT_SYMBOL(path_get);
491
492 /**
493 * path_put - put a reference to a path
494 * @path: path to put the reference to
495 *
496 * Given a path decrement the reference count to the dentry and the vfsmount.
497 */
498 void path_put(const struct path *path)
499 {
500 dput(path->dentry);
501 mntput(path->mnt);
502 }
503 EXPORT_SYMBOL(path_put);
504
505 #define EMBEDDED_LEVELS 2
506 struct nameidata {
507 struct path path;
508 struct qstr last;
509 struct path root;
510 struct inode *inode; /* path.dentry.d_inode */
511 unsigned int flags;
512 unsigned seq, m_seq;
513 int last_type;
514 unsigned depth;
515 int total_link_count;
516 struct saved {
517 struct path link;
518 struct delayed_call done;
519 const char *name;
520 unsigned seq;
521 } *stack, internal[EMBEDDED_LEVELS];
522 struct filename *name;
523 struct nameidata *saved;
524 struct inode *link_inode;
525 unsigned root_seq;
526 int dfd;
527 } __randomize_layout;
528
529 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
530 {
531 struct nameidata *old = current->nameidata;
532 p->stack = p->internal;
533 p->dfd = dfd;
534 p->name = name;
535 p->total_link_count = old ? old->total_link_count : 0;
536 p->saved = old;
537 current->nameidata = p;
538 }
539
540 static void restore_nameidata(void)
541 {
542 struct nameidata *now = current->nameidata, *old = now->saved;
543
544 current->nameidata = old;
545 if (old)
546 old->total_link_count = now->total_link_count;
547 if (now->stack != now->internal)
548 kfree(now->stack);
549 }
550
551 static int __nd_alloc_stack(struct nameidata *nd)
552 {
553 struct saved *p;
554
555 if (nd->flags & LOOKUP_RCU) {
556 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
557 GFP_ATOMIC);
558 if (unlikely(!p))
559 return -ECHILD;
560 } else {
561 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
562 GFP_KERNEL);
563 if (unlikely(!p))
564 return -ENOMEM;
565 }
566 memcpy(p, nd->internal, sizeof(nd->internal));
567 nd->stack = p;
568 return 0;
569 }
570
571 /**
572 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
573 * @path: nameidate to verify
574 *
575 * Rename can sometimes move a file or directory outside of a bind
576 * mount, path_connected allows those cases to be detected.
577 */
578 static bool path_connected(const struct path *path)
579 {
580 struct vfsmount *mnt = path->mnt;
581 struct super_block *sb = mnt->mnt_sb;
582
583 /* Bind mounts and multi-root filesystems can have disconnected paths */
584 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
585 return true;
586
587 return is_subdir(path->dentry, mnt->mnt_root);
588 }
589
590 static inline int nd_alloc_stack(struct nameidata *nd)
591 {
592 if (likely(nd->depth != EMBEDDED_LEVELS))
593 return 0;
594 if (likely(nd->stack != nd->internal))
595 return 0;
596 return __nd_alloc_stack(nd);
597 }
598
599 static void drop_links(struct nameidata *nd)
600 {
601 int i = nd->depth;
602 while (i--) {
603 struct saved *last = nd->stack + i;
604 do_delayed_call(&last->done);
605 clear_delayed_call(&last->done);
606 }
607 }
608
609 static void terminate_walk(struct nameidata *nd)
610 {
611 drop_links(nd);
612 if (!(nd->flags & LOOKUP_RCU)) {
613 int i;
614 path_put(&nd->path);
615 for (i = 0; i < nd->depth; i++)
616 path_put(&nd->stack[i].link);
617 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
618 path_put(&nd->root);
619 nd->root.mnt = NULL;
620 }
621 } else {
622 nd->flags &= ~LOOKUP_RCU;
623 if (!(nd->flags & LOOKUP_ROOT))
624 nd->root.mnt = NULL;
625 rcu_read_unlock();
626 }
627 nd->depth = 0;
628 }
629
630 /* path_put is needed afterwards regardless of success or failure */
631 static bool legitimize_path(struct nameidata *nd,
632 struct path *path, unsigned seq)
633 {
634 int res = __legitimize_mnt(path->mnt, nd->m_seq);
635 if (unlikely(res)) {
636 if (res > 0)
637 path->mnt = NULL;
638 path->dentry = NULL;
639 return false;
640 }
641 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
642 path->dentry = NULL;
643 return false;
644 }
645 return !read_seqcount_retry(&path->dentry->d_seq, seq);
646 }
647
648 static bool legitimize_links(struct nameidata *nd)
649 {
650 int i;
651 for (i = 0; i < nd->depth; i++) {
652 struct saved *last = nd->stack + i;
653 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
654 drop_links(nd);
655 nd->depth = i + 1;
656 return false;
657 }
658 }
659 return true;
660 }
661
662 /*
663 * Path walking has 2 modes, rcu-walk and ref-walk (see
664 * Documentation/filesystems/path-lookup.txt). In situations when we can't
665 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
666 * normal reference counts on dentries and vfsmounts to transition to ref-walk
667 * mode. Refcounts are grabbed at the last known good point before rcu-walk
668 * got stuck, so ref-walk may continue from there. If this is not successful
669 * (eg. a seqcount has changed), then failure is returned and it's up to caller
670 * to restart the path walk from the beginning in ref-walk mode.
671 */
672
673 /**
674 * unlazy_walk - try to switch to ref-walk mode.
675 * @nd: nameidata pathwalk data
676 * Returns: 0 on success, -ECHILD on failure
677 *
678 * unlazy_walk attempts to legitimize the current nd->path and nd->root
679 * for ref-walk mode.
680 * Must be called from rcu-walk context.
681 * Nothing should touch nameidata between unlazy_walk() failure and
682 * terminate_walk().
683 */
684 static int unlazy_walk(struct nameidata *nd)
685 {
686 struct dentry *parent = nd->path.dentry;
687
688 BUG_ON(!(nd->flags & LOOKUP_RCU));
689
690 nd->flags &= ~LOOKUP_RCU;
691 if (unlikely(!legitimize_links(nd)))
692 goto out2;
693 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
694 goto out1;
695 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
696 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
697 goto out;
698 }
699 rcu_read_unlock();
700 BUG_ON(nd->inode != parent->d_inode);
701 return 0;
702
703 out2:
704 nd->path.mnt = NULL;
705 nd->path.dentry = NULL;
706 out1:
707 if (!(nd->flags & LOOKUP_ROOT))
708 nd->root.mnt = NULL;
709 out:
710 rcu_read_unlock();
711 return -ECHILD;
712 }
713
714 /**
715 * unlazy_child - try to switch to ref-walk mode.
716 * @nd: nameidata pathwalk data
717 * @dentry: child of nd->path.dentry
718 * @seq: seq number to check dentry against
719 * Returns: 0 on success, -ECHILD on failure
720 *
721 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
722 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
723 * @nd. Must be called from rcu-walk context.
724 * Nothing should touch nameidata between unlazy_child() failure and
725 * terminate_walk().
726 */
727 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
728 {
729 BUG_ON(!(nd->flags & LOOKUP_RCU));
730
731 nd->flags &= ~LOOKUP_RCU;
732 if (unlikely(!legitimize_links(nd)))
733 goto out2;
734 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
735 goto out2;
736 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
737 goto out1;
738
739 /*
740 * We need to move both the parent and the dentry from the RCU domain
741 * to be properly refcounted. And the sequence number in the dentry
742 * validates *both* dentry counters, since we checked the sequence
743 * number of the parent after we got the child sequence number. So we
744 * know the parent must still be valid if the child sequence number is
745 */
746 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
747 goto out;
748 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
749 rcu_read_unlock();
750 dput(dentry);
751 goto drop_root_mnt;
752 }
753 /*
754 * Sequence counts matched. Now make sure that the root is
755 * still valid and get it if required.
756 */
757 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
758 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
759 rcu_read_unlock();
760 dput(dentry);
761 return -ECHILD;
762 }
763 }
764
765 rcu_read_unlock();
766 return 0;
767
768 out2:
769 nd->path.mnt = NULL;
770 out1:
771 nd->path.dentry = NULL;
772 out:
773 rcu_read_unlock();
774 drop_root_mnt:
775 if (!(nd->flags & LOOKUP_ROOT))
776 nd->root.mnt = NULL;
777 return -ECHILD;
778 }
779
780 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
781 {
782 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
783 return dentry->d_op->d_revalidate(dentry, flags);
784 else
785 return 1;
786 }
787
788 /**
789 * complete_walk - successful completion of path walk
790 * @nd: pointer nameidata
791 *
792 * If we had been in RCU mode, drop out of it and legitimize nd->path.
793 * Revalidate the final result, unless we'd already done that during
794 * the path walk or the filesystem doesn't ask for it. Return 0 on
795 * success, -error on failure. In case of failure caller does not
796 * need to drop nd->path.
797 */
798 static int complete_walk(struct nameidata *nd)
799 {
800 struct dentry *dentry = nd->path.dentry;
801 int status;
802
803 if (nd->flags & LOOKUP_RCU) {
804 if (!(nd->flags & LOOKUP_ROOT))
805 nd->root.mnt = NULL;
806 if (unlikely(unlazy_walk(nd)))
807 return -ECHILD;
808 }
809
810 if (likely(!(nd->flags & LOOKUP_JUMPED)))
811 return 0;
812
813 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
814 return 0;
815
816 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
817 if (status > 0)
818 return 0;
819
820 if (!status)
821 status = -ESTALE;
822
823 return status;
824 }
825
826 static void set_root(struct nameidata *nd)
827 {
828 struct fs_struct *fs = current->fs;
829
830 if (nd->flags & LOOKUP_RCU) {
831 unsigned seq;
832
833 do {
834 seq = read_seqcount_begin(&fs->seq);
835 nd->root = fs->root;
836 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
837 } while (read_seqcount_retry(&fs->seq, seq));
838 } else {
839 get_fs_root(fs, &nd->root);
840 }
841 }
842
843 static void path_put_conditional(struct path *path, struct nameidata *nd)
844 {
845 dput(path->dentry);
846 if (path->mnt != nd->path.mnt)
847 mntput(path->mnt);
848 }
849
850 static inline void path_to_nameidata(const struct path *path,
851 struct nameidata *nd)
852 {
853 if (!(nd->flags & LOOKUP_RCU)) {
854 dput(nd->path.dentry);
855 if (nd->path.mnt != path->mnt)
856 mntput(nd->path.mnt);
857 }
858 nd->path.mnt = path->mnt;
859 nd->path.dentry = path->dentry;
860 }
861
862 static int nd_jump_root(struct nameidata *nd)
863 {
864 if (nd->flags & LOOKUP_RCU) {
865 struct dentry *d;
866 nd->path = nd->root;
867 d = nd->path.dentry;
868 nd->inode = d->d_inode;
869 nd->seq = nd->root_seq;
870 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
871 return -ECHILD;
872 } else {
873 path_put(&nd->path);
874 nd->path = nd->root;
875 path_get(&nd->path);
876 nd->inode = nd->path.dentry->d_inode;
877 }
878 nd->flags |= LOOKUP_JUMPED;
879 return 0;
880 }
881
882 /*
883 * Helper to directly jump to a known parsed path from ->get_link,
884 * caller must have taken a reference to path beforehand.
885 */
886 void nd_jump_link(struct path *path)
887 {
888 struct nameidata *nd = current->nameidata;
889 path_put(&nd->path);
890
891 nd->path = *path;
892 nd->inode = nd->path.dentry->d_inode;
893 nd->flags |= LOOKUP_JUMPED;
894 }
895
896 static inline void put_link(struct nameidata *nd)
897 {
898 struct saved *last = nd->stack + --nd->depth;
899 do_delayed_call(&last->done);
900 if (!(nd->flags & LOOKUP_RCU))
901 path_put(&last->link);
902 }
903
904 int sysctl_protected_symlinks __read_mostly = 1;
905 int sysctl_protected_hardlinks __read_mostly = 1;
906
907 /**
908 * may_follow_link - Check symlink following for unsafe situations
909 * @nd: nameidata pathwalk data
910 *
911 * In the case of the sysctl_protected_symlinks sysctl being enabled,
912 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
913 * in a sticky world-writable directory. This is to protect privileged
914 * processes from failing races against path names that may change out
915 * from under them by way of other users creating malicious symlinks.
916 * It will permit symlinks to be followed only when outside a sticky
917 * world-writable directory, or when the uid of the symlink and follower
918 * match, or when the directory owner matches the symlink's owner.
919 *
920 * Returns 0 if following the symlink is allowed, -ve on error.
921 */
922 static inline int may_follow_link(struct nameidata *nd)
923 {
924 const struct inode *inode;
925 const struct inode *parent;
926 kuid_t puid;
927
928 if (!sysctl_protected_symlinks)
929 return 0;
930
931 /* Allowed if owner and follower match. */
932 inode = nd->link_inode;
933 if (uid_eq(current_cred()->fsuid, inode->i_uid))
934 return 0;
935
936 /* Allowed if parent directory not sticky and world-writable. */
937 parent = nd->inode;
938 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
939 return 0;
940
941 /* Allowed if parent directory and link owner match. */
942 puid = parent->i_uid;
943 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
944 return 0;
945
946 if (nd->flags & LOOKUP_RCU)
947 return -ECHILD;
948
949 audit_log_link_denied("follow_link", &nd->stack[0].link);
950 return -EACCES;
951 }
952
953 /**
954 * safe_hardlink_source - Check for safe hardlink conditions
955 * @inode: the source inode to hardlink from
956 *
957 * Return false if at least one of the following conditions:
958 * - inode is not a regular file
959 * - inode is setuid
960 * - inode is setgid and group-exec
961 * - access failure for read and write
962 *
963 * Otherwise returns true.
964 */
965 static bool safe_hardlink_source(struct inode *inode)
966 {
967 umode_t mode = inode->i_mode;
968
969 /* Special files should not get pinned to the filesystem. */
970 if (!S_ISREG(mode))
971 return false;
972
973 /* Setuid files should not get pinned to the filesystem. */
974 if (mode & S_ISUID)
975 return false;
976
977 /* Executable setgid files should not get pinned to the filesystem. */
978 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
979 return false;
980
981 /* Hardlinking to unreadable or unwritable sources is dangerous. */
982 if (inode_permission(inode, MAY_READ | MAY_WRITE))
983 return false;
984
985 return true;
986 }
987
988 /**
989 * may_linkat - Check permissions for creating a hardlink
990 * @link: the source to hardlink from
991 *
992 * Block hardlink when all of:
993 * - sysctl_protected_hardlinks enabled
994 * - fsuid does not match inode
995 * - hardlink source is unsafe (see safe_hardlink_source() above)
996 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
997 *
998 * Returns 0 if successful, -ve on error.
999 */
1000 static int may_linkat(struct path *link)
1001 {
1002 struct inode *inode;
1003
1004 if (!sysctl_protected_hardlinks)
1005 return 0;
1006
1007 inode = link->dentry->d_inode;
1008
1009 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1010 * otherwise, it must be a safe source.
1011 */
1012 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1013 return 0;
1014
1015 audit_log_link_denied("linkat", link);
1016 return -EPERM;
1017 }
1018
1019 static __always_inline
1020 const char *get_link(struct nameidata *nd)
1021 {
1022 struct saved *last = nd->stack + nd->depth - 1;
1023 struct dentry *dentry = last->link.dentry;
1024 struct inode *inode = nd->link_inode;
1025 int error;
1026 const char *res;
1027
1028 if (!(nd->flags & LOOKUP_RCU)) {
1029 touch_atime(&last->link);
1030 cond_resched();
1031 } else if (atime_needs_update_rcu(&last->link, inode)) {
1032 if (unlikely(unlazy_walk(nd)))
1033 return ERR_PTR(-ECHILD);
1034 touch_atime(&last->link);
1035 }
1036
1037 error = security_inode_follow_link(dentry, inode,
1038 nd->flags & LOOKUP_RCU);
1039 if (unlikely(error))
1040 return ERR_PTR(error);
1041
1042 nd->last_type = LAST_BIND;
1043 res = inode->i_link;
1044 if (!res) {
1045 const char * (*get)(struct dentry *, struct inode *,
1046 struct delayed_call *);
1047 get = inode->i_op->get_link;
1048 if (nd->flags & LOOKUP_RCU) {
1049 res = get(NULL, inode, &last->done);
1050 if (res == ERR_PTR(-ECHILD)) {
1051 if (unlikely(unlazy_walk(nd)))
1052 return ERR_PTR(-ECHILD);
1053 res = get(dentry, inode, &last->done);
1054 }
1055 } else {
1056 res = get(dentry, inode, &last->done);
1057 }
1058 if (IS_ERR_OR_NULL(res))
1059 return res;
1060 }
1061 if (*res == '/') {
1062 if (!nd->root.mnt)
1063 set_root(nd);
1064 if (unlikely(nd_jump_root(nd)))
1065 return ERR_PTR(-ECHILD);
1066 while (unlikely(*++res == '/'))
1067 ;
1068 }
1069 if (!*res)
1070 res = NULL;
1071 return res;
1072 }
1073
1074 /*
1075 * follow_up - Find the mountpoint of path's vfsmount
1076 *
1077 * Given a path, find the mountpoint of its source file system.
1078 * Replace @path with the path of the mountpoint in the parent mount.
1079 * Up is towards /.
1080 *
1081 * Return 1 if we went up a level and 0 if we were already at the
1082 * root.
1083 */
1084 int follow_up(struct path *path)
1085 {
1086 struct mount *mnt = real_mount(path->mnt);
1087 struct mount *parent;
1088 struct dentry *mountpoint;
1089
1090 read_seqlock_excl(&mount_lock);
1091 parent = mnt->mnt_parent;
1092 if (parent == mnt) {
1093 read_sequnlock_excl(&mount_lock);
1094 return 0;
1095 }
1096 mntget(&parent->mnt);
1097 mountpoint = dget(mnt->mnt_mountpoint);
1098 read_sequnlock_excl(&mount_lock);
1099 dput(path->dentry);
1100 path->dentry = mountpoint;
1101 mntput(path->mnt);
1102 path->mnt = &parent->mnt;
1103 return 1;
1104 }
1105 EXPORT_SYMBOL(follow_up);
1106
1107 /*
1108 * Perform an automount
1109 * - return -EISDIR to tell follow_managed() to stop and return the path we
1110 * were called with.
1111 */
1112 static int follow_automount(struct path *path, struct nameidata *nd,
1113 bool *need_mntput)
1114 {
1115 struct vfsmount *mnt;
1116 int err;
1117
1118 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1119 return -EREMOTE;
1120
1121 /* We don't want to mount if someone's just doing a stat -
1122 * unless they're stat'ing a directory and appended a '/' to
1123 * the name.
1124 *
1125 * We do, however, want to mount if someone wants to open or
1126 * create a file of any type under the mountpoint, wants to
1127 * traverse through the mountpoint or wants to open the
1128 * mounted directory. Also, autofs may mark negative dentries
1129 * as being automount points. These will need the attentions
1130 * of the daemon to instantiate them before they can be used.
1131 */
1132 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1133 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1134 path->dentry->d_inode)
1135 return -EISDIR;
1136
1137 nd->total_link_count++;
1138 if (nd->total_link_count >= 40)
1139 return -ELOOP;
1140
1141 mnt = path->dentry->d_op->d_automount(path);
1142 if (IS_ERR(mnt)) {
1143 /*
1144 * The filesystem is allowed to return -EISDIR here to indicate
1145 * it doesn't want to automount. For instance, autofs would do
1146 * this so that its userspace daemon can mount on this dentry.
1147 *
1148 * However, we can only permit this if it's a terminal point in
1149 * the path being looked up; if it wasn't then the remainder of
1150 * the path is inaccessible and we should say so.
1151 */
1152 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1153 return -EREMOTE;
1154 return PTR_ERR(mnt);
1155 }
1156
1157 if (!mnt) /* mount collision */
1158 return 0;
1159
1160 if (!*need_mntput) {
1161 /* lock_mount() may release path->mnt on error */
1162 mntget(path->mnt);
1163 *need_mntput = true;
1164 }
1165 err = finish_automount(mnt, path);
1166
1167 switch (err) {
1168 case -EBUSY:
1169 /* Someone else made a mount here whilst we were busy */
1170 return 0;
1171 case 0:
1172 path_put(path);
1173 path->mnt = mnt;
1174 path->dentry = dget(mnt->mnt_root);
1175 return 0;
1176 default:
1177 return err;
1178 }
1179
1180 }
1181
1182 /*
1183 * Handle a dentry that is managed in some way.
1184 * - Flagged for transit management (autofs)
1185 * - Flagged as mountpoint
1186 * - Flagged as automount point
1187 *
1188 * This may only be called in refwalk mode.
1189 *
1190 * Serialization is taken care of in namespace.c
1191 */
1192 static int follow_managed(struct path *path, struct nameidata *nd)
1193 {
1194 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1195 unsigned managed;
1196 bool need_mntput = false;
1197 int ret = 0;
1198
1199 /* Given that we're not holding a lock here, we retain the value in a
1200 * local variable for each dentry as we look at it so that we don't see
1201 * the components of that value change under us */
1202 while (managed = READ_ONCE(path->dentry->d_flags),
1203 managed &= DCACHE_MANAGED_DENTRY,
1204 unlikely(managed != 0)) {
1205 /* Allow the filesystem to manage the transit without i_mutex
1206 * being held. */
1207 if (managed & DCACHE_MANAGE_TRANSIT) {
1208 BUG_ON(!path->dentry->d_op);
1209 BUG_ON(!path->dentry->d_op->d_manage);
1210 ret = path->dentry->d_op->d_manage(path, false);
1211 if (ret < 0)
1212 break;
1213 }
1214
1215 /* Transit to a mounted filesystem. */
1216 if (managed & DCACHE_MOUNTED) {
1217 struct vfsmount *mounted = lookup_mnt(path);
1218 if (mounted) {
1219 dput(path->dentry);
1220 if (need_mntput)
1221 mntput(path->mnt);
1222 path->mnt = mounted;
1223 path->dentry = dget(mounted->mnt_root);
1224 need_mntput = true;
1225 continue;
1226 }
1227
1228 /* Something is mounted on this dentry in another
1229 * namespace and/or whatever was mounted there in this
1230 * namespace got unmounted before lookup_mnt() could
1231 * get it */
1232 }
1233
1234 /* Handle an automount point */
1235 if (managed & DCACHE_NEED_AUTOMOUNT) {
1236 ret = follow_automount(path, nd, &need_mntput);
1237 if (ret < 0)
1238 break;
1239 continue;
1240 }
1241
1242 /* We didn't change the current path point */
1243 break;
1244 }
1245
1246 if (need_mntput && path->mnt == mnt)
1247 mntput(path->mnt);
1248 if (ret == -EISDIR || !ret)
1249 ret = 1;
1250 if (need_mntput)
1251 nd->flags |= LOOKUP_JUMPED;
1252 if (unlikely(ret < 0))
1253 path_put_conditional(path, nd);
1254 return ret;
1255 }
1256
1257 int follow_down_one(struct path *path)
1258 {
1259 struct vfsmount *mounted;
1260
1261 mounted = lookup_mnt(path);
1262 if (mounted) {
1263 dput(path->dentry);
1264 mntput(path->mnt);
1265 path->mnt = mounted;
1266 path->dentry = dget(mounted->mnt_root);
1267 return 1;
1268 }
1269 return 0;
1270 }
1271 EXPORT_SYMBOL(follow_down_one);
1272
1273 static inline int managed_dentry_rcu(const struct path *path)
1274 {
1275 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1276 path->dentry->d_op->d_manage(path, true) : 0;
1277 }
1278
1279 /*
1280 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1281 * we meet a managed dentry that would need blocking.
1282 */
1283 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1284 struct inode **inode, unsigned *seqp)
1285 {
1286 for (;;) {
1287 struct mount *mounted;
1288 /*
1289 * Don't forget we might have a non-mountpoint managed dentry
1290 * that wants to block transit.
1291 */
1292 switch (managed_dentry_rcu(path)) {
1293 case -ECHILD:
1294 default:
1295 return false;
1296 case -EISDIR:
1297 return true;
1298 case 0:
1299 break;
1300 }
1301
1302 if (!d_mountpoint(path->dentry))
1303 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1304
1305 mounted = __lookup_mnt(path->mnt, path->dentry);
1306 if (!mounted)
1307 break;
1308 path->mnt = &mounted->mnt;
1309 path->dentry = mounted->mnt.mnt_root;
1310 nd->flags |= LOOKUP_JUMPED;
1311 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1312 /*
1313 * Update the inode too. We don't need to re-check the
1314 * dentry sequence number here after this d_inode read,
1315 * because a mount-point is always pinned.
1316 */
1317 *inode = path->dentry->d_inode;
1318 }
1319 return !read_seqretry(&mount_lock, nd->m_seq) &&
1320 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1321 }
1322
1323 static int follow_dotdot_rcu(struct nameidata *nd)
1324 {
1325 struct inode *inode = nd->inode;
1326
1327 while (1) {
1328 if (path_equal(&nd->path, &nd->root))
1329 break;
1330 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1331 struct dentry *old = nd->path.dentry;
1332 struct dentry *parent = old->d_parent;
1333 unsigned seq;
1334
1335 inode = parent->d_inode;
1336 seq = read_seqcount_begin(&parent->d_seq);
1337 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1338 return -ECHILD;
1339 nd->path.dentry = parent;
1340 nd->seq = seq;
1341 if (unlikely(!path_connected(&nd->path)))
1342 return -ENOENT;
1343 break;
1344 } else {
1345 struct mount *mnt = real_mount(nd->path.mnt);
1346 struct mount *mparent = mnt->mnt_parent;
1347 struct dentry *mountpoint = mnt->mnt_mountpoint;
1348 struct inode *inode2 = mountpoint->d_inode;
1349 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1350 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1351 return -ECHILD;
1352 if (&mparent->mnt == nd->path.mnt)
1353 break;
1354 /* we know that mountpoint was pinned */
1355 nd->path.dentry = mountpoint;
1356 nd->path.mnt = &mparent->mnt;
1357 inode = inode2;
1358 nd->seq = seq;
1359 }
1360 }
1361 while (unlikely(d_mountpoint(nd->path.dentry))) {
1362 struct mount *mounted;
1363 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1364 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1365 return -ECHILD;
1366 if (!mounted)
1367 break;
1368 nd->path.mnt = &mounted->mnt;
1369 nd->path.dentry = mounted->mnt.mnt_root;
1370 inode = nd->path.dentry->d_inode;
1371 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1372 }
1373 nd->inode = inode;
1374 return 0;
1375 }
1376
1377 /*
1378 * Follow down to the covering mount currently visible to userspace. At each
1379 * point, the filesystem owning that dentry may be queried as to whether the
1380 * caller is permitted to proceed or not.
1381 */
1382 int follow_down(struct path *path)
1383 {
1384 unsigned managed;
1385 int ret;
1386
1387 while (managed = READ_ONCE(path->dentry->d_flags),
1388 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1389 /* Allow the filesystem to manage the transit without i_mutex
1390 * being held.
1391 *
1392 * We indicate to the filesystem if someone is trying to mount
1393 * something here. This gives autofs the chance to deny anyone
1394 * other than its daemon the right to mount on its
1395 * superstructure.
1396 *
1397 * The filesystem may sleep at this point.
1398 */
1399 if (managed & DCACHE_MANAGE_TRANSIT) {
1400 BUG_ON(!path->dentry->d_op);
1401 BUG_ON(!path->dentry->d_op->d_manage);
1402 ret = path->dentry->d_op->d_manage(path, false);
1403 if (ret < 0)
1404 return ret == -EISDIR ? 0 : ret;
1405 }
1406
1407 /* Transit to a mounted filesystem. */
1408 if (managed & DCACHE_MOUNTED) {
1409 struct vfsmount *mounted = lookup_mnt(path);
1410 if (!mounted)
1411 break;
1412 dput(path->dentry);
1413 mntput(path->mnt);
1414 path->mnt = mounted;
1415 path->dentry = dget(mounted->mnt_root);
1416 continue;
1417 }
1418
1419 /* Don't handle automount points here */
1420 break;
1421 }
1422 return 0;
1423 }
1424 EXPORT_SYMBOL(follow_down);
1425
1426 /*
1427 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1428 */
1429 static void follow_mount(struct path *path)
1430 {
1431 while (d_mountpoint(path->dentry)) {
1432 struct vfsmount *mounted = lookup_mnt(path);
1433 if (!mounted)
1434 break;
1435 dput(path->dentry);
1436 mntput(path->mnt);
1437 path->mnt = mounted;
1438 path->dentry = dget(mounted->mnt_root);
1439 }
1440 }
1441
1442 static int path_parent_directory(struct path *path)
1443 {
1444 struct dentry *old = path->dentry;
1445 /* rare case of legitimate dget_parent()... */
1446 path->dentry = dget_parent(path->dentry);
1447 dput(old);
1448 if (unlikely(!path_connected(path)))
1449 return -ENOENT;
1450 return 0;
1451 }
1452
1453 static int follow_dotdot(struct nameidata *nd)
1454 {
1455 while(1) {
1456 if (nd->path.dentry == nd->root.dentry &&
1457 nd->path.mnt == nd->root.mnt) {
1458 break;
1459 }
1460 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1461 int ret = path_parent_directory(&nd->path);
1462 if (ret)
1463 return ret;
1464 break;
1465 }
1466 if (!follow_up(&nd->path))
1467 break;
1468 }
1469 follow_mount(&nd->path);
1470 nd->inode = nd->path.dentry->d_inode;
1471 return 0;
1472 }
1473
1474 /*
1475 * This looks up the name in dcache and possibly revalidates the found dentry.
1476 * NULL is returned if the dentry does not exist in the cache.
1477 */
1478 static struct dentry *lookup_dcache(const struct qstr *name,
1479 struct dentry *dir,
1480 unsigned int flags)
1481 {
1482 struct dentry *dentry = d_lookup(dir, name);
1483 if (dentry) {
1484 int error = d_revalidate(dentry, flags);
1485 if (unlikely(error <= 0)) {
1486 if (!error)
1487 d_invalidate(dentry);
1488 dput(dentry);
1489 return ERR_PTR(error);
1490 }
1491 }
1492 return dentry;
1493 }
1494
1495 /*
1496 * Call i_op->lookup on the dentry. The dentry must be negative and
1497 * unhashed.
1498 *
1499 * dir->d_inode->i_mutex must be held
1500 */
1501 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1502 unsigned int flags)
1503 {
1504 struct dentry *old;
1505
1506 /* Don't create child dentry for a dead directory. */
1507 if (unlikely(IS_DEADDIR(dir))) {
1508 dput(dentry);
1509 return ERR_PTR(-ENOENT);
1510 }
1511
1512 old = dir->i_op->lookup(dir, dentry, flags);
1513 if (unlikely(old)) {
1514 dput(dentry);
1515 dentry = old;
1516 }
1517 return dentry;
1518 }
1519
1520 static struct dentry *__lookup_hash(const struct qstr *name,
1521 struct dentry *base, unsigned int flags)
1522 {
1523 struct dentry *dentry = lookup_dcache(name, base, flags);
1524
1525 if (dentry)
1526 return dentry;
1527
1528 dentry = d_alloc(base, name);
1529 if (unlikely(!dentry))
1530 return ERR_PTR(-ENOMEM);
1531
1532 return lookup_real(base->d_inode, dentry, flags);
1533 }
1534
1535 static int lookup_fast(struct nameidata *nd,
1536 struct path *path, struct inode **inode,
1537 unsigned *seqp)
1538 {
1539 struct vfsmount *mnt = nd->path.mnt;
1540 struct dentry *dentry, *parent = nd->path.dentry;
1541 int status = 1;
1542 int err;
1543
1544 /*
1545 * Rename seqlock is not required here because in the off chance
1546 * of a false negative due to a concurrent rename, the caller is
1547 * going to fall back to non-racy lookup.
1548 */
1549 if (nd->flags & LOOKUP_RCU) {
1550 unsigned seq;
1551 bool negative;
1552 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1553 if (unlikely(!dentry)) {
1554 if (unlazy_walk(nd))
1555 return -ECHILD;
1556 return 0;
1557 }
1558
1559 /*
1560 * This sequence count validates that the inode matches
1561 * the dentry name information from lookup.
1562 */
1563 *inode = d_backing_inode(dentry);
1564 negative = d_is_negative(dentry);
1565 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1566 return -ECHILD;
1567
1568 /*
1569 * This sequence count validates that the parent had no
1570 * changes while we did the lookup of the dentry above.
1571 *
1572 * The memory barrier in read_seqcount_begin of child is
1573 * enough, we can use __read_seqcount_retry here.
1574 */
1575 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1576 return -ECHILD;
1577
1578 *seqp = seq;
1579 status = d_revalidate(dentry, nd->flags);
1580 if (likely(status > 0)) {
1581 /*
1582 * Note: do negative dentry check after revalidation in
1583 * case that drops it.
1584 */
1585 if (unlikely(negative))
1586 return -ENOENT;
1587 path->mnt = mnt;
1588 path->dentry = dentry;
1589 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1590 return 1;
1591 }
1592 if (unlazy_child(nd, dentry, seq))
1593 return -ECHILD;
1594 if (unlikely(status == -ECHILD))
1595 /* we'd been told to redo it in non-rcu mode */
1596 status = d_revalidate(dentry, nd->flags);
1597 } else {
1598 dentry = __d_lookup(parent, &nd->last);
1599 if (unlikely(!dentry))
1600 return 0;
1601 status = d_revalidate(dentry, nd->flags);
1602 }
1603 if (unlikely(status <= 0)) {
1604 if (!status)
1605 d_invalidate(dentry);
1606 dput(dentry);
1607 return status;
1608 }
1609 if (unlikely(d_is_negative(dentry))) {
1610 dput(dentry);
1611 return -ENOENT;
1612 }
1613
1614 path->mnt = mnt;
1615 path->dentry = dentry;
1616 err = follow_managed(path, nd);
1617 if (likely(err > 0))
1618 *inode = d_backing_inode(path->dentry);
1619 return err;
1620 }
1621
1622 /* Fast lookup failed, do it the slow way */
1623 static struct dentry *lookup_slow(const struct qstr *name,
1624 struct dentry *dir,
1625 unsigned int flags)
1626 {
1627 struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1628 struct inode *inode = dir->d_inode;
1629 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1630
1631 inode_lock_shared(inode);
1632 /* Don't go there if it's already dead */
1633 if (unlikely(IS_DEADDIR(inode)))
1634 goto out;
1635 again:
1636 dentry = d_alloc_parallel(dir, name, &wq);
1637 if (IS_ERR(dentry))
1638 goto out;
1639 if (unlikely(!d_in_lookup(dentry))) {
1640 if (!(flags & LOOKUP_NO_REVAL)) {
1641 int error = d_revalidate(dentry, flags);
1642 if (unlikely(error <= 0)) {
1643 if (!error) {
1644 d_invalidate(dentry);
1645 dput(dentry);
1646 goto again;
1647 }
1648 dput(dentry);
1649 dentry = ERR_PTR(error);
1650 }
1651 }
1652 } else {
1653 old = inode->i_op->lookup(inode, dentry, flags);
1654 d_lookup_done(dentry);
1655 if (unlikely(old)) {
1656 dput(dentry);
1657 dentry = old;
1658 }
1659 }
1660 out:
1661 inode_unlock_shared(inode);
1662 return dentry;
1663 }
1664
1665 static inline int may_lookup(struct nameidata *nd)
1666 {
1667 if (nd->flags & LOOKUP_RCU) {
1668 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1669 if (err != -ECHILD)
1670 return err;
1671 if (unlazy_walk(nd))
1672 return -ECHILD;
1673 }
1674 return inode_permission(nd->inode, MAY_EXEC);
1675 }
1676
1677 static inline int handle_dots(struct nameidata *nd, int type)
1678 {
1679 if (type == LAST_DOTDOT) {
1680 if (!nd->root.mnt)
1681 set_root(nd);
1682 if (nd->flags & LOOKUP_RCU) {
1683 return follow_dotdot_rcu(nd);
1684 } else
1685 return follow_dotdot(nd);
1686 }
1687 return 0;
1688 }
1689
1690 static int pick_link(struct nameidata *nd, struct path *link,
1691 struct inode *inode, unsigned seq)
1692 {
1693 int error;
1694 struct saved *last;
1695 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1696 path_to_nameidata(link, nd);
1697 return -ELOOP;
1698 }
1699 if (!(nd->flags & LOOKUP_RCU)) {
1700 if (link->mnt == nd->path.mnt)
1701 mntget(link->mnt);
1702 }
1703 error = nd_alloc_stack(nd);
1704 if (unlikely(error)) {
1705 if (error == -ECHILD) {
1706 if (unlikely(!legitimize_path(nd, link, seq))) {
1707 drop_links(nd);
1708 nd->depth = 0;
1709 nd->flags &= ~LOOKUP_RCU;
1710 nd->path.mnt = NULL;
1711 nd->path.dentry = NULL;
1712 if (!(nd->flags & LOOKUP_ROOT))
1713 nd->root.mnt = NULL;
1714 rcu_read_unlock();
1715 } else if (likely(unlazy_walk(nd)) == 0)
1716 error = nd_alloc_stack(nd);
1717 }
1718 if (error) {
1719 path_put(link);
1720 return error;
1721 }
1722 }
1723
1724 last = nd->stack + nd->depth++;
1725 last->link = *link;
1726 clear_delayed_call(&last->done);
1727 nd->link_inode = inode;
1728 last->seq = seq;
1729 return 1;
1730 }
1731
1732 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1733
1734 /*
1735 * Do we need to follow links? We _really_ want to be able
1736 * to do this check without having to look at inode->i_op,
1737 * so we keep a cache of "no, this doesn't need follow_link"
1738 * for the common case.
1739 */
1740 static inline int step_into(struct nameidata *nd, struct path *path,
1741 int flags, struct inode *inode, unsigned seq)
1742 {
1743 if (!(flags & WALK_MORE) && nd->depth)
1744 put_link(nd);
1745 if (likely(!d_is_symlink(path->dentry)) ||
1746 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1747 /* not a symlink or should not follow */
1748 path_to_nameidata(path, nd);
1749 nd->inode = inode;
1750 nd->seq = seq;
1751 return 0;
1752 }
1753 /* make sure that d_is_symlink above matches inode */
1754 if (nd->flags & LOOKUP_RCU) {
1755 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1756 return -ECHILD;
1757 }
1758 return pick_link(nd, path, inode, seq);
1759 }
1760
1761 static int walk_component(struct nameidata *nd, int flags)
1762 {
1763 struct path path;
1764 struct inode *inode;
1765 unsigned seq;
1766 int err;
1767 /*
1768 * "." and ".." are special - ".." especially so because it has
1769 * to be able to know about the current root directory and
1770 * parent relationships.
1771 */
1772 if (unlikely(nd->last_type != LAST_NORM)) {
1773 err = handle_dots(nd, nd->last_type);
1774 if (!(flags & WALK_MORE) && nd->depth)
1775 put_link(nd);
1776 return err;
1777 }
1778 err = lookup_fast(nd, &path, &inode, &seq);
1779 if (unlikely(err <= 0)) {
1780 if (err < 0)
1781 return err;
1782 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1783 nd->flags);
1784 if (IS_ERR(path.dentry))
1785 return PTR_ERR(path.dentry);
1786
1787 path.mnt = nd->path.mnt;
1788 err = follow_managed(&path, nd);
1789 if (unlikely(err < 0))
1790 return err;
1791
1792 if (unlikely(d_is_negative(path.dentry))) {
1793 path_to_nameidata(&path, nd);
1794 return -ENOENT;
1795 }
1796
1797 seq = 0; /* we are already out of RCU mode */
1798 inode = d_backing_inode(path.dentry);
1799 }
1800
1801 return step_into(nd, &path, flags, inode, seq);
1802 }
1803
1804 /*
1805 * We can do the critical dentry name comparison and hashing
1806 * operations one word at a time, but we are limited to:
1807 *
1808 * - Architectures with fast unaligned word accesses. We could
1809 * do a "get_unaligned()" if this helps and is sufficiently
1810 * fast.
1811 *
1812 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1813 * do not trap on the (extremely unlikely) case of a page
1814 * crossing operation.
1815 *
1816 * - Furthermore, we need an efficient 64-bit compile for the
1817 * 64-bit case in order to generate the "number of bytes in
1818 * the final mask". Again, that could be replaced with a
1819 * efficient population count instruction or similar.
1820 */
1821 #ifdef CONFIG_DCACHE_WORD_ACCESS
1822
1823 #include <asm/word-at-a-time.h>
1824
1825 #ifdef HASH_MIX
1826
1827 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1828
1829 #elif defined(CONFIG_64BIT)
1830 /*
1831 * Register pressure in the mixing function is an issue, particularly
1832 * on 32-bit x86, but almost any function requires one state value and
1833 * one temporary. Instead, use a function designed for two state values
1834 * and no temporaries.
1835 *
1836 * This function cannot create a collision in only two iterations, so
1837 * we have two iterations to achieve avalanche. In those two iterations,
1838 * we have six layers of mixing, which is enough to spread one bit's
1839 * influence out to 2^6 = 64 state bits.
1840 *
1841 * Rotate constants are scored by considering either 64 one-bit input
1842 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1843 * probability of that delta causing a change to each of the 128 output
1844 * bits, using a sample of random initial states.
1845 *
1846 * The Shannon entropy of the computed probabilities is then summed
1847 * to produce a score. Ideally, any input change has a 50% chance of
1848 * toggling any given output bit.
1849 *
1850 * Mixing scores (in bits) for (12,45):
1851 * Input delta: 1-bit 2-bit
1852 * 1 round: 713.3 42542.6
1853 * 2 rounds: 2753.7 140389.8
1854 * 3 rounds: 5954.1 233458.2
1855 * 4 rounds: 7862.6 256672.2
1856 * Perfect: 8192 258048
1857 * (64*128) (64*63/2 * 128)
1858 */
1859 #define HASH_MIX(x, y, a) \
1860 ( x ^= (a), \
1861 y ^= x, x = rol64(x,12),\
1862 x += y, y = rol64(y,45),\
1863 y *= 9 )
1864
1865 /*
1866 * Fold two longs into one 32-bit hash value. This must be fast, but
1867 * latency isn't quite as critical, as there is a fair bit of additional
1868 * work done before the hash value is used.
1869 */
1870 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1871 {
1872 y ^= x * GOLDEN_RATIO_64;
1873 y *= GOLDEN_RATIO_64;
1874 return y >> 32;
1875 }
1876
1877 #else /* 32-bit case */
1878
1879 /*
1880 * Mixing scores (in bits) for (7,20):
1881 * Input delta: 1-bit 2-bit
1882 * 1 round: 330.3 9201.6
1883 * 2 rounds: 1246.4 25475.4
1884 * 3 rounds: 1907.1 31295.1
1885 * 4 rounds: 2042.3 31718.6
1886 * Perfect: 2048 31744
1887 * (32*64) (32*31/2 * 64)
1888 */
1889 #define HASH_MIX(x, y, a) \
1890 ( x ^= (a), \
1891 y ^= x, x = rol32(x, 7),\
1892 x += y, y = rol32(y,20),\
1893 y *= 9 )
1894
1895 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1896 {
1897 /* Use arch-optimized multiply if one exists */
1898 return __hash_32(y ^ __hash_32(x));
1899 }
1900
1901 #endif
1902
1903 /*
1904 * Return the hash of a string of known length. This is carfully
1905 * designed to match hash_name(), which is the more critical function.
1906 * In particular, we must end by hashing a final word containing 0..7
1907 * payload bytes, to match the way that hash_name() iterates until it
1908 * finds the delimiter after the name.
1909 */
1910 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1911 {
1912 unsigned long a, x = 0, y = (unsigned long)salt;
1913
1914 for (;;) {
1915 if (!len)
1916 goto done;
1917 a = load_unaligned_zeropad(name);
1918 if (len < sizeof(unsigned long))
1919 break;
1920 HASH_MIX(x, y, a);
1921 name += sizeof(unsigned long);
1922 len -= sizeof(unsigned long);
1923 }
1924 x ^= a & bytemask_from_count(len);
1925 done:
1926 return fold_hash(x, y);
1927 }
1928 EXPORT_SYMBOL(full_name_hash);
1929
1930 /* Return the "hash_len" (hash and length) of a null-terminated string */
1931 u64 hashlen_string(const void *salt, const char *name)
1932 {
1933 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1934 unsigned long adata, mask, len;
1935 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1936
1937 len = 0;
1938 goto inside;
1939
1940 do {
1941 HASH_MIX(x, y, a);
1942 len += sizeof(unsigned long);
1943 inside:
1944 a = load_unaligned_zeropad(name+len);
1945 } while (!has_zero(a, &adata, &constants));
1946
1947 adata = prep_zero_mask(a, adata, &constants);
1948 mask = create_zero_mask(adata);
1949 x ^= a & zero_bytemask(mask);
1950
1951 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1952 }
1953 EXPORT_SYMBOL(hashlen_string);
1954
1955 /*
1956 * Calculate the length and hash of the path component, and
1957 * return the "hash_len" as the result.
1958 */
1959 static inline u64 hash_name(const void *salt, const char *name)
1960 {
1961 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1962 unsigned long adata, bdata, mask, len;
1963 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1964
1965 len = 0;
1966 goto inside;
1967
1968 do {
1969 HASH_MIX(x, y, a);
1970 len += sizeof(unsigned long);
1971 inside:
1972 a = load_unaligned_zeropad(name+len);
1973 b = a ^ REPEAT_BYTE('/');
1974 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1975
1976 adata = prep_zero_mask(a, adata, &constants);
1977 bdata = prep_zero_mask(b, bdata, &constants);
1978 mask = create_zero_mask(adata | bdata);
1979 x ^= a & zero_bytemask(mask);
1980
1981 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1982 }
1983
1984 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1985
1986 /* Return the hash of a string of known length */
1987 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1988 {
1989 unsigned long hash = init_name_hash(salt);
1990 while (len--)
1991 hash = partial_name_hash((unsigned char)*name++, hash);
1992 return end_name_hash(hash);
1993 }
1994 EXPORT_SYMBOL(full_name_hash);
1995
1996 /* Return the "hash_len" (hash and length) of a null-terminated string */
1997 u64 hashlen_string(const void *salt, const char *name)
1998 {
1999 unsigned long hash = init_name_hash(salt);
2000 unsigned long len = 0, c;
2001
2002 c = (unsigned char)*name;
2003 while (c) {
2004 len++;
2005 hash = partial_name_hash(c, hash);
2006 c = (unsigned char)name[len];
2007 }
2008 return hashlen_create(end_name_hash(hash), len);
2009 }
2010 EXPORT_SYMBOL(hashlen_string);
2011
2012 /*
2013 * We know there's a real path component here of at least
2014 * one character.
2015 */
2016 static inline u64 hash_name(const void *salt, const char *name)
2017 {
2018 unsigned long hash = init_name_hash(salt);
2019 unsigned long len = 0, c;
2020
2021 c = (unsigned char)*name;
2022 do {
2023 len++;
2024 hash = partial_name_hash(c, hash);
2025 c = (unsigned char)name[len];
2026 } while (c && c != '/');
2027 return hashlen_create(end_name_hash(hash), len);
2028 }
2029
2030 #endif
2031
2032 /*
2033 * Name resolution.
2034 * This is the basic name resolution function, turning a pathname into
2035 * the final dentry. We expect 'base' to be positive and a directory.
2036 *
2037 * Returns 0 and nd will have valid dentry and mnt on success.
2038 * Returns error and drops reference to input namei data on failure.
2039 */
2040 static int link_path_walk(const char *name, struct nameidata *nd)
2041 {
2042 int err;
2043
2044 while (*name=='/')
2045 name++;
2046 if (!*name)
2047 return 0;
2048
2049 /* At this point we know we have a real path component. */
2050 for(;;) {
2051 u64 hash_len;
2052 int type;
2053
2054 err = may_lookup(nd);
2055 if (err)
2056 return err;
2057
2058 hash_len = hash_name(nd->path.dentry, name);
2059
2060 type = LAST_NORM;
2061 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2062 case 2:
2063 if (name[1] == '.') {
2064 type = LAST_DOTDOT;
2065 nd->flags |= LOOKUP_JUMPED;
2066 }
2067 break;
2068 case 1:
2069 type = LAST_DOT;
2070 }
2071 if (likely(type == LAST_NORM)) {
2072 struct dentry *parent = nd->path.dentry;
2073 nd->flags &= ~LOOKUP_JUMPED;
2074 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2075 struct qstr this = { { .hash_len = hash_len }, .name = name };
2076 err = parent->d_op->d_hash(parent, &this);
2077 if (err < 0)
2078 return err;
2079 hash_len = this.hash_len;
2080 name = this.name;
2081 }
2082 }
2083
2084 nd->last.hash_len = hash_len;
2085 nd->last.name = name;
2086 nd->last_type = type;
2087
2088 name += hashlen_len(hash_len);
2089 if (!*name)
2090 goto OK;
2091 /*
2092 * If it wasn't NUL, we know it was '/'. Skip that
2093 * slash, and continue until no more slashes.
2094 */
2095 do {
2096 name++;
2097 } while (unlikely(*name == '/'));
2098 if (unlikely(!*name)) {
2099 OK:
2100 /* pathname body, done */
2101 if (!nd->depth)
2102 return 0;
2103 name = nd->stack[nd->depth - 1].name;
2104 /* trailing symlink, done */
2105 if (!name)
2106 return 0;
2107 /* last component of nested symlink */
2108 err = walk_component(nd, WALK_FOLLOW);
2109 } else {
2110 /* not the last component */
2111 err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2112 }
2113 if (err < 0)
2114 return err;
2115
2116 if (err) {
2117 const char *s = get_link(nd);
2118
2119 if (IS_ERR(s))
2120 return PTR_ERR(s);
2121 err = 0;
2122 if (unlikely(!s)) {
2123 /* jumped */
2124 put_link(nd);
2125 } else {
2126 nd->stack[nd->depth - 1].name = name;
2127 name = s;
2128 continue;
2129 }
2130 }
2131 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2132 if (nd->flags & LOOKUP_RCU) {
2133 if (unlazy_walk(nd))
2134 return -ECHILD;
2135 }
2136 return -ENOTDIR;
2137 }
2138 }
2139 }
2140
2141 static const char *path_init(struct nameidata *nd, unsigned flags)
2142 {
2143 const char *s = nd->name->name;
2144
2145 if (!*s)
2146 flags &= ~LOOKUP_RCU;
2147
2148 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2149 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2150 nd->depth = 0;
2151 if (flags & LOOKUP_ROOT) {
2152 struct dentry *root = nd->root.dentry;
2153 struct inode *inode = root->d_inode;
2154 if (*s && unlikely(!d_can_lookup(root)))
2155 return ERR_PTR(-ENOTDIR);
2156 nd->path = nd->root;
2157 nd->inode = inode;
2158 if (flags & LOOKUP_RCU) {
2159 rcu_read_lock();
2160 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2161 nd->root_seq = nd->seq;
2162 nd->m_seq = read_seqbegin(&mount_lock);
2163 } else {
2164 path_get(&nd->path);
2165 }
2166 return s;
2167 }
2168
2169 nd->root.mnt = NULL;
2170 nd->path.mnt = NULL;
2171 nd->path.dentry = NULL;
2172
2173 nd->m_seq = read_seqbegin(&mount_lock);
2174 if (*s == '/') {
2175 if (flags & LOOKUP_RCU)
2176 rcu_read_lock();
2177 set_root(nd);
2178 if (likely(!nd_jump_root(nd)))
2179 return s;
2180 nd->root.mnt = NULL;
2181 rcu_read_unlock();
2182 return ERR_PTR(-ECHILD);
2183 } else if (nd->dfd == AT_FDCWD) {
2184 if (flags & LOOKUP_RCU) {
2185 struct fs_struct *fs = current->fs;
2186 unsigned seq;
2187
2188 rcu_read_lock();
2189
2190 do {
2191 seq = read_seqcount_begin(&fs->seq);
2192 nd->path = fs->pwd;
2193 nd->inode = nd->path.dentry->d_inode;
2194 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2195 } while (read_seqcount_retry(&fs->seq, seq));
2196 } else {
2197 get_fs_pwd(current->fs, &nd->path);
2198 nd->inode = nd->path.dentry->d_inode;
2199 }
2200 return s;
2201 } else {
2202 /* Caller must check execute permissions on the starting path component */
2203 struct fd f = fdget_raw(nd->dfd);
2204 struct dentry *dentry;
2205
2206 if (!f.file)
2207 return ERR_PTR(-EBADF);
2208
2209 dentry = f.file->f_path.dentry;
2210
2211 if (*s) {
2212 if (!d_can_lookup(dentry)) {
2213 fdput(f);
2214 return ERR_PTR(-ENOTDIR);
2215 }
2216 }
2217
2218 nd->path = f.file->f_path;
2219 if (flags & LOOKUP_RCU) {
2220 rcu_read_lock();
2221 nd->inode = nd->path.dentry->d_inode;
2222 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2223 } else {
2224 path_get(&nd->path);
2225 nd->inode = nd->path.dentry->d_inode;
2226 }
2227 fdput(f);
2228 return s;
2229 }
2230 }
2231
2232 static const char *trailing_symlink(struct nameidata *nd)
2233 {
2234 const char *s;
2235 int error = may_follow_link(nd);
2236 if (unlikely(error))
2237 return ERR_PTR(error);
2238 nd->flags |= LOOKUP_PARENT;
2239 nd->stack[0].name = NULL;
2240 s = get_link(nd);
2241 return s ? s : "";
2242 }
2243
2244 static inline int lookup_last(struct nameidata *nd)
2245 {
2246 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2247 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2248
2249 nd->flags &= ~LOOKUP_PARENT;
2250 return walk_component(nd, 0);
2251 }
2252
2253 static int handle_lookup_down(struct nameidata *nd)
2254 {
2255 struct path path = nd->path;
2256 struct inode *inode = nd->inode;
2257 unsigned seq = nd->seq;
2258 int err;
2259
2260 if (nd->flags & LOOKUP_RCU) {
2261 /*
2262 * don't bother with unlazy_walk on failure - we are
2263 * at the very beginning of walk, so we lose nothing
2264 * if we simply redo everything in non-RCU mode
2265 */
2266 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2267 return -ECHILD;
2268 } else {
2269 dget(path.dentry);
2270 err = follow_managed(&path, nd);
2271 if (unlikely(err < 0))
2272 return err;
2273 inode = d_backing_inode(path.dentry);
2274 seq = 0;
2275 }
2276 path_to_nameidata(&path, nd);
2277 nd->inode = inode;
2278 nd->seq = seq;
2279 return 0;
2280 }
2281
2282 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2283 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2284 {
2285 const char *s = path_init(nd, flags);
2286 int err;
2287
2288 if (IS_ERR(s))
2289 return PTR_ERR(s);
2290
2291 if (unlikely(flags & LOOKUP_DOWN)) {
2292 err = handle_lookup_down(nd);
2293 if (unlikely(err < 0)) {
2294 terminate_walk(nd);
2295 return err;
2296 }
2297 }
2298
2299 while (!(err = link_path_walk(s, nd))
2300 && ((err = lookup_last(nd)) > 0)) {
2301 s = trailing_symlink(nd);
2302 if (IS_ERR(s)) {
2303 err = PTR_ERR(s);
2304 break;
2305 }
2306 }
2307 if (!err)
2308 err = complete_walk(nd);
2309
2310 if (!err && nd->flags & LOOKUP_DIRECTORY)
2311 if (!d_can_lookup(nd->path.dentry))
2312 err = -ENOTDIR;
2313 if (!err) {
2314 *path = nd->path;
2315 nd->path.mnt = NULL;
2316 nd->path.dentry = NULL;
2317 }
2318 terminate_walk(nd);
2319 return err;
2320 }
2321
2322 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2323 struct path *path, struct path *root)
2324 {
2325 int retval;
2326 struct nameidata nd;
2327 if (IS_ERR(name))
2328 return PTR_ERR(name);
2329 if (unlikely(root)) {
2330 nd.root = *root;
2331 flags |= LOOKUP_ROOT;
2332 }
2333 set_nameidata(&nd, dfd, name);
2334 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2335 if (unlikely(retval == -ECHILD))
2336 retval = path_lookupat(&nd, flags, path);
2337 if (unlikely(retval == -ESTALE))
2338 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2339
2340 if (likely(!retval))
2341 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2342 restore_nameidata();
2343 putname(name);
2344 return retval;
2345 }
2346
2347 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2348 static int path_parentat(struct nameidata *nd, unsigned flags,
2349 struct path *parent)
2350 {
2351 const char *s = path_init(nd, flags);
2352 int err;
2353 if (IS_ERR(s))
2354 return PTR_ERR(s);
2355 err = link_path_walk(s, nd);
2356 if (!err)
2357 err = complete_walk(nd);
2358 if (!err) {
2359 *parent = nd->path;
2360 nd->path.mnt = NULL;
2361 nd->path.dentry = NULL;
2362 }
2363 terminate_walk(nd);
2364 return err;
2365 }
2366
2367 static struct filename *filename_parentat(int dfd, struct filename *name,
2368 unsigned int flags, struct path *parent,
2369 struct qstr *last, int *type)
2370 {
2371 int retval;
2372 struct nameidata nd;
2373
2374 if (IS_ERR(name))
2375 return name;
2376 set_nameidata(&nd, dfd, name);
2377 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2378 if (unlikely(retval == -ECHILD))
2379 retval = path_parentat(&nd, flags, parent);
2380 if (unlikely(retval == -ESTALE))
2381 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2382 if (likely(!retval)) {
2383 *last = nd.last;
2384 *type = nd.last_type;
2385 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2386 } else {
2387 putname(name);
2388 name = ERR_PTR(retval);
2389 }
2390 restore_nameidata();
2391 return name;
2392 }
2393
2394 /* does lookup, returns the object with parent locked */
2395 struct dentry *kern_path_locked(const char *name, struct path *path)
2396 {
2397 struct filename *filename;
2398 struct dentry *d;
2399 struct qstr last;
2400 int type;
2401
2402 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2403 &last, &type);
2404 if (IS_ERR(filename))
2405 return ERR_CAST(filename);
2406 if (unlikely(type != LAST_NORM)) {
2407 path_put(path);
2408 putname(filename);
2409 return ERR_PTR(-EINVAL);
2410 }
2411 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2412 d = __lookup_hash(&last, path->dentry, 0);
2413 if (IS_ERR(d)) {
2414 inode_unlock(path->dentry->d_inode);
2415 path_put(path);
2416 }
2417 putname(filename);
2418 return d;
2419 }
2420
2421 int kern_path(const char *name, unsigned int flags, struct path *path)
2422 {
2423 return filename_lookup(AT_FDCWD, getname_kernel(name),
2424 flags, path, NULL);
2425 }
2426 EXPORT_SYMBOL(kern_path);
2427
2428 /**
2429 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2430 * @dentry: pointer to dentry of the base directory
2431 * @mnt: pointer to vfs mount of the base directory
2432 * @name: pointer to file name
2433 * @flags: lookup flags
2434 * @path: pointer to struct path to fill
2435 */
2436 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2437 const char *name, unsigned int flags,
2438 struct path *path)
2439 {
2440 struct path root = {.mnt = mnt, .dentry = dentry};
2441 /* the first argument of filename_lookup() is ignored with root */
2442 return filename_lookup(AT_FDCWD, getname_kernel(name),
2443 flags , path, &root);
2444 }
2445 EXPORT_SYMBOL(vfs_path_lookup);
2446
2447 /**
2448 * lookup_one_len - filesystem helper to lookup single pathname component
2449 * @name: pathname component to lookup
2450 * @base: base directory to lookup from
2451 * @len: maximum length @len should be interpreted to
2452 *
2453 * Note that this routine is purely a helper for filesystem usage and should
2454 * not be called by generic code.
2455 *
2456 * The caller must hold base->i_mutex.
2457 */
2458 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2459 {
2460 struct qstr this;
2461 unsigned int c;
2462 int err;
2463
2464 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2465
2466 this.name = name;
2467 this.len = len;
2468 this.hash = full_name_hash(base, name, len);
2469 if (!len)
2470 return ERR_PTR(-EACCES);
2471
2472 if (unlikely(name[0] == '.')) {
2473 if (len < 2 || (len == 2 && name[1] == '.'))
2474 return ERR_PTR(-EACCES);
2475 }
2476
2477 while (len--) {
2478 c = *(const unsigned char *)name++;
2479 if (c == '/' || c == '\0')
2480 return ERR_PTR(-EACCES);
2481 }
2482 /*
2483 * See if the low-level filesystem might want
2484 * to use its own hash..
2485 */
2486 if (base->d_flags & DCACHE_OP_HASH) {
2487 int err = base->d_op->d_hash(base, &this);
2488 if (err < 0)
2489 return ERR_PTR(err);
2490 }
2491
2492 err = inode_permission(base->d_inode, MAY_EXEC);
2493 if (err)
2494 return ERR_PTR(err);
2495
2496 return __lookup_hash(&this, base, 0);
2497 }
2498 EXPORT_SYMBOL(lookup_one_len);
2499
2500 /**
2501 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2502 * @name: pathname component to lookup
2503 * @base: base directory to lookup from
2504 * @len: maximum length @len should be interpreted to
2505 *
2506 * Note that this routine is purely a helper for filesystem usage and should
2507 * not be called by generic code.
2508 *
2509 * Unlike lookup_one_len, it should be called without the parent
2510 * i_mutex held, and will take the i_mutex itself if necessary.
2511 */
2512 struct dentry *lookup_one_len_unlocked(const char *name,
2513 struct dentry *base, int len)
2514 {
2515 struct qstr this;
2516 unsigned int c;
2517 int err;
2518 struct dentry *ret;
2519
2520 this.name = name;
2521 this.len = len;
2522 this.hash = full_name_hash(base, name, len);
2523 if (!len)
2524 return ERR_PTR(-EACCES);
2525
2526 if (unlikely(name[0] == '.')) {
2527 if (len < 2 || (len == 2 && name[1] == '.'))
2528 return ERR_PTR(-EACCES);
2529 }
2530
2531 while (len--) {
2532 c = *(const unsigned char *)name++;
2533 if (c == '/' || c == '\0')
2534 return ERR_PTR(-EACCES);
2535 }
2536 /*
2537 * See if the low-level filesystem might want
2538 * to use its own hash..
2539 */
2540 if (base->d_flags & DCACHE_OP_HASH) {
2541 int err = base->d_op->d_hash(base, &this);
2542 if (err < 0)
2543 return ERR_PTR(err);
2544 }
2545
2546 err = inode_permission(base->d_inode, MAY_EXEC);
2547 if (err)
2548 return ERR_PTR(err);
2549
2550 ret = lookup_dcache(&this, base, 0);
2551 if (!ret)
2552 ret = lookup_slow(&this, base, 0);
2553 return ret;
2554 }
2555 EXPORT_SYMBOL(lookup_one_len_unlocked);
2556
2557 #ifdef CONFIG_UNIX98_PTYS
2558 int path_pts(struct path *path)
2559 {
2560 /* Find something mounted on "pts" in the same directory as
2561 * the input path.
2562 */
2563 struct dentry *child, *parent;
2564 struct qstr this;
2565 int ret;
2566
2567 ret = path_parent_directory(path);
2568 if (ret)
2569 return ret;
2570
2571 parent = path->dentry;
2572 this.name = "pts";
2573 this.len = 3;
2574 child = d_hash_and_lookup(parent, &this);
2575 if (!child)
2576 return -ENOENT;
2577
2578 path->dentry = child;
2579 dput(parent);
2580 follow_mount(path);
2581 return 0;
2582 }
2583 #endif
2584
2585 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2586 struct path *path, int *empty)
2587 {
2588 return filename_lookup(dfd, getname_flags(name, flags, empty),
2589 flags, path, NULL);
2590 }
2591 EXPORT_SYMBOL(user_path_at_empty);
2592
2593 /**
2594 * mountpoint_last - look up last component for umount
2595 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2596 *
2597 * This is a special lookup_last function just for umount. In this case, we
2598 * need to resolve the path without doing any revalidation.
2599 *
2600 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2601 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2602 * in almost all cases, this lookup will be served out of the dcache. The only
2603 * cases where it won't are if nd->last refers to a symlink or the path is
2604 * bogus and it doesn't exist.
2605 *
2606 * Returns:
2607 * -error: if there was an error during lookup. This includes -ENOENT if the
2608 * lookup found a negative dentry.
2609 *
2610 * 0: if we successfully resolved nd->last and found it to not to be a
2611 * symlink that needs to be followed.
2612 *
2613 * 1: if we successfully resolved nd->last and found it to be a symlink
2614 * that needs to be followed.
2615 */
2616 static int
2617 mountpoint_last(struct nameidata *nd)
2618 {
2619 int error = 0;
2620 struct dentry *dir = nd->path.dentry;
2621 struct path path;
2622
2623 /* If we're in rcuwalk, drop out of it to handle last component */
2624 if (nd->flags & LOOKUP_RCU) {
2625 if (unlazy_walk(nd))
2626 return -ECHILD;
2627 }
2628
2629 nd->flags &= ~LOOKUP_PARENT;
2630
2631 if (unlikely(nd->last_type != LAST_NORM)) {
2632 error = handle_dots(nd, nd->last_type);
2633 if (error)
2634 return error;
2635 path.dentry = dget(nd->path.dentry);
2636 } else {
2637 path.dentry = d_lookup(dir, &nd->last);
2638 if (!path.dentry) {
2639 /*
2640 * No cached dentry. Mounted dentries are pinned in the
2641 * cache, so that means that this dentry is probably
2642 * a symlink or the path doesn't actually point
2643 * to a mounted dentry.
2644 */
2645 path.dentry = lookup_slow(&nd->last, dir,
2646 nd->flags | LOOKUP_NO_REVAL);
2647 if (IS_ERR(path.dentry))
2648 return PTR_ERR(path.dentry);
2649 }
2650 }
2651 if (d_is_negative(path.dentry)) {
2652 dput(path.dentry);
2653 return -ENOENT;
2654 }
2655 path.mnt = nd->path.mnt;
2656 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2657 }
2658
2659 /**
2660 * path_mountpoint - look up a path to be umounted
2661 * @nd: lookup context
2662 * @flags: lookup flags
2663 * @path: pointer to container for result
2664 *
2665 * Look up the given name, but don't attempt to revalidate the last component.
2666 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2667 */
2668 static int
2669 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2670 {
2671 const char *s = path_init(nd, flags);
2672 int err;
2673 if (IS_ERR(s))
2674 return PTR_ERR(s);
2675 while (!(err = link_path_walk(s, nd)) &&
2676 (err = mountpoint_last(nd)) > 0) {
2677 s = trailing_symlink(nd);
2678 if (IS_ERR(s)) {
2679 err = PTR_ERR(s);
2680 break;
2681 }
2682 }
2683 if (!err) {
2684 *path = nd->path;
2685 nd->path.mnt = NULL;
2686 nd->path.dentry = NULL;
2687 follow_mount(path);
2688 }
2689 terminate_walk(nd);
2690 return err;
2691 }
2692
2693 static int
2694 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2695 unsigned int flags)
2696 {
2697 struct nameidata nd;
2698 int error;
2699 if (IS_ERR(name))
2700 return PTR_ERR(name);
2701 set_nameidata(&nd, dfd, name);
2702 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2703 if (unlikely(error == -ECHILD))
2704 error = path_mountpoint(&nd, flags, path);
2705 if (unlikely(error == -ESTALE))
2706 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2707 if (likely(!error))
2708 audit_inode(name, path->dentry, 0);
2709 restore_nameidata();
2710 putname(name);
2711 return error;
2712 }
2713
2714 /**
2715 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2716 * @dfd: directory file descriptor
2717 * @name: pathname from userland
2718 * @flags: lookup flags
2719 * @path: pointer to container to hold result
2720 *
2721 * A umount is a special case for path walking. We're not actually interested
2722 * in the inode in this situation, and ESTALE errors can be a problem. We
2723 * simply want track down the dentry and vfsmount attached at the mountpoint
2724 * and avoid revalidating the last component.
2725 *
2726 * Returns 0 and populates "path" on success.
2727 */
2728 int
2729 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2730 struct path *path)
2731 {
2732 return filename_mountpoint(dfd, getname(name), path, flags);
2733 }
2734
2735 int
2736 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2737 unsigned int flags)
2738 {
2739 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2740 }
2741 EXPORT_SYMBOL(kern_path_mountpoint);
2742
2743 int __check_sticky(struct inode *dir, struct inode *inode)
2744 {
2745 kuid_t fsuid = current_fsuid();
2746
2747 if (uid_eq(inode->i_uid, fsuid))
2748 return 0;
2749 if (uid_eq(dir->i_uid, fsuid))
2750 return 0;
2751 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2752 }
2753 EXPORT_SYMBOL(__check_sticky);
2754
2755 /*
2756 * Check whether we can remove a link victim from directory dir, check
2757 * whether the type of victim is right.
2758 * 1. We can't do it if dir is read-only (done in permission())
2759 * 2. We should have write and exec permissions on dir
2760 * 3. We can't remove anything from append-only dir
2761 * 4. We can't do anything with immutable dir (done in permission())
2762 * 5. If the sticky bit on dir is set we should either
2763 * a. be owner of dir, or
2764 * b. be owner of victim, or
2765 * c. have CAP_FOWNER capability
2766 * 6. If the victim is append-only or immutable we can't do antyhing with
2767 * links pointing to it.
2768 * 7. If the victim has an unknown uid or gid we can't change the inode.
2769 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2770 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2771 * 10. We can't remove a root or mountpoint.
2772 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2773 * nfs_async_unlink().
2774 */
2775 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2776 {
2777 struct inode *inode = d_backing_inode(victim);
2778 int error;
2779
2780 if (d_is_negative(victim))
2781 return -ENOENT;
2782 BUG_ON(!inode);
2783
2784 BUG_ON(victim->d_parent->d_inode != dir);
2785 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2786
2787 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2788 if (error)
2789 return error;
2790 if (IS_APPEND(dir))
2791 return -EPERM;
2792
2793 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2794 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2795 return -EPERM;
2796 if (isdir) {
2797 if (!d_is_dir(victim))
2798 return -ENOTDIR;
2799 if (IS_ROOT(victim))
2800 return -EBUSY;
2801 } else if (d_is_dir(victim))
2802 return -EISDIR;
2803 if (IS_DEADDIR(dir))
2804 return -ENOENT;
2805 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2806 return -EBUSY;
2807 return 0;
2808 }
2809
2810 /* Check whether we can create an object with dentry child in directory
2811 * dir.
2812 * 1. We can't do it if child already exists (open has special treatment for
2813 * this case, but since we are inlined it's OK)
2814 * 2. We can't do it if dir is read-only (done in permission())
2815 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2816 * 4. We should have write and exec permissions on dir
2817 * 5. We can't do it if dir is immutable (done in permission())
2818 */
2819 static inline int may_create(struct inode *dir, struct dentry *child)
2820 {
2821 struct user_namespace *s_user_ns;
2822 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2823 if (child->d_inode)
2824 return -EEXIST;
2825 if (IS_DEADDIR(dir))
2826 return -ENOENT;
2827 s_user_ns = dir->i_sb->s_user_ns;
2828 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2829 !kgid_has_mapping(s_user_ns, current_fsgid()))
2830 return -EOVERFLOW;
2831 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2832 }
2833
2834 /*
2835 * p1 and p2 should be directories on the same fs.
2836 */
2837 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2838 {
2839 struct dentry *p;
2840
2841 if (p1 == p2) {
2842 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2843 return NULL;
2844 }
2845
2846 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2847
2848 p = d_ancestor(p2, p1);
2849 if (p) {
2850 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2851 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2852 return p;
2853 }
2854
2855 p = d_ancestor(p1, p2);
2856 if (p) {
2857 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2858 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2859 return p;
2860 }
2861
2862 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2863 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2864 return NULL;
2865 }
2866 EXPORT_SYMBOL(lock_rename);
2867
2868 void unlock_rename(struct dentry *p1, struct dentry *p2)
2869 {
2870 inode_unlock(p1->d_inode);
2871 if (p1 != p2) {
2872 inode_unlock(p2->d_inode);
2873 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2874 }
2875 }
2876 EXPORT_SYMBOL(unlock_rename);
2877
2878 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2879 bool want_excl)
2880 {
2881 int error = may_create(dir, dentry);
2882 if (error)
2883 return error;
2884
2885 if (!dir->i_op->create)
2886 return -EACCES; /* shouldn't it be ENOSYS? */
2887 mode &= S_IALLUGO;
2888 mode |= S_IFREG;
2889 error = security_inode_create(dir, dentry, mode);
2890 if (error)
2891 return error;
2892 error = dir->i_op->create(dir, dentry, mode, want_excl);
2893 if (!error)
2894 fsnotify_create(dir, dentry);
2895 return error;
2896 }
2897 EXPORT_SYMBOL(vfs_create);
2898
2899 bool may_open_dev(const struct path *path)
2900 {
2901 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2902 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2903 }
2904
2905 static int may_open(const struct path *path, int acc_mode, int flag)
2906 {
2907 struct dentry *dentry = path->dentry;
2908 struct inode *inode = dentry->d_inode;
2909 int error;
2910
2911 if (!inode)
2912 return -ENOENT;
2913
2914 switch (inode->i_mode & S_IFMT) {
2915 case S_IFLNK:
2916 return -ELOOP;
2917 case S_IFDIR:
2918 if (acc_mode & MAY_WRITE)
2919 return -EISDIR;
2920 break;
2921 case S_IFBLK:
2922 case S_IFCHR:
2923 if (!may_open_dev(path))
2924 return -EACCES;
2925 /*FALLTHRU*/
2926 case S_IFIFO:
2927 case S_IFSOCK:
2928 flag &= ~O_TRUNC;
2929 break;
2930 }
2931
2932 error = inode_permission(inode, MAY_OPEN | acc_mode);
2933 if (error)
2934 return error;
2935
2936 /*
2937 * An append-only file must be opened in append mode for writing.
2938 */
2939 if (IS_APPEND(inode)) {
2940 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2941 return -EPERM;
2942 if (flag & O_TRUNC)
2943 return -EPERM;
2944 }
2945
2946 /* O_NOATIME can only be set by the owner or superuser */
2947 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2948 return -EPERM;
2949
2950 return 0;
2951 }
2952
2953 static int handle_truncate(struct file *filp)
2954 {
2955 const struct path *path = &filp->f_path;
2956 struct inode *inode = path->dentry->d_inode;
2957 int error = get_write_access(inode);
2958 if (error)
2959 return error;
2960 /*
2961 * Refuse to truncate files with mandatory locks held on them.
2962 */
2963 error = locks_verify_locked(filp);
2964 if (!error)
2965 error = security_path_truncate(path);
2966 if (!error) {
2967 error = do_truncate(path->dentry, 0,
2968 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2969 filp);
2970 }
2971 put_write_access(inode);
2972 return error;
2973 }
2974
2975 static inline int open_to_namei_flags(int flag)
2976 {
2977 if ((flag & O_ACCMODE) == 3)
2978 flag--;
2979 return flag;
2980 }
2981
2982 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2983 {
2984 struct user_namespace *s_user_ns;
2985 int error = security_path_mknod(dir, dentry, mode, 0);
2986 if (error)
2987 return error;
2988
2989 s_user_ns = dir->dentry->d_sb->s_user_ns;
2990 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2991 !kgid_has_mapping(s_user_ns, current_fsgid()))
2992 return -EOVERFLOW;
2993
2994 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2995 if (error)
2996 return error;
2997
2998 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2999 }
3000
3001 /*
3002 * Attempt to atomically look up, create and open a file from a negative
3003 * dentry.
3004 *
3005 * Returns 0 if successful. The file will have been created and attached to
3006 * @file by the filesystem calling finish_open().
3007 *
3008 * Returns 1 if the file was looked up only or didn't need creating. The
3009 * caller will need to perform the open themselves. @path will have been
3010 * updated to point to the new dentry. This may be negative.
3011 *
3012 * Returns an error code otherwise.
3013 */
3014 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3015 struct path *path, struct file *file,
3016 const struct open_flags *op,
3017 int open_flag, umode_t mode,
3018 int *opened)
3019 {
3020 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3021 struct inode *dir = nd->path.dentry->d_inode;
3022 int error;
3023
3024 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3025 open_flag &= ~O_TRUNC;
3026
3027 if (nd->flags & LOOKUP_DIRECTORY)
3028 open_flag |= O_DIRECTORY;
3029
3030 file->f_path.dentry = DENTRY_NOT_SET;
3031 file->f_path.mnt = nd->path.mnt;
3032 error = dir->i_op->atomic_open(dir, dentry, file,
3033 open_to_namei_flags(open_flag),
3034 mode, opened);
3035 d_lookup_done(dentry);
3036 if (!error) {
3037 /*
3038 * We didn't have the inode before the open, so check open
3039 * permission here.
3040 */
3041 int acc_mode = op->acc_mode;
3042 if (*opened & FILE_CREATED) {
3043 WARN_ON(!(open_flag & O_CREAT));
3044 fsnotify_create(dir, dentry);
3045 acc_mode = 0;
3046 }
3047 error = may_open(&file->f_path, acc_mode, open_flag);
3048 if (WARN_ON(error > 0))
3049 error = -EINVAL;
3050 } else if (error > 0) {
3051 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3052 error = -EIO;
3053 } else {
3054 if (file->f_path.dentry) {
3055 dput(dentry);
3056 dentry = file->f_path.dentry;
3057 }
3058 if (*opened & FILE_CREATED)
3059 fsnotify_create(dir, dentry);
3060 if (unlikely(d_is_negative(dentry))) {
3061 error = -ENOENT;
3062 } else {
3063 path->dentry = dentry;
3064 path->mnt = nd->path.mnt;
3065 return 1;
3066 }
3067 }
3068 }
3069 dput(dentry);
3070 return error;
3071 }
3072
3073 /*
3074 * Look up and maybe create and open the last component.
3075 *
3076 * Must be called with i_mutex held on parent.
3077 *
3078 * Returns 0 if the file was successfully atomically created (if necessary) and
3079 * opened. In this case the file will be returned attached to @file.
3080 *
3081 * Returns 1 if the file was not completely opened at this time, though lookups
3082 * and creations will have been performed and the dentry returned in @path will
3083 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3084 * specified then a negative dentry may be returned.
3085 *
3086 * An error code is returned otherwise.
3087 *
3088 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3089 * cleared otherwise prior to returning.
3090 */
3091 static int lookup_open(struct nameidata *nd, struct path *path,
3092 struct file *file,
3093 const struct open_flags *op,
3094 bool got_write, int *opened)
3095 {
3096 struct dentry *dir = nd->path.dentry;
3097 struct inode *dir_inode = dir->d_inode;
3098 int open_flag = op->open_flag;
3099 struct dentry *dentry;
3100 int error, create_error = 0;
3101 umode_t mode = op->mode;
3102 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3103
3104 if (unlikely(IS_DEADDIR(dir_inode)))
3105 return -ENOENT;
3106
3107 *opened &= ~FILE_CREATED;
3108 dentry = d_lookup(dir, &nd->last);
3109 for (;;) {
3110 if (!dentry) {
3111 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3112 if (IS_ERR(dentry))
3113 return PTR_ERR(dentry);
3114 }
3115 if (d_in_lookup(dentry))
3116 break;
3117
3118 error = d_revalidate(dentry, nd->flags);
3119 if (likely(error > 0))
3120 break;
3121 if (error)
3122 goto out_dput;
3123 d_invalidate(dentry);
3124 dput(dentry);
3125 dentry = NULL;
3126 }
3127 if (dentry->d_inode) {
3128 /* Cached positive dentry: will open in f_op->open */
3129 goto out_no_open;
3130 }
3131
3132 /*
3133 * Checking write permission is tricky, bacuse we don't know if we are
3134 * going to actually need it: O_CREAT opens should work as long as the
3135 * file exists. But checking existence breaks atomicity. The trick is
3136 * to check access and if not granted clear O_CREAT from the flags.
3137 *
3138 * Another problem is returing the "right" error value (e.g. for an
3139 * O_EXCL open we want to return EEXIST not EROFS).
3140 */
3141 if (open_flag & O_CREAT) {
3142 if (!IS_POSIXACL(dir->d_inode))
3143 mode &= ~current_umask();
3144 if (unlikely(!got_write)) {
3145 create_error = -EROFS;
3146 open_flag &= ~O_CREAT;
3147 if (open_flag & (O_EXCL | O_TRUNC))
3148 goto no_open;
3149 /* No side effects, safe to clear O_CREAT */
3150 } else {
3151 create_error = may_o_create(&nd->path, dentry, mode);
3152 if (create_error) {
3153 open_flag &= ~O_CREAT;
3154 if (open_flag & O_EXCL)
3155 goto no_open;
3156 }
3157 }
3158 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3159 unlikely(!got_write)) {
3160 /*
3161 * No O_CREATE -> atomicity not a requirement -> fall
3162 * back to lookup + open
3163 */
3164 goto no_open;
3165 }
3166
3167 if (dir_inode->i_op->atomic_open) {
3168 error = atomic_open(nd, dentry, path, file, op, open_flag,
3169 mode, opened);
3170 if (unlikely(error == -ENOENT) && create_error)
3171 error = create_error;
3172 return error;
3173 }
3174
3175 no_open:
3176 if (d_in_lookup(dentry)) {
3177 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3178 nd->flags);
3179 d_lookup_done(dentry);
3180 if (unlikely(res)) {
3181 if (IS_ERR(res)) {
3182 error = PTR_ERR(res);
3183 goto out_dput;
3184 }
3185 dput(dentry);
3186 dentry = res;
3187 }
3188 }
3189
3190 /* Negative dentry, just create the file */
3191 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3192 *opened |= FILE_CREATED;
3193 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3194 if (!dir_inode->i_op->create) {
3195 error = -EACCES;
3196 goto out_dput;
3197 }
3198 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3199 open_flag & O_EXCL);
3200 if (error)
3201 goto out_dput;
3202 fsnotify_create(dir_inode, dentry);
3203 }
3204 if (unlikely(create_error) && !dentry->d_inode) {
3205 error = create_error;
3206 goto out_dput;
3207 }
3208 out_no_open:
3209 path->dentry = dentry;
3210 path->mnt = nd->path.mnt;
3211 return 1;
3212
3213 out_dput:
3214 dput(dentry);
3215 return error;
3216 }
3217
3218 /*
3219 * Handle the last step of open()
3220 */
3221 static int do_last(struct nameidata *nd,
3222 struct file *file, const struct open_flags *op,
3223 int *opened)
3224 {
3225 struct dentry *dir = nd->path.dentry;
3226 int open_flag = op->open_flag;
3227 bool will_truncate = (open_flag & O_TRUNC) != 0;
3228 bool got_write = false;
3229 int acc_mode = op->acc_mode;
3230 unsigned seq;
3231 struct inode *inode;
3232 struct path path;
3233 int error;
3234
3235 nd->flags &= ~LOOKUP_PARENT;
3236 nd->flags |= op->intent;
3237
3238 if (nd->last_type != LAST_NORM) {
3239 error = handle_dots(nd, nd->last_type);
3240 if (unlikely(error))
3241 return error;
3242 goto finish_open;
3243 }
3244
3245 if (!(open_flag & O_CREAT)) {
3246 if (nd->last.name[nd->last.len])
3247 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3248 /* we _can_ be in RCU mode here */
3249 error = lookup_fast(nd, &path, &inode, &seq);
3250 if (likely(error > 0))
3251 goto finish_lookup;
3252
3253 if (error < 0)
3254 return error;
3255
3256 BUG_ON(nd->inode != dir->d_inode);
3257 BUG_ON(nd->flags & LOOKUP_RCU);
3258 } else {
3259 /* create side of things */
3260 /*
3261 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3262 * has been cleared when we got to the last component we are
3263 * about to look up
3264 */
3265 error = complete_walk(nd);
3266 if (error)
3267 return error;
3268
3269 audit_inode(nd->name, dir, LOOKUP_PARENT);
3270 /* trailing slashes? */
3271 if (unlikely(nd->last.name[nd->last.len]))
3272 return -EISDIR;
3273 }
3274
3275 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3276 error = mnt_want_write(nd->path.mnt);
3277 if (!error)
3278 got_write = true;
3279 /*
3280 * do _not_ fail yet - we might not need that or fail with
3281 * a different error; let lookup_open() decide; we'll be
3282 * dropping this one anyway.
3283 */
3284 }
3285 if (open_flag & O_CREAT)
3286 inode_lock(dir->d_inode);
3287 else
3288 inode_lock_shared(dir->d_inode);
3289 error = lookup_open(nd, &path, file, op, got_write, opened);
3290 if (open_flag & O_CREAT)
3291 inode_unlock(dir->d_inode);
3292 else
3293 inode_unlock_shared(dir->d_inode);
3294
3295 if (error <= 0) {
3296 if (error)
3297 goto out;
3298
3299 if ((*opened & FILE_CREATED) ||
3300 !S_ISREG(file_inode(file)->i_mode))
3301 will_truncate = false;
3302
3303 audit_inode(nd->name, file->f_path.dentry, 0);
3304 goto opened;
3305 }
3306
3307 if (*opened & FILE_CREATED) {
3308 /* Don't check for write permission, don't truncate */
3309 open_flag &= ~O_TRUNC;
3310 will_truncate = false;
3311 acc_mode = 0;
3312 path_to_nameidata(&path, nd);
3313 goto finish_open_created;
3314 }
3315
3316 /*
3317 * If atomic_open() acquired write access it is dropped now due to
3318 * possible mount and symlink following (this might be optimized away if
3319 * necessary...)
3320 */
3321 if (got_write) {
3322 mnt_drop_write(nd->path.mnt);
3323 got_write = false;
3324 }
3325
3326 error = follow_managed(&path, nd);
3327 if (unlikely(error < 0))
3328 return error;
3329
3330 if (unlikely(d_is_negative(path.dentry))) {
3331 path_to_nameidata(&path, nd);
3332 return -ENOENT;
3333 }
3334
3335 /*
3336 * create/update audit record if it already exists.
3337 */
3338 audit_inode(nd->name, path.dentry, 0);
3339
3340 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3341 path_to_nameidata(&path, nd);
3342 return -EEXIST;
3343 }
3344
3345 seq = 0; /* out of RCU mode, so the value doesn't matter */
3346 inode = d_backing_inode(path.dentry);
3347 finish_lookup:
3348 error = step_into(nd, &path, 0, inode, seq);
3349 if (unlikely(error))
3350 return error;
3351 finish_open:
3352 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3353 error = complete_walk(nd);
3354 if (error)
3355 return error;
3356 audit_inode(nd->name, nd->path.dentry, 0);
3357 error = -EISDIR;
3358 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3359 goto out;
3360 error = -ENOTDIR;
3361 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3362 goto out;
3363 if (!d_is_reg(nd->path.dentry))
3364 will_truncate = false;
3365
3366 if (will_truncate) {
3367 error = mnt_want_write(nd->path.mnt);
3368 if (error)
3369 goto out;
3370 got_write = true;
3371 }
3372 finish_open_created:
3373 error = may_open(&nd->path, acc_mode, open_flag);
3374 if (error)
3375 goto out;
3376 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3377 error = vfs_open(&nd->path, file, current_cred());
3378 if (error)
3379 goto out;
3380 *opened |= FILE_OPENED;
3381 opened:
3382 error = open_check_o_direct(file);
3383 if (!error)
3384 error = ima_file_check(file, op->acc_mode, *opened);
3385 if (!error && will_truncate)
3386 error = handle_truncate(file);
3387 out:
3388 if (unlikely(error) && (*opened & FILE_OPENED))
3389 fput(file);
3390 if (unlikely(error > 0)) {
3391 WARN_ON(1);
3392 error = -EINVAL;
3393 }
3394 if (got_write)
3395 mnt_drop_write(nd->path.mnt);
3396 return error;
3397 }
3398
3399 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3400 {
3401 struct dentry *child = NULL;
3402 struct inode *dir = dentry->d_inode;
3403 struct inode *inode;
3404 int error;
3405
3406 /* we want directory to be writable */
3407 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3408 if (error)
3409 goto out_err;
3410 error = -EOPNOTSUPP;
3411 if (!dir->i_op->tmpfile)
3412 goto out_err;
3413 error = -ENOMEM;
3414 child = d_alloc(dentry, &slash_name);
3415 if (unlikely(!child))
3416 goto out_err;
3417 error = dir->i_op->tmpfile(dir, child, mode);
3418 if (error)
3419 goto out_err;
3420 error = -ENOENT;
3421 inode = child->d_inode;
3422 if (unlikely(!inode))
3423 goto out_err;
3424 if (!(open_flag & O_EXCL)) {
3425 spin_lock(&inode->i_lock);
3426 inode->i_state |= I_LINKABLE;
3427 spin_unlock(&inode->i_lock);
3428 }
3429 return child;
3430
3431 out_err:
3432 dput(child);
3433 return ERR_PTR(error);
3434 }
3435 EXPORT_SYMBOL(vfs_tmpfile);
3436
3437 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3438 const struct open_flags *op,
3439 struct file *file, int *opened)
3440 {
3441 struct dentry *child;
3442 struct path path;
3443 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3444 if (unlikely(error))
3445 return error;
3446 error = mnt_want_write(path.mnt);
3447 if (unlikely(error))
3448 goto out;
3449 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3450 error = PTR_ERR(child);
3451 if (IS_ERR(child))
3452 goto out2;
3453 dput(path.dentry);
3454 path.dentry = child;
3455 audit_inode(nd->name, child, 0);
3456 /* Don't check for other permissions, the inode was just created */
3457 error = may_open(&path, 0, op->open_flag);
3458 if (error)
3459 goto out2;
3460 file->f_path.mnt = path.mnt;
3461 error = finish_open(file, child, NULL, opened);
3462 if (error)
3463 goto out2;
3464 error = open_check_o_direct(file);
3465 if (error)
3466 fput(file);
3467 out2:
3468 mnt_drop_write(path.mnt);
3469 out:
3470 path_put(&path);
3471 return error;
3472 }
3473
3474 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3475 {
3476 struct path path;
3477 int error = path_lookupat(nd, flags, &path);
3478 if (!error) {
3479 audit_inode(nd->name, path.dentry, 0);
3480 error = vfs_open(&path, file, current_cred());
3481 path_put(&path);
3482 }
3483 return error;
3484 }
3485
3486 static struct file *path_openat(struct nameidata *nd,
3487 const struct open_flags *op, unsigned flags)
3488 {
3489 const char *s;
3490 struct file *file;
3491 int opened = 0;
3492 int error;
3493
3494 file = get_empty_filp();
3495 if (IS_ERR(file))
3496 return file;
3497
3498 file->f_flags = op->open_flag;
3499
3500 if (unlikely(file->f_flags & __O_TMPFILE)) {
3501 error = do_tmpfile(nd, flags, op, file, &opened);
3502 goto out2;
3503 }
3504
3505 if (unlikely(file->f_flags & O_PATH)) {
3506 error = do_o_path(nd, flags, file);
3507 if (!error)
3508 opened |= FILE_OPENED;
3509 goto out2;
3510 }
3511
3512 s = path_init(nd, flags);
3513 if (IS_ERR(s)) {
3514 put_filp(file);
3515 return ERR_CAST(s);
3516 }
3517 while (!(error = link_path_walk(s, nd)) &&
3518 (error = do_last(nd, file, op, &opened)) > 0) {
3519 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3520 s = trailing_symlink(nd);
3521 if (IS_ERR(s)) {
3522 error = PTR_ERR(s);
3523 break;
3524 }
3525 }
3526 terminate_walk(nd);
3527 out2:
3528 if (!(opened & FILE_OPENED)) {
3529 BUG_ON(!error);
3530 put_filp(file);
3531 }
3532 if (unlikely(error)) {
3533 if (error == -EOPENSTALE) {
3534 if (flags & LOOKUP_RCU)
3535 error = -ECHILD;
3536 else
3537 error = -ESTALE;
3538 }
3539 file = ERR_PTR(error);
3540 }
3541 return file;
3542 }
3543
3544 struct file *do_filp_open(int dfd, struct filename *pathname,
3545 const struct open_flags *op)
3546 {
3547 struct nameidata nd;
3548 int flags = op->lookup_flags;
3549 struct file *filp;
3550
3551 set_nameidata(&nd, dfd, pathname);
3552 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3553 if (unlikely(filp == ERR_PTR(-ECHILD)))
3554 filp = path_openat(&nd, op, flags);
3555 if (unlikely(filp == ERR_PTR(-ESTALE)))
3556 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3557 restore_nameidata();
3558 return filp;
3559 }
3560
3561 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3562 const char *name, const struct open_flags *op)
3563 {
3564 struct nameidata nd;
3565 struct file *file;
3566 struct filename *filename;
3567 int flags = op->lookup_flags | LOOKUP_ROOT;
3568
3569 nd.root.mnt = mnt;
3570 nd.root.dentry = dentry;
3571
3572 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3573 return ERR_PTR(-ELOOP);
3574
3575 filename = getname_kernel(name);
3576 if (IS_ERR(filename))
3577 return ERR_CAST(filename);
3578
3579 set_nameidata(&nd, -1, filename);
3580 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3581 if (unlikely(file == ERR_PTR(-ECHILD)))
3582 file = path_openat(&nd, op, flags);
3583 if (unlikely(file == ERR_PTR(-ESTALE)))
3584 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3585 restore_nameidata();
3586 putname(filename);
3587 return file;
3588 }
3589
3590 static struct dentry *filename_create(int dfd, struct filename *name,
3591 struct path *path, unsigned int lookup_flags)
3592 {
3593 struct dentry *dentry = ERR_PTR(-EEXIST);
3594 struct qstr last;
3595 int type;
3596 int err2;
3597 int error;
3598 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3599
3600 /*
3601 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3602 * other flags passed in are ignored!
3603 */
3604 lookup_flags &= LOOKUP_REVAL;
3605
3606 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3607 if (IS_ERR(name))
3608 return ERR_CAST(name);
3609
3610 /*
3611 * Yucky last component or no last component at all?
3612 * (foo/., foo/.., /////)
3613 */
3614 if (unlikely(type != LAST_NORM))
3615 goto out;
3616
3617 /* don't fail immediately if it's r/o, at least try to report other errors */
3618 err2 = mnt_want_write(path->mnt);
3619 /*
3620 * Do the final lookup.
3621 */
3622 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3623 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3624 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3625 if (IS_ERR(dentry))
3626 goto unlock;
3627
3628 error = -EEXIST;
3629 if (d_is_positive(dentry))
3630 goto fail;
3631
3632 /*
3633 * Special case - lookup gave negative, but... we had foo/bar/
3634 * From the vfs_mknod() POV we just have a negative dentry -
3635 * all is fine. Let's be bastards - you had / on the end, you've
3636 * been asking for (non-existent) directory. -ENOENT for you.
3637 */
3638 if (unlikely(!is_dir && last.name[last.len])) {
3639 error = -ENOENT;
3640 goto fail;
3641 }
3642 if (unlikely(err2)) {
3643 error = err2;
3644 goto fail;
3645 }
3646 putname(name);
3647 return dentry;
3648 fail:
3649 dput(dentry);
3650 dentry = ERR_PTR(error);
3651 unlock:
3652 inode_unlock(path->dentry->d_inode);
3653 if (!err2)
3654 mnt_drop_write(path->mnt);
3655 out:
3656 path_put(path);
3657 putname(name);
3658 return dentry;
3659 }
3660
3661 struct dentry *kern_path_create(int dfd, const char *pathname,
3662 struct path *path, unsigned int lookup_flags)
3663 {
3664 return filename_create(dfd, getname_kernel(pathname),
3665 path, lookup_flags);
3666 }
3667 EXPORT_SYMBOL(kern_path_create);
3668
3669 void done_path_create(struct path *path, struct dentry *dentry)
3670 {
3671 dput(dentry);
3672 inode_unlock(path->dentry->d_inode);
3673 mnt_drop_write(path->mnt);
3674 path_put(path);
3675 }
3676 EXPORT_SYMBOL(done_path_create);
3677
3678 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3679 struct path *path, unsigned int lookup_flags)
3680 {
3681 return filename_create(dfd, getname(pathname), path, lookup_flags);
3682 }
3683 EXPORT_SYMBOL(user_path_create);
3684
3685 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3686 {
3687 int error = may_create(dir, dentry);
3688
3689 if (error)
3690 return error;
3691
3692 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3693 return -EPERM;
3694
3695 if (!dir->i_op->mknod)
3696 return -EPERM;
3697
3698 error = devcgroup_inode_mknod(mode, dev);
3699 if (error)
3700 return error;
3701
3702 error = security_inode_mknod(dir, dentry, mode, dev);
3703 if (error)
3704 return error;
3705
3706 error = dir->i_op->mknod(dir, dentry, mode, dev);
3707 if (!error)
3708 fsnotify_create(dir, dentry);
3709 return error;
3710 }
3711 EXPORT_SYMBOL(vfs_mknod);
3712
3713 static int may_mknod(umode_t mode)
3714 {
3715 switch (mode & S_IFMT) {
3716 case S_IFREG:
3717 case S_IFCHR:
3718 case S_IFBLK:
3719 case S_IFIFO:
3720 case S_IFSOCK:
3721 case 0: /* zero mode translates to S_IFREG */
3722 return 0;
3723 case S_IFDIR:
3724 return -EPERM;
3725 default:
3726 return -EINVAL;
3727 }
3728 }
3729
3730 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3731 unsigned, dev)
3732 {
3733 struct dentry *dentry;
3734 struct path path;
3735 int error;
3736 unsigned int lookup_flags = 0;
3737
3738 error = may_mknod(mode);
3739 if (error)
3740 return error;
3741 retry:
3742 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3743 if (IS_ERR(dentry))
3744 return PTR_ERR(dentry);
3745
3746 if (!IS_POSIXACL(path.dentry->d_inode))
3747 mode &= ~current_umask();
3748 error = security_path_mknod(&path, dentry, mode, dev);
3749 if (error)
3750 goto out;
3751 switch (mode & S_IFMT) {
3752 case 0: case S_IFREG:
3753 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3754 if (!error)
3755 ima_post_path_mknod(dentry);
3756 break;
3757 case S_IFCHR: case S_IFBLK:
3758 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3759 new_decode_dev(dev));
3760 break;
3761 case S_IFIFO: case S_IFSOCK:
3762 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3763 break;
3764 }
3765 out:
3766 done_path_create(&path, dentry);
3767 if (retry_estale(error, lookup_flags)) {
3768 lookup_flags |= LOOKUP_REVAL;
3769 goto retry;
3770 }
3771 return error;
3772 }
3773
3774 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3775 {
3776 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3777 }
3778
3779 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3780 {
3781 int error = may_create(dir, dentry);
3782 unsigned max_links = dir->i_sb->s_max_links;
3783
3784 if (error)
3785 return error;
3786
3787 if (!dir->i_op->mkdir)
3788 return -EPERM;
3789
3790 mode &= (S_IRWXUGO|S_ISVTX);
3791 error = security_inode_mkdir(dir, dentry, mode);
3792 if (error)
3793 return error;
3794
3795 if (max_links && dir->i_nlink >= max_links)
3796 return -EMLINK;
3797
3798 error = dir->i_op->mkdir(dir, dentry, mode);
3799 if (!error)
3800 fsnotify_mkdir(dir, dentry);
3801 return error;
3802 }
3803 EXPORT_SYMBOL(vfs_mkdir);
3804
3805 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3806 {
3807 struct dentry *dentry;
3808 struct path path;
3809 int error;
3810 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3811
3812 retry:
3813 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3814 if (IS_ERR(dentry))
3815 return PTR_ERR(dentry);
3816
3817 if (!IS_POSIXACL(path.dentry->d_inode))
3818 mode &= ~current_umask();
3819 error = security_path_mkdir(&path, dentry, mode);
3820 if (!error)
3821 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3822 done_path_create(&path, dentry);
3823 if (retry_estale(error, lookup_flags)) {
3824 lookup_flags |= LOOKUP_REVAL;
3825 goto retry;
3826 }
3827 return error;
3828 }
3829
3830 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3831 {
3832 return sys_mkdirat(AT_FDCWD, pathname, mode);
3833 }
3834
3835 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3836 {
3837 int error = may_delete(dir, dentry, 1);
3838
3839 if (error)
3840 return error;
3841
3842 if (!dir->i_op->rmdir)
3843 return -EPERM;
3844
3845 dget(dentry);
3846 inode_lock(dentry->d_inode);
3847
3848 error = -EBUSY;
3849 if (is_local_mountpoint(dentry))
3850 goto out;
3851
3852 error = security_inode_rmdir(dir, dentry);
3853 if (error)
3854 goto out;
3855
3856 shrink_dcache_parent(dentry);
3857 error = dir->i_op->rmdir(dir, dentry);
3858 if (error)
3859 goto out;
3860
3861 dentry->d_inode->i_flags |= S_DEAD;
3862 dont_mount(dentry);
3863 detach_mounts(dentry);
3864
3865 out:
3866 inode_unlock(dentry->d_inode);
3867 dput(dentry);
3868 if (!error)
3869 d_delete(dentry);
3870 return error;
3871 }
3872 EXPORT_SYMBOL(vfs_rmdir);
3873
3874 static long do_rmdir(int dfd, const char __user *pathname)
3875 {
3876 int error = 0;
3877 struct filename *name;
3878 struct dentry *dentry;
3879 struct path path;
3880 struct qstr last;
3881 int type;
3882 unsigned int lookup_flags = 0;
3883 retry:
3884 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3885 &path, &last, &type);
3886 if (IS_ERR(name))
3887 return PTR_ERR(name);
3888
3889 switch (type) {
3890 case LAST_DOTDOT:
3891 error = -ENOTEMPTY;
3892 goto exit1;
3893 case LAST_DOT:
3894 error = -EINVAL;
3895 goto exit1;
3896 case LAST_ROOT:
3897 error = -EBUSY;
3898 goto exit1;
3899 }
3900
3901 error = mnt_want_write(path.mnt);
3902 if (error)
3903 goto exit1;
3904
3905 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3906 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3907 error = PTR_ERR(dentry);
3908 if (IS_ERR(dentry))
3909 goto exit2;
3910 if (!dentry->d_inode) {
3911 error = -ENOENT;
3912 goto exit3;
3913 }
3914 error = security_path_rmdir(&path, dentry);
3915 if (error)
3916 goto exit3;
3917 error = vfs_rmdir(path.dentry->d_inode, dentry);
3918 exit3:
3919 dput(dentry);
3920 exit2:
3921 inode_unlock(path.dentry->d_inode);
3922 mnt_drop_write(path.mnt);
3923 exit1:
3924 path_put(&path);
3925 putname(name);
3926 if (retry_estale(error, lookup_flags)) {
3927 lookup_flags |= LOOKUP_REVAL;
3928 goto retry;
3929 }
3930 return error;
3931 }
3932
3933 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3934 {
3935 return do_rmdir(AT_FDCWD, pathname);
3936 }
3937
3938 /**
3939 * vfs_unlink - unlink a filesystem object
3940 * @dir: parent directory
3941 * @dentry: victim
3942 * @delegated_inode: returns victim inode, if the inode is delegated.
3943 *
3944 * The caller must hold dir->i_mutex.
3945 *
3946 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3947 * return a reference to the inode in delegated_inode. The caller
3948 * should then break the delegation on that inode and retry. Because
3949 * breaking a delegation may take a long time, the caller should drop
3950 * dir->i_mutex before doing so.
3951 *
3952 * Alternatively, a caller may pass NULL for delegated_inode. This may
3953 * be appropriate for callers that expect the underlying filesystem not
3954 * to be NFS exported.
3955 */
3956 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3957 {
3958 struct inode *target = dentry->d_inode;
3959 int error = may_delete(dir, dentry, 0);
3960
3961 if (error)
3962 return error;
3963
3964 if (!dir->i_op->unlink)
3965 return -EPERM;
3966
3967 inode_lock(target);
3968 if (is_local_mountpoint(dentry))
3969 error = -EBUSY;
3970 else {
3971 error = security_inode_unlink(dir, dentry);
3972 if (!error) {
3973 error = try_break_deleg(target, delegated_inode);
3974 if (error)
3975 goto out;
3976 error = dir->i_op->unlink(dir, dentry);
3977 if (!error) {
3978 dont_mount(dentry);
3979 detach_mounts(dentry);
3980 }
3981 }
3982 }
3983 out:
3984 inode_unlock(target);
3985
3986 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3987 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3988 fsnotify_link_count(target);
3989 d_delete(dentry);
3990 }
3991
3992 return error;
3993 }
3994 EXPORT_SYMBOL(vfs_unlink);
3995
3996 /*
3997 * Make sure that the actual truncation of the file will occur outside its
3998 * directory's i_mutex. Truncate can take a long time if there is a lot of
3999 * writeout happening, and we don't want to prevent access to the directory
4000 * while waiting on the I/O.
4001 */
4002 long do_unlinkat(int dfd, struct filename *name)
4003 {
4004 int error;
4005 struct dentry *dentry;
4006 struct path path;
4007 struct qstr last;
4008 int type;
4009 struct inode *inode = NULL;
4010 struct inode *delegated_inode = NULL;
4011 unsigned int lookup_flags = 0;
4012 retry:
4013 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4014 if (IS_ERR(name))
4015 return PTR_ERR(name);
4016
4017 error = -EISDIR;
4018 if (type != LAST_NORM)
4019 goto exit1;
4020
4021 error = mnt_want_write(path.mnt);
4022 if (error)
4023 goto exit1;
4024 retry_deleg:
4025 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4026 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4027 error = PTR_ERR(dentry);
4028 if (!IS_ERR(dentry)) {
4029 /* Why not before? Because we want correct error value */
4030 if (last.name[last.len])
4031 goto slashes;
4032 inode = dentry->d_inode;
4033 if (d_is_negative(dentry))
4034 goto slashes;
4035 ihold(inode);
4036 error = security_path_unlink(&path, dentry);
4037 if (error)
4038 goto exit2;
4039 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4040 exit2:
4041 dput(dentry);
4042 }
4043 inode_unlock(path.dentry->d_inode);
4044 if (inode)
4045 iput(inode); /* truncate the inode here */
4046 inode = NULL;
4047 if (delegated_inode) {
4048 error = break_deleg_wait(&delegated_inode);
4049 if (!error)
4050 goto retry_deleg;
4051 }
4052 mnt_drop_write(path.mnt);
4053 exit1:
4054 path_put(&path);
4055 if (retry_estale(error, lookup_flags)) {
4056 lookup_flags |= LOOKUP_REVAL;
4057 inode = NULL;
4058 goto retry;
4059 }
4060 putname(name);
4061 return error;
4062
4063 slashes:
4064 if (d_is_negative(dentry))
4065 error = -ENOENT;
4066 else if (d_is_dir(dentry))
4067 error = -EISDIR;
4068 else
4069 error = -ENOTDIR;
4070 goto exit2;
4071 }
4072
4073 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4074 {
4075 if ((flag & ~AT_REMOVEDIR) != 0)
4076 return -EINVAL;
4077
4078 if (flag & AT_REMOVEDIR)
4079 return do_rmdir(dfd, pathname);
4080
4081 return do_unlinkat(dfd, getname(pathname));
4082 }
4083
4084 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4085 {
4086 return do_unlinkat(AT_FDCWD, getname(pathname));
4087 }
4088
4089 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4090 {
4091 int error = may_create(dir, dentry);
4092
4093 if (error)
4094 return error;
4095
4096 if (!dir->i_op->symlink)
4097 return -EPERM;
4098
4099 error = security_inode_symlink(dir, dentry, oldname);
4100 if (error)
4101 return error;
4102
4103 error = dir->i_op->symlink(dir, dentry, oldname);
4104 if (!error)
4105 fsnotify_create(dir, dentry);
4106 return error;
4107 }
4108 EXPORT_SYMBOL(vfs_symlink);
4109
4110 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4111 int, newdfd, const char __user *, newname)
4112 {
4113 int error;
4114 struct filename *from;
4115 struct dentry *dentry;
4116 struct path path;
4117 unsigned int lookup_flags = 0;
4118
4119 from = getname(oldname);
4120 if (IS_ERR(from))
4121 return PTR_ERR(from);
4122 retry:
4123 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4124 error = PTR_ERR(dentry);
4125 if (IS_ERR(dentry))
4126 goto out_putname;
4127
4128 error = security_path_symlink(&path, dentry, from->name);
4129 if (!error)
4130 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4131 done_path_create(&path, dentry);
4132 if (retry_estale(error, lookup_flags)) {
4133 lookup_flags |= LOOKUP_REVAL;
4134 goto retry;
4135 }
4136 out_putname:
4137 putname(from);
4138 return error;
4139 }
4140
4141 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4142 {
4143 return sys_symlinkat(oldname, AT_FDCWD, newname);
4144 }
4145
4146 /**
4147 * vfs_link - create a new link
4148 * @old_dentry: object to be linked
4149 * @dir: new parent
4150 * @new_dentry: where to create the new link
4151 * @delegated_inode: returns inode needing a delegation break
4152 *
4153 * The caller must hold dir->i_mutex
4154 *
4155 * If vfs_link discovers a delegation on the to-be-linked file in need
4156 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4157 * inode in delegated_inode. The caller should then break the delegation
4158 * and retry. Because breaking a delegation may take a long time, the
4159 * caller should drop the i_mutex before doing so.
4160 *
4161 * Alternatively, a caller may pass NULL for delegated_inode. This may
4162 * be appropriate for callers that expect the underlying filesystem not
4163 * to be NFS exported.
4164 */
4165 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4166 {
4167 struct inode *inode = old_dentry->d_inode;
4168 unsigned max_links = dir->i_sb->s_max_links;
4169 int error;
4170
4171 if (!inode)
4172 return -ENOENT;
4173
4174 error = may_create(dir, new_dentry);
4175 if (error)
4176 return error;
4177
4178 if (dir->i_sb != inode->i_sb)
4179 return -EXDEV;
4180
4181 /*
4182 * A link to an append-only or immutable file cannot be created.
4183 */
4184 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4185 return -EPERM;
4186 /*
4187 * Updating the link count will likely cause i_uid and i_gid to
4188 * be writen back improperly if their true value is unknown to
4189 * the vfs.
4190 */
4191 if (HAS_UNMAPPED_ID(inode))
4192 return -EPERM;
4193 if (!dir->i_op->link)
4194 return -EPERM;
4195 if (S_ISDIR(inode->i_mode))
4196 return -EPERM;
4197
4198 error = security_inode_link(old_dentry, dir, new_dentry);
4199 if (error)
4200 return error;
4201
4202 inode_lock(inode);
4203 /* Make sure we don't allow creating hardlink to an unlinked file */
4204 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4205 error = -ENOENT;
4206 else if (max_links && inode->i_nlink >= max_links)
4207 error = -EMLINK;
4208 else {
4209 error = try_break_deleg(inode, delegated_inode);
4210 if (!error)
4211 error = dir->i_op->link(old_dentry, dir, new_dentry);
4212 }
4213
4214 if (!error && (inode->i_state & I_LINKABLE)) {
4215 spin_lock(&inode->i_lock);
4216 inode->i_state &= ~I_LINKABLE;
4217 spin_unlock(&inode->i_lock);
4218 }
4219 inode_unlock(inode);
4220 if (!error)
4221 fsnotify_link(dir, inode, new_dentry);
4222 return error;
4223 }
4224 EXPORT_SYMBOL(vfs_link);
4225
4226 /*
4227 * Hardlinks are often used in delicate situations. We avoid
4228 * security-related surprises by not following symlinks on the
4229 * newname. --KAB
4230 *
4231 * We don't follow them on the oldname either to be compatible
4232 * with linux 2.0, and to avoid hard-linking to directories
4233 * and other special files. --ADM
4234 */
4235 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4236 int, newdfd, const char __user *, newname, int, flags)
4237 {
4238 struct dentry *new_dentry;
4239 struct path old_path, new_path;
4240 struct inode *delegated_inode = NULL;
4241 int how = 0;
4242 int error;
4243
4244 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4245 return -EINVAL;
4246 /*
4247 * To use null names we require CAP_DAC_READ_SEARCH
4248 * This ensures that not everyone will be able to create
4249 * handlink using the passed filedescriptor.
4250 */
4251 if (flags & AT_EMPTY_PATH) {
4252 if (!capable(CAP_DAC_READ_SEARCH))
4253 return -ENOENT;
4254 how = LOOKUP_EMPTY;
4255 }
4256
4257 if (flags & AT_SYMLINK_FOLLOW)
4258 how |= LOOKUP_FOLLOW;
4259 retry:
4260 error = user_path_at(olddfd, oldname, how, &old_path);
4261 if (error)
4262 return error;
4263
4264 new_dentry = user_path_create(newdfd, newname, &new_path,
4265 (how & LOOKUP_REVAL));
4266 error = PTR_ERR(new_dentry);
4267 if (IS_ERR(new_dentry))
4268 goto out;
4269
4270 error = -EXDEV;
4271 if (old_path.mnt != new_path.mnt)
4272 goto out_dput;
4273 error = may_linkat(&old_path);
4274 if (unlikely(error))
4275 goto out_dput;
4276 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4277 if (error)
4278 goto out_dput;
4279 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4280 out_dput:
4281 done_path_create(&new_path, new_dentry);
4282 if (delegated_inode) {
4283 error = break_deleg_wait(&delegated_inode);
4284 if (!error) {
4285 path_put(&old_path);
4286 goto retry;
4287 }
4288 }
4289 if (retry_estale(error, how)) {
4290 path_put(&old_path);
4291 how |= LOOKUP_REVAL;
4292 goto retry;
4293 }
4294 out:
4295 path_put(&old_path);
4296
4297 return error;
4298 }
4299
4300 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4301 {
4302 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4303 }
4304
4305 /**
4306 * vfs_rename - rename a filesystem object
4307 * @old_dir: parent of source
4308 * @old_dentry: source
4309 * @new_dir: parent of destination
4310 * @new_dentry: destination
4311 * @delegated_inode: returns an inode needing a delegation break
4312 * @flags: rename flags
4313 *
4314 * The caller must hold multiple mutexes--see lock_rename()).
4315 *
4316 * If vfs_rename discovers a delegation in need of breaking at either
4317 * the source or destination, it will return -EWOULDBLOCK and return a
4318 * reference to the inode in delegated_inode. The caller should then
4319 * break the delegation and retry. Because breaking a delegation may
4320 * take a long time, the caller should drop all locks before doing
4321 * so.
4322 *
4323 * Alternatively, a caller may pass NULL for delegated_inode. This may
4324 * be appropriate for callers that expect the underlying filesystem not
4325 * to be NFS exported.
4326 *
4327 * The worst of all namespace operations - renaming directory. "Perverted"
4328 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4329 * Problems:
4330 *
4331 * a) we can get into loop creation.
4332 * b) race potential - two innocent renames can create a loop together.
4333 * That's where 4.4 screws up. Current fix: serialization on
4334 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4335 * story.
4336 * c) we have to lock _four_ objects - parents and victim (if it exists),
4337 * and source (if it is not a directory).
4338 * And that - after we got ->i_mutex on parents (until then we don't know
4339 * whether the target exists). Solution: try to be smart with locking
4340 * order for inodes. We rely on the fact that tree topology may change
4341 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4342 * move will be locked. Thus we can rank directories by the tree
4343 * (ancestors first) and rank all non-directories after them.
4344 * That works since everybody except rename does "lock parent, lookup,
4345 * lock child" and rename is under ->s_vfs_rename_mutex.
4346 * HOWEVER, it relies on the assumption that any object with ->lookup()
4347 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4348 * we'd better make sure that there's no link(2) for them.
4349 * d) conversion from fhandle to dentry may come in the wrong moment - when
4350 * we are removing the target. Solution: we will have to grab ->i_mutex
4351 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4352 * ->i_mutex on parents, which works but leads to some truly excessive
4353 * locking].
4354 */
4355 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4356 struct inode *new_dir, struct dentry *new_dentry,
4357 struct inode **delegated_inode, unsigned int flags)
4358 {
4359 int error;
4360 bool is_dir = d_is_dir(old_dentry);
4361 struct inode *source = old_dentry->d_inode;
4362 struct inode *target = new_dentry->d_inode;
4363 bool new_is_dir = false;
4364 unsigned max_links = new_dir->i_sb->s_max_links;
4365 struct name_snapshot old_name;
4366
4367 if (source == target)
4368 return 0;
4369
4370 error = may_delete(old_dir, old_dentry, is_dir);
4371 if (error)
4372 return error;
4373
4374 if (!target) {
4375 error = may_create(new_dir, new_dentry);
4376 } else {
4377 new_is_dir = d_is_dir(new_dentry);
4378
4379 if (!(flags & RENAME_EXCHANGE))
4380 error = may_delete(new_dir, new_dentry, is_dir);
4381 else
4382 error = may_delete(new_dir, new_dentry, new_is_dir);
4383 }
4384 if (error)
4385 return error;
4386
4387 if (!old_dir->i_op->rename)
4388 return -EPERM;
4389
4390 /*
4391 * If we are going to change the parent - check write permissions,
4392 * we'll need to flip '..'.
4393 */
4394 if (new_dir != old_dir) {
4395 if (is_dir) {
4396 error = inode_permission(source, MAY_WRITE);
4397 if (error)
4398 return error;
4399 }
4400 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4401 error = inode_permission(target, MAY_WRITE);
4402 if (error)
4403 return error;
4404 }
4405 }
4406
4407 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4408 flags);
4409 if (error)
4410 return error;
4411
4412 take_dentry_name_snapshot(&old_name, old_dentry);
4413 dget(new_dentry);
4414 if (!is_dir || (flags & RENAME_EXCHANGE))
4415 lock_two_nondirectories(source, target);
4416 else if (target)
4417 inode_lock(target);
4418
4419 error = -EBUSY;
4420 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4421 goto out;
4422
4423 if (max_links && new_dir != old_dir) {
4424 error = -EMLINK;
4425 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4426 goto out;
4427 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4428 old_dir->i_nlink >= max_links)
4429 goto out;
4430 }
4431 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4432 shrink_dcache_parent(new_dentry);
4433 if (!is_dir) {
4434 error = try_break_deleg(source, delegated_inode);
4435 if (error)
4436 goto out;
4437 }
4438 if (target && !new_is_dir) {
4439 error = try_break_deleg(target, delegated_inode);
4440 if (error)
4441 goto out;
4442 }
4443 error = old_dir->i_op->rename(old_dir, old_dentry,
4444 new_dir, new_dentry, flags);
4445 if (error)
4446 goto out;
4447
4448 if (!(flags & RENAME_EXCHANGE) && target) {
4449 if (is_dir)
4450 target->i_flags |= S_DEAD;
4451 dont_mount(new_dentry);
4452 detach_mounts(new_dentry);
4453 }
4454 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4455 if (!(flags & RENAME_EXCHANGE))
4456 d_move(old_dentry, new_dentry);
4457 else
4458 d_exchange(old_dentry, new_dentry);
4459 }
4460 out:
4461 if (!is_dir || (flags & RENAME_EXCHANGE))
4462 unlock_two_nondirectories(source, target);
4463 else if (target)
4464 inode_unlock(target);
4465 dput(new_dentry);
4466 if (!error) {
4467 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4468 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4469 if (flags & RENAME_EXCHANGE) {
4470 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4471 new_is_dir, NULL, new_dentry);
4472 }
4473 }
4474 release_dentry_name_snapshot(&old_name);
4475
4476 return error;
4477 }
4478 EXPORT_SYMBOL(vfs_rename);
4479
4480 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4481 int, newdfd, const char __user *, newname, unsigned int, flags)
4482 {
4483 struct dentry *old_dentry, *new_dentry;
4484 struct dentry *trap;
4485 struct path old_path, new_path;
4486 struct qstr old_last, new_last;
4487 int old_type, new_type;
4488 struct inode *delegated_inode = NULL;
4489 struct filename *from;
4490 struct filename *to;
4491 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4492 bool should_retry = false;
4493 int error;
4494
4495 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4496 return -EINVAL;
4497
4498 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4499 (flags & RENAME_EXCHANGE))
4500 return -EINVAL;
4501
4502 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4503 return -EPERM;
4504
4505 if (flags & RENAME_EXCHANGE)
4506 target_flags = 0;
4507
4508 retry:
4509 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4510 &old_path, &old_last, &old_type);
4511 if (IS_ERR(from)) {
4512 error = PTR_ERR(from);
4513 goto exit;
4514 }
4515
4516 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4517 &new_path, &new_last, &new_type);
4518 if (IS_ERR(to)) {
4519 error = PTR_ERR(to);
4520 goto exit1;
4521 }
4522
4523 error = -EXDEV;
4524 if (old_path.mnt != new_path.mnt)
4525 goto exit2;
4526
4527 error = -EBUSY;
4528 if (old_type != LAST_NORM)
4529 goto exit2;
4530
4531 if (flags & RENAME_NOREPLACE)
4532 error = -EEXIST;
4533 if (new_type != LAST_NORM)
4534 goto exit2;
4535
4536 error = mnt_want_write(old_path.mnt);
4537 if (error)
4538 goto exit2;
4539
4540 retry_deleg:
4541 trap = lock_rename(new_path.dentry, old_path.dentry);
4542
4543 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4544 error = PTR_ERR(old_dentry);
4545 if (IS_ERR(old_dentry))
4546 goto exit3;
4547 /* source must exist */
4548 error = -ENOENT;
4549 if (d_is_negative(old_dentry))
4550 goto exit4;
4551 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4552 error = PTR_ERR(new_dentry);
4553 if (IS_ERR(new_dentry))
4554 goto exit4;
4555 error = -EEXIST;
4556 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4557 goto exit5;
4558 if (flags & RENAME_EXCHANGE) {
4559 error = -ENOENT;
4560 if (d_is_negative(new_dentry))
4561 goto exit5;
4562
4563 if (!d_is_dir(new_dentry)) {
4564 error = -ENOTDIR;
4565 if (new_last.name[new_last.len])
4566 goto exit5;
4567 }
4568 }
4569 /* unless the source is a directory trailing slashes give -ENOTDIR */
4570 if (!d_is_dir(old_dentry)) {
4571 error = -ENOTDIR;
4572 if (old_last.name[old_last.len])
4573 goto exit5;
4574 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4575 goto exit5;
4576 }
4577 /* source should not be ancestor of target */
4578 error = -EINVAL;
4579 if (old_dentry == trap)
4580 goto exit5;
4581 /* target should not be an ancestor of source */
4582 if (!(flags & RENAME_EXCHANGE))
4583 error = -ENOTEMPTY;
4584 if (new_dentry == trap)
4585 goto exit5;
4586
4587 error = security_path_rename(&old_path, old_dentry,
4588 &new_path, new_dentry, flags);
4589 if (error)
4590 goto exit5;
4591 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4592 new_path.dentry->d_inode, new_dentry,
4593 &delegated_inode, flags);
4594 exit5:
4595 dput(new_dentry);
4596 exit4:
4597 dput(old_dentry);
4598 exit3:
4599 unlock_rename(new_path.dentry, old_path.dentry);
4600 if (delegated_inode) {
4601 error = break_deleg_wait(&delegated_inode);
4602 if (!error)
4603 goto retry_deleg;
4604 }
4605 mnt_drop_write(old_path.mnt);
4606 exit2:
4607 if (retry_estale(error, lookup_flags))
4608 should_retry = true;
4609 path_put(&new_path);
4610 putname(to);
4611 exit1:
4612 path_put(&old_path);
4613 putname(from);
4614 if (should_retry) {
4615 should_retry = false;
4616 lookup_flags |= LOOKUP_REVAL;
4617 goto retry;
4618 }
4619 exit:
4620 return error;
4621 }
4622
4623 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4624 int, newdfd, const char __user *, newname)
4625 {
4626 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4627 }
4628
4629 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4630 {
4631 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4632 }
4633
4634 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4635 {
4636 int error = may_create(dir, dentry);
4637 if (error)
4638 return error;
4639
4640 if (!dir->i_op->mknod)
4641 return -EPERM;
4642
4643 return dir->i_op->mknod(dir, dentry,
4644 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4645 }
4646 EXPORT_SYMBOL(vfs_whiteout);
4647
4648 int readlink_copy(char __user *buffer, int buflen, const char *link)
4649 {
4650 int len = PTR_ERR(link);
4651 if (IS_ERR(link))
4652 goto out;
4653
4654 len = strlen(link);
4655 if (len > (unsigned) buflen)
4656 len = buflen;
4657 if (copy_to_user(buffer, link, len))
4658 len = -EFAULT;
4659 out:
4660 return len;
4661 }
4662
4663 /*
4664 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4665 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4666 * for any given inode is up to filesystem.
4667 */
4668 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4669 int buflen)
4670 {
4671 DEFINE_DELAYED_CALL(done);
4672 struct inode *inode = d_inode(dentry);
4673 const char *link = inode->i_link;
4674 int res;
4675
4676 if (!link) {
4677 link = inode->i_op->get_link(dentry, inode, &done);
4678 if (IS_ERR(link))
4679 return PTR_ERR(link);
4680 }
4681 res = readlink_copy(buffer, buflen, link);
4682 do_delayed_call(&done);
4683 return res;
4684 }
4685
4686 /**
4687 * vfs_readlink - copy symlink body into userspace buffer
4688 * @dentry: dentry on which to get symbolic link
4689 * @buffer: user memory pointer
4690 * @buflen: size of buffer
4691 *
4692 * Does not touch atime. That's up to the caller if necessary
4693 *
4694 * Does not call security hook.
4695 */
4696 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4697 {
4698 struct inode *inode = d_inode(dentry);
4699
4700 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4701 if (unlikely(inode->i_op->readlink))
4702 return inode->i_op->readlink(dentry, buffer, buflen);
4703
4704 if (!d_is_symlink(dentry))
4705 return -EINVAL;
4706
4707 spin_lock(&inode->i_lock);
4708 inode->i_opflags |= IOP_DEFAULT_READLINK;
4709 spin_unlock(&inode->i_lock);
4710 }
4711
4712 return generic_readlink(dentry, buffer, buflen);
4713 }
4714 EXPORT_SYMBOL(vfs_readlink);
4715
4716 /**
4717 * vfs_get_link - get symlink body
4718 * @dentry: dentry on which to get symbolic link
4719 * @done: caller needs to free returned data with this
4720 *
4721 * Calls security hook and i_op->get_link() on the supplied inode.
4722 *
4723 * It does not touch atime. That's up to the caller if necessary.
4724 *
4725 * Does not work on "special" symlinks like /proc/$$/fd/N
4726 */
4727 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4728 {
4729 const char *res = ERR_PTR(-EINVAL);
4730 struct inode *inode = d_inode(dentry);
4731
4732 if (d_is_symlink(dentry)) {
4733 res = ERR_PTR(security_inode_readlink(dentry));
4734 if (!res)
4735 res = inode->i_op->get_link(dentry, inode, done);
4736 }
4737 return res;
4738 }
4739 EXPORT_SYMBOL(vfs_get_link);
4740
4741 /* get the link contents into pagecache */
4742 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4743 struct delayed_call *callback)
4744 {
4745 char *kaddr;
4746 struct page *page;
4747 struct address_space *mapping = inode->i_mapping;
4748
4749 if (!dentry) {
4750 page = find_get_page(mapping, 0);
4751 if (!page)
4752 return ERR_PTR(-ECHILD);
4753 if (!PageUptodate(page)) {
4754 put_page(page);
4755 return ERR_PTR(-ECHILD);
4756 }
4757 } else {
4758 page = read_mapping_page(mapping, 0, NULL);
4759 if (IS_ERR(page))
4760 return (char*)page;
4761 }
4762 set_delayed_call(callback, page_put_link, page);
4763 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4764 kaddr = page_address(page);
4765 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4766 return kaddr;
4767 }
4768
4769 EXPORT_SYMBOL(page_get_link);
4770
4771 void page_put_link(void *arg)
4772 {
4773 put_page(arg);
4774 }
4775 EXPORT_SYMBOL(page_put_link);
4776
4777 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4778 {
4779 DEFINE_DELAYED_CALL(done);
4780 int res = readlink_copy(buffer, buflen,
4781 page_get_link(dentry, d_inode(dentry),
4782 &done));
4783 do_delayed_call(&done);
4784 return res;
4785 }
4786 EXPORT_SYMBOL(page_readlink);
4787
4788 /*
4789 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4790 */
4791 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4792 {
4793 struct address_space *mapping = inode->i_mapping;
4794 struct page *page;
4795 void *fsdata;
4796 int err;
4797 unsigned int flags = 0;
4798 if (nofs)
4799 flags |= AOP_FLAG_NOFS;
4800
4801 retry:
4802 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4803 flags, &page, &fsdata);
4804 if (err)
4805 goto fail;
4806
4807 memcpy(page_address(page), symname, len-1);
4808
4809 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4810 page, fsdata);
4811 if (err < 0)
4812 goto fail;
4813 if (err < len-1)
4814 goto retry;
4815
4816 mark_inode_dirty(inode);
4817 return 0;
4818 fail:
4819 return err;
4820 }
4821 EXPORT_SYMBOL(__page_symlink);
4822
4823 int page_symlink(struct inode *inode, const char *symname, int len)
4824 {
4825 return __page_symlink(inode, symname, len,
4826 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4827 }
4828 EXPORT_SYMBOL(page_symlink);
4829
4830 const struct inode_operations page_symlink_inode_operations = {
4831 .get_link = page_get_link,
4832 };
4833 EXPORT_SYMBOL(page_symlink_inode_operations);