]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/namei.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm...
[mirror_ubuntu-jammy-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 static char *getname_flags(const char __user *filename, int flags, int *empty)
121 {
122 char *result = __getname(), *err;
123 int len;
124
125 if (unlikely(!result))
126 return ERR_PTR(-ENOMEM);
127
128 len = strncpy_from_user(result, filename, PATH_MAX);
129 err = ERR_PTR(len);
130 if (unlikely(len < 0))
131 goto error;
132
133 /* The empty path is special. */
134 if (unlikely(!len)) {
135 if (empty)
136 *empty = 1;
137 err = ERR_PTR(-ENOENT);
138 if (!(flags & LOOKUP_EMPTY))
139 goto error;
140 }
141
142 err = ERR_PTR(-ENAMETOOLONG);
143 if (likely(len < PATH_MAX)) {
144 audit_getname(result);
145 return result;
146 }
147
148 error:
149 __putname(result);
150 return err;
151 }
152
153 char *getname(const char __user * filename)
154 {
155 return getname_flags(filename, 0, NULL);
156 }
157
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168
169 static int check_acl(struct inode *inode, int mask)
170 {
171 #ifdef CONFIG_FS_POSIX_ACL
172 struct posix_acl *acl;
173
174 if (mask & MAY_NOT_BLOCK) {
175 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
176 if (!acl)
177 return -EAGAIN;
178 /* no ->get_acl() calls in RCU mode... */
179 if (acl == ACL_NOT_CACHED)
180 return -ECHILD;
181 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
182 }
183
184 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
185
186 /*
187 * A filesystem can force a ACL callback by just never filling the
188 * ACL cache. But normally you'd fill the cache either at inode
189 * instantiation time, or on the first ->get_acl call.
190 *
191 * If the filesystem doesn't have a get_acl() function at all, we'll
192 * just create the negative cache entry.
193 */
194 if (acl == ACL_NOT_CACHED) {
195 if (inode->i_op->get_acl) {
196 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
197 if (IS_ERR(acl))
198 return PTR_ERR(acl);
199 } else {
200 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
201 return -EAGAIN;
202 }
203 }
204
205 if (acl) {
206 int error = posix_acl_permission(inode, acl, mask);
207 posix_acl_release(acl);
208 return error;
209 }
210 #endif
211
212 return -EAGAIN;
213 }
214
215 /*
216 * This does the basic permission checking
217 */
218 static int acl_permission_check(struct inode *inode, int mask)
219 {
220 unsigned int mode = inode->i_mode;
221
222 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
223 mode >>= 6;
224 else {
225 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
226 int error = check_acl(inode, mask);
227 if (error != -EAGAIN)
228 return error;
229 }
230
231 if (in_group_p(inode->i_gid))
232 mode >>= 3;
233 }
234
235 /*
236 * If the DACs are ok we don't need any capability check.
237 */
238 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
239 return 0;
240 return -EACCES;
241 }
242
243 /**
244 * generic_permission - check for access rights on a Posix-like filesystem
245 * @inode: inode to check access rights for
246 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
247 *
248 * Used to check for read/write/execute permissions on a file.
249 * We use "fsuid" for this, letting us set arbitrary permissions
250 * for filesystem access without changing the "normal" uids which
251 * are used for other things.
252 *
253 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
254 * request cannot be satisfied (eg. requires blocking or too much complexity).
255 * It would then be called again in ref-walk mode.
256 */
257 int generic_permission(struct inode *inode, int mask)
258 {
259 int ret;
260
261 /*
262 * Do the basic permission checks.
263 */
264 ret = acl_permission_check(inode, mask);
265 if (ret != -EACCES)
266 return ret;
267
268 if (S_ISDIR(inode->i_mode)) {
269 /* DACs are overridable for directories */
270 if (inode_capable(inode, CAP_DAC_OVERRIDE))
271 return 0;
272 if (!(mask & MAY_WRITE))
273 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
274 return 0;
275 return -EACCES;
276 }
277 /*
278 * Read/write DACs are always overridable.
279 * Executable DACs are overridable when there is
280 * at least one exec bit set.
281 */
282 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
283 if (inode_capable(inode, CAP_DAC_OVERRIDE))
284 return 0;
285
286 /*
287 * Searching includes executable on directories, else just read.
288 */
289 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
290 if (mask == MAY_READ)
291 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
292 return 0;
293
294 return -EACCES;
295 }
296
297 /*
298 * We _really_ want to just do "generic_permission()" without
299 * even looking at the inode->i_op values. So we keep a cache
300 * flag in inode->i_opflags, that says "this has not special
301 * permission function, use the fast case".
302 */
303 static inline int do_inode_permission(struct inode *inode, int mask)
304 {
305 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
306 if (likely(inode->i_op->permission))
307 return inode->i_op->permission(inode, mask);
308
309 /* This gets set once for the inode lifetime */
310 spin_lock(&inode->i_lock);
311 inode->i_opflags |= IOP_FASTPERM;
312 spin_unlock(&inode->i_lock);
313 }
314 return generic_permission(inode, mask);
315 }
316
317 /**
318 * __inode_permission - Check for access rights to a given inode
319 * @inode: Inode to check permission on
320 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
321 *
322 * Check for read/write/execute permissions on an inode.
323 *
324 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
325 *
326 * This does not check for a read-only file system. You probably want
327 * inode_permission().
328 */
329 int __inode_permission(struct inode *inode, int mask)
330 {
331 int retval;
332
333 if (unlikely(mask & MAY_WRITE)) {
334 /*
335 * Nobody gets write access to an immutable file.
336 */
337 if (IS_IMMUTABLE(inode))
338 return -EACCES;
339 }
340
341 retval = do_inode_permission(inode, mask);
342 if (retval)
343 return retval;
344
345 retval = devcgroup_inode_permission(inode, mask);
346 if (retval)
347 return retval;
348
349 return security_inode_permission(inode, mask);
350 }
351
352 /**
353 * sb_permission - Check superblock-level permissions
354 * @sb: Superblock of inode to check permission on
355 * @inode: Inode to check permission on
356 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
357 *
358 * Separate out file-system wide checks from inode-specific permission checks.
359 */
360 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
361 {
362 if (unlikely(mask & MAY_WRITE)) {
363 umode_t mode = inode->i_mode;
364
365 /* Nobody gets write access to a read-only fs. */
366 if ((sb->s_flags & MS_RDONLY) &&
367 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
368 return -EROFS;
369 }
370 return 0;
371 }
372
373 /**
374 * inode_permission - Check for access rights to a given inode
375 * @inode: Inode to check permission on
376 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
377 *
378 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
379 * this, letting us set arbitrary permissions for filesystem access without
380 * changing the "normal" UIDs which are used for other things.
381 *
382 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
383 */
384 int inode_permission(struct inode *inode, int mask)
385 {
386 int retval;
387
388 retval = sb_permission(inode->i_sb, inode, mask);
389 if (retval)
390 return retval;
391 return __inode_permission(inode, mask);
392 }
393
394 /**
395 * path_get - get a reference to a path
396 * @path: path to get the reference to
397 *
398 * Given a path increment the reference count to the dentry and the vfsmount.
399 */
400 void path_get(struct path *path)
401 {
402 mntget(path->mnt);
403 dget(path->dentry);
404 }
405 EXPORT_SYMBOL(path_get);
406
407 /**
408 * path_put - put a reference to a path
409 * @path: path to put the reference to
410 *
411 * Given a path decrement the reference count to the dentry and the vfsmount.
412 */
413 void path_put(struct path *path)
414 {
415 dput(path->dentry);
416 mntput(path->mnt);
417 }
418 EXPORT_SYMBOL(path_put);
419
420 /*
421 * Path walking has 2 modes, rcu-walk and ref-walk (see
422 * Documentation/filesystems/path-lookup.txt). In situations when we can't
423 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
424 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
425 * mode. Refcounts are grabbed at the last known good point before rcu-walk
426 * got stuck, so ref-walk may continue from there. If this is not successful
427 * (eg. a seqcount has changed), then failure is returned and it's up to caller
428 * to restart the path walk from the beginning in ref-walk mode.
429 */
430
431 static inline void lock_rcu_walk(void)
432 {
433 br_read_lock(&vfsmount_lock);
434 rcu_read_lock();
435 }
436
437 static inline void unlock_rcu_walk(void)
438 {
439 rcu_read_unlock();
440 br_read_unlock(&vfsmount_lock);
441 }
442
443 /**
444 * unlazy_walk - try to switch to ref-walk mode.
445 * @nd: nameidata pathwalk data
446 * @dentry: child of nd->path.dentry or NULL
447 * Returns: 0 on success, -ECHILD on failure
448 *
449 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
450 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
451 * @nd or NULL. Must be called from rcu-walk context.
452 */
453 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
454 {
455 struct fs_struct *fs = current->fs;
456 struct dentry *parent = nd->path.dentry;
457 int want_root = 0;
458
459 BUG_ON(!(nd->flags & LOOKUP_RCU));
460 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
461 want_root = 1;
462 spin_lock(&fs->lock);
463 if (nd->root.mnt != fs->root.mnt ||
464 nd->root.dentry != fs->root.dentry)
465 goto err_root;
466 }
467 spin_lock(&parent->d_lock);
468 if (!dentry) {
469 if (!__d_rcu_to_refcount(parent, nd->seq))
470 goto err_parent;
471 BUG_ON(nd->inode != parent->d_inode);
472 } else {
473 if (dentry->d_parent != parent)
474 goto err_parent;
475 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
476 if (!__d_rcu_to_refcount(dentry, nd->seq))
477 goto err_child;
478 /*
479 * If the sequence check on the child dentry passed, then
480 * the child has not been removed from its parent. This
481 * means the parent dentry must be valid and able to take
482 * a reference at this point.
483 */
484 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
485 BUG_ON(!parent->d_count);
486 parent->d_count++;
487 spin_unlock(&dentry->d_lock);
488 }
489 spin_unlock(&parent->d_lock);
490 if (want_root) {
491 path_get(&nd->root);
492 spin_unlock(&fs->lock);
493 }
494 mntget(nd->path.mnt);
495
496 unlock_rcu_walk();
497 nd->flags &= ~LOOKUP_RCU;
498 return 0;
499
500 err_child:
501 spin_unlock(&dentry->d_lock);
502 err_parent:
503 spin_unlock(&parent->d_lock);
504 err_root:
505 if (want_root)
506 spin_unlock(&fs->lock);
507 return -ECHILD;
508 }
509
510 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
511 {
512 return dentry->d_op->d_revalidate(dentry, flags);
513 }
514
515 /**
516 * complete_walk - successful completion of path walk
517 * @nd: pointer nameidata
518 *
519 * If we had been in RCU mode, drop out of it and legitimize nd->path.
520 * Revalidate the final result, unless we'd already done that during
521 * the path walk or the filesystem doesn't ask for it. Return 0 on
522 * success, -error on failure. In case of failure caller does not
523 * need to drop nd->path.
524 */
525 static int complete_walk(struct nameidata *nd)
526 {
527 struct dentry *dentry = nd->path.dentry;
528 int status;
529
530 if (nd->flags & LOOKUP_RCU) {
531 nd->flags &= ~LOOKUP_RCU;
532 if (!(nd->flags & LOOKUP_ROOT))
533 nd->root.mnt = NULL;
534 spin_lock(&dentry->d_lock);
535 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
536 spin_unlock(&dentry->d_lock);
537 unlock_rcu_walk();
538 return -ECHILD;
539 }
540 BUG_ON(nd->inode != dentry->d_inode);
541 spin_unlock(&dentry->d_lock);
542 mntget(nd->path.mnt);
543 unlock_rcu_walk();
544 }
545
546 if (likely(!(nd->flags & LOOKUP_JUMPED)))
547 return 0;
548
549 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
550 return 0;
551
552 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
553 return 0;
554
555 /* Note: we do not d_invalidate() */
556 status = d_revalidate(dentry, nd->flags);
557 if (status > 0)
558 return 0;
559
560 if (!status)
561 status = -ESTALE;
562
563 path_put(&nd->path);
564 return status;
565 }
566
567 static __always_inline void set_root(struct nameidata *nd)
568 {
569 if (!nd->root.mnt)
570 get_fs_root(current->fs, &nd->root);
571 }
572
573 static int link_path_walk(const char *, struct nameidata *);
574
575 static __always_inline void set_root_rcu(struct nameidata *nd)
576 {
577 if (!nd->root.mnt) {
578 struct fs_struct *fs = current->fs;
579 unsigned seq;
580
581 do {
582 seq = read_seqcount_begin(&fs->seq);
583 nd->root = fs->root;
584 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
585 } while (read_seqcount_retry(&fs->seq, seq));
586 }
587 }
588
589 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
590 {
591 int ret;
592
593 if (IS_ERR(link))
594 goto fail;
595
596 if (*link == '/') {
597 set_root(nd);
598 path_put(&nd->path);
599 nd->path = nd->root;
600 path_get(&nd->root);
601 nd->flags |= LOOKUP_JUMPED;
602 }
603 nd->inode = nd->path.dentry->d_inode;
604
605 ret = link_path_walk(link, nd);
606 return ret;
607 fail:
608 path_put(&nd->path);
609 return PTR_ERR(link);
610 }
611
612 static void path_put_conditional(struct path *path, struct nameidata *nd)
613 {
614 dput(path->dentry);
615 if (path->mnt != nd->path.mnt)
616 mntput(path->mnt);
617 }
618
619 static inline void path_to_nameidata(const struct path *path,
620 struct nameidata *nd)
621 {
622 if (!(nd->flags & LOOKUP_RCU)) {
623 dput(nd->path.dentry);
624 if (nd->path.mnt != path->mnt)
625 mntput(nd->path.mnt);
626 }
627 nd->path.mnt = path->mnt;
628 nd->path.dentry = path->dentry;
629 }
630
631 /*
632 * Helper to directly jump to a known parsed path from ->follow_link,
633 * caller must have taken a reference to path beforehand.
634 */
635 void nd_jump_link(struct nameidata *nd, struct path *path)
636 {
637 path_put(&nd->path);
638
639 nd->path = *path;
640 nd->inode = nd->path.dentry->d_inode;
641 nd->flags |= LOOKUP_JUMPED;
642
643 BUG_ON(nd->inode->i_op->follow_link);
644 }
645
646 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
647 {
648 struct inode *inode = link->dentry->d_inode;
649 if (inode->i_op->put_link)
650 inode->i_op->put_link(link->dentry, nd, cookie);
651 path_put(link);
652 }
653
654 int sysctl_protected_symlinks __read_mostly = 1;
655 int sysctl_protected_hardlinks __read_mostly = 1;
656
657 /**
658 * may_follow_link - Check symlink following for unsafe situations
659 * @link: The path of the symlink
660 * @nd: nameidata pathwalk data
661 *
662 * In the case of the sysctl_protected_symlinks sysctl being enabled,
663 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
664 * in a sticky world-writable directory. This is to protect privileged
665 * processes from failing races against path names that may change out
666 * from under them by way of other users creating malicious symlinks.
667 * It will permit symlinks to be followed only when outside a sticky
668 * world-writable directory, or when the uid of the symlink and follower
669 * match, or when the directory owner matches the symlink's owner.
670 *
671 * Returns 0 if following the symlink is allowed, -ve on error.
672 */
673 static inline int may_follow_link(struct path *link, struct nameidata *nd)
674 {
675 const struct inode *inode;
676 const struct inode *parent;
677
678 if (!sysctl_protected_symlinks)
679 return 0;
680
681 /* Allowed if owner and follower match. */
682 inode = link->dentry->d_inode;
683 if (uid_eq(current_cred()->fsuid, inode->i_uid))
684 return 0;
685
686 /* Allowed if parent directory not sticky and world-writable. */
687 parent = nd->path.dentry->d_inode;
688 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
689 return 0;
690
691 /* Allowed if parent directory and link owner match. */
692 if (uid_eq(parent->i_uid, inode->i_uid))
693 return 0;
694
695 path_put_conditional(link, nd);
696 path_put(&nd->path);
697 audit_log_link_denied("follow_link", link);
698 return -EACCES;
699 }
700
701 /**
702 * safe_hardlink_source - Check for safe hardlink conditions
703 * @inode: the source inode to hardlink from
704 *
705 * Return false if at least one of the following conditions:
706 * - inode is not a regular file
707 * - inode is setuid
708 * - inode is setgid and group-exec
709 * - access failure for read and write
710 *
711 * Otherwise returns true.
712 */
713 static bool safe_hardlink_source(struct inode *inode)
714 {
715 umode_t mode = inode->i_mode;
716
717 /* Special files should not get pinned to the filesystem. */
718 if (!S_ISREG(mode))
719 return false;
720
721 /* Setuid files should not get pinned to the filesystem. */
722 if (mode & S_ISUID)
723 return false;
724
725 /* Executable setgid files should not get pinned to the filesystem. */
726 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
727 return false;
728
729 /* Hardlinking to unreadable or unwritable sources is dangerous. */
730 if (inode_permission(inode, MAY_READ | MAY_WRITE))
731 return false;
732
733 return true;
734 }
735
736 /**
737 * may_linkat - Check permissions for creating a hardlink
738 * @link: the source to hardlink from
739 *
740 * Block hardlink when all of:
741 * - sysctl_protected_hardlinks enabled
742 * - fsuid does not match inode
743 * - hardlink source is unsafe (see safe_hardlink_source() above)
744 * - not CAP_FOWNER
745 *
746 * Returns 0 if successful, -ve on error.
747 */
748 static int may_linkat(struct path *link)
749 {
750 const struct cred *cred;
751 struct inode *inode;
752
753 if (!sysctl_protected_hardlinks)
754 return 0;
755
756 cred = current_cred();
757 inode = link->dentry->d_inode;
758
759 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
760 * otherwise, it must be a safe source.
761 */
762 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
763 capable(CAP_FOWNER))
764 return 0;
765
766 audit_log_link_denied("linkat", link);
767 return -EPERM;
768 }
769
770 static __always_inline int
771 follow_link(struct path *link, struct nameidata *nd, void **p)
772 {
773 struct dentry *dentry = link->dentry;
774 int error;
775 char *s;
776
777 BUG_ON(nd->flags & LOOKUP_RCU);
778
779 if (link->mnt == nd->path.mnt)
780 mntget(link->mnt);
781
782 error = -ELOOP;
783 if (unlikely(current->total_link_count >= 40))
784 goto out_put_nd_path;
785
786 cond_resched();
787 current->total_link_count++;
788
789 touch_atime(link);
790 nd_set_link(nd, NULL);
791
792 error = security_inode_follow_link(link->dentry, nd);
793 if (error)
794 goto out_put_nd_path;
795
796 nd->last_type = LAST_BIND;
797 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
798 error = PTR_ERR(*p);
799 if (IS_ERR(*p))
800 goto out_put_nd_path;
801
802 error = 0;
803 s = nd_get_link(nd);
804 if (s) {
805 error = __vfs_follow_link(nd, s);
806 if (unlikely(error))
807 put_link(nd, link, *p);
808 }
809
810 return error;
811
812 out_put_nd_path:
813 path_put(&nd->path);
814 path_put(link);
815 return error;
816 }
817
818 static int follow_up_rcu(struct path *path)
819 {
820 struct mount *mnt = real_mount(path->mnt);
821 struct mount *parent;
822 struct dentry *mountpoint;
823
824 parent = mnt->mnt_parent;
825 if (&parent->mnt == path->mnt)
826 return 0;
827 mountpoint = mnt->mnt_mountpoint;
828 path->dentry = mountpoint;
829 path->mnt = &parent->mnt;
830 return 1;
831 }
832
833 /*
834 * follow_up - Find the mountpoint of path's vfsmount
835 *
836 * Given a path, find the mountpoint of its source file system.
837 * Replace @path with the path of the mountpoint in the parent mount.
838 * Up is towards /.
839 *
840 * Return 1 if we went up a level and 0 if we were already at the
841 * root.
842 */
843 int follow_up(struct path *path)
844 {
845 struct mount *mnt = real_mount(path->mnt);
846 struct mount *parent;
847 struct dentry *mountpoint;
848
849 br_read_lock(&vfsmount_lock);
850 parent = mnt->mnt_parent;
851 if (parent == mnt) {
852 br_read_unlock(&vfsmount_lock);
853 return 0;
854 }
855 mntget(&parent->mnt);
856 mountpoint = dget(mnt->mnt_mountpoint);
857 br_read_unlock(&vfsmount_lock);
858 dput(path->dentry);
859 path->dentry = mountpoint;
860 mntput(path->mnt);
861 path->mnt = &parent->mnt;
862 return 1;
863 }
864
865 /*
866 * Perform an automount
867 * - return -EISDIR to tell follow_managed() to stop and return the path we
868 * were called with.
869 */
870 static int follow_automount(struct path *path, unsigned flags,
871 bool *need_mntput)
872 {
873 struct vfsmount *mnt;
874 int err;
875
876 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
877 return -EREMOTE;
878
879 /* We don't want to mount if someone's just doing a stat -
880 * unless they're stat'ing a directory and appended a '/' to
881 * the name.
882 *
883 * We do, however, want to mount if someone wants to open or
884 * create a file of any type under the mountpoint, wants to
885 * traverse through the mountpoint or wants to open the
886 * mounted directory. Also, autofs may mark negative dentries
887 * as being automount points. These will need the attentions
888 * of the daemon to instantiate them before they can be used.
889 */
890 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
891 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
892 path->dentry->d_inode)
893 return -EISDIR;
894
895 current->total_link_count++;
896 if (current->total_link_count >= 40)
897 return -ELOOP;
898
899 mnt = path->dentry->d_op->d_automount(path);
900 if (IS_ERR(mnt)) {
901 /*
902 * The filesystem is allowed to return -EISDIR here to indicate
903 * it doesn't want to automount. For instance, autofs would do
904 * this so that its userspace daemon can mount on this dentry.
905 *
906 * However, we can only permit this if it's a terminal point in
907 * the path being looked up; if it wasn't then the remainder of
908 * the path is inaccessible and we should say so.
909 */
910 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
911 return -EREMOTE;
912 return PTR_ERR(mnt);
913 }
914
915 if (!mnt) /* mount collision */
916 return 0;
917
918 if (!*need_mntput) {
919 /* lock_mount() may release path->mnt on error */
920 mntget(path->mnt);
921 *need_mntput = true;
922 }
923 err = finish_automount(mnt, path);
924
925 switch (err) {
926 case -EBUSY:
927 /* Someone else made a mount here whilst we were busy */
928 return 0;
929 case 0:
930 path_put(path);
931 path->mnt = mnt;
932 path->dentry = dget(mnt->mnt_root);
933 return 0;
934 default:
935 return err;
936 }
937
938 }
939
940 /*
941 * Handle a dentry that is managed in some way.
942 * - Flagged for transit management (autofs)
943 * - Flagged as mountpoint
944 * - Flagged as automount point
945 *
946 * This may only be called in refwalk mode.
947 *
948 * Serialization is taken care of in namespace.c
949 */
950 static int follow_managed(struct path *path, unsigned flags)
951 {
952 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
953 unsigned managed;
954 bool need_mntput = false;
955 int ret = 0;
956
957 /* Given that we're not holding a lock here, we retain the value in a
958 * local variable for each dentry as we look at it so that we don't see
959 * the components of that value change under us */
960 while (managed = ACCESS_ONCE(path->dentry->d_flags),
961 managed &= DCACHE_MANAGED_DENTRY,
962 unlikely(managed != 0)) {
963 /* Allow the filesystem to manage the transit without i_mutex
964 * being held. */
965 if (managed & DCACHE_MANAGE_TRANSIT) {
966 BUG_ON(!path->dentry->d_op);
967 BUG_ON(!path->dentry->d_op->d_manage);
968 ret = path->dentry->d_op->d_manage(path->dentry, false);
969 if (ret < 0)
970 break;
971 }
972
973 /* Transit to a mounted filesystem. */
974 if (managed & DCACHE_MOUNTED) {
975 struct vfsmount *mounted = lookup_mnt(path);
976 if (mounted) {
977 dput(path->dentry);
978 if (need_mntput)
979 mntput(path->mnt);
980 path->mnt = mounted;
981 path->dentry = dget(mounted->mnt_root);
982 need_mntput = true;
983 continue;
984 }
985
986 /* Something is mounted on this dentry in another
987 * namespace and/or whatever was mounted there in this
988 * namespace got unmounted before we managed to get the
989 * vfsmount_lock */
990 }
991
992 /* Handle an automount point */
993 if (managed & DCACHE_NEED_AUTOMOUNT) {
994 ret = follow_automount(path, flags, &need_mntput);
995 if (ret < 0)
996 break;
997 continue;
998 }
999
1000 /* We didn't change the current path point */
1001 break;
1002 }
1003
1004 if (need_mntput && path->mnt == mnt)
1005 mntput(path->mnt);
1006 if (ret == -EISDIR)
1007 ret = 0;
1008 return ret < 0 ? ret : need_mntput;
1009 }
1010
1011 int follow_down_one(struct path *path)
1012 {
1013 struct vfsmount *mounted;
1014
1015 mounted = lookup_mnt(path);
1016 if (mounted) {
1017 dput(path->dentry);
1018 mntput(path->mnt);
1019 path->mnt = mounted;
1020 path->dentry = dget(mounted->mnt_root);
1021 return 1;
1022 }
1023 return 0;
1024 }
1025
1026 static inline bool managed_dentry_might_block(struct dentry *dentry)
1027 {
1028 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1029 dentry->d_op->d_manage(dentry, true) < 0);
1030 }
1031
1032 /*
1033 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1034 * we meet a managed dentry that would need blocking.
1035 */
1036 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1037 struct inode **inode)
1038 {
1039 for (;;) {
1040 struct mount *mounted;
1041 /*
1042 * Don't forget we might have a non-mountpoint managed dentry
1043 * that wants to block transit.
1044 */
1045 if (unlikely(managed_dentry_might_block(path->dentry)))
1046 return false;
1047
1048 if (!d_mountpoint(path->dentry))
1049 break;
1050
1051 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1052 if (!mounted)
1053 break;
1054 path->mnt = &mounted->mnt;
1055 path->dentry = mounted->mnt.mnt_root;
1056 nd->flags |= LOOKUP_JUMPED;
1057 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1058 /*
1059 * Update the inode too. We don't need to re-check the
1060 * dentry sequence number here after this d_inode read,
1061 * because a mount-point is always pinned.
1062 */
1063 *inode = path->dentry->d_inode;
1064 }
1065 return true;
1066 }
1067
1068 static void follow_mount_rcu(struct nameidata *nd)
1069 {
1070 while (d_mountpoint(nd->path.dentry)) {
1071 struct mount *mounted;
1072 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1073 if (!mounted)
1074 break;
1075 nd->path.mnt = &mounted->mnt;
1076 nd->path.dentry = mounted->mnt.mnt_root;
1077 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1078 }
1079 }
1080
1081 static int follow_dotdot_rcu(struct nameidata *nd)
1082 {
1083 set_root_rcu(nd);
1084
1085 while (1) {
1086 if (nd->path.dentry == nd->root.dentry &&
1087 nd->path.mnt == nd->root.mnt) {
1088 break;
1089 }
1090 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1091 struct dentry *old = nd->path.dentry;
1092 struct dentry *parent = old->d_parent;
1093 unsigned seq;
1094
1095 seq = read_seqcount_begin(&parent->d_seq);
1096 if (read_seqcount_retry(&old->d_seq, nd->seq))
1097 goto failed;
1098 nd->path.dentry = parent;
1099 nd->seq = seq;
1100 break;
1101 }
1102 if (!follow_up_rcu(&nd->path))
1103 break;
1104 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1105 }
1106 follow_mount_rcu(nd);
1107 nd->inode = nd->path.dentry->d_inode;
1108 return 0;
1109
1110 failed:
1111 nd->flags &= ~LOOKUP_RCU;
1112 if (!(nd->flags & LOOKUP_ROOT))
1113 nd->root.mnt = NULL;
1114 unlock_rcu_walk();
1115 return -ECHILD;
1116 }
1117
1118 /*
1119 * Follow down to the covering mount currently visible to userspace. At each
1120 * point, the filesystem owning that dentry may be queried as to whether the
1121 * caller is permitted to proceed or not.
1122 */
1123 int follow_down(struct path *path)
1124 {
1125 unsigned managed;
1126 int ret;
1127
1128 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1129 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1130 /* Allow the filesystem to manage the transit without i_mutex
1131 * being held.
1132 *
1133 * We indicate to the filesystem if someone is trying to mount
1134 * something here. This gives autofs the chance to deny anyone
1135 * other than its daemon the right to mount on its
1136 * superstructure.
1137 *
1138 * The filesystem may sleep at this point.
1139 */
1140 if (managed & DCACHE_MANAGE_TRANSIT) {
1141 BUG_ON(!path->dentry->d_op);
1142 BUG_ON(!path->dentry->d_op->d_manage);
1143 ret = path->dentry->d_op->d_manage(
1144 path->dentry, false);
1145 if (ret < 0)
1146 return ret == -EISDIR ? 0 : ret;
1147 }
1148
1149 /* Transit to a mounted filesystem. */
1150 if (managed & DCACHE_MOUNTED) {
1151 struct vfsmount *mounted = lookup_mnt(path);
1152 if (!mounted)
1153 break;
1154 dput(path->dentry);
1155 mntput(path->mnt);
1156 path->mnt = mounted;
1157 path->dentry = dget(mounted->mnt_root);
1158 continue;
1159 }
1160
1161 /* Don't handle automount points here */
1162 break;
1163 }
1164 return 0;
1165 }
1166
1167 /*
1168 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1169 */
1170 static void follow_mount(struct path *path)
1171 {
1172 while (d_mountpoint(path->dentry)) {
1173 struct vfsmount *mounted = lookup_mnt(path);
1174 if (!mounted)
1175 break;
1176 dput(path->dentry);
1177 mntput(path->mnt);
1178 path->mnt = mounted;
1179 path->dentry = dget(mounted->mnt_root);
1180 }
1181 }
1182
1183 static void follow_dotdot(struct nameidata *nd)
1184 {
1185 set_root(nd);
1186
1187 while(1) {
1188 struct dentry *old = nd->path.dentry;
1189
1190 if (nd->path.dentry == nd->root.dentry &&
1191 nd->path.mnt == nd->root.mnt) {
1192 break;
1193 }
1194 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1195 /* rare case of legitimate dget_parent()... */
1196 nd->path.dentry = dget_parent(nd->path.dentry);
1197 dput(old);
1198 break;
1199 }
1200 if (!follow_up(&nd->path))
1201 break;
1202 }
1203 follow_mount(&nd->path);
1204 nd->inode = nd->path.dentry->d_inode;
1205 }
1206
1207 /*
1208 * This looks up the name in dcache, possibly revalidates the old dentry and
1209 * allocates a new one if not found or not valid. In the need_lookup argument
1210 * returns whether i_op->lookup is necessary.
1211 *
1212 * dir->d_inode->i_mutex must be held
1213 */
1214 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1215 unsigned int flags, bool *need_lookup)
1216 {
1217 struct dentry *dentry;
1218 int error;
1219
1220 *need_lookup = false;
1221 dentry = d_lookup(dir, name);
1222 if (dentry) {
1223 if (d_need_lookup(dentry)) {
1224 *need_lookup = true;
1225 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1226 error = d_revalidate(dentry, flags);
1227 if (unlikely(error <= 0)) {
1228 if (error < 0) {
1229 dput(dentry);
1230 return ERR_PTR(error);
1231 } else if (!d_invalidate(dentry)) {
1232 dput(dentry);
1233 dentry = NULL;
1234 }
1235 }
1236 }
1237 }
1238
1239 if (!dentry) {
1240 dentry = d_alloc(dir, name);
1241 if (unlikely(!dentry))
1242 return ERR_PTR(-ENOMEM);
1243
1244 *need_lookup = true;
1245 }
1246 return dentry;
1247 }
1248
1249 /*
1250 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1251 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1252 *
1253 * dir->d_inode->i_mutex must be held
1254 */
1255 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1256 unsigned int flags)
1257 {
1258 struct dentry *old;
1259
1260 /* Don't create child dentry for a dead directory. */
1261 if (unlikely(IS_DEADDIR(dir))) {
1262 dput(dentry);
1263 return ERR_PTR(-ENOENT);
1264 }
1265
1266 old = dir->i_op->lookup(dir, dentry, flags);
1267 if (unlikely(old)) {
1268 dput(dentry);
1269 dentry = old;
1270 }
1271 return dentry;
1272 }
1273
1274 static struct dentry *__lookup_hash(struct qstr *name,
1275 struct dentry *base, unsigned int flags)
1276 {
1277 bool need_lookup;
1278 struct dentry *dentry;
1279
1280 dentry = lookup_dcache(name, base, flags, &need_lookup);
1281 if (!need_lookup)
1282 return dentry;
1283
1284 return lookup_real(base->d_inode, dentry, flags);
1285 }
1286
1287 /*
1288 * It's more convoluted than I'd like it to be, but... it's still fairly
1289 * small and for now I'd prefer to have fast path as straight as possible.
1290 * It _is_ time-critical.
1291 */
1292 static int lookup_fast(struct nameidata *nd, struct qstr *name,
1293 struct path *path, struct inode **inode)
1294 {
1295 struct vfsmount *mnt = nd->path.mnt;
1296 struct dentry *dentry, *parent = nd->path.dentry;
1297 int need_reval = 1;
1298 int status = 1;
1299 int err;
1300
1301 /*
1302 * Rename seqlock is not required here because in the off chance
1303 * of a false negative due to a concurrent rename, we're going to
1304 * do the non-racy lookup, below.
1305 */
1306 if (nd->flags & LOOKUP_RCU) {
1307 unsigned seq;
1308 dentry = __d_lookup_rcu(parent, name, &seq, nd->inode);
1309 if (!dentry)
1310 goto unlazy;
1311
1312 /*
1313 * This sequence count validates that the inode matches
1314 * the dentry name information from lookup.
1315 */
1316 *inode = dentry->d_inode;
1317 if (read_seqcount_retry(&dentry->d_seq, seq))
1318 return -ECHILD;
1319
1320 /*
1321 * This sequence count validates that the parent had no
1322 * changes while we did the lookup of the dentry above.
1323 *
1324 * The memory barrier in read_seqcount_begin of child is
1325 * enough, we can use __read_seqcount_retry here.
1326 */
1327 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1328 return -ECHILD;
1329 nd->seq = seq;
1330
1331 if (unlikely(d_need_lookup(dentry)))
1332 goto unlazy;
1333 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1334 status = d_revalidate(dentry, nd->flags);
1335 if (unlikely(status <= 0)) {
1336 if (status != -ECHILD)
1337 need_reval = 0;
1338 goto unlazy;
1339 }
1340 }
1341 path->mnt = mnt;
1342 path->dentry = dentry;
1343 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1344 goto unlazy;
1345 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1346 goto unlazy;
1347 return 0;
1348 unlazy:
1349 if (unlazy_walk(nd, dentry))
1350 return -ECHILD;
1351 } else {
1352 dentry = __d_lookup(parent, name);
1353 }
1354
1355 if (unlikely(!dentry))
1356 goto need_lookup;
1357
1358 if (unlikely(d_need_lookup(dentry))) {
1359 dput(dentry);
1360 goto need_lookup;
1361 }
1362
1363 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1364 status = d_revalidate(dentry, nd->flags);
1365 if (unlikely(status <= 0)) {
1366 if (status < 0) {
1367 dput(dentry);
1368 return status;
1369 }
1370 if (!d_invalidate(dentry)) {
1371 dput(dentry);
1372 goto need_lookup;
1373 }
1374 }
1375
1376 path->mnt = mnt;
1377 path->dentry = dentry;
1378 err = follow_managed(path, nd->flags);
1379 if (unlikely(err < 0)) {
1380 path_put_conditional(path, nd);
1381 return err;
1382 }
1383 if (err)
1384 nd->flags |= LOOKUP_JUMPED;
1385 *inode = path->dentry->d_inode;
1386 return 0;
1387
1388 need_lookup:
1389 return 1;
1390 }
1391
1392 /* Fast lookup failed, do it the slow way */
1393 static int lookup_slow(struct nameidata *nd, struct qstr *name,
1394 struct path *path)
1395 {
1396 struct dentry *dentry, *parent;
1397 int err;
1398
1399 parent = nd->path.dentry;
1400 BUG_ON(nd->inode != parent->d_inode);
1401
1402 mutex_lock(&parent->d_inode->i_mutex);
1403 dentry = __lookup_hash(name, parent, nd->flags);
1404 mutex_unlock(&parent->d_inode->i_mutex);
1405 if (IS_ERR(dentry))
1406 return PTR_ERR(dentry);
1407 path->mnt = nd->path.mnt;
1408 path->dentry = dentry;
1409 err = follow_managed(path, nd->flags);
1410 if (unlikely(err < 0)) {
1411 path_put_conditional(path, nd);
1412 return err;
1413 }
1414 if (err)
1415 nd->flags |= LOOKUP_JUMPED;
1416 return 0;
1417 }
1418
1419 static inline int may_lookup(struct nameidata *nd)
1420 {
1421 if (nd->flags & LOOKUP_RCU) {
1422 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1423 if (err != -ECHILD)
1424 return err;
1425 if (unlazy_walk(nd, NULL))
1426 return -ECHILD;
1427 }
1428 return inode_permission(nd->inode, MAY_EXEC);
1429 }
1430
1431 static inline int handle_dots(struct nameidata *nd, int type)
1432 {
1433 if (type == LAST_DOTDOT) {
1434 if (nd->flags & LOOKUP_RCU) {
1435 if (follow_dotdot_rcu(nd))
1436 return -ECHILD;
1437 } else
1438 follow_dotdot(nd);
1439 }
1440 return 0;
1441 }
1442
1443 static void terminate_walk(struct nameidata *nd)
1444 {
1445 if (!(nd->flags & LOOKUP_RCU)) {
1446 path_put(&nd->path);
1447 } else {
1448 nd->flags &= ~LOOKUP_RCU;
1449 if (!(nd->flags & LOOKUP_ROOT))
1450 nd->root.mnt = NULL;
1451 unlock_rcu_walk();
1452 }
1453 }
1454
1455 /*
1456 * Do we need to follow links? We _really_ want to be able
1457 * to do this check without having to look at inode->i_op,
1458 * so we keep a cache of "no, this doesn't need follow_link"
1459 * for the common case.
1460 */
1461 static inline int should_follow_link(struct inode *inode, int follow)
1462 {
1463 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1464 if (likely(inode->i_op->follow_link))
1465 return follow;
1466
1467 /* This gets set once for the inode lifetime */
1468 spin_lock(&inode->i_lock);
1469 inode->i_opflags |= IOP_NOFOLLOW;
1470 spin_unlock(&inode->i_lock);
1471 }
1472 return 0;
1473 }
1474
1475 static inline int walk_component(struct nameidata *nd, struct path *path,
1476 struct qstr *name, int type, int follow)
1477 {
1478 struct inode *inode;
1479 int err;
1480 /*
1481 * "." and ".." are special - ".." especially so because it has
1482 * to be able to know about the current root directory and
1483 * parent relationships.
1484 */
1485 if (unlikely(type != LAST_NORM))
1486 return handle_dots(nd, type);
1487 err = lookup_fast(nd, name, path, &inode);
1488 if (unlikely(err)) {
1489 if (err < 0)
1490 goto out_err;
1491
1492 err = lookup_slow(nd, name, path);
1493 if (err < 0)
1494 goto out_err;
1495
1496 inode = path->dentry->d_inode;
1497 }
1498 err = -ENOENT;
1499 if (!inode)
1500 goto out_path_put;
1501
1502 if (should_follow_link(inode, follow)) {
1503 if (nd->flags & LOOKUP_RCU) {
1504 if (unlikely(unlazy_walk(nd, path->dentry))) {
1505 err = -ECHILD;
1506 goto out_err;
1507 }
1508 }
1509 BUG_ON(inode != path->dentry->d_inode);
1510 return 1;
1511 }
1512 path_to_nameidata(path, nd);
1513 nd->inode = inode;
1514 return 0;
1515
1516 out_path_put:
1517 path_to_nameidata(path, nd);
1518 out_err:
1519 terminate_walk(nd);
1520 return err;
1521 }
1522
1523 /*
1524 * This limits recursive symlink follows to 8, while
1525 * limiting consecutive symlinks to 40.
1526 *
1527 * Without that kind of total limit, nasty chains of consecutive
1528 * symlinks can cause almost arbitrarily long lookups.
1529 */
1530 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1531 {
1532 int res;
1533
1534 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1535 path_put_conditional(path, nd);
1536 path_put(&nd->path);
1537 return -ELOOP;
1538 }
1539 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1540
1541 nd->depth++;
1542 current->link_count++;
1543
1544 do {
1545 struct path link = *path;
1546 void *cookie;
1547
1548 res = follow_link(&link, nd, &cookie);
1549 if (res)
1550 break;
1551 res = walk_component(nd, path, &nd->last,
1552 nd->last_type, LOOKUP_FOLLOW);
1553 put_link(nd, &link, cookie);
1554 } while (res > 0);
1555
1556 current->link_count--;
1557 nd->depth--;
1558 return res;
1559 }
1560
1561 /*
1562 * We really don't want to look at inode->i_op->lookup
1563 * when we don't have to. So we keep a cache bit in
1564 * the inode ->i_opflags field that says "yes, we can
1565 * do lookup on this inode".
1566 */
1567 static inline int can_lookup(struct inode *inode)
1568 {
1569 if (likely(inode->i_opflags & IOP_LOOKUP))
1570 return 1;
1571 if (likely(!inode->i_op->lookup))
1572 return 0;
1573
1574 /* We do this once for the lifetime of the inode */
1575 spin_lock(&inode->i_lock);
1576 inode->i_opflags |= IOP_LOOKUP;
1577 spin_unlock(&inode->i_lock);
1578 return 1;
1579 }
1580
1581 /*
1582 * We can do the critical dentry name comparison and hashing
1583 * operations one word at a time, but we are limited to:
1584 *
1585 * - Architectures with fast unaligned word accesses. We could
1586 * do a "get_unaligned()" if this helps and is sufficiently
1587 * fast.
1588 *
1589 * - Little-endian machines (so that we can generate the mask
1590 * of low bytes efficiently). Again, we *could* do a byte
1591 * swapping load on big-endian architectures if that is not
1592 * expensive enough to make the optimization worthless.
1593 *
1594 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1595 * do not trap on the (extremely unlikely) case of a page
1596 * crossing operation.
1597 *
1598 * - Furthermore, we need an efficient 64-bit compile for the
1599 * 64-bit case in order to generate the "number of bytes in
1600 * the final mask". Again, that could be replaced with a
1601 * efficient population count instruction or similar.
1602 */
1603 #ifdef CONFIG_DCACHE_WORD_ACCESS
1604
1605 #include <asm/word-at-a-time.h>
1606
1607 #ifdef CONFIG_64BIT
1608
1609 static inline unsigned int fold_hash(unsigned long hash)
1610 {
1611 hash += hash >> (8*sizeof(int));
1612 return hash;
1613 }
1614
1615 #else /* 32-bit case */
1616
1617 #define fold_hash(x) (x)
1618
1619 #endif
1620
1621 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1622 {
1623 unsigned long a, mask;
1624 unsigned long hash = 0;
1625
1626 for (;;) {
1627 a = load_unaligned_zeropad(name);
1628 if (len < sizeof(unsigned long))
1629 break;
1630 hash += a;
1631 hash *= 9;
1632 name += sizeof(unsigned long);
1633 len -= sizeof(unsigned long);
1634 if (!len)
1635 goto done;
1636 }
1637 mask = ~(~0ul << len*8);
1638 hash += mask & a;
1639 done:
1640 return fold_hash(hash);
1641 }
1642 EXPORT_SYMBOL(full_name_hash);
1643
1644 /*
1645 * Calculate the length and hash of the path component, and
1646 * return the length of the component;
1647 */
1648 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1649 {
1650 unsigned long a, b, adata, bdata, mask, hash, len;
1651 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1652
1653 hash = a = 0;
1654 len = -sizeof(unsigned long);
1655 do {
1656 hash = (hash + a) * 9;
1657 len += sizeof(unsigned long);
1658 a = load_unaligned_zeropad(name+len);
1659 b = a ^ REPEAT_BYTE('/');
1660 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1661
1662 adata = prep_zero_mask(a, adata, &constants);
1663 bdata = prep_zero_mask(b, bdata, &constants);
1664
1665 mask = create_zero_mask(adata | bdata);
1666
1667 hash += a & zero_bytemask(mask);
1668 *hashp = fold_hash(hash);
1669
1670 return len + find_zero(mask);
1671 }
1672
1673 #else
1674
1675 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1676 {
1677 unsigned long hash = init_name_hash();
1678 while (len--)
1679 hash = partial_name_hash(*name++, hash);
1680 return end_name_hash(hash);
1681 }
1682 EXPORT_SYMBOL(full_name_hash);
1683
1684 /*
1685 * We know there's a real path component here of at least
1686 * one character.
1687 */
1688 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1689 {
1690 unsigned long hash = init_name_hash();
1691 unsigned long len = 0, c;
1692
1693 c = (unsigned char)*name;
1694 do {
1695 len++;
1696 hash = partial_name_hash(c, hash);
1697 c = (unsigned char)name[len];
1698 } while (c && c != '/');
1699 *hashp = end_name_hash(hash);
1700 return len;
1701 }
1702
1703 #endif
1704
1705 /*
1706 * Name resolution.
1707 * This is the basic name resolution function, turning a pathname into
1708 * the final dentry. We expect 'base' to be positive and a directory.
1709 *
1710 * Returns 0 and nd will have valid dentry and mnt on success.
1711 * Returns error and drops reference to input namei data on failure.
1712 */
1713 static int link_path_walk(const char *name, struct nameidata *nd)
1714 {
1715 struct path next;
1716 int err;
1717
1718 while (*name=='/')
1719 name++;
1720 if (!*name)
1721 return 0;
1722
1723 /* At this point we know we have a real path component. */
1724 for(;;) {
1725 struct qstr this;
1726 long len;
1727 int type;
1728
1729 err = may_lookup(nd);
1730 if (err)
1731 break;
1732
1733 len = hash_name(name, &this.hash);
1734 this.name = name;
1735 this.len = len;
1736
1737 type = LAST_NORM;
1738 if (name[0] == '.') switch (len) {
1739 case 2:
1740 if (name[1] == '.') {
1741 type = LAST_DOTDOT;
1742 nd->flags |= LOOKUP_JUMPED;
1743 }
1744 break;
1745 case 1:
1746 type = LAST_DOT;
1747 }
1748 if (likely(type == LAST_NORM)) {
1749 struct dentry *parent = nd->path.dentry;
1750 nd->flags &= ~LOOKUP_JUMPED;
1751 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1752 err = parent->d_op->d_hash(parent, nd->inode,
1753 &this);
1754 if (err < 0)
1755 break;
1756 }
1757 }
1758
1759 if (!name[len])
1760 goto last_component;
1761 /*
1762 * If it wasn't NUL, we know it was '/'. Skip that
1763 * slash, and continue until no more slashes.
1764 */
1765 do {
1766 len++;
1767 } while (unlikely(name[len] == '/'));
1768 if (!name[len])
1769 goto last_component;
1770 name += len;
1771
1772 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1773 if (err < 0)
1774 return err;
1775
1776 if (err) {
1777 err = nested_symlink(&next, nd);
1778 if (err)
1779 return err;
1780 }
1781 if (can_lookup(nd->inode))
1782 continue;
1783 err = -ENOTDIR;
1784 break;
1785 /* here ends the main loop */
1786
1787 last_component:
1788 nd->last = this;
1789 nd->last_type = type;
1790 return 0;
1791 }
1792 terminate_walk(nd);
1793 return err;
1794 }
1795
1796 static int path_init(int dfd, const char *name, unsigned int flags,
1797 struct nameidata *nd, struct file **fp)
1798 {
1799 int retval = 0;
1800 int fput_needed;
1801 struct file *file;
1802
1803 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1804 nd->flags = flags | LOOKUP_JUMPED;
1805 nd->depth = 0;
1806 if (flags & LOOKUP_ROOT) {
1807 struct inode *inode = nd->root.dentry->d_inode;
1808 if (*name) {
1809 if (!inode->i_op->lookup)
1810 return -ENOTDIR;
1811 retval = inode_permission(inode, MAY_EXEC);
1812 if (retval)
1813 return retval;
1814 }
1815 nd->path = nd->root;
1816 nd->inode = inode;
1817 if (flags & LOOKUP_RCU) {
1818 lock_rcu_walk();
1819 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1820 } else {
1821 path_get(&nd->path);
1822 }
1823 return 0;
1824 }
1825
1826 nd->root.mnt = NULL;
1827
1828 if (*name=='/') {
1829 if (flags & LOOKUP_RCU) {
1830 lock_rcu_walk();
1831 set_root_rcu(nd);
1832 } else {
1833 set_root(nd);
1834 path_get(&nd->root);
1835 }
1836 nd->path = nd->root;
1837 } else if (dfd == AT_FDCWD) {
1838 if (flags & LOOKUP_RCU) {
1839 struct fs_struct *fs = current->fs;
1840 unsigned seq;
1841
1842 lock_rcu_walk();
1843
1844 do {
1845 seq = read_seqcount_begin(&fs->seq);
1846 nd->path = fs->pwd;
1847 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1848 } while (read_seqcount_retry(&fs->seq, seq));
1849 } else {
1850 get_fs_pwd(current->fs, &nd->path);
1851 }
1852 } else {
1853 struct dentry *dentry;
1854
1855 file = fget_raw_light(dfd, &fput_needed);
1856 retval = -EBADF;
1857 if (!file)
1858 goto out_fail;
1859
1860 dentry = file->f_path.dentry;
1861
1862 if (*name) {
1863 retval = -ENOTDIR;
1864 if (!S_ISDIR(dentry->d_inode->i_mode))
1865 goto fput_fail;
1866
1867 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1868 if (retval)
1869 goto fput_fail;
1870 }
1871
1872 nd->path = file->f_path;
1873 if (flags & LOOKUP_RCU) {
1874 if (fput_needed)
1875 *fp = file;
1876 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1877 lock_rcu_walk();
1878 } else {
1879 path_get(&file->f_path);
1880 fput_light(file, fput_needed);
1881 }
1882 }
1883
1884 nd->inode = nd->path.dentry->d_inode;
1885 return 0;
1886
1887 fput_fail:
1888 fput_light(file, fput_needed);
1889 out_fail:
1890 return retval;
1891 }
1892
1893 static inline int lookup_last(struct nameidata *nd, struct path *path)
1894 {
1895 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1896 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1897
1898 nd->flags &= ~LOOKUP_PARENT;
1899 return walk_component(nd, path, &nd->last, nd->last_type,
1900 nd->flags & LOOKUP_FOLLOW);
1901 }
1902
1903 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1904 static int path_lookupat(int dfd, const char *name,
1905 unsigned int flags, struct nameidata *nd)
1906 {
1907 struct file *base = NULL;
1908 struct path path;
1909 int err;
1910
1911 /*
1912 * Path walking is largely split up into 2 different synchronisation
1913 * schemes, rcu-walk and ref-walk (explained in
1914 * Documentation/filesystems/path-lookup.txt). These share much of the
1915 * path walk code, but some things particularly setup, cleanup, and
1916 * following mounts are sufficiently divergent that functions are
1917 * duplicated. Typically there is a function foo(), and its RCU
1918 * analogue, foo_rcu().
1919 *
1920 * -ECHILD is the error number of choice (just to avoid clashes) that
1921 * is returned if some aspect of an rcu-walk fails. Such an error must
1922 * be handled by restarting a traditional ref-walk (which will always
1923 * be able to complete).
1924 */
1925 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1926
1927 if (unlikely(err))
1928 return err;
1929
1930 current->total_link_count = 0;
1931 err = link_path_walk(name, nd);
1932
1933 if (!err && !(flags & LOOKUP_PARENT)) {
1934 err = lookup_last(nd, &path);
1935 while (err > 0) {
1936 void *cookie;
1937 struct path link = path;
1938 err = may_follow_link(&link, nd);
1939 if (unlikely(err))
1940 break;
1941 nd->flags |= LOOKUP_PARENT;
1942 err = follow_link(&link, nd, &cookie);
1943 if (err)
1944 break;
1945 err = lookup_last(nd, &path);
1946 put_link(nd, &link, cookie);
1947 }
1948 }
1949
1950 if (!err)
1951 err = complete_walk(nd);
1952
1953 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1954 if (!nd->inode->i_op->lookup) {
1955 path_put(&nd->path);
1956 err = -ENOTDIR;
1957 }
1958 }
1959
1960 if (base)
1961 fput(base);
1962
1963 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1964 path_put(&nd->root);
1965 nd->root.mnt = NULL;
1966 }
1967 return err;
1968 }
1969
1970 static int do_path_lookup(int dfd, const char *name,
1971 unsigned int flags, struct nameidata *nd)
1972 {
1973 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1974 if (unlikely(retval == -ECHILD))
1975 retval = path_lookupat(dfd, name, flags, nd);
1976 if (unlikely(retval == -ESTALE))
1977 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1978
1979 if (likely(!retval)) {
1980 if (unlikely(!audit_dummy_context())) {
1981 if (nd->path.dentry && nd->inode)
1982 audit_inode(name, nd->path.dentry);
1983 }
1984 }
1985 return retval;
1986 }
1987
1988 /* does lookup, returns the object with parent locked */
1989 struct dentry *kern_path_locked(const char *name, struct path *path)
1990 {
1991 struct nameidata nd;
1992 struct dentry *d;
1993 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
1994 if (err)
1995 return ERR_PTR(err);
1996 if (nd.last_type != LAST_NORM) {
1997 path_put(&nd.path);
1998 return ERR_PTR(-EINVAL);
1999 }
2000 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2001 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2002 if (IS_ERR(d)) {
2003 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2004 path_put(&nd.path);
2005 return d;
2006 }
2007 *path = nd.path;
2008 return d;
2009 }
2010
2011 int kern_path(const char *name, unsigned int flags, struct path *path)
2012 {
2013 struct nameidata nd;
2014 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2015 if (!res)
2016 *path = nd.path;
2017 return res;
2018 }
2019
2020 /**
2021 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2022 * @dentry: pointer to dentry of the base directory
2023 * @mnt: pointer to vfs mount of the base directory
2024 * @name: pointer to file name
2025 * @flags: lookup flags
2026 * @path: pointer to struct path to fill
2027 */
2028 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2029 const char *name, unsigned int flags,
2030 struct path *path)
2031 {
2032 struct nameidata nd;
2033 int err;
2034 nd.root.dentry = dentry;
2035 nd.root.mnt = mnt;
2036 BUG_ON(flags & LOOKUP_PARENT);
2037 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2038 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2039 if (!err)
2040 *path = nd.path;
2041 return err;
2042 }
2043
2044 /*
2045 * Restricted form of lookup. Doesn't follow links, single-component only,
2046 * needs parent already locked. Doesn't follow mounts.
2047 * SMP-safe.
2048 */
2049 static struct dentry *lookup_hash(struct nameidata *nd)
2050 {
2051 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2052 }
2053
2054 /**
2055 * lookup_one_len - filesystem helper to lookup single pathname component
2056 * @name: pathname component to lookup
2057 * @base: base directory to lookup from
2058 * @len: maximum length @len should be interpreted to
2059 *
2060 * Note that this routine is purely a helper for filesystem usage and should
2061 * not be called by generic code. Also note that by using this function the
2062 * nameidata argument is passed to the filesystem methods and a filesystem
2063 * using this helper needs to be prepared for that.
2064 */
2065 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2066 {
2067 struct qstr this;
2068 unsigned int c;
2069 int err;
2070
2071 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2072
2073 this.name = name;
2074 this.len = len;
2075 this.hash = full_name_hash(name, len);
2076 if (!len)
2077 return ERR_PTR(-EACCES);
2078
2079 while (len--) {
2080 c = *(const unsigned char *)name++;
2081 if (c == '/' || c == '\0')
2082 return ERR_PTR(-EACCES);
2083 }
2084 /*
2085 * See if the low-level filesystem might want
2086 * to use its own hash..
2087 */
2088 if (base->d_flags & DCACHE_OP_HASH) {
2089 int err = base->d_op->d_hash(base, base->d_inode, &this);
2090 if (err < 0)
2091 return ERR_PTR(err);
2092 }
2093
2094 err = inode_permission(base->d_inode, MAY_EXEC);
2095 if (err)
2096 return ERR_PTR(err);
2097
2098 return __lookup_hash(&this, base, 0);
2099 }
2100
2101 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2102 struct path *path, int *empty)
2103 {
2104 struct nameidata nd;
2105 char *tmp = getname_flags(name, flags, empty);
2106 int err = PTR_ERR(tmp);
2107 if (!IS_ERR(tmp)) {
2108
2109 BUG_ON(flags & LOOKUP_PARENT);
2110
2111 err = do_path_lookup(dfd, tmp, flags, &nd);
2112 putname(tmp);
2113 if (!err)
2114 *path = nd.path;
2115 }
2116 return err;
2117 }
2118
2119 int user_path_at(int dfd, const char __user *name, unsigned flags,
2120 struct path *path)
2121 {
2122 return user_path_at_empty(dfd, name, flags, path, NULL);
2123 }
2124
2125 static int user_path_parent(int dfd, const char __user *path,
2126 struct nameidata *nd, char **name)
2127 {
2128 char *s = getname(path);
2129 int error;
2130
2131 if (IS_ERR(s))
2132 return PTR_ERR(s);
2133
2134 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
2135 if (error)
2136 putname(s);
2137 else
2138 *name = s;
2139
2140 return error;
2141 }
2142
2143 /*
2144 * It's inline, so penalty for filesystems that don't use sticky bit is
2145 * minimal.
2146 */
2147 static inline int check_sticky(struct inode *dir, struct inode *inode)
2148 {
2149 kuid_t fsuid = current_fsuid();
2150
2151 if (!(dir->i_mode & S_ISVTX))
2152 return 0;
2153 if (uid_eq(inode->i_uid, fsuid))
2154 return 0;
2155 if (uid_eq(dir->i_uid, fsuid))
2156 return 0;
2157 return !inode_capable(inode, CAP_FOWNER);
2158 }
2159
2160 /*
2161 * Check whether we can remove a link victim from directory dir, check
2162 * whether the type of victim is right.
2163 * 1. We can't do it if dir is read-only (done in permission())
2164 * 2. We should have write and exec permissions on dir
2165 * 3. We can't remove anything from append-only dir
2166 * 4. We can't do anything with immutable dir (done in permission())
2167 * 5. If the sticky bit on dir is set we should either
2168 * a. be owner of dir, or
2169 * b. be owner of victim, or
2170 * c. have CAP_FOWNER capability
2171 * 6. If the victim is append-only or immutable we can't do antyhing with
2172 * links pointing to it.
2173 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2174 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2175 * 9. We can't remove a root or mountpoint.
2176 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2177 * nfs_async_unlink().
2178 */
2179 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2180 {
2181 int error;
2182
2183 if (!victim->d_inode)
2184 return -ENOENT;
2185
2186 BUG_ON(victim->d_parent->d_inode != dir);
2187 audit_inode_child(victim, dir);
2188
2189 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2190 if (error)
2191 return error;
2192 if (IS_APPEND(dir))
2193 return -EPERM;
2194 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2195 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2196 return -EPERM;
2197 if (isdir) {
2198 if (!S_ISDIR(victim->d_inode->i_mode))
2199 return -ENOTDIR;
2200 if (IS_ROOT(victim))
2201 return -EBUSY;
2202 } else if (S_ISDIR(victim->d_inode->i_mode))
2203 return -EISDIR;
2204 if (IS_DEADDIR(dir))
2205 return -ENOENT;
2206 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2207 return -EBUSY;
2208 return 0;
2209 }
2210
2211 /* Check whether we can create an object with dentry child in directory
2212 * dir.
2213 * 1. We can't do it if child already exists (open has special treatment for
2214 * this case, but since we are inlined it's OK)
2215 * 2. We can't do it if dir is read-only (done in permission())
2216 * 3. We should have write and exec permissions on dir
2217 * 4. We can't do it if dir is immutable (done in permission())
2218 */
2219 static inline int may_create(struct inode *dir, struct dentry *child)
2220 {
2221 if (child->d_inode)
2222 return -EEXIST;
2223 if (IS_DEADDIR(dir))
2224 return -ENOENT;
2225 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2226 }
2227
2228 /*
2229 * p1 and p2 should be directories on the same fs.
2230 */
2231 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2232 {
2233 struct dentry *p;
2234
2235 if (p1 == p2) {
2236 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2237 return NULL;
2238 }
2239
2240 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2241
2242 p = d_ancestor(p2, p1);
2243 if (p) {
2244 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2245 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2246 return p;
2247 }
2248
2249 p = d_ancestor(p1, p2);
2250 if (p) {
2251 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2252 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2253 return p;
2254 }
2255
2256 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2257 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2258 return NULL;
2259 }
2260
2261 void unlock_rename(struct dentry *p1, struct dentry *p2)
2262 {
2263 mutex_unlock(&p1->d_inode->i_mutex);
2264 if (p1 != p2) {
2265 mutex_unlock(&p2->d_inode->i_mutex);
2266 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2267 }
2268 }
2269
2270 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2271 bool want_excl)
2272 {
2273 int error = may_create(dir, dentry);
2274 if (error)
2275 return error;
2276
2277 if (!dir->i_op->create)
2278 return -EACCES; /* shouldn't it be ENOSYS? */
2279 mode &= S_IALLUGO;
2280 mode |= S_IFREG;
2281 error = security_inode_create(dir, dentry, mode);
2282 if (error)
2283 return error;
2284 error = dir->i_op->create(dir, dentry, mode, want_excl);
2285 if (!error)
2286 fsnotify_create(dir, dentry);
2287 return error;
2288 }
2289
2290 static int may_open(struct path *path, int acc_mode, int flag)
2291 {
2292 struct dentry *dentry = path->dentry;
2293 struct inode *inode = dentry->d_inode;
2294 int error;
2295
2296 /* O_PATH? */
2297 if (!acc_mode)
2298 return 0;
2299
2300 if (!inode)
2301 return -ENOENT;
2302
2303 switch (inode->i_mode & S_IFMT) {
2304 case S_IFLNK:
2305 return -ELOOP;
2306 case S_IFDIR:
2307 if (acc_mode & MAY_WRITE)
2308 return -EISDIR;
2309 break;
2310 case S_IFBLK:
2311 case S_IFCHR:
2312 if (path->mnt->mnt_flags & MNT_NODEV)
2313 return -EACCES;
2314 /*FALLTHRU*/
2315 case S_IFIFO:
2316 case S_IFSOCK:
2317 flag &= ~O_TRUNC;
2318 break;
2319 }
2320
2321 error = inode_permission(inode, acc_mode);
2322 if (error)
2323 return error;
2324
2325 /*
2326 * An append-only file must be opened in append mode for writing.
2327 */
2328 if (IS_APPEND(inode)) {
2329 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2330 return -EPERM;
2331 if (flag & O_TRUNC)
2332 return -EPERM;
2333 }
2334
2335 /* O_NOATIME can only be set by the owner or superuser */
2336 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2337 return -EPERM;
2338
2339 return 0;
2340 }
2341
2342 static int handle_truncate(struct file *filp)
2343 {
2344 struct path *path = &filp->f_path;
2345 struct inode *inode = path->dentry->d_inode;
2346 int error = get_write_access(inode);
2347 if (error)
2348 return error;
2349 /*
2350 * Refuse to truncate files with mandatory locks held on them.
2351 */
2352 error = locks_verify_locked(inode);
2353 if (!error)
2354 error = security_path_truncate(path);
2355 if (!error) {
2356 error = do_truncate(path->dentry, 0,
2357 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2358 filp);
2359 }
2360 put_write_access(inode);
2361 return error;
2362 }
2363
2364 static inline int open_to_namei_flags(int flag)
2365 {
2366 if ((flag & O_ACCMODE) == 3)
2367 flag--;
2368 return flag;
2369 }
2370
2371 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2372 {
2373 int error = security_path_mknod(dir, dentry, mode, 0);
2374 if (error)
2375 return error;
2376
2377 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2378 if (error)
2379 return error;
2380
2381 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2382 }
2383
2384 /*
2385 * Attempt to atomically look up, create and open a file from a negative
2386 * dentry.
2387 *
2388 * Returns 0 if successful. The file will have been created and attached to
2389 * @file by the filesystem calling finish_open().
2390 *
2391 * Returns 1 if the file was looked up only or didn't need creating. The
2392 * caller will need to perform the open themselves. @path will have been
2393 * updated to point to the new dentry. This may be negative.
2394 *
2395 * Returns an error code otherwise.
2396 */
2397 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2398 struct path *path, struct file *file,
2399 const struct open_flags *op,
2400 bool got_write, bool need_lookup,
2401 int *opened)
2402 {
2403 struct inode *dir = nd->path.dentry->d_inode;
2404 unsigned open_flag = open_to_namei_flags(op->open_flag);
2405 umode_t mode;
2406 int error;
2407 int acc_mode;
2408 int create_error = 0;
2409 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2410
2411 BUG_ON(dentry->d_inode);
2412
2413 /* Don't create child dentry for a dead directory. */
2414 if (unlikely(IS_DEADDIR(dir))) {
2415 error = -ENOENT;
2416 goto out;
2417 }
2418
2419 mode = op->mode;
2420 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2421 mode &= ~current_umask();
2422
2423 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2424 open_flag &= ~O_TRUNC;
2425 *opened |= FILE_CREATED;
2426 }
2427
2428 /*
2429 * Checking write permission is tricky, bacuse we don't know if we are
2430 * going to actually need it: O_CREAT opens should work as long as the
2431 * file exists. But checking existence breaks atomicity. The trick is
2432 * to check access and if not granted clear O_CREAT from the flags.
2433 *
2434 * Another problem is returing the "right" error value (e.g. for an
2435 * O_EXCL open we want to return EEXIST not EROFS).
2436 */
2437 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2438 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2439 if (!(open_flag & O_CREAT)) {
2440 /*
2441 * No O_CREATE -> atomicity not a requirement -> fall
2442 * back to lookup + open
2443 */
2444 goto no_open;
2445 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2446 /* Fall back and fail with the right error */
2447 create_error = -EROFS;
2448 goto no_open;
2449 } else {
2450 /* No side effects, safe to clear O_CREAT */
2451 create_error = -EROFS;
2452 open_flag &= ~O_CREAT;
2453 }
2454 }
2455
2456 if (open_flag & O_CREAT) {
2457 error = may_o_create(&nd->path, dentry, mode);
2458 if (error) {
2459 create_error = error;
2460 if (open_flag & O_EXCL)
2461 goto no_open;
2462 open_flag &= ~O_CREAT;
2463 }
2464 }
2465
2466 if (nd->flags & LOOKUP_DIRECTORY)
2467 open_flag |= O_DIRECTORY;
2468
2469 file->f_path.dentry = DENTRY_NOT_SET;
2470 file->f_path.mnt = nd->path.mnt;
2471 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2472 opened);
2473 if (error < 0) {
2474 if (create_error && error == -ENOENT)
2475 error = create_error;
2476 goto out;
2477 }
2478
2479 acc_mode = op->acc_mode;
2480 if (*opened & FILE_CREATED) {
2481 fsnotify_create(dir, dentry);
2482 acc_mode = MAY_OPEN;
2483 }
2484
2485 if (error) { /* returned 1, that is */
2486 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2487 error = -EIO;
2488 goto out;
2489 }
2490 if (file->f_path.dentry) {
2491 dput(dentry);
2492 dentry = file->f_path.dentry;
2493 }
2494 if (create_error && dentry->d_inode == NULL) {
2495 error = create_error;
2496 goto out;
2497 }
2498 goto looked_up;
2499 }
2500
2501 /*
2502 * We didn't have the inode before the open, so check open permission
2503 * here.
2504 */
2505 error = may_open(&file->f_path, acc_mode, open_flag);
2506 if (error)
2507 fput(file);
2508
2509 out:
2510 dput(dentry);
2511 return error;
2512
2513 no_open:
2514 if (need_lookup) {
2515 dentry = lookup_real(dir, dentry, nd->flags);
2516 if (IS_ERR(dentry))
2517 return PTR_ERR(dentry);
2518
2519 if (create_error) {
2520 int open_flag = op->open_flag;
2521
2522 error = create_error;
2523 if ((open_flag & O_EXCL)) {
2524 if (!dentry->d_inode)
2525 goto out;
2526 } else if (!dentry->d_inode) {
2527 goto out;
2528 } else if ((open_flag & O_TRUNC) &&
2529 S_ISREG(dentry->d_inode->i_mode)) {
2530 goto out;
2531 }
2532 /* will fail later, go on to get the right error */
2533 }
2534 }
2535 looked_up:
2536 path->dentry = dentry;
2537 path->mnt = nd->path.mnt;
2538 return 1;
2539 }
2540
2541 /*
2542 * Look up and maybe create and open the last component.
2543 *
2544 * Must be called with i_mutex held on parent.
2545 *
2546 * Returns 0 if the file was successfully atomically created (if necessary) and
2547 * opened. In this case the file will be returned attached to @file.
2548 *
2549 * Returns 1 if the file was not completely opened at this time, though lookups
2550 * and creations will have been performed and the dentry returned in @path will
2551 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2552 * specified then a negative dentry may be returned.
2553 *
2554 * An error code is returned otherwise.
2555 *
2556 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2557 * cleared otherwise prior to returning.
2558 */
2559 static int lookup_open(struct nameidata *nd, struct path *path,
2560 struct file *file,
2561 const struct open_flags *op,
2562 bool got_write, int *opened)
2563 {
2564 struct dentry *dir = nd->path.dentry;
2565 struct inode *dir_inode = dir->d_inode;
2566 struct dentry *dentry;
2567 int error;
2568 bool need_lookup;
2569
2570 *opened &= ~FILE_CREATED;
2571 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2572 if (IS_ERR(dentry))
2573 return PTR_ERR(dentry);
2574
2575 /* Cached positive dentry: will open in f_op->open */
2576 if (!need_lookup && dentry->d_inode)
2577 goto out_no_open;
2578
2579 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2580 return atomic_open(nd, dentry, path, file, op, got_write,
2581 need_lookup, opened);
2582 }
2583
2584 if (need_lookup) {
2585 BUG_ON(dentry->d_inode);
2586
2587 dentry = lookup_real(dir_inode, dentry, nd->flags);
2588 if (IS_ERR(dentry))
2589 return PTR_ERR(dentry);
2590 }
2591
2592 /* Negative dentry, just create the file */
2593 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2594 umode_t mode = op->mode;
2595 if (!IS_POSIXACL(dir->d_inode))
2596 mode &= ~current_umask();
2597 /*
2598 * This write is needed to ensure that a
2599 * rw->ro transition does not occur between
2600 * the time when the file is created and when
2601 * a permanent write count is taken through
2602 * the 'struct file' in finish_open().
2603 */
2604 if (!got_write) {
2605 error = -EROFS;
2606 goto out_dput;
2607 }
2608 *opened |= FILE_CREATED;
2609 error = security_path_mknod(&nd->path, dentry, mode, 0);
2610 if (error)
2611 goto out_dput;
2612 error = vfs_create(dir->d_inode, dentry, mode,
2613 nd->flags & LOOKUP_EXCL);
2614 if (error)
2615 goto out_dput;
2616 }
2617 out_no_open:
2618 path->dentry = dentry;
2619 path->mnt = nd->path.mnt;
2620 return 1;
2621
2622 out_dput:
2623 dput(dentry);
2624 return error;
2625 }
2626
2627 /*
2628 * Handle the last step of open()
2629 */
2630 static int do_last(struct nameidata *nd, struct path *path,
2631 struct file *file, const struct open_flags *op,
2632 int *opened, const char *pathname)
2633 {
2634 struct dentry *dir = nd->path.dentry;
2635 int open_flag = op->open_flag;
2636 bool will_truncate = (open_flag & O_TRUNC) != 0;
2637 bool got_write = false;
2638 int acc_mode = op->acc_mode;
2639 struct inode *inode;
2640 bool symlink_ok = false;
2641 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2642 bool retried = false;
2643 int error;
2644
2645 nd->flags &= ~LOOKUP_PARENT;
2646 nd->flags |= op->intent;
2647
2648 switch (nd->last_type) {
2649 case LAST_DOTDOT:
2650 case LAST_DOT:
2651 error = handle_dots(nd, nd->last_type);
2652 if (error)
2653 return error;
2654 /* fallthrough */
2655 case LAST_ROOT:
2656 error = complete_walk(nd);
2657 if (error)
2658 return error;
2659 audit_inode(pathname, nd->path.dentry);
2660 if (open_flag & O_CREAT) {
2661 error = -EISDIR;
2662 goto out;
2663 }
2664 goto finish_open;
2665 case LAST_BIND:
2666 error = complete_walk(nd);
2667 if (error)
2668 return error;
2669 audit_inode(pathname, dir);
2670 goto finish_open;
2671 }
2672
2673 if (!(open_flag & O_CREAT)) {
2674 if (nd->last.name[nd->last.len])
2675 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2676 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2677 symlink_ok = true;
2678 /* we _can_ be in RCU mode here */
2679 error = lookup_fast(nd, &nd->last, path, &inode);
2680 if (likely(!error))
2681 goto finish_lookup;
2682
2683 if (error < 0)
2684 goto out;
2685
2686 BUG_ON(nd->inode != dir->d_inode);
2687 } else {
2688 /* create side of things */
2689 /*
2690 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2691 * has been cleared when we got to the last component we are
2692 * about to look up
2693 */
2694 error = complete_walk(nd);
2695 if (error)
2696 return error;
2697
2698 audit_inode(pathname, dir);
2699 error = -EISDIR;
2700 /* trailing slashes? */
2701 if (nd->last.name[nd->last.len])
2702 goto out;
2703 }
2704
2705 retry_lookup:
2706 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2707 error = mnt_want_write(nd->path.mnt);
2708 if (!error)
2709 got_write = true;
2710 /*
2711 * do _not_ fail yet - we might not need that or fail with
2712 * a different error; let lookup_open() decide; we'll be
2713 * dropping this one anyway.
2714 */
2715 }
2716 mutex_lock(&dir->d_inode->i_mutex);
2717 error = lookup_open(nd, path, file, op, got_write, opened);
2718 mutex_unlock(&dir->d_inode->i_mutex);
2719
2720 if (error <= 0) {
2721 if (error)
2722 goto out;
2723
2724 if ((*opened & FILE_CREATED) ||
2725 !S_ISREG(file->f_path.dentry->d_inode->i_mode))
2726 will_truncate = false;
2727
2728 audit_inode(pathname, file->f_path.dentry);
2729 goto opened;
2730 }
2731
2732 if (*opened & FILE_CREATED) {
2733 /* Don't check for write permission, don't truncate */
2734 open_flag &= ~O_TRUNC;
2735 will_truncate = false;
2736 acc_mode = MAY_OPEN;
2737 path_to_nameidata(path, nd);
2738 goto finish_open_created;
2739 }
2740
2741 /*
2742 * create/update audit record if it already exists.
2743 */
2744 if (path->dentry->d_inode)
2745 audit_inode(pathname, path->dentry);
2746
2747 /*
2748 * If atomic_open() acquired write access it is dropped now due to
2749 * possible mount and symlink following (this might be optimized away if
2750 * necessary...)
2751 */
2752 if (got_write) {
2753 mnt_drop_write(nd->path.mnt);
2754 got_write = false;
2755 }
2756
2757 error = -EEXIST;
2758 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2759 goto exit_dput;
2760
2761 error = follow_managed(path, nd->flags);
2762 if (error < 0)
2763 goto exit_dput;
2764
2765 if (error)
2766 nd->flags |= LOOKUP_JUMPED;
2767
2768 BUG_ON(nd->flags & LOOKUP_RCU);
2769 inode = path->dentry->d_inode;
2770 finish_lookup:
2771 /* we _can_ be in RCU mode here */
2772 error = -ENOENT;
2773 if (!inode) {
2774 path_to_nameidata(path, nd);
2775 goto out;
2776 }
2777
2778 if (should_follow_link(inode, !symlink_ok)) {
2779 if (nd->flags & LOOKUP_RCU) {
2780 if (unlikely(unlazy_walk(nd, path->dentry))) {
2781 error = -ECHILD;
2782 goto out;
2783 }
2784 }
2785 BUG_ON(inode != path->dentry->d_inode);
2786 return 1;
2787 }
2788
2789 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2790 path_to_nameidata(path, nd);
2791 } else {
2792 save_parent.dentry = nd->path.dentry;
2793 save_parent.mnt = mntget(path->mnt);
2794 nd->path.dentry = path->dentry;
2795
2796 }
2797 nd->inode = inode;
2798 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2799 error = complete_walk(nd);
2800 if (error) {
2801 path_put(&save_parent);
2802 return error;
2803 }
2804 error = -EISDIR;
2805 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2806 goto out;
2807 error = -ENOTDIR;
2808 if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup)
2809 goto out;
2810 audit_inode(pathname, nd->path.dentry);
2811 finish_open:
2812 if (!S_ISREG(nd->inode->i_mode))
2813 will_truncate = false;
2814
2815 if (will_truncate) {
2816 error = mnt_want_write(nd->path.mnt);
2817 if (error)
2818 goto out;
2819 got_write = true;
2820 }
2821 finish_open_created:
2822 error = may_open(&nd->path, acc_mode, open_flag);
2823 if (error)
2824 goto out;
2825 file->f_path.mnt = nd->path.mnt;
2826 error = finish_open(file, nd->path.dentry, NULL, opened);
2827 if (error) {
2828 if (error == -EOPENSTALE)
2829 goto stale_open;
2830 goto out;
2831 }
2832 opened:
2833 error = open_check_o_direct(file);
2834 if (error)
2835 goto exit_fput;
2836 error = ima_file_check(file, op->acc_mode);
2837 if (error)
2838 goto exit_fput;
2839
2840 if (will_truncate) {
2841 error = handle_truncate(file);
2842 if (error)
2843 goto exit_fput;
2844 }
2845 out:
2846 if (got_write)
2847 mnt_drop_write(nd->path.mnt);
2848 path_put(&save_parent);
2849 terminate_walk(nd);
2850 return error;
2851
2852 exit_dput:
2853 path_put_conditional(path, nd);
2854 goto out;
2855 exit_fput:
2856 fput(file);
2857 goto out;
2858
2859 stale_open:
2860 /* If no saved parent or already retried then can't retry */
2861 if (!save_parent.dentry || retried)
2862 goto out;
2863
2864 BUG_ON(save_parent.dentry != dir);
2865 path_put(&nd->path);
2866 nd->path = save_parent;
2867 nd->inode = dir->d_inode;
2868 save_parent.mnt = NULL;
2869 save_parent.dentry = NULL;
2870 if (got_write) {
2871 mnt_drop_write(nd->path.mnt);
2872 got_write = false;
2873 }
2874 retried = true;
2875 goto retry_lookup;
2876 }
2877
2878 static struct file *path_openat(int dfd, const char *pathname,
2879 struct nameidata *nd, const struct open_flags *op, int flags)
2880 {
2881 struct file *base = NULL;
2882 struct file *file;
2883 struct path path;
2884 int opened = 0;
2885 int error;
2886
2887 file = get_empty_filp();
2888 if (!file)
2889 return ERR_PTR(-ENFILE);
2890
2891 file->f_flags = op->open_flag;
2892
2893 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2894 if (unlikely(error))
2895 goto out;
2896
2897 current->total_link_count = 0;
2898 error = link_path_walk(pathname, nd);
2899 if (unlikely(error))
2900 goto out;
2901
2902 error = do_last(nd, &path, file, op, &opened, pathname);
2903 while (unlikely(error > 0)) { /* trailing symlink */
2904 struct path link = path;
2905 void *cookie;
2906 if (!(nd->flags & LOOKUP_FOLLOW)) {
2907 path_put_conditional(&path, nd);
2908 path_put(&nd->path);
2909 error = -ELOOP;
2910 break;
2911 }
2912 error = may_follow_link(&link, nd);
2913 if (unlikely(error))
2914 break;
2915 nd->flags |= LOOKUP_PARENT;
2916 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2917 error = follow_link(&link, nd, &cookie);
2918 if (unlikely(error))
2919 break;
2920 error = do_last(nd, &path, file, op, &opened, pathname);
2921 put_link(nd, &link, cookie);
2922 }
2923 out:
2924 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2925 path_put(&nd->root);
2926 if (base)
2927 fput(base);
2928 if (!(opened & FILE_OPENED)) {
2929 BUG_ON(!error);
2930 put_filp(file);
2931 }
2932 if (unlikely(error)) {
2933 if (error == -EOPENSTALE) {
2934 if (flags & LOOKUP_RCU)
2935 error = -ECHILD;
2936 else
2937 error = -ESTALE;
2938 }
2939 file = ERR_PTR(error);
2940 }
2941 return file;
2942 }
2943
2944 struct file *do_filp_open(int dfd, const char *pathname,
2945 const struct open_flags *op, int flags)
2946 {
2947 struct nameidata nd;
2948 struct file *filp;
2949
2950 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2951 if (unlikely(filp == ERR_PTR(-ECHILD)))
2952 filp = path_openat(dfd, pathname, &nd, op, flags);
2953 if (unlikely(filp == ERR_PTR(-ESTALE)))
2954 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2955 return filp;
2956 }
2957
2958 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2959 const char *name, const struct open_flags *op, int flags)
2960 {
2961 struct nameidata nd;
2962 struct file *file;
2963
2964 nd.root.mnt = mnt;
2965 nd.root.dentry = dentry;
2966
2967 flags |= LOOKUP_ROOT;
2968
2969 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2970 return ERR_PTR(-ELOOP);
2971
2972 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2973 if (unlikely(file == ERR_PTR(-ECHILD)))
2974 file = path_openat(-1, name, &nd, op, flags);
2975 if (unlikely(file == ERR_PTR(-ESTALE)))
2976 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2977 return file;
2978 }
2979
2980 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2981 {
2982 struct dentry *dentry = ERR_PTR(-EEXIST);
2983 struct nameidata nd;
2984 int err2;
2985 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2986 if (error)
2987 return ERR_PTR(error);
2988
2989 /*
2990 * Yucky last component or no last component at all?
2991 * (foo/., foo/.., /////)
2992 */
2993 if (nd.last_type != LAST_NORM)
2994 goto out;
2995 nd.flags &= ~LOOKUP_PARENT;
2996 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2997
2998 /* don't fail immediately if it's r/o, at least try to report other errors */
2999 err2 = mnt_want_write(nd.path.mnt);
3000 /*
3001 * Do the final lookup.
3002 */
3003 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3004 dentry = lookup_hash(&nd);
3005 if (IS_ERR(dentry))
3006 goto unlock;
3007
3008 error = -EEXIST;
3009 if (dentry->d_inode)
3010 goto fail;
3011 /*
3012 * Special case - lookup gave negative, but... we had foo/bar/
3013 * From the vfs_mknod() POV we just have a negative dentry -
3014 * all is fine. Let's be bastards - you had / on the end, you've
3015 * been asking for (non-existent) directory. -ENOENT for you.
3016 */
3017 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3018 error = -ENOENT;
3019 goto fail;
3020 }
3021 if (unlikely(err2)) {
3022 error = err2;
3023 goto fail;
3024 }
3025 *path = nd.path;
3026 return dentry;
3027 fail:
3028 dput(dentry);
3029 dentry = ERR_PTR(error);
3030 unlock:
3031 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3032 if (!err2)
3033 mnt_drop_write(nd.path.mnt);
3034 out:
3035 path_put(&nd.path);
3036 return dentry;
3037 }
3038 EXPORT_SYMBOL(kern_path_create);
3039
3040 void done_path_create(struct path *path, struct dentry *dentry)
3041 {
3042 dput(dentry);
3043 mutex_unlock(&path->dentry->d_inode->i_mutex);
3044 mnt_drop_write(path->mnt);
3045 path_put(path);
3046 }
3047 EXPORT_SYMBOL(done_path_create);
3048
3049 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
3050 {
3051 char *tmp = getname(pathname);
3052 struct dentry *res;
3053 if (IS_ERR(tmp))
3054 return ERR_CAST(tmp);
3055 res = kern_path_create(dfd, tmp, path, is_dir);
3056 putname(tmp);
3057 return res;
3058 }
3059 EXPORT_SYMBOL(user_path_create);
3060
3061 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3062 {
3063 int error = may_create(dir, dentry);
3064
3065 if (error)
3066 return error;
3067
3068 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3069 return -EPERM;
3070
3071 if (!dir->i_op->mknod)
3072 return -EPERM;
3073
3074 error = devcgroup_inode_mknod(mode, dev);
3075 if (error)
3076 return error;
3077
3078 error = security_inode_mknod(dir, dentry, mode, dev);
3079 if (error)
3080 return error;
3081
3082 error = dir->i_op->mknod(dir, dentry, mode, dev);
3083 if (!error)
3084 fsnotify_create(dir, dentry);
3085 return error;
3086 }
3087
3088 static int may_mknod(umode_t mode)
3089 {
3090 switch (mode & S_IFMT) {
3091 case S_IFREG:
3092 case S_IFCHR:
3093 case S_IFBLK:
3094 case S_IFIFO:
3095 case S_IFSOCK:
3096 case 0: /* zero mode translates to S_IFREG */
3097 return 0;
3098 case S_IFDIR:
3099 return -EPERM;
3100 default:
3101 return -EINVAL;
3102 }
3103 }
3104
3105 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3106 unsigned, dev)
3107 {
3108 struct dentry *dentry;
3109 struct path path;
3110 int error;
3111
3112 error = may_mknod(mode);
3113 if (error)
3114 return error;
3115
3116 dentry = user_path_create(dfd, filename, &path, 0);
3117 if (IS_ERR(dentry))
3118 return PTR_ERR(dentry);
3119
3120 if (!IS_POSIXACL(path.dentry->d_inode))
3121 mode &= ~current_umask();
3122 error = security_path_mknod(&path, dentry, mode, dev);
3123 if (error)
3124 goto out;
3125 switch (mode & S_IFMT) {
3126 case 0: case S_IFREG:
3127 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3128 break;
3129 case S_IFCHR: case S_IFBLK:
3130 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3131 new_decode_dev(dev));
3132 break;
3133 case S_IFIFO: case S_IFSOCK:
3134 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3135 break;
3136 }
3137 out:
3138 done_path_create(&path, dentry);
3139 return error;
3140 }
3141
3142 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3143 {
3144 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3145 }
3146
3147 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3148 {
3149 int error = may_create(dir, dentry);
3150 unsigned max_links = dir->i_sb->s_max_links;
3151
3152 if (error)
3153 return error;
3154
3155 if (!dir->i_op->mkdir)
3156 return -EPERM;
3157
3158 mode &= (S_IRWXUGO|S_ISVTX);
3159 error = security_inode_mkdir(dir, dentry, mode);
3160 if (error)
3161 return error;
3162
3163 if (max_links && dir->i_nlink >= max_links)
3164 return -EMLINK;
3165
3166 error = dir->i_op->mkdir(dir, dentry, mode);
3167 if (!error)
3168 fsnotify_mkdir(dir, dentry);
3169 return error;
3170 }
3171
3172 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3173 {
3174 struct dentry *dentry;
3175 struct path path;
3176 int error;
3177
3178 dentry = user_path_create(dfd, pathname, &path, 1);
3179 if (IS_ERR(dentry))
3180 return PTR_ERR(dentry);
3181
3182 if (!IS_POSIXACL(path.dentry->d_inode))
3183 mode &= ~current_umask();
3184 error = security_path_mkdir(&path, dentry, mode);
3185 if (!error)
3186 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3187 done_path_create(&path, dentry);
3188 return error;
3189 }
3190
3191 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3192 {
3193 return sys_mkdirat(AT_FDCWD, pathname, mode);
3194 }
3195
3196 /*
3197 * The dentry_unhash() helper will try to drop the dentry early: we
3198 * should have a usage count of 1 if we're the only user of this
3199 * dentry, and if that is true (possibly after pruning the dcache),
3200 * then we drop the dentry now.
3201 *
3202 * A low-level filesystem can, if it choses, legally
3203 * do a
3204 *
3205 * if (!d_unhashed(dentry))
3206 * return -EBUSY;
3207 *
3208 * if it cannot handle the case of removing a directory
3209 * that is still in use by something else..
3210 */
3211 void dentry_unhash(struct dentry *dentry)
3212 {
3213 shrink_dcache_parent(dentry);
3214 spin_lock(&dentry->d_lock);
3215 if (dentry->d_count == 1)
3216 __d_drop(dentry);
3217 spin_unlock(&dentry->d_lock);
3218 }
3219
3220 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3221 {
3222 int error = may_delete(dir, dentry, 1);
3223
3224 if (error)
3225 return error;
3226
3227 if (!dir->i_op->rmdir)
3228 return -EPERM;
3229
3230 dget(dentry);
3231 mutex_lock(&dentry->d_inode->i_mutex);
3232
3233 error = -EBUSY;
3234 if (d_mountpoint(dentry))
3235 goto out;
3236
3237 error = security_inode_rmdir(dir, dentry);
3238 if (error)
3239 goto out;
3240
3241 shrink_dcache_parent(dentry);
3242 error = dir->i_op->rmdir(dir, dentry);
3243 if (error)
3244 goto out;
3245
3246 dentry->d_inode->i_flags |= S_DEAD;
3247 dont_mount(dentry);
3248
3249 out:
3250 mutex_unlock(&dentry->d_inode->i_mutex);
3251 dput(dentry);
3252 if (!error)
3253 d_delete(dentry);
3254 return error;
3255 }
3256
3257 static long do_rmdir(int dfd, const char __user *pathname)
3258 {
3259 int error = 0;
3260 char * name;
3261 struct dentry *dentry;
3262 struct nameidata nd;
3263
3264 error = user_path_parent(dfd, pathname, &nd, &name);
3265 if (error)
3266 return error;
3267
3268 switch(nd.last_type) {
3269 case LAST_DOTDOT:
3270 error = -ENOTEMPTY;
3271 goto exit1;
3272 case LAST_DOT:
3273 error = -EINVAL;
3274 goto exit1;
3275 case LAST_ROOT:
3276 error = -EBUSY;
3277 goto exit1;
3278 }
3279
3280 nd.flags &= ~LOOKUP_PARENT;
3281 error = mnt_want_write(nd.path.mnt);
3282 if (error)
3283 goto exit1;
3284
3285 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3286 dentry = lookup_hash(&nd);
3287 error = PTR_ERR(dentry);
3288 if (IS_ERR(dentry))
3289 goto exit2;
3290 if (!dentry->d_inode) {
3291 error = -ENOENT;
3292 goto exit3;
3293 }
3294 error = security_path_rmdir(&nd.path, dentry);
3295 if (error)
3296 goto exit3;
3297 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3298 exit3:
3299 dput(dentry);
3300 exit2:
3301 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3302 mnt_drop_write(nd.path.mnt);
3303 exit1:
3304 path_put(&nd.path);
3305 putname(name);
3306 return error;
3307 }
3308
3309 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3310 {
3311 return do_rmdir(AT_FDCWD, pathname);
3312 }
3313
3314 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3315 {
3316 int error = may_delete(dir, dentry, 0);
3317
3318 if (error)
3319 return error;
3320
3321 if (!dir->i_op->unlink)
3322 return -EPERM;
3323
3324 mutex_lock(&dentry->d_inode->i_mutex);
3325 if (d_mountpoint(dentry))
3326 error = -EBUSY;
3327 else {
3328 error = security_inode_unlink(dir, dentry);
3329 if (!error) {
3330 error = dir->i_op->unlink(dir, dentry);
3331 if (!error)
3332 dont_mount(dentry);
3333 }
3334 }
3335 mutex_unlock(&dentry->d_inode->i_mutex);
3336
3337 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3338 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3339 fsnotify_link_count(dentry->d_inode);
3340 d_delete(dentry);
3341 }
3342
3343 return error;
3344 }
3345
3346 /*
3347 * Make sure that the actual truncation of the file will occur outside its
3348 * directory's i_mutex. Truncate can take a long time if there is a lot of
3349 * writeout happening, and we don't want to prevent access to the directory
3350 * while waiting on the I/O.
3351 */
3352 static long do_unlinkat(int dfd, const char __user *pathname)
3353 {
3354 int error;
3355 char *name;
3356 struct dentry *dentry;
3357 struct nameidata nd;
3358 struct inode *inode = NULL;
3359
3360 error = user_path_parent(dfd, pathname, &nd, &name);
3361 if (error)
3362 return error;
3363
3364 error = -EISDIR;
3365 if (nd.last_type != LAST_NORM)
3366 goto exit1;
3367
3368 nd.flags &= ~LOOKUP_PARENT;
3369 error = mnt_want_write(nd.path.mnt);
3370 if (error)
3371 goto exit1;
3372
3373 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3374 dentry = lookup_hash(&nd);
3375 error = PTR_ERR(dentry);
3376 if (!IS_ERR(dentry)) {
3377 /* Why not before? Because we want correct error value */
3378 if (nd.last.name[nd.last.len])
3379 goto slashes;
3380 inode = dentry->d_inode;
3381 if (!inode)
3382 goto slashes;
3383 ihold(inode);
3384 error = security_path_unlink(&nd.path, dentry);
3385 if (error)
3386 goto exit2;
3387 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3388 exit2:
3389 dput(dentry);
3390 }
3391 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3392 if (inode)
3393 iput(inode); /* truncate the inode here */
3394 mnt_drop_write(nd.path.mnt);
3395 exit1:
3396 path_put(&nd.path);
3397 putname(name);
3398 return error;
3399
3400 slashes:
3401 error = !dentry->d_inode ? -ENOENT :
3402 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3403 goto exit2;
3404 }
3405
3406 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3407 {
3408 if ((flag & ~AT_REMOVEDIR) != 0)
3409 return -EINVAL;
3410
3411 if (flag & AT_REMOVEDIR)
3412 return do_rmdir(dfd, pathname);
3413
3414 return do_unlinkat(dfd, pathname);
3415 }
3416
3417 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3418 {
3419 return do_unlinkat(AT_FDCWD, pathname);
3420 }
3421
3422 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3423 {
3424 int error = may_create(dir, dentry);
3425
3426 if (error)
3427 return error;
3428
3429 if (!dir->i_op->symlink)
3430 return -EPERM;
3431
3432 error = security_inode_symlink(dir, dentry, oldname);
3433 if (error)
3434 return error;
3435
3436 error = dir->i_op->symlink(dir, dentry, oldname);
3437 if (!error)
3438 fsnotify_create(dir, dentry);
3439 return error;
3440 }
3441
3442 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3443 int, newdfd, const char __user *, newname)
3444 {
3445 int error;
3446 char *from;
3447 struct dentry *dentry;
3448 struct path path;
3449
3450 from = getname(oldname);
3451 if (IS_ERR(from))
3452 return PTR_ERR(from);
3453
3454 dentry = user_path_create(newdfd, newname, &path, 0);
3455 error = PTR_ERR(dentry);
3456 if (IS_ERR(dentry))
3457 goto out_putname;
3458
3459 error = security_path_symlink(&path, dentry, from);
3460 if (!error)
3461 error = vfs_symlink(path.dentry->d_inode, dentry, from);
3462 done_path_create(&path, dentry);
3463 out_putname:
3464 putname(from);
3465 return error;
3466 }
3467
3468 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3469 {
3470 return sys_symlinkat(oldname, AT_FDCWD, newname);
3471 }
3472
3473 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3474 {
3475 struct inode *inode = old_dentry->d_inode;
3476 unsigned max_links = dir->i_sb->s_max_links;
3477 int error;
3478
3479 if (!inode)
3480 return -ENOENT;
3481
3482 error = may_create(dir, new_dentry);
3483 if (error)
3484 return error;
3485
3486 if (dir->i_sb != inode->i_sb)
3487 return -EXDEV;
3488
3489 /*
3490 * A link to an append-only or immutable file cannot be created.
3491 */
3492 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3493 return -EPERM;
3494 if (!dir->i_op->link)
3495 return -EPERM;
3496 if (S_ISDIR(inode->i_mode))
3497 return -EPERM;
3498
3499 error = security_inode_link(old_dentry, dir, new_dentry);
3500 if (error)
3501 return error;
3502
3503 mutex_lock(&inode->i_mutex);
3504 /* Make sure we don't allow creating hardlink to an unlinked file */
3505 if (inode->i_nlink == 0)
3506 error = -ENOENT;
3507 else if (max_links && inode->i_nlink >= max_links)
3508 error = -EMLINK;
3509 else
3510 error = dir->i_op->link(old_dentry, dir, new_dentry);
3511 mutex_unlock(&inode->i_mutex);
3512 if (!error)
3513 fsnotify_link(dir, inode, new_dentry);
3514 return error;
3515 }
3516
3517 /*
3518 * Hardlinks are often used in delicate situations. We avoid
3519 * security-related surprises by not following symlinks on the
3520 * newname. --KAB
3521 *
3522 * We don't follow them on the oldname either to be compatible
3523 * with linux 2.0, and to avoid hard-linking to directories
3524 * and other special files. --ADM
3525 */
3526 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3527 int, newdfd, const char __user *, newname, int, flags)
3528 {
3529 struct dentry *new_dentry;
3530 struct path old_path, new_path;
3531 int how = 0;
3532 int error;
3533
3534 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3535 return -EINVAL;
3536 /*
3537 * To use null names we require CAP_DAC_READ_SEARCH
3538 * This ensures that not everyone will be able to create
3539 * handlink using the passed filedescriptor.
3540 */
3541 if (flags & AT_EMPTY_PATH) {
3542 if (!capable(CAP_DAC_READ_SEARCH))
3543 return -ENOENT;
3544 how = LOOKUP_EMPTY;
3545 }
3546
3547 if (flags & AT_SYMLINK_FOLLOW)
3548 how |= LOOKUP_FOLLOW;
3549
3550 error = user_path_at(olddfd, oldname, how, &old_path);
3551 if (error)
3552 return error;
3553
3554 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3555 error = PTR_ERR(new_dentry);
3556 if (IS_ERR(new_dentry))
3557 goto out;
3558
3559 error = -EXDEV;
3560 if (old_path.mnt != new_path.mnt)
3561 goto out_dput;
3562 error = may_linkat(&old_path);
3563 if (unlikely(error))
3564 goto out_dput;
3565 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3566 if (error)
3567 goto out_dput;
3568 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3569 out_dput:
3570 done_path_create(&new_path, new_dentry);
3571 out:
3572 path_put(&old_path);
3573
3574 return error;
3575 }
3576
3577 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3578 {
3579 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3580 }
3581
3582 /*
3583 * The worst of all namespace operations - renaming directory. "Perverted"
3584 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3585 * Problems:
3586 * a) we can get into loop creation. Check is done in is_subdir().
3587 * b) race potential - two innocent renames can create a loop together.
3588 * That's where 4.4 screws up. Current fix: serialization on
3589 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3590 * story.
3591 * c) we have to lock _three_ objects - parents and victim (if it exists).
3592 * And that - after we got ->i_mutex on parents (until then we don't know
3593 * whether the target exists). Solution: try to be smart with locking
3594 * order for inodes. We rely on the fact that tree topology may change
3595 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3596 * move will be locked. Thus we can rank directories by the tree
3597 * (ancestors first) and rank all non-directories after them.
3598 * That works since everybody except rename does "lock parent, lookup,
3599 * lock child" and rename is under ->s_vfs_rename_mutex.
3600 * HOWEVER, it relies on the assumption that any object with ->lookup()
3601 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3602 * we'd better make sure that there's no link(2) for them.
3603 * d) conversion from fhandle to dentry may come in the wrong moment - when
3604 * we are removing the target. Solution: we will have to grab ->i_mutex
3605 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3606 * ->i_mutex on parents, which works but leads to some truly excessive
3607 * locking].
3608 */
3609 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3610 struct inode *new_dir, struct dentry *new_dentry)
3611 {
3612 int error = 0;
3613 struct inode *target = new_dentry->d_inode;
3614 unsigned max_links = new_dir->i_sb->s_max_links;
3615
3616 /*
3617 * If we are going to change the parent - check write permissions,
3618 * we'll need to flip '..'.
3619 */
3620 if (new_dir != old_dir) {
3621 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3622 if (error)
3623 return error;
3624 }
3625
3626 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3627 if (error)
3628 return error;
3629
3630 dget(new_dentry);
3631 if (target)
3632 mutex_lock(&target->i_mutex);
3633
3634 error = -EBUSY;
3635 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3636 goto out;
3637
3638 error = -EMLINK;
3639 if (max_links && !target && new_dir != old_dir &&
3640 new_dir->i_nlink >= max_links)
3641 goto out;
3642
3643 if (target)
3644 shrink_dcache_parent(new_dentry);
3645 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3646 if (error)
3647 goto out;
3648
3649 if (target) {
3650 target->i_flags |= S_DEAD;
3651 dont_mount(new_dentry);
3652 }
3653 out:
3654 if (target)
3655 mutex_unlock(&target->i_mutex);
3656 dput(new_dentry);
3657 if (!error)
3658 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3659 d_move(old_dentry,new_dentry);
3660 return error;
3661 }
3662
3663 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3664 struct inode *new_dir, struct dentry *new_dentry)
3665 {
3666 struct inode *target = new_dentry->d_inode;
3667 int error;
3668
3669 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3670 if (error)
3671 return error;
3672
3673 dget(new_dentry);
3674 if (target)
3675 mutex_lock(&target->i_mutex);
3676
3677 error = -EBUSY;
3678 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3679 goto out;
3680
3681 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3682 if (error)
3683 goto out;
3684
3685 if (target)
3686 dont_mount(new_dentry);
3687 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3688 d_move(old_dentry, new_dentry);
3689 out:
3690 if (target)
3691 mutex_unlock(&target->i_mutex);
3692 dput(new_dentry);
3693 return error;
3694 }
3695
3696 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3697 struct inode *new_dir, struct dentry *new_dentry)
3698 {
3699 int error;
3700 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3701 const unsigned char *old_name;
3702
3703 if (old_dentry->d_inode == new_dentry->d_inode)
3704 return 0;
3705
3706 error = may_delete(old_dir, old_dentry, is_dir);
3707 if (error)
3708 return error;
3709
3710 if (!new_dentry->d_inode)
3711 error = may_create(new_dir, new_dentry);
3712 else
3713 error = may_delete(new_dir, new_dentry, is_dir);
3714 if (error)
3715 return error;
3716
3717 if (!old_dir->i_op->rename)
3718 return -EPERM;
3719
3720 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3721
3722 if (is_dir)
3723 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3724 else
3725 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3726 if (!error)
3727 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3728 new_dentry->d_inode, old_dentry);
3729 fsnotify_oldname_free(old_name);
3730
3731 return error;
3732 }
3733
3734 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3735 int, newdfd, const char __user *, newname)
3736 {
3737 struct dentry *old_dir, *new_dir;
3738 struct dentry *old_dentry, *new_dentry;
3739 struct dentry *trap;
3740 struct nameidata oldnd, newnd;
3741 char *from;
3742 char *to;
3743 int error;
3744
3745 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3746 if (error)
3747 goto exit;
3748
3749 error = user_path_parent(newdfd, newname, &newnd, &to);
3750 if (error)
3751 goto exit1;
3752
3753 error = -EXDEV;
3754 if (oldnd.path.mnt != newnd.path.mnt)
3755 goto exit2;
3756
3757 old_dir = oldnd.path.dentry;
3758 error = -EBUSY;
3759 if (oldnd.last_type != LAST_NORM)
3760 goto exit2;
3761
3762 new_dir = newnd.path.dentry;
3763 if (newnd.last_type != LAST_NORM)
3764 goto exit2;
3765
3766 error = mnt_want_write(oldnd.path.mnt);
3767 if (error)
3768 goto exit2;
3769
3770 oldnd.flags &= ~LOOKUP_PARENT;
3771 newnd.flags &= ~LOOKUP_PARENT;
3772 newnd.flags |= LOOKUP_RENAME_TARGET;
3773
3774 trap = lock_rename(new_dir, old_dir);
3775
3776 old_dentry = lookup_hash(&oldnd);
3777 error = PTR_ERR(old_dentry);
3778 if (IS_ERR(old_dentry))
3779 goto exit3;
3780 /* source must exist */
3781 error = -ENOENT;
3782 if (!old_dentry->d_inode)
3783 goto exit4;
3784 /* unless the source is a directory trailing slashes give -ENOTDIR */
3785 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3786 error = -ENOTDIR;
3787 if (oldnd.last.name[oldnd.last.len])
3788 goto exit4;
3789 if (newnd.last.name[newnd.last.len])
3790 goto exit4;
3791 }
3792 /* source should not be ancestor of target */
3793 error = -EINVAL;
3794 if (old_dentry == trap)
3795 goto exit4;
3796 new_dentry = lookup_hash(&newnd);
3797 error = PTR_ERR(new_dentry);
3798 if (IS_ERR(new_dentry))
3799 goto exit4;
3800 /* target should not be an ancestor of source */
3801 error = -ENOTEMPTY;
3802 if (new_dentry == trap)
3803 goto exit5;
3804
3805 error = security_path_rename(&oldnd.path, old_dentry,
3806 &newnd.path, new_dentry);
3807 if (error)
3808 goto exit5;
3809 error = vfs_rename(old_dir->d_inode, old_dentry,
3810 new_dir->d_inode, new_dentry);
3811 exit5:
3812 dput(new_dentry);
3813 exit4:
3814 dput(old_dentry);
3815 exit3:
3816 unlock_rename(new_dir, old_dir);
3817 mnt_drop_write(oldnd.path.mnt);
3818 exit2:
3819 path_put(&newnd.path);
3820 putname(to);
3821 exit1:
3822 path_put(&oldnd.path);
3823 putname(from);
3824 exit:
3825 return error;
3826 }
3827
3828 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3829 {
3830 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3831 }
3832
3833 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3834 {
3835 int len;
3836
3837 len = PTR_ERR(link);
3838 if (IS_ERR(link))
3839 goto out;
3840
3841 len = strlen(link);
3842 if (len > (unsigned) buflen)
3843 len = buflen;
3844 if (copy_to_user(buffer, link, len))
3845 len = -EFAULT;
3846 out:
3847 return len;
3848 }
3849
3850 /*
3851 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3852 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3853 * using) it for any given inode is up to filesystem.
3854 */
3855 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3856 {
3857 struct nameidata nd;
3858 void *cookie;
3859 int res;
3860
3861 nd.depth = 0;
3862 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3863 if (IS_ERR(cookie))
3864 return PTR_ERR(cookie);
3865
3866 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3867 if (dentry->d_inode->i_op->put_link)
3868 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3869 return res;
3870 }
3871
3872 int vfs_follow_link(struct nameidata *nd, const char *link)
3873 {
3874 return __vfs_follow_link(nd, link);
3875 }
3876
3877 /* get the link contents into pagecache */
3878 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3879 {
3880 char *kaddr;
3881 struct page *page;
3882 struct address_space *mapping = dentry->d_inode->i_mapping;
3883 page = read_mapping_page(mapping, 0, NULL);
3884 if (IS_ERR(page))
3885 return (char*)page;
3886 *ppage = page;
3887 kaddr = kmap(page);
3888 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3889 return kaddr;
3890 }
3891
3892 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3893 {
3894 struct page *page = NULL;
3895 char *s = page_getlink(dentry, &page);
3896 int res = vfs_readlink(dentry,buffer,buflen,s);
3897 if (page) {
3898 kunmap(page);
3899 page_cache_release(page);
3900 }
3901 return res;
3902 }
3903
3904 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3905 {
3906 struct page *page = NULL;
3907 nd_set_link(nd, page_getlink(dentry, &page));
3908 return page;
3909 }
3910
3911 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3912 {
3913 struct page *page = cookie;
3914
3915 if (page) {
3916 kunmap(page);
3917 page_cache_release(page);
3918 }
3919 }
3920
3921 /*
3922 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3923 */
3924 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3925 {
3926 struct address_space *mapping = inode->i_mapping;
3927 struct page *page;
3928 void *fsdata;
3929 int err;
3930 char *kaddr;
3931 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3932 if (nofs)
3933 flags |= AOP_FLAG_NOFS;
3934
3935 retry:
3936 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3937 flags, &page, &fsdata);
3938 if (err)
3939 goto fail;
3940
3941 kaddr = kmap_atomic(page);
3942 memcpy(kaddr, symname, len-1);
3943 kunmap_atomic(kaddr);
3944
3945 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3946 page, fsdata);
3947 if (err < 0)
3948 goto fail;
3949 if (err < len-1)
3950 goto retry;
3951
3952 mark_inode_dirty(inode);
3953 return 0;
3954 fail:
3955 return err;
3956 }
3957
3958 int page_symlink(struct inode *inode, const char *symname, int len)
3959 {
3960 return __page_symlink(inode, symname, len,
3961 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3962 }
3963
3964 const struct inode_operations page_symlink_inode_operations = {
3965 .readlink = generic_readlink,
3966 .follow_link = page_follow_link_light,
3967 .put_link = page_put_link,
3968 };
3969
3970 EXPORT_SYMBOL(user_path_at);
3971 EXPORT_SYMBOL(follow_down_one);
3972 EXPORT_SYMBOL(follow_down);
3973 EXPORT_SYMBOL(follow_up);
3974 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3975 EXPORT_SYMBOL(getname);
3976 EXPORT_SYMBOL(lock_rename);
3977 EXPORT_SYMBOL(lookup_one_len);
3978 EXPORT_SYMBOL(page_follow_link_light);
3979 EXPORT_SYMBOL(page_put_link);
3980 EXPORT_SYMBOL(page_readlink);
3981 EXPORT_SYMBOL(__page_symlink);
3982 EXPORT_SYMBOL(page_symlink);
3983 EXPORT_SYMBOL(page_symlink_inode_operations);
3984 EXPORT_SYMBOL(kern_path);
3985 EXPORT_SYMBOL(vfs_path_lookup);
3986 EXPORT_SYMBOL(inode_permission);
3987 EXPORT_SYMBOL(unlock_rename);
3988 EXPORT_SYMBOL(vfs_create);
3989 EXPORT_SYMBOL(vfs_follow_link);
3990 EXPORT_SYMBOL(vfs_link);
3991 EXPORT_SYMBOL(vfs_mkdir);
3992 EXPORT_SYMBOL(vfs_mknod);
3993 EXPORT_SYMBOL(generic_permission);
3994 EXPORT_SYMBOL(vfs_readlink);
3995 EXPORT_SYMBOL(vfs_rename);
3996 EXPORT_SYMBOL(vfs_rmdir);
3997 EXPORT_SYMBOL(vfs_symlink);
3998 EXPORT_SYMBOL(vfs_unlink);
3999 EXPORT_SYMBOL(dentry_unhash);
4000 EXPORT_SYMBOL(generic_readlink);