]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/namei.c
Merge branch 'i2c/for-current' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[mirror_ubuntu-zesty-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 void final_putname(struct filename *name)
121 {
122 if (name->separate) {
123 __putname(name->name);
124 kfree(name);
125 } else {
126 __putname(name);
127 }
128 }
129
130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
131
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 struct filename *result, *err;
136 int len;
137 long max;
138 char *kname;
139
140 result = audit_reusename(filename);
141 if (result)
142 return result;
143
144 result = __getname();
145 if (unlikely(!result))
146 return ERR_PTR(-ENOMEM);
147
148 /*
149 * First, try to embed the struct filename inside the names_cache
150 * allocation
151 */
152 kname = (char *)result + sizeof(*result);
153 result->name = kname;
154 result->separate = false;
155 max = EMBEDDED_NAME_MAX;
156
157 recopy:
158 len = strncpy_from_user(kname, filename, max);
159 if (unlikely(len < 0)) {
160 err = ERR_PTR(len);
161 goto error;
162 }
163
164 /*
165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 * separate struct filename so we can dedicate the entire
167 * names_cache allocation for the pathname, and re-do the copy from
168 * userland.
169 */
170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 kname = (char *)result;
172
173 result = kzalloc(sizeof(*result), GFP_KERNEL);
174 if (!result) {
175 err = ERR_PTR(-ENOMEM);
176 result = (struct filename *)kname;
177 goto error;
178 }
179 result->name = kname;
180 result->separate = true;
181 max = PATH_MAX;
182 goto recopy;
183 }
184
185 /* The empty path is special. */
186 if (unlikely(!len)) {
187 if (empty)
188 *empty = 1;
189 err = ERR_PTR(-ENOENT);
190 if (!(flags & LOOKUP_EMPTY))
191 goto error;
192 }
193
194 err = ERR_PTR(-ENAMETOOLONG);
195 if (unlikely(len >= PATH_MAX))
196 goto error;
197
198 result->uptr = filename;
199 result->aname = NULL;
200 audit_getname(result);
201 return result;
202
203 error:
204 final_putname(result);
205 return err;
206 }
207
208 struct filename *
209 getname(const char __user * filename)
210 {
211 return getname_flags(filename, 0, NULL);
212 }
213
214 /*
215 * The "getname_kernel()" interface doesn't do pathnames longer
216 * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user.
217 */
218 struct filename *
219 getname_kernel(const char * filename)
220 {
221 struct filename *result;
222 char *kname;
223 int len;
224
225 len = strlen(filename);
226 if (len >= EMBEDDED_NAME_MAX)
227 return ERR_PTR(-ENAMETOOLONG);
228
229 result = __getname();
230 if (unlikely(!result))
231 return ERR_PTR(-ENOMEM);
232
233 kname = (char *)result + sizeof(*result);
234 result->name = kname;
235 result->uptr = NULL;
236 result->aname = NULL;
237 result->separate = false;
238
239 strlcpy(kname, filename, EMBEDDED_NAME_MAX);
240 return result;
241 }
242
243 #ifdef CONFIG_AUDITSYSCALL
244 void putname(struct filename *name)
245 {
246 if (unlikely(!audit_dummy_context()))
247 return audit_putname(name);
248 final_putname(name);
249 }
250 #endif
251
252 static int check_acl(struct inode *inode, int mask)
253 {
254 #ifdef CONFIG_FS_POSIX_ACL
255 struct posix_acl *acl;
256
257 if (mask & MAY_NOT_BLOCK) {
258 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
259 if (!acl)
260 return -EAGAIN;
261 /* no ->get_acl() calls in RCU mode... */
262 if (acl == ACL_NOT_CACHED)
263 return -ECHILD;
264 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
265 }
266
267 acl = get_acl(inode, ACL_TYPE_ACCESS);
268 if (IS_ERR(acl))
269 return PTR_ERR(acl);
270 if (acl) {
271 int error = posix_acl_permission(inode, acl, mask);
272 posix_acl_release(acl);
273 return error;
274 }
275 #endif
276
277 return -EAGAIN;
278 }
279
280 /*
281 * This does the basic permission checking
282 */
283 static int acl_permission_check(struct inode *inode, int mask)
284 {
285 unsigned int mode = inode->i_mode;
286
287 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
288 mode >>= 6;
289 else {
290 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
291 int error = check_acl(inode, mask);
292 if (error != -EAGAIN)
293 return error;
294 }
295
296 if (in_group_p(inode->i_gid))
297 mode >>= 3;
298 }
299
300 /*
301 * If the DACs are ok we don't need any capability check.
302 */
303 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
304 return 0;
305 return -EACCES;
306 }
307
308 /**
309 * generic_permission - check for access rights on a Posix-like filesystem
310 * @inode: inode to check access rights for
311 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
312 *
313 * Used to check for read/write/execute permissions on a file.
314 * We use "fsuid" for this, letting us set arbitrary permissions
315 * for filesystem access without changing the "normal" uids which
316 * are used for other things.
317 *
318 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
319 * request cannot be satisfied (eg. requires blocking or too much complexity).
320 * It would then be called again in ref-walk mode.
321 */
322 int generic_permission(struct inode *inode, int mask)
323 {
324 int ret;
325
326 /*
327 * Do the basic permission checks.
328 */
329 ret = acl_permission_check(inode, mask);
330 if (ret != -EACCES)
331 return ret;
332
333 if (S_ISDIR(inode->i_mode)) {
334 /* DACs are overridable for directories */
335 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
336 return 0;
337 if (!(mask & MAY_WRITE))
338 if (capable_wrt_inode_uidgid(inode,
339 CAP_DAC_READ_SEARCH))
340 return 0;
341 return -EACCES;
342 }
343 /*
344 * Read/write DACs are always overridable.
345 * Executable DACs are overridable when there is
346 * at least one exec bit set.
347 */
348 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
349 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
350 return 0;
351
352 /*
353 * Searching includes executable on directories, else just read.
354 */
355 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
356 if (mask == MAY_READ)
357 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
358 return 0;
359
360 return -EACCES;
361 }
362 EXPORT_SYMBOL(generic_permission);
363
364 /*
365 * We _really_ want to just do "generic_permission()" without
366 * even looking at the inode->i_op values. So we keep a cache
367 * flag in inode->i_opflags, that says "this has not special
368 * permission function, use the fast case".
369 */
370 static inline int do_inode_permission(struct inode *inode, int mask)
371 {
372 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
373 if (likely(inode->i_op->permission))
374 return inode->i_op->permission(inode, mask);
375
376 /* This gets set once for the inode lifetime */
377 spin_lock(&inode->i_lock);
378 inode->i_opflags |= IOP_FASTPERM;
379 spin_unlock(&inode->i_lock);
380 }
381 return generic_permission(inode, mask);
382 }
383
384 /**
385 * __inode_permission - Check for access rights to a given inode
386 * @inode: Inode to check permission on
387 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
388 *
389 * Check for read/write/execute permissions on an inode.
390 *
391 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
392 *
393 * This does not check for a read-only file system. You probably want
394 * inode_permission().
395 */
396 int __inode_permission(struct inode *inode, int mask)
397 {
398 int retval;
399
400 if (unlikely(mask & MAY_WRITE)) {
401 /*
402 * Nobody gets write access to an immutable file.
403 */
404 if (IS_IMMUTABLE(inode))
405 return -EACCES;
406 }
407
408 retval = do_inode_permission(inode, mask);
409 if (retval)
410 return retval;
411
412 retval = devcgroup_inode_permission(inode, mask);
413 if (retval)
414 return retval;
415
416 return security_inode_permission(inode, mask);
417 }
418
419 /**
420 * sb_permission - Check superblock-level permissions
421 * @sb: Superblock of inode to check permission on
422 * @inode: Inode to check permission on
423 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
424 *
425 * Separate out file-system wide checks from inode-specific permission checks.
426 */
427 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
428 {
429 if (unlikely(mask & MAY_WRITE)) {
430 umode_t mode = inode->i_mode;
431
432 /* Nobody gets write access to a read-only fs. */
433 if ((sb->s_flags & MS_RDONLY) &&
434 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
435 return -EROFS;
436 }
437 return 0;
438 }
439
440 /**
441 * inode_permission - Check for access rights to a given inode
442 * @inode: Inode to check permission on
443 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
444 *
445 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
446 * this, letting us set arbitrary permissions for filesystem access without
447 * changing the "normal" UIDs which are used for other things.
448 *
449 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
450 */
451 int inode_permission(struct inode *inode, int mask)
452 {
453 int retval;
454
455 retval = sb_permission(inode->i_sb, inode, mask);
456 if (retval)
457 return retval;
458 return __inode_permission(inode, mask);
459 }
460 EXPORT_SYMBOL(inode_permission);
461
462 /**
463 * path_get - get a reference to a path
464 * @path: path to get the reference to
465 *
466 * Given a path increment the reference count to the dentry and the vfsmount.
467 */
468 void path_get(const struct path *path)
469 {
470 mntget(path->mnt);
471 dget(path->dentry);
472 }
473 EXPORT_SYMBOL(path_get);
474
475 /**
476 * path_put - put a reference to a path
477 * @path: path to put the reference to
478 *
479 * Given a path decrement the reference count to the dentry and the vfsmount.
480 */
481 void path_put(const struct path *path)
482 {
483 dput(path->dentry);
484 mntput(path->mnt);
485 }
486 EXPORT_SYMBOL(path_put);
487
488 /*
489 * Path walking has 2 modes, rcu-walk and ref-walk (see
490 * Documentation/filesystems/path-lookup.txt). In situations when we can't
491 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
492 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
493 * mode. Refcounts are grabbed at the last known good point before rcu-walk
494 * got stuck, so ref-walk may continue from there. If this is not successful
495 * (eg. a seqcount has changed), then failure is returned and it's up to caller
496 * to restart the path walk from the beginning in ref-walk mode.
497 */
498
499 /**
500 * unlazy_walk - try to switch to ref-walk mode.
501 * @nd: nameidata pathwalk data
502 * @dentry: child of nd->path.dentry or NULL
503 * Returns: 0 on success, -ECHILD on failure
504 *
505 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
506 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
507 * @nd or NULL. Must be called from rcu-walk context.
508 */
509 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
510 {
511 struct fs_struct *fs = current->fs;
512 struct dentry *parent = nd->path.dentry;
513
514 BUG_ON(!(nd->flags & LOOKUP_RCU));
515
516 /*
517 * After legitimizing the bastards, terminate_walk()
518 * will do the right thing for non-RCU mode, and all our
519 * subsequent exit cases should rcu_read_unlock()
520 * before returning. Do vfsmount first; if dentry
521 * can't be legitimized, just set nd->path.dentry to NULL
522 * and rely on dput(NULL) being a no-op.
523 */
524 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
525 return -ECHILD;
526 nd->flags &= ~LOOKUP_RCU;
527
528 if (!lockref_get_not_dead(&parent->d_lockref)) {
529 nd->path.dentry = NULL;
530 goto out;
531 }
532
533 /*
534 * For a negative lookup, the lookup sequence point is the parents
535 * sequence point, and it only needs to revalidate the parent dentry.
536 *
537 * For a positive lookup, we need to move both the parent and the
538 * dentry from the RCU domain to be properly refcounted. And the
539 * sequence number in the dentry validates *both* dentry counters,
540 * since we checked the sequence number of the parent after we got
541 * the child sequence number. So we know the parent must still
542 * be valid if the child sequence number is still valid.
543 */
544 if (!dentry) {
545 if (read_seqcount_retry(&parent->d_seq, nd->seq))
546 goto out;
547 BUG_ON(nd->inode != parent->d_inode);
548 } else {
549 if (!lockref_get_not_dead(&dentry->d_lockref))
550 goto out;
551 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
552 goto drop_dentry;
553 }
554
555 /*
556 * Sequence counts matched. Now make sure that the root is
557 * still valid and get it if required.
558 */
559 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
560 spin_lock(&fs->lock);
561 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
562 goto unlock_and_drop_dentry;
563 path_get(&nd->root);
564 spin_unlock(&fs->lock);
565 }
566
567 rcu_read_unlock();
568 return 0;
569
570 unlock_and_drop_dentry:
571 spin_unlock(&fs->lock);
572 drop_dentry:
573 rcu_read_unlock();
574 dput(dentry);
575 goto drop_root_mnt;
576 out:
577 rcu_read_unlock();
578 drop_root_mnt:
579 if (!(nd->flags & LOOKUP_ROOT))
580 nd->root.mnt = NULL;
581 return -ECHILD;
582 }
583
584 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
585 {
586 return dentry->d_op->d_revalidate(dentry, flags);
587 }
588
589 /**
590 * complete_walk - successful completion of path walk
591 * @nd: pointer nameidata
592 *
593 * If we had been in RCU mode, drop out of it and legitimize nd->path.
594 * Revalidate the final result, unless we'd already done that during
595 * the path walk or the filesystem doesn't ask for it. Return 0 on
596 * success, -error on failure. In case of failure caller does not
597 * need to drop nd->path.
598 */
599 static int complete_walk(struct nameidata *nd)
600 {
601 struct dentry *dentry = nd->path.dentry;
602 int status;
603
604 if (nd->flags & LOOKUP_RCU) {
605 nd->flags &= ~LOOKUP_RCU;
606 if (!(nd->flags & LOOKUP_ROOT))
607 nd->root.mnt = NULL;
608
609 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
610 rcu_read_unlock();
611 return -ECHILD;
612 }
613 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
614 rcu_read_unlock();
615 mntput(nd->path.mnt);
616 return -ECHILD;
617 }
618 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
619 rcu_read_unlock();
620 dput(dentry);
621 mntput(nd->path.mnt);
622 return -ECHILD;
623 }
624 rcu_read_unlock();
625 }
626
627 if (likely(!(nd->flags & LOOKUP_JUMPED)))
628 return 0;
629
630 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
631 return 0;
632
633 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
634 if (status > 0)
635 return 0;
636
637 if (!status)
638 status = -ESTALE;
639
640 path_put(&nd->path);
641 return status;
642 }
643
644 static __always_inline void set_root(struct nameidata *nd)
645 {
646 if (!nd->root.mnt)
647 get_fs_root(current->fs, &nd->root);
648 }
649
650 static int link_path_walk(const char *, struct nameidata *);
651
652 static __always_inline void set_root_rcu(struct nameidata *nd)
653 {
654 if (!nd->root.mnt) {
655 struct fs_struct *fs = current->fs;
656 unsigned seq;
657
658 do {
659 seq = read_seqcount_begin(&fs->seq);
660 nd->root = fs->root;
661 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
662 } while (read_seqcount_retry(&fs->seq, seq));
663 }
664 }
665
666 static void path_put_conditional(struct path *path, struct nameidata *nd)
667 {
668 dput(path->dentry);
669 if (path->mnt != nd->path.mnt)
670 mntput(path->mnt);
671 }
672
673 static inline void path_to_nameidata(const struct path *path,
674 struct nameidata *nd)
675 {
676 if (!(nd->flags & LOOKUP_RCU)) {
677 dput(nd->path.dentry);
678 if (nd->path.mnt != path->mnt)
679 mntput(nd->path.mnt);
680 }
681 nd->path.mnt = path->mnt;
682 nd->path.dentry = path->dentry;
683 }
684
685 /*
686 * Helper to directly jump to a known parsed path from ->follow_link,
687 * caller must have taken a reference to path beforehand.
688 */
689 void nd_jump_link(struct nameidata *nd, struct path *path)
690 {
691 path_put(&nd->path);
692
693 nd->path = *path;
694 nd->inode = nd->path.dentry->d_inode;
695 nd->flags |= LOOKUP_JUMPED;
696 }
697
698 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
699 {
700 struct inode *inode = link->dentry->d_inode;
701 if (inode->i_op->put_link)
702 inode->i_op->put_link(link->dentry, nd, cookie);
703 path_put(link);
704 }
705
706 int sysctl_protected_symlinks __read_mostly = 0;
707 int sysctl_protected_hardlinks __read_mostly = 0;
708
709 /**
710 * may_follow_link - Check symlink following for unsafe situations
711 * @link: The path of the symlink
712 * @nd: nameidata pathwalk data
713 *
714 * In the case of the sysctl_protected_symlinks sysctl being enabled,
715 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
716 * in a sticky world-writable directory. This is to protect privileged
717 * processes from failing races against path names that may change out
718 * from under them by way of other users creating malicious symlinks.
719 * It will permit symlinks to be followed only when outside a sticky
720 * world-writable directory, or when the uid of the symlink and follower
721 * match, or when the directory owner matches the symlink's owner.
722 *
723 * Returns 0 if following the symlink is allowed, -ve on error.
724 */
725 static inline int may_follow_link(struct path *link, struct nameidata *nd)
726 {
727 const struct inode *inode;
728 const struct inode *parent;
729
730 if (!sysctl_protected_symlinks)
731 return 0;
732
733 /* Allowed if owner and follower match. */
734 inode = link->dentry->d_inode;
735 if (uid_eq(current_cred()->fsuid, inode->i_uid))
736 return 0;
737
738 /* Allowed if parent directory not sticky and world-writable. */
739 parent = nd->path.dentry->d_inode;
740 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
741 return 0;
742
743 /* Allowed if parent directory and link owner match. */
744 if (uid_eq(parent->i_uid, inode->i_uid))
745 return 0;
746
747 audit_log_link_denied("follow_link", link);
748 path_put_conditional(link, nd);
749 path_put(&nd->path);
750 return -EACCES;
751 }
752
753 /**
754 * safe_hardlink_source - Check for safe hardlink conditions
755 * @inode: the source inode to hardlink from
756 *
757 * Return false if at least one of the following conditions:
758 * - inode is not a regular file
759 * - inode is setuid
760 * - inode is setgid and group-exec
761 * - access failure for read and write
762 *
763 * Otherwise returns true.
764 */
765 static bool safe_hardlink_source(struct inode *inode)
766 {
767 umode_t mode = inode->i_mode;
768
769 /* Special files should not get pinned to the filesystem. */
770 if (!S_ISREG(mode))
771 return false;
772
773 /* Setuid files should not get pinned to the filesystem. */
774 if (mode & S_ISUID)
775 return false;
776
777 /* Executable setgid files should not get pinned to the filesystem. */
778 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
779 return false;
780
781 /* Hardlinking to unreadable or unwritable sources is dangerous. */
782 if (inode_permission(inode, MAY_READ | MAY_WRITE))
783 return false;
784
785 return true;
786 }
787
788 /**
789 * may_linkat - Check permissions for creating a hardlink
790 * @link: the source to hardlink from
791 *
792 * Block hardlink when all of:
793 * - sysctl_protected_hardlinks enabled
794 * - fsuid does not match inode
795 * - hardlink source is unsafe (see safe_hardlink_source() above)
796 * - not CAP_FOWNER
797 *
798 * Returns 0 if successful, -ve on error.
799 */
800 static int may_linkat(struct path *link)
801 {
802 const struct cred *cred;
803 struct inode *inode;
804
805 if (!sysctl_protected_hardlinks)
806 return 0;
807
808 cred = current_cred();
809 inode = link->dentry->d_inode;
810
811 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
812 * otherwise, it must be a safe source.
813 */
814 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
815 capable(CAP_FOWNER))
816 return 0;
817
818 audit_log_link_denied("linkat", link);
819 return -EPERM;
820 }
821
822 static __always_inline int
823 follow_link(struct path *link, struct nameidata *nd, void **p)
824 {
825 struct dentry *dentry = link->dentry;
826 int error;
827 char *s;
828
829 BUG_ON(nd->flags & LOOKUP_RCU);
830
831 if (link->mnt == nd->path.mnt)
832 mntget(link->mnt);
833
834 error = -ELOOP;
835 if (unlikely(current->total_link_count >= 40))
836 goto out_put_nd_path;
837
838 cond_resched();
839 current->total_link_count++;
840
841 touch_atime(link);
842 nd_set_link(nd, NULL);
843
844 error = security_inode_follow_link(link->dentry, nd);
845 if (error)
846 goto out_put_nd_path;
847
848 nd->last_type = LAST_BIND;
849 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
850 error = PTR_ERR(*p);
851 if (IS_ERR(*p))
852 goto out_put_nd_path;
853
854 error = 0;
855 s = nd_get_link(nd);
856 if (s) {
857 if (unlikely(IS_ERR(s))) {
858 path_put(&nd->path);
859 put_link(nd, link, *p);
860 return PTR_ERR(s);
861 }
862 if (*s == '/') {
863 set_root(nd);
864 path_put(&nd->path);
865 nd->path = nd->root;
866 path_get(&nd->root);
867 nd->flags |= LOOKUP_JUMPED;
868 }
869 nd->inode = nd->path.dentry->d_inode;
870 error = link_path_walk(s, nd);
871 if (unlikely(error))
872 put_link(nd, link, *p);
873 }
874
875 return error;
876
877 out_put_nd_path:
878 *p = NULL;
879 path_put(&nd->path);
880 path_put(link);
881 return error;
882 }
883
884 static int follow_up_rcu(struct path *path)
885 {
886 struct mount *mnt = real_mount(path->mnt);
887 struct mount *parent;
888 struct dentry *mountpoint;
889
890 parent = mnt->mnt_parent;
891 if (&parent->mnt == path->mnt)
892 return 0;
893 mountpoint = mnt->mnt_mountpoint;
894 path->dentry = mountpoint;
895 path->mnt = &parent->mnt;
896 return 1;
897 }
898
899 /*
900 * follow_up - Find the mountpoint of path's vfsmount
901 *
902 * Given a path, find the mountpoint of its source file system.
903 * Replace @path with the path of the mountpoint in the parent mount.
904 * Up is towards /.
905 *
906 * Return 1 if we went up a level and 0 if we were already at the
907 * root.
908 */
909 int follow_up(struct path *path)
910 {
911 struct mount *mnt = real_mount(path->mnt);
912 struct mount *parent;
913 struct dentry *mountpoint;
914
915 read_seqlock_excl(&mount_lock);
916 parent = mnt->mnt_parent;
917 if (parent == mnt) {
918 read_sequnlock_excl(&mount_lock);
919 return 0;
920 }
921 mntget(&parent->mnt);
922 mountpoint = dget(mnt->mnt_mountpoint);
923 read_sequnlock_excl(&mount_lock);
924 dput(path->dentry);
925 path->dentry = mountpoint;
926 mntput(path->mnt);
927 path->mnt = &parent->mnt;
928 return 1;
929 }
930 EXPORT_SYMBOL(follow_up);
931
932 /*
933 * Perform an automount
934 * - return -EISDIR to tell follow_managed() to stop and return the path we
935 * were called with.
936 */
937 static int follow_automount(struct path *path, unsigned flags,
938 bool *need_mntput)
939 {
940 struct vfsmount *mnt;
941 int err;
942
943 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
944 return -EREMOTE;
945
946 /* We don't want to mount if someone's just doing a stat -
947 * unless they're stat'ing a directory and appended a '/' to
948 * the name.
949 *
950 * We do, however, want to mount if someone wants to open or
951 * create a file of any type under the mountpoint, wants to
952 * traverse through the mountpoint or wants to open the
953 * mounted directory. Also, autofs may mark negative dentries
954 * as being automount points. These will need the attentions
955 * of the daemon to instantiate them before they can be used.
956 */
957 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
958 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
959 path->dentry->d_inode)
960 return -EISDIR;
961
962 current->total_link_count++;
963 if (current->total_link_count >= 40)
964 return -ELOOP;
965
966 mnt = path->dentry->d_op->d_automount(path);
967 if (IS_ERR(mnt)) {
968 /*
969 * The filesystem is allowed to return -EISDIR here to indicate
970 * it doesn't want to automount. For instance, autofs would do
971 * this so that its userspace daemon can mount on this dentry.
972 *
973 * However, we can only permit this if it's a terminal point in
974 * the path being looked up; if it wasn't then the remainder of
975 * the path is inaccessible and we should say so.
976 */
977 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
978 return -EREMOTE;
979 return PTR_ERR(mnt);
980 }
981
982 if (!mnt) /* mount collision */
983 return 0;
984
985 if (!*need_mntput) {
986 /* lock_mount() may release path->mnt on error */
987 mntget(path->mnt);
988 *need_mntput = true;
989 }
990 err = finish_automount(mnt, path);
991
992 switch (err) {
993 case -EBUSY:
994 /* Someone else made a mount here whilst we were busy */
995 return 0;
996 case 0:
997 path_put(path);
998 path->mnt = mnt;
999 path->dentry = dget(mnt->mnt_root);
1000 return 0;
1001 default:
1002 return err;
1003 }
1004
1005 }
1006
1007 /*
1008 * Handle a dentry that is managed in some way.
1009 * - Flagged for transit management (autofs)
1010 * - Flagged as mountpoint
1011 * - Flagged as automount point
1012 *
1013 * This may only be called in refwalk mode.
1014 *
1015 * Serialization is taken care of in namespace.c
1016 */
1017 static int follow_managed(struct path *path, unsigned flags)
1018 {
1019 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1020 unsigned managed;
1021 bool need_mntput = false;
1022 int ret = 0;
1023
1024 /* Given that we're not holding a lock here, we retain the value in a
1025 * local variable for each dentry as we look at it so that we don't see
1026 * the components of that value change under us */
1027 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1028 managed &= DCACHE_MANAGED_DENTRY,
1029 unlikely(managed != 0)) {
1030 /* Allow the filesystem to manage the transit without i_mutex
1031 * being held. */
1032 if (managed & DCACHE_MANAGE_TRANSIT) {
1033 BUG_ON(!path->dentry->d_op);
1034 BUG_ON(!path->dentry->d_op->d_manage);
1035 ret = path->dentry->d_op->d_manage(path->dentry, false);
1036 if (ret < 0)
1037 break;
1038 }
1039
1040 /* Transit to a mounted filesystem. */
1041 if (managed & DCACHE_MOUNTED) {
1042 struct vfsmount *mounted = lookup_mnt(path);
1043 if (mounted) {
1044 dput(path->dentry);
1045 if (need_mntput)
1046 mntput(path->mnt);
1047 path->mnt = mounted;
1048 path->dentry = dget(mounted->mnt_root);
1049 need_mntput = true;
1050 continue;
1051 }
1052
1053 /* Something is mounted on this dentry in another
1054 * namespace and/or whatever was mounted there in this
1055 * namespace got unmounted before lookup_mnt() could
1056 * get it */
1057 }
1058
1059 /* Handle an automount point */
1060 if (managed & DCACHE_NEED_AUTOMOUNT) {
1061 ret = follow_automount(path, flags, &need_mntput);
1062 if (ret < 0)
1063 break;
1064 continue;
1065 }
1066
1067 /* We didn't change the current path point */
1068 break;
1069 }
1070
1071 if (need_mntput && path->mnt == mnt)
1072 mntput(path->mnt);
1073 if (ret == -EISDIR)
1074 ret = 0;
1075 return ret < 0 ? ret : need_mntput;
1076 }
1077
1078 int follow_down_one(struct path *path)
1079 {
1080 struct vfsmount *mounted;
1081
1082 mounted = lookup_mnt(path);
1083 if (mounted) {
1084 dput(path->dentry);
1085 mntput(path->mnt);
1086 path->mnt = mounted;
1087 path->dentry = dget(mounted->mnt_root);
1088 return 1;
1089 }
1090 return 0;
1091 }
1092 EXPORT_SYMBOL(follow_down_one);
1093
1094 static inline int managed_dentry_rcu(struct dentry *dentry)
1095 {
1096 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1097 dentry->d_op->d_manage(dentry, true) : 0;
1098 }
1099
1100 /*
1101 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1102 * we meet a managed dentry that would need blocking.
1103 */
1104 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1105 struct inode **inode)
1106 {
1107 for (;;) {
1108 struct mount *mounted;
1109 /*
1110 * Don't forget we might have a non-mountpoint managed dentry
1111 * that wants to block transit.
1112 */
1113 switch (managed_dentry_rcu(path->dentry)) {
1114 case -ECHILD:
1115 default:
1116 return false;
1117 case -EISDIR:
1118 return true;
1119 case 0:
1120 break;
1121 }
1122
1123 if (!d_mountpoint(path->dentry))
1124 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1125
1126 mounted = __lookup_mnt(path->mnt, path->dentry);
1127 if (!mounted)
1128 break;
1129 path->mnt = &mounted->mnt;
1130 path->dentry = mounted->mnt.mnt_root;
1131 nd->flags |= LOOKUP_JUMPED;
1132 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1133 /*
1134 * Update the inode too. We don't need to re-check the
1135 * dentry sequence number here after this d_inode read,
1136 * because a mount-point is always pinned.
1137 */
1138 *inode = path->dentry->d_inode;
1139 }
1140 return read_seqretry(&mount_lock, nd->m_seq) &&
1141 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1142 }
1143
1144 static int follow_dotdot_rcu(struct nameidata *nd)
1145 {
1146 set_root_rcu(nd);
1147
1148 while (1) {
1149 if (nd->path.dentry == nd->root.dentry &&
1150 nd->path.mnt == nd->root.mnt) {
1151 break;
1152 }
1153 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1154 struct dentry *old = nd->path.dentry;
1155 struct dentry *parent = old->d_parent;
1156 unsigned seq;
1157
1158 seq = read_seqcount_begin(&parent->d_seq);
1159 if (read_seqcount_retry(&old->d_seq, nd->seq))
1160 goto failed;
1161 nd->path.dentry = parent;
1162 nd->seq = seq;
1163 break;
1164 }
1165 if (!follow_up_rcu(&nd->path))
1166 break;
1167 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1168 }
1169 while (d_mountpoint(nd->path.dentry)) {
1170 struct mount *mounted;
1171 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1172 if (!mounted)
1173 break;
1174 nd->path.mnt = &mounted->mnt;
1175 nd->path.dentry = mounted->mnt.mnt_root;
1176 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1177 if (!read_seqretry(&mount_lock, nd->m_seq))
1178 goto failed;
1179 }
1180 nd->inode = nd->path.dentry->d_inode;
1181 return 0;
1182
1183 failed:
1184 nd->flags &= ~LOOKUP_RCU;
1185 if (!(nd->flags & LOOKUP_ROOT))
1186 nd->root.mnt = NULL;
1187 rcu_read_unlock();
1188 return -ECHILD;
1189 }
1190
1191 /*
1192 * Follow down to the covering mount currently visible to userspace. At each
1193 * point, the filesystem owning that dentry may be queried as to whether the
1194 * caller is permitted to proceed or not.
1195 */
1196 int follow_down(struct path *path)
1197 {
1198 unsigned managed;
1199 int ret;
1200
1201 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1202 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1203 /* Allow the filesystem to manage the transit without i_mutex
1204 * being held.
1205 *
1206 * We indicate to the filesystem if someone is trying to mount
1207 * something here. This gives autofs the chance to deny anyone
1208 * other than its daemon the right to mount on its
1209 * superstructure.
1210 *
1211 * The filesystem may sleep at this point.
1212 */
1213 if (managed & DCACHE_MANAGE_TRANSIT) {
1214 BUG_ON(!path->dentry->d_op);
1215 BUG_ON(!path->dentry->d_op->d_manage);
1216 ret = path->dentry->d_op->d_manage(
1217 path->dentry, false);
1218 if (ret < 0)
1219 return ret == -EISDIR ? 0 : ret;
1220 }
1221
1222 /* Transit to a mounted filesystem. */
1223 if (managed & DCACHE_MOUNTED) {
1224 struct vfsmount *mounted = lookup_mnt(path);
1225 if (!mounted)
1226 break;
1227 dput(path->dentry);
1228 mntput(path->mnt);
1229 path->mnt = mounted;
1230 path->dentry = dget(mounted->mnt_root);
1231 continue;
1232 }
1233
1234 /* Don't handle automount points here */
1235 break;
1236 }
1237 return 0;
1238 }
1239 EXPORT_SYMBOL(follow_down);
1240
1241 /*
1242 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1243 */
1244 static void follow_mount(struct path *path)
1245 {
1246 while (d_mountpoint(path->dentry)) {
1247 struct vfsmount *mounted = lookup_mnt(path);
1248 if (!mounted)
1249 break;
1250 dput(path->dentry);
1251 mntput(path->mnt);
1252 path->mnt = mounted;
1253 path->dentry = dget(mounted->mnt_root);
1254 }
1255 }
1256
1257 static void follow_dotdot(struct nameidata *nd)
1258 {
1259 set_root(nd);
1260
1261 while(1) {
1262 struct dentry *old = nd->path.dentry;
1263
1264 if (nd->path.dentry == nd->root.dentry &&
1265 nd->path.mnt == nd->root.mnt) {
1266 break;
1267 }
1268 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1269 /* rare case of legitimate dget_parent()... */
1270 nd->path.dentry = dget_parent(nd->path.dentry);
1271 dput(old);
1272 break;
1273 }
1274 if (!follow_up(&nd->path))
1275 break;
1276 }
1277 follow_mount(&nd->path);
1278 nd->inode = nd->path.dentry->d_inode;
1279 }
1280
1281 /*
1282 * This looks up the name in dcache, possibly revalidates the old dentry and
1283 * allocates a new one if not found or not valid. In the need_lookup argument
1284 * returns whether i_op->lookup is necessary.
1285 *
1286 * dir->d_inode->i_mutex must be held
1287 */
1288 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1289 unsigned int flags, bool *need_lookup)
1290 {
1291 struct dentry *dentry;
1292 int error;
1293
1294 *need_lookup = false;
1295 dentry = d_lookup(dir, name);
1296 if (dentry) {
1297 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1298 error = d_revalidate(dentry, flags);
1299 if (unlikely(error <= 0)) {
1300 if (error < 0) {
1301 dput(dentry);
1302 return ERR_PTR(error);
1303 } else if (!d_invalidate(dentry)) {
1304 dput(dentry);
1305 dentry = NULL;
1306 }
1307 }
1308 }
1309 }
1310
1311 if (!dentry) {
1312 dentry = d_alloc(dir, name);
1313 if (unlikely(!dentry))
1314 return ERR_PTR(-ENOMEM);
1315
1316 *need_lookup = true;
1317 }
1318 return dentry;
1319 }
1320
1321 /*
1322 * Call i_op->lookup on the dentry. The dentry must be negative and
1323 * unhashed.
1324 *
1325 * dir->d_inode->i_mutex must be held
1326 */
1327 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1328 unsigned int flags)
1329 {
1330 struct dentry *old;
1331
1332 /* Don't create child dentry for a dead directory. */
1333 if (unlikely(IS_DEADDIR(dir))) {
1334 dput(dentry);
1335 return ERR_PTR(-ENOENT);
1336 }
1337
1338 old = dir->i_op->lookup(dir, dentry, flags);
1339 if (unlikely(old)) {
1340 dput(dentry);
1341 dentry = old;
1342 }
1343 return dentry;
1344 }
1345
1346 static struct dentry *__lookup_hash(struct qstr *name,
1347 struct dentry *base, unsigned int flags)
1348 {
1349 bool need_lookup;
1350 struct dentry *dentry;
1351
1352 dentry = lookup_dcache(name, base, flags, &need_lookup);
1353 if (!need_lookup)
1354 return dentry;
1355
1356 return lookup_real(base->d_inode, dentry, flags);
1357 }
1358
1359 /*
1360 * It's more convoluted than I'd like it to be, but... it's still fairly
1361 * small and for now I'd prefer to have fast path as straight as possible.
1362 * It _is_ time-critical.
1363 */
1364 static int lookup_fast(struct nameidata *nd,
1365 struct path *path, struct inode **inode)
1366 {
1367 struct vfsmount *mnt = nd->path.mnt;
1368 struct dentry *dentry, *parent = nd->path.dentry;
1369 int need_reval = 1;
1370 int status = 1;
1371 int err;
1372
1373 /*
1374 * Rename seqlock is not required here because in the off chance
1375 * of a false negative due to a concurrent rename, we're going to
1376 * do the non-racy lookup, below.
1377 */
1378 if (nd->flags & LOOKUP_RCU) {
1379 unsigned seq;
1380 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1381 if (!dentry)
1382 goto unlazy;
1383
1384 /*
1385 * This sequence count validates that the inode matches
1386 * the dentry name information from lookup.
1387 */
1388 *inode = dentry->d_inode;
1389 if (read_seqcount_retry(&dentry->d_seq, seq))
1390 return -ECHILD;
1391
1392 /*
1393 * This sequence count validates that the parent had no
1394 * changes while we did the lookup of the dentry above.
1395 *
1396 * The memory barrier in read_seqcount_begin of child is
1397 * enough, we can use __read_seqcount_retry here.
1398 */
1399 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1400 return -ECHILD;
1401 nd->seq = seq;
1402
1403 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1404 status = d_revalidate(dentry, nd->flags);
1405 if (unlikely(status <= 0)) {
1406 if (status != -ECHILD)
1407 need_reval = 0;
1408 goto unlazy;
1409 }
1410 }
1411 path->mnt = mnt;
1412 path->dentry = dentry;
1413 if (likely(__follow_mount_rcu(nd, path, inode)))
1414 return 0;
1415 unlazy:
1416 if (unlazy_walk(nd, dentry))
1417 return -ECHILD;
1418 } else {
1419 dentry = __d_lookup(parent, &nd->last);
1420 }
1421
1422 if (unlikely(!dentry))
1423 goto need_lookup;
1424
1425 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1426 status = d_revalidate(dentry, nd->flags);
1427 if (unlikely(status <= 0)) {
1428 if (status < 0) {
1429 dput(dentry);
1430 return status;
1431 }
1432 if (!d_invalidate(dentry)) {
1433 dput(dentry);
1434 goto need_lookup;
1435 }
1436 }
1437
1438 path->mnt = mnt;
1439 path->dentry = dentry;
1440 err = follow_managed(path, nd->flags);
1441 if (unlikely(err < 0)) {
1442 path_put_conditional(path, nd);
1443 return err;
1444 }
1445 if (err)
1446 nd->flags |= LOOKUP_JUMPED;
1447 *inode = path->dentry->d_inode;
1448 return 0;
1449
1450 need_lookup:
1451 return 1;
1452 }
1453
1454 /* Fast lookup failed, do it the slow way */
1455 static int lookup_slow(struct nameidata *nd, struct path *path)
1456 {
1457 struct dentry *dentry, *parent;
1458 int err;
1459
1460 parent = nd->path.dentry;
1461 BUG_ON(nd->inode != parent->d_inode);
1462
1463 mutex_lock(&parent->d_inode->i_mutex);
1464 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1465 mutex_unlock(&parent->d_inode->i_mutex);
1466 if (IS_ERR(dentry))
1467 return PTR_ERR(dentry);
1468 path->mnt = nd->path.mnt;
1469 path->dentry = dentry;
1470 err = follow_managed(path, nd->flags);
1471 if (unlikely(err < 0)) {
1472 path_put_conditional(path, nd);
1473 return err;
1474 }
1475 if (err)
1476 nd->flags |= LOOKUP_JUMPED;
1477 return 0;
1478 }
1479
1480 static inline int may_lookup(struct nameidata *nd)
1481 {
1482 if (nd->flags & LOOKUP_RCU) {
1483 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1484 if (err != -ECHILD)
1485 return err;
1486 if (unlazy_walk(nd, NULL))
1487 return -ECHILD;
1488 }
1489 return inode_permission(nd->inode, MAY_EXEC);
1490 }
1491
1492 static inline int handle_dots(struct nameidata *nd, int type)
1493 {
1494 if (type == LAST_DOTDOT) {
1495 if (nd->flags & LOOKUP_RCU) {
1496 if (follow_dotdot_rcu(nd))
1497 return -ECHILD;
1498 } else
1499 follow_dotdot(nd);
1500 }
1501 return 0;
1502 }
1503
1504 static void terminate_walk(struct nameidata *nd)
1505 {
1506 if (!(nd->flags & LOOKUP_RCU)) {
1507 path_put(&nd->path);
1508 } else {
1509 nd->flags &= ~LOOKUP_RCU;
1510 if (!(nd->flags & LOOKUP_ROOT))
1511 nd->root.mnt = NULL;
1512 rcu_read_unlock();
1513 }
1514 }
1515
1516 /*
1517 * Do we need to follow links? We _really_ want to be able
1518 * to do this check without having to look at inode->i_op,
1519 * so we keep a cache of "no, this doesn't need follow_link"
1520 * for the common case.
1521 */
1522 static inline int should_follow_link(struct dentry *dentry, int follow)
1523 {
1524 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1525 }
1526
1527 static inline int walk_component(struct nameidata *nd, struct path *path,
1528 int follow)
1529 {
1530 struct inode *inode;
1531 int err;
1532 /*
1533 * "." and ".." are special - ".." especially so because it has
1534 * to be able to know about the current root directory and
1535 * parent relationships.
1536 */
1537 if (unlikely(nd->last_type != LAST_NORM))
1538 return handle_dots(nd, nd->last_type);
1539 err = lookup_fast(nd, path, &inode);
1540 if (unlikely(err)) {
1541 if (err < 0)
1542 goto out_err;
1543
1544 err = lookup_slow(nd, path);
1545 if (err < 0)
1546 goto out_err;
1547
1548 inode = path->dentry->d_inode;
1549 }
1550 err = -ENOENT;
1551 if (!inode || d_is_negative(path->dentry))
1552 goto out_path_put;
1553
1554 if (should_follow_link(path->dentry, follow)) {
1555 if (nd->flags & LOOKUP_RCU) {
1556 if (unlikely(unlazy_walk(nd, path->dentry))) {
1557 err = -ECHILD;
1558 goto out_err;
1559 }
1560 }
1561 BUG_ON(inode != path->dentry->d_inode);
1562 return 1;
1563 }
1564 path_to_nameidata(path, nd);
1565 nd->inode = inode;
1566 return 0;
1567
1568 out_path_put:
1569 path_to_nameidata(path, nd);
1570 out_err:
1571 terminate_walk(nd);
1572 return err;
1573 }
1574
1575 /*
1576 * This limits recursive symlink follows to 8, while
1577 * limiting consecutive symlinks to 40.
1578 *
1579 * Without that kind of total limit, nasty chains of consecutive
1580 * symlinks can cause almost arbitrarily long lookups.
1581 */
1582 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1583 {
1584 int res;
1585
1586 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1587 path_put_conditional(path, nd);
1588 path_put(&nd->path);
1589 return -ELOOP;
1590 }
1591 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1592
1593 nd->depth++;
1594 current->link_count++;
1595
1596 do {
1597 struct path link = *path;
1598 void *cookie;
1599
1600 res = follow_link(&link, nd, &cookie);
1601 if (res)
1602 break;
1603 res = walk_component(nd, path, LOOKUP_FOLLOW);
1604 put_link(nd, &link, cookie);
1605 } while (res > 0);
1606
1607 current->link_count--;
1608 nd->depth--;
1609 return res;
1610 }
1611
1612 /*
1613 * We can do the critical dentry name comparison and hashing
1614 * operations one word at a time, but we are limited to:
1615 *
1616 * - Architectures with fast unaligned word accesses. We could
1617 * do a "get_unaligned()" if this helps and is sufficiently
1618 * fast.
1619 *
1620 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1621 * do not trap on the (extremely unlikely) case of a page
1622 * crossing operation.
1623 *
1624 * - Furthermore, we need an efficient 64-bit compile for the
1625 * 64-bit case in order to generate the "number of bytes in
1626 * the final mask". Again, that could be replaced with a
1627 * efficient population count instruction or similar.
1628 */
1629 #ifdef CONFIG_DCACHE_WORD_ACCESS
1630
1631 #include <asm/word-at-a-time.h>
1632
1633 #ifdef CONFIG_64BIT
1634
1635 static inline unsigned int fold_hash(unsigned long hash)
1636 {
1637 hash += hash >> (8*sizeof(int));
1638 return hash;
1639 }
1640
1641 #else /* 32-bit case */
1642
1643 #define fold_hash(x) (x)
1644
1645 #endif
1646
1647 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1648 {
1649 unsigned long a, mask;
1650 unsigned long hash = 0;
1651
1652 for (;;) {
1653 a = load_unaligned_zeropad(name);
1654 if (len < sizeof(unsigned long))
1655 break;
1656 hash += a;
1657 hash *= 9;
1658 name += sizeof(unsigned long);
1659 len -= sizeof(unsigned long);
1660 if (!len)
1661 goto done;
1662 }
1663 mask = bytemask_from_count(len);
1664 hash += mask & a;
1665 done:
1666 return fold_hash(hash);
1667 }
1668 EXPORT_SYMBOL(full_name_hash);
1669
1670 /*
1671 * Calculate the length and hash of the path component, and
1672 * return the length of the component;
1673 */
1674 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1675 {
1676 unsigned long a, b, adata, bdata, mask, hash, len;
1677 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1678
1679 hash = a = 0;
1680 len = -sizeof(unsigned long);
1681 do {
1682 hash = (hash + a) * 9;
1683 len += sizeof(unsigned long);
1684 a = load_unaligned_zeropad(name+len);
1685 b = a ^ REPEAT_BYTE('/');
1686 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1687
1688 adata = prep_zero_mask(a, adata, &constants);
1689 bdata = prep_zero_mask(b, bdata, &constants);
1690
1691 mask = create_zero_mask(adata | bdata);
1692
1693 hash += a & zero_bytemask(mask);
1694 *hashp = fold_hash(hash);
1695
1696 return len + find_zero(mask);
1697 }
1698
1699 #else
1700
1701 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1702 {
1703 unsigned long hash = init_name_hash();
1704 while (len--)
1705 hash = partial_name_hash(*name++, hash);
1706 return end_name_hash(hash);
1707 }
1708 EXPORT_SYMBOL(full_name_hash);
1709
1710 /*
1711 * We know there's a real path component here of at least
1712 * one character.
1713 */
1714 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1715 {
1716 unsigned long hash = init_name_hash();
1717 unsigned long len = 0, c;
1718
1719 c = (unsigned char)*name;
1720 do {
1721 len++;
1722 hash = partial_name_hash(c, hash);
1723 c = (unsigned char)name[len];
1724 } while (c && c != '/');
1725 *hashp = end_name_hash(hash);
1726 return len;
1727 }
1728
1729 #endif
1730
1731 /*
1732 * Name resolution.
1733 * This is the basic name resolution function, turning a pathname into
1734 * the final dentry. We expect 'base' to be positive and a directory.
1735 *
1736 * Returns 0 and nd will have valid dentry and mnt on success.
1737 * Returns error and drops reference to input namei data on failure.
1738 */
1739 static int link_path_walk(const char *name, struct nameidata *nd)
1740 {
1741 struct path next;
1742 int err;
1743
1744 while (*name=='/')
1745 name++;
1746 if (!*name)
1747 return 0;
1748
1749 /* At this point we know we have a real path component. */
1750 for(;;) {
1751 struct qstr this;
1752 long len;
1753 int type;
1754
1755 err = may_lookup(nd);
1756 if (err)
1757 break;
1758
1759 len = hash_name(name, &this.hash);
1760 this.name = name;
1761 this.len = len;
1762
1763 type = LAST_NORM;
1764 if (name[0] == '.') switch (len) {
1765 case 2:
1766 if (name[1] == '.') {
1767 type = LAST_DOTDOT;
1768 nd->flags |= LOOKUP_JUMPED;
1769 }
1770 break;
1771 case 1:
1772 type = LAST_DOT;
1773 }
1774 if (likely(type == LAST_NORM)) {
1775 struct dentry *parent = nd->path.dentry;
1776 nd->flags &= ~LOOKUP_JUMPED;
1777 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1778 err = parent->d_op->d_hash(parent, &this);
1779 if (err < 0)
1780 break;
1781 }
1782 }
1783
1784 nd->last = this;
1785 nd->last_type = type;
1786
1787 if (!name[len])
1788 return 0;
1789 /*
1790 * If it wasn't NUL, we know it was '/'. Skip that
1791 * slash, and continue until no more slashes.
1792 */
1793 do {
1794 len++;
1795 } while (unlikely(name[len] == '/'));
1796 if (!name[len])
1797 return 0;
1798
1799 name += len;
1800
1801 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1802 if (err < 0)
1803 return err;
1804
1805 if (err) {
1806 err = nested_symlink(&next, nd);
1807 if (err)
1808 return err;
1809 }
1810 if (!d_can_lookup(nd->path.dentry)) {
1811 err = -ENOTDIR;
1812 break;
1813 }
1814 }
1815 terminate_walk(nd);
1816 return err;
1817 }
1818
1819 static int path_init(int dfd, const char *name, unsigned int flags,
1820 struct nameidata *nd, struct file **fp)
1821 {
1822 int retval = 0;
1823
1824 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1825 nd->flags = flags | LOOKUP_JUMPED;
1826 nd->depth = 0;
1827 if (flags & LOOKUP_ROOT) {
1828 struct dentry *root = nd->root.dentry;
1829 struct inode *inode = root->d_inode;
1830 if (*name) {
1831 if (!d_can_lookup(root))
1832 return -ENOTDIR;
1833 retval = inode_permission(inode, MAY_EXEC);
1834 if (retval)
1835 return retval;
1836 }
1837 nd->path = nd->root;
1838 nd->inode = inode;
1839 if (flags & LOOKUP_RCU) {
1840 rcu_read_lock();
1841 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1842 nd->m_seq = read_seqbegin(&mount_lock);
1843 } else {
1844 path_get(&nd->path);
1845 }
1846 return 0;
1847 }
1848
1849 nd->root.mnt = NULL;
1850
1851 nd->m_seq = read_seqbegin(&mount_lock);
1852 if (*name=='/') {
1853 if (flags & LOOKUP_RCU) {
1854 rcu_read_lock();
1855 set_root_rcu(nd);
1856 } else {
1857 set_root(nd);
1858 path_get(&nd->root);
1859 }
1860 nd->path = nd->root;
1861 } else if (dfd == AT_FDCWD) {
1862 if (flags & LOOKUP_RCU) {
1863 struct fs_struct *fs = current->fs;
1864 unsigned seq;
1865
1866 rcu_read_lock();
1867
1868 do {
1869 seq = read_seqcount_begin(&fs->seq);
1870 nd->path = fs->pwd;
1871 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1872 } while (read_seqcount_retry(&fs->seq, seq));
1873 } else {
1874 get_fs_pwd(current->fs, &nd->path);
1875 }
1876 } else {
1877 /* Caller must check execute permissions on the starting path component */
1878 struct fd f = fdget_raw(dfd);
1879 struct dentry *dentry;
1880
1881 if (!f.file)
1882 return -EBADF;
1883
1884 dentry = f.file->f_path.dentry;
1885
1886 if (*name) {
1887 if (!d_can_lookup(dentry)) {
1888 fdput(f);
1889 return -ENOTDIR;
1890 }
1891 }
1892
1893 nd->path = f.file->f_path;
1894 if (flags & LOOKUP_RCU) {
1895 if (f.flags & FDPUT_FPUT)
1896 *fp = f.file;
1897 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1898 rcu_read_lock();
1899 } else {
1900 path_get(&nd->path);
1901 fdput(f);
1902 }
1903 }
1904
1905 nd->inode = nd->path.dentry->d_inode;
1906 return 0;
1907 }
1908
1909 static inline int lookup_last(struct nameidata *nd, struct path *path)
1910 {
1911 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1912 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1913
1914 nd->flags &= ~LOOKUP_PARENT;
1915 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1916 }
1917
1918 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1919 static int path_lookupat(int dfd, const char *name,
1920 unsigned int flags, struct nameidata *nd)
1921 {
1922 struct file *base = NULL;
1923 struct path path;
1924 int err;
1925
1926 /*
1927 * Path walking is largely split up into 2 different synchronisation
1928 * schemes, rcu-walk and ref-walk (explained in
1929 * Documentation/filesystems/path-lookup.txt). These share much of the
1930 * path walk code, but some things particularly setup, cleanup, and
1931 * following mounts are sufficiently divergent that functions are
1932 * duplicated. Typically there is a function foo(), and its RCU
1933 * analogue, foo_rcu().
1934 *
1935 * -ECHILD is the error number of choice (just to avoid clashes) that
1936 * is returned if some aspect of an rcu-walk fails. Such an error must
1937 * be handled by restarting a traditional ref-walk (which will always
1938 * be able to complete).
1939 */
1940 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1941
1942 if (unlikely(err))
1943 return err;
1944
1945 current->total_link_count = 0;
1946 err = link_path_walk(name, nd);
1947
1948 if (!err && !(flags & LOOKUP_PARENT)) {
1949 err = lookup_last(nd, &path);
1950 while (err > 0) {
1951 void *cookie;
1952 struct path link = path;
1953 err = may_follow_link(&link, nd);
1954 if (unlikely(err))
1955 break;
1956 nd->flags |= LOOKUP_PARENT;
1957 err = follow_link(&link, nd, &cookie);
1958 if (err)
1959 break;
1960 err = lookup_last(nd, &path);
1961 put_link(nd, &link, cookie);
1962 }
1963 }
1964
1965 if (!err)
1966 err = complete_walk(nd);
1967
1968 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1969 if (!d_can_lookup(nd->path.dentry)) {
1970 path_put(&nd->path);
1971 err = -ENOTDIR;
1972 }
1973 }
1974
1975 if (base)
1976 fput(base);
1977
1978 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1979 path_put(&nd->root);
1980 nd->root.mnt = NULL;
1981 }
1982 return err;
1983 }
1984
1985 static int filename_lookup(int dfd, struct filename *name,
1986 unsigned int flags, struct nameidata *nd)
1987 {
1988 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
1989 if (unlikely(retval == -ECHILD))
1990 retval = path_lookupat(dfd, name->name, flags, nd);
1991 if (unlikely(retval == -ESTALE))
1992 retval = path_lookupat(dfd, name->name,
1993 flags | LOOKUP_REVAL, nd);
1994
1995 if (likely(!retval))
1996 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
1997 return retval;
1998 }
1999
2000 static int do_path_lookup(int dfd, const char *name,
2001 unsigned int flags, struct nameidata *nd)
2002 {
2003 struct filename filename = { .name = name };
2004
2005 return filename_lookup(dfd, &filename, flags, nd);
2006 }
2007
2008 /* does lookup, returns the object with parent locked */
2009 struct dentry *kern_path_locked(const char *name, struct path *path)
2010 {
2011 struct nameidata nd;
2012 struct dentry *d;
2013 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2014 if (err)
2015 return ERR_PTR(err);
2016 if (nd.last_type != LAST_NORM) {
2017 path_put(&nd.path);
2018 return ERR_PTR(-EINVAL);
2019 }
2020 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2021 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2022 if (IS_ERR(d)) {
2023 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2024 path_put(&nd.path);
2025 return d;
2026 }
2027 *path = nd.path;
2028 return d;
2029 }
2030
2031 int kern_path(const char *name, unsigned int flags, struct path *path)
2032 {
2033 struct nameidata nd;
2034 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2035 if (!res)
2036 *path = nd.path;
2037 return res;
2038 }
2039 EXPORT_SYMBOL(kern_path);
2040
2041 /**
2042 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2043 * @dentry: pointer to dentry of the base directory
2044 * @mnt: pointer to vfs mount of the base directory
2045 * @name: pointer to file name
2046 * @flags: lookup flags
2047 * @path: pointer to struct path to fill
2048 */
2049 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2050 const char *name, unsigned int flags,
2051 struct path *path)
2052 {
2053 struct nameidata nd;
2054 int err;
2055 nd.root.dentry = dentry;
2056 nd.root.mnt = mnt;
2057 BUG_ON(flags & LOOKUP_PARENT);
2058 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2059 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2060 if (!err)
2061 *path = nd.path;
2062 return err;
2063 }
2064 EXPORT_SYMBOL(vfs_path_lookup);
2065
2066 /*
2067 * Restricted form of lookup. Doesn't follow links, single-component only,
2068 * needs parent already locked. Doesn't follow mounts.
2069 * SMP-safe.
2070 */
2071 static struct dentry *lookup_hash(struct nameidata *nd)
2072 {
2073 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2074 }
2075
2076 /**
2077 * lookup_one_len - filesystem helper to lookup single pathname component
2078 * @name: pathname component to lookup
2079 * @base: base directory to lookup from
2080 * @len: maximum length @len should be interpreted to
2081 *
2082 * Note that this routine is purely a helper for filesystem usage and should
2083 * not be called by generic code. Also note that by using this function the
2084 * nameidata argument is passed to the filesystem methods and a filesystem
2085 * using this helper needs to be prepared for that.
2086 */
2087 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2088 {
2089 struct qstr this;
2090 unsigned int c;
2091 int err;
2092
2093 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2094
2095 this.name = name;
2096 this.len = len;
2097 this.hash = full_name_hash(name, len);
2098 if (!len)
2099 return ERR_PTR(-EACCES);
2100
2101 if (unlikely(name[0] == '.')) {
2102 if (len < 2 || (len == 2 && name[1] == '.'))
2103 return ERR_PTR(-EACCES);
2104 }
2105
2106 while (len--) {
2107 c = *(const unsigned char *)name++;
2108 if (c == '/' || c == '\0')
2109 return ERR_PTR(-EACCES);
2110 }
2111 /*
2112 * See if the low-level filesystem might want
2113 * to use its own hash..
2114 */
2115 if (base->d_flags & DCACHE_OP_HASH) {
2116 int err = base->d_op->d_hash(base, &this);
2117 if (err < 0)
2118 return ERR_PTR(err);
2119 }
2120
2121 err = inode_permission(base->d_inode, MAY_EXEC);
2122 if (err)
2123 return ERR_PTR(err);
2124
2125 return __lookup_hash(&this, base, 0);
2126 }
2127 EXPORT_SYMBOL(lookup_one_len);
2128
2129 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2130 struct path *path, int *empty)
2131 {
2132 struct nameidata nd;
2133 struct filename *tmp = getname_flags(name, flags, empty);
2134 int err = PTR_ERR(tmp);
2135 if (!IS_ERR(tmp)) {
2136
2137 BUG_ON(flags & LOOKUP_PARENT);
2138
2139 err = filename_lookup(dfd, tmp, flags, &nd);
2140 putname(tmp);
2141 if (!err)
2142 *path = nd.path;
2143 }
2144 return err;
2145 }
2146
2147 int user_path_at(int dfd, const char __user *name, unsigned flags,
2148 struct path *path)
2149 {
2150 return user_path_at_empty(dfd, name, flags, path, NULL);
2151 }
2152 EXPORT_SYMBOL(user_path_at);
2153
2154 /*
2155 * NB: most callers don't do anything directly with the reference to the
2156 * to struct filename, but the nd->last pointer points into the name string
2157 * allocated by getname. So we must hold the reference to it until all
2158 * path-walking is complete.
2159 */
2160 static struct filename *
2161 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2162 unsigned int flags)
2163 {
2164 struct filename *s = getname(path);
2165 int error;
2166
2167 /* only LOOKUP_REVAL is allowed in extra flags */
2168 flags &= LOOKUP_REVAL;
2169
2170 if (IS_ERR(s))
2171 return s;
2172
2173 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2174 if (error) {
2175 putname(s);
2176 return ERR_PTR(error);
2177 }
2178
2179 return s;
2180 }
2181
2182 /**
2183 * mountpoint_last - look up last component for umount
2184 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2185 * @path: pointer to container for result
2186 *
2187 * This is a special lookup_last function just for umount. In this case, we
2188 * need to resolve the path without doing any revalidation.
2189 *
2190 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2191 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2192 * in almost all cases, this lookup will be served out of the dcache. The only
2193 * cases where it won't are if nd->last refers to a symlink or the path is
2194 * bogus and it doesn't exist.
2195 *
2196 * Returns:
2197 * -error: if there was an error during lookup. This includes -ENOENT if the
2198 * lookup found a negative dentry. The nd->path reference will also be
2199 * put in this case.
2200 *
2201 * 0: if we successfully resolved nd->path and found it to not to be a
2202 * symlink that needs to be followed. "path" will also be populated.
2203 * The nd->path reference will also be put.
2204 *
2205 * 1: if we successfully resolved nd->last and found it to be a symlink
2206 * that needs to be followed. "path" will be populated with the path
2207 * to the link, and nd->path will *not* be put.
2208 */
2209 static int
2210 mountpoint_last(struct nameidata *nd, struct path *path)
2211 {
2212 int error = 0;
2213 struct dentry *dentry;
2214 struct dentry *dir = nd->path.dentry;
2215
2216 /* If we're in rcuwalk, drop out of it to handle last component */
2217 if (nd->flags & LOOKUP_RCU) {
2218 if (unlazy_walk(nd, NULL)) {
2219 error = -ECHILD;
2220 goto out;
2221 }
2222 }
2223
2224 nd->flags &= ~LOOKUP_PARENT;
2225
2226 if (unlikely(nd->last_type != LAST_NORM)) {
2227 error = handle_dots(nd, nd->last_type);
2228 if (error)
2229 goto out;
2230 dentry = dget(nd->path.dentry);
2231 goto done;
2232 }
2233
2234 mutex_lock(&dir->d_inode->i_mutex);
2235 dentry = d_lookup(dir, &nd->last);
2236 if (!dentry) {
2237 /*
2238 * No cached dentry. Mounted dentries are pinned in the cache,
2239 * so that means that this dentry is probably a symlink or the
2240 * path doesn't actually point to a mounted dentry.
2241 */
2242 dentry = d_alloc(dir, &nd->last);
2243 if (!dentry) {
2244 error = -ENOMEM;
2245 mutex_unlock(&dir->d_inode->i_mutex);
2246 goto out;
2247 }
2248 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2249 error = PTR_ERR(dentry);
2250 if (IS_ERR(dentry)) {
2251 mutex_unlock(&dir->d_inode->i_mutex);
2252 goto out;
2253 }
2254 }
2255 mutex_unlock(&dir->d_inode->i_mutex);
2256
2257 done:
2258 if (!dentry->d_inode || d_is_negative(dentry)) {
2259 error = -ENOENT;
2260 dput(dentry);
2261 goto out;
2262 }
2263 path->dentry = dentry;
2264 path->mnt = nd->path.mnt;
2265 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2266 return 1;
2267 mntget(path->mnt);
2268 follow_mount(path);
2269 error = 0;
2270 out:
2271 terminate_walk(nd);
2272 return error;
2273 }
2274
2275 /**
2276 * path_mountpoint - look up a path to be umounted
2277 * @dfd: directory file descriptor to start walk from
2278 * @name: full pathname to walk
2279 * @path: pointer to container for result
2280 * @flags: lookup flags
2281 *
2282 * Look up the given name, but don't attempt to revalidate the last component.
2283 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2284 */
2285 static int
2286 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2287 {
2288 struct file *base = NULL;
2289 struct nameidata nd;
2290 int err;
2291
2292 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2293 if (unlikely(err))
2294 return err;
2295
2296 current->total_link_count = 0;
2297 err = link_path_walk(name, &nd);
2298 if (err)
2299 goto out;
2300
2301 err = mountpoint_last(&nd, path);
2302 while (err > 0) {
2303 void *cookie;
2304 struct path link = *path;
2305 err = may_follow_link(&link, &nd);
2306 if (unlikely(err))
2307 break;
2308 nd.flags |= LOOKUP_PARENT;
2309 err = follow_link(&link, &nd, &cookie);
2310 if (err)
2311 break;
2312 err = mountpoint_last(&nd, path);
2313 put_link(&nd, &link, cookie);
2314 }
2315 out:
2316 if (base)
2317 fput(base);
2318
2319 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2320 path_put(&nd.root);
2321
2322 return err;
2323 }
2324
2325 static int
2326 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2327 unsigned int flags)
2328 {
2329 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2330 if (unlikely(error == -ECHILD))
2331 error = path_mountpoint(dfd, s->name, path, flags);
2332 if (unlikely(error == -ESTALE))
2333 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2334 if (likely(!error))
2335 audit_inode(s, path->dentry, 0);
2336 return error;
2337 }
2338
2339 /**
2340 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2341 * @dfd: directory file descriptor
2342 * @name: pathname from userland
2343 * @flags: lookup flags
2344 * @path: pointer to container to hold result
2345 *
2346 * A umount is a special case for path walking. We're not actually interested
2347 * in the inode in this situation, and ESTALE errors can be a problem. We
2348 * simply want track down the dentry and vfsmount attached at the mountpoint
2349 * and avoid revalidating the last component.
2350 *
2351 * Returns 0 and populates "path" on success.
2352 */
2353 int
2354 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2355 struct path *path)
2356 {
2357 struct filename *s = getname(name);
2358 int error;
2359 if (IS_ERR(s))
2360 return PTR_ERR(s);
2361 error = filename_mountpoint(dfd, s, path, flags);
2362 putname(s);
2363 return error;
2364 }
2365
2366 int
2367 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2368 unsigned int flags)
2369 {
2370 struct filename s = {.name = name};
2371 return filename_mountpoint(dfd, &s, path, flags);
2372 }
2373 EXPORT_SYMBOL(kern_path_mountpoint);
2374
2375 /*
2376 * It's inline, so penalty for filesystems that don't use sticky bit is
2377 * minimal.
2378 */
2379 static inline int check_sticky(struct inode *dir, struct inode *inode)
2380 {
2381 kuid_t fsuid = current_fsuid();
2382
2383 if (!(dir->i_mode & S_ISVTX))
2384 return 0;
2385 if (uid_eq(inode->i_uid, fsuid))
2386 return 0;
2387 if (uid_eq(dir->i_uid, fsuid))
2388 return 0;
2389 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2390 }
2391
2392 /*
2393 * Check whether we can remove a link victim from directory dir, check
2394 * whether the type of victim is right.
2395 * 1. We can't do it if dir is read-only (done in permission())
2396 * 2. We should have write and exec permissions on dir
2397 * 3. We can't remove anything from append-only dir
2398 * 4. We can't do anything with immutable dir (done in permission())
2399 * 5. If the sticky bit on dir is set we should either
2400 * a. be owner of dir, or
2401 * b. be owner of victim, or
2402 * c. have CAP_FOWNER capability
2403 * 6. If the victim is append-only or immutable we can't do antyhing with
2404 * links pointing to it.
2405 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2406 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2407 * 9. We can't remove a root or mountpoint.
2408 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2409 * nfs_async_unlink().
2410 */
2411 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2412 {
2413 struct inode *inode = victim->d_inode;
2414 int error;
2415
2416 if (d_is_negative(victim))
2417 return -ENOENT;
2418 BUG_ON(!inode);
2419
2420 BUG_ON(victim->d_parent->d_inode != dir);
2421 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2422
2423 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2424 if (error)
2425 return error;
2426 if (IS_APPEND(dir))
2427 return -EPERM;
2428
2429 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2430 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2431 return -EPERM;
2432 if (isdir) {
2433 if (!d_is_dir(victim))
2434 return -ENOTDIR;
2435 if (IS_ROOT(victim))
2436 return -EBUSY;
2437 } else if (d_is_dir(victim))
2438 return -EISDIR;
2439 if (IS_DEADDIR(dir))
2440 return -ENOENT;
2441 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2442 return -EBUSY;
2443 return 0;
2444 }
2445
2446 /* Check whether we can create an object with dentry child in directory
2447 * dir.
2448 * 1. We can't do it if child already exists (open has special treatment for
2449 * this case, but since we are inlined it's OK)
2450 * 2. We can't do it if dir is read-only (done in permission())
2451 * 3. We should have write and exec permissions on dir
2452 * 4. We can't do it if dir is immutable (done in permission())
2453 */
2454 static inline int may_create(struct inode *dir, struct dentry *child)
2455 {
2456 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2457 if (child->d_inode)
2458 return -EEXIST;
2459 if (IS_DEADDIR(dir))
2460 return -ENOENT;
2461 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2462 }
2463
2464 /*
2465 * p1 and p2 should be directories on the same fs.
2466 */
2467 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2468 {
2469 struct dentry *p;
2470
2471 if (p1 == p2) {
2472 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2473 return NULL;
2474 }
2475
2476 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2477
2478 p = d_ancestor(p2, p1);
2479 if (p) {
2480 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2481 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2482 return p;
2483 }
2484
2485 p = d_ancestor(p1, p2);
2486 if (p) {
2487 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2488 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2489 return p;
2490 }
2491
2492 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2493 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2494 return NULL;
2495 }
2496 EXPORT_SYMBOL(lock_rename);
2497
2498 void unlock_rename(struct dentry *p1, struct dentry *p2)
2499 {
2500 mutex_unlock(&p1->d_inode->i_mutex);
2501 if (p1 != p2) {
2502 mutex_unlock(&p2->d_inode->i_mutex);
2503 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2504 }
2505 }
2506 EXPORT_SYMBOL(unlock_rename);
2507
2508 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2509 bool want_excl)
2510 {
2511 int error = may_create(dir, dentry);
2512 if (error)
2513 return error;
2514
2515 if (!dir->i_op->create)
2516 return -EACCES; /* shouldn't it be ENOSYS? */
2517 mode &= S_IALLUGO;
2518 mode |= S_IFREG;
2519 error = security_inode_create(dir, dentry, mode);
2520 if (error)
2521 return error;
2522 error = dir->i_op->create(dir, dentry, mode, want_excl);
2523 if (!error)
2524 fsnotify_create(dir, dentry);
2525 return error;
2526 }
2527 EXPORT_SYMBOL(vfs_create);
2528
2529 static int may_open(struct path *path, int acc_mode, int flag)
2530 {
2531 struct dentry *dentry = path->dentry;
2532 struct inode *inode = dentry->d_inode;
2533 int error;
2534
2535 /* O_PATH? */
2536 if (!acc_mode)
2537 return 0;
2538
2539 if (!inode)
2540 return -ENOENT;
2541
2542 switch (inode->i_mode & S_IFMT) {
2543 case S_IFLNK:
2544 return -ELOOP;
2545 case S_IFDIR:
2546 if (acc_mode & MAY_WRITE)
2547 return -EISDIR;
2548 break;
2549 case S_IFBLK:
2550 case S_IFCHR:
2551 if (path->mnt->mnt_flags & MNT_NODEV)
2552 return -EACCES;
2553 /*FALLTHRU*/
2554 case S_IFIFO:
2555 case S_IFSOCK:
2556 flag &= ~O_TRUNC;
2557 break;
2558 }
2559
2560 error = inode_permission(inode, acc_mode);
2561 if (error)
2562 return error;
2563
2564 /*
2565 * An append-only file must be opened in append mode for writing.
2566 */
2567 if (IS_APPEND(inode)) {
2568 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2569 return -EPERM;
2570 if (flag & O_TRUNC)
2571 return -EPERM;
2572 }
2573
2574 /* O_NOATIME can only be set by the owner or superuser */
2575 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2576 return -EPERM;
2577
2578 return 0;
2579 }
2580
2581 static int handle_truncate(struct file *filp)
2582 {
2583 struct path *path = &filp->f_path;
2584 struct inode *inode = path->dentry->d_inode;
2585 int error = get_write_access(inode);
2586 if (error)
2587 return error;
2588 /*
2589 * Refuse to truncate files with mandatory locks held on them.
2590 */
2591 error = locks_verify_locked(filp);
2592 if (!error)
2593 error = security_path_truncate(path);
2594 if (!error) {
2595 error = do_truncate(path->dentry, 0,
2596 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2597 filp);
2598 }
2599 put_write_access(inode);
2600 return error;
2601 }
2602
2603 static inline int open_to_namei_flags(int flag)
2604 {
2605 if ((flag & O_ACCMODE) == 3)
2606 flag--;
2607 return flag;
2608 }
2609
2610 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2611 {
2612 int error = security_path_mknod(dir, dentry, mode, 0);
2613 if (error)
2614 return error;
2615
2616 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2617 if (error)
2618 return error;
2619
2620 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2621 }
2622
2623 /*
2624 * Attempt to atomically look up, create and open a file from a negative
2625 * dentry.
2626 *
2627 * Returns 0 if successful. The file will have been created and attached to
2628 * @file by the filesystem calling finish_open().
2629 *
2630 * Returns 1 if the file was looked up only or didn't need creating. The
2631 * caller will need to perform the open themselves. @path will have been
2632 * updated to point to the new dentry. This may be negative.
2633 *
2634 * Returns an error code otherwise.
2635 */
2636 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2637 struct path *path, struct file *file,
2638 const struct open_flags *op,
2639 bool got_write, bool need_lookup,
2640 int *opened)
2641 {
2642 struct inode *dir = nd->path.dentry->d_inode;
2643 unsigned open_flag = open_to_namei_flags(op->open_flag);
2644 umode_t mode;
2645 int error;
2646 int acc_mode;
2647 int create_error = 0;
2648 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2649 bool excl;
2650
2651 BUG_ON(dentry->d_inode);
2652
2653 /* Don't create child dentry for a dead directory. */
2654 if (unlikely(IS_DEADDIR(dir))) {
2655 error = -ENOENT;
2656 goto out;
2657 }
2658
2659 mode = op->mode;
2660 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2661 mode &= ~current_umask();
2662
2663 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2664 if (excl)
2665 open_flag &= ~O_TRUNC;
2666
2667 /*
2668 * Checking write permission is tricky, bacuse we don't know if we are
2669 * going to actually need it: O_CREAT opens should work as long as the
2670 * file exists. But checking existence breaks atomicity. The trick is
2671 * to check access and if not granted clear O_CREAT from the flags.
2672 *
2673 * Another problem is returing the "right" error value (e.g. for an
2674 * O_EXCL open we want to return EEXIST not EROFS).
2675 */
2676 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2677 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2678 if (!(open_flag & O_CREAT)) {
2679 /*
2680 * No O_CREATE -> atomicity not a requirement -> fall
2681 * back to lookup + open
2682 */
2683 goto no_open;
2684 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2685 /* Fall back and fail with the right error */
2686 create_error = -EROFS;
2687 goto no_open;
2688 } else {
2689 /* No side effects, safe to clear O_CREAT */
2690 create_error = -EROFS;
2691 open_flag &= ~O_CREAT;
2692 }
2693 }
2694
2695 if (open_flag & O_CREAT) {
2696 error = may_o_create(&nd->path, dentry, mode);
2697 if (error) {
2698 create_error = error;
2699 if (open_flag & O_EXCL)
2700 goto no_open;
2701 open_flag &= ~O_CREAT;
2702 }
2703 }
2704
2705 if (nd->flags & LOOKUP_DIRECTORY)
2706 open_flag |= O_DIRECTORY;
2707
2708 file->f_path.dentry = DENTRY_NOT_SET;
2709 file->f_path.mnt = nd->path.mnt;
2710 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2711 opened);
2712 if (error < 0) {
2713 if (create_error && error == -ENOENT)
2714 error = create_error;
2715 goto out;
2716 }
2717
2718 if (error) { /* returned 1, that is */
2719 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2720 error = -EIO;
2721 goto out;
2722 }
2723 if (file->f_path.dentry) {
2724 dput(dentry);
2725 dentry = file->f_path.dentry;
2726 }
2727 if (*opened & FILE_CREATED)
2728 fsnotify_create(dir, dentry);
2729 if (!dentry->d_inode) {
2730 WARN_ON(*opened & FILE_CREATED);
2731 if (create_error) {
2732 error = create_error;
2733 goto out;
2734 }
2735 } else {
2736 if (excl && !(*opened & FILE_CREATED)) {
2737 error = -EEXIST;
2738 goto out;
2739 }
2740 }
2741 goto looked_up;
2742 }
2743
2744 /*
2745 * We didn't have the inode before the open, so check open permission
2746 * here.
2747 */
2748 acc_mode = op->acc_mode;
2749 if (*opened & FILE_CREATED) {
2750 WARN_ON(!(open_flag & O_CREAT));
2751 fsnotify_create(dir, dentry);
2752 acc_mode = MAY_OPEN;
2753 }
2754 error = may_open(&file->f_path, acc_mode, open_flag);
2755 if (error)
2756 fput(file);
2757
2758 out:
2759 dput(dentry);
2760 return error;
2761
2762 no_open:
2763 if (need_lookup) {
2764 dentry = lookup_real(dir, dentry, nd->flags);
2765 if (IS_ERR(dentry))
2766 return PTR_ERR(dentry);
2767
2768 if (create_error) {
2769 int open_flag = op->open_flag;
2770
2771 error = create_error;
2772 if ((open_flag & O_EXCL)) {
2773 if (!dentry->d_inode)
2774 goto out;
2775 } else if (!dentry->d_inode) {
2776 goto out;
2777 } else if ((open_flag & O_TRUNC) &&
2778 S_ISREG(dentry->d_inode->i_mode)) {
2779 goto out;
2780 }
2781 /* will fail later, go on to get the right error */
2782 }
2783 }
2784 looked_up:
2785 path->dentry = dentry;
2786 path->mnt = nd->path.mnt;
2787 return 1;
2788 }
2789
2790 /*
2791 * Look up and maybe create and open the last component.
2792 *
2793 * Must be called with i_mutex held on parent.
2794 *
2795 * Returns 0 if the file was successfully atomically created (if necessary) and
2796 * opened. In this case the file will be returned attached to @file.
2797 *
2798 * Returns 1 if the file was not completely opened at this time, though lookups
2799 * and creations will have been performed and the dentry returned in @path will
2800 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2801 * specified then a negative dentry may be returned.
2802 *
2803 * An error code is returned otherwise.
2804 *
2805 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2806 * cleared otherwise prior to returning.
2807 */
2808 static int lookup_open(struct nameidata *nd, struct path *path,
2809 struct file *file,
2810 const struct open_flags *op,
2811 bool got_write, int *opened)
2812 {
2813 struct dentry *dir = nd->path.dentry;
2814 struct inode *dir_inode = dir->d_inode;
2815 struct dentry *dentry;
2816 int error;
2817 bool need_lookup;
2818
2819 *opened &= ~FILE_CREATED;
2820 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2821 if (IS_ERR(dentry))
2822 return PTR_ERR(dentry);
2823
2824 /* Cached positive dentry: will open in f_op->open */
2825 if (!need_lookup && dentry->d_inode)
2826 goto out_no_open;
2827
2828 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2829 return atomic_open(nd, dentry, path, file, op, got_write,
2830 need_lookup, opened);
2831 }
2832
2833 if (need_lookup) {
2834 BUG_ON(dentry->d_inode);
2835
2836 dentry = lookup_real(dir_inode, dentry, nd->flags);
2837 if (IS_ERR(dentry))
2838 return PTR_ERR(dentry);
2839 }
2840
2841 /* Negative dentry, just create the file */
2842 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2843 umode_t mode = op->mode;
2844 if (!IS_POSIXACL(dir->d_inode))
2845 mode &= ~current_umask();
2846 /*
2847 * This write is needed to ensure that a
2848 * rw->ro transition does not occur between
2849 * the time when the file is created and when
2850 * a permanent write count is taken through
2851 * the 'struct file' in finish_open().
2852 */
2853 if (!got_write) {
2854 error = -EROFS;
2855 goto out_dput;
2856 }
2857 *opened |= FILE_CREATED;
2858 error = security_path_mknod(&nd->path, dentry, mode, 0);
2859 if (error)
2860 goto out_dput;
2861 error = vfs_create(dir->d_inode, dentry, mode,
2862 nd->flags & LOOKUP_EXCL);
2863 if (error)
2864 goto out_dput;
2865 }
2866 out_no_open:
2867 path->dentry = dentry;
2868 path->mnt = nd->path.mnt;
2869 return 1;
2870
2871 out_dput:
2872 dput(dentry);
2873 return error;
2874 }
2875
2876 /*
2877 * Handle the last step of open()
2878 */
2879 static int do_last(struct nameidata *nd, struct path *path,
2880 struct file *file, const struct open_flags *op,
2881 int *opened, struct filename *name)
2882 {
2883 struct dentry *dir = nd->path.dentry;
2884 int open_flag = op->open_flag;
2885 bool will_truncate = (open_flag & O_TRUNC) != 0;
2886 bool got_write = false;
2887 int acc_mode = op->acc_mode;
2888 struct inode *inode;
2889 bool symlink_ok = false;
2890 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2891 bool retried = false;
2892 int error;
2893
2894 nd->flags &= ~LOOKUP_PARENT;
2895 nd->flags |= op->intent;
2896
2897 if (nd->last_type != LAST_NORM) {
2898 error = handle_dots(nd, nd->last_type);
2899 if (error)
2900 return error;
2901 goto finish_open;
2902 }
2903
2904 if (!(open_flag & O_CREAT)) {
2905 if (nd->last.name[nd->last.len])
2906 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2907 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2908 symlink_ok = true;
2909 /* we _can_ be in RCU mode here */
2910 error = lookup_fast(nd, path, &inode);
2911 if (likely(!error))
2912 goto finish_lookup;
2913
2914 if (error < 0)
2915 goto out;
2916
2917 BUG_ON(nd->inode != dir->d_inode);
2918 } else {
2919 /* create side of things */
2920 /*
2921 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2922 * has been cleared when we got to the last component we are
2923 * about to look up
2924 */
2925 error = complete_walk(nd);
2926 if (error)
2927 return error;
2928
2929 audit_inode(name, dir, LOOKUP_PARENT);
2930 error = -EISDIR;
2931 /* trailing slashes? */
2932 if (nd->last.name[nd->last.len])
2933 goto out;
2934 }
2935
2936 retry_lookup:
2937 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2938 error = mnt_want_write(nd->path.mnt);
2939 if (!error)
2940 got_write = true;
2941 /*
2942 * do _not_ fail yet - we might not need that or fail with
2943 * a different error; let lookup_open() decide; we'll be
2944 * dropping this one anyway.
2945 */
2946 }
2947 mutex_lock(&dir->d_inode->i_mutex);
2948 error = lookup_open(nd, path, file, op, got_write, opened);
2949 mutex_unlock(&dir->d_inode->i_mutex);
2950
2951 if (error <= 0) {
2952 if (error)
2953 goto out;
2954
2955 if ((*opened & FILE_CREATED) ||
2956 !S_ISREG(file_inode(file)->i_mode))
2957 will_truncate = false;
2958
2959 audit_inode(name, file->f_path.dentry, 0);
2960 goto opened;
2961 }
2962
2963 if (*opened & FILE_CREATED) {
2964 /* Don't check for write permission, don't truncate */
2965 open_flag &= ~O_TRUNC;
2966 will_truncate = false;
2967 acc_mode = MAY_OPEN;
2968 path_to_nameidata(path, nd);
2969 goto finish_open_created;
2970 }
2971
2972 /*
2973 * create/update audit record if it already exists.
2974 */
2975 if (d_is_positive(path->dentry))
2976 audit_inode(name, path->dentry, 0);
2977
2978 /*
2979 * If atomic_open() acquired write access it is dropped now due to
2980 * possible mount and symlink following (this might be optimized away if
2981 * necessary...)
2982 */
2983 if (got_write) {
2984 mnt_drop_write(nd->path.mnt);
2985 got_write = false;
2986 }
2987
2988 error = -EEXIST;
2989 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2990 goto exit_dput;
2991
2992 error = follow_managed(path, nd->flags);
2993 if (error < 0)
2994 goto exit_dput;
2995
2996 if (error)
2997 nd->flags |= LOOKUP_JUMPED;
2998
2999 BUG_ON(nd->flags & LOOKUP_RCU);
3000 inode = path->dentry->d_inode;
3001 finish_lookup:
3002 /* we _can_ be in RCU mode here */
3003 error = -ENOENT;
3004 if (!inode || d_is_negative(path->dentry)) {
3005 path_to_nameidata(path, nd);
3006 goto out;
3007 }
3008
3009 if (should_follow_link(path->dentry, !symlink_ok)) {
3010 if (nd->flags & LOOKUP_RCU) {
3011 if (unlikely(unlazy_walk(nd, path->dentry))) {
3012 error = -ECHILD;
3013 goto out;
3014 }
3015 }
3016 BUG_ON(inode != path->dentry->d_inode);
3017 return 1;
3018 }
3019
3020 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3021 path_to_nameidata(path, nd);
3022 } else {
3023 save_parent.dentry = nd->path.dentry;
3024 save_parent.mnt = mntget(path->mnt);
3025 nd->path.dentry = path->dentry;
3026
3027 }
3028 nd->inode = inode;
3029 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3030 finish_open:
3031 error = complete_walk(nd);
3032 if (error) {
3033 path_put(&save_parent);
3034 return error;
3035 }
3036 audit_inode(name, nd->path.dentry, 0);
3037 error = -EISDIR;
3038 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3039 goto out;
3040 error = -ENOTDIR;
3041 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3042 goto out;
3043 if (!S_ISREG(nd->inode->i_mode))
3044 will_truncate = false;
3045
3046 if (will_truncate) {
3047 error = mnt_want_write(nd->path.mnt);
3048 if (error)
3049 goto out;
3050 got_write = true;
3051 }
3052 finish_open_created:
3053 error = may_open(&nd->path, acc_mode, open_flag);
3054 if (error)
3055 goto out;
3056 file->f_path.mnt = nd->path.mnt;
3057 error = finish_open(file, nd->path.dentry, NULL, opened);
3058 if (error) {
3059 if (error == -EOPENSTALE)
3060 goto stale_open;
3061 goto out;
3062 }
3063 opened:
3064 error = open_check_o_direct(file);
3065 if (error)
3066 goto exit_fput;
3067 error = ima_file_check(file, op->acc_mode);
3068 if (error)
3069 goto exit_fput;
3070
3071 if (will_truncate) {
3072 error = handle_truncate(file);
3073 if (error)
3074 goto exit_fput;
3075 }
3076 out:
3077 if (got_write)
3078 mnt_drop_write(nd->path.mnt);
3079 path_put(&save_parent);
3080 terminate_walk(nd);
3081 return error;
3082
3083 exit_dput:
3084 path_put_conditional(path, nd);
3085 goto out;
3086 exit_fput:
3087 fput(file);
3088 goto out;
3089
3090 stale_open:
3091 /* If no saved parent or already retried then can't retry */
3092 if (!save_parent.dentry || retried)
3093 goto out;
3094
3095 BUG_ON(save_parent.dentry != dir);
3096 path_put(&nd->path);
3097 nd->path = save_parent;
3098 nd->inode = dir->d_inode;
3099 save_parent.mnt = NULL;
3100 save_parent.dentry = NULL;
3101 if (got_write) {
3102 mnt_drop_write(nd->path.mnt);
3103 got_write = false;
3104 }
3105 retried = true;
3106 goto retry_lookup;
3107 }
3108
3109 static int do_tmpfile(int dfd, struct filename *pathname,
3110 struct nameidata *nd, int flags,
3111 const struct open_flags *op,
3112 struct file *file, int *opened)
3113 {
3114 static const struct qstr name = QSTR_INIT("/", 1);
3115 struct dentry *dentry, *child;
3116 struct inode *dir;
3117 int error = path_lookupat(dfd, pathname->name,
3118 flags | LOOKUP_DIRECTORY, nd);
3119 if (unlikely(error))
3120 return error;
3121 error = mnt_want_write(nd->path.mnt);
3122 if (unlikely(error))
3123 goto out;
3124 /* we want directory to be writable */
3125 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3126 if (error)
3127 goto out2;
3128 dentry = nd->path.dentry;
3129 dir = dentry->d_inode;
3130 if (!dir->i_op->tmpfile) {
3131 error = -EOPNOTSUPP;
3132 goto out2;
3133 }
3134 child = d_alloc(dentry, &name);
3135 if (unlikely(!child)) {
3136 error = -ENOMEM;
3137 goto out2;
3138 }
3139 nd->flags &= ~LOOKUP_DIRECTORY;
3140 nd->flags |= op->intent;
3141 dput(nd->path.dentry);
3142 nd->path.dentry = child;
3143 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3144 if (error)
3145 goto out2;
3146 audit_inode(pathname, nd->path.dentry, 0);
3147 error = may_open(&nd->path, op->acc_mode, op->open_flag);
3148 if (error)
3149 goto out2;
3150 file->f_path.mnt = nd->path.mnt;
3151 error = finish_open(file, nd->path.dentry, NULL, opened);
3152 if (error)
3153 goto out2;
3154 error = open_check_o_direct(file);
3155 if (error) {
3156 fput(file);
3157 } else if (!(op->open_flag & O_EXCL)) {
3158 struct inode *inode = file_inode(file);
3159 spin_lock(&inode->i_lock);
3160 inode->i_state |= I_LINKABLE;
3161 spin_unlock(&inode->i_lock);
3162 }
3163 out2:
3164 mnt_drop_write(nd->path.mnt);
3165 out:
3166 path_put(&nd->path);
3167 return error;
3168 }
3169
3170 static struct file *path_openat(int dfd, struct filename *pathname,
3171 struct nameidata *nd, const struct open_flags *op, int flags)
3172 {
3173 struct file *base = NULL;
3174 struct file *file;
3175 struct path path;
3176 int opened = 0;
3177 int error;
3178
3179 file = get_empty_filp();
3180 if (IS_ERR(file))
3181 return file;
3182
3183 file->f_flags = op->open_flag;
3184
3185 if (unlikely(file->f_flags & __O_TMPFILE)) {
3186 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3187 goto out;
3188 }
3189
3190 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3191 if (unlikely(error))
3192 goto out;
3193
3194 current->total_link_count = 0;
3195 error = link_path_walk(pathname->name, nd);
3196 if (unlikely(error))
3197 goto out;
3198
3199 error = do_last(nd, &path, file, op, &opened, pathname);
3200 while (unlikely(error > 0)) { /* trailing symlink */
3201 struct path link = path;
3202 void *cookie;
3203 if (!(nd->flags & LOOKUP_FOLLOW)) {
3204 path_put_conditional(&path, nd);
3205 path_put(&nd->path);
3206 error = -ELOOP;
3207 break;
3208 }
3209 error = may_follow_link(&link, nd);
3210 if (unlikely(error))
3211 break;
3212 nd->flags |= LOOKUP_PARENT;
3213 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3214 error = follow_link(&link, nd, &cookie);
3215 if (unlikely(error))
3216 break;
3217 error = do_last(nd, &path, file, op, &opened, pathname);
3218 put_link(nd, &link, cookie);
3219 }
3220 out:
3221 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3222 path_put(&nd->root);
3223 if (base)
3224 fput(base);
3225 if (!(opened & FILE_OPENED)) {
3226 BUG_ON(!error);
3227 put_filp(file);
3228 }
3229 if (unlikely(error)) {
3230 if (error == -EOPENSTALE) {
3231 if (flags & LOOKUP_RCU)
3232 error = -ECHILD;
3233 else
3234 error = -ESTALE;
3235 }
3236 file = ERR_PTR(error);
3237 }
3238 return file;
3239 }
3240
3241 struct file *do_filp_open(int dfd, struct filename *pathname,
3242 const struct open_flags *op)
3243 {
3244 struct nameidata nd;
3245 int flags = op->lookup_flags;
3246 struct file *filp;
3247
3248 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3249 if (unlikely(filp == ERR_PTR(-ECHILD)))
3250 filp = path_openat(dfd, pathname, &nd, op, flags);
3251 if (unlikely(filp == ERR_PTR(-ESTALE)))
3252 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3253 return filp;
3254 }
3255
3256 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3257 const char *name, const struct open_flags *op)
3258 {
3259 struct nameidata nd;
3260 struct file *file;
3261 struct filename filename = { .name = name };
3262 int flags = op->lookup_flags | LOOKUP_ROOT;
3263
3264 nd.root.mnt = mnt;
3265 nd.root.dentry = dentry;
3266
3267 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3268 return ERR_PTR(-ELOOP);
3269
3270 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3271 if (unlikely(file == ERR_PTR(-ECHILD)))
3272 file = path_openat(-1, &filename, &nd, op, flags);
3273 if (unlikely(file == ERR_PTR(-ESTALE)))
3274 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3275 return file;
3276 }
3277
3278 struct dentry *kern_path_create(int dfd, const char *pathname,
3279 struct path *path, unsigned int lookup_flags)
3280 {
3281 struct dentry *dentry = ERR_PTR(-EEXIST);
3282 struct nameidata nd;
3283 int err2;
3284 int error;
3285 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3286
3287 /*
3288 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3289 * other flags passed in are ignored!
3290 */
3291 lookup_flags &= LOOKUP_REVAL;
3292
3293 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3294 if (error)
3295 return ERR_PTR(error);
3296
3297 /*
3298 * Yucky last component or no last component at all?
3299 * (foo/., foo/.., /////)
3300 */
3301 if (nd.last_type != LAST_NORM)
3302 goto out;
3303 nd.flags &= ~LOOKUP_PARENT;
3304 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3305
3306 /* don't fail immediately if it's r/o, at least try to report other errors */
3307 err2 = mnt_want_write(nd.path.mnt);
3308 /*
3309 * Do the final lookup.
3310 */
3311 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3312 dentry = lookup_hash(&nd);
3313 if (IS_ERR(dentry))
3314 goto unlock;
3315
3316 error = -EEXIST;
3317 if (d_is_positive(dentry))
3318 goto fail;
3319
3320 /*
3321 * Special case - lookup gave negative, but... we had foo/bar/
3322 * From the vfs_mknod() POV we just have a negative dentry -
3323 * all is fine. Let's be bastards - you had / on the end, you've
3324 * been asking for (non-existent) directory. -ENOENT for you.
3325 */
3326 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3327 error = -ENOENT;
3328 goto fail;
3329 }
3330 if (unlikely(err2)) {
3331 error = err2;
3332 goto fail;
3333 }
3334 *path = nd.path;
3335 return dentry;
3336 fail:
3337 dput(dentry);
3338 dentry = ERR_PTR(error);
3339 unlock:
3340 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3341 if (!err2)
3342 mnt_drop_write(nd.path.mnt);
3343 out:
3344 path_put(&nd.path);
3345 return dentry;
3346 }
3347 EXPORT_SYMBOL(kern_path_create);
3348
3349 void done_path_create(struct path *path, struct dentry *dentry)
3350 {
3351 dput(dentry);
3352 mutex_unlock(&path->dentry->d_inode->i_mutex);
3353 mnt_drop_write(path->mnt);
3354 path_put(path);
3355 }
3356 EXPORT_SYMBOL(done_path_create);
3357
3358 struct dentry *user_path_create(int dfd, const char __user *pathname,
3359 struct path *path, unsigned int lookup_flags)
3360 {
3361 struct filename *tmp = getname(pathname);
3362 struct dentry *res;
3363 if (IS_ERR(tmp))
3364 return ERR_CAST(tmp);
3365 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3366 putname(tmp);
3367 return res;
3368 }
3369 EXPORT_SYMBOL(user_path_create);
3370
3371 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3372 {
3373 int error = may_create(dir, dentry);
3374
3375 if (error)
3376 return error;
3377
3378 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3379 return -EPERM;
3380
3381 if (!dir->i_op->mknod)
3382 return -EPERM;
3383
3384 error = devcgroup_inode_mknod(mode, dev);
3385 if (error)
3386 return error;
3387
3388 error = security_inode_mknod(dir, dentry, mode, dev);
3389 if (error)
3390 return error;
3391
3392 error = dir->i_op->mknod(dir, dentry, mode, dev);
3393 if (!error)
3394 fsnotify_create(dir, dentry);
3395 return error;
3396 }
3397 EXPORT_SYMBOL(vfs_mknod);
3398
3399 static int may_mknod(umode_t mode)
3400 {
3401 switch (mode & S_IFMT) {
3402 case S_IFREG:
3403 case S_IFCHR:
3404 case S_IFBLK:
3405 case S_IFIFO:
3406 case S_IFSOCK:
3407 case 0: /* zero mode translates to S_IFREG */
3408 return 0;
3409 case S_IFDIR:
3410 return -EPERM;
3411 default:
3412 return -EINVAL;
3413 }
3414 }
3415
3416 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3417 unsigned, dev)
3418 {
3419 struct dentry *dentry;
3420 struct path path;
3421 int error;
3422 unsigned int lookup_flags = 0;
3423
3424 error = may_mknod(mode);
3425 if (error)
3426 return error;
3427 retry:
3428 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3429 if (IS_ERR(dentry))
3430 return PTR_ERR(dentry);
3431
3432 if (!IS_POSIXACL(path.dentry->d_inode))
3433 mode &= ~current_umask();
3434 error = security_path_mknod(&path, dentry, mode, dev);
3435 if (error)
3436 goto out;
3437 switch (mode & S_IFMT) {
3438 case 0: case S_IFREG:
3439 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3440 break;
3441 case S_IFCHR: case S_IFBLK:
3442 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3443 new_decode_dev(dev));
3444 break;
3445 case S_IFIFO: case S_IFSOCK:
3446 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3447 break;
3448 }
3449 out:
3450 done_path_create(&path, dentry);
3451 if (retry_estale(error, lookup_flags)) {
3452 lookup_flags |= LOOKUP_REVAL;
3453 goto retry;
3454 }
3455 return error;
3456 }
3457
3458 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3459 {
3460 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3461 }
3462
3463 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3464 {
3465 int error = may_create(dir, dentry);
3466 unsigned max_links = dir->i_sb->s_max_links;
3467
3468 if (error)
3469 return error;
3470
3471 if (!dir->i_op->mkdir)
3472 return -EPERM;
3473
3474 mode &= (S_IRWXUGO|S_ISVTX);
3475 error = security_inode_mkdir(dir, dentry, mode);
3476 if (error)
3477 return error;
3478
3479 if (max_links && dir->i_nlink >= max_links)
3480 return -EMLINK;
3481
3482 error = dir->i_op->mkdir(dir, dentry, mode);
3483 if (!error)
3484 fsnotify_mkdir(dir, dentry);
3485 return error;
3486 }
3487 EXPORT_SYMBOL(vfs_mkdir);
3488
3489 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3490 {
3491 struct dentry *dentry;
3492 struct path path;
3493 int error;
3494 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3495
3496 retry:
3497 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3498 if (IS_ERR(dentry))
3499 return PTR_ERR(dentry);
3500
3501 if (!IS_POSIXACL(path.dentry->d_inode))
3502 mode &= ~current_umask();
3503 error = security_path_mkdir(&path, dentry, mode);
3504 if (!error)
3505 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3506 done_path_create(&path, dentry);
3507 if (retry_estale(error, lookup_flags)) {
3508 lookup_flags |= LOOKUP_REVAL;
3509 goto retry;
3510 }
3511 return error;
3512 }
3513
3514 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3515 {
3516 return sys_mkdirat(AT_FDCWD, pathname, mode);
3517 }
3518
3519 /*
3520 * The dentry_unhash() helper will try to drop the dentry early: we
3521 * should have a usage count of 1 if we're the only user of this
3522 * dentry, and if that is true (possibly after pruning the dcache),
3523 * then we drop the dentry now.
3524 *
3525 * A low-level filesystem can, if it choses, legally
3526 * do a
3527 *
3528 * if (!d_unhashed(dentry))
3529 * return -EBUSY;
3530 *
3531 * if it cannot handle the case of removing a directory
3532 * that is still in use by something else..
3533 */
3534 void dentry_unhash(struct dentry *dentry)
3535 {
3536 shrink_dcache_parent(dentry);
3537 spin_lock(&dentry->d_lock);
3538 if (dentry->d_lockref.count == 1)
3539 __d_drop(dentry);
3540 spin_unlock(&dentry->d_lock);
3541 }
3542 EXPORT_SYMBOL(dentry_unhash);
3543
3544 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3545 {
3546 int error = may_delete(dir, dentry, 1);
3547
3548 if (error)
3549 return error;
3550
3551 if (!dir->i_op->rmdir)
3552 return -EPERM;
3553
3554 dget(dentry);
3555 mutex_lock(&dentry->d_inode->i_mutex);
3556
3557 error = -EBUSY;
3558 if (d_mountpoint(dentry))
3559 goto out;
3560
3561 error = security_inode_rmdir(dir, dentry);
3562 if (error)
3563 goto out;
3564
3565 shrink_dcache_parent(dentry);
3566 error = dir->i_op->rmdir(dir, dentry);
3567 if (error)
3568 goto out;
3569
3570 dentry->d_inode->i_flags |= S_DEAD;
3571 dont_mount(dentry);
3572
3573 out:
3574 mutex_unlock(&dentry->d_inode->i_mutex);
3575 dput(dentry);
3576 if (!error)
3577 d_delete(dentry);
3578 return error;
3579 }
3580 EXPORT_SYMBOL(vfs_rmdir);
3581
3582 static long do_rmdir(int dfd, const char __user *pathname)
3583 {
3584 int error = 0;
3585 struct filename *name;
3586 struct dentry *dentry;
3587 struct nameidata nd;
3588 unsigned int lookup_flags = 0;
3589 retry:
3590 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3591 if (IS_ERR(name))
3592 return PTR_ERR(name);
3593
3594 switch(nd.last_type) {
3595 case LAST_DOTDOT:
3596 error = -ENOTEMPTY;
3597 goto exit1;
3598 case LAST_DOT:
3599 error = -EINVAL;
3600 goto exit1;
3601 case LAST_ROOT:
3602 error = -EBUSY;
3603 goto exit1;
3604 }
3605
3606 nd.flags &= ~LOOKUP_PARENT;
3607 error = mnt_want_write(nd.path.mnt);
3608 if (error)
3609 goto exit1;
3610
3611 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3612 dentry = lookup_hash(&nd);
3613 error = PTR_ERR(dentry);
3614 if (IS_ERR(dentry))
3615 goto exit2;
3616 if (!dentry->d_inode) {
3617 error = -ENOENT;
3618 goto exit3;
3619 }
3620 error = security_path_rmdir(&nd.path, dentry);
3621 if (error)
3622 goto exit3;
3623 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3624 exit3:
3625 dput(dentry);
3626 exit2:
3627 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3628 mnt_drop_write(nd.path.mnt);
3629 exit1:
3630 path_put(&nd.path);
3631 putname(name);
3632 if (retry_estale(error, lookup_flags)) {
3633 lookup_flags |= LOOKUP_REVAL;
3634 goto retry;
3635 }
3636 return error;
3637 }
3638
3639 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3640 {
3641 return do_rmdir(AT_FDCWD, pathname);
3642 }
3643
3644 /**
3645 * vfs_unlink - unlink a filesystem object
3646 * @dir: parent directory
3647 * @dentry: victim
3648 * @delegated_inode: returns victim inode, if the inode is delegated.
3649 *
3650 * The caller must hold dir->i_mutex.
3651 *
3652 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3653 * return a reference to the inode in delegated_inode. The caller
3654 * should then break the delegation on that inode and retry. Because
3655 * breaking a delegation may take a long time, the caller should drop
3656 * dir->i_mutex before doing so.
3657 *
3658 * Alternatively, a caller may pass NULL for delegated_inode. This may
3659 * be appropriate for callers that expect the underlying filesystem not
3660 * to be NFS exported.
3661 */
3662 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3663 {
3664 struct inode *target = dentry->d_inode;
3665 int error = may_delete(dir, dentry, 0);
3666
3667 if (error)
3668 return error;
3669
3670 if (!dir->i_op->unlink)
3671 return -EPERM;
3672
3673 mutex_lock(&target->i_mutex);
3674 if (d_mountpoint(dentry))
3675 error = -EBUSY;
3676 else {
3677 error = security_inode_unlink(dir, dentry);
3678 if (!error) {
3679 error = try_break_deleg(target, delegated_inode);
3680 if (error)
3681 goto out;
3682 error = dir->i_op->unlink(dir, dentry);
3683 if (!error)
3684 dont_mount(dentry);
3685 }
3686 }
3687 out:
3688 mutex_unlock(&target->i_mutex);
3689
3690 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3691 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3692 fsnotify_link_count(target);
3693 d_delete(dentry);
3694 }
3695
3696 return error;
3697 }
3698 EXPORT_SYMBOL(vfs_unlink);
3699
3700 /*
3701 * Make sure that the actual truncation of the file will occur outside its
3702 * directory's i_mutex. Truncate can take a long time if there is a lot of
3703 * writeout happening, and we don't want to prevent access to the directory
3704 * while waiting on the I/O.
3705 */
3706 static long do_unlinkat(int dfd, const char __user *pathname)
3707 {
3708 int error;
3709 struct filename *name;
3710 struct dentry *dentry;
3711 struct nameidata nd;
3712 struct inode *inode = NULL;
3713 struct inode *delegated_inode = NULL;
3714 unsigned int lookup_flags = 0;
3715 retry:
3716 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3717 if (IS_ERR(name))
3718 return PTR_ERR(name);
3719
3720 error = -EISDIR;
3721 if (nd.last_type != LAST_NORM)
3722 goto exit1;
3723
3724 nd.flags &= ~LOOKUP_PARENT;
3725 error = mnt_want_write(nd.path.mnt);
3726 if (error)
3727 goto exit1;
3728 retry_deleg:
3729 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3730 dentry = lookup_hash(&nd);
3731 error = PTR_ERR(dentry);
3732 if (!IS_ERR(dentry)) {
3733 /* Why not before? Because we want correct error value */
3734 if (nd.last.name[nd.last.len])
3735 goto slashes;
3736 inode = dentry->d_inode;
3737 if (d_is_negative(dentry))
3738 goto slashes;
3739 ihold(inode);
3740 error = security_path_unlink(&nd.path, dentry);
3741 if (error)
3742 goto exit2;
3743 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3744 exit2:
3745 dput(dentry);
3746 }
3747 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3748 if (inode)
3749 iput(inode); /* truncate the inode here */
3750 inode = NULL;
3751 if (delegated_inode) {
3752 error = break_deleg_wait(&delegated_inode);
3753 if (!error)
3754 goto retry_deleg;
3755 }
3756 mnt_drop_write(nd.path.mnt);
3757 exit1:
3758 path_put(&nd.path);
3759 putname(name);
3760 if (retry_estale(error, lookup_flags)) {
3761 lookup_flags |= LOOKUP_REVAL;
3762 inode = NULL;
3763 goto retry;
3764 }
3765 return error;
3766
3767 slashes:
3768 if (d_is_negative(dentry))
3769 error = -ENOENT;
3770 else if (d_is_dir(dentry))
3771 error = -EISDIR;
3772 else
3773 error = -ENOTDIR;
3774 goto exit2;
3775 }
3776
3777 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3778 {
3779 if ((flag & ~AT_REMOVEDIR) != 0)
3780 return -EINVAL;
3781
3782 if (flag & AT_REMOVEDIR)
3783 return do_rmdir(dfd, pathname);
3784
3785 return do_unlinkat(dfd, pathname);
3786 }
3787
3788 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3789 {
3790 return do_unlinkat(AT_FDCWD, pathname);
3791 }
3792
3793 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3794 {
3795 int error = may_create(dir, dentry);
3796
3797 if (error)
3798 return error;
3799
3800 if (!dir->i_op->symlink)
3801 return -EPERM;
3802
3803 error = security_inode_symlink(dir, dentry, oldname);
3804 if (error)
3805 return error;
3806
3807 error = dir->i_op->symlink(dir, dentry, oldname);
3808 if (!error)
3809 fsnotify_create(dir, dentry);
3810 return error;
3811 }
3812 EXPORT_SYMBOL(vfs_symlink);
3813
3814 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3815 int, newdfd, const char __user *, newname)
3816 {
3817 int error;
3818 struct filename *from;
3819 struct dentry *dentry;
3820 struct path path;
3821 unsigned int lookup_flags = 0;
3822
3823 from = getname(oldname);
3824 if (IS_ERR(from))
3825 return PTR_ERR(from);
3826 retry:
3827 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3828 error = PTR_ERR(dentry);
3829 if (IS_ERR(dentry))
3830 goto out_putname;
3831
3832 error = security_path_symlink(&path, dentry, from->name);
3833 if (!error)
3834 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3835 done_path_create(&path, dentry);
3836 if (retry_estale(error, lookup_flags)) {
3837 lookup_flags |= LOOKUP_REVAL;
3838 goto retry;
3839 }
3840 out_putname:
3841 putname(from);
3842 return error;
3843 }
3844
3845 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3846 {
3847 return sys_symlinkat(oldname, AT_FDCWD, newname);
3848 }
3849
3850 /**
3851 * vfs_link - create a new link
3852 * @old_dentry: object to be linked
3853 * @dir: new parent
3854 * @new_dentry: where to create the new link
3855 * @delegated_inode: returns inode needing a delegation break
3856 *
3857 * The caller must hold dir->i_mutex
3858 *
3859 * If vfs_link discovers a delegation on the to-be-linked file in need
3860 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3861 * inode in delegated_inode. The caller should then break the delegation
3862 * and retry. Because breaking a delegation may take a long time, the
3863 * caller should drop the i_mutex before doing so.
3864 *
3865 * Alternatively, a caller may pass NULL for delegated_inode. This may
3866 * be appropriate for callers that expect the underlying filesystem not
3867 * to be NFS exported.
3868 */
3869 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3870 {
3871 struct inode *inode = old_dentry->d_inode;
3872 unsigned max_links = dir->i_sb->s_max_links;
3873 int error;
3874
3875 if (!inode)
3876 return -ENOENT;
3877
3878 error = may_create(dir, new_dentry);
3879 if (error)
3880 return error;
3881
3882 if (dir->i_sb != inode->i_sb)
3883 return -EXDEV;
3884
3885 /*
3886 * A link to an append-only or immutable file cannot be created.
3887 */
3888 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3889 return -EPERM;
3890 if (!dir->i_op->link)
3891 return -EPERM;
3892 if (S_ISDIR(inode->i_mode))
3893 return -EPERM;
3894
3895 error = security_inode_link(old_dentry, dir, new_dentry);
3896 if (error)
3897 return error;
3898
3899 mutex_lock(&inode->i_mutex);
3900 /* Make sure we don't allow creating hardlink to an unlinked file */
3901 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3902 error = -ENOENT;
3903 else if (max_links && inode->i_nlink >= max_links)
3904 error = -EMLINK;
3905 else {
3906 error = try_break_deleg(inode, delegated_inode);
3907 if (!error)
3908 error = dir->i_op->link(old_dentry, dir, new_dentry);
3909 }
3910
3911 if (!error && (inode->i_state & I_LINKABLE)) {
3912 spin_lock(&inode->i_lock);
3913 inode->i_state &= ~I_LINKABLE;
3914 spin_unlock(&inode->i_lock);
3915 }
3916 mutex_unlock(&inode->i_mutex);
3917 if (!error)
3918 fsnotify_link(dir, inode, new_dentry);
3919 return error;
3920 }
3921 EXPORT_SYMBOL(vfs_link);
3922
3923 /*
3924 * Hardlinks are often used in delicate situations. We avoid
3925 * security-related surprises by not following symlinks on the
3926 * newname. --KAB
3927 *
3928 * We don't follow them on the oldname either to be compatible
3929 * with linux 2.0, and to avoid hard-linking to directories
3930 * and other special files. --ADM
3931 */
3932 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3933 int, newdfd, const char __user *, newname, int, flags)
3934 {
3935 struct dentry *new_dentry;
3936 struct path old_path, new_path;
3937 struct inode *delegated_inode = NULL;
3938 int how = 0;
3939 int error;
3940
3941 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3942 return -EINVAL;
3943 /*
3944 * To use null names we require CAP_DAC_READ_SEARCH
3945 * This ensures that not everyone will be able to create
3946 * handlink using the passed filedescriptor.
3947 */
3948 if (flags & AT_EMPTY_PATH) {
3949 if (!capable(CAP_DAC_READ_SEARCH))
3950 return -ENOENT;
3951 how = LOOKUP_EMPTY;
3952 }
3953
3954 if (flags & AT_SYMLINK_FOLLOW)
3955 how |= LOOKUP_FOLLOW;
3956 retry:
3957 error = user_path_at(olddfd, oldname, how, &old_path);
3958 if (error)
3959 return error;
3960
3961 new_dentry = user_path_create(newdfd, newname, &new_path,
3962 (how & LOOKUP_REVAL));
3963 error = PTR_ERR(new_dentry);
3964 if (IS_ERR(new_dentry))
3965 goto out;
3966
3967 error = -EXDEV;
3968 if (old_path.mnt != new_path.mnt)
3969 goto out_dput;
3970 error = may_linkat(&old_path);
3971 if (unlikely(error))
3972 goto out_dput;
3973 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3974 if (error)
3975 goto out_dput;
3976 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3977 out_dput:
3978 done_path_create(&new_path, new_dentry);
3979 if (delegated_inode) {
3980 error = break_deleg_wait(&delegated_inode);
3981 if (!error) {
3982 path_put(&old_path);
3983 goto retry;
3984 }
3985 }
3986 if (retry_estale(error, how)) {
3987 path_put(&old_path);
3988 how |= LOOKUP_REVAL;
3989 goto retry;
3990 }
3991 out:
3992 path_put(&old_path);
3993
3994 return error;
3995 }
3996
3997 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3998 {
3999 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4000 }
4001
4002 /**
4003 * vfs_rename - rename a filesystem object
4004 * @old_dir: parent of source
4005 * @old_dentry: source
4006 * @new_dir: parent of destination
4007 * @new_dentry: destination
4008 * @delegated_inode: returns an inode needing a delegation break
4009 * @flags: rename flags
4010 *
4011 * The caller must hold multiple mutexes--see lock_rename()).
4012 *
4013 * If vfs_rename discovers a delegation in need of breaking at either
4014 * the source or destination, it will return -EWOULDBLOCK and return a
4015 * reference to the inode in delegated_inode. The caller should then
4016 * break the delegation and retry. Because breaking a delegation may
4017 * take a long time, the caller should drop all locks before doing
4018 * so.
4019 *
4020 * Alternatively, a caller may pass NULL for delegated_inode. This may
4021 * be appropriate for callers that expect the underlying filesystem not
4022 * to be NFS exported.
4023 *
4024 * The worst of all namespace operations - renaming directory. "Perverted"
4025 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4026 * Problems:
4027 * a) we can get into loop creation.
4028 * b) race potential - two innocent renames can create a loop together.
4029 * That's where 4.4 screws up. Current fix: serialization on
4030 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4031 * story.
4032 * c) we have to lock _four_ objects - parents and victim (if it exists),
4033 * and source (if it is not a directory).
4034 * And that - after we got ->i_mutex on parents (until then we don't know
4035 * whether the target exists). Solution: try to be smart with locking
4036 * order for inodes. We rely on the fact that tree topology may change
4037 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4038 * move will be locked. Thus we can rank directories by the tree
4039 * (ancestors first) and rank all non-directories after them.
4040 * That works since everybody except rename does "lock parent, lookup,
4041 * lock child" and rename is under ->s_vfs_rename_mutex.
4042 * HOWEVER, it relies on the assumption that any object with ->lookup()
4043 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4044 * we'd better make sure that there's no link(2) for them.
4045 * d) conversion from fhandle to dentry may come in the wrong moment - when
4046 * we are removing the target. Solution: we will have to grab ->i_mutex
4047 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4048 * ->i_mutex on parents, which works but leads to some truly excessive
4049 * locking].
4050 */
4051 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4052 struct inode *new_dir, struct dentry *new_dentry,
4053 struct inode **delegated_inode, unsigned int flags)
4054 {
4055 int error;
4056 bool is_dir = d_is_dir(old_dentry);
4057 const unsigned char *old_name;
4058 struct inode *source = old_dentry->d_inode;
4059 struct inode *target = new_dentry->d_inode;
4060 bool new_is_dir = false;
4061 unsigned max_links = new_dir->i_sb->s_max_links;
4062
4063 if (source == target)
4064 return 0;
4065
4066 error = may_delete(old_dir, old_dentry, is_dir);
4067 if (error)
4068 return error;
4069
4070 if (!target) {
4071 error = may_create(new_dir, new_dentry);
4072 } else {
4073 new_is_dir = d_is_dir(new_dentry);
4074
4075 if (!(flags & RENAME_EXCHANGE))
4076 error = may_delete(new_dir, new_dentry, is_dir);
4077 else
4078 error = may_delete(new_dir, new_dentry, new_is_dir);
4079 }
4080 if (error)
4081 return error;
4082
4083 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4084 return -EPERM;
4085
4086 if (flags && !old_dir->i_op->rename2)
4087 return -EINVAL;
4088
4089 /*
4090 * If we are going to change the parent - check write permissions,
4091 * we'll need to flip '..'.
4092 */
4093 if (new_dir != old_dir) {
4094 if (is_dir) {
4095 error = inode_permission(source, MAY_WRITE);
4096 if (error)
4097 return error;
4098 }
4099 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4100 error = inode_permission(target, MAY_WRITE);
4101 if (error)
4102 return error;
4103 }
4104 }
4105
4106 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4107 flags);
4108 if (error)
4109 return error;
4110
4111 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4112 dget(new_dentry);
4113 if (!is_dir || (flags & RENAME_EXCHANGE))
4114 lock_two_nondirectories(source, target);
4115 else if (target)
4116 mutex_lock(&target->i_mutex);
4117
4118 error = -EBUSY;
4119 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
4120 goto out;
4121
4122 if (max_links && new_dir != old_dir) {
4123 error = -EMLINK;
4124 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4125 goto out;
4126 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4127 old_dir->i_nlink >= max_links)
4128 goto out;
4129 }
4130 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4131 shrink_dcache_parent(new_dentry);
4132 if (!is_dir) {
4133 error = try_break_deleg(source, delegated_inode);
4134 if (error)
4135 goto out;
4136 }
4137 if (target && !new_is_dir) {
4138 error = try_break_deleg(target, delegated_inode);
4139 if (error)
4140 goto out;
4141 }
4142 if (!old_dir->i_op->rename2) {
4143 error = old_dir->i_op->rename(old_dir, old_dentry,
4144 new_dir, new_dentry);
4145 } else {
4146 WARN_ON(old_dir->i_op->rename != NULL);
4147 error = old_dir->i_op->rename2(old_dir, old_dentry,
4148 new_dir, new_dentry, flags);
4149 }
4150 if (error)
4151 goto out;
4152
4153 if (!(flags & RENAME_EXCHANGE) && target) {
4154 if (is_dir)
4155 target->i_flags |= S_DEAD;
4156 dont_mount(new_dentry);
4157 }
4158 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4159 if (!(flags & RENAME_EXCHANGE))
4160 d_move(old_dentry, new_dentry);
4161 else
4162 d_exchange(old_dentry, new_dentry);
4163 }
4164 out:
4165 if (!is_dir || (flags & RENAME_EXCHANGE))
4166 unlock_two_nondirectories(source, target);
4167 else if (target)
4168 mutex_unlock(&target->i_mutex);
4169 dput(new_dentry);
4170 if (!error) {
4171 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4172 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4173 if (flags & RENAME_EXCHANGE) {
4174 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4175 new_is_dir, NULL, new_dentry);
4176 }
4177 }
4178 fsnotify_oldname_free(old_name);
4179
4180 return error;
4181 }
4182 EXPORT_SYMBOL(vfs_rename);
4183
4184 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4185 int, newdfd, const char __user *, newname, unsigned int, flags)
4186 {
4187 struct dentry *old_dir, *new_dir;
4188 struct dentry *old_dentry, *new_dentry;
4189 struct dentry *trap;
4190 struct nameidata oldnd, newnd;
4191 struct inode *delegated_inode = NULL;
4192 struct filename *from;
4193 struct filename *to;
4194 unsigned int lookup_flags = 0;
4195 bool should_retry = false;
4196 int error;
4197
4198 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
4199 return -EINVAL;
4200
4201 if ((flags & RENAME_NOREPLACE) && (flags & RENAME_EXCHANGE))
4202 return -EINVAL;
4203
4204 retry:
4205 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4206 if (IS_ERR(from)) {
4207 error = PTR_ERR(from);
4208 goto exit;
4209 }
4210
4211 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4212 if (IS_ERR(to)) {
4213 error = PTR_ERR(to);
4214 goto exit1;
4215 }
4216
4217 error = -EXDEV;
4218 if (oldnd.path.mnt != newnd.path.mnt)
4219 goto exit2;
4220
4221 old_dir = oldnd.path.dentry;
4222 error = -EBUSY;
4223 if (oldnd.last_type != LAST_NORM)
4224 goto exit2;
4225
4226 new_dir = newnd.path.dentry;
4227 if (flags & RENAME_NOREPLACE)
4228 error = -EEXIST;
4229 if (newnd.last_type != LAST_NORM)
4230 goto exit2;
4231
4232 error = mnt_want_write(oldnd.path.mnt);
4233 if (error)
4234 goto exit2;
4235
4236 oldnd.flags &= ~LOOKUP_PARENT;
4237 newnd.flags &= ~LOOKUP_PARENT;
4238 if (!(flags & RENAME_EXCHANGE))
4239 newnd.flags |= LOOKUP_RENAME_TARGET;
4240
4241 retry_deleg:
4242 trap = lock_rename(new_dir, old_dir);
4243
4244 old_dentry = lookup_hash(&oldnd);
4245 error = PTR_ERR(old_dentry);
4246 if (IS_ERR(old_dentry))
4247 goto exit3;
4248 /* source must exist */
4249 error = -ENOENT;
4250 if (d_is_negative(old_dentry))
4251 goto exit4;
4252 new_dentry = lookup_hash(&newnd);
4253 error = PTR_ERR(new_dentry);
4254 if (IS_ERR(new_dentry))
4255 goto exit4;
4256 error = -EEXIST;
4257 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4258 goto exit5;
4259 if (flags & RENAME_EXCHANGE) {
4260 error = -ENOENT;
4261 if (d_is_negative(new_dentry))
4262 goto exit5;
4263
4264 if (!d_is_dir(new_dentry)) {
4265 error = -ENOTDIR;
4266 if (newnd.last.name[newnd.last.len])
4267 goto exit5;
4268 }
4269 }
4270 /* unless the source is a directory trailing slashes give -ENOTDIR */
4271 if (!d_is_dir(old_dentry)) {
4272 error = -ENOTDIR;
4273 if (oldnd.last.name[oldnd.last.len])
4274 goto exit5;
4275 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4276 goto exit5;
4277 }
4278 /* source should not be ancestor of target */
4279 error = -EINVAL;
4280 if (old_dentry == trap)
4281 goto exit5;
4282 /* target should not be an ancestor of source */
4283 if (!(flags & RENAME_EXCHANGE))
4284 error = -ENOTEMPTY;
4285 if (new_dentry == trap)
4286 goto exit5;
4287
4288 error = security_path_rename(&oldnd.path, old_dentry,
4289 &newnd.path, new_dentry, flags);
4290 if (error)
4291 goto exit5;
4292 error = vfs_rename(old_dir->d_inode, old_dentry,
4293 new_dir->d_inode, new_dentry,
4294 &delegated_inode, flags);
4295 exit5:
4296 dput(new_dentry);
4297 exit4:
4298 dput(old_dentry);
4299 exit3:
4300 unlock_rename(new_dir, old_dir);
4301 if (delegated_inode) {
4302 error = break_deleg_wait(&delegated_inode);
4303 if (!error)
4304 goto retry_deleg;
4305 }
4306 mnt_drop_write(oldnd.path.mnt);
4307 exit2:
4308 if (retry_estale(error, lookup_flags))
4309 should_retry = true;
4310 path_put(&newnd.path);
4311 putname(to);
4312 exit1:
4313 path_put(&oldnd.path);
4314 putname(from);
4315 if (should_retry) {
4316 should_retry = false;
4317 lookup_flags |= LOOKUP_REVAL;
4318 goto retry;
4319 }
4320 exit:
4321 return error;
4322 }
4323
4324 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4325 int, newdfd, const char __user *, newname)
4326 {
4327 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4328 }
4329
4330 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4331 {
4332 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4333 }
4334
4335 int readlink_copy(char __user *buffer, int buflen, const char *link)
4336 {
4337 int len = PTR_ERR(link);
4338 if (IS_ERR(link))
4339 goto out;
4340
4341 len = strlen(link);
4342 if (len > (unsigned) buflen)
4343 len = buflen;
4344 if (copy_to_user(buffer, link, len))
4345 len = -EFAULT;
4346 out:
4347 return len;
4348 }
4349 EXPORT_SYMBOL(readlink_copy);
4350
4351 /*
4352 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4353 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4354 * using) it for any given inode is up to filesystem.
4355 */
4356 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4357 {
4358 struct nameidata nd;
4359 void *cookie;
4360 int res;
4361
4362 nd.depth = 0;
4363 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4364 if (IS_ERR(cookie))
4365 return PTR_ERR(cookie);
4366
4367 res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4368 if (dentry->d_inode->i_op->put_link)
4369 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4370 return res;
4371 }
4372 EXPORT_SYMBOL(generic_readlink);
4373
4374 /* get the link contents into pagecache */
4375 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4376 {
4377 char *kaddr;
4378 struct page *page;
4379 struct address_space *mapping = dentry->d_inode->i_mapping;
4380 page = read_mapping_page(mapping, 0, NULL);
4381 if (IS_ERR(page))
4382 return (char*)page;
4383 *ppage = page;
4384 kaddr = kmap(page);
4385 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4386 return kaddr;
4387 }
4388
4389 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4390 {
4391 struct page *page = NULL;
4392 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4393 if (page) {
4394 kunmap(page);
4395 page_cache_release(page);
4396 }
4397 return res;
4398 }
4399 EXPORT_SYMBOL(page_readlink);
4400
4401 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4402 {
4403 struct page *page = NULL;
4404 nd_set_link(nd, page_getlink(dentry, &page));
4405 return page;
4406 }
4407 EXPORT_SYMBOL(page_follow_link_light);
4408
4409 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4410 {
4411 struct page *page = cookie;
4412
4413 if (page) {
4414 kunmap(page);
4415 page_cache_release(page);
4416 }
4417 }
4418 EXPORT_SYMBOL(page_put_link);
4419
4420 /*
4421 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4422 */
4423 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4424 {
4425 struct address_space *mapping = inode->i_mapping;
4426 struct page *page;
4427 void *fsdata;
4428 int err;
4429 char *kaddr;
4430 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4431 if (nofs)
4432 flags |= AOP_FLAG_NOFS;
4433
4434 retry:
4435 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4436 flags, &page, &fsdata);
4437 if (err)
4438 goto fail;
4439
4440 kaddr = kmap_atomic(page);
4441 memcpy(kaddr, symname, len-1);
4442 kunmap_atomic(kaddr);
4443
4444 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4445 page, fsdata);
4446 if (err < 0)
4447 goto fail;
4448 if (err < len-1)
4449 goto retry;
4450
4451 mark_inode_dirty(inode);
4452 return 0;
4453 fail:
4454 return err;
4455 }
4456 EXPORT_SYMBOL(__page_symlink);
4457
4458 int page_symlink(struct inode *inode, const char *symname, int len)
4459 {
4460 return __page_symlink(inode, symname, len,
4461 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4462 }
4463 EXPORT_SYMBOL(page_symlink);
4464
4465 const struct inode_operations page_symlink_inode_operations = {
4466 .readlink = generic_readlink,
4467 .follow_link = page_follow_link_light,
4468 .put_link = page_put_link,
4469 };
4470 EXPORT_SYMBOL(page_symlink_inode_operations);