]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namei.c
bf46e1010a744aaa50e686f46a3c913246de1b31
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 struct path path;
498 struct qstr last;
499 struct path root;
500 struct inode *inode; /* path.dentry.d_inode */
501 unsigned int flags;
502 unsigned seq, m_seq;
503 int last_type;
504 unsigned depth;
505 int total_link_count;
506 struct saved {
507 struct path link;
508 void *cookie;
509 const char *name;
510 struct inode *inode;
511 unsigned seq;
512 } *stack, internal[EMBEDDED_LEVELS];
513 };
514
515 static struct nameidata *set_nameidata(struct nameidata *p)
516 {
517 struct nameidata *old = current->nameidata;
518 p->stack = p->internal;
519 p->total_link_count = old ? old->total_link_count : 0;
520 current->nameidata = p;
521 return old;
522 }
523
524 static void restore_nameidata(struct nameidata *old)
525 {
526 struct nameidata *now = current->nameidata;
527
528 current->nameidata = old;
529 if (old)
530 old->total_link_count = now->total_link_count;
531 if (now->stack != now->internal) {
532 kfree(now->stack);
533 now->stack = now->internal;
534 }
535 }
536
537 static int __nd_alloc_stack(struct nameidata *nd)
538 {
539 struct saved *p;
540
541 if (nd->flags & LOOKUP_RCU) {
542 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
543 GFP_ATOMIC);
544 if (unlikely(!p))
545 return -ECHILD;
546 } else {
547 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
548 GFP_KERNEL);
549 if (unlikely(!p))
550 return -ENOMEM;
551 }
552 memcpy(p, nd->internal, sizeof(nd->internal));
553 nd->stack = p;
554 return 0;
555 }
556
557 static inline int nd_alloc_stack(struct nameidata *nd)
558 {
559 if (likely(nd->depth != EMBEDDED_LEVELS))
560 return 0;
561 if (likely(nd->stack != nd->internal))
562 return 0;
563 return __nd_alloc_stack(nd);
564 }
565
566 static void drop_links(struct nameidata *nd)
567 {
568 int i = nd->depth;
569 while (i--) {
570 struct saved *last = nd->stack + i;
571 struct inode *inode = last->inode;
572 if (last->cookie && inode->i_op->put_link) {
573 inode->i_op->put_link(inode, last->cookie);
574 last->cookie = NULL;
575 }
576 }
577 }
578
579 static void terminate_walk(struct nameidata *nd)
580 {
581 drop_links(nd);
582 if (!(nd->flags & LOOKUP_RCU)) {
583 int i;
584 path_put(&nd->path);
585 for (i = 0; i < nd->depth; i++)
586 path_put(&nd->stack[i].link);
587 } else {
588 nd->flags &= ~LOOKUP_RCU;
589 if (!(nd->flags & LOOKUP_ROOT))
590 nd->root.mnt = NULL;
591 rcu_read_unlock();
592 }
593 nd->depth = 0;
594 }
595
596 /* path_put is needed afterwards regardless of success or failure */
597 static bool legitimize_path(struct nameidata *nd,
598 struct path *path, unsigned seq)
599 {
600 int res = __legitimize_mnt(path->mnt, nd->m_seq);
601 if (unlikely(res)) {
602 if (res > 0)
603 path->mnt = NULL;
604 path->dentry = NULL;
605 return false;
606 }
607 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
608 path->dentry = NULL;
609 return false;
610 }
611 return !read_seqcount_retry(&path->dentry->d_seq, seq);
612 }
613
614 static bool legitimize_links(struct nameidata *nd)
615 {
616 int i;
617 for (i = 0; i < nd->depth; i++) {
618 struct saved *last = nd->stack + i;
619 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
620 drop_links(nd);
621 nd->depth = i + 1;
622 return false;
623 }
624 }
625 return true;
626 }
627
628 /*
629 * Path walking has 2 modes, rcu-walk and ref-walk (see
630 * Documentation/filesystems/path-lookup.txt). In situations when we can't
631 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
632 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
633 * mode. Refcounts are grabbed at the last known good point before rcu-walk
634 * got stuck, so ref-walk may continue from there. If this is not successful
635 * (eg. a seqcount has changed), then failure is returned and it's up to caller
636 * to restart the path walk from the beginning in ref-walk mode.
637 */
638
639 /**
640 * unlazy_walk - try to switch to ref-walk mode.
641 * @nd: nameidata pathwalk data
642 * @dentry: child of nd->path.dentry or NULL
643 * @seq: seq number to check dentry against
644 * Returns: 0 on success, -ECHILD on failure
645 *
646 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
647 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
648 * @nd or NULL. Must be called from rcu-walk context.
649 * Nothing should touch nameidata between unlazy_walk() failure and
650 * terminate_walk().
651 */
652 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
653 {
654 struct fs_struct *fs = current->fs;
655 struct dentry *parent = nd->path.dentry;
656
657 BUG_ON(!(nd->flags & LOOKUP_RCU));
658
659 nd->flags &= ~LOOKUP_RCU;
660 if (unlikely(!legitimize_links(nd)))
661 goto out2;
662 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
663 goto out2;
664 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
665 goto out1;
666
667 /*
668 * For a negative lookup, the lookup sequence point is the parents
669 * sequence point, and it only needs to revalidate the parent dentry.
670 *
671 * For a positive lookup, we need to move both the parent and the
672 * dentry from the RCU domain to be properly refcounted. And the
673 * sequence number in the dentry validates *both* dentry counters,
674 * since we checked the sequence number of the parent after we got
675 * the child sequence number. So we know the parent must still
676 * be valid if the child sequence number is still valid.
677 */
678 if (!dentry) {
679 if (read_seqcount_retry(&parent->d_seq, nd->seq))
680 goto out;
681 BUG_ON(nd->inode != parent->d_inode);
682 } else {
683 if (!lockref_get_not_dead(&dentry->d_lockref))
684 goto out;
685 if (read_seqcount_retry(&dentry->d_seq, seq))
686 goto drop_dentry;
687 }
688
689 /*
690 * Sequence counts matched. Now make sure that the root is
691 * still valid and get it if required.
692 */
693 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
694 spin_lock(&fs->lock);
695 if (unlikely(!path_equal(&nd->root, &fs->root))) {
696 spin_unlock(&fs->lock);
697 goto drop_dentry;
698 }
699 path_get(&nd->root);
700 spin_unlock(&fs->lock);
701 }
702
703 rcu_read_unlock();
704 return 0;
705
706 drop_dentry:
707 rcu_read_unlock();
708 dput(dentry);
709 goto drop_root_mnt;
710 out2:
711 nd->path.mnt = NULL;
712 out1:
713 nd->path.dentry = NULL;
714 out:
715 rcu_read_unlock();
716 drop_root_mnt:
717 if (!(nd->flags & LOOKUP_ROOT))
718 nd->root.mnt = NULL;
719 return -ECHILD;
720 }
721
722 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
723 {
724 if (unlikely(!legitimize_path(nd, link, seq))) {
725 drop_links(nd);
726 nd->depth = 0;
727 nd->flags &= ~LOOKUP_RCU;
728 nd->path.mnt = NULL;
729 nd->path.dentry = NULL;
730 if (!(nd->flags & LOOKUP_ROOT))
731 nd->root.mnt = NULL;
732 rcu_read_unlock();
733 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
734 return 0;
735 }
736 path_put(link);
737 return -ECHILD;
738 }
739
740 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
741 {
742 return dentry->d_op->d_revalidate(dentry, flags);
743 }
744
745 /**
746 * complete_walk - successful completion of path walk
747 * @nd: pointer nameidata
748 *
749 * If we had been in RCU mode, drop out of it and legitimize nd->path.
750 * Revalidate the final result, unless we'd already done that during
751 * the path walk or the filesystem doesn't ask for it. Return 0 on
752 * success, -error on failure. In case of failure caller does not
753 * need to drop nd->path.
754 */
755 static int complete_walk(struct nameidata *nd)
756 {
757 struct dentry *dentry = nd->path.dentry;
758 int status;
759
760 if (nd->flags & LOOKUP_RCU) {
761 if (!(nd->flags & LOOKUP_ROOT))
762 nd->root.mnt = NULL;
763 if (unlikely(unlazy_walk(nd, NULL, 0)))
764 return -ECHILD;
765 }
766
767 if (likely(!(nd->flags & LOOKUP_JUMPED)))
768 return 0;
769
770 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
771 return 0;
772
773 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
774 if (status > 0)
775 return 0;
776
777 if (!status)
778 status = -ESTALE;
779
780 return status;
781 }
782
783 static __always_inline void set_root(struct nameidata *nd)
784 {
785 get_fs_root(current->fs, &nd->root);
786 }
787
788 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
789 {
790 struct fs_struct *fs = current->fs;
791 unsigned seq, res;
792
793 do {
794 seq = read_seqcount_begin(&fs->seq);
795 nd->root = fs->root;
796 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
797 } while (read_seqcount_retry(&fs->seq, seq));
798 return res;
799 }
800
801 static void path_put_conditional(struct path *path, struct nameidata *nd)
802 {
803 dput(path->dentry);
804 if (path->mnt != nd->path.mnt)
805 mntput(path->mnt);
806 }
807
808 static inline void path_to_nameidata(const struct path *path,
809 struct nameidata *nd)
810 {
811 if (!(nd->flags & LOOKUP_RCU)) {
812 dput(nd->path.dentry);
813 if (nd->path.mnt != path->mnt)
814 mntput(nd->path.mnt);
815 }
816 nd->path.mnt = path->mnt;
817 nd->path.dentry = path->dentry;
818 }
819
820 /*
821 * Helper to directly jump to a known parsed path from ->follow_link,
822 * caller must have taken a reference to path beforehand.
823 */
824 void nd_jump_link(struct path *path)
825 {
826 struct nameidata *nd = current->nameidata;
827 path_put(&nd->path);
828
829 nd->path = *path;
830 nd->inode = nd->path.dentry->d_inode;
831 nd->flags |= LOOKUP_JUMPED;
832 }
833
834 static inline void put_link(struct nameidata *nd)
835 {
836 struct saved *last = nd->stack + --nd->depth;
837 struct inode *inode = last->inode;
838 if (last->cookie && inode->i_op->put_link)
839 inode->i_op->put_link(inode, last->cookie);
840 if (!(nd->flags & LOOKUP_RCU))
841 path_put(&last->link);
842 }
843
844 int sysctl_protected_symlinks __read_mostly = 0;
845 int sysctl_protected_hardlinks __read_mostly = 0;
846
847 /**
848 * may_follow_link - Check symlink following for unsafe situations
849 * @nd: nameidata pathwalk data
850 *
851 * In the case of the sysctl_protected_symlinks sysctl being enabled,
852 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
853 * in a sticky world-writable directory. This is to protect privileged
854 * processes from failing races against path names that may change out
855 * from under them by way of other users creating malicious symlinks.
856 * It will permit symlinks to be followed only when outside a sticky
857 * world-writable directory, or when the uid of the symlink and follower
858 * match, or when the directory owner matches the symlink's owner.
859 *
860 * Returns 0 if following the symlink is allowed, -ve on error.
861 */
862 static inline int may_follow_link(struct nameidata *nd)
863 {
864 const struct inode *inode;
865 const struct inode *parent;
866
867 if (!sysctl_protected_symlinks)
868 return 0;
869
870 /* Allowed if owner and follower match. */
871 inode = nd->stack[0].inode;
872 if (uid_eq(current_cred()->fsuid, inode->i_uid))
873 return 0;
874
875 /* Allowed if parent directory not sticky and world-writable. */
876 parent = nd->path.dentry->d_inode;
877 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
878 return 0;
879
880 /* Allowed if parent directory and link owner match. */
881 if (uid_eq(parent->i_uid, inode->i_uid))
882 return 0;
883
884 if (nd->flags & LOOKUP_RCU)
885 return -ECHILD;
886
887 audit_log_link_denied("follow_link", &nd->stack[0].link);
888 return -EACCES;
889 }
890
891 /**
892 * safe_hardlink_source - Check for safe hardlink conditions
893 * @inode: the source inode to hardlink from
894 *
895 * Return false if at least one of the following conditions:
896 * - inode is not a regular file
897 * - inode is setuid
898 * - inode is setgid and group-exec
899 * - access failure for read and write
900 *
901 * Otherwise returns true.
902 */
903 static bool safe_hardlink_source(struct inode *inode)
904 {
905 umode_t mode = inode->i_mode;
906
907 /* Special files should not get pinned to the filesystem. */
908 if (!S_ISREG(mode))
909 return false;
910
911 /* Setuid files should not get pinned to the filesystem. */
912 if (mode & S_ISUID)
913 return false;
914
915 /* Executable setgid files should not get pinned to the filesystem. */
916 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
917 return false;
918
919 /* Hardlinking to unreadable or unwritable sources is dangerous. */
920 if (inode_permission(inode, MAY_READ | MAY_WRITE))
921 return false;
922
923 return true;
924 }
925
926 /**
927 * may_linkat - Check permissions for creating a hardlink
928 * @link: the source to hardlink from
929 *
930 * Block hardlink when all of:
931 * - sysctl_protected_hardlinks enabled
932 * - fsuid does not match inode
933 * - hardlink source is unsafe (see safe_hardlink_source() above)
934 * - not CAP_FOWNER
935 *
936 * Returns 0 if successful, -ve on error.
937 */
938 static int may_linkat(struct path *link)
939 {
940 const struct cred *cred;
941 struct inode *inode;
942
943 if (!sysctl_protected_hardlinks)
944 return 0;
945
946 cred = current_cred();
947 inode = link->dentry->d_inode;
948
949 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
950 * otherwise, it must be a safe source.
951 */
952 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
953 capable(CAP_FOWNER))
954 return 0;
955
956 audit_log_link_denied("linkat", link);
957 return -EPERM;
958 }
959
960 static __always_inline
961 const char *get_link(struct nameidata *nd)
962 {
963 struct saved *last = nd->stack + nd->depth - 1;
964 struct dentry *dentry = last->link.dentry;
965 struct inode *inode = last->inode;
966 int error;
967 const char *res;
968
969 if (!(nd->flags & LOOKUP_RCU)) {
970 touch_atime(&last->link);
971 cond_resched();
972 } else if (atime_needs_update(&last->link, inode)) {
973 if (unlikely(unlazy_walk(nd, NULL, 0)))
974 return ERR_PTR(-ECHILD);
975 touch_atime(&last->link);
976 }
977
978 error = security_inode_follow_link(dentry, inode,
979 nd->flags & LOOKUP_RCU);
980 if (unlikely(error))
981 return ERR_PTR(error);
982
983 nd->last_type = LAST_BIND;
984 res = inode->i_link;
985 if (!res) {
986 if (nd->flags & LOOKUP_RCU) {
987 if (unlikely(unlazy_walk(nd, NULL, 0)))
988 return ERR_PTR(-ECHILD);
989 }
990 res = inode->i_op->follow_link(dentry, &last->cookie);
991 if (IS_ERR_OR_NULL(res)) {
992 last->cookie = NULL;
993 return res;
994 }
995 }
996 if (*res == '/') {
997 if (nd->flags & LOOKUP_RCU) {
998 if (unlikely(unlazy_walk(nd, NULL, 0)))
999 return ERR_PTR(-ECHILD);
1000 }
1001 if (!nd->root.mnt)
1002 set_root(nd);
1003 path_put(&nd->path);
1004 nd->path = nd->root;
1005 path_get(&nd->root);
1006 nd->inode = nd->path.dentry->d_inode;
1007 nd->flags |= LOOKUP_JUMPED;
1008 while (unlikely(*++res == '/'))
1009 ;
1010 }
1011 if (!*res)
1012 res = NULL;
1013 return res;
1014 }
1015
1016 static int follow_up_rcu(struct path *path)
1017 {
1018 struct mount *mnt = real_mount(path->mnt);
1019 struct mount *parent;
1020 struct dentry *mountpoint;
1021
1022 parent = mnt->mnt_parent;
1023 if (&parent->mnt == path->mnt)
1024 return 0;
1025 mountpoint = mnt->mnt_mountpoint;
1026 path->dentry = mountpoint;
1027 path->mnt = &parent->mnt;
1028 return 1;
1029 }
1030
1031 /*
1032 * follow_up - Find the mountpoint of path's vfsmount
1033 *
1034 * Given a path, find the mountpoint of its source file system.
1035 * Replace @path with the path of the mountpoint in the parent mount.
1036 * Up is towards /.
1037 *
1038 * Return 1 if we went up a level and 0 if we were already at the
1039 * root.
1040 */
1041 int follow_up(struct path *path)
1042 {
1043 struct mount *mnt = real_mount(path->mnt);
1044 struct mount *parent;
1045 struct dentry *mountpoint;
1046
1047 read_seqlock_excl(&mount_lock);
1048 parent = mnt->mnt_parent;
1049 if (parent == mnt) {
1050 read_sequnlock_excl(&mount_lock);
1051 return 0;
1052 }
1053 mntget(&parent->mnt);
1054 mountpoint = dget(mnt->mnt_mountpoint);
1055 read_sequnlock_excl(&mount_lock);
1056 dput(path->dentry);
1057 path->dentry = mountpoint;
1058 mntput(path->mnt);
1059 path->mnt = &parent->mnt;
1060 return 1;
1061 }
1062 EXPORT_SYMBOL(follow_up);
1063
1064 /*
1065 * Perform an automount
1066 * - return -EISDIR to tell follow_managed() to stop and return the path we
1067 * were called with.
1068 */
1069 static int follow_automount(struct path *path, struct nameidata *nd,
1070 bool *need_mntput)
1071 {
1072 struct vfsmount *mnt;
1073 int err;
1074
1075 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1076 return -EREMOTE;
1077
1078 /* We don't want to mount if someone's just doing a stat -
1079 * unless they're stat'ing a directory and appended a '/' to
1080 * the name.
1081 *
1082 * We do, however, want to mount if someone wants to open or
1083 * create a file of any type under the mountpoint, wants to
1084 * traverse through the mountpoint or wants to open the
1085 * mounted directory. Also, autofs may mark negative dentries
1086 * as being automount points. These will need the attentions
1087 * of the daemon to instantiate them before they can be used.
1088 */
1089 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1090 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1091 path->dentry->d_inode)
1092 return -EISDIR;
1093
1094 nd->total_link_count++;
1095 if (nd->total_link_count >= 40)
1096 return -ELOOP;
1097
1098 mnt = path->dentry->d_op->d_automount(path);
1099 if (IS_ERR(mnt)) {
1100 /*
1101 * The filesystem is allowed to return -EISDIR here to indicate
1102 * it doesn't want to automount. For instance, autofs would do
1103 * this so that its userspace daemon can mount on this dentry.
1104 *
1105 * However, we can only permit this if it's a terminal point in
1106 * the path being looked up; if it wasn't then the remainder of
1107 * the path is inaccessible and we should say so.
1108 */
1109 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1110 return -EREMOTE;
1111 return PTR_ERR(mnt);
1112 }
1113
1114 if (!mnt) /* mount collision */
1115 return 0;
1116
1117 if (!*need_mntput) {
1118 /* lock_mount() may release path->mnt on error */
1119 mntget(path->mnt);
1120 *need_mntput = true;
1121 }
1122 err = finish_automount(mnt, path);
1123
1124 switch (err) {
1125 case -EBUSY:
1126 /* Someone else made a mount here whilst we were busy */
1127 return 0;
1128 case 0:
1129 path_put(path);
1130 path->mnt = mnt;
1131 path->dentry = dget(mnt->mnt_root);
1132 return 0;
1133 default:
1134 return err;
1135 }
1136
1137 }
1138
1139 /*
1140 * Handle a dentry that is managed in some way.
1141 * - Flagged for transit management (autofs)
1142 * - Flagged as mountpoint
1143 * - Flagged as automount point
1144 *
1145 * This may only be called in refwalk mode.
1146 *
1147 * Serialization is taken care of in namespace.c
1148 */
1149 static int follow_managed(struct path *path, struct nameidata *nd)
1150 {
1151 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1152 unsigned managed;
1153 bool need_mntput = false;
1154 int ret = 0;
1155
1156 /* Given that we're not holding a lock here, we retain the value in a
1157 * local variable for each dentry as we look at it so that we don't see
1158 * the components of that value change under us */
1159 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1160 managed &= DCACHE_MANAGED_DENTRY,
1161 unlikely(managed != 0)) {
1162 /* Allow the filesystem to manage the transit without i_mutex
1163 * being held. */
1164 if (managed & DCACHE_MANAGE_TRANSIT) {
1165 BUG_ON(!path->dentry->d_op);
1166 BUG_ON(!path->dentry->d_op->d_manage);
1167 ret = path->dentry->d_op->d_manage(path->dentry, false);
1168 if (ret < 0)
1169 break;
1170 }
1171
1172 /* Transit to a mounted filesystem. */
1173 if (managed & DCACHE_MOUNTED) {
1174 struct vfsmount *mounted = lookup_mnt(path);
1175 if (mounted) {
1176 dput(path->dentry);
1177 if (need_mntput)
1178 mntput(path->mnt);
1179 path->mnt = mounted;
1180 path->dentry = dget(mounted->mnt_root);
1181 need_mntput = true;
1182 continue;
1183 }
1184
1185 /* Something is mounted on this dentry in another
1186 * namespace and/or whatever was mounted there in this
1187 * namespace got unmounted before lookup_mnt() could
1188 * get it */
1189 }
1190
1191 /* Handle an automount point */
1192 if (managed & DCACHE_NEED_AUTOMOUNT) {
1193 ret = follow_automount(path, nd, &need_mntput);
1194 if (ret < 0)
1195 break;
1196 continue;
1197 }
1198
1199 /* We didn't change the current path point */
1200 break;
1201 }
1202
1203 if (need_mntput && path->mnt == mnt)
1204 mntput(path->mnt);
1205 if (ret == -EISDIR)
1206 ret = 0;
1207 if (need_mntput)
1208 nd->flags |= LOOKUP_JUMPED;
1209 if (unlikely(ret < 0))
1210 path_put_conditional(path, nd);
1211 return ret;
1212 }
1213
1214 int follow_down_one(struct path *path)
1215 {
1216 struct vfsmount *mounted;
1217
1218 mounted = lookup_mnt(path);
1219 if (mounted) {
1220 dput(path->dentry);
1221 mntput(path->mnt);
1222 path->mnt = mounted;
1223 path->dentry = dget(mounted->mnt_root);
1224 return 1;
1225 }
1226 return 0;
1227 }
1228 EXPORT_SYMBOL(follow_down_one);
1229
1230 static inline int managed_dentry_rcu(struct dentry *dentry)
1231 {
1232 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1233 dentry->d_op->d_manage(dentry, true) : 0;
1234 }
1235
1236 /*
1237 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1238 * we meet a managed dentry that would need blocking.
1239 */
1240 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1241 struct inode **inode, unsigned *seqp)
1242 {
1243 for (;;) {
1244 struct mount *mounted;
1245 /*
1246 * Don't forget we might have a non-mountpoint managed dentry
1247 * that wants to block transit.
1248 */
1249 switch (managed_dentry_rcu(path->dentry)) {
1250 case -ECHILD:
1251 default:
1252 return false;
1253 case -EISDIR:
1254 return true;
1255 case 0:
1256 break;
1257 }
1258
1259 if (!d_mountpoint(path->dentry))
1260 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1261
1262 mounted = __lookup_mnt(path->mnt, path->dentry);
1263 if (!mounted)
1264 break;
1265 path->mnt = &mounted->mnt;
1266 path->dentry = mounted->mnt.mnt_root;
1267 nd->flags |= LOOKUP_JUMPED;
1268 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1269 /*
1270 * Update the inode too. We don't need to re-check the
1271 * dentry sequence number here after this d_inode read,
1272 * because a mount-point is always pinned.
1273 */
1274 *inode = path->dentry->d_inode;
1275 }
1276 return !read_seqretry(&mount_lock, nd->m_seq) &&
1277 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1278 }
1279
1280 static int follow_dotdot_rcu(struct nameidata *nd)
1281 {
1282 struct inode *inode = nd->inode;
1283 if (!nd->root.mnt)
1284 set_root_rcu(nd);
1285
1286 while (1) {
1287 if (nd->path.dentry == nd->root.dentry &&
1288 nd->path.mnt == nd->root.mnt) {
1289 break;
1290 }
1291 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1292 struct dentry *old = nd->path.dentry;
1293 struct dentry *parent = old->d_parent;
1294 unsigned seq;
1295
1296 inode = parent->d_inode;
1297 seq = read_seqcount_begin(&parent->d_seq);
1298 if (read_seqcount_retry(&old->d_seq, nd->seq))
1299 goto failed;
1300 nd->path.dentry = parent;
1301 nd->seq = seq;
1302 break;
1303 }
1304 if (!follow_up_rcu(&nd->path))
1305 break;
1306 inode = nd->path.dentry->d_inode;
1307 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1308 }
1309 while (d_mountpoint(nd->path.dentry)) {
1310 struct mount *mounted;
1311 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1312 if (!mounted)
1313 break;
1314 nd->path.mnt = &mounted->mnt;
1315 nd->path.dentry = mounted->mnt.mnt_root;
1316 inode = nd->path.dentry->d_inode;
1317 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1318 if (read_seqretry(&mount_lock, nd->m_seq))
1319 goto failed;
1320 }
1321 nd->inode = inode;
1322 return 0;
1323
1324 failed:
1325 return -ECHILD;
1326 }
1327
1328 /*
1329 * Follow down to the covering mount currently visible to userspace. At each
1330 * point, the filesystem owning that dentry may be queried as to whether the
1331 * caller is permitted to proceed or not.
1332 */
1333 int follow_down(struct path *path)
1334 {
1335 unsigned managed;
1336 int ret;
1337
1338 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1339 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1340 /* Allow the filesystem to manage the transit without i_mutex
1341 * being held.
1342 *
1343 * We indicate to the filesystem if someone is trying to mount
1344 * something here. This gives autofs the chance to deny anyone
1345 * other than its daemon the right to mount on its
1346 * superstructure.
1347 *
1348 * The filesystem may sleep at this point.
1349 */
1350 if (managed & DCACHE_MANAGE_TRANSIT) {
1351 BUG_ON(!path->dentry->d_op);
1352 BUG_ON(!path->dentry->d_op->d_manage);
1353 ret = path->dentry->d_op->d_manage(
1354 path->dentry, false);
1355 if (ret < 0)
1356 return ret == -EISDIR ? 0 : ret;
1357 }
1358
1359 /* Transit to a mounted filesystem. */
1360 if (managed & DCACHE_MOUNTED) {
1361 struct vfsmount *mounted = lookup_mnt(path);
1362 if (!mounted)
1363 break;
1364 dput(path->dentry);
1365 mntput(path->mnt);
1366 path->mnt = mounted;
1367 path->dentry = dget(mounted->mnt_root);
1368 continue;
1369 }
1370
1371 /* Don't handle automount points here */
1372 break;
1373 }
1374 return 0;
1375 }
1376 EXPORT_SYMBOL(follow_down);
1377
1378 /*
1379 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1380 */
1381 static void follow_mount(struct path *path)
1382 {
1383 while (d_mountpoint(path->dentry)) {
1384 struct vfsmount *mounted = lookup_mnt(path);
1385 if (!mounted)
1386 break;
1387 dput(path->dentry);
1388 mntput(path->mnt);
1389 path->mnt = mounted;
1390 path->dentry = dget(mounted->mnt_root);
1391 }
1392 }
1393
1394 static void follow_dotdot(struct nameidata *nd)
1395 {
1396 if (!nd->root.mnt)
1397 set_root(nd);
1398
1399 while(1) {
1400 struct dentry *old = nd->path.dentry;
1401
1402 if (nd->path.dentry == nd->root.dentry &&
1403 nd->path.mnt == nd->root.mnt) {
1404 break;
1405 }
1406 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1407 /* rare case of legitimate dget_parent()... */
1408 nd->path.dentry = dget_parent(nd->path.dentry);
1409 dput(old);
1410 break;
1411 }
1412 if (!follow_up(&nd->path))
1413 break;
1414 }
1415 follow_mount(&nd->path);
1416 nd->inode = nd->path.dentry->d_inode;
1417 }
1418
1419 /*
1420 * This looks up the name in dcache, possibly revalidates the old dentry and
1421 * allocates a new one if not found or not valid. In the need_lookup argument
1422 * returns whether i_op->lookup is necessary.
1423 *
1424 * dir->d_inode->i_mutex must be held
1425 */
1426 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1427 unsigned int flags, bool *need_lookup)
1428 {
1429 struct dentry *dentry;
1430 int error;
1431
1432 *need_lookup = false;
1433 dentry = d_lookup(dir, name);
1434 if (dentry) {
1435 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1436 error = d_revalidate(dentry, flags);
1437 if (unlikely(error <= 0)) {
1438 if (error < 0) {
1439 dput(dentry);
1440 return ERR_PTR(error);
1441 } else {
1442 d_invalidate(dentry);
1443 dput(dentry);
1444 dentry = NULL;
1445 }
1446 }
1447 }
1448 }
1449
1450 if (!dentry) {
1451 dentry = d_alloc(dir, name);
1452 if (unlikely(!dentry))
1453 return ERR_PTR(-ENOMEM);
1454
1455 *need_lookup = true;
1456 }
1457 return dentry;
1458 }
1459
1460 /*
1461 * Call i_op->lookup on the dentry. The dentry must be negative and
1462 * unhashed.
1463 *
1464 * dir->d_inode->i_mutex must be held
1465 */
1466 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1467 unsigned int flags)
1468 {
1469 struct dentry *old;
1470
1471 /* Don't create child dentry for a dead directory. */
1472 if (unlikely(IS_DEADDIR(dir))) {
1473 dput(dentry);
1474 return ERR_PTR(-ENOENT);
1475 }
1476
1477 old = dir->i_op->lookup(dir, dentry, flags);
1478 if (unlikely(old)) {
1479 dput(dentry);
1480 dentry = old;
1481 }
1482 return dentry;
1483 }
1484
1485 static struct dentry *__lookup_hash(struct qstr *name,
1486 struct dentry *base, unsigned int flags)
1487 {
1488 bool need_lookup;
1489 struct dentry *dentry;
1490
1491 dentry = lookup_dcache(name, base, flags, &need_lookup);
1492 if (!need_lookup)
1493 return dentry;
1494
1495 return lookup_real(base->d_inode, dentry, flags);
1496 }
1497
1498 /*
1499 * It's more convoluted than I'd like it to be, but... it's still fairly
1500 * small and for now I'd prefer to have fast path as straight as possible.
1501 * It _is_ time-critical.
1502 */
1503 static int lookup_fast(struct nameidata *nd,
1504 struct path *path, struct inode **inode,
1505 unsigned *seqp)
1506 {
1507 struct vfsmount *mnt = nd->path.mnt;
1508 struct dentry *dentry, *parent = nd->path.dentry;
1509 int need_reval = 1;
1510 int status = 1;
1511 int err;
1512
1513 /*
1514 * Rename seqlock is not required here because in the off chance
1515 * of a false negative due to a concurrent rename, we're going to
1516 * do the non-racy lookup, below.
1517 */
1518 if (nd->flags & LOOKUP_RCU) {
1519 unsigned seq;
1520 bool negative;
1521 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1522 if (!dentry)
1523 goto unlazy;
1524
1525 /*
1526 * This sequence count validates that the inode matches
1527 * the dentry name information from lookup.
1528 */
1529 *inode = d_backing_inode(dentry);
1530 negative = d_is_negative(dentry);
1531 if (read_seqcount_retry(&dentry->d_seq, seq))
1532 return -ECHILD;
1533 if (negative)
1534 return -ENOENT;
1535
1536 /*
1537 * This sequence count validates that the parent had no
1538 * changes while we did the lookup of the dentry above.
1539 *
1540 * The memory barrier in read_seqcount_begin of child is
1541 * enough, we can use __read_seqcount_retry here.
1542 */
1543 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1544 return -ECHILD;
1545
1546 *seqp = seq;
1547 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1548 status = d_revalidate(dentry, nd->flags);
1549 if (unlikely(status <= 0)) {
1550 if (status != -ECHILD)
1551 need_reval = 0;
1552 goto unlazy;
1553 }
1554 }
1555 path->mnt = mnt;
1556 path->dentry = dentry;
1557 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1558 return 0;
1559 unlazy:
1560 if (unlazy_walk(nd, dentry, seq))
1561 return -ECHILD;
1562 } else {
1563 dentry = __d_lookup(parent, &nd->last);
1564 }
1565
1566 if (unlikely(!dentry))
1567 goto need_lookup;
1568
1569 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1570 status = d_revalidate(dentry, nd->flags);
1571 if (unlikely(status <= 0)) {
1572 if (status < 0) {
1573 dput(dentry);
1574 return status;
1575 }
1576 d_invalidate(dentry);
1577 dput(dentry);
1578 goto need_lookup;
1579 }
1580
1581 if (unlikely(d_is_negative(dentry))) {
1582 dput(dentry);
1583 return -ENOENT;
1584 }
1585 path->mnt = mnt;
1586 path->dentry = dentry;
1587 err = follow_managed(path, nd);
1588 if (likely(!err))
1589 *inode = d_backing_inode(path->dentry);
1590 return err;
1591
1592 need_lookup:
1593 return 1;
1594 }
1595
1596 /* Fast lookup failed, do it the slow way */
1597 static int lookup_slow(struct nameidata *nd, struct path *path)
1598 {
1599 struct dentry *dentry, *parent;
1600
1601 parent = nd->path.dentry;
1602 BUG_ON(nd->inode != parent->d_inode);
1603
1604 mutex_lock(&parent->d_inode->i_mutex);
1605 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1606 mutex_unlock(&parent->d_inode->i_mutex);
1607 if (IS_ERR(dentry))
1608 return PTR_ERR(dentry);
1609 path->mnt = nd->path.mnt;
1610 path->dentry = dentry;
1611 return follow_managed(path, nd);
1612 }
1613
1614 static inline int may_lookup(struct nameidata *nd)
1615 {
1616 if (nd->flags & LOOKUP_RCU) {
1617 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1618 if (err != -ECHILD)
1619 return err;
1620 if (unlazy_walk(nd, NULL, 0))
1621 return -ECHILD;
1622 }
1623 return inode_permission(nd->inode, MAY_EXEC);
1624 }
1625
1626 static inline int handle_dots(struct nameidata *nd, int type)
1627 {
1628 if (type == LAST_DOTDOT) {
1629 if (nd->flags & LOOKUP_RCU) {
1630 return follow_dotdot_rcu(nd);
1631 } else
1632 follow_dotdot(nd);
1633 }
1634 return 0;
1635 }
1636
1637 static int pick_link(struct nameidata *nd, struct path *link,
1638 struct inode *inode, unsigned seq)
1639 {
1640 int error;
1641 struct saved *last;
1642 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1643 path_to_nameidata(link, nd);
1644 return -ELOOP;
1645 }
1646 if (!(nd->flags & LOOKUP_RCU)) {
1647 if (link->mnt == nd->path.mnt)
1648 mntget(link->mnt);
1649 }
1650 error = nd_alloc_stack(nd);
1651 if (unlikely(error)) {
1652 if (error == -ECHILD) {
1653 if (unlikely(unlazy_link(nd, link, seq)))
1654 return -ECHILD;
1655 error = nd_alloc_stack(nd);
1656 }
1657 if (error) {
1658 path_put(link);
1659 return error;
1660 }
1661 }
1662
1663 last = nd->stack + nd->depth++;
1664 last->link = *link;
1665 last->cookie = NULL;
1666 last->inode = inode;
1667 last->seq = seq;
1668 return 1;
1669 }
1670
1671 /*
1672 * Do we need to follow links? We _really_ want to be able
1673 * to do this check without having to look at inode->i_op,
1674 * so we keep a cache of "no, this doesn't need follow_link"
1675 * for the common case.
1676 */
1677 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1678 int follow,
1679 struct inode *inode, unsigned seq)
1680 {
1681 if (likely(!d_is_symlink(link->dentry)))
1682 return 0;
1683 if (!follow)
1684 return 0;
1685 return pick_link(nd, link, inode, seq);
1686 }
1687
1688 enum {WALK_GET = 1, WALK_PUT = 2};
1689
1690 static int walk_component(struct nameidata *nd, int flags)
1691 {
1692 struct path path;
1693 struct inode *inode;
1694 unsigned seq;
1695 int err;
1696 /*
1697 * "." and ".." are special - ".." especially so because it has
1698 * to be able to know about the current root directory and
1699 * parent relationships.
1700 */
1701 if (unlikely(nd->last_type != LAST_NORM)) {
1702 err = handle_dots(nd, nd->last_type);
1703 if (flags & WALK_PUT)
1704 put_link(nd);
1705 return err;
1706 }
1707 err = lookup_fast(nd, &path, &inode, &seq);
1708 if (unlikely(err)) {
1709 if (err < 0)
1710 return err;
1711
1712 err = lookup_slow(nd, &path);
1713 if (err < 0)
1714 return err;
1715
1716 inode = d_backing_inode(path.dentry);
1717 seq = 0; /* we are already out of RCU mode */
1718 err = -ENOENT;
1719 if (d_is_negative(path.dentry))
1720 goto out_path_put;
1721 }
1722
1723 if (flags & WALK_PUT)
1724 put_link(nd);
1725 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1726 if (unlikely(err))
1727 return err;
1728 path_to_nameidata(&path, nd);
1729 nd->inode = inode;
1730 nd->seq = seq;
1731 return 0;
1732
1733 out_path_put:
1734 path_to_nameidata(&path, nd);
1735 return err;
1736 }
1737
1738 /*
1739 * We can do the critical dentry name comparison and hashing
1740 * operations one word at a time, but we are limited to:
1741 *
1742 * - Architectures with fast unaligned word accesses. We could
1743 * do a "get_unaligned()" if this helps and is sufficiently
1744 * fast.
1745 *
1746 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1747 * do not trap on the (extremely unlikely) case of a page
1748 * crossing operation.
1749 *
1750 * - Furthermore, we need an efficient 64-bit compile for the
1751 * 64-bit case in order to generate the "number of bytes in
1752 * the final mask". Again, that could be replaced with a
1753 * efficient population count instruction or similar.
1754 */
1755 #ifdef CONFIG_DCACHE_WORD_ACCESS
1756
1757 #include <asm/word-at-a-time.h>
1758
1759 #ifdef CONFIG_64BIT
1760
1761 static inline unsigned int fold_hash(unsigned long hash)
1762 {
1763 return hash_64(hash, 32);
1764 }
1765
1766 #else /* 32-bit case */
1767
1768 #define fold_hash(x) (x)
1769
1770 #endif
1771
1772 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1773 {
1774 unsigned long a, mask;
1775 unsigned long hash = 0;
1776
1777 for (;;) {
1778 a = load_unaligned_zeropad(name);
1779 if (len < sizeof(unsigned long))
1780 break;
1781 hash += a;
1782 hash *= 9;
1783 name += sizeof(unsigned long);
1784 len -= sizeof(unsigned long);
1785 if (!len)
1786 goto done;
1787 }
1788 mask = bytemask_from_count(len);
1789 hash += mask & a;
1790 done:
1791 return fold_hash(hash);
1792 }
1793 EXPORT_SYMBOL(full_name_hash);
1794
1795 /*
1796 * Calculate the length and hash of the path component, and
1797 * return the "hash_len" as the result.
1798 */
1799 static inline u64 hash_name(const char *name)
1800 {
1801 unsigned long a, b, adata, bdata, mask, hash, len;
1802 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1803
1804 hash = a = 0;
1805 len = -sizeof(unsigned long);
1806 do {
1807 hash = (hash + a) * 9;
1808 len += sizeof(unsigned long);
1809 a = load_unaligned_zeropad(name+len);
1810 b = a ^ REPEAT_BYTE('/');
1811 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1812
1813 adata = prep_zero_mask(a, adata, &constants);
1814 bdata = prep_zero_mask(b, bdata, &constants);
1815
1816 mask = create_zero_mask(adata | bdata);
1817
1818 hash += a & zero_bytemask(mask);
1819 len += find_zero(mask);
1820 return hashlen_create(fold_hash(hash), len);
1821 }
1822
1823 #else
1824
1825 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1826 {
1827 unsigned long hash = init_name_hash();
1828 while (len--)
1829 hash = partial_name_hash(*name++, hash);
1830 return end_name_hash(hash);
1831 }
1832 EXPORT_SYMBOL(full_name_hash);
1833
1834 /*
1835 * We know there's a real path component here of at least
1836 * one character.
1837 */
1838 static inline u64 hash_name(const char *name)
1839 {
1840 unsigned long hash = init_name_hash();
1841 unsigned long len = 0, c;
1842
1843 c = (unsigned char)*name;
1844 do {
1845 len++;
1846 hash = partial_name_hash(c, hash);
1847 c = (unsigned char)name[len];
1848 } while (c && c != '/');
1849 return hashlen_create(end_name_hash(hash), len);
1850 }
1851
1852 #endif
1853
1854 /*
1855 * Name resolution.
1856 * This is the basic name resolution function, turning a pathname into
1857 * the final dentry. We expect 'base' to be positive and a directory.
1858 *
1859 * Returns 0 and nd will have valid dentry and mnt on success.
1860 * Returns error and drops reference to input namei data on failure.
1861 */
1862 static int link_path_walk(const char *name, struct nameidata *nd)
1863 {
1864 int err;
1865
1866 while (*name=='/')
1867 name++;
1868 if (!*name)
1869 return 0;
1870
1871 /* At this point we know we have a real path component. */
1872 for(;;) {
1873 u64 hash_len;
1874 int type;
1875
1876 err = may_lookup(nd);
1877 if (err)
1878 return err;
1879
1880 hash_len = hash_name(name);
1881
1882 type = LAST_NORM;
1883 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1884 case 2:
1885 if (name[1] == '.') {
1886 type = LAST_DOTDOT;
1887 nd->flags |= LOOKUP_JUMPED;
1888 }
1889 break;
1890 case 1:
1891 type = LAST_DOT;
1892 }
1893 if (likely(type == LAST_NORM)) {
1894 struct dentry *parent = nd->path.dentry;
1895 nd->flags &= ~LOOKUP_JUMPED;
1896 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1897 struct qstr this = { { .hash_len = hash_len }, .name = name };
1898 err = parent->d_op->d_hash(parent, &this);
1899 if (err < 0)
1900 return err;
1901 hash_len = this.hash_len;
1902 name = this.name;
1903 }
1904 }
1905
1906 nd->last.hash_len = hash_len;
1907 nd->last.name = name;
1908 nd->last_type = type;
1909
1910 name += hashlen_len(hash_len);
1911 if (!*name)
1912 goto OK;
1913 /*
1914 * If it wasn't NUL, we know it was '/'. Skip that
1915 * slash, and continue until no more slashes.
1916 */
1917 do {
1918 name++;
1919 } while (unlikely(*name == '/'));
1920 if (unlikely(!*name)) {
1921 OK:
1922 /* pathname body, done */
1923 if (!nd->depth)
1924 return 0;
1925 name = nd->stack[nd->depth - 1].name;
1926 /* trailing symlink, done */
1927 if (!name)
1928 return 0;
1929 /* last component of nested symlink */
1930 err = walk_component(nd, WALK_GET | WALK_PUT);
1931 } else {
1932 err = walk_component(nd, WALK_GET);
1933 }
1934 if (err < 0)
1935 return err;
1936
1937 if (err) {
1938 const char *s = get_link(nd);
1939
1940 if (unlikely(IS_ERR(s)))
1941 return PTR_ERR(s);
1942 err = 0;
1943 if (unlikely(!s)) {
1944 /* jumped */
1945 put_link(nd);
1946 } else {
1947 nd->stack[nd->depth - 1].name = name;
1948 name = s;
1949 continue;
1950 }
1951 }
1952 if (unlikely(!d_can_lookup(nd->path.dentry)))
1953 return -ENOTDIR;
1954 }
1955 }
1956
1957 static const char *path_init(int dfd, const struct filename *name,
1958 unsigned int flags, struct nameidata *nd)
1959 {
1960 int retval = 0;
1961 const char *s = name->name;
1962
1963 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1964 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1965 nd->depth = 0;
1966 nd->total_link_count = 0;
1967 if (flags & LOOKUP_ROOT) {
1968 struct dentry *root = nd->root.dentry;
1969 struct inode *inode = root->d_inode;
1970 if (*s) {
1971 if (!d_can_lookup(root))
1972 return ERR_PTR(-ENOTDIR);
1973 retval = inode_permission(inode, MAY_EXEC);
1974 if (retval)
1975 return ERR_PTR(retval);
1976 }
1977 nd->path = nd->root;
1978 nd->inode = inode;
1979 if (flags & LOOKUP_RCU) {
1980 rcu_read_lock();
1981 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1982 nd->m_seq = read_seqbegin(&mount_lock);
1983 } else {
1984 path_get(&nd->path);
1985 }
1986 return s;
1987 }
1988
1989 nd->root.mnt = NULL;
1990
1991 nd->m_seq = read_seqbegin(&mount_lock);
1992 if (*s == '/') {
1993 if (flags & LOOKUP_RCU) {
1994 rcu_read_lock();
1995 nd->seq = set_root_rcu(nd);
1996 } else {
1997 set_root(nd);
1998 path_get(&nd->root);
1999 }
2000 nd->path = nd->root;
2001 } else if (dfd == AT_FDCWD) {
2002 if (flags & LOOKUP_RCU) {
2003 struct fs_struct *fs = current->fs;
2004 unsigned seq;
2005
2006 rcu_read_lock();
2007
2008 do {
2009 seq = read_seqcount_begin(&fs->seq);
2010 nd->path = fs->pwd;
2011 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2012 } while (read_seqcount_retry(&fs->seq, seq));
2013 } else {
2014 get_fs_pwd(current->fs, &nd->path);
2015 }
2016 } else {
2017 /* Caller must check execute permissions on the starting path component */
2018 struct fd f = fdget_raw(dfd);
2019 struct dentry *dentry;
2020
2021 if (!f.file)
2022 return ERR_PTR(-EBADF);
2023
2024 dentry = f.file->f_path.dentry;
2025
2026 if (*s) {
2027 if (!d_can_lookup(dentry)) {
2028 fdput(f);
2029 return ERR_PTR(-ENOTDIR);
2030 }
2031 }
2032
2033 nd->path = f.file->f_path;
2034 if (flags & LOOKUP_RCU) {
2035 rcu_read_lock();
2036 nd->inode = nd->path.dentry->d_inode;
2037 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2038 } else {
2039 path_get(&nd->path);
2040 nd->inode = nd->path.dentry->d_inode;
2041 }
2042 fdput(f);
2043 return s;
2044 }
2045
2046 nd->inode = nd->path.dentry->d_inode;
2047 if (!(flags & LOOKUP_RCU))
2048 return s;
2049 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
2050 return s;
2051 if (!(nd->flags & LOOKUP_ROOT))
2052 nd->root.mnt = NULL;
2053 rcu_read_unlock();
2054 return ERR_PTR(-ECHILD);
2055 }
2056
2057 static void path_cleanup(struct nameidata *nd)
2058 {
2059 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
2060 path_put(&nd->root);
2061 nd->root.mnt = NULL;
2062 }
2063 }
2064
2065 static const char *trailing_symlink(struct nameidata *nd)
2066 {
2067 const char *s;
2068 int error = may_follow_link(nd);
2069 if (unlikely(error))
2070 return ERR_PTR(error);
2071 nd->flags |= LOOKUP_PARENT;
2072 nd->stack[0].name = NULL;
2073 s = get_link(nd);
2074 return s ? s : "";
2075 }
2076
2077 static inline int lookup_last(struct nameidata *nd)
2078 {
2079 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2080 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2081
2082 nd->flags &= ~LOOKUP_PARENT;
2083 return walk_component(nd,
2084 nd->flags & LOOKUP_FOLLOW
2085 ? nd->depth
2086 ? WALK_PUT | WALK_GET
2087 : WALK_GET
2088 : 0);
2089 }
2090
2091 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2092 static int path_lookupat(int dfd, const struct filename *name,
2093 unsigned int flags, struct nameidata *nd)
2094 {
2095 const char *s = path_init(dfd, name, flags, nd);
2096 int err;
2097
2098 if (IS_ERR(s))
2099 return PTR_ERR(s);
2100 while (!(err = link_path_walk(s, nd))
2101 && ((err = lookup_last(nd)) > 0)) {
2102 s = trailing_symlink(nd);
2103 if (IS_ERR(s)) {
2104 err = PTR_ERR(s);
2105 break;
2106 }
2107 }
2108 if (!err)
2109 err = complete_walk(nd);
2110
2111 if (!err && nd->flags & LOOKUP_DIRECTORY)
2112 if (!d_can_lookup(nd->path.dentry))
2113 err = -ENOTDIR;
2114 if (err)
2115 terminate_walk(nd);
2116
2117 path_cleanup(nd);
2118 return err;
2119 }
2120
2121 static int filename_lookup(int dfd, struct filename *name,
2122 unsigned int flags, struct nameidata *nd)
2123 {
2124 int retval;
2125 struct nameidata *saved_nd = set_nameidata(nd);
2126
2127 retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2128 if (unlikely(retval == -ECHILD))
2129 retval = path_lookupat(dfd, name, flags, nd);
2130 if (unlikely(retval == -ESTALE))
2131 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2132
2133 if (likely(!retval))
2134 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2135 restore_nameidata(saved_nd);
2136 return retval;
2137 }
2138
2139 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2140 static int path_parentat(int dfd, const struct filename *name,
2141 unsigned int flags, struct nameidata *nd)
2142 {
2143 const char *s = path_init(dfd, name, flags, nd);
2144 int err;
2145 if (IS_ERR(s))
2146 return PTR_ERR(s);
2147 err = link_path_walk(s, nd);
2148 if (!err)
2149 err = complete_walk(nd);
2150 if (err)
2151 terminate_walk(nd);
2152 path_cleanup(nd);
2153 return err;
2154 }
2155
2156 static int filename_parentat(int dfd, struct filename *name,
2157 unsigned int flags, struct nameidata *nd)
2158 {
2159 int retval;
2160 struct nameidata *saved_nd = set_nameidata(nd);
2161
2162 retval = path_parentat(dfd, name, flags | LOOKUP_RCU, nd);
2163 if (unlikely(retval == -ECHILD))
2164 retval = path_parentat(dfd, name, flags, nd);
2165 if (unlikely(retval == -ESTALE))
2166 retval = path_parentat(dfd, name, flags | LOOKUP_REVAL, nd);
2167
2168 if (likely(!retval))
2169 audit_inode(name, nd->path.dentry, LOOKUP_PARENT);
2170 restore_nameidata(saved_nd);
2171 return retval;
2172 }
2173
2174 /* does lookup, returns the object with parent locked */
2175 struct dentry *kern_path_locked(const char *name, struct path *path)
2176 {
2177 struct filename *filename = getname_kernel(name);
2178 struct nameidata nd;
2179 struct dentry *d;
2180 int err;
2181
2182 if (IS_ERR(filename))
2183 return ERR_CAST(filename);
2184
2185 err = filename_parentat(AT_FDCWD, filename, 0, &nd);
2186 if (err) {
2187 d = ERR_PTR(err);
2188 goto out;
2189 }
2190 if (nd.last_type != LAST_NORM) {
2191 path_put(&nd.path);
2192 d = ERR_PTR(-EINVAL);
2193 goto out;
2194 }
2195 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2196 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2197 if (IS_ERR(d)) {
2198 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2199 path_put(&nd.path);
2200 goto out;
2201 }
2202 *path = nd.path;
2203 out:
2204 putname(filename);
2205 return d;
2206 }
2207
2208 int kern_path(const char *name, unsigned int flags, struct path *path)
2209 {
2210 struct nameidata nd;
2211 struct filename *filename = getname_kernel(name);
2212 int res = PTR_ERR(filename);
2213
2214 if (!IS_ERR(filename)) {
2215 res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2216 putname(filename);
2217 if (!res)
2218 *path = nd.path;
2219 }
2220 return res;
2221 }
2222 EXPORT_SYMBOL(kern_path);
2223
2224 /**
2225 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2226 * @dentry: pointer to dentry of the base directory
2227 * @mnt: pointer to vfs mount of the base directory
2228 * @name: pointer to file name
2229 * @flags: lookup flags
2230 * @path: pointer to struct path to fill
2231 */
2232 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2233 const char *name, unsigned int flags,
2234 struct path *path)
2235 {
2236 struct filename *filename = getname_kernel(name);
2237 int err = PTR_ERR(filename);
2238
2239 BUG_ON(flags & LOOKUP_PARENT);
2240
2241 /* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2242 if (!IS_ERR(filename)) {
2243 struct nameidata nd;
2244 nd.root.dentry = dentry;
2245 nd.root.mnt = mnt;
2246 err = filename_lookup(AT_FDCWD, filename,
2247 flags | LOOKUP_ROOT, &nd);
2248 if (!err)
2249 *path = nd.path;
2250 putname(filename);
2251 }
2252 return err;
2253 }
2254 EXPORT_SYMBOL(vfs_path_lookup);
2255
2256 /**
2257 * lookup_one_len - filesystem helper to lookup single pathname component
2258 * @name: pathname component to lookup
2259 * @base: base directory to lookup from
2260 * @len: maximum length @len should be interpreted to
2261 *
2262 * Note that this routine is purely a helper for filesystem usage and should
2263 * not be called by generic code.
2264 */
2265 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2266 {
2267 struct qstr this;
2268 unsigned int c;
2269 int err;
2270
2271 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2272
2273 this.name = name;
2274 this.len = len;
2275 this.hash = full_name_hash(name, len);
2276 if (!len)
2277 return ERR_PTR(-EACCES);
2278
2279 if (unlikely(name[0] == '.')) {
2280 if (len < 2 || (len == 2 && name[1] == '.'))
2281 return ERR_PTR(-EACCES);
2282 }
2283
2284 while (len--) {
2285 c = *(const unsigned char *)name++;
2286 if (c == '/' || c == '\0')
2287 return ERR_PTR(-EACCES);
2288 }
2289 /*
2290 * See if the low-level filesystem might want
2291 * to use its own hash..
2292 */
2293 if (base->d_flags & DCACHE_OP_HASH) {
2294 int err = base->d_op->d_hash(base, &this);
2295 if (err < 0)
2296 return ERR_PTR(err);
2297 }
2298
2299 err = inode_permission(base->d_inode, MAY_EXEC);
2300 if (err)
2301 return ERR_PTR(err);
2302
2303 return __lookup_hash(&this, base, 0);
2304 }
2305 EXPORT_SYMBOL(lookup_one_len);
2306
2307 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2308 struct path *path, int *empty)
2309 {
2310 struct nameidata nd;
2311 struct filename *tmp = getname_flags(name, flags, empty);
2312 int err = PTR_ERR(tmp);
2313 if (!IS_ERR(tmp)) {
2314
2315 BUG_ON(flags & LOOKUP_PARENT);
2316
2317 err = filename_lookup(dfd, tmp, flags, &nd);
2318 putname(tmp);
2319 if (!err)
2320 *path = nd.path;
2321 }
2322 return err;
2323 }
2324
2325 int user_path_at(int dfd, const char __user *name, unsigned flags,
2326 struct path *path)
2327 {
2328 return user_path_at_empty(dfd, name, flags, path, NULL);
2329 }
2330 EXPORT_SYMBOL(user_path_at);
2331
2332 /*
2333 * NB: most callers don't do anything directly with the reference to the
2334 * to struct filename, but the nd->last pointer points into the name string
2335 * allocated by getname. So we must hold the reference to it until all
2336 * path-walking is complete.
2337 */
2338 static struct filename *
2339 user_path_parent(int dfd, const char __user *path,
2340 struct path *parent,
2341 struct qstr *last,
2342 int *type,
2343 unsigned int flags)
2344 {
2345 struct nameidata nd;
2346 struct filename *s = getname(path);
2347 int error;
2348
2349 /* only LOOKUP_REVAL is allowed in extra flags */
2350 flags &= LOOKUP_REVAL;
2351
2352 if (IS_ERR(s))
2353 return s;
2354
2355 error = filename_parentat(dfd, s, flags, &nd);
2356 if (error) {
2357 putname(s);
2358 return ERR_PTR(error);
2359 }
2360 *parent = nd.path;
2361 *last = nd.last;
2362 *type = nd.last_type;
2363
2364 return s;
2365 }
2366
2367 /**
2368 * mountpoint_last - look up last component for umount
2369 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2370 * @path: pointer to container for result
2371 *
2372 * This is a special lookup_last function just for umount. In this case, we
2373 * need to resolve the path without doing any revalidation.
2374 *
2375 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2376 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2377 * in almost all cases, this lookup will be served out of the dcache. The only
2378 * cases where it won't are if nd->last refers to a symlink or the path is
2379 * bogus and it doesn't exist.
2380 *
2381 * Returns:
2382 * -error: if there was an error during lookup. This includes -ENOENT if the
2383 * lookup found a negative dentry. The nd->path reference will also be
2384 * put in this case.
2385 *
2386 * 0: if we successfully resolved nd->path and found it to not to be a
2387 * symlink that needs to be followed. "path" will also be populated.
2388 * The nd->path reference will also be put.
2389 *
2390 * 1: if we successfully resolved nd->last and found it to be a symlink
2391 * that needs to be followed. "path" will be populated with the path
2392 * to the link, and nd->path will *not* be put.
2393 */
2394 static int
2395 mountpoint_last(struct nameidata *nd, struct path *path)
2396 {
2397 int error = 0;
2398 struct dentry *dentry;
2399 struct dentry *dir = nd->path.dentry;
2400
2401 /* If we're in rcuwalk, drop out of it to handle last component */
2402 if (nd->flags & LOOKUP_RCU) {
2403 if (unlazy_walk(nd, NULL, 0))
2404 return -ECHILD;
2405 }
2406
2407 nd->flags &= ~LOOKUP_PARENT;
2408
2409 if (unlikely(nd->last_type != LAST_NORM)) {
2410 error = handle_dots(nd, nd->last_type);
2411 if (error)
2412 return error;
2413 dentry = dget(nd->path.dentry);
2414 goto done;
2415 }
2416
2417 mutex_lock(&dir->d_inode->i_mutex);
2418 dentry = d_lookup(dir, &nd->last);
2419 if (!dentry) {
2420 /*
2421 * No cached dentry. Mounted dentries are pinned in the cache,
2422 * so that means that this dentry is probably a symlink or the
2423 * path doesn't actually point to a mounted dentry.
2424 */
2425 dentry = d_alloc(dir, &nd->last);
2426 if (!dentry) {
2427 mutex_unlock(&dir->d_inode->i_mutex);
2428 return -ENOMEM;
2429 }
2430 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2431 if (IS_ERR(dentry)) {
2432 mutex_unlock(&dir->d_inode->i_mutex);
2433 return PTR_ERR(dentry);
2434 }
2435 }
2436 mutex_unlock(&dir->d_inode->i_mutex);
2437
2438 done:
2439 if (d_is_negative(dentry)) {
2440 dput(dentry);
2441 return -ENOENT;
2442 }
2443 if (nd->depth)
2444 put_link(nd);
2445 path->dentry = dentry;
2446 path->mnt = nd->path.mnt;
2447 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2448 d_backing_inode(dentry), 0);
2449 if (unlikely(error))
2450 return error;
2451 mntget(path->mnt);
2452 follow_mount(path);
2453 return 0;
2454 }
2455
2456 /**
2457 * path_mountpoint - look up a path to be umounted
2458 * @dfd: directory file descriptor to start walk from
2459 * @name: full pathname to walk
2460 * @path: pointer to container for result
2461 * @flags: lookup flags
2462 *
2463 * Look up the given name, but don't attempt to revalidate the last component.
2464 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2465 */
2466 static int
2467 path_mountpoint(int dfd, const struct filename *name, struct path *path,
2468 struct nameidata *nd, unsigned int flags)
2469 {
2470 const char *s = path_init(dfd, name, flags, nd);
2471 int err;
2472 if (IS_ERR(s))
2473 return PTR_ERR(s);
2474 while (!(err = link_path_walk(s, nd)) &&
2475 (err = mountpoint_last(nd, path)) > 0) {
2476 s = trailing_symlink(nd);
2477 if (IS_ERR(s)) {
2478 err = PTR_ERR(s);
2479 break;
2480 }
2481 }
2482 terminate_walk(nd);
2483 path_cleanup(nd);
2484 return err;
2485 }
2486
2487 static int
2488 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2489 unsigned int flags)
2490 {
2491 struct nameidata nd, *saved;
2492 int error;
2493 if (IS_ERR(name))
2494 return PTR_ERR(name);
2495 saved = set_nameidata(&nd);
2496 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_RCU);
2497 if (unlikely(error == -ECHILD))
2498 error = path_mountpoint(dfd, name, path, &nd, flags);
2499 if (unlikely(error == -ESTALE))
2500 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_REVAL);
2501 if (likely(!error))
2502 audit_inode(name, path->dentry, 0);
2503 restore_nameidata(saved);
2504 putname(name);
2505 return error;
2506 }
2507
2508 /**
2509 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2510 * @dfd: directory file descriptor
2511 * @name: pathname from userland
2512 * @flags: lookup flags
2513 * @path: pointer to container to hold result
2514 *
2515 * A umount is a special case for path walking. We're not actually interested
2516 * in the inode in this situation, and ESTALE errors can be a problem. We
2517 * simply want track down the dentry and vfsmount attached at the mountpoint
2518 * and avoid revalidating the last component.
2519 *
2520 * Returns 0 and populates "path" on success.
2521 */
2522 int
2523 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2524 struct path *path)
2525 {
2526 return filename_mountpoint(dfd, getname(name), path, flags);
2527 }
2528
2529 int
2530 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2531 unsigned int flags)
2532 {
2533 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2534 }
2535 EXPORT_SYMBOL(kern_path_mountpoint);
2536
2537 int __check_sticky(struct inode *dir, struct inode *inode)
2538 {
2539 kuid_t fsuid = current_fsuid();
2540
2541 if (uid_eq(inode->i_uid, fsuid))
2542 return 0;
2543 if (uid_eq(dir->i_uid, fsuid))
2544 return 0;
2545 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2546 }
2547 EXPORT_SYMBOL(__check_sticky);
2548
2549 /*
2550 * Check whether we can remove a link victim from directory dir, check
2551 * whether the type of victim is right.
2552 * 1. We can't do it if dir is read-only (done in permission())
2553 * 2. We should have write and exec permissions on dir
2554 * 3. We can't remove anything from append-only dir
2555 * 4. We can't do anything with immutable dir (done in permission())
2556 * 5. If the sticky bit on dir is set we should either
2557 * a. be owner of dir, or
2558 * b. be owner of victim, or
2559 * c. have CAP_FOWNER capability
2560 * 6. If the victim is append-only or immutable we can't do antyhing with
2561 * links pointing to it.
2562 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2563 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2564 * 9. We can't remove a root or mountpoint.
2565 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2566 * nfs_async_unlink().
2567 */
2568 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2569 {
2570 struct inode *inode = d_backing_inode(victim);
2571 int error;
2572
2573 if (d_is_negative(victim))
2574 return -ENOENT;
2575 BUG_ON(!inode);
2576
2577 BUG_ON(victim->d_parent->d_inode != dir);
2578 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2579
2580 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2581 if (error)
2582 return error;
2583 if (IS_APPEND(dir))
2584 return -EPERM;
2585
2586 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2587 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2588 return -EPERM;
2589 if (isdir) {
2590 if (!d_is_dir(victim))
2591 return -ENOTDIR;
2592 if (IS_ROOT(victim))
2593 return -EBUSY;
2594 } else if (d_is_dir(victim))
2595 return -EISDIR;
2596 if (IS_DEADDIR(dir))
2597 return -ENOENT;
2598 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2599 return -EBUSY;
2600 return 0;
2601 }
2602
2603 /* Check whether we can create an object with dentry child in directory
2604 * dir.
2605 * 1. We can't do it if child already exists (open has special treatment for
2606 * this case, but since we are inlined it's OK)
2607 * 2. We can't do it if dir is read-only (done in permission())
2608 * 3. We should have write and exec permissions on dir
2609 * 4. We can't do it if dir is immutable (done in permission())
2610 */
2611 static inline int may_create(struct inode *dir, struct dentry *child)
2612 {
2613 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2614 if (child->d_inode)
2615 return -EEXIST;
2616 if (IS_DEADDIR(dir))
2617 return -ENOENT;
2618 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2619 }
2620
2621 /*
2622 * p1 and p2 should be directories on the same fs.
2623 */
2624 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2625 {
2626 struct dentry *p;
2627
2628 if (p1 == p2) {
2629 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2630 return NULL;
2631 }
2632
2633 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2634
2635 p = d_ancestor(p2, p1);
2636 if (p) {
2637 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2638 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2639 return p;
2640 }
2641
2642 p = d_ancestor(p1, p2);
2643 if (p) {
2644 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2645 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2646 return p;
2647 }
2648
2649 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2650 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2651 return NULL;
2652 }
2653 EXPORT_SYMBOL(lock_rename);
2654
2655 void unlock_rename(struct dentry *p1, struct dentry *p2)
2656 {
2657 mutex_unlock(&p1->d_inode->i_mutex);
2658 if (p1 != p2) {
2659 mutex_unlock(&p2->d_inode->i_mutex);
2660 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2661 }
2662 }
2663 EXPORT_SYMBOL(unlock_rename);
2664
2665 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2666 bool want_excl)
2667 {
2668 int error = may_create(dir, dentry);
2669 if (error)
2670 return error;
2671
2672 if (!dir->i_op->create)
2673 return -EACCES; /* shouldn't it be ENOSYS? */
2674 mode &= S_IALLUGO;
2675 mode |= S_IFREG;
2676 error = security_inode_create(dir, dentry, mode);
2677 if (error)
2678 return error;
2679 error = dir->i_op->create(dir, dentry, mode, want_excl);
2680 if (!error)
2681 fsnotify_create(dir, dentry);
2682 return error;
2683 }
2684 EXPORT_SYMBOL(vfs_create);
2685
2686 static int may_open(struct path *path, int acc_mode, int flag)
2687 {
2688 struct dentry *dentry = path->dentry;
2689 struct inode *inode = dentry->d_inode;
2690 int error;
2691
2692 /* O_PATH? */
2693 if (!acc_mode)
2694 return 0;
2695
2696 if (!inode)
2697 return -ENOENT;
2698
2699 switch (inode->i_mode & S_IFMT) {
2700 case S_IFLNK:
2701 return -ELOOP;
2702 case S_IFDIR:
2703 if (acc_mode & MAY_WRITE)
2704 return -EISDIR;
2705 break;
2706 case S_IFBLK:
2707 case S_IFCHR:
2708 if (path->mnt->mnt_flags & MNT_NODEV)
2709 return -EACCES;
2710 /*FALLTHRU*/
2711 case S_IFIFO:
2712 case S_IFSOCK:
2713 flag &= ~O_TRUNC;
2714 break;
2715 }
2716
2717 error = inode_permission(inode, acc_mode);
2718 if (error)
2719 return error;
2720
2721 /*
2722 * An append-only file must be opened in append mode for writing.
2723 */
2724 if (IS_APPEND(inode)) {
2725 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2726 return -EPERM;
2727 if (flag & O_TRUNC)
2728 return -EPERM;
2729 }
2730
2731 /* O_NOATIME can only be set by the owner or superuser */
2732 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2733 return -EPERM;
2734
2735 return 0;
2736 }
2737
2738 static int handle_truncate(struct file *filp)
2739 {
2740 struct path *path = &filp->f_path;
2741 struct inode *inode = path->dentry->d_inode;
2742 int error = get_write_access(inode);
2743 if (error)
2744 return error;
2745 /*
2746 * Refuse to truncate files with mandatory locks held on them.
2747 */
2748 error = locks_verify_locked(filp);
2749 if (!error)
2750 error = security_path_truncate(path);
2751 if (!error) {
2752 error = do_truncate(path->dentry, 0,
2753 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2754 filp);
2755 }
2756 put_write_access(inode);
2757 return error;
2758 }
2759
2760 static inline int open_to_namei_flags(int flag)
2761 {
2762 if ((flag & O_ACCMODE) == 3)
2763 flag--;
2764 return flag;
2765 }
2766
2767 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2768 {
2769 int error = security_path_mknod(dir, dentry, mode, 0);
2770 if (error)
2771 return error;
2772
2773 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2774 if (error)
2775 return error;
2776
2777 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2778 }
2779
2780 /*
2781 * Attempt to atomically look up, create and open a file from a negative
2782 * dentry.
2783 *
2784 * Returns 0 if successful. The file will have been created and attached to
2785 * @file by the filesystem calling finish_open().
2786 *
2787 * Returns 1 if the file was looked up only or didn't need creating. The
2788 * caller will need to perform the open themselves. @path will have been
2789 * updated to point to the new dentry. This may be negative.
2790 *
2791 * Returns an error code otherwise.
2792 */
2793 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2794 struct path *path, struct file *file,
2795 const struct open_flags *op,
2796 bool got_write, bool need_lookup,
2797 int *opened)
2798 {
2799 struct inode *dir = nd->path.dentry->d_inode;
2800 unsigned open_flag = open_to_namei_flags(op->open_flag);
2801 umode_t mode;
2802 int error;
2803 int acc_mode;
2804 int create_error = 0;
2805 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2806 bool excl;
2807
2808 BUG_ON(dentry->d_inode);
2809
2810 /* Don't create child dentry for a dead directory. */
2811 if (unlikely(IS_DEADDIR(dir))) {
2812 error = -ENOENT;
2813 goto out;
2814 }
2815
2816 mode = op->mode;
2817 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2818 mode &= ~current_umask();
2819
2820 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2821 if (excl)
2822 open_flag &= ~O_TRUNC;
2823
2824 /*
2825 * Checking write permission is tricky, bacuse we don't know if we are
2826 * going to actually need it: O_CREAT opens should work as long as the
2827 * file exists. But checking existence breaks atomicity. The trick is
2828 * to check access and if not granted clear O_CREAT from the flags.
2829 *
2830 * Another problem is returing the "right" error value (e.g. for an
2831 * O_EXCL open we want to return EEXIST not EROFS).
2832 */
2833 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2834 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2835 if (!(open_flag & O_CREAT)) {
2836 /*
2837 * No O_CREATE -> atomicity not a requirement -> fall
2838 * back to lookup + open
2839 */
2840 goto no_open;
2841 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2842 /* Fall back and fail with the right error */
2843 create_error = -EROFS;
2844 goto no_open;
2845 } else {
2846 /* No side effects, safe to clear O_CREAT */
2847 create_error = -EROFS;
2848 open_flag &= ~O_CREAT;
2849 }
2850 }
2851
2852 if (open_flag & O_CREAT) {
2853 error = may_o_create(&nd->path, dentry, mode);
2854 if (error) {
2855 create_error = error;
2856 if (open_flag & O_EXCL)
2857 goto no_open;
2858 open_flag &= ~O_CREAT;
2859 }
2860 }
2861
2862 if (nd->flags & LOOKUP_DIRECTORY)
2863 open_flag |= O_DIRECTORY;
2864
2865 file->f_path.dentry = DENTRY_NOT_SET;
2866 file->f_path.mnt = nd->path.mnt;
2867 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2868 opened);
2869 if (error < 0) {
2870 if (create_error && error == -ENOENT)
2871 error = create_error;
2872 goto out;
2873 }
2874
2875 if (error) { /* returned 1, that is */
2876 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2877 error = -EIO;
2878 goto out;
2879 }
2880 if (file->f_path.dentry) {
2881 dput(dentry);
2882 dentry = file->f_path.dentry;
2883 }
2884 if (*opened & FILE_CREATED)
2885 fsnotify_create(dir, dentry);
2886 if (!dentry->d_inode) {
2887 WARN_ON(*opened & FILE_CREATED);
2888 if (create_error) {
2889 error = create_error;
2890 goto out;
2891 }
2892 } else {
2893 if (excl && !(*opened & FILE_CREATED)) {
2894 error = -EEXIST;
2895 goto out;
2896 }
2897 }
2898 goto looked_up;
2899 }
2900
2901 /*
2902 * We didn't have the inode before the open, so check open permission
2903 * here.
2904 */
2905 acc_mode = op->acc_mode;
2906 if (*opened & FILE_CREATED) {
2907 WARN_ON(!(open_flag & O_CREAT));
2908 fsnotify_create(dir, dentry);
2909 acc_mode = MAY_OPEN;
2910 }
2911 error = may_open(&file->f_path, acc_mode, open_flag);
2912 if (error)
2913 fput(file);
2914
2915 out:
2916 dput(dentry);
2917 return error;
2918
2919 no_open:
2920 if (need_lookup) {
2921 dentry = lookup_real(dir, dentry, nd->flags);
2922 if (IS_ERR(dentry))
2923 return PTR_ERR(dentry);
2924
2925 if (create_error) {
2926 int open_flag = op->open_flag;
2927
2928 error = create_error;
2929 if ((open_flag & O_EXCL)) {
2930 if (!dentry->d_inode)
2931 goto out;
2932 } else if (!dentry->d_inode) {
2933 goto out;
2934 } else if ((open_flag & O_TRUNC) &&
2935 d_is_reg(dentry)) {
2936 goto out;
2937 }
2938 /* will fail later, go on to get the right error */
2939 }
2940 }
2941 looked_up:
2942 path->dentry = dentry;
2943 path->mnt = nd->path.mnt;
2944 return 1;
2945 }
2946
2947 /*
2948 * Look up and maybe create and open the last component.
2949 *
2950 * Must be called with i_mutex held on parent.
2951 *
2952 * Returns 0 if the file was successfully atomically created (if necessary) and
2953 * opened. In this case the file will be returned attached to @file.
2954 *
2955 * Returns 1 if the file was not completely opened at this time, though lookups
2956 * and creations will have been performed and the dentry returned in @path will
2957 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2958 * specified then a negative dentry may be returned.
2959 *
2960 * An error code is returned otherwise.
2961 *
2962 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2963 * cleared otherwise prior to returning.
2964 */
2965 static int lookup_open(struct nameidata *nd, struct path *path,
2966 struct file *file,
2967 const struct open_flags *op,
2968 bool got_write, int *opened)
2969 {
2970 struct dentry *dir = nd->path.dentry;
2971 struct inode *dir_inode = dir->d_inode;
2972 struct dentry *dentry;
2973 int error;
2974 bool need_lookup;
2975
2976 *opened &= ~FILE_CREATED;
2977 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2978 if (IS_ERR(dentry))
2979 return PTR_ERR(dentry);
2980
2981 /* Cached positive dentry: will open in f_op->open */
2982 if (!need_lookup && dentry->d_inode)
2983 goto out_no_open;
2984
2985 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2986 return atomic_open(nd, dentry, path, file, op, got_write,
2987 need_lookup, opened);
2988 }
2989
2990 if (need_lookup) {
2991 BUG_ON(dentry->d_inode);
2992
2993 dentry = lookup_real(dir_inode, dentry, nd->flags);
2994 if (IS_ERR(dentry))
2995 return PTR_ERR(dentry);
2996 }
2997
2998 /* Negative dentry, just create the file */
2999 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
3000 umode_t mode = op->mode;
3001 if (!IS_POSIXACL(dir->d_inode))
3002 mode &= ~current_umask();
3003 /*
3004 * This write is needed to ensure that a
3005 * rw->ro transition does not occur between
3006 * the time when the file is created and when
3007 * a permanent write count is taken through
3008 * the 'struct file' in finish_open().
3009 */
3010 if (!got_write) {
3011 error = -EROFS;
3012 goto out_dput;
3013 }
3014 *opened |= FILE_CREATED;
3015 error = security_path_mknod(&nd->path, dentry, mode, 0);
3016 if (error)
3017 goto out_dput;
3018 error = vfs_create(dir->d_inode, dentry, mode,
3019 nd->flags & LOOKUP_EXCL);
3020 if (error)
3021 goto out_dput;
3022 }
3023 out_no_open:
3024 path->dentry = dentry;
3025 path->mnt = nd->path.mnt;
3026 return 1;
3027
3028 out_dput:
3029 dput(dentry);
3030 return error;
3031 }
3032
3033 /*
3034 * Handle the last step of open()
3035 */
3036 static int do_last(struct nameidata *nd,
3037 struct file *file, const struct open_flags *op,
3038 int *opened, struct filename *name)
3039 {
3040 struct dentry *dir = nd->path.dentry;
3041 int open_flag = op->open_flag;
3042 bool will_truncate = (open_flag & O_TRUNC) != 0;
3043 bool got_write = false;
3044 int acc_mode = op->acc_mode;
3045 unsigned seq;
3046 struct inode *inode;
3047 struct path save_parent = { .dentry = NULL, .mnt = NULL };
3048 struct path path;
3049 bool retried = false;
3050 int error;
3051
3052 nd->flags &= ~LOOKUP_PARENT;
3053 nd->flags |= op->intent;
3054
3055 if (nd->last_type != LAST_NORM) {
3056 error = handle_dots(nd, nd->last_type);
3057 if (unlikely(error))
3058 return error;
3059 goto finish_open;
3060 }
3061
3062 if (!(open_flag & O_CREAT)) {
3063 if (nd->last.name[nd->last.len])
3064 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3065 /* we _can_ be in RCU mode here */
3066 error = lookup_fast(nd, &path, &inode, &seq);
3067 if (likely(!error))
3068 goto finish_lookup;
3069
3070 if (error < 0)
3071 return error;
3072
3073 BUG_ON(nd->inode != dir->d_inode);
3074 } else {
3075 /* create side of things */
3076 /*
3077 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3078 * has been cleared when we got to the last component we are
3079 * about to look up
3080 */
3081 error = complete_walk(nd);
3082 if (error)
3083 return error;
3084
3085 audit_inode(name, dir, LOOKUP_PARENT);
3086 /* trailing slashes? */
3087 if (unlikely(nd->last.name[nd->last.len]))
3088 return -EISDIR;
3089 }
3090
3091 retry_lookup:
3092 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3093 error = mnt_want_write(nd->path.mnt);
3094 if (!error)
3095 got_write = true;
3096 /*
3097 * do _not_ fail yet - we might not need that or fail with
3098 * a different error; let lookup_open() decide; we'll be
3099 * dropping this one anyway.
3100 */
3101 }
3102 mutex_lock(&dir->d_inode->i_mutex);
3103 error = lookup_open(nd, &path, file, op, got_write, opened);
3104 mutex_unlock(&dir->d_inode->i_mutex);
3105
3106 if (error <= 0) {
3107 if (error)
3108 goto out;
3109
3110 if ((*opened & FILE_CREATED) ||
3111 !S_ISREG(file_inode(file)->i_mode))
3112 will_truncate = false;
3113
3114 audit_inode(name, file->f_path.dentry, 0);
3115 goto opened;
3116 }
3117
3118 if (*opened & FILE_CREATED) {
3119 /* Don't check for write permission, don't truncate */
3120 open_flag &= ~O_TRUNC;
3121 will_truncate = false;
3122 acc_mode = MAY_OPEN;
3123 path_to_nameidata(&path, nd);
3124 goto finish_open_created;
3125 }
3126
3127 /*
3128 * create/update audit record if it already exists.
3129 */
3130 if (d_is_positive(path.dentry))
3131 audit_inode(name, path.dentry, 0);
3132
3133 /*
3134 * If atomic_open() acquired write access it is dropped now due to
3135 * possible mount and symlink following (this might be optimized away if
3136 * necessary...)
3137 */
3138 if (got_write) {
3139 mnt_drop_write(nd->path.mnt);
3140 got_write = false;
3141 }
3142
3143 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3144 path_to_nameidata(&path, nd);
3145 return -EEXIST;
3146 }
3147
3148 error = follow_managed(&path, nd);
3149 if (unlikely(error < 0))
3150 return error;
3151
3152 BUG_ON(nd->flags & LOOKUP_RCU);
3153 inode = d_backing_inode(path.dentry);
3154 seq = 0; /* out of RCU mode, so the value doesn't matter */
3155 if (unlikely(d_is_negative(path.dentry))) {
3156 path_to_nameidata(&path, nd);
3157 return -ENOENT;
3158 }
3159 finish_lookup:
3160 if (nd->depth)
3161 put_link(nd);
3162 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3163 inode, seq);
3164 if (unlikely(error))
3165 return error;
3166
3167 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3168 path_to_nameidata(&path, nd);
3169 return -ELOOP;
3170 }
3171
3172 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3173 path_to_nameidata(&path, nd);
3174 } else {
3175 save_parent.dentry = nd->path.dentry;
3176 save_parent.mnt = mntget(path.mnt);
3177 nd->path.dentry = path.dentry;
3178
3179 }
3180 nd->inode = inode;
3181 nd->seq = seq;
3182 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3183 finish_open:
3184 error = complete_walk(nd);
3185 if (error) {
3186 path_put(&save_parent);
3187 return error;
3188 }
3189 audit_inode(name, nd->path.dentry, 0);
3190 error = -EISDIR;
3191 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3192 goto out;
3193 error = -ENOTDIR;
3194 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3195 goto out;
3196 if (!d_is_reg(nd->path.dentry))
3197 will_truncate = false;
3198
3199 if (will_truncate) {
3200 error = mnt_want_write(nd->path.mnt);
3201 if (error)
3202 goto out;
3203 got_write = true;
3204 }
3205 finish_open_created:
3206 error = may_open(&nd->path, acc_mode, open_flag);
3207 if (error)
3208 goto out;
3209
3210 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3211 error = vfs_open(&nd->path, file, current_cred());
3212 if (!error) {
3213 *opened |= FILE_OPENED;
3214 } else {
3215 if (error == -EOPENSTALE)
3216 goto stale_open;
3217 goto out;
3218 }
3219 opened:
3220 error = open_check_o_direct(file);
3221 if (error)
3222 goto exit_fput;
3223 error = ima_file_check(file, op->acc_mode, *opened);
3224 if (error)
3225 goto exit_fput;
3226
3227 if (will_truncate) {
3228 error = handle_truncate(file);
3229 if (error)
3230 goto exit_fput;
3231 }
3232 out:
3233 if (got_write)
3234 mnt_drop_write(nd->path.mnt);
3235 path_put(&save_parent);
3236 return error;
3237
3238 exit_fput:
3239 fput(file);
3240 goto out;
3241
3242 stale_open:
3243 /* If no saved parent or already retried then can't retry */
3244 if (!save_parent.dentry || retried)
3245 goto out;
3246
3247 BUG_ON(save_parent.dentry != dir);
3248 path_put(&nd->path);
3249 nd->path = save_parent;
3250 nd->inode = dir->d_inode;
3251 save_parent.mnt = NULL;
3252 save_parent.dentry = NULL;
3253 if (got_write) {
3254 mnt_drop_write(nd->path.mnt);
3255 got_write = false;
3256 }
3257 retried = true;
3258 goto retry_lookup;
3259 }
3260
3261 static int do_tmpfile(int dfd, struct filename *pathname,
3262 struct nameidata *nd, int flags,
3263 const struct open_flags *op,
3264 struct file *file, int *opened)
3265 {
3266 static const struct qstr name = QSTR_INIT("/", 1);
3267 struct dentry *dentry, *child;
3268 struct inode *dir;
3269 int error = path_lookupat(dfd, pathname,
3270 flags | LOOKUP_DIRECTORY, nd);
3271 if (unlikely(error))
3272 return error;
3273 error = mnt_want_write(nd->path.mnt);
3274 if (unlikely(error))
3275 goto out;
3276 /* we want directory to be writable */
3277 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3278 if (error)
3279 goto out2;
3280 dentry = nd->path.dentry;
3281 dir = dentry->d_inode;
3282 if (!dir->i_op->tmpfile) {
3283 error = -EOPNOTSUPP;
3284 goto out2;
3285 }
3286 child = d_alloc(dentry, &name);
3287 if (unlikely(!child)) {
3288 error = -ENOMEM;
3289 goto out2;
3290 }
3291 nd->flags &= ~LOOKUP_DIRECTORY;
3292 nd->flags |= op->intent;
3293 dput(nd->path.dentry);
3294 nd->path.dentry = child;
3295 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3296 if (error)
3297 goto out2;
3298 audit_inode(pathname, nd->path.dentry, 0);
3299 /* Don't check for other permissions, the inode was just created */
3300 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3301 if (error)
3302 goto out2;
3303 file->f_path.mnt = nd->path.mnt;
3304 error = finish_open(file, nd->path.dentry, NULL, opened);
3305 if (error)
3306 goto out2;
3307 error = open_check_o_direct(file);
3308 if (error) {
3309 fput(file);
3310 } else if (!(op->open_flag & O_EXCL)) {
3311 struct inode *inode = file_inode(file);
3312 spin_lock(&inode->i_lock);
3313 inode->i_state |= I_LINKABLE;
3314 spin_unlock(&inode->i_lock);
3315 }
3316 out2:
3317 mnt_drop_write(nd->path.mnt);
3318 out:
3319 path_put(&nd->path);
3320 return error;
3321 }
3322
3323 static struct file *path_openat(int dfd, struct filename *pathname,
3324 struct nameidata *nd, const struct open_flags *op, int flags)
3325 {
3326 const char *s;
3327 struct file *file;
3328 int opened = 0;
3329 int error;
3330
3331 file = get_empty_filp();
3332 if (IS_ERR(file))
3333 return file;
3334
3335 file->f_flags = op->open_flag;
3336
3337 if (unlikely(file->f_flags & __O_TMPFILE)) {
3338 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3339 goto out2;
3340 }
3341
3342 s = path_init(dfd, pathname, flags, nd);
3343 if (IS_ERR(s)) {
3344 put_filp(file);
3345 return ERR_CAST(s);
3346 }
3347 while (!(error = link_path_walk(s, nd)) &&
3348 (error = do_last(nd, file, op, &opened, pathname)) > 0) {
3349 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3350 s = trailing_symlink(nd);
3351 if (IS_ERR(s)) {
3352 error = PTR_ERR(s);
3353 break;
3354 }
3355 }
3356 terminate_walk(nd);
3357 path_cleanup(nd);
3358 out2:
3359 if (!(opened & FILE_OPENED)) {
3360 BUG_ON(!error);
3361 put_filp(file);
3362 }
3363 if (unlikely(error)) {
3364 if (error == -EOPENSTALE) {
3365 if (flags & LOOKUP_RCU)
3366 error = -ECHILD;
3367 else
3368 error = -ESTALE;
3369 }
3370 file = ERR_PTR(error);
3371 }
3372 return file;
3373 }
3374
3375 struct file *do_filp_open(int dfd, struct filename *pathname,
3376 const struct open_flags *op)
3377 {
3378 struct nameidata nd, *saved_nd = set_nameidata(&nd);
3379 int flags = op->lookup_flags;
3380 struct file *filp;
3381
3382 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3383 if (unlikely(filp == ERR_PTR(-ECHILD)))
3384 filp = path_openat(dfd, pathname, &nd, op, flags);
3385 if (unlikely(filp == ERR_PTR(-ESTALE)))
3386 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3387 restore_nameidata(saved_nd);
3388 return filp;
3389 }
3390
3391 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3392 const char *name, const struct open_flags *op)
3393 {
3394 struct nameidata nd, *saved_nd;
3395 struct file *file;
3396 struct filename *filename;
3397 int flags = op->lookup_flags | LOOKUP_ROOT;
3398
3399 nd.root.mnt = mnt;
3400 nd.root.dentry = dentry;
3401
3402 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3403 return ERR_PTR(-ELOOP);
3404
3405 filename = getname_kernel(name);
3406 if (unlikely(IS_ERR(filename)))
3407 return ERR_CAST(filename);
3408
3409 saved_nd = set_nameidata(&nd);
3410 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3411 if (unlikely(file == ERR_PTR(-ECHILD)))
3412 file = path_openat(-1, filename, &nd, op, flags);
3413 if (unlikely(file == ERR_PTR(-ESTALE)))
3414 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3415 restore_nameidata(saved_nd);
3416 putname(filename);
3417 return file;
3418 }
3419
3420 static struct dentry *filename_create(int dfd, struct filename *name,
3421 struct path *path, unsigned int lookup_flags)
3422 {
3423 struct dentry *dentry = ERR_PTR(-EEXIST);
3424 struct nameidata nd;
3425 int err2;
3426 int error;
3427 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3428
3429 /*
3430 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3431 * other flags passed in are ignored!
3432 */
3433 lookup_flags &= LOOKUP_REVAL;
3434
3435 error = filename_parentat(dfd, name, lookup_flags, &nd);
3436 if (error)
3437 return ERR_PTR(error);
3438
3439 /*
3440 * Yucky last component or no last component at all?
3441 * (foo/., foo/.., /////)
3442 */
3443 if (nd.last_type != LAST_NORM)
3444 goto out;
3445 nd.flags &= ~LOOKUP_PARENT;
3446 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3447
3448 /* don't fail immediately if it's r/o, at least try to report other errors */
3449 err2 = mnt_want_write(nd.path.mnt);
3450 /*
3451 * Do the final lookup.
3452 */
3453 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3454 dentry = __lookup_hash(&nd.last, nd.path.dentry, nd.flags);
3455 if (IS_ERR(dentry))
3456 goto unlock;
3457
3458 error = -EEXIST;
3459 if (d_is_positive(dentry))
3460 goto fail;
3461
3462 /*
3463 * Special case - lookup gave negative, but... we had foo/bar/
3464 * From the vfs_mknod() POV we just have a negative dentry -
3465 * all is fine. Let's be bastards - you had / on the end, you've
3466 * been asking for (non-existent) directory. -ENOENT for you.
3467 */
3468 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3469 error = -ENOENT;
3470 goto fail;
3471 }
3472 if (unlikely(err2)) {
3473 error = err2;
3474 goto fail;
3475 }
3476 *path = nd.path;
3477 return dentry;
3478 fail:
3479 dput(dentry);
3480 dentry = ERR_PTR(error);
3481 unlock:
3482 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3483 if (!err2)
3484 mnt_drop_write(nd.path.mnt);
3485 out:
3486 path_put(&nd.path);
3487 return dentry;
3488 }
3489
3490 struct dentry *kern_path_create(int dfd, const char *pathname,
3491 struct path *path, unsigned int lookup_flags)
3492 {
3493 struct filename *filename = getname_kernel(pathname);
3494 struct dentry *res;
3495
3496 if (IS_ERR(filename))
3497 return ERR_CAST(filename);
3498 res = filename_create(dfd, filename, path, lookup_flags);
3499 putname(filename);
3500 return res;
3501 }
3502 EXPORT_SYMBOL(kern_path_create);
3503
3504 void done_path_create(struct path *path, struct dentry *dentry)
3505 {
3506 dput(dentry);
3507 mutex_unlock(&path->dentry->d_inode->i_mutex);
3508 mnt_drop_write(path->mnt);
3509 path_put(path);
3510 }
3511 EXPORT_SYMBOL(done_path_create);
3512
3513 struct dentry *user_path_create(int dfd, const char __user *pathname,
3514 struct path *path, unsigned int lookup_flags)
3515 {
3516 struct filename *tmp = getname(pathname);
3517 struct dentry *res;
3518 if (IS_ERR(tmp))
3519 return ERR_CAST(tmp);
3520 res = filename_create(dfd, tmp, path, lookup_flags);
3521 putname(tmp);
3522 return res;
3523 }
3524 EXPORT_SYMBOL(user_path_create);
3525
3526 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3527 {
3528 int error = may_create(dir, dentry);
3529
3530 if (error)
3531 return error;
3532
3533 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3534 return -EPERM;
3535
3536 if (!dir->i_op->mknod)
3537 return -EPERM;
3538
3539 error = devcgroup_inode_mknod(mode, dev);
3540 if (error)
3541 return error;
3542
3543 error = security_inode_mknod(dir, dentry, mode, dev);
3544 if (error)
3545 return error;
3546
3547 error = dir->i_op->mknod(dir, dentry, mode, dev);
3548 if (!error)
3549 fsnotify_create(dir, dentry);
3550 return error;
3551 }
3552 EXPORT_SYMBOL(vfs_mknod);
3553
3554 static int may_mknod(umode_t mode)
3555 {
3556 switch (mode & S_IFMT) {
3557 case S_IFREG:
3558 case S_IFCHR:
3559 case S_IFBLK:
3560 case S_IFIFO:
3561 case S_IFSOCK:
3562 case 0: /* zero mode translates to S_IFREG */
3563 return 0;
3564 case S_IFDIR:
3565 return -EPERM;
3566 default:
3567 return -EINVAL;
3568 }
3569 }
3570
3571 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3572 unsigned, dev)
3573 {
3574 struct dentry *dentry;
3575 struct path path;
3576 int error;
3577 unsigned int lookup_flags = 0;
3578
3579 error = may_mknod(mode);
3580 if (error)
3581 return error;
3582 retry:
3583 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3584 if (IS_ERR(dentry))
3585 return PTR_ERR(dentry);
3586
3587 if (!IS_POSIXACL(path.dentry->d_inode))
3588 mode &= ~current_umask();
3589 error = security_path_mknod(&path, dentry, mode, dev);
3590 if (error)
3591 goto out;
3592 switch (mode & S_IFMT) {
3593 case 0: case S_IFREG:
3594 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3595 break;
3596 case S_IFCHR: case S_IFBLK:
3597 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3598 new_decode_dev(dev));
3599 break;
3600 case S_IFIFO: case S_IFSOCK:
3601 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3602 break;
3603 }
3604 out:
3605 done_path_create(&path, dentry);
3606 if (retry_estale(error, lookup_flags)) {
3607 lookup_flags |= LOOKUP_REVAL;
3608 goto retry;
3609 }
3610 return error;
3611 }
3612
3613 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3614 {
3615 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3616 }
3617
3618 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3619 {
3620 int error = may_create(dir, dentry);
3621 unsigned max_links = dir->i_sb->s_max_links;
3622
3623 if (error)
3624 return error;
3625
3626 if (!dir->i_op->mkdir)
3627 return -EPERM;
3628
3629 mode &= (S_IRWXUGO|S_ISVTX);
3630 error = security_inode_mkdir(dir, dentry, mode);
3631 if (error)
3632 return error;
3633
3634 if (max_links && dir->i_nlink >= max_links)
3635 return -EMLINK;
3636
3637 error = dir->i_op->mkdir(dir, dentry, mode);
3638 if (!error)
3639 fsnotify_mkdir(dir, dentry);
3640 return error;
3641 }
3642 EXPORT_SYMBOL(vfs_mkdir);
3643
3644 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3645 {
3646 struct dentry *dentry;
3647 struct path path;
3648 int error;
3649 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3650
3651 retry:
3652 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3653 if (IS_ERR(dentry))
3654 return PTR_ERR(dentry);
3655
3656 if (!IS_POSIXACL(path.dentry->d_inode))
3657 mode &= ~current_umask();
3658 error = security_path_mkdir(&path, dentry, mode);
3659 if (!error)
3660 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3661 done_path_create(&path, dentry);
3662 if (retry_estale(error, lookup_flags)) {
3663 lookup_flags |= LOOKUP_REVAL;
3664 goto retry;
3665 }
3666 return error;
3667 }
3668
3669 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3670 {
3671 return sys_mkdirat(AT_FDCWD, pathname, mode);
3672 }
3673
3674 /*
3675 * The dentry_unhash() helper will try to drop the dentry early: we
3676 * should have a usage count of 1 if we're the only user of this
3677 * dentry, and if that is true (possibly after pruning the dcache),
3678 * then we drop the dentry now.
3679 *
3680 * A low-level filesystem can, if it choses, legally
3681 * do a
3682 *
3683 * if (!d_unhashed(dentry))
3684 * return -EBUSY;
3685 *
3686 * if it cannot handle the case of removing a directory
3687 * that is still in use by something else..
3688 */
3689 void dentry_unhash(struct dentry *dentry)
3690 {
3691 shrink_dcache_parent(dentry);
3692 spin_lock(&dentry->d_lock);
3693 if (dentry->d_lockref.count == 1)
3694 __d_drop(dentry);
3695 spin_unlock(&dentry->d_lock);
3696 }
3697 EXPORT_SYMBOL(dentry_unhash);
3698
3699 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3700 {
3701 int error = may_delete(dir, dentry, 1);
3702
3703 if (error)
3704 return error;
3705
3706 if (!dir->i_op->rmdir)
3707 return -EPERM;
3708
3709 dget(dentry);
3710 mutex_lock(&dentry->d_inode->i_mutex);
3711
3712 error = -EBUSY;
3713 if (is_local_mountpoint(dentry))
3714 goto out;
3715
3716 error = security_inode_rmdir(dir, dentry);
3717 if (error)
3718 goto out;
3719
3720 shrink_dcache_parent(dentry);
3721 error = dir->i_op->rmdir(dir, dentry);
3722 if (error)
3723 goto out;
3724
3725 dentry->d_inode->i_flags |= S_DEAD;
3726 dont_mount(dentry);
3727 detach_mounts(dentry);
3728
3729 out:
3730 mutex_unlock(&dentry->d_inode->i_mutex);
3731 dput(dentry);
3732 if (!error)
3733 d_delete(dentry);
3734 return error;
3735 }
3736 EXPORT_SYMBOL(vfs_rmdir);
3737
3738 static long do_rmdir(int dfd, const char __user *pathname)
3739 {
3740 int error = 0;
3741 struct filename *name;
3742 struct dentry *dentry;
3743 struct path path;
3744 struct qstr last;
3745 int type;
3746 unsigned int lookup_flags = 0;
3747 retry:
3748 name = user_path_parent(dfd, pathname,
3749 &path, &last, &type, lookup_flags);
3750 if (IS_ERR(name))
3751 return PTR_ERR(name);
3752
3753 switch (type) {
3754 case LAST_DOTDOT:
3755 error = -ENOTEMPTY;
3756 goto exit1;
3757 case LAST_DOT:
3758 error = -EINVAL;
3759 goto exit1;
3760 case LAST_ROOT:
3761 error = -EBUSY;
3762 goto exit1;
3763 }
3764
3765 error = mnt_want_write(path.mnt);
3766 if (error)
3767 goto exit1;
3768
3769 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3770 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3771 error = PTR_ERR(dentry);
3772 if (IS_ERR(dentry))
3773 goto exit2;
3774 if (!dentry->d_inode) {
3775 error = -ENOENT;
3776 goto exit3;
3777 }
3778 error = security_path_rmdir(&path, dentry);
3779 if (error)
3780 goto exit3;
3781 error = vfs_rmdir(path.dentry->d_inode, dentry);
3782 exit3:
3783 dput(dentry);
3784 exit2:
3785 mutex_unlock(&path.dentry->d_inode->i_mutex);
3786 mnt_drop_write(path.mnt);
3787 exit1:
3788 path_put(&path);
3789 putname(name);
3790 if (retry_estale(error, lookup_flags)) {
3791 lookup_flags |= LOOKUP_REVAL;
3792 goto retry;
3793 }
3794 return error;
3795 }
3796
3797 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3798 {
3799 return do_rmdir(AT_FDCWD, pathname);
3800 }
3801
3802 /**
3803 * vfs_unlink - unlink a filesystem object
3804 * @dir: parent directory
3805 * @dentry: victim
3806 * @delegated_inode: returns victim inode, if the inode is delegated.
3807 *
3808 * The caller must hold dir->i_mutex.
3809 *
3810 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3811 * return a reference to the inode in delegated_inode. The caller
3812 * should then break the delegation on that inode and retry. Because
3813 * breaking a delegation may take a long time, the caller should drop
3814 * dir->i_mutex before doing so.
3815 *
3816 * Alternatively, a caller may pass NULL for delegated_inode. This may
3817 * be appropriate for callers that expect the underlying filesystem not
3818 * to be NFS exported.
3819 */
3820 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3821 {
3822 struct inode *target = dentry->d_inode;
3823 int error = may_delete(dir, dentry, 0);
3824
3825 if (error)
3826 return error;
3827
3828 if (!dir->i_op->unlink)
3829 return -EPERM;
3830
3831 mutex_lock(&target->i_mutex);
3832 if (is_local_mountpoint(dentry))
3833 error = -EBUSY;
3834 else {
3835 error = security_inode_unlink(dir, dentry);
3836 if (!error) {
3837 error = try_break_deleg(target, delegated_inode);
3838 if (error)
3839 goto out;
3840 error = dir->i_op->unlink(dir, dentry);
3841 if (!error) {
3842 dont_mount(dentry);
3843 detach_mounts(dentry);
3844 }
3845 }
3846 }
3847 out:
3848 mutex_unlock(&target->i_mutex);
3849
3850 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3851 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3852 fsnotify_link_count(target);
3853 d_delete(dentry);
3854 }
3855
3856 return error;
3857 }
3858 EXPORT_SYMBOL(vfs_unlink);
3859
3860 /*
3861 * Make sure that the actual truncation of the file will occur outside its
3862 * directory's i_mutex. Truncate can take a long time if there is a lot of
3863 * writeout happening, and we don't want to prevent access to the directory
3864 * while waiting on the I/O.
3865 */
3866 static long do_unlinkat(int dfd, const char __user *pathname)
3867 {
3868 int error;
3869 struct filename *name;
3870 struct dentry *dentry;
3871 struct path path;
3872 struct qstr last;
3873 int type;
3874 struct inode *inode = NULL;
3875 struct inode *delegated_inode = NULL;
3876 unsigned int lookup_flags = 0;
3877 retry:
3878 name = user_path_parent(dfd, pathname,
3879 &path, &last, &type, lookup_flags);
3880 if (IS_ERR(name))
3881 return PTR_ERR(name);
3882
3883 error = -EISDIR;
3884 if (type != LAST_NORM)
3885 goto exit1;
3886
3887 error = mnt_want_write(path.mnt);
3888 if (error)
3889 goto exit1;
3890 retry_deleg:
3891 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3892 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3893 error = PTR_ERR(dentry);
3894 if (!IS_ERR(dentry)) {
3895 /* Why not before? Because we want correct error value */
3896 if (last.name[last.len])
3897 goto slashes;
3898 inode = dentry->d_inode;
3899 if (d_is_negative(dentry))
3900 goto slashes;
3901 ihold(inode);
3902 error = security_path_unlink(&path, dentry);
3903 if (error)
3904 goto exit2;
3905 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3906 exit2:
3907 dput(dentry);
3908 }
3909 mutex_unlock(&path.dentry->d_inode->i_mutex);
3910 if (inode)
3911 iput(inode); /* truncate the inode here */
3912 inode = NULL;
3913 if (delegated_inode) {
3914 error = break_deleg_wait(&delegated_inode);
3915 if (!error)
3916 goto retry_deleg;
3917 }
3918 mnt_drop_write(path.mnt);
3919 exit1:
3920 path_put(&path);
3921 putname(name);
3922 if (retry_estale(error, lookup_flags)) {
3923 lookup_flags |= LOOKUP_REVAL;
3924 inode = NULL;
3925 goto retry;
3926 }
3927 return error;
3928
3929 slashes:
3930 if (d_is_negative(dentry))
3931 error = -ENOENT;
3932 else if (d_is_dir(dentry))
3933 error = -EISDIR;
3934 else
3935 error = -ENOTDIR;
3936 goto exit2;
3937 }
3938
3939 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3940 {
3941 if ((flag & ~AT_REMOVEDIR) != 0)
3942 return -EINVAL;
3943
3944 if (flag & AT_REMOVEDIR)
3945 return do_rmdir(dfd, pathname);
3946
3947 return do_unlinkat(dfd, pathname);
3948 }
3949
3950 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3951 {
3952 return do_unlinkat(AT_FDCWD, pathname);
3953 }
3954
3955 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3956 {
3957 int error = may_create(dir, dentry);
3958
3959 if (error)
3960 return error;
3961
3962 if (!dir->i_op->symlink)
3963 return -EPERM;
3964
3965 error = security_inode_symlink(dir, dentry, oldname);
3966 if (error)
3967 return error;
3968
3969 error = dir->i_op->symlink(dir, dentry, oldname);
3970 if (!error)
3971 fsnotify_create(dir, dentry);
3972 return error;
3973 }
3974 EXPORT_SYMBOL(vfs_symlink);
3975
3976 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3977 int, newdfd, const char __user *, newname)
3978 {
3979 int error;
3980 struct filename *from;
3981 struct dentry *dentry;
3982 struct path path;
3983 unsigned int lookup_flags = 0;
3984
3985 from = getname(oldname);
3986 if (IS_ERR(from))
3987 return PTR_ERR(from);
3988 retry:
3989 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3990 error = PTR_ERR(dentry);
3991 if (IS_ERR(dentry))
3992 goto out_putname;
3993
3994 error = security_path_symlink(&path, dentry, from->name);
3995 if (!error)
3996 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3997 done_path_create(&path, dentry);
3998 if (retry_estale(error, lookup_flags)) {
3999 lookup_flags |= LOOKUP_REVAL;
4000 goto retry;
4001 }
4002 out_putname:
4003 putname(from);
4004 return error;
4005 }
4006
4007 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4008 {
4009 return sys_symlinkat(oldname, AT_FDCWD, newname);
4010 }
4011
4012 /**
4013 * vfs_link - create a new link
4014 * @old_dentry: object to be linked
4015 * @dir: new parent
4016 * @new_dentry: where to create the new link
4017 * @delegated_inode: returns inode needing a delegation break
4018 *
4019 * The caller must hold dir->i_mutex
4020 *
4021 * If vfs_link discovers a delegation on the to-be-linked file in need
4022 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4023 * inode in delegated_inode. The caller should then break the delegation
4024 * and retry. Because breaking a delegation may take a long time, the
4025 * caller should drop the i_mutex before doing so.
4026 *
4027 * Alternatively, a caller may pass NULL for delegated_inode. This may
4028 * be appropriate for callers that expect the underlying filesystem not
4029 * to be NFS exported.
4030 */
4031 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4032 {
4033 struct inode *inode = old_dentry->d_inode;
4034 unsigned max_links = dir->i_sb->s_max_links;
4035 int error;
4036
4037 if (!inode)
4038 return -ENOENT;
4039
4040 error = may_create(dir, new_dentry);
4041 if (error)
4042 return error;
4043
4044 if (dir->i_sb != inode->i_sb)
4045 return -EXDEV;
4046
4047 /*
4048 * A link to an append-only or immutable file cannot be created.
4049 */
4050 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4051 return -EPERM;
4052 if (!dir->i_op->link)
4053 return -EPERM;
4054 if (S_ISDIR(inode->i_mode))
4055 return -EPERM;
4056
4057 error = security_inode_link(old_dentry, dir, new_dentry);
4058 if (error)
4059 return error;
4060
4061 mutex_lock(&inode->i_mutex);
4062 /* Make sure we don't allow creating hardlink to an unlinked file */
4063 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4064 error = -ENOENT;
4065 else if (max_links && inode->i_nlink >= max_links)
4066 error = -EMLINK;
4067 else {
4068 error = try_break_deleg(inode, delegated_inode);
4069 if (!error)
4070 error = dir->i_op->link(old_dentry, dir, new_dentry);
4071 }
4072
4073 if (!error && (inode->i_state & I_LINKABLE)) {
4074 spin_lock(&inode->i_lock);
4075 inode->i_state &= ~I_LINKABLE;
4076 spin_unlock(&inode->i_lock);
4077 }
4078 mutex_unlock(&inode->i_mutex);
4079 if (!error)
4080 fsnotify_link(dir, inode, new_dentry);
4081 return error;
4082 }
4083 EXPORT_SYMBOL(vfs_link);
4084
4085 /*
4086 * Hardlinks are often used in delicate situations. We avoid
4087 * security-related surprises by not following symlinks on the
4088 * newname. --KAB
4089 *
4090 * We don't follow them on the oldname either to be compatible
4091 * with linux 2.0, and to avoid hard-linking to directories
4092 * and other special files. --ADM
4093 */
4094 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4095 int, newdfd, const char __user *, newname, int, flags)
4096 {
4097 struct dentry *new_dentry;
4098 struct path old_path, new_path;
4099 struct inode *delegated_inode = NULL;
4100 int how = 0;
4101 int error;
4102
4103 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4104 return -EINVAL;
4105 /*
4106 * To use null names we require CAP_DAC_READ_SEARCH
4107 * This ensures that not everyone will be able to create
4108 * handlink using the passed filedescriptor.
4109 */
4110 if (flags & AT_EMPTY_PATH) {
4111 if (!capable(CAP_DAC_READ_SEARCH))
4112 return -ENOENT;
4113 how = LOOKUP_EMPTY;
4114 }
4115
4116 if (flags & AT_SYMLINK_FOLLOW)
4117 how |= LOOKUP_FOLLOW;
4118 retry:
4119 error = user_path_at(olddfd, oldname, how, &old_path);
4120 if (error)
4121 return error;
4122
4123 new_dentry = user_path_create(newdfd, newname, &new_path,
4124 (how & LOOKUP_REVAL));
4125 error = PTR_ERR(new_dentry);
4126 if (IS_ERR(new_dentry))
4127 goto out;
4128
4129 error = -EXDEV;
4130 if (old_path.mnt != new_path.mnt)
4131 goto out_dput;
4132 error = may_linkat(&old_path);
4133 if (unlikely(error))
4134 goto out_dput;
4135 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4136 if (error)
4137 goto out_dput;
4138 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4139 out_dput:
4140 done_path_create(&new_path, new_dentry);
4141 if (delegated_inode) {
4142 error = break_deleg_wait(&delegated_inode);
4143 if (!error) {
4144 path_put(&old_path);
4145 goto retry;
4146 }
4147 }
4148 if (retry_estale(error, how)) {
4149 path_put(&old_path);
4150 how |= LOOKUP_REVAL;
4151 goto retry;
4152 }
4153 out:
4154 path_put(&old_path);
4155
4156 return error;
4157 }
4158
4159 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4160 {
4161 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4162 }
4163
4164 /**
4165 * vfs_rename - rename a filesystem object
4166 * @old_dir: parent of source
4167 * @old_dentry: source
4168 * @new_dir: parent of destination
4169 * @new_dentry: destination
4170 * @delegated_inode: returns an inode needing a delegation break
4171 * @flags: rename flags
4172 *
4173 * The caller must hold multiple mutexes--see lock_rename()).
4174 *
4175 * If vfs_rename discovers a delegation in need of breaking at either
4176 * the source or destination, it will return -EWOULDBLOCK and return a
4177 * reference to the inode in delegated_inode. The caller should then
4178 * break the delegation and retry. Because breaking a delegation may
4179 * take a long time, the caller should drop all locks before doing
4180 * so.
4181 *
4182 * Alternatively, a caller may pass NULL for delegated_inode. This may
4183 * be appropriate for callers that expect the underlying filesystem not
4184 * to be NFS exported.
4185 *
4186 * The worst of all namespace operations - renaming directory. "Perverted"
4187 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4188 * Problems:
4189 * a) we can get into loop creation.
4190 * b) race potential - two innocent renames can create a loop together.
4191 * That's where 4.4 screws up. Current fix: serialization on
4192 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4193 * story.
4194 * c) we have to lock _four_ objects - parents and victim (if it exists),
4195 * and source (if it is not a directory).
4196 * And that - after we got ->i_mutex on parents (until then we don't know
4197 * whether the target exists). Solution: try to be smart with locking
4198 * order for inodes. We rely on the fact that tree topology may change
4199 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4200 * move will be locked. Thus we can rank directories by the tree
4201 * (ancestors first) and rank all non-directories after them.
4202 * That works since everybody except rename does "lock parent, lookup,
4203 * lock child" and rename is under ->s_vfs_rename_mutex.
4204 * HOWEVER, it relies on the assumption that any object with ->lookup()
4205 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4206 * we'd better make sure that there's no link(2) for them.
4207 * d) conversion from fhandle to dentry may come in the wrong moment - when
4208 * we are removing the target. Solution: we will have to grab ->i_mutex
4209 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4210 * ->i_mutex on parents, which works but leads to some truly excessive
4211 * locking].
4212 */
4213 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4214 struct inode *new_dir, struct dentry *new_dentry,
4215 struct inode **delegated_inode, unsigned int flags)
4216 {
4217 int error;
4218 bool is_dir = d_is_dir(old_dentry);
4219 const unsigned char *old_name;
4220 struct inode *source = old_dentry->d_inode;
4221 struct inode *target = new_dentry->d_inode;
4222 bool new_is_dir = false;
4223 unsigned max_links = new_dir->i_sb->s_max_links;
4224
4225 if (source == target)
4226 return 0;
4227
4228 error = may_delete(old_dir, old_dentry, is_dir);
4229 if (error)
4230 return error;
4231
4232 if (!target) {
4233 error = may_create(new_dir, new_dentry);
4234 } else {
4235 new_is_dir = d_is_dir(new_dentry);
4236
4237 if (!(flags & RENAME_EXCHANGE))
4238 error = may_delete(new_dir, new_dentry, is_dir);
4239 else
4240 error = may_delete(new_dir, new_dentry, new_is_dir);
4241 }
4242 if (error)
4243 return error;
4244
4245 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4246 return -EPERM;
4247
4248 if (flags && !old_dir->i_op->rename2)
4249 return -EINVAL;
4250
4251 /*
4252 * If we are going to change the parent - check write permissions,
4253 * we'll need to flip '..'.
4254 */
4255 if (new_dir != old_dir) {
4256 if (is_dir) {
4257 error = inode_permission(source, MAY_WRITE);
4258 if (error)
4259 return error;
4260 }
4261 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4262 error = inode_permission(target, MAY_WRITE);
4263 if (error)
4264 return error;
4265 }
4266 }
4267
4268 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4269 flags);
4270 if (error)
4271 return error;
4272
4273 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4274 dget(new_dentry);
4275 if (!is_dir || (flags & RENAME_EXCHANGE))
4276 lock_two_nondirectories(source, target);
4277 else if (target)
4278 mutex_lock(&target->i_mutex);
4279
4280 error = -EBUSY;
4281 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4282 goto out;
4283
4284 if (max_links && new_dir != old_dir) {
4285 error = -EMLINK;
4286 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4287 goto out;
4288 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4289 old_dir->i_nlink >= max_links)
4290 goto out;
4291 }
4292 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4293 shrink_dcache_parent(new_dentry);
4294 if (!is_dir) {
4295 error = try_break_deleg(source, delegated_inode);
4296 if (error)
4297 goto out;
4298 }
4299 if (target && !new_is_dir) {
4300 error = try_break_deleg(target, delegated_inode);
4301 if (error)
4302 goto out;
4303 }
4304 if (!old_dir->i_op->rename2) {
4305 error = old_dir->i_op->rename(old_dir, old_dentry,
4306 new_dir, new_dentry);
4307 } else {
4308 WARN_ON(old_dir->i_op->rename != NULL);
4309 error = old_dir->i_op->rename2(old_dir, old_dentry,
4310 new_dir, new_dentry, flags);
4311 }
4312 if (error)
4313 goto out;
4314
4315 if (!(flags & RENAME_EXCHANGE) && target) {
4316 if (is_dir)
4317 target->i_flags |= S_DEAD;
4318 dont_mount(new_dentry);
4319 detach_mounts(new_dentry);
4320 }
4321 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4322 if (!(flags & RENAME_EXCHANGE))
4323 d_move(old_dentry, new_dentry);
4324 else
4325 d_exchange(old_dentry, new_dentry);
4326 }
4327 out:
4328 if (!is_dir || (flags & RENAME_EXCHANGE))
4329 unlock_two_nondirectories(source, target);
4330 else if (target)
4331 mutex_unlock(&target->i_mutex);
4332 dput(new_dentry);
4333 if (!error) {
4334 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4335 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4336 if (flags & RENAME_EXCHANGE) {
4337 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4338 new_is_dir, NULL, new_dentry);
4339 }
4340 }
4341 fsnotify_oldname_free(old_name);
4342
4343 return error;
4344 }
4345 EXPORT_SYMBOL(vfs_rename);
4346
4347 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4348 int, newdfd, const char __user *, newname, unsigned int, flags)
4349 {
4350 struct dentry *old_dentry, *new_dentry;
4351 struct dentry *trap;
4352 struct path old_path, new_path;
4353 struct qstr old_last, new_last;
4354 int old_type, new_type;
4355 struct inode *delegated_inode = NULL;
4356 struct filename *from;
4357 struct filename *to;
4358 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4359 bool should_retry = false;
4360 int error;
4361
4362 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4363 return -EINVAL;
4364
4365 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4366 (flags & RENAME_EXCHANGE))
4367 return -EINVAL;
4368
4369 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4370 return -EPERM;
4371
4372 if (flags & RENAME_EXCHANGE)
4373 target_flags = 0;
4374
4375 retry:
4376 from = user_path_parent(olddfd, oldname,
4377 &old_path, &old_last, &old_type, lookup_flags);
4378 if (IS_ERR(from)) {
4379 error = PTR_ERR(from);
4380 goto exit;
4381 }
4382
4383 to = user_path_parent(newdfd, newname,
4384 &new_path, &new_last, &new_type, lookup_flags);
4385 if (IS_ERR(to)) {
4386 error = PTR_ERR(to);
4387 goto exit1;
4388 }
4389
4390 error = -EXDEV;
4391 if (old_path.mnt != new_path.mnt)
4392 goto exit2;
4393
4394 error = -EBUSY;
4395 if (old_type != LAST_NORM)
4396 goto exit2;
4397
4398 if (flags & RENAME_NOREPLACE)
4399 error = -EEXIST;
4400 if (new_type != LAST_NORM)
4401 goto exit2;
4402
4403 error = mnt_want_write(old_path.mnt);
4404 if (error)
4405 goto exit2;
4406
4407 retry_deleg:
4408 trap = lock_rename(new_path.dentry, old_path.dentry);
4409
4410 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4411 error = PTR_ERR(old_dentry);
4412 if (IS_ERR(old_dentry))
4413 goto exit3;
4414 /* source must exist */
4415 error = -ENOENT;
4416 if (d_is_negative(old_dentry))
4417 goto exit4;
4418 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4419 error = PTR_ERR(new_dentry);
4420 if (IS_ERR(new_dentry))
4421 goto exit4;
4422 error = -EEXIST;
4423 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4424 goto exit5;
4425 if (flags & RENAME_EXCHANGE) {
4426 error = -ENOENT;
4427 if (d_is_negative(new_dentry))
4428 goto exit5;
4429
4430 if (!d_is_dir(new_dentry)) {
4431 error = -ENOTDIR;
4432 if (new_last.name[new_last.len])
4433 goto exit5;
4434 }
4435 }
4436 /* unless the source is a directory trailing slashes give -ENOTDIR */
4437 if (!d_is_dir(old_dentry)) {
4438 error = -ENOTDIR;
4439 if (old_last.name[old_last.len])
4440 goto exit5;
4441 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4442 goto exit5;
4443 }
4444 /* source should not be ancestor of target */
4445 error = -EINVAL;
4446 if (old_dentry == trap)
4447 goto exit5;
4448 /* target should not be an ancestor of source */
4449 if (!(flags & RENAME_EXCHANGE))
4450 error = -ENOTEMPTY;
4451 if (new_dentry == trap)
4452 goto exit5;
4453
4454 error = security_path_rename(&old_path, old_dentry,
4455 &new_path, new_dentry, flags);
4456 if (error)
4457 goto exit5;
4458 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4459 new_path.dentry->d_inode, new_dentry,
4460 &delegated_inode, flags);
4461 exit5:
4462 dput(new_dentry);
4463 exit4:
4464 dput(old_dentry);
4465 exit3:
4466 unlock_rename(new_path.dentry, old_path.dentry);
4467 if (delegated_inode) {
4468 error = break_deleg_wait(&delegated_inode);
4469 if (!error)
4470 goto retry_deleg;
4471 }
4472 mnt_drop_write(old_path.mnt);
4473 exit2:
4474 if (retry_estale(error, lookup_flags))
4475 should_retry = true;
4476 path_put(&new_path);
4477 putname(to);
4478 exit1:
4479 path_put(&old_path);
4480 putname(from);
4481 if (should_retry) {
4482 should_retry = false;
4483 lookup_flags |= LOOKUP_REVAL;
4484 goto retry;
4485 }
4486 exit:
4487 return error;
4488 }
4489
4490 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4491 int, newdfd, const char __user *, newname)
4492 {
4493 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4494 }
4495
4496 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4497 {
4498 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4499 }
4500
4501 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4502 {
4503 int error = may_create(dir, dentry);
4504 if (error)
4505 return error;
4506
4507 if (!dir->i_op->mknod)
4508 return -EPERM;
4509
4510 return dir->i_op->mknod(dir, dentry,
4511 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4512 }
4513 EXPORT_SYMBOL(vfs_whiteout);
4514
4515 int readlink_copy(char __user *buffer, int buflen, const char *link)
4516 {
4517 int len = PTR_ERR(link);
4518 if (IS_ERR(link))
4519 goto out;
4520
4521 len = strlen(link);
4522 if (len > (unsigned) buflen)
4523 len = buflen;
4524 if (copy_to_user(buffer, link, len))
4525 len = -EFAULT;
4526 out:
4527 return len;
4528 }
4529 EXPORT_SYMBOL(readlink_copy);
4530
4531 /*
4532 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4533 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4534 * using) it for any given inode is up to filesystem.
4535 */
4536 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4537 {
4538 void *cookie;
4539 struct inode *inode = d_inode(dentry);
4540 const char *link = inode->i_link;
4541 int res;
4542
4543 if (!link) {
4544 link = inode->i_op->follow_link(dentry, &cookie);
4545 if (IS_ERR(link))
4546 return PTR_ERR(link);
4547 }
4548 res = readlink_copy(buffer, buflen, link);
4549 if (inode->i_op->put_link)
4550 inode->i_op->put_link(inode, cookie);
4551 return res;
4552 }
4553 EXPORT_SYMBOL(generic_readlink);
4554
4555 /* get the link contents into pagecache */
4556 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4557 {
4558 char *kaddr;
4559 struct page *page;
4560 struct address_space *mapping = dentry->d_inode->i_mapping;
4561 page = read_mapping_page(mapping, 0, NULL);
4562 if (IS_ERR(page))
4563 return (char*)page;
4564 *ppage = page;
4565 kaddr = kmap(page);
4566 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4567 return kaddr;
4568 }
4569
4570 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4571 {
4572 struct page *page = NULL;
4573 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4574 if (page) {
4575 kunmap(page);
4576 page_cache_release(page);
4577 }
4578 return res;
4579 }
4580 EXPORT_SYMBOL(page_readlink);
4581
4582 const char *page_follow_link_light(struct dentry *dentry, void **cookie)
4583 {
4584 struct page *page = NULL;
4585 char *res = page_getlink(dentry, &page);
4586 if (!IS_ERR(res))
4587 *cookie = page;
4588 return res;
4589 }
4590 EXPORT_SYMBOL(page_follow_link_light);
4591
4592 void page_put_link(struct inode *unused, void *cookie)
4593 {
4594 struct page *page = cookie;
4595 kunmap(page);
4596 page_cache_release(page);
4597 }
4598 EXPORT_SYMBOL(page_put_link);
4599
4600 /*
4601 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4602 */
4603 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4604 {
4605 struct address_space *mapping = inode->i_mapping;
4606 struct page *page;
4607 void *fsdata;
4608 int err;
4609 char *kaddr;
4610 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4611 if (nofs)
4612 flags |= AOP_FLAG_NOFS;
4613
4614 retry:
4615 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4616 flags, &page, &fsdata);
4617 if (err)
4618 goto fail;
4619
4620 kaddr = kmap_atomic(page);
4621 memcpy(kaddr, symname, len-1);
4622 kunmap_atomic(kaddr);
4623
4624 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4625 page, fsdata);
4626 if (err < 0)
4627 goto fail;
4628 if (err < len-1)
4629 goto retry;
4630
4631 mark_inode_dirty(inode);
4632 return 0;
4633 fail:
4634 return err;
4635 }
4636 EXPORT_SYMBOL(__page_symlink);
4637
4638 int page_symlink(struct inode *inode, const char *symname, int len)
4639 {
4640 return __page_symlink(inode, symname, len,
4641 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4642 }
4643 EXPORT_SYMBOL(page_symlink);
4644
4645 const struct inode_operations page_symlink_inode_operations = {
4646 .readlink = generic_readlink,
4647 .follow_link = page_follow_link_light,
4648 .put_link = page_put_link,
4649 };
4650 EXPORT_SYMBOL(page_symlink_inode_operations);