]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/namei.c
namei: massage lookup_slow() to be usable by lookup_one_len_unlocked()
[mirror_ubuntu-bionic-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 struct path path;
498 struct qstr last;
499 struct path root;
500 struct inode *inode; /* path.dentry.d_inode */
501 unsigned int flags;
502 unsigned seq, m_seq;
503 int last_type;
504 unsigned depth;
505 int total_link_count;
506 struct saved {
507 struct path link;
508 struct delayed_call done;
509 const char *name;
510 unsigned seq;
511 } *stack, internal[EMBEDDED_LEVELS];
512 struct filename *name;
513 struct nameidata *saved;
514 struct inode *link_inode;
515 unsigned root_seq;
516 int dfd;
517 };
518
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521 struct nameidata *old = current->nameidata;
522 p->stack = p->internal;
523 p->dfd = dfd;
524 p->name = name;
525 p->total_link_count = old ? old->total_link_count : 0;
526 p->saved = old;
527 current->nameidata = p;
528 }
529
530 static void restore_nameidata(void)
531 {
532 struct nameidata *now = current->nameidata, *old = now->saved;
533
534 current->nameidata = old;
535 if (old)
536 old->total_link_count = now->total_link_count;
537 if (now->stack != now->internal)
538 kfree(now->stack);
539 }
540
541 static int __nd_alloc_stack(struct nameidata *nd)
542 {
543 struct saved *p;
544
545 if (nd->flags & LOOKUP_RCU) {
546 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
547 GFP_ATOMIC);
548 if (unlikely(!p))
549 return -ECHILD;
550 } else {
551 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
552 GFP_KERNEL);
553 if (unlikely(!p))
554 return -ENOMEM;
555 }
556 memcpy(p, nd->internal, sizeof(nd->internal));
557 nd->stack = p;
558 return 0;
559 }
560
561 /**
562 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
563 * @path: nameidate to verify
564 *
565 * Rename can sometimes move a file or directory outside of a bind
566 * mount, path_connected allows those cases to be detected.
567 */
568 static bool path_connected(const struct path *path)
569 {
570 struct vfsmount *mnt = path->mnt;
571
572 /* Only bind mounts can have disconnected paths */
573 if (mnt->mnt_root == mnt->mnt_sb->s_root)
574 return true;
575
576 return is_subdir(path->dentry, mnt->mnt_root);
577 }
578
579 static inline int nd_alloc_stack(struct nameidata *nd)
580 {
581 if (likely(nd->depth != EMBEDDED_LEVELS))
582 return 0;
583 if (likely(nd->stack != nd->internal))
584 return 0;
585 return __nd_alloc_stack(nd);
586 }
587
588 static void drop_links(struct nameidata *nd)
589 {
590 int i = nd->depth;
591 while (i--) {
592 struct saved *last = nd->stack + i;
593 do_delayed_call(&last->done);
594 clear_delayed_call(&last->done);
595 }
596 }
597
598 static void terminate_walk(struct nameidata *nd)
599 {
600 drop_links(nd);
601 if (!(nd->flags & LOOKUP_RCU)) {
602 int i;
603 path_put(&nd->path);
604 for (i = 0; i < nd->depth; i++)
605 path_put(&nd->stack[i].link);
606 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
607 path_put(&nd->root);
608 nd->root.mnt = NULL;
609 }
610 } else {
611 nd->flags &= ~LOOKUP_RCU;
612 if (!(nd->flags & LOOKUP_ROOT))
613 nd->root.mnt = NULL;
614 rcu_read_unlock();
615 }
616 nd->depth = 0;
617 }
618
619 /* path_put is needed afterwards regardless of success or failure */
620 static bool legitimize_path(struct nameidata *nd,
621 struct path *path, unsigned seq)
622 {
623 int res = __legitimize_mnt(path->mnt, nd->m_seq);
624 if (unlikely(res)) {
625 if (res > 0)
626 path->mnt = NULL;
627 path->dentry = NULL;
628 return false;
629 }
630 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
631 path->dentry = NULL;
632 return false;
633 }
634 return !read_seqcount_retry(&path->dentry->d_seq, seq);
635 }
636
637 static bool legitimize_links(struct nameidata *nd)
638 {
639 int i;
640 for (i = 0; i < nd->depth; i++) {
641 struct saved *last = nd->stack + i;
642 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
643 drop_links(nd);
644 nd->depth = i + 1;
645 return false;
646 }
647 }
648 return true;
649 }
650
651 /*
652 * Path walking has 2 modes, rcu-walk and ref-walk (see
653 * Documentation/filesystems/path-lookup.txt). In situations when we can't
654 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
655 * normal reference counts on dentries and vfsmounts to transition to ref-walk
656 * mode. Refcounts are grabbed at the last known good point before rcu-walk
657 * got stuck, so ref-walk may continue from there. If this is not successful
658 * (eg. a seqcount has changed), then failure is returned and it's up to caller
659 * to restart the path walk from the beginning in ref-walk mode.
660 */
661
662 /**
663 * unlazy_walk - try to switch to ref-walk mode.
664 * @nd: nameidata pathwalk data
665 * @dentry: child of nd->path.dentry or NULL
666 * @seq: seq number to check dentry against
667 * Returns: 0 on success, -ECHILD on failure
668 *
669 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
670 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
671 * @nd or NULL. Must be called from rcu-walk context.
672 * Nothing should touch nameidata between unlazy_walk() failure and
673 * terminate_walk().
674 */
675 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
676 {
677 struct dentry *parent = nd->path.dentry;
678
679 BUG_ON(!(nd->flags & LOOKUP_RCU));
680
681 nd->flags &= ~LOOKUP_RCU;
682 if (unlikely(!legitimize_links(nd)))
683 goto out2;
684 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
685 goto out2;
686 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
687 goto out1;
688
689 /*
690 * For a negative lookup, the lookup sequence point is the parents
691 * sequence point, and it only needs to revalidate the parent dentry.
692 *
693 * For a positive lookup, we need to move both the parent and the
694 * dentry from the RCU domain to be properly refcounted. And the
695 * sequence number in the dentry validates *both* dentry counters,
696 * since we checked the sequence number of the parent after we got
697 * the child sequence number. So we know the parent must still
698 * be valid if the child sequence number is still valid.
699 */
700 if (!dentry) {
701 if (read_seqcount_retry(&parent->d_seq, nd->seq))
702 goto out;
703 BUG_ON(nd->inode != parent->d_inode);
704 } else {
705 if (!lockref_get_not_dead(&dentry->d_lockref))
706 goto out;
707 if (read_seqcount_retry(&dentry->d_seq, seq))
708 goto drop_dentry;
709 }
710
711 /*
712 * Sequence counts matched. Now make sure that the root is
713 * still valid and get it if required.
714 */
715 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
716 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
717 rcu_read_unlock();
718 dput(dentry);
719 return -ECHILD;
720 }
721 }
722
723 rcu_read_unlock();
724 return 0;
725
726 drop_dentry:
727 rcu_read_unlock();
728 dput(dentry);
729 goto drop_root_mnt;
730 out2:
731 nd->path.mnt = NULL;
732 out1:
733 nd->path.dentry = NULL;
734 out:
735 rcu_read_unlock();
736 drop_root_mnt:
737 if (!(nd->flags & LOOKUP_ROOT))
738 nd->root.mnt = NULL;
739 return -ECHILD;
740 }
741
742 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
743 {
744 if (unlikely(!legitimize_path(nd, link, seq))) {
745 drop_links(nd);
746 nd->depth = 0;
747 nd->flags &= ~LOOKUP_RCU;
748 nd->path.mnt = NULL;
749 nd->path.dentry = NULL;
750 if (!(nd->flags & LOOKUP_ROOT))
751 nd->root.mnt = NULL;
752 rcu_read_unlock();
753 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
754 return 0;
755 }
756 path_put(link);
757 return -ECHILD;
758 }
759
760 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
761 {
762 return dentry->d_op->d_revalidate(dentry, flags);
763 }
764
765 /**
766 * complete_walk - successful completion of path walk
767 * @nd: pointer nameidata
768 *
769 * If we had been in RCU mode, drop out of it and legitimize nd->path.
770 * Revalidate the final result, unless we'd already done that during
771 * the path walk or the filesystem doesn't ask for it. Return 0 on
772 * success, -error on failure. In case of failure caller does not
773 * need to drop nd->path.
774 */
775 static int complete_walk(struct nameidata *nd)
776 {
777 struct dentry *dentry = nd->path.dentry;
778 int status;
779
780 if (nd->flags & LOOKUP_RCU) {
781 if (!(nd->flags & LOOKUP_ROOT))
782 nd->root.mnt = NULL;
783 if (unlikely(unlazy_walk(nd, NULL, 0)))
784 return -ECHILD;
785 }
786
787 if (likely(!(nd->flags & LOOKUP_JUMPED)))
788 return 0;
789
790 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
791 return 0;
792
793 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
794 if (status > 0)
795 return 0;
796
797 if (!status)
798 status = -ESTALE;
799
800 return status;
801 }
802
803 static void set_root(struct nameidata *nd)
804 {
805 struct fs_struct *fs = current->fs;
806
807 if (nd->flags & LOOKUP_RCU) {
808 unsigned seq;
809
810 do {
811 seq = read_seqcount_begin(&fs->seq);
812 nd->root = fs->root;
813 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
814 } while (read_seqcount_retry(&fs->seq, seq));
815 } else {
816 get_fs_root(fs, &nd->root);
817 }
818 }
819
820 static void path_put_conditional(struct path *path, struct nameidata *nd)
821 {
822 dput(path->dentry);
823 if (path->mnt != nd->path.mnt)
824 mntput(path->mnt);
825 }
826
827 static inline void path_to_nameidata(const struct path *path,
828 struct nameidata *nd)
829 {
830 if (!(nd->flags & LOOKUP_RCU)) {
831 dput(nd->path.dentry);
832 if (nd->path.mnt != path->mnt)
833 mntput(nd->path.mnt);
834 }
835 nd->path.mnt = path->mnt;
836 nd->path.dentry = path->dentry;
837 }
838
839 static int nd_jump_root(struct nameidata *nd)
840 {
841 if (nd->flags & LOOKUP_RCU) {
842 struct dentry *d;
843 nd->path = nd->root;
844 d = nd->path.dentry;
845 nd->inode = d->d_inode;
846 nd->seq = nd->root_seq;
847 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
848 return -ECHILD;
849 } else {
850 path_put(&nd->path);
851 nd->path = nd->root;
852 path_get(&nd->path);
853 nd->inode = nd->path.dentry->d_inode;
854 }
855 nd->flags |= LOOKUP_JUMPED;
856 return 0;
857 }
858
859 /*
860 * Helper to directly jump to a known parsed path from ->get_link,
861 * caller must have taken a reference to path beforehand.
862 */
863 void nd_jump_link(struct path *path)
864 {
865 struct nameidata *nd = current->nameidata;
866 path_put(&nd->path);
867
868 nd->path = *path;
869 nd->inode = nd->path.dentry->d_inode;
870 nd->flags |= LOOKUP_JUMPED;
871 }
872
873 static inline void put_link(struct nameidata *nd)
874 {
875 struct saved *last = nd->stack + --nd->depth;
876 do_delayed_call(&last->done);
877 if (!(nd->flags & LOOKUP_RCU))
878 path_put(&last->link);
879 }
880
881 int sysctl_protected_symlinks __read_mostly = 0;
882 int sysctl_protected_hardlinks __read_mostly = 0;
883
884 /**
885 * may_follow_link - Check symlink following for unsafe situations
886 * @nd: nameidata pathwalk data
887 *
888 * In the case of the sysctl_protected_symlinks sysctl being enabled,
889 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
890 * in a sticky world-writable directory. This is to protect privileged
891 * processes from failing races against path names that may change out
892 * from under them by way of other users creating malicious symlinks.
893 * It will permit symlinks to be followed only when outside a sticky
894 * world-writable directory, or when the uid of the symlink and follower
895 * match, or when the directory owner matches the symlink's owner.
896 *
897 * Returns 0 if following the symlink is allowed, -ve on error.
898 */
899 static inline int may_follow_link(struct nameidata *nd)
900 {
901 const struct inode *inode;
902 const struct inode *parent;
903
904 if (!sysctl_protected_symlinks)
905 return 0;
906
907 /* Allowed if owner and follower match. */
908 inode = nd->link_inode;
909 if (uid_eq(current_cred()->fsuid, inode->i_uid))
910 return 0;
911
912 /* Allowed if parent directory not sticky and world-writable. */
913 parent = nd->inode;
914 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
915 return 0;
916
917 /* Allowed if parent directory and link owner match. */
918 if (uid_eq(parent->i_uid, inode->i_uid))
919 return 0;
920
921 if (nd->flags & LOOKUP_RCU)
922 return -ECHILD;
923
924 audit_log_link_denied("follow_link", &nd->stack[0].link);
925 return -EACCES;
926 }
927
928 /**
929 * safe_hardlink_source - Check for safe hardlink conditions
930 * @inode: the source inode to hardlink from
931 *
932 * Return false if at least one of the following conditions:
933 * - inode is not a regular file
934 * - inode is setuid
935 * - inode is setgid and group-exec
936 * - access failure for read and write
937 *
938 * Otherwise returns true.
939 */
940 static bool safe_hardlink_source(struct inode *inode)
941 {
942 umode_t mode = inode->i_mode;
943
944 /* Special files should not get pinned to the filesystem. */
945 if (!S_ISREG(mode))
946 return false;
947
948 /* Setuid files should not get pinned to the filesystem. */
949 if (mode & S_ISUID)
950 return false;
951
952 /* Executable setgid files should not get pinned to the filesystem. */
953 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
954 return false;
955
956 /* Hardlinking to unreadable or unwritable sources is dangerous. */
957 if (inode_permission(inode, MAY_READ | MAY_WRITE))
958 return false;
959
960 return true;
961 }
962
963 /**
964 * may_linkat - Check permissions for creating a hardlink
965 * @link: the source to hardlink from
966 *
967 * Block hardlink when all of:
968 * - sysctl_protected_hardlinks enabled
969 * - fsuid does not match inode
970 * - hardlink source is unsafe (see safe_hardlink_source() above)
971 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
972 *
973 * Returns 0 if successful, -ve on error.
974 */
975 static int may_linkat(struct path *link)
976 {
977 struct inode *inode;
978
979 if (!sysctl_protected_hardlinks)
980 return 0;
981
982 inode = link->dentry->d_inode;
983
984 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
985 * otherwise, it must be a safe source.
986 */
987 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
988 return 0;
989
990 audit_log_link_denied("linkat", link);
991 return -EPERM;
992 }
993
994 static __always_inline
995 const char *get_link(struct nameidata *nd)
996 {
997 struct saved *last = nd->stack + nd->depth - 1;
998 struct dentry *dentry = last->link.dentry;
999 struct inode *inode = nd->link_inode;
1000 int error;
1001 const char *res;
1002
1003 if (!(nd->flags & LOOKUP_RCU)) {
1004 touch_atime(&last->link);
1005 cond_resched();
1006 } else if (atime_needs_update(&last->link, inode)) {
1007 if (unlikely(unlazy_walk(nd, NULL, 0)))
1008 return ERR_PTR(-ECHILD);
1009 touch_atime(&last->link);
1010 }
1011
1012 error = security_inode_follow_link(dentry, inode,
1013 nd->flags & LOOKUP_RCU);
1014 if (unlikely(error))
1015 return ERR_PTR(error);
1016
1017 nd->last_type = LAST_BIND;
1018 res = inode->i_link;
1019 if (!res) {
1020 const char * (*get)(struct dentry *, struct inode *,
1021 struct delayed_call *);
1022 get = inode->i_op->get_link;
1023 if (nd->flags & LOOKUP_RCU) {
1024 res = get(NULL, inode, &last->done);
1025 if (res == ERR_PTR(-ECHILD)) {
1026 if (unlikely(unlazy_walk(nd, NULL, 0)))
1027 return ERR_PTR(-ECHILD);
1028 res = get(dentry, inode, &last->done);
1029 }
1030 } else {
1031 res = get(dentry, inode, &last->done);
1032 }
1033 if (IS_ERR_OR_NULL(res))
1034 return res;
1035 }
1036 if (*res == '/') {
1037 if (!nd->root.mnt)
1038 set_root(nd);
1039 if (unlikely(nd_jump_root(nd)))
1040 return ERR_PTR(-ECHILD);
1041 while (unlikely(*++res == '/'))
1042 ;
1043 }
1044 if (!*res)
1045 res = NULL;
1046 return res;
1047 }
1048
1049 /*
1050 * follow_up - Find the mountpoint of path's vfsmount
1051 *
1052 * Given a path, find the mountpoint of its source file system.
1053 * Replace @path with the path of the mountpoint in the parent mount.
1054 * Up is towards /.
1055 *
1056 * Return 1 if we went up a level and 0 if we were already at the
1057 * root.
1058 */
1059 int follow_up(struct path *path)
1060 {
1061 struct mount *mnt = real_mount(path->mnt);
1062 struct mount *parent;
1063 struct dentry *mountpoint;
1064
1065 read_seqlock_excl(&mount_lock);
1066 parent = mnt->mnt_parent;
1067 if (parent == mnt) {
1068 read_sequnlock_excl(&mount_lock);
1069 return 0;
1070 }
1071 mntget(&parent->mnt);
1072 mountpoint = dget(mnt->mnt_mountpoint);
1073 read_sequnlock_excl(&mount_lock);
1074 dput(path->dentry);
1075 path->dentry = mountpoint;
1076 mntput(path->mnt);
1077 path->mnt = &parent->mnt;
1078 return 1;
1079 }
1080 EXPORT_SYMBOL(follow_up);
1081
1082 /*
1083 * Perform an automount
1084 * - return -EISDIR to tell follow_managed() to stop and return the path we
1085 * were called with.
1086 */
1087 static int follow_automount(struct path *path, struct nameidata *nd,
1088 bool *need_mntput)
1089 {
1090 struct vfsmount *mnt;
1091 int err;
1092
1093 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1094 return -EREMOTE;
1095
1096 /* We don't want to mount if someone's just doing a stat -
1097 * unless they're stat'ing a directory and appended a '/' to
1098 * the name.
1099 *
1100 * We do, however, want to mount if someone wants to open or
1101 * create a file of any type under the mountpoint, wants to
1102 * traverse through the mountpoint or wants to open the
1103 * mounted directory. Also, autofs may mark negative dentries
1104 * as being automount points. These will need the attentions
1105 * of the daemon to instantiate them before they can be used.
1106 */
1107 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1108 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1109 path->dentry->d_inode)
1110 return -EISDIR;
1111
1112 nd->total_link_count++;
1113 if (nd->total_link_count >= 40)
1114 return -ELOOP;
1115
1116 mnt = path->dentry->d_op->d_automount(path);
1117 if (IS_ERR(mnt)) {
1118 /*
1119 * The filesystem is allowed to return -EISDIR here to indicate
1120 * it doesn't want to automount. For instance, autofs would do
1121 * this so that its userspace daemon can mount on this dentry.
1122 *
1123 * However, we can only permit this if it's a terminal point in
1124 * the path being looked up; if it wasn't then the remainder of
1125 * the path is inaccessible and we should say so.
1126 */
1127 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1128 return -EREMOTE;
1129 return PTR_ERR(mnt);
1130 }
1131
1132 if (!mnt) /* mount collision */
1133 return 0;
1134
1135 if (!*need_mntput) {
1136 /* lock_mount() may release path->mnt on error */
1137 mntget(path->mnt);
1138 *need_mntput = true;
1139 }
1140 err = finish_automount(mnt, path);
1141
1142 switch (err) {
1143 case -EBUSY:
1144 /* Someone else made a mount here whilst we were busy */
1145 return 0;
1146 case 0:
1147 path_put(path);
1148 path->mnt = mnt;
1149 path->dentry = dget(mnt->mnt_root);
1150 return 0;
1151 default:
1152 return err;
1153 }
1154
1155 }
1156
1157 /*
1158 * Handle a dentry that is managed in some way.
1159 * - Flagged for transit management (autofs)
1160 * - Flagged as mountpoint
1161 * - Flagged as automount point
1162 *
1163 * This may only be called in refwalk mode.
1164 *
1165 * Serialization is taken care of in namespace.c
1166 */
1167 static int follow_managed(struct path *path, struct nameidata *nd)
1168 {
1169 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1170 unsigned managed;
1171 bool need_mntput = false;
1172 int ret = 0;
1173
1174 /* Given that we're not holding a lock here, we retain the value in a
1175 * local variable for each dentry as we look at it so that we don't see
1176 * the components of that value change under us */
1177 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1178 managed &= DCACHE_MANAGED_DENTRY,
1179 unlikely(managed != 0)) {
1180 /* Allow the filesystem to manage the transit without i_mutex
1181 * being held. */
1182 if (managed & DCACHE_MANAGE_TRANSIT) {
1183 BUG_ON(!path->dentry->d_op);
1184 BUG_ON(!path->dentry->d_op->d_manage);
1185 ret = path->dentry->d_op->d_manage(path->dentry, false);
1186 if (ret < 0)
1187 break;
1188 }
1189
1190 /* Transit to a mounted filesystem. */
1191 if (managed & DCACHE_MOUNTED) {
1192 struct vfsmount *mounted = lookup_mnt(path);
1193 if (mounted) {
1194 dput(path->dentry);
1195 if (need_mntput)
1196 mntput(path->mnt);
1197 path->mnt = mounted;
1198 path->dentry = dget(mounted->mnt_root);
1199 need_mntput = true;
1200 continue;
1201 }
1202
1203 /* Something is mounted on this dentry in another
1204 * namespace and/or whatever was mounted there in this
1205 * namespace got unmounted before lookup_mnt() could
1206 * get it */
1207 }
1208
1209 /* Handle an automount point */
1210 if (managed & DCACHE_NEED_AUTOMOUNT) {
1211 ret = follow_automount(path, nd, &need_mntput);
1212 if (ret < 0)
1213 break;
1214 continue;
1215 }
1216
1217 /* We didn't change the current path point */
1218 break;
1219 }
1220
1221 if (need_mntput && path->mnt == mnt)
1222 mntput(path->mnt);
1223 if (ret == -EISDIR || !ret)
1224 ret = 1;
1225 if (need_mntput)
1226 nd->flags |= LOOKUP_JUMPED;
1227 if (unlikely(ret < 0))
1228 path_put_conditional(path, nd);
1229 return ret;
1230 }
1231
1232 int follow_down_one(struct path *path)
1233 {
1234 struct vfsmount *mounted;
1235
1236 mounted = lookup_mnt(path);
1237 if (mounted) {
1238 dput(path->dentry);
1239 mntput(path->mnt);
1240 path->mnt = mounted;
1241 path->dentry = dget(mounted->mnt_root);
1242 return 1;
1243 }
1244 return 0;
1245 }
1246 EXPORT_SYMBOL(follow_down_one);
1247
1248 static inline int managed_dentry_rcu(struct dentry *dentry)
1249 {
1250 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1251 dentry->d_op->d_manage(dentry, true) : 0;
1252 }
1253
1254 /*
1255 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1256 * we meet a managed dentry that would need blocking.
1257 */
1258 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1259 struct inode **inode, unsigned *seqp)
1260 {
1261 for (;;) {
1262 struct mount *mounted;
1263 /*
1264 * Don't forget we might have a non-mountpoint managed dentry
1265 * that wants to block transit.
1266 */
1267 switch (managed_dentry_rcu(path->dentry)) {
1268 case -ECHILD:
1269 default:
1270 return false;
1271 case -EISDIR:
1272 return true;
1273 case 0:
1274 break;
1275 }
1276
1277 if (!d_mountpoint(path->dentry))
1278 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1279
1280 mounted = __lookup_mnt(path->mnt, path->dentry);
1281 if (!mounted)
1282 break;
1283 path->mnt = &mounted->mnt;
1284 path->dentry = mounted->mnt.mnt_root;
1285 nd->flags |= LOOKUP_JUMPED;
1286 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1287 /*
1288 * Update the inode too. We don't need to re-check the
1289 * dentry sequence number here after this d_inode read,
1290 * because a mount-point is always pinned.
1291 */
1292 *inode = path->dentry->d_inode;
1293 }
1294 return !read_seqretry(&mount_lock, nd->m_seq) &&
1295 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1296 }
1297
1298 static int follow_dotdot_rcu(struct nameidata *nd)
1299 {
1300 struct inode *inode = nd->inode;
1301
1302 while (1) {
1303 if (path_equal(&nd->path, &nd->root))
1304 break;
1305 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1306 struct dentry *old = nd->path.dentry;
1307 struct dentry *parent = old->d_parent;
1308 unsigned seq;
1309
1310 inode = parent->d_inode;
1311 seq = read_seqcount_begin(&parent->d_seq);
1312 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1313 return -ECHILD;
1314 nd->path.dentry = parent;
1315 nd->seq = seq;
1316 if (unlikely(!path_connected(&nd->path)))
1317 return -ENOENT;
1318 break;
1319 } else {
1320 struct mount *mnt = real_mount(nd->path.mnt);
1321 struct mount *mparent = mnt->mnt_parent;
1322 struct dentry *mountpoint = mnt->mnt_mountpoint;
1323 struct inode *inode2 = mountpoint->d_inode;
1324 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1325 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1326 return -ECHILD;
1327 if (&mparent->mnt == nd->path.mnt)
1328 break;
1329 /* we know that mountpoint was pinned */
1330 nd->path.dentry = mountpoint;
1331 nd->path.mnt = &mparent->mnt;
1332 inode = inode2;
1333 nd->seq = seq;
1334 }
1335 }
1336 while (unlikely(d_mountpoint(nd->path.dentry))) {
1337 struct mount *mounted;
1338 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1339 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1340 return -ECHILD;
1341 if (!mounted)
1342 break;
1343 nd->path.mnt = &mounted->mnt;
1344 nd->path.dentry = mounted->mnt.mnt_root;
1345 inode = nd->path.dentry->d_inode;
1346 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1347 }
1348 nd->inode = inode;
1349 return 0;
1350 }
1351
1352 /*
1353 * Follow down to the covering mount currently visible to userspace. At each
1354 * point, the filesystem owning that dentry may be queried as to whether the
1355 * caller is permitted to proceed or not.
1356 */
1357 int follow_down(struct path *path)
1358 {
1359 unsigned managed;
1360 int ret;
1361
1362 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1363 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1364 /* Allow the filesystem to manage the transit without i_mutex
1365 * being held.
1366 *
1367 * We indicate to the filesystem if someone is trying to mount
1368 * something here. This gives autofs the chance to deny anyone
1369 * other than its daemon the right to mount on its
1370 * superstructure.
1371 *
1372 * The filesystem may sleep at this point.
1373 */
1374 if (managed & DCACHE_MANAGE_TRANSIT) {
1375 BUG_ON(!path->dentry->d_op);
1376 BUG_ON(!path->dentry->d_op->d_manage);
1377 ret = path->dentry->d_op->d_manage(
1378 path->dentry, false);
1379 if (ret < 0)
1380 return ret == -EISDIR ? 0 : ret;
1381 }
1382
1383 /* Transit to a mounted filesystem. */
1384 if (managed & DCACHE_MOUNTED) {
1385 struct vfsmount *mounted = lookup_mnt(path);
1386 if (!mounted)
1387 break;
1388 dput(path->dentry);
1389 mntput(path->mnt);
1390 path->mnt = mounted;
1391 path->dentry = dget(mounted->mnt_root);
1392 continue;
1393 }
1394
1395 /* Don't handle automount points here */
1396 break;
1397 }
1398 return 0;
1399 }
1400 EXPORT_SYMBOL(follow_down);
1401
1402 /*
1403 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1404 */
1405 static void follow_mount(struct path *path)
1406 {
1407 while (d_mountpoint(path->dentry)) {
1408 struct vfsmount *mounted = lookup_mnt(path);
1409 if (!mounted)
1410 break;
1411 dput(path->dentry);
1412 mntput(path->mnt);
1413 path->mnt = mounted;
1414 path->dentry = dget(mounted->mnt_root);
1415 }
1416 }
1417
1418 static int follow_dotdot(struct nameidata *nd)
1419 {
1420 while(1) {
1421 struct dentry *old = nd->path.dentry;
1422
1423 if (nd->path.dentry == nd->root.dentry &&
1424 nd->path.mnt == nd->root.mnt) {
1425 break;
1426 }
1427 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1428 /* rare case of legitimate dget_parent()... */
1429 nd->path.dentry = dget_parent(nd->path.dentry);
1430 dput(old);
1431 if (unlikely(!path_connected(&nd->path)))
1432 return -ENOENT;
1433 break;
1434 }
1435 if (!follow_up(&nd->path))
1436 break;
1437 }
1438 follow_mount(&nd->path);
1439 nd->inode = nd->path.dentry->d_inode;
1440 return 0;
1441 }
1442
1443 /*
1444 * This looks up the name in dcache, possibly revalidates the old dentry and
1445 * allocates a new one if not found or not valid. In the need_lookup argument
1446 * returns whether i_op->lookup is necessary.
1447 */
1448 static struct dentry *lookup_dcache(const struct qstr *name,
1449 struct dentry *dir,
1450 unsigned int flags)
1451 {
1452 struct dentry *dentry;
1453 int error;
1454
1455 dentry = d_lookup(dir, name);
1456 if (dentry) {
1457 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1458 error = d_revalidate(dentry, flags);
1459 if (unlikely(error <= 0)) {
1460 if (!error)
1461 d_invalidate(dentry);
1462 dput(dentry);
1463 return ERR_PTR(error);
1464 }
1465 }
1466 }
1467 return dentry;
1468 }
1469
1470 /*
1471 * Call i_op->lookup on the dentry. The dentry must be negative and
1472 * unhashed.
1473 *
1474 * dir->d_inode->i_mutex must be held
1475 */
1476 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1477 unsigned int flags)
1478 {
1479 struct dentry *old;
1480
1481 /* Don't create child dentry for a dead directory. */
1482 if (unlikely(IS_DEADDIR(dir))) {
1483 dput(dentry);
1484 return ERR_PTR(-ENOENT);
1485 }
1486
1487 old = dir->i_op->lookup(dir, dentry, flags);
1488 if (unlikely(old)) {
1489 dput(dentry);
1490 dentry = old;
1491 }
1492 return dentry;
1493 }
1494
1495 static struct dentry *__lookup_hash(const struct qstr *name,
1496 struct dentry *base, unsigned int flags)
1497 {
1498 struct dentry *dentry = lookup_dcache(name, base, flags);
1499
1500 if (dentry)
1501 return dentry;
1502
1503 dentry = d_alloc(base, name);
1504 if (unlikely(!dentry))
1505 return ERR_PTR(-ENOMEM);
1506
1507 return lookup_real(base->d_inode, dentry, flags);
1508 }
1509
1510 static int lookup_fast(struct nameidata *nd,
1511 struct path *path, struct inode **inode,
1512 unsigned *seqp)
1513 {
1514 struct vfsmount *mnt = nd->path.mnt;
1515 struct dentry *dentry, *parent = nd->path.dentry;
1516 int status = 1;
1517 int err;
1518
1519 /*
1520 * Rename seqlock is not required here because in the off chance
1521 * of a false negative due to a concurrent rename, the caller is
1522 * going to fall back to non-racy lookup.
1523 */
1524 if (nd->flags & LOOKUP_RCU) {
1525 unsigned seq;
1526 bool negative;
1527 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1528 if (unlikely(!dentry)) {
1529 if (unlazy_walk(nd, NULL, 0))
1530 return -ECHILD;
1531 return 0;
1532 }
1533
1534 /*
1535 * This sequence count validates that the inode matches
1536 * the dentry name information from lookup.
1537 */
1538 *inode = d_backing_inode(dentry);
1539 negative = d_is_negative(dentry);
1540 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1541 return -ECHILD;
1542
1543 /*
1544 * This sequence count validates that the parent had no
1545 * changes while we did the lookup of the dentry above.
1546 *
1547 * The memory barrier in read_seqcount_begin of child is
1548 * enough, we can use __read_seqcount_retry here.
1549 */
1550 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1551 return -ECHILD;
1552
1553 *seqp = seq;
1554 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1555 status = d_revalidate(dentry, nd->flags);
1556 if (unlikely(status <= 0)) {
1557 if (unlazy_walk(nd, dentry, seq))
1558 return -ECHILD;
1559 if (status == -ECHILD)
1560 status = d_revalidate(dentry, nd->flags);
1561 } else {
1562 /*
1563 * Note: do negative dentry check after revalidation in
1564 * case that drops it.
1565 */
1566 if (unlikely(negative))
1567 return -ENOENT;
1568 path->mnt = mnt;
1569 path->dentry = dentry;
1570 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1571 return 1;
1572 if (unlazy_walk(nd, dentry, seq))
1573 return -ECHILD;
1574 }
1575 } else {
1576 dentry = __d_lookup(parent, &nd->last);
1577 if (unlikely(!dentry))
1578 return 0;
1579 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1580 status = d_revalidate(dentry, nd->flags);
1581 }
1582 if (unlikely(status <= 0)) {
1583 if (!status)
1584 d_invalidate(dentry);
1585 dput(dentry);
1586 return status;
1587 }
1588 if (unlikely(d_is_negative(dentry))) {
1589 dput(dentry);
1590 return -ENOENT;
1591 }
1592
1593 path->mnt = mnt;
1594 path->dentry = dentry;
1595 err = follow_managed(path, nd);
1596 if (likely(err > 0))
1597 *inode = d_backing_inode(path->dentry);
1598 return err;
1599 }
1600
1601 /* Fast lookup failed, do it the slow way */
1602 static struct dentry *lookup_slow(const struct qstr *name,
1603 struct dentry *dir,
1604 unsigned int flags)
1605 {
1606 struct dentry *dentry;
1607 inode_lock(dir->d_inode);
1608 dentry = __lookup_hash(name, dir, flags);
1609 inode_unlock(dir->d_inode);
1610 return dentry;
1611 }
1612
1613 static inline int may_lookup(struct nameidata *nd)
1614 {
1615 if (nd->flags & LOOKUP_RCU) {
1616 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1617 if (err != -ECHILD)
1618 return err;
1619 if (unlazy_walk(nd, NULL, 0))
1620 return -ECHILD;
1621 }
1622 return inode_permission(nd->inode, MAY_EXEC);
1623 }
1624
1625 static inline int handle_dots(struct nameidata *nd, int type)
1626 {
1627 if (type == LAST_DOTDOT) {
1628 if (!nd->root.mnt)
1629 set_root(nd);
1630 if (nd->flags & LOOKUP_RCU) {
1631 return follow_dotdot_rcu(nd);
1632 } else
1633 return follow_dotdot(nd);
1634 }
1635 return 0;
1636 }
1637
1638 static int pick_link(struct nameidata *nd, struct path *link,
1639 struct inode *inode, unsigned seq)
1640 {
1641 int error;
1642 struct saved *last;
1643 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1644 path_to_nameidata(link, nd);
1645 return -ELOOP;
1646 }
1647 if (!(nd->flags & LOOKUP_RCU)) {
1648 if (link->mnt == nd->path.mnt)
1649 mntget(link->mnt);
1650 }
1651 error = nd_alloc_stack(nd);
1652 if (unlikely(error)) {
1653 if (error == -ECHILD) {
1654 if (unlikely(unlazy_link(nd, link, seq)))
1655 return -ECHILD;
1656 error = nd_alloc_stack(nd);
1657 }
1658 if (error) {
1659 path_put(link);
1660 return error;
1661 }
1662 }
1663
1664 last = nd->stack + nd->depth++;
1665 last->link = *link;
1666 clear_delayed_call(&last->done);
1667 nd->link_inode = inode;
1668 last->seq = seq;
1669 return 1;
1670 }
1671
1672 /*
1673 * Do we need to follow links? We _really_ want to be able
1674 * to do this check without having to look at inode->i_op,
1675 * so we keep a cache of "no, this doesn't need follow_link"
1676 * for the common case.
1677 */
1678 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1679 int follow,
1680 struct inode *inode, unsigned seq)
1681 {
1682 if (likely(!d_is_symlink(link->dentry)))
1683 return 0;
1684 if (!follow)
1685 return 0;
1686 /* make sure that d_is_symlink above matches inode */
1687 if (nd->flags & LOOKUP_RCU) {
1688 if (read_seqcount_retry(&link->dentry->d_seq, seq))
1689 return -ECHILD;
1690 }
1691 return pick_link(nd, link, inode, seq);
1692 }
1693
1694 enum {WALK_GET = 1, WALK_PUT = 2};
1695
1696 static int walk_component(struct nameidata *nd, int flags)
1697 {
1698 struct path path;
1699 struct inode *inode;
1700 unsigned seq;
1701 int err;
1702 /*
1703 * "." and ".." are special - ".." especially so because it has
1704 * to be able to know about the current root directory and
1705 * parent relationships.
1706 */
1707 if (unlikely(nd->last_type != LAST_NORM)) {
1708 err = handle_dots(nd, nd->last_type);
1709 if (flags & WALK_PUT)
1710 put_link(nd);
1711 return err;
1712 }
1713 err = lookup_fast(nd, &path, &inode, &seq);
1714 if (unlikely(err <= 0)) {
1715 if (err < 0)
1716 return err;
1717 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1718 nd->flags);
1719 if (IS_ERR(path.dentry))
1720 return PTR_ERR(path.dentry);
1721 if (unlikely(d_is_negative(path.dentry))) {
1722 dput(path.dentry);
1723 return -ENOENT;
1724 }
1725 path.mnt = nd->path.mnt;
1726 err = follow_managed(&path, nd);
1727 if (unlikely(err < 0))
1728 return err;
1729
1730 seq = 0; /* we are already out of RCU mode */
1731 inode = d_backing_inode(path.dentry);
1732 }
1733
1734 if (flags & WALK_PUT)
1735 put_link(nd);
1736 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1737 if (unlikely(err))
1738 return err;
1739 path_to_nameidata(&path, nd);
1740 nd->inode = inode;
1741 nd->seq = seq;
1742 return 0;
1743 }
1744
1745 /*
1746 * We can do the critical dentry name comparison and hashing
1747 * operations one word at a time, but we are limited to:
1748 *
1749 * - Architectures with fast unaligned word accesses. We could
1750 * do a "get_unaligned()" if this helps and is sufficiently
1751 * fast.
1752 *
1753 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1754 * do not trap on the (extremely unlikely) case of a page
1755 * crossing operation.
1756 *
1757 * - Furthermore, we need an efficient 64-bit compile for the
1758 * 64-bit case in order to generate the "number of bytes in
1759 * the final mask". Again, that could be replaced with a
1760 * efficient population count instruction or similar.
1761 */
1762 #ifdef CONFIG_DCACHE_WORD_ACCESS
1763
1764 #include <asm/word-at-a-time.h>
1765
1766 #ifdef CONFIG_64BIT
1767
1768 static inline unsigned int fold_hash(unsigned long hash)
1769 {
1770 return hash_64(hash, 32);
1771 }
1772
1773 #else /* 32-bit case */
1774
1775 #define fold_hash(x) (x)
1776
1777 #endif
1778
1779 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1780 {
1781 unsigned long a, mask;
1782 unsigned long hash = 0;
1783
1784 for (;;) {
1785 a = load_unaligned_zeropad(name);
1786 if (len < sizeof(unsigned long))
1787 break;
1788 hash += a;
1789 hash *= 9;
1790 name += sizeof(unsigned long);
1791 len -= sizeof(unsigned long);
1792 if (!len)
1793 goto done;
1794 }
1795 mask = bytemask_from_count(len);
1796 hash += mask & a;
1797 done:
1798 return fold_hash(hash);
1799 }
1800 EXPORT_SYMBOL(full_name_hash);
1801
1802 /*
1803 * Calculate the length and hash of the path component, and
1804 * return the "hash_len" as the result.
1805 */
1806 static inline u64 hash_name(const char *name)
1807 {
1808 unsigned long a, b, adata, bdata, mask, hash, len;
1809 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1810
1811 hash = a = 0;
1812 len = -sizeof(unsigned long);
1813 do {
1814 hash = (hash + a) * 9;
1815 len += sizeof(unsigned long);
1816 a = load_unaligned_zeropad(name+len);
1817 b = a ^ REPEAT_BYTE('/');
1818 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1819
1820 adata = prep_zero_mask(a, adata, &constants);
1821 bdata = prep_zero_mask(b, bdata, &constants);
1822
1823 mask = create_zero_mask(adata | bdata);
1824
1825 hash += a & zero_bytemask(mask);
1826 len += find_zero(mask);
1827 return hashlen_create(fold_hash(hash), len);
1828 }
1829
1830 #else
1831
1832 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1833 {
1834 unsigned long hash = init_name_hash();
1835 while (len--)
1836 hash = partial_name_hash(*name++, hash);
1837 return end_name_hash(hash);
1838 }
1839 EXPORT_SYMBOL(full_name_hash);
1840
1841 /*
1842 * We know there's a real path component here of at least
1843 * one character.
1844 */
1845 static inline u64 hash_name(const char *name)
1846 {
1847 unsigned long hash = init_name_hash();
1848 unsigned long len = 0, c;
1849
1850 c = (unsigned char)*name;
1851 do {
1852 len++;
1853 hash = partial_name_hash(c, hash);
1854 c = (unsigned char)name[len];
1855 } while (c && c != '/');
1856 return hashlen_create(end_name_hash(hash), len);
1857 }
1858
1859 #endif
1860
1861 /*
1862 * Name resolution.
1863 * This is the basic name resolution function, turning a pathname into
1864 * the final dentry. We expect 'base' to be positive and a directory.
1865 *
1866 * Returns 0 and nd will have valid dentry and mnt on success.
1867 * Returns error and drops reference to input namei data on failure.
1868 */
1869 static int link_path_walk(const char *name, struct nameidata *nd)
1870 {
1871 int err;
1872
1873 while (*name=='/')
1874 name++;
1875 if (!*name)
1876 return 0;
1877
1878 /* At this point we know we have a real path component. */
1879 for(;;) {
1880 u64 hash_len;
1881 int type;
1882
1883 err = may_lookup(nd);
1884 if (err)
1885 return err;
1886
1887 hash_len = hash_name(name);
1888
1889 type = LAST_NORM;
1890 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1891 case 2:
1892 if (name[1] == '.') {
1893 type = LAST_DOTDOT;
1894 nd->flags |= LOOKUP_JUMPED;
1895 }
1896 break;
1897 case 1:
1898 type = LAST_DOT;
1899 }
1900 if (likely(type == LAST_NORM)) {
1901 struct dentry *parent = nd->path.dentry;
1902 nd->flags &= ~LOOKUP_JUMPED;
1903 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1904 struct qstr this = { { .hash_len = hash_len }, .name = name };
1905 err = parent->d_op->d_hash(parent, &this);
1906 if (err < 0)
1907 return err;
1908 hash_len = this.hash_len;
1909 name = this.name;
1910 }
1911 }
1912
1913 nd->last.hash_len = hash_len;
1914 nd->last.name = name;
1915 nd->last_type = type;
1916
1917 name += hashlen_len(hash_len);
1918 if (!*name)
1919 goto OK;
1920 /*
1921 * If it wasn't NUL, we know it was '/'. Skip that
1922 * slash, and continue until no more slashes.
1923 */
1924 do {
1925 name++;
1926 } while (unlikely(*name == '/'));
1927 if (unlikely(!*name)) {
1928 OK:
1929 /* pathname body, done */
1930 if (!nd->depth)
1931 return 0;
1932 name = nd->stack[nd->depth - 1].name;
1933 /* trailing symlink, done */
1934 if (!name)
1935 return 0;
1936 /* last component of nested symlink */
1937 err = walk_component(nd, WALK_GET | WALK_PUT);
1938 } else {
1939 err = walk_component(nd, WALK_GET);
1940 }
1941 if (err < 0)
1942 return err;
1943
1944 if (err) {
1945 const char *s = get_link(nd);
1946
1947 if (IS_ERR(s))
1948 return PTR_ERR(s);
1949 err = 0;
1950 if (unlikely(!s)) {
1951 /* jumped */
1952 put_link(nd);
1953 } else {
1954 nd->stack[nd->depth - 1].name = name;
1955 name = s;
1956 continue;
1957 }
1958 }
1959 if (unlikely(!d_can_lookup(nd->path.dentry))) {
1960 if (nd->flags & LOOKUP_RCU) {
1961 if (unlazy_walk(nd, NULL, 0))
1962 return -ECHILD;
1963 }
1964 return -ENOTDIR;
1965 }
1966 }
1967 }
1968
1969 static const char *path_init(struct nameidata *nd, unsigned flags)
1970 {
1971 int retval = 0;
1972 const char *s = nd->name->name;
1973
1974 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1975 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1976 nd->depth = 0;
1977 if (flags & LOOKUP_ROOT) {
1978 struct dentry *root = nd->root.dentry;
1979 struct inode *inode = root->d_inode;
1980 if (*s) {
1981 if (!d_can_lookup(root))
1982 return ERR_PTR(-ENOTDIR);
1983 retval = inode_permission(inode, MAY_EXEC);
1984 if (retval)
1985 return ERR_PTR(retval);
1986 }
1987 nd->path = nd->root;
1988 nd->inode = inode;
1989 if (flags & LOOKUP_RCU) {
1990 rcu_read_lock();
1991 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1992 nd->root_seq = nd->seq;
1993 nd->m_seq = read_seqbegin(&mount_lock);
1994 } else {
1995 path_get(&nd->path);
1996 }
1997 return s;
1998 }
1999
2000 nd->root.mnt = NULL;
2001 nd->path.mnt = NULL;
2002 nd->path.dentry = NULL;
2003
2004 nd->m_seq = read_seqbegin(&mount_lock);
2005 if (*s == '/') {
2006 if (flags & LOOKUP_RCU)
2007 rcu_read_lock();
2008 set_root(nd);
2009 if (likely(!nd_jump_root(nd)))
2010 return s;
2011 nd->root.mnt = NULL;
2012 rcu_read_unlock();
2013 return ERR_PTR(-ECHILD);
2014 } else if (nd->dfd == AT_FDCWD) {
2015 if (flags & LOOKUP_RCU) {
2016 struct fs_struct *fs = current->fs;
2017 unsigned seq;
2018
2019 rcu_read_lock();
2020
2021 do {
2022 seq = read_seqcount_begin(&fs->seq);
2023 nd->path = fs->pwd;
2024 nd->inode = nd->path.dentry->d_inode;
2025 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2026 } while (read_seqcount_retry(&fs->seq, seq));
2027 } else {
2028 get_fs_pwd(current->fs, &nd->path);
2029 nd->inode = nd->path.dentry->d_inode;
2030 }
2031 return s;
2032 } else {
2033 /* Caller must check execute permissions on the starting path component */
2034 struct fd f = fdget_raw(nd->dfd);
2035 struct dentry *dentry;
2036
2037 if (!f.file)
2038 return ERR_PTR(-EBADF);
2039
2040 dentry = f.file->f_path.dentry;
2041
2042 if (*s) {
2043 if (!d_can_lookup(dentry)) {
2044 fdput(f);
2045 return ERR_PTR(-ENOTDIR);
2046 }
2047 }
2048
2049 nd->path = f.file->f_path;
2050 if (flags & LOOKUP_RCU) {
2051 rcu_read_lock();
2052 nd->inode = nd->path.dentry->d_inode;
2053 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2054 } else {
2055 path_get(&nd->path);
2056 nd->inode = nd->path.dentry->d_inode;
2057 }
2058 fdput(f);
2059 return s;
2060 }
2061 }
2062
2063 static const char *trailing_symlink(struct nameidata *nd)
2064 {
2065 const char *s;
2066 int error = may_follow_link(nd);
2067 if (unlikely(error))
2068 return ERR_PTR(error);
2069 nd->flags |= LOOKUP_PARENT;
2070 nd->stack[0].name = NULL;
2071 s = get_link(nd);
2072 return s ? s : "";
2073 }
2074
2075 static inline int lookup_last(struct nameidata *nd)
2076 {
2077 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2078 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2079
2080 nd->flags &= ~LOOKUP_PARENT;
2081 return walk_component(nd,
2082 nd->flags & LOOKUP_FOLLOW
2083 ? nd->depth
2084 ? WALK_PUT | WALK_GET
2085 : WALK_GET
2086 : 0);
2087 }
2088
2089 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2090 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2091 {
2092 const char *s = path_init(nd, flags);
2093 int err;
2094
2095 if (IS_ERR(s))
2096 return PTR_ERR(s);
2097 while (!(err = link_path_walk(s, nd))
2098 && ((err = lookup_last(nd)) > 0)) {
2099 s = trailing_symlink(nd);
2100 if (IS_ERR(s)) {
2101 err = PTR_ERR(s);
2102 break;
2103 }
2104 }
2105 if (!err)
2106 err = complete_walk(nd);
2107
2108 if (!err && nd->flags & LOOKUP_DIRECTORY)
2109 if (!d_can_lookup(nd->path.dentry))
2110 err = -ENOTDIR;
2111 if (!err) {
2112 *path = nd->path;
2113 nd->path.mnt = NULL;
2114 nd->path.dentry = NULL;
2115 }
2116 terminate_walk(nd);
2117 return err;
2118 }
2119
2120 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2121 struct path *path, struct path *root)
2122 {
2123 int retval;
2124 struct nameidata nd;
2125 if (IS_ERR(name))
2126 return PTR_ERR(name);
2127 if (unlikely(root)) {
2128 nd.root = *root;
2129 flags |= LOOKUP_ROOT;
2130 }
2131 set_nameidata(&nd, dfd, name);
2132 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2133 if (unlikely(retval == -ECHILD))
2134 retval = path_lookupat(&nd, flags, path);
2135 if (unlikely(retval == -ESTALE))
2136 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2137
2138 if (likely(!retval))
2139 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2140 restore_nameidata();
2141 putname(name);
2142 return retval;
2143 }
2144
2145 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2146 static int path_parentat(struct nameidata *nd, unsigned flags,
2147 struct path *parent)
2148 {
2149 const char *s = path_init(nd, flags);
2150 int err;
2151 if (IS_ERR(s))
2152 return PTR_ERR(s);
2153 err = link_path_walk(s, nd);
2154 if (!err)
2155 err = complete_walk(nd);
2156 if (!err) {
2157 *parent = nd->path;
2158 nd->path.mnt = NULL;
2159 nd->path.dentry = NULL;
2160 }
2161 terminate_walk(nd);
2162 return err;
2163 }
2164
2165 static struct filename *filename_parentat(int dfd, struct filename *name,
2166 unsigned int flags, struct path *parent,
2167 struct qstr *last, int *type)
2168 {
2169 int retval;
2170 struct nameidata nd;
2171
2172 if (IS_ERR(name))
2173 return name;
2174 set_nameidata(&nd, dfd, name);
2175 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2176 if (unlikely(retval == -ECHILD))
2177 retval = path_parentat(&nd, flags, parent);
2178 if (unlikely(retval == -ESTALE))
2179 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2180 if (likely(!retval)) {
2181 *last = nd.last;
2182 *type = nd.last_type;
2183 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2184 } else {
2185 putname(name);
2186 name = ERR_PTR(retval);
2187 }
2188 restore_nameidata();
2189 return name;
2190 }
2191
2192 /* does lookup, returns the object with parent locked */
2193 struct dentry *kern_path_locked(const char *name, struct path *path)
2194 {
2195 struct filename *filename;
2196 struct dentry *d;
2197 struct qstr last;
2198 int type;
2199
2200 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2201 &last, &type);
2202 if (IS_ERR(filename))
2203 return ERR_CAST(filename);
2204 if (unlikely(type != LAST_NORM)) {
2205 path_put(path);
2206 putname(filename);
2207 return ERR_PTR(-EINVAL);
2208 }
2209 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2210 d = __lookup_hash(&last, path->dentry, 0);
2211 if (IS_ERR(d)) {
2212 inode_unlock(path->dentry->d_inode);
2213 path_put(path);
2214 }
2215 putname(filename);
2216 return d;
2217 }
2218
2219 int kern_path(const char *name, unsigned int flags, struct path *path)
2220 {
2221 return filename_lookup(AT_FDCWD, getname_kernel(name),
2222 flags, path, NULL);
2223 }
2224 EXPORT_SYMBOL(kern_path);
2225
2226 /**
2227 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2228 * @dentry: pointer to dentry of the base directory
2229 * @mnt: pointer to vfs mount of the base directory
2230 * @name: pointer to file name
2231 * @flags: lookup flags
2232 * @path: pointer to struct path to fill
2233 */
2234 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2235 const char *name, unsigned int flags,
2236 struct path *path)
2237 {
2238 struct path root = {.mnt = mnt, .dentry = dentry};
2239 /* the first argument of filename_lookup() is ignored with root */
2240 return filename_lookup(AT_FDCWD, getname_kernel(name),
2241 flags , path, &root);
2242 }
2243 EXPORT_SYMBOL(vfs_path_lookup);
2244
2245 /**
2246 * lookup_one_len - filesystem helper to lookup single pathname component
2247 * @name: pathname component to lookup
2248 * @base: base directory to lookup from
2249 * @len: maximum length @len should be interpreted to
2250 *
2251 * Note that this routine is purely a helper for filesystem usage and should
2252 * not be called by generic code.
2253 *
2254 * The caller must hold base->i_mutex.
2255 */
2256 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2257 {
2258 struct qstr this;
2259 unsigned int c;
2260 int err;
2261
2262 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2263
2264 this.name = name;
2265 this.len = len;
2266 this.hash = full_name_hash(name, len);
2267 if (!len)
2268 return ERR_PTR(-EACCES);
2269
2270 if (unlikely(name[0] == '.')) {
2271 if (len < 2 || (len == 2 && name[1] == '.'))
2272 return ERR_PTR(-EACCES);
2273 }
2274
2275 while (len--) {
2276 c = *(const unsigned char *)name++;
2277 if (c == '/' || c == '\0')
2278 return ERR_PTR(-EACCES);
2279 }
2280 /*
2281 * See if the low-level filesystem might want
2282 * to use its own hash..
2283 */
2284 if (base->d_flags & DCACHE_OP_HASH) {
2285 int err = base->d_op->d_hash(base, &this);
2286 if (err < 0)
2287 return ERR_PTR(err);
2288 }
2289
2290 err = inode_permission(base->d_inode, MAY_EXEC);
2291 if (err)
2292 return ERR_PTR(err);
2293
2294 return __lookup_hash(&this, base, 0);
2295 }
2296 EXPORT_SYMBOL(lookup_one_len);
2297
2298 /**
2299 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2300 * @name: pathname component to lookup
2301 * @base: base directory to lookup from
2302 * @len: maximum length @len should be interpreted to
2303 *
2304 * Note that this routine is purely a helper for filesystem usage and should
2305 * not be called by generic code.
2306 *
2307 * Unlike lookup_one_len, it should be called without the parent
2308 * i_mutex held, and will take the i_mutex itself if necessary.
2309 */
2310 struct dentry *lookup_one_len_unlocked(const char *name,
2311 struct dentry *base, int len)
2312 {
2313 struct qstr this;
2314 unsigned int c;
2315 int err;
2316 struct dentry *ret;
2317
2318 this.name = name;
2319 this.len = len;
2320 this.hash = full_name_hash(name, len);
2321 if (!len)
2322 return ERR_PTR(-EACCES);
2323
2324 if (unlikely(name[0] == '.')) {
2325 if (len < 2 || (len == 2 && name[1] == '.'))
2326 return ERR_PTR(-EACCES);
2327 }
2328
2329 while (len--) {
2330 c = *(const unsigned char *)name++;
2331 if (c == '/' || c == '\0')
2332 return ERR_PTR(-EACCES);
2333 }
2334 /*
2335 * See if the low-level filesystem might want
2336 * to use its own hash..
2337 */
2338 if (base->d_flags & DCACHE_OP_HASH) {
2339 int err = base->d_op->d_hash(base, &this);
2340 if (err < 0)
2341 return ERR_PTR(err);
2342 }
2343
2344 err = inode_permission(base->d_inode, MAY_EXEC);
2345 if (err)
2346 return ERR_PTR(err);
2347
2348 ret = lookup_dcache(&this, base, 0);
2349 if (!ret)
2350 ret = lookup_slow(&this, base, 0);
2351 return ret;
2352 }
2353 EXPORT_SYMBOL(lookup_one_len_unlocked);
2354
2355 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2356 struct path *path, int *empty)
2357 {
2358 return filename_lookup(dfd, getname_flags(name, flags, empty),
2359 flags, path, NULL);
2360 }
2361 EXPORT_SYMBOL(user_path_at_empty);
2362
2363 /*
2364 * NB: most callers don't do anything directly with the reference to the
2365 * to struct filename, but the nd->last pointer points into the name string
2366 * allocated by getname. So we must hold the reference to it until all
2367 * path-walking is complete.
2368 */
2369 static inline struct filename *
2370 user_path_parent(int dfd, const char __user *path,
2371 struct path *parent,
2372 struct qstr *last,
2373 int *type,
2374 unsigned int flags)
2375 {
2376 /* only LOOKUP_REVAL is allowed in extra flags */
2377 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2378 parent, last, type);
2379 }
2380
2381 /**
2382 * mountpoint_last - look up last component for umount
2383 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2384 * @path: pointer to container for result
2385 *
2386 * This is a special lookup_last function just for umount. In this case, we
2387 * need to resolve the path without doing any revalidation.
2388 *
2389 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2390 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2391 * in almost all cases, this lookup will be served out of the dcache. The only
2392 * cases where it won't are if nd->last refers to a symlink or the path is
2393 * bogus and it doesn't exist.
2394 *
2395 * Returns:
2396 * -error: if there was an error during lookup. This includes -ENOENT if the
2397 * lookup found a negative dentry. The nd->path reference will also be
2398 * put in this case.
2399 *
2400 * 0: if we successfully resolved nd->path and found it to not to be a
2401 * symlink that needs to be followed. "path" will also be populated.
2402 * The nd->path reference will also be put.
2403 *
2404 * 1: if we successfully resolved nd->last and found it to be a symlink
2405 * that needs to be followed. "path" will be populated with the path
2406 * to the link, and nd->path will *not* be put.
2407 */
2408 static int
2409 mountpoint_last(struct nameidata *nd, struct path *path)
2410 {
2411 int error = 0;
2412 struct dentry *dentry;
2413 struct dentry *dir = nd->path.dentry;
2414
2415 /* If we're in rcuwalk, drop out of it to handle last component */
2416 if (nd->flags & LOOKUP_RCU) {
2417 if (unlazy_walk(nd, NULL, 0))
2418 return -ECHILD;
2419 }
2420
2421 nd->flags &= ~LOOKUP_PARENT;
2422
2423 if (unlikely(nd->last_type != LAST_NORM)) {
2424 error = handle_dots(nd, nd->last_type);
2425 if (error)
2426 return error;
2427 dentry = dget(nd->path.dentry);
2428 goto done;
2429 }
2430
2431 inode_lock(dir->d_inode);
2432 dentry = d_lookup(dir, &nd->last);
2433 if (!dentry) {
2434 /*
2435 * No cached dentry. Mounted dentries are pinned in the cache,
2436 * so that means that this dentry is probably a symlink or the
2437 * path doesn't actually point to a mounted dentry.
2438 */
2439 dentry = d_alloc(dir, &nd->last);
2440 if (!dentry) {
2441 inode_unlock(dir->d_inode);
2442 return -ENOMEM;
2443 }
2444 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2445 if (IS_ERR(dentry)) {
2446 inode_unlock(dir->d_inode);
2447 return PTR_ERR(dentry);
2448 }
2449 }
2450 inode_unlock(dir->d_inode);
2451
2452 done:
2453 if (d_is_negative(dentry)) {
2454 dput(dentry);
2455 return -ENOENT;
2456 }
2457 if (nd->depth)
2458 put_link(nd);
2459 path->dentry = dentry;
2460 path->mnt = nd->path.mnt;
2461 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2462 d_backing_inode(dentry), 0);
2463 if (unlikely(error))
2464 return error;
2465 mntget(path->mnt);
2466 follow_mount(path);
2467 return 0;
2468 }
2469
2470 /**
2471 * path_mountpoint - look up a path to be umounted
2472 * @nd: lookup context
2473 * @flags: lookup flags
2474 * @path: pointer to container for result
2475 *
2476 * Look up the given name, but don't attempt to revalidate the last component.
2477 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2478 */
2479 static int
2480 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2481 {
2482 const char *s = path_init(nd, flags);
2483 int err;
2484 if (IS_ERR(s))
2485 return PTR_ERR(s);
2486 while (!(err = link_path_walk(s, nd)) &&
2487 (err = mountpoint_last(nd, path)) > 0) {
2488 s = trailing_symlink(nd);
2489 if (IS_ERR(s)) {
2490 err = PTR_ERR(s);
2491 break;
2492 }
2493 }
2494 terminate_walk(nd);
2495 return err;
2496 }
2497
2498 static int
2499 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2500 unsigned int flags)
2501 {
2502 struct nameidata nd;
2503 int error;
2504 if (IS_ERR(name))
2505 return PTR_ERR(name);
2506 set_nameidata(&nd, dfd, name);
2507 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2508 if (unlikely(error == -ECHILD))
2509 error = path_mountpoint(&nd, flags, path);
2510 if (unlikely(error == -ESTALE))
2511 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2512 if (likely(!error))
2513 audit_inode(name, path->dentry, 0);
2514 restore_nameidata();
2515 putname(name);
2516 return error;
2517 }
2518
2519 /**
2520 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2521 * @dfd: directory file descriptor
2522 * @name: pathname from userland
2523 * @flags: lookup flags
2524 * @path: pointer to container to hold result
2525 *
2526 * A umount is a special case for path walking. We're not actually interested
2527 * in the inode in this situation, and ESTALE errors can be a problem. We
2528 * simply want track down the dentry and vfsmount attached at the mountpoint
2529 * and avoid revalidating the last component.
2530 *
2531 * Returns 0 and populates "path" on success.
2532 */
2533 int
2534 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2535 struct path *path)
2536 {
2537 return filename_mountpoint(dfd, getname(name), path, flags);
2538 }
2539
2540 int
2541 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2542 unsigned int flags)
2543 {
2544 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2545 }
2546 EXPORT_SYMBOL(kern_path_mountpoint);
2547
2548 int __check_sticky(struct inode *dir, struct inode *inode)
2549 {
2550 kuid_t fsuid = current_fsuid();
2551
2552 if (uid_eq(inode->i_uid, fsuid))
2553 return 0;
2554 if (uid_eq(dir->i_uid, fsuid))
2555 return 0;
2556 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2557 }
2558 EXPORT_SYMBOL(__check_sticky);
2559
2560 /*
2561 * Check whether we can remove a link victim from directory dir, check
2562 * whether the type of victim is right.
2563 * 1. We can't do it if dir is read-only (done in permission())
2564 * 2. We should have write and exec permissions on dir
2565 * 3. We can't remove anything from append-only dir
2566 * 4. We can't do anything with immutable dir (done in permission())
2567 * 5. If the sticky bit on dir is set we should either
2568 * a. be owner of dir, or
2569 * b. be owner of victim, or
2570 * c. have CAP_FOWNER capability
2571 * 6. If the victim is append-only or immutable we can't do antyhing with
2572 * links pointing to it.
2573 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2574 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2575 * 9. We can't remove a root or mountpoint.
2576 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2577 * nfs_async_unlink().
2578 */
2579 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2580 {
2581 struct inode *inode = d_backing_inode(victim);
2582 int error;
2583
2584 if (d_is_negative(victim))
2585 return -ENOENT;
2586 BUG_ON(!inode);
2587
2588 BUG_ON(victim->d_parent->d_inode != dir);
2589 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2590
2591 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2592 if (error)
2593 return error;
2594 if (IS_APPEND(dir))
2595 return -EPERM;
2596
2597 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2598 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2599 return -EPERM;
2600 if (isdir) {
2601 if (!d_is_dir(victim))
2602 return -ENOTDIR;
2603 if (IS_ROOT(victim))
2604 return -EBUSY;
2605 } else if (d_is_dir(victim))
2606 return -EISDIR;
2607 if (IS_DEADDIR(dir))
2608 return -ENOENT;
2609 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2610 return -EBUSY;
2611 return 0;
2612 }
2613
2614 /* Check whether we can create an object with dentry child in directory
2615 * dir.
2616 * 1. We can't do it if child already exists (open has special treatment for
2617 * this case, but since we are inlined it's OK)
2618 * 2. We can't do it if dir is read-only (done in permission())
2619 * 3. We should have write and exec permissions on dir
2620 * 4. We can't do it if dir is immutable (done in permission())
2621 */
2622 static inline int may_create(struct inode *dir, struct dentry *child)
2623 {
2624 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2625 if (child->d_inode)
2626 return -EEXIST;
2627 if (IS_DEADDIR(dir))
2628 return -ENOENT;
2629 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2630 }
2631
2632 /*
2633 * p1 and p2 should be directories on the same fs.
2634 */
2635 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2636 {
2637 struct dentry *p;
2638
2639 if (p1 == p2) {
2640 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2641 return NULL;
2642 }
2643
2644 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2645
2646 p = d_ancestor(p2, p1);
2647 if (p) {
2648 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2649 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2650 return p;
2651 }
2652
2653 p = d_ancestor(p1, p2);
2654 if (p) {
2655 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2656 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2657 return p;
2658 }
2659
2660 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2661 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2662 return NULL;
2663 }
2664 EXPORT_SYMBOL(lock_rename);
2665
2666 void unlock_rename(struct dentry *p1, struct dentry *p2)
2667 {
2668 inode_unlock(p1->d_inode);
2669 if (p1 != p2) {
2670 inode_unlock(p2->d_inode);
2671 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2672 }
2673 }
2674 EXPORT_SYMBOL(unlock_rename);
2675
2676 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2677 bool want_excl)
2678 {
2679 int error = may_create(dir, dentry);
2680 if (error)
2681 return error;
2682
2683 if (!dir->i_op->create)
2684 return -EACCES; /* shouldn't it be ENOSYS? */
2685 mode &= S_IALLUGO;
2686 mode |= S_IFREG;
2687 error = security_inode_create(dir, dentry, mode);
2688 if (error)
2689 return error;
2690 error = dir->i_op->create(dir, dentry, mode, want_excl);
2691 if (!error)
2692 fsnotify_create(dir, dentry);
2693 return error;
2694 }
2695 EXPORT_SYMBOL(vfs_create);
2696
2697 static int may_open(struct path *path, int acc_mode, int flag)
2698 {
2699 struct dentry *dentry = path->dentry;
2700 struct inode *inode = dentry->d_inode;
2701 int error;
2702
2703 if (!inode)
2704 return -ENOENT;
2705
2706 switch (inode->i_mode & S_IFMT) {
2707 case S_IFLNK:
2708 return -ELOOP;
2709 case S_IFDIR:
2710 if (acc_mode & MAY_WRITE)
2711 return -EISDIR;
2712 break;
2713 case S_IFBLK:
2714 case S_IFCHR:
2715 if (path->mnt->mnt_flags & MNT_NODEV)
2716 return -EACCES;
2717 /*FALLTHRU*/
2718 case S_IFIFO:
2719 case S_IFSOCK:
2720 flag &= ~O_TRUNC;
2721 break;
2722 }
2723
2724 error = inode_permission(inode, MAY_OPEN | acc_mode);
2725 if (error)
2726 return error;
2727
2728 /*
2729 * An append-only file must be opened in append mode for writing.
2730 */
2731 if (IS_APPEND(inode)) {
2732 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2733 return -EPERM;
2734 if (flag & O_TRUNC)
2735 return -EPERM;
2736 }
2737
2738 /* O_NOATIME can only be set by the owner or superuser */
2739 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2740 return -EPERM;
2741
2742 return 0;
2743 }
2744
2745 static int handle_truncate(struct file *filp)
2746 {
2747 struct path *path = &filp->f_path;
2748 struct inode *inode = path->dentry->d_inode;
2749 int error = get_write_access(inode);
2750 if (error)
2751 return error;
2752 /*
2753 * Refuse to truncate files with mandatory locks held on them.
2754 */
2755 error = locks_verify_locked(filp);
2756 if (!error)
2757 error = security_path_truncate(path);
2758 if (!error) {
2759 error = do_truncate(path->dentry, 0,
2760 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2761 filp);
2762 }
2763 put_write_access(inode);
2764 return error;
2765 }
2766
2767 static inline int open_to_namei_flags(int flag)
2768 {
2769 if ((flag & O_ACCMODE) == 3)
2770 flag--;
2771 return flag;
2772 }
2773
2774 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2775 {
2776 int error = security_path_mknod(dir, dentry, mode, 0);
2777 if (error)
2778 return error;
2779
2780 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2781 if (error)
2782 return error;
2783
2784 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2785 }
2786
2787 /*
2788 * Attempt to atomically look up, create and open a file from a negative
2789 * dentry.
2790 *
2791 * Returns 0 if successful. The file will have been created and attached to
2792 * @file by the filesystem calling finish_open().
2793 *
2794 * Returns 1 if the file was looked up only or didn't need creating. The
2795 * caller will need to perform the open themselves. @path will have been
2796 * updated to point to the new dentry. This may be negative.
2797 *
2798 * Returns an error code otherwise.
2799 */
2800 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2801 struct path *path, struct file *file,
2802 const struct open_flags *op,
2803 bool got_write, bool need_lookup,
2804 int *opened)
2805 {
2806 struct inode *dir = nd->path.dentry->d_inode;
2807 unsigned open_flag = open_to_namei_flags(op->open_flag);
2808 umode_t mode;
2809 int error;
2810 int acc_mode;
2811 int create_error = 0;
2812 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2813 bool excl;
2814
2815 BUG_ON(dentry->d_inode);
2816
2817 /* Don't create child dentry for a dead directory. */
2818 if (unlikely(IS_DEADDIR(dir))) {
2819 error = -ENOENT;
2820 goto out;
2821 }
2822
2823 mode = op->mode;
2824 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2825 mode &= ~current_umask();
2826
2827 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2828 if (excl)
2829 open_flag &= ~O_TRUNC;
2830
2831 /*
2832 * Checking write permission is tricky, bacuse we don't know if we are
2833 * going to actually need it: O_CREAT opens should work as long as the
2834 * file exists. But checking existence breaks atomicity. The trick is
2835 * to check access and if not granted clear O_CREAT from the flags.
2836 *
2837 * Another problem is returing the "right" error value (e.g. for an
2838 * O_EXCL open we want to return EEXIST not EROFS).
2839 */
2840 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2841 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2842 if (!(open_flag & O_CREAT)) {
2843 /*
2844 * No O_CREATE -> atomicity not a requirement -> fall
2845 * back to lookup + open
2846 */
2847 goto no_open;
2848 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2849 /* Fall back and fail with the right error */
2850 create_error = -EROFS;
2851 goto no_open;
2852 } else {
2853 /* No side effects, safe to clear O_CREAT */
2854 create_error = -EROFS;
2855 open_flag &= ~O_CREAT;
2856 }
2857 }
2858
2859 if (open_flag & O_CREAT) {
2860 error = may_o_create(&nd->path, dentry, mode);
2861 if (error) {
2862 create_error = error;
2863 if (open_flag & O_EXCL)
2864 goto no_open;
2865 open_flag &= ~O_CREAT;
2866 }
2867 }
2868
2869 if (nd->flags & LOOKUP_DIRECTORY)
2870 open_flag |= O_DIRECTORY;
2871
2872 file->f_path.dentry = DENTRY_NOT_SET;
2873 file->f_path.mnt = nd->path.mnt;
2874 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2875 opened);
2876 if (error < 0) {
2877 if (create_error && error == -ENOENT)
2878 error = create_error;
2879 goto out;
2880 }
2881
2882 if (error) { /* returned 1, that is */
2883 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2884 error = -EIO;
2885 goto out;
2886 }
2887 if (file->f_path.dentry) {
2888 dput(dentry);
2889 dentry = file->f_path.dentry;
2890 }
2891 if (*opened & FILE_CREATED)
2892 fsnotify_create(dir, dentry);
2893 if (!dentry->d_inode) {
2894 WARN_ON(*opened & FILE_CREATED);
2895 if (create_error) {
2896 error = create_error;
2897 goto out;
2898 }
2899 } else {
2900 if (excl && !(*opened & FILE_CREATED)) {
2901 error = -EEXIST;
2902 goto out;
2903 }
2904 }
2905 goto looked_up;
2906 }
2907
2908 /*
2909 * We didn't have the inode before the open, so check open permission
2910 * here.
2911 */
2912 acc_mode = op->acc_mode;
2913 if (*opened & FILE_CREATED) {
2914 WARN_ON(!(open_flag & O_CREAT));
2915 fsnotify_create(dir, dentry);
2916 acc_mode = 0;
2917 }
2918 error = may_open(&file->f_path, acc_mode, open_flag);
2919 if (error)
2920 fput(file);
2921
2922 out:
2923 dput(dentry);
2924 return error;
2925
2926 no_open:
2927 if (need_lookup) {
2928 dentry = lookup_real(dir, dentry, nd->flags);
2929 if (IS_ERR(dentry))
2930 return PTR_ERR(dentry);
2931
2932 if (create_error) {
2933 int open_flag = op->open_flag;
2934
2935 error = create_error;
2936 if ((open_flag & O_EXCL)) {
2937 if (!dentry->d_inode)
2938 goto out;
2939 } else if (!dentry->d_inode) {
2940 goto out;
2941 } else if ((open_flag & O_TRUNC) &&
2942 d_is_reg(dentry)) {
2943 goto out;
2944 }
2945 /* will fail later, go on to get the right error */
2946 }
2947 }
2948 looked_up:
2949 path->dentry = dentry;
2950 path->mnt = nd->path.mnt;
2951 return 1;
2952 }
2953
2954 /*
2955 * Look up and maybe create and open the last component.
2956 *
2957 * Must be called with i_mutex held on parent.
2958 *
2959 * Returns 0 if the file was successfully atomically created (if necessary) and
2960 * opened. In this case the file will be returned attached to @file.
2961 *
2962 * Returns 1 if the file was not completely opened at this time, though lookups
2963 * and creations will have been performed and the dentry returned in @path will
2964 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2965 * specified then a negative dentry may be returned.
2966 *
2967 * An error code is returned otherwise.
2968 *
2969 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2970 * cleared otherwise prior to returning.
2971 */
2972 static int lookup_open(struct nameidata *nd, struct path *path,
2973 struct file *file,
2974 const struct open_flags *op,
2975 bool got_write, int *opened)
2976 {
2977 struct dentry *dir = nd->path.dentry;
2978 struct inode *dir_inode = dir->d_inode;
2979 struct dentry *dentry;
2980 int error;
2981 bool need_lookup = false;
2982
2983 *opened &= ~FILE_CREATED;
2984 dentry = lookup_dcache(&nd->last, dir, nd->flags);
2985 if (IS_ERR(dentry))
2986 return PTR_ERR(dentry);
2987
2988 if (!dentry) {
2989 dentry = d_alloc(dir, &nd->last);
2990 if (unlikely(!dentry))
2991 return -ENOMEM;
2992 need_lookup = true;
2993 } else if (dentry->d_inode) {
2994 /* Cached positive dentry: will open in f_op->open */
2995 goto out_no_open;
2996 }
2997
2998 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2999 return atomic_open(nd, dentry, path, file, op, got_write,
3000 need_lookup, opened);
3001 }
3002
3003 if (need_lookup) {
3004 BUG_ON(dentry->d_inode);
3005
3006 dentry = lookup_real(dir_inode, dentry, nd->flags);
3007 if (IS_ERR(dentry))
3008 return PTR_ERR(dentry);
3009 }
3010
3011 /* Negative dentry, just create the file */
3012 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
3013 umode_t mode = op->mode;
3014 if (!IS_POSIXACL(dir->d_inode))
3015 mode &= ~current_umask();
3016 /*
3017 * This write is needed to ensure that a
3018 * rw->ro transition does not occur between
3019 * the time when the file is created and when
3020 * a permanent write count is taken through
3021 * the 'struct file' in finish_open().
3022 */
3023 if (!got_write) {
3024 error = -EROFS;
3025 goto out_dput;
3026 }
3027 *opened |= FILE_CREATED;
3028 error = security_path_mknod(&nd->path, dentry, mode, 0);
3029 if (error)
3030 goto out_dput;
3031 error = vfs_create(dir->d_inode, dentry, mode,
3032 nd->flags & LOOKUP_EXCL);
3033 if (error)
3034 goto out_dput;
3035 }
3036 out_no_open:
3037 path->dentry = dentry;
3038 path->mnt = nd->path.mnt;
3039 return 1;
3040
3041 out_dput:
3042 dput(dentry);
3043 return error;
3044 }
3045
3046 /*
3047 * Handle the last step of open()
3048 */
3049 static int do_last(struct nameidata *nd,
3050 struct file *file, const struct open_flags *op,
3051 int *opened)
3052 {
3053 struct dentry *dir = nd->path.dentry;
3054 int open_flag = op->open_flag;
3055 bool will_truncate = (open_flag & O_TRUNC) != 0;
3056 bool got_write = false;
3057 int acc_mode = op->acc_mode;
3058 unsigned seq;
3059 struct inode *inode;
3060 struct path save_parent = { .dentry = NULL, .mnt = NULL };
3061 struct path path;
3062 bool retried = false;
3063 int error;
3064
3065 nd->flags &= ~LOOKUP_PARENT;
3066 nd->flags |= op->intent;
3067
3068 if (nd->last_type != LAST_NORM) {
3069 error = handle_dots(nd, nd->last_type);
3070 if (unlikely(error))
3071 return error;
3072 goto finish_open;
3073 }
3074
3075 if (!(open_flag & O_CREAT)) {
3076 if (nd->last.name[nd->last.len])
3077 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3078 /* we _can_ be in RCU mode here */
3079 error = lookup_fast(nd, &path, &inode, &seq);
3080 if (likely(error > 0))
3081 goto finish_lookup;
3082
3083 if (error < 0)
3084 return error;
3085
3086 BUG_ON(nd->inode != dir->d_inode);
3087 BUG_ON(nd->flags & LOOKUP_RCU);
3088 } else {
3089 /* create side of things */
3090 /*
3091 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3092 * has been cleared when we got to the last component we are
3093 * about to look up
3094 */
3095 error = complete_walk(nd);
3096 if (error)
3097 return error;
3098
3099 audit_inode(nd->name, dir, LOOKUP_PARENT);
3100 /* trailing slashes? */
3101 if (unlikely(nd->last.name[nd->last.len]))
3102 return -EISDIR;
3103 }
3104
3105 retry_lookup:
3106 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3107 error = mnt_want_write(nd->path.mnt);
3108 if (!error)
3109 got_write = true;
3110 /*
3111 * do _not_ fail yet - we might not need that or fail with
3112 * a different error; let lookup_open() decide; we'll be
3113 * dropping this one anyway.
3114 */
3115 }
3116 inode_lock(dir->d_inode);
3117 error = lookup_open(nd, &path, file, op, got_write, opened);
3118 inode_unlock(dir->d_inode);
3119
3120 if (error <= 0) {
3121 if (error)
3122 goto out;
3123
3124 if ((*opened & FILE_CREATED) ||
3125 !S_ISREG(file_inode(file)->i_mode))
3126 will_truncate = false;
3127
3128 audit_inode(nd->name, file->f_path.dentry, 0);
3129 goto opened;
3130 }
3131
3132 if (*opened & FILE_CREATED) {
3133 /* Don't check for write permission, don't truncate */
3134 open_flag &= ~O_TRUNC;
3135 will_truncate = false;
3136 acc_mode = 0;
3137 path_to_nameidata(&path, nd);
3138 goto finish_open_created;
3139 }
3140
3141 /*
3142 * If atomic_open() acquired write access it is dropped now due to
3143 * possible mount and symlink following (this might be optimized away if
3144 * necessary...)
3145 */
3146 if (got_write) {
3147 mnt_drop_write(nd->path.mnt);
3148 got_write = false;
3149 }
3150
3151 if (unlikely(d_is_negative(path.dentry))) {
3152 path_to_nameidata(&path, nd);
3153 return -ENOENT;
3154 }
3155
3156 /*
3157 * create/update audit record if it already exists.
3158 */
3159 audit_inode(nd->name, path.dentry, 0);
3160
3161 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3162 path_to_nameidata(&path, nd);
3163 return -EEXIST;
3164 }
3165
3166 error = follow_managed(&path, nd);
3167 if (unlikely(error < 0))
3168 return error;
3169
3170 seq = 0; /* out of RCU mode, so the value doesn't matter */
3171 inode = d_backing_inode(path.dentry);
3172 finish_lookup:
3173 if (nd->depth)
3174 put_link(nd);
3175 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3176 inode, seq);
3177 if (unlikely(error))
3178 return error;
3179
3180 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3181 path_to_nameidata(&path, nd);
3182 } else {
3183 save_parent.dentry = nd->path.dentry;
3184 save_parent.mnt = mntget(path.mnt);
3185 nd->path.dentry = path.dentry;
3186
3187 }
3188 nd->inode = inode;
3189 nd->seq = seq;
3190 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3191 finish_open:
3192 error = complete_walk(nd);
3193 if (error) {
3194 path_put(&save_parent);
3195 return error;
3196 }
3197 audit_inode(nd->name, nd->path.dentry, 0);
3198 if (unlikely(d_is_symlink(nd->path.dentry)) && !(open_flag & O_PATH)) {
3199 error = -ELOOP;
3200 goto out;
3201 }
3202 error = -EISDIR;
3203 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3204 goto out;
3205 error = -ENOTDIR;
3206 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3207 goto out;
3208 if (!d_is_reg(nd->path.dentry))
3209 will_truncate = false;
3210
3211 if (will_truncate) {
3212 error = mnt_want_write(nd->path.mnt);
3213 if (error)
3214 goto out;
3215 got_write = true;
3216 }
3217 finish_open_created:
3218 if (likely(!(open_flag & O_PATH))) {
3219 error = may_open(&nd->path, acc_mode, open_flag);
3220 if (error)
3221 goto out;
3222 }
3223 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3224 error = vfs_open(&nd->path, file, current_cred());
3225 if (!error) {
3226 *opened |= FILE_OPENED;
3227 } else {
3228 if (error == -EOPENSTALE)
3229 goto stale_open;
3230 goto out;
3231 }
3232 opened:
3233 error = open_check_o_direct(file);
3234 if (error)
3235 goto exit_fput;
3236 error = ima_file_check(file, op->acc_mode, *opened);
3237 if (error)
3238 goto exit_fput;
3239
3240 if (will_truncate) {
3241 error = handle_truncate(file);
3242 if (error)
3243 goto exit_fput;
3244 }
3245 out:
3246 if (unlikely(error > 0)) {
3247 WARN_ON(1);
3248 error = -EINVAL;
3249 }
3250 if (got_write)
3251 mnt_drop_write(nd->path.mnt);
3252 path_put(&save_parent);
3253 return error;
3254
3255 exit_fput:
3256 fput(file);
3257 goto out;
3258
3259 stale_open:
3260 /* If no saved parent or already retried then can't retry */
3261 if (!save_parent.dentry || retried)
3262 goto out;
3263
3264 BUG_ON(save_parent.dentry != dir);
3265 path_put(&nd->path);
3266 nd->path = save_parent;
3267 nd->inode = dir->d_inode;
3268 save_parent.mnt = NULL;
3269 save_parent.dentry = NULL;
3270 if (got_write) {
3271 mnt_drop_write(nd->path.mnt);
3272 got_write = false;
3273 }
3274 retried = true;
3275 goto retry_lookup;
3276 }
3277
3278 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3279 const struct open_flags *op,
3280 struct file *file, int *opened)
3281 {
3282 static const struct qstr name = QSTR_INIT("/", 1);
3283 struct dentry *child;
3284 struct inode *dir;
3285 struct path path;
3286 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3287 if (unlikely(error))
3288 return error;
3289 error = mnt_want_write(path.mnt);
3290 if (unlikely(error))
3291 goto out;
3292 dir = path.dentry->d_inode;
3293 /* we want directory to be writable */
3294 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3295 if (error)
3296 goto out2;
3297 if (!dir->i_op->tmpfile) {
3298 error = -EOPNOTSUPP;
3299 goto out2;
3300 }
3301 child = d_alloc(path.dentry, &name);
3302 if (unlikely(!child)) {
3303 error = -ENOMEM;
3304 goto out2;
3305 }
3306 dput(path.dentry);
3307 path.dentry = child;
3308 error = dir->i_op->tmpfile(dir, child, op->mode);
3309 if (error)
3310 goto out2;
3311 audit_inode(nd->name, child, 0);
3312 /* Don't check for other permissions, the inode was just created */
3313 error = may_open(&path, 0, op->open_flag);
3314 if (error)
3315 goto out2;
3316 file->f_path.mnt = path.mnt;
3317 error = finish_open(file, child, NULL, opened);
3318 if (error)
3319 goto out2;
3320 error = open_check_o_direct(file);
3321 if (error) {
3322 fput(file);
3323 } else if (!(op->open_flag & O_EXCL)) {
3324 struct inode *inode = file_inode(file);
3325 spin_lock(&inode->i_lock);
3326 inode->i_state |= I_LINKABLE;
3327 spin_unlock(&inode->i_lock);
3328 }
3329 out2:
3330 mnt_drop_write(path.mnt);
3331 out:
3332 path_put(&path);
3333 return error;
3334 }
3335
3336 static struct file *path_openat(struct nameidata *nd,
3337 const struct open_flags *op, unsigned flags)
3338 {
3339 const char *s;
3340 struct file *file;
3341 int opened = 0;
3342 int error;
3343
3344 file = get_empty_filp();
3345 if (IS_ERR(file))
3346 return file;
3347
3348 file->f_flags = op->open_flag;
3349
3350 if (unlikely(file->f_flags & __O_TMPFILE)) {
3351 error = do_tmpfile(nd, flags, op, file, &opened);
3352 goto out2;
3353 }
3354
3355 s = path_init(nd, flags);
3356 if (IS_ERR(s)) {
3357 put_filp(file);
3358 return ERR_CAST(s);
3359 }
3360 while (!(error = link_path_walk(s, nd)) &&
3361 (error = do_last(nd, file, op, &opened)) > 0) {
3362 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3363 s = trailing_symlink(nd);
3364 if (IS_ERR(s)) {
3365 error = PTR_ERR(s);
3366 break;
3367 }
3368 }
3369 terminate_walk(nd);
3370 out2:
3371 if (!(opened & FILE_OPENED)) {
3372 BUG_ON(!error);
3373 put_filp(file);
3374 }
3375 if (unlikely(error)) {
3376 if (error == -EOPENSTALE) {
3377 if (flags & LOOKUP_RCU)
3378 error = -ECHILD;
3379 else
3380 error = -ESTALE;
3381 }
3382 file = ERR_PTR(error);
3383 }
3384 return file;
3385 }
3386
3387 struct file *do_filp_open(int dfd, struct filename *pathname,
3388 const struct open_flags *op)
3389 {
3390 struct nameidata nd;
3391 int flags = op->lookup_flags;
3392 struct file *filp;
3393
3394 set_nameidata(&nd, dfd, pathname);
3395 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3396 if (unlikely(filp == ERR_PTR(-ECHILD)))
3397 filp = path_openat(&nd, op, flags);
3398 if (unlikely(filp == ERR_PTR(-ESTALE)))
3399 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3400 restore_nameidata();
3401 return filp;
3402 }
3403
3404 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3405 const char *name, const struct open_flags *op)
3406 {
3407 struct nameidata nd;
3408 struct file *file;
3409 struct filename *filename;
3410 int flags = op->lookup_flags | LOOKUP_ROOT;
3411
3412 nd.root.mnt = mnt;
3413 nd.root.dentry = dentry;
3414
3415 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3416 return ERR_PTR(-ELOOP);
3417
3418 filename = getname_kernel(name);
3419 if (IS_ERR(filename))
3420 return ERR_CAST(filename);
3421
3422 set_nameidata(&nd, -1, filename);
3423 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3424 if (unlikely(file == ERR_PTR(-ECHILD)))
3425 file = path_openat(&nd, op, flags);
3426 if (unlikely(file == ERR_PTR(-ESTALE)))
3427 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3428 restore_nameidata();
3429 putname(filename);
3430 return file;
3431 }
3432
3433 static struct dentry *filename_create(int dfd, struct filename *name,
3434 struct path *path, unsigned int lookup_flags)
3435 {
3436 struct dentry *dentry = ERR_PTR(-EEXIST);
3437 struct qstr last;
3438 int type;
3439 int err2;
3440 int error;
3441 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3442
3443 /*
3444 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3445 * other flags passed in are ignored!
3446 */
3447 lookup_flags &= LOOKUP_REVAL;
3448
3449 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3450 if (IS_ERR(name))
3451 return ERR_CAST(name);
3452
3453 /*
3454 * Yucky last component or no last component at all?
3455 * (foo/., foo/.., /////)
3456 */
3457 if (unlikely(type != LAST_NORM))
3458 goto out;
3459
3460 /* don't fail immediately if it's r/o, at least try to report other errors */
3461 err2 = mnt_want_write(path->mnt);
3462 /*
3463 * Do the final lookup.
3464 */
3465 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3466 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3467 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3468 if (IS_ERR(dentry))
3469 goto unlock;
3470
3471 error = -EEXIST;
3472 if (d_is_positive(dentry))
3473 goto fail;
3474
3475 /*
3476 * Special case - lookup gave negative, but... we had foo/bar/
3477 * From the vfs_mknod() POV we just have a negative dentry -
3478 * all is fine. Let's be bastards - you had / on the end, you've
3479 * been asking for (non-existent) directory. -ENOENT for you.
3480 */
3481 if (unlikely(!is_dir && last.name[last.len])) {
3482 error = -ENOENT;
3483 goto fail;
3484 }
3485 if (unlikely(err2)) {
3486 error = err2;
3487 goto fail;
3488 }
3489 putname(name);
3490 return dentry;
3491 fail:
3492 dput(dentry);
3493 dentry = ERR_PTR(error);
3494 unlock:
3495 inode_unlock(path->dentry->d_inode);
3496 if (!err2)
3497 mnt_drop_write(path->mnt);
3498 out:
3499 path_put(path);
3500 putname(name);
3501 return dentry;
3502 }
3503
3504 struct dentry *kern_path_create(int dfd, const char *pathname,
3505 struct path *path, unsigned int lookup_flags)
3506 {
3507 return filename_create(dfd, getname_kernel(pathname),
3508 path, lookup_flags);
3509 }
3510 EXPORT_SYMBOL(kern_path_create);
3511
3512 void done_path_create(struct path *path, struct dentry *dentry)
3513 {
3514 dput(dentry);
3515 inode_unlock(path->dentry->d_inode);
3516 mnt_drop_write(path->mnt);
3517 path_put(path);
3518 }
3519 EXPORT_SYMBOL(done_path_create);
3520
3521 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3522 struct path *path, unsigned int lookup_flags)
3523 {
3524 return filename_create(dfd, getname(pathname), path, lookup_flags);
3525 }
3526 EXPORT_SYMBOL(user_path_create);
3527
3528 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3529 {
3530 int error = may_create(dir, dentry);
3531
3532 if (error)
3533 return error;
3534
3535 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3536 return -EPERM;
3537
3538 if (!dir->i_op->mknod)
3539 return -EPERM;
3540
3541 error = devcgroup_inode_mknod(mode, dev);
3542 if (error)
3543 return error;
3544
3545 error = security_inode_mknod(dir, dentry, mode, dev);
3546 if (error)
3547 return error;
3548
3549 error = dir->i_op->mknod(dir, dentry, mode, dev);
3550 if (!error)
3551 fsnotify_create(dir, dentry);
3552 return error;
3553 }
3554 EXPORT_SYMBOL(vfs_mknod);
3555
3556 static int may_mknod(umode_t mode)
3557 {
3558 switch (mode & S_IFMT) {
3559 case S_IFREG:
3560 case S_IFCHR:
3561 case S_IFBLK:
3562 case S_IFIFO:
3563 case S_IFSOCK:
3564 case 0: /* zero mode translates to S_IFREG */
3565 return 0;
3566 case S_IFDIR:
3567 return -EPERM;
3568 default:
3569 return -EINVAL;
3570 }
3571 }
3572
3573 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3574 unsigned, dev)
3575 {
3576 struct dentry *dentry;
3577 struct path path;
3578 int error;
3579 unsigned int lookup_flags = 0;
3580
3581 error = may_mknod(mode);
3582 if (error)
3583 return error;
3584 retry:
3585 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3586 if (IS_ERR(dentry))
3587 return PTR_ERR(dentry);
3588
3589 if (!IS_POSIXACL(path.dentry->d_inode))
3590 mode &= ~current_umask();
3591 error = security_path_mknod(&path, dentry, mode, dev);
3592 if (error)
3593 goto out;
3594 switch (mode & S_IFMT) {
3595 case 0: case S_IFREG:
3596 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3597 break;
3598 case S_IFCHR: case S_IFBLK:
3599 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3600 new_decode_dev(dev));
3601 break;
3602 case S_IFIFO: case S_IFSOCK:
3603 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3604 break;
3605 }
3606 out:
3607 done_path_create(&path, dentry);
3608 if (retry_estale(error, lookup_flags)) {
3609 lookup_flags |= LOOKUP_REVAL;
3610 goto retry;
3611 }
3612 return error;
3613 }
3614
3615 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3616 {
3617 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3618 }
3619
3620 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3621 {
3622 int error = may_create(dir, dentry);
3623 unsigned max_links = dir->i_sb->s_max_links;
3624
3625 if (error)
3626 return error;
3627
3628 if (!dir->i_op->mkdir)
3629 return -EPERM;
3630
3631 mode &= (S_IRWXUGO|S_ISVTX);
3632 error = security_inode_mkdir(dir, dentry, mode);
3633 if (error)
3634 return error;
3635
3636 if (max_links && dir->i_nlink >= max_links)
3637 return -EMLINK;
3638
3639 error = dir->i_op->mkdir(dir, dentry, mode);
3640 if (!error)
3641 fsnotify_mkdir(dir, dentry);
3642 return error;
3643 }
3644 EXPORT_SYMBOL(vfs_mkdir);
3645
3646 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3647 {
3648 struct dentry *dentry;
3649 struct path path;
3650 int error;
3651 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3652
3653 retry:
3654 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3655 if (IS_ERR(dentry))
3656 return PTR_ERR(dentry);
3657
3658 if (!IS_POSIXACL(path.dentry->d_inode))
3659 mode &= ~current_umask();
3660 error = security_path_mkdir(&path, dentry, mode);
3661 if (!error)
3662 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3663 done_path_create(&path, dentry);
3664 if (retry_estale(error, lookup_flags)) {
3665 lookup_flags |= LOOKUP_REVAL;
3666 goto retry;
3667 }
3668 return error;
3669 }
3670
3671 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3672 {
3673 return sys_mkdirat(AT_FDCWD, pathname, mode);
3674 }
3675
3676 /*
3677 * The dentry_unhash() helper will try to drop the dentry early: we
3678 * should have a usage count of 1 if we're the only user of this
3679 * dentry, and if that is true (possibly after pruning the dcache),
3680 * then we drop the dentry now.
3681 *
3682 * A low-level filesystem can, if it choses, legally
3683 * do a
3684 *
3685 * if (!d_unhashed(dentry))
3686 * return -EBUSY;
3687 *
3688 * if it cannot handle the case of removing a directory
3689 * that is still in use by something else..
3690 */
3691 void dentry_unhash(struct dentry *dentry)
3692 {
3693 shrink_dcache_parent(dentry);
3694 spin_lock(&dentry->d_lock);
3695 if (dentry->d_lockref.count == 1)
3696 __d_drop(dentry);
3697 spin_unlock(&dentry->d_lock);
3698 }
3699 EXPORT_SYMBOL(dentry_unhash);
3700
3701 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3702 {
3703 int error = may_delete(dir, dentry, 1);
3704
3705 if (error)
3706 return error;
3707
3708 if (!dir->i_op->rmdir)
3709 return -EPERM;
3710
3711 dget(dentry);
3712 inode_lock(dentry->d_inode);
3713
3714 error = -EBUSY;
3715 if (is_local_mountpoint(dentry))
3716 goto out;
3717
3718 error = security_inode_rmdir(dir, dentry);
3719 if (error)
3720 goto out;
3721
3722 shrink_dcache_parent(dentry);
3723 error = dir->i_op->rmdir(dir, dentry);
3724 if (error)
3725 goto out;
3726
3727 dentry->d_inode->i_flags |= S_DEAD;
3728 dont_mount(dentry);
3729 detach_mounts(dentry);
3730
3731 out:
3732 inode_unlock(dentry->d_inode);
3733 dput(dentry);
3734 if (!error)
3735 d_delete(dentry);
3736 return error;
3737 }
3738 EXPORT_SYMBOL(vfs_rmdir);
3739
3740 static long do_rmdir(int dfd, const char __user *pathname)
3741 {
3742 int error = 0;
3743 struct filename *name;
3744 struct dentry *dentry;
3745 struct path path;
3746 struct qstr last;
3747 int type;
3748 unsigned int lookup_flags = 0;
3749 retry:
3750 name = user_path_parent(dfd, pathname,
3751 &path, &last, &type, lookup_flags);
3752 if (IS_ERR(name))
3753 return PTR_ERR(name);
3754
3755 switch (type) {
3756 case LAST_DOTDOT:
3757 error = -ENOTEMPTY;
3758 goto exit1;
3759 case LAST_DOT:
3760 error = -EINVAL;
3761 goto exit1;
3762 case LAST_ROOT:
3763 error = -EBUSY;
3764 goto exit1;
3765 }
3766
3767 error = mnt_want_write(path.mnt);
3768 if (error)
3769 goto exit1;
3770
3771 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3772 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3773 error = PTR_ERR(dentry);
3774 if (IS_ERR(dentry))
3775 goto exit2;
3776 if (!dentry->d_inode) {
3777 error = -ENOENT;
3778 goto exit3;
3779 }
3780 error = security_path_rmdir(&path, dentry);
3781 if (error)
3782 goto exit3;
3783 error = vfs_rmdir(path.dentry->d_inode, dentry);
3784 exit3:
3785 dput(dentry);
3786 exit2:
3787 inode_unlock(path.dentry->d_inode);
3788 mnt_drop_write(path.mnt);
3789 exit1:
3790 path_put(&path);
3791 putname(name);
3792 if (retry_estale(error, lookup_flags)) {
3793 lookup_flags |= LOOKUP_REVAL;
3794 goto retry;
3795 }
3796 return error;
3797 }
3798
3799 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3800 {
3801 return do_rmdir(AT_FDCWD, pathname);
3802 }
3803
3804 /**
3805 * vfs_unlink - unlink a filesystem object
3806 * @dir: parent directory
3807 * @dentry: victim
3808 * @delegated_inode: returns victim inode, if the inode is delegated.
3809 *
3810 * The caller must hold dir->i_mutex.
3811 *
3812 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3813 * return a reference to the inode in delegated_inode. The caller
3814 * should then break the delegation on that inode and retry. Because
3815 * breaking a delegation may take a long time, the caller should drop
3816 * dir->i_mutex before doing so.
3817 *
3818 * Alternatively, a caller may pass NULL for delegated_inode. This may
3819 * be appropriate for callers that expect the underlying filesystem not
3820 * to be NFS exported.
3821 */
3822 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3823 {
3824 struct inode *target = dentry->d_inode;
3825 int error = may_delete(dir, dentry, 0);
3826
3827 if (error)
3828 return error;
3829
3830 if (!dir->i_op->unlink)
3831 return -EPERM;
3832
3833 inode_lock(target);
3834 if (is_local_mountpoint(dentry))
3835 error = -EBUSY;
3836 else {
3837 error = security_inode_unlink(dir, dentry);
3838 if (!error) {
3839 error = try_break_deleg(target, delegated_inode);
3840 if (error)
3841 goto out;
3842 error = dir->i_op->unlink(dir, dentry);
3843 if (!error) {
3844 dont_mount(dentry);
3845 detach_mounts(dentry);
3846 }
3847 }
3848 }
3849 out:
3850 inode_unlock(target);
3851
3852 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3853 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3854 fsnotify_link_count(target);
3855 d_delete(dentry);
3856 }
3857
3858 return error;
3859 }
3860 EXPORT_SYMBOL(vfs_unlink);
3861
3862 /*
3863 * Make sure that the actual truncation of the file will occur outside its
3864 * directory's i_mutex. Truncate can take a long time if there is a lot of
3865 * writeout happening, and we don't want to prevent access to the directory
3866 * while waiting on the I/O.
3867 */
3868 static long do_unlinkat(int dfd, const char __user *pathname)
3869 {
3870 int error;
3871 struct filename *name;
3872 struct dentry *dentry;
3873 struct path path;
3874 struct qstr last;
3875 int type;
3876 struct inode *inode = NULL;
3877 struct inode *delegated_inode = NULL;
3878 unsigned int lookup_flags = 0;
3879 retry:
3880 name = user_path_parent(dfd, pathname,
3881 &path, &last, &type, lookup_flags);
3882 if (IS_ERR(name))
3883 return PTR_ERR(name);
3884
3885 error = -EISDIR;
3886 if (type != LAST_NORM)
3887 goto exit1;
3888
3889 error = mnt_want_write(path.mnt);
3890 if (error)
3891 goto exit1;
3892 retry_deleg:
3893 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3894 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3895 error = PTR_ERR(dentry);
3896 if (!IS_ERR(dentry)) {
3897 /* Why not before? Because we want correct error value */
3898 if (last.name[last.len])
3899 goto slashes;
3900 inode = dentry->d_inode;
3901 if (d_is_negative(dentry))
3902 goto slashes;
3903 ihold(inode);
3904 error = security_path_unlink(&path, dentry);
3905 if (error)
3906 goto exit2;
3907 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3908 exit2:
3909 dput(dentry);
3910 }
3911 inode_unlock(path.dentry->d_inode);
3912 if (inode)
3913 iput(inode); /* truncate the inode here */
3914 inode = NULL;
3915 if (delegated_inode) {
3916 error = break_deleg_wait(&delegated_inode);
3917 if (!error)
3918 goto retry_deleg;
3919 }
3920 mnt_drop_write(path.mnt);
3921 exit1:
3922 path_put(&path);
3923 putname(name);
3924 if (retry_estale(error, lookup_flags)) {
3925 lookup_flags |= LOOKUP_REVAL;
3926 inode = NULL;
3927 goto retry;
3928 }
3929 return error;
3930
3931 slashes:
3932 if (d_is_negative(dentry))
3933 error = -ENOENT;
3934 else if (d_is_dir(dentry))
3935 error = -EISDIR;
3936 else
3937 error = -ENOTDIR;
3938 goto exit2;
3939 }
3940
3941 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3942 {
3943 if ((flag & ~AT_REMOVEDIR) != 0)
3944 return -EINVAL;
3945
3946 if (flag & AT_REMOVEDIR)
3947 return do_rmdir(dfd, pathname);
3948
3949 return do_unlinkat(dfd, pathname);
3950 }
3951
3952 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3953 {
3954 return do_unlinkat(AT_FDCWD, pathname);
3955 }
3956
3957 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3958 {
3959 int error = may_create(dir, dentry);
3960
3961 if (error)
3962 return error;
3963
3964 if (!dir->i_op->symlink)
3965 return -EPERM;
3966
3967 error = security_inode_symlink(dir, dentry, oldname);
3968 if (error)
3969 return error;
3970
3971 error = dir->i_op->symlink(dir, dentry, oldname);
3972 if (!error)
3973 fsnotify_create(dir, dentry);
3974 return error;
3975 }
3976 EXPORT_SYMBOL(vfs_symlink);
3977
3978 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3979 int, newdfd, const char __user *, newname)
3980 {
3981 int error;
3982 struct filename *from;
3983 struct dentry *dentry;
3984 struct path path;
3985 unsigned int lookup_flags = 0;
3986
3987 from = getname(oldname);
3988 if (IS_ERR(from))
3989 return PTR_ERR(from);
3990 retry:
3991 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3992 error = PTR_ERR(dentry);
3993 if (IS_ERR(dentry))
3994 goto out_putname;
3995
3996 error = security_path_symlink(&path, dentry, from->name);
3997 if (!error)
3998 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3999 done_path_create(&path, dentry);
4000 if (retry_estale(error, lookup_flags)) {
4001 lookup_flags |= LOOKUP_REVAL;
4002 goto retry;
4003 }
4004 out_putname:
4005 putname(from);
4006 return error;
4007 }
4008
4009 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4010 {
4011 return sys_symlinkat(oldname, AT_FDCWD, newname);
4012 }
4013
4014 /**
4015 * vfs_link - create a new link
4016 * @old_dentry: object to be linked
4017 * @dir: new parent
4018 * @new_dentry: where to create the new link
4019 * @delegated_inode: returns inode needing a delegation break
4020 *
4021 * The caller must hold dir->i_mutex
4022 *
4023 * If vfs_link discovers a delegation on the to-be-linked file in need
4024 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4025 * inode in delegated_inode. The caller should then break the delegation
4026 * and retry. Because breaking a delegation may take a long time, the
4027 * caller should drop the i_mutex before doing so.
4028 *
4029 * Alternatively, a caller may pass NULL for delegated_inode. This may
4030 * be appropriate for callers that expect the underlying filesystem not
4031 * to be NFS exported.
4032 */
4033 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4034 {
4035 struct inode *inode = old_dentry->d_inode;
4036 unsigned max_links = dir->i_sb->s_max_links;
4037 int error;
4038
4039 if (!inode)
4040 return -ENOENT;
4041
4042 error = may_create(dir, new_dentry);
4043 if (error)
4044 return error;
4045
4046 if (dir->i_sb != inode->i_sb)
4047 return -EXDEV;
4048
4049 /*
4050 * A link to an append-only or immutable file cannot be created.
4051 */
4052 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4053 return -EPERM;
4054 if (!dir->i_op->link)
4055 return -EPERM;
4056 if (S_ISDIR(inode->i_mode))
4057 return -EPERM;
4058
4059 error = security_inode_link(old_dentry, dir, new_dentry);
4060 if (error)
4061 return error;
4062
4063 inode_lock(inode);
4064 /* Make sure we don't allow creating hardlink to an unlinked file */
4065 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4066 error = -ENOENT;
4067 else if (max_links && inode->i_nlink >= max_links)
4068 error = -EMLINK;
4069 else {
4070 error = try_break_deleg(inode, delegated_inode);
4071 if (!error)
4072 error = dir->i_op->link(old_dentry, dir, new_dentry);
4073 }
4074
4075 if (!error && (inode->i_state & I_LINKABLE)) {
4076 spin_lock(&inode->i_lock);
4077 inode->i_state &= ~I_LINKABLE;
4078 spin_unlock(&inode->i_lock);
4079 }
4080 inode_unlock(inode);
4081 if (!error)
4082 fsnotify_link(dir, inode, new_dentry);
4083 return error;
4084 }
4085 EXPORT_SYMBOL(vfs_link);
4086
4087 /*
4088 * Hardlinks are often used in delicate situations. We avoid
4089 * security-related surprises by not following symlinks on the
4090 * newname. --KAB
4091 *
4092 * We don't follow them on the oldname either to be compatible
4093 * with linux 2.0, and to avoid hard-linking to directories
4094 * and other special files. --ADM
4095 */
4096 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4097 int, newdfd, const char __user *, newname, int, flags)
4098 {
4099 struct dentry *new_dentry;
4100 struct path old_path, new_path;
4101 struct inode *delegated_inode = NULL;
4102 int how = 0;
4103 int error;
4104
4105 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4106 return -EINVAL;
4107 /*
4108 * To use null names we require CAP_DAC_READ_SEARCH
4109 * This ensures that not everyone will be able to create
4110 * handlink using the passed filedescriptor.
4111 */
4112 if (flags & AT_EMPTY_PATH) {
4113 if (!capable(CAP_DAC_READ_SEARCH))
4114 return -ENOENT;
4115 how = LOOKUP_EMPTY;
4116 }
4117
4118 if (flags & AT_SYMLINK_FOLLOW)
4119 how |= LOOKUP_FOLLOW;
4120 retry:
4121 error = user_path_at(olddfd, oldname, how, &old_path);
4122 if (error)
4123 return error;
4124
4125 new_dentry = user_path_create(newdfd, newname, &new_path,
4126 (how & LOOKUP_REVAL));
4127 error = PTR_ERR(new_dentry);
4128 if (IS_ERR(new_dentry))
4129 goto out;
4130
4131 error = -EXDEV;
4132 if (old_path.mnt != new_path.mnt)
4133 goto out_dput;
4134 error = may_linkat(&old_path);
4135 if (unlikely(error))
4136 goto out_dput;
4137 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4138 if (error)
4139 goto out_dput;
4140 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4141 out_dput:
4142 done_path_create(&new_path, new_dentry);
4143 if (delegated_inode) {
4144 error = break_deleg_wait(&delegated_inode);
4145 if (!error) {
4146 path_put(&old_path);
4147 goto retry;
4148 }
4149 }
4150 if (retry_estale(error, how)) {
4151 path_put(&old_path);
4152 how |= LOOKUP_REVAL;
4153 goto retry;
4154 }
4155 out:
4156 path_put(&old_path);
4157
4158 return error;
4159 }
4160
4161 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4162 {
4163 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4164 }
4165
4166 /**
4167 * vfs_rename - rename a filesystem object
4168 * @old_dir: parent of source
4169 * @old_dentry: source
4170 * @new_dir: parent of destination
4171 * @new_dentry: destination
4172 * @delegated_inode: returns an inode needing a delegation break
4173 * @flags: rename flags
4174 *
4175 * The caller must hold multiple mutexes--see lock_rename()).
4176 *
4177 * If vfs_rename discovers a delegation in need of breaking at either
4178 * the source or destination, it will return -EWOULDBLOCK and return a
4179 * reference to the inode in delegated_inode. The caller should then
4180 * break the delegation and retry. Because breaking a delegation may
4181 * take a long time, the caller should drop all locks before doing
4182 * so.
4183 *
4184 * Alternatively, a caller may pass NULL for delegated_inode. This may
4185 * be appropriate for callers that expect the underlying filesystem not
4186 * to be NFS exported.
4187 *
4188 * The worst of all namespace operations - renaming directory. "Perverted"
4189 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4190 * Problems:
4191 * a) we can get into loop creation.
4192 * b) race potential - two innocent renames can create a loop together.
4193 * That's where 4.4 screws up. Current fix: serialization on
4194 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4195 * story.
4196 * c) we have to lock _four_ objects - parents and victim (if it exists),
4197 * and source (if it is not a directory).
4198 * And that - after we got ->i_mutex on parents (until then we don't know
4199 * whether the target exists). Solution: try to be smart with locking
4200 * order for inodes. We rely on the fact that tree topology may change
4201 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4202 * move will be locked. Thus we can rank directories by the tree
4203 * (ancestors first) and rank all non-directories after them.
4204 * That works since everybody except rename does "lock parent, lookup,
4205 * lock child" and rename is under ->s_vfs_rename_mutex.
4206 * HOWEVER, it relies on the assumption that any object with ->lookup()
4207 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4208 * we'd better make sure that there's no link(2) for them.
4209 * d) conversion from fhandle to dentry may come in the wrong moment - when
4210 * we are removing the target. Solution: we will have to grab ->i_mutex
4211 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4212 * ->i_mutex on parents, which works but leads to some truly excessive
4213 * locking].
4214 */
4215 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4216 struct inode *new_dir, struct dentry *new_dentry,
4217 struct inode **delegated_inode, unsigned int flags)
4218 {
4219 int error;
4220 bool is_dir = d_is_dir(old_dentry);
4221 const unsigned char *old_name;
4222 struct inode *source = old_dentry->d_inode;
4223 struct inode *target = new_dentry->d_inode;
4224 bool new_is_dir = false;
4225 unsigned max_links = new_dir->i_sb->s_max_links;
4226
4227 if (source == target)
4228 return 0;
4229
4230 error = may_delete(old_dir, old_dentry, is_dir);
4231 if (error)
4232 return error;
4233
4234 if (!target) {
4235 error = may_create(new_dir, new_dentry);
4236 } else {
4237 new_is_dir = d_is_dir(new_dentry);
4238
4239 if (!(flags & RENAME_EXCHANGE))
4240 error = may_delete(new_dir, new_dentry, is_dir);
4241 else
4242 error = may_delete(new_dir, new_dentry, new_is_dir);
4243 }
4244 if (error)
4245 return error;
4246
4247 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4248 return -EPERM;
4249
4250 if (flags && !old_dir->i_op->rename2)
4251 return -EINVAL;
4252
4253 /*
4254 * If we are going to change the parent - check write permissions,
4255 * we'll need to flip '..'.
4256 */
4257 if (new_dir != old_dir) {
4258 if (is_dir) {
4259 error = inode_permission(source, MAY_WRITE);
4260 if (error)
4261 return error;
4262 }
4263 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4264 error = inode_permission(target, MAY_WRITE);
4265 if (error)
4266 return error;
4267 }
4268 }
4269
4270 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4271 flags);
4272 if (error)
4273 return error;
4274
4275 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4276 dget(new_dentry);
4277 if (!is_dir || (flags & RENAME_EXCHANGE))
4278 lock_two_nondirectories(source, target);
4279 else if (target)
4280 inode_lock(target);
4281
4282 error = -EBUSY;
4283 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4284 goto out;
4285
4286 if (max_links && new_dir != old_dir) {
4287 error = -EMLINK;
4288 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4289 goto out;
4290 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4291 old_dir->i_nlink >= max_links)
4292 goto out;
4293 }
4294 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4295 shrink_dcache_parent(new_dentry);
4296 if (!is_dir) {
4297 error = try_break_deleg(source, delegated_inode);
4298 if (error)
4299 goto out;
4300 }
4301 if (target && !new_is_dir) {
4302 error = try_break_deleg(target, delegated_inode);
4303 if (error)
4304 goto out;
4305 }
4306 if (!old_dir->i_op->rename2) {
4307 error = old_dir->i_op->rename(old_dir, old_dentry,
4308 new_dir, new_dentry);
4309 } else {
4310 WARN_ON(old_dir->i_op->rename != NULL);
4311 error = old_dir->i_op->rename2(old_dir, old_dentry,
4312 new_dir, new_dentry, flags);
4313 }
4314 if (error)
4315 goto out;
4316
4317 if (!(flags & RENAME_EXCHANGE) && target) {
4318 if (is_dir)
4319 target->i_flags |= S_DEAD;
4320 dont_mount(new_dentry);
4321 detach_mounts(new_dentry);
4322 }
4323 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4324 if (!(flags & RENAME_EXCHANGE))
4325 d_move(old_dentry, new_dentry);
4326 else
4327 d_exchange(old_dentry, new_dentry);
4328 }
4329 out:
4330 if (!is_dir || (flags & RENAME_EXCHANGE))
4331 unlock_two_nondirectories(source, target);
4332 else if (target)
4333 inode_unlock(target);
4334 dput(new_dentry);
4335 if (!error) {
4336 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4337 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4338 if (flags & RENAME_EXCHANGE) {
4339 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4340 new_is_dir, NULL, new_dentry);
4341 }
4342 }
4343 fsnotify_oldname_free(old_name);
4344
4345 return error;
4346 }
4347 EXPORT_SYMBOL(vfs_rename);
4348
4349 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4350 int, newdfd, const char __user *, newname, unsigned int, flags)
4351 {
4352 struct dentry *old_dentry, *new_dentry;
4353 struct dentry *trap;
4354 struct path old_path, new_path;
4355 struct qstr old_last, new_last;
4356 int old_type, new_type;
4357 struct inode *delegated_inode = NULL;
4358 struct filename *from;
4359 struct filename *to;
4360 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4361 bool should_retry = false;
4362 int error;
4363
4364 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4365 return -EINVAL;
4366
4367 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4368 (flags & RENAME_EXCHANGE))
4369 return -EINVAL;
4370
4371 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4372 return -EPERM;
4373
4374 if (flags & RENAME_EXCHANGE)
4375 target_flags = 0;
4376
4377 retry:
4378 from = user_path_parent(olddfd, oldname,
4379 &old_path, &old_last, &old_type, lookup_flags);
4380 if (IS_ERR(from)) {
4381 error = PTR_ERR(from);
4382 goto exit;
4383 }
4384
4385 to = user_path_parent(newdfd, newname,
4386 &new_path, &new_last, &new_type, lookup_flags);
4387 if (IS_ERR(to)) {
4388 error = PTR_ERR(to);
4389 goto exit1;
4390 }
4391
4392 error = -EXDEV;
4393 if (old_path.mnt != new_path.mnt)
4394 goto exit2;
4395
4396 error = -EBUSY;
4397 if (old_type != LAST_NORM)
4398 goto exit2;
4399
4400 if (flags & RENAME_NOREPLACE)
4401 error = -EEXIST;
4402 if (new_type != LAST_NORM)
4403 goto exit2;
4404
4405 error = mnt_want_write(old_path.mnt);
4406 if (error)
4407 goto exit2;
4408
4409 retry_deleg:
4410 trap = lock_rename(new_path.dentry, old_path.dentry);
4411
4412 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4413 error = PTR_ERR(old_dentry);
4414 if (IS_ERR(old_dentry))
4415 goto exit3;
4416 /* source must exist */
4417 error = -ENOENT;
4418 if (d_is_negative(old_dentry))
4419 goto exit4;
4420 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4421 error = PTR_ERR(new_dentry);
4422 if (IS_ERR(new_dentry))
4423 goto exit4;
4424 error = -EEXIST;
4425 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4426 goto exit5;
4427 if (flags & RENAME_EXCHANGE) {
4428 error = -ENOENT;
4429 if (d_is_negative(new_dentry))
4430 goto exit5;
4431
4432 if (!d_is_dir(new_dentry)) {
4433 error = -ENOTDIR;
4434 if (new_last.name[new_last.len])
4435 goto exit5;
4436 }
4437 }
4438 /* unless the source is a directory trailing slashes give -ENOTDIR */
4439 if (!d_is_dir(old_dentry)) {
4440 error = -ENOTDIR;
4441 if (old_last.name[old_last.len])
4442 goto exit5;
4443 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4444 goto exit5;
4445 }
4446 /* source should not be ancestor of target */
4447 error = -EINVAL;
4448 if (old_dentry == trap)
4449 goto exit5;
4450 /* target should not be an ancestor of source */
4451 if (!(flags & RENAME_EXCHANGE))
4452 error = -ENOTEMPTY;
4453 if (new_dentry == trap)
4454 goto exit5;
4455
4456 error = security_path_rename(&old_path, old_dentry,
4457 &new_path, new_dentry, flags);
4458 if (error)
4459 goto exit5;
4460 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4461 new_path.dentry->d_inode, new_dentry,
4462 &delegated_inode, flags);
4463 exit5:
4464 dput(new_dentry);
4465 exit4:
4466 dput(old_dentry);
4467 exit3:
4468 unlock_rename(new_path.dentry, old_path.dentry);
4469 if (delegated_inode) {
4470 error = break_deleg_wait(&delegated_inode);
4471 if (!error)
4472 goto retry_deleg;
4473 }
4474 mnt_drop_write(old_path.mnt);
4475 exit2:
4476 if (retry_estale(error, lookup_flags))
4477 should_retry = true;
4478 path_put(&new_path);
4479 putname(to);
4480 exit1:
4481 path_put(&old_path);
4482 putname(from);
4483 if (should_retry) {
4484 should_retry = false;
4485 lookup_flags |= LOOKUP_REVAL;
4486 goto retry;
4487 }
4488 exit:
4489 return error;
4490 }
4491
4492 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4493 int, newdfd, const char __user *, newname)
4494 {
4495 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4496 }
4497
4498 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4499 {
4500 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4501 }
4502
4503 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4504 {
4505 int error = may_create(dir, dentry);
4506 if (error)
4507 return error;
4508
4509 if (!dir->i_op->mknod)
4510 return -EPERM;
4511
4512 return dir->i_op->mknod(dir, dentry,
4513 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4514 }
4515 EXPORT_SYMBOL(vfs_whiteout);
4516
4517 int readlink_copy(char __user *buffer, int buflen, const char *link)
4518 {
4519 int len = PTR_ERR(link);
4520 if (IS_ERR(link))
4521 goto out;
4522
4523 len = strlen(link);
4524 if (len > (unsigned) buflen)
4525 len = buflen;
4526 if (copy_to_user(buffer, link, len))
4527 len = -EFAULT;
4528 out:
4529 return len;
4530 }
4531 EXPORT_SYMBOL(readlink_copy);
4532
4533 /*
4534 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4535 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4536 * for any given inode is up to filesystem.
4537 */
4538 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4539 {
4540 DEFINE_DELAYED_CALL(done);
4541 struct inode *inode = d_inode(dentry);
4542 const char *link = inode->i_link;
4543 int res;
4544
4545 if (!link) {
4546 link = inode->i_op->get_link(dentry, inode, &done);
4547 if (IS_ERR(link))
4548 return PTR_ERR(link);
4549 }
4550 res = readlink_copy(buffer, buflen, link);
4551 do_delayed_call(&done);
4552 return res;
4553 }
4554 EXPORT_SYMBOL(generic_readlink);
4555
4556 /* get the link contents into pagecache */
4557 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4558 struct delayed_call *callback)
4559 {
4560 char *kaddr;
4561 struct page *page;
4562 struct address_space *mapping = inode->i_mapping;
4563
4564 if (!dentry) {
4565 page = find_get_page(mapping, 0);
4566 if (!page)
4567 return ERR_PTR(-ECHILD);
4568 if (!PageUptodate(page)) {
4569 put_page(page);
4570 return ERR_PTR(-ECHILD);
4571 }
4572 } else {
4573 page = read_mapping_page(mapping, 0, NULL);
4574 if (IS_ERR(page))
4575 return (char*)page;
4576 }
4577 set_delayed_call(callback, page_put_link, page);
4578 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4579 kaddr = page_address(page);
4580 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4581 return kaddr;
4582 }
4583
4584 EXPORT_SYMBOL(page_get_link);
4585
4586 void page_put_link(void *arg)
4587 {
4588 put_page(arg);
4589 }
4590 EXPORT_SYMBOL(page_put_link);
4591
4592 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4593 {
4594 DEFINE_DELAYED_CALL(done);
4595 int res = readlink_copy(buffer, buflen,
4596 page_get_link(dentry, d_inode(dentry),
4597 &done));
4598 do_delayed_call(&done);
4599 return res;
4600 }
4601 EXPORT_SYMBOL(page_readlink);
4602
4603 /*
4604 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4605 */
4606 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4607 {
4608 struct address_space *mapping = inode->i_mapping;
4609 struct page *page;
4610 void *fsdata;
4611 int err;
4612 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4613 if (nofs)
4614 flags |= AOP_FLAG_NOFS;
4615
4616 retry:
4617 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4618 flags, &page, &fsdata);
4619 if (err)
4620 goto fail;
4621
4622 memcpy(page_address(page), symname, len-1);
4623
4624 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4625 page, fsdata);
4626 if (err < 0)
4627 goto fail;
4628 if (err < len-1)
4629 goto retry;
4630
4631 mark_inode_dirty(inode);
4632 return 0;
4633 fail:
4634 return err;
4635 }
4636 EXPORT_SYMBOL(__page_symlink);
4637
4638 int page_symlink(struct inode *inode, const char *symname, int len)
4639 {
4640 return __page_symlink(inode, symname, len,
4641 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4642 }
4643 EXPORT_SYMBOL(page_symlink);
4644
4645 const struct inode_operations page_symlink_inode_operations = {
4646 .readlink = generic_readlink,
4647 .get_link = page_get_link,
4648 };
4649 EXPORT_SYMBOL(page_symlink_inode_operations);