]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namei.c
locks: helper functions for delegation breaking
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 void final_putname(struct filename *name)
121 {
122 if (name->separate) {
123 __putname(name->name);
124 kfree(name);
125 } else {
126 __putname(name);
127 }
128 }
129
130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
131
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 struct filename *result, *err;
136 int len;
137 long max;
138 char *kname;
139
140 result = audit_reusename(filename);
141 if (result)
142 return result;
143
144 result = __getname();
145 if (unlikely(!result))
146 return ERR_PTR(-ENOMEM);
147
148 /*
149 * First, try to embed the struct filename inside the names_cache
150 * allocation
151 */
152 kname = (char *)result + sizeof(*result);
153 result->name = kname;
154 result->separate = false;
155 max = EMBEDDED_NAME_MAX;
156
157 recopy:
158 len = strncpy_from_user(kname, filename, max);
159 if (unlikely(len < 0)) {
160 err = ERR_PTR(len);
161 goto error;
162 }
163
164 /*
165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 * separate struct filename so we can dedicate the entire
167 * names_cache allocation for the pathname, and re-do the copy from
168 * userland.
169 */
170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 kname = (char *)result;
172
173 result = kzalloc(sizeof(*result), GFP_KERNEL);
174 if (!result) {
175 err = ERR_PTR(-ENOMEM);
176 result = (struct filename *)kname;
177 goto error;
178 }
179 result->name = kname;
180 result->separate = true;
181 max = PATH_MAX;
182 goto recopy;
183 }
184
185 /* The empty path is special. */
186 if (unlikely(!len)) {
187 if (empty)
188 *empty = 1;
189 err = ERR_PTR(-ENOENT);
190 if (!(flags & LOOKUP_EMPTY))
191 goto error;
192 }
193
194 err = ERR_PTR(-ENAMETOOLONG);
195 if (unlikely(len >= PATH_MAX))
196 goto error;
197
198 result->uptr = filename;
199 audit_getname(result);
200 return result;
201
202 error:
203 final_putname(result);
204 return err;
205 }
206
207 struct filename *
208 getname(const char __user * filename)
209 {
210 return getname_flags(filename, 0, NULL);
211 }
212 EXPORT_SYMBOL(getname);
213
214 #ifdef CONFIG_AUDITSYSCALL
215 void putname(struct filename *name)
216 {
217 if (unlikely(!audit_dummy_context()))
218 return audit_putname(name);
219 final_putname(name);
220 }
221 #endif
222
223 static int check_acl(struct inode *inode, int mask)
224 {
225 #ifdef CONFIG_FS_POSIX_ACL
226 struct posix_acl *acl;
227
228 if (mask & MAY_NOT_BLOCK) {
229 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
230 if (!acl)
231 return -EAGAIN;
232 /* no ->get_acl() calls in RCU mode... */
233 if (acl == ACL_NOT_CACHED)
234 return -ECHILD;
235 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
236 }
237
238 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
239
240 /*
241 * A filesystem can force a ACL callback by just never filling the
242 * ACL cache. But normally you'd fill the cache either at inode
243 * instantiation time, or on the first ->get_acl call.
244 *
245 * If the filesystem doesn't have a get_acl() function at all, we'll
246 * just create the negative cache entry.
247 */
248 if (acl == ACL_NOT_CACHED) {
249 if (inode->i_op->get_acl) {
250 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
251 if (IS_ERR(acl))
252 return PTR_ERR(acl);
253 } else {
254 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
255 return -EAGAIN;
256 }
257 }
258
259 if (acl) {
260 int error = posix_acl_permission(inode, acl, mask);
261 posix_acl_release(acl);
262 return error;
263 }
264 #endif
265
266 return -EAGAIN;
267 }
268
269 /*
270 * This does the basic permission checking
271 */
272 static int acl_permission_check(struct inode *inode, int mask)
273 {
274 unsigned int mode = inode->i_mode;
275
276 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
277 mode >>= 6;
278 else {
279 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
280 int error = check_acl(inode, mask);
281 if (error != -EAGAIN)
282 return error;
283 }
284
285 if (in_group_p(inode->i_gid))
286 mode >>= 3;
287 }
288
289 /*
290 * If the DACs are ok we don't need any capability check.
291 */
292 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
293 return 0;
294 return -EACCES;
295 }
296
297 /**
298 * generic_permission - check for access rights on a Posix-like filesystem
299 * @inode: inode to check access rights for
300 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
301 *
302 * Used to check for read/write/execute permissions on a file.
303 * We use "fsuid" for this, letting us set arbitrary permissions
304 * for filesystem access without changing the "normal" uids which
305 * are used for other things.
306 *
307 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
308 * request cannot be satisfied (eg. requires blocking or too much complexity).
309 * It would then be called again in ref-walk mode.
310 */
311 int generic_permission(struct inode *inode, int mask)
312 {
313 int ret;
314
315 /*
316 * Do the basic permission checks.
317 */
318 ret = acl_permission_check(inode, mask);
319 if (ret != -EACCES)
320 return ret;
321
322 if (S_ISDIR(inode->i_mode)) {
323 /* DACs are overridable for directories */
324 if (inode_capable(inode, CAP_DAC_OVERRIDE))
325 return 0;
326 if (!(mask & MAY_WRITE))
327 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
328 return 0;
329 return -EACCES;
330 }
331 /*
332 * Read/write DACs are always overridable.
333 * Executable DACs are overridable when there is
334 * at least one exec bit set.
335 */
336 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
337 if (inode_capable(inode, CAP_DAC_OVERRIDE))
338 return 0;
339
340 /*
341 * Searching includes executable on directories, else just read.
342 */
343 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
344 if (mask == MAY_READ)
345 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
346 return 0;
347
348 return -EACCES;
349 }
350
351 /*
352 * We _really_ want to just do "generic_permission()" without
353 * even looking at the inode->i_op values. So we keep a cache
354 * flag in inode->i_opflags, that says "this has not special
355 * permission function, use the fast case".
356 */
357 static inline int do_inode_permission(struct inode *inode, int mask)
358 {
359 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
360 if (likely(inode->i_op->permission))
361 return inode->i_op->permission(inode, mask);
362
363 /* This gets set once for the inode lifetime */
364 spin_lock(&inode->i_lock);
365 inode->i_opflags |= IOP_FASTPERM;
366 spin_unlock(&inode->i_lock);
367 }
368 return generic_permission(inode, mask);
369 }
370
371 /**
372 * __inode_permission - Check for access rights to a given inode
373 * @inode: Inode to check permission on
374 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
375 *
376 * Check for read/write/execute permissions on an inode.
377 *
378 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
379 *
380 * This does not check for a read-only file system. You probably want
381 * inode_permission().
382 */
383 int __inode_permission(struct inode *inode, int mask)
384 {
385 int retval;
386
387 if (unlikely(mask & MAY_WRITE)) {
388 /*
389 * Nobody gets write access to an immutable file.
390 */
391 if (IS_IMMUTABLE(inode))
392 return -EACCES;
393 }
394
395 retval = do_inode_permission(inode, mask);
396 if (retval)
397 return retval;
398
399 retval = devcgroup_inode_permission(inode, mask);
400 if (retval)
401 return retval;
402
403 return security_inode_permission(inode, mask);
404 }
405
406 /**
407 * sb_permission - Check superblock-level permissions
408 * @sb: Superblock of inode to check permission on
409 * @inode: Inode to check permission on
410 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
411 *
412 * Separate out file-system wide checks from inode-specific permission checks.
413 */
414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
415 {
416 if (unlikely(mask & MAY_WRITE)) {
417 umode_t mode = inode->i_mode;
418
419 /* Nobody gets write access to a read-only fs. */
420 if ((sb->s_flags & MS_RDONLY) &&
421 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
422 return -EROFS;
423 }
424 return 0;
425 }
426
427 /**
428 * inode_permission - Check for access rights to a given inode
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
433 * this, letting us set arbitrary permissions for filesystem access without
434 * changing the "normal" UIDs which are used for other things.
435 *
436 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
437 */
438 int inode_permission(struct inode *inode, int mask)
439 {
440 int retval;
441
442 retval = sb_permission(inode->i_sb, inode, mask);
443 if (retval)
444 return retval;
445 return __inode_permission(inode, mask);
446 }
447
448 /**
449 * path_get - get a reference to a path
450 * @path: path to get the reference to
451 *
452 * Given a path increment the reference count to the dentry and the vfsmount.
453 */
454 void path_get(const struct path *path)
455 {
456 mntget(path->mnt);
457 dget(path->dentry);
458 }
459 EXPORT_SYMBOL(path_get);
460
461 /**
462 * path_put - put a reference to a path
463 * @path: path to put the reference to
464 *
465 * Given a path decrement the reference count to the dentry and the vfsmount.
466 */
467 void path_put(const struct path *path)
468 {
469 dput(path->dentry);
470 mntput(path->mnt);
471 }
472 EXPORT_SYMBOL(path_put);
473
474 /*
475 * Path walking has 2 modes, rcu-walk and ref-walk (see
476 * Documentation/filesystems/path-lookup.txt). In situations when we can't
477 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
478 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
479 * mode. Refcounts are grabbed at the last known good point before rcu-walk
480 * got stuck, so ref-walk may continue from there. If this is not successful
481 * (eg. a seqcount has changed), then failure is returned and it's up to caller
482 * to restart the path walk from the beginning in ref-walk mode.
483 */
484
485 /**
486 * unlazy_walk - try to switch to ref-walk mode.
487 * @nd: nameidata pathwalk data
488 * @dentry: child of nd->path.dentry or NULL
489 * Returns: 0 on success, -ECHILD on failure
490 *
491 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
492 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
493 * @nd or NULL. Must be called from rcu-walk context.
494 */
495 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
496 {
497 struct fs_struct *fs = current->fs;
498 struct dentry *parent = nd->path.dentry;
499
500 BUG_ON(!(nd->flags & LOOKUP_RCU));
501
502 /*
503 * After legitimizing the bastards, terminate_walk()
504 * will do the right thing for non-RCU mode, and all our
505 * subsequent exit cases should rcu_read_unlock()
506 * before returning. Do vfsmount first; if dentry
507 * can't be legitimized, just set nd->path.dentry to NULL
508 * and rely on dput(NULL) being a no-op.
509 */
510 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
511 return -ECHILD;
512 nd->flags &= ~LOOKUP_RCU;
513
514 if (!lockref_get_not_dead(&parent->d_lockref)) {
515 nd->path.dentry = NULL;
516 rcu_read_unlock();
517 return -ECHILD;
518 }
519
520 /*
521 * For a negative lookup, the lookup sequence point is the parents
522 * sequence point, and it only needs to revalidate the parent dentry.
523 *
524 * For a positive lookup, we need to move both the parent and the
525 * dentry from the RCU domain to be properly refcounted. And the
526 * sequence number in the dentry validates *both* dentry counters,
527 * since we checked the sequence number of the parent after we got
528 * the child sequence number. So we know the parent must still
529 * be valid if the child sequence number is still valid.
530 */
531 if (!dentry) {
532 if (read_seqcount_retry(&parent->d_seq, nd->seq))
533 goto out;
534 BUG_ON(nd->inode != parent->d_inode);
535 } else {
536 if (!lockref_get_not_dead(&dentry->d_lockref))
537 goto out;
538 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
539 goto drop_dentry;
540 }
541
542 /*
543 * Sequence counts matched. Now make sure that the root is
544 * still valid and get it if required.
545 */
546 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
547 spin_lock(&fs->lock);
548 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
549 goto unlock_and_drop_dentry;
550 path_get(&nd->root);
551 spin_unlock(&fs->lock);
552 }
553
554 rcu_read_unlock();
555 return 0;
556
557 unlock_and_drop_dentry:
558 spin_unlock(&fs->lock);
559 drop_dentry:
560 rcu_read_unlock();
561 dput(dentry);
562 goto drop_root_mnt;
563 out:
564 rcu_read_unlock();
565 drop_root_mnt:
566 if (!(nd->flags & LOOKUP_ROOT))
567 nd->root.mnt = NULL;
568 return -ECHILD;
569 }
570
571 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
572 {
573 return dentry->d_op->d_revalidate(dentry, flags);
574 }
575
576 /**
577 * complete_walk - successful completion of path walk
578 * @nd: pointer nameidata
579 *
580 * If we had been in RCU mode, drop out of it and legitimize nd->path.
581 * Revalidate the final result, unless we'd already done that during
582 * the path walk or the filesystem doesn't ask for it. Return 0 on
583 * success, -error on failure. In case of failure caller does not
584 * need to drop nd->path.
585 */
586 static int complete_walk(struct nameidata *nd)
587 {
588 struct dentry *dentry = nd->path.dentry;
589 int status;
590
591 if (nd->flags & LOOKUP_RCU) {
592 nd->flags &= ~LOOKUP_RCU;
593 if (!(nd->flags & LOOKUP_ROOT))
594 nd->root.mnt = NULL;
595
596 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
597 rcu_read_unlock();
598 return -ECHILD;
599 }
600 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
601 rcu_read_unlock();
602 mntput(nd->path.mnt);
603 return -ECHILD;
604 }
605 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
606 rcu_read_unlock();
607 dput(dentry);
608 mntput(nd->path.mnt);
609 return -ECHILD;
610 }
611 rcu_read_unlock();
612 }
613
614 if (likely(!(nd->flags & LOOKUP_JUMPED)))
615 return 0;
616
617 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
618 return 0;
619
620 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
621 if (status > 0)
622 return 0;
623
624 if (!status)
625 status = -ESTALE;
626
627 path_put(&nd->path);
628 return status;
629 }
630
631 static __always_inline void set_root(struct nameidata *nd)
632 {
633 if (!nd->root.mnt)
634 get_fs_root(current->fs, &nd->root);
635 }
636
637 static int link_path_walk(const char *, struct nameidata *);
638
639 static __always_inline void set_root_rcu(struct nameidata *nd)
640 {
641 if (!nd->root.mnt) {
642 struct fs_struct *fs = current->fs;
643 unsigned seq;
644
645 do {
646 seq = read_seqcount_begin(&fs->seq);
647 nd->root = fs->root;
648 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
649 } while (read_seqcount_retry(&fs->seq, seq));
650 }
651 }
652
653 static void path_put_conditional(struct path *path, struct nameidata *nd)
654 {
655 dput(path->dentry);
656 if (path->mnt != nd->path.mnt)
657 mntput(path->mnt);
658 }
659
660 static inline void path_to_nameidata(const struct path *path,
661 struct nameidata *nd)
662 {
663 if (!(nd->flags & LOOKUP_RCU)) {
664 dput(nd->path.dentry);
665 if (nd->path.mnt != path->mnt)
666 mntput(nd->path.mnt);
667 }
668 nd->path.mnt = path->mnt;
669 nd->path.dentry = path->dentry;
670 }
671
672 /*
673 * Helper to directly jump to a known parsed path from ->follow_link,
674 * caller must have taken a reference to path beforehand.
675 */
676 void nd_jump_link(struct nameidata *nd, struct path *path)
677 {
678 path_put(&nd->path);
679
680 nd->path = *path;
681 nd->inode = nd->path.dentry->d_inode;
682 nd->flags |= LOOKUP_JUMPED;
683 }
684
685 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
686 {
687 struct inode *inode = link->dentry->d_inode;
688 if (inode->i_op->put_link)
689 inode->i_op->put_link(link->dentry, nd, cookie);
690 path_put(link);
691 }
692
693 int sysctl_protected_symlinks __read_mostly = 0;
694 int sysctl_protected_hardlinks __read_mostly = 0;
695
696 /**
697 * may_follow_link - Check symlink following for unsafe situations
698 * @link: The path of the symlink
699 * @nd: nameidata pathwalk data
700 *
701 * In the case of the sysctl_protected_symlinks sysctl being enabled,
702 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
703 * in a sticky world-writable directory. This is to protect privileged
704 * processes from failing races against path names that may change out
705 * from under them by way of other users creating malicious symlinks.
706 * It will permit symlinks to be followed only when outside a sticky
707 * world-writable directory, or when the uid of the symlink and follower
708 * match, or when the directory owner matches the symlink's owner.
709 *
710 * Returns 0 if following the symlink is allowed, -ve on error.
711 */
712 static inline int may_follow_link(struct path *link, struct nameidata *nd)
713 {
714 const struct inode *inode;
715 const struct inode *parent;
716
717 if (!sysctl_protected_symlinks)
718 return 0;
719
720 /* Allowed if owner and follower match. */
721 inode = link->dentry->d_inode;
722 if (uid_eq(current_cred()->fsuid, inode->i_uid))
723 return 0;
724
725 /* Allowed if parent directory not sticky and world-writable. */
726 parent = nd->path.dentry->d_inode;
727 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
728 return 0;
729
730 /* Allowed if parent directory and link owner match. */
731 if (uid_eq(parent->i_uid, inode->i_uid))
732 return 0;
733
734 audit_log_link_denied("follow_link", link);
735 path_put_conditional(link, nd);
736 path_put(&nd->path);
737 return -EACCES;
738 }
739
740 /**
741 * safe_hardlink_source - Check for safe hardlink conditions
742 * @inode: the source inode to hardlink from
743 *
744 * Return false if at least one of the following conditions:
745 * - inode is not a regular file
746 * - inode is setuid
747 * - inode is setgid and group-exec
748 * - access failure for read and write
749 *
750 * Otherwise returns true.
751 */
752 static bool safe_hardlink_source(struct inode *inode)
753 {
754 umode_t mode = inode->i_mode;
755
756 /* Special files should not get pinned to the filesystem. */
757 if (!S_ISREG(mode))
758 return false;
759
760 /* Setuid files should not get pinned to the filesystem. */
761 if (mode & S_ISUID)
762 return false;
763
764 /* Executable setgid files should not get pinned to the filesystem. */
765 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
766 return false;
767
768 /* Hardlinking to unreadable or unwritable sources is dangerous. */
769 if (inode_permission(inode, MAY_READ | MAY_WRITE))
770 return false;
771
772 return true;
773 }
774
775 /**
776 * may_linkat - Check permissions for creating a hardlink
777 * @link: the source to hardlink from
778 *
779 * Block hardlink when all of:
780 * - sysctl_protected_hardlinks enabled
781 * - fsuid does not match inode
782 * - hardlink source is unsafe (see safe_hardlink_source() above)
783 * - not CAP_FOWNER
784 *
785 * Returns 0 if successful, -ve on error.
786 */
787 static int may_linkat(struct path *link)
788 {
789 const struct cred *cred;
790 struct inode *inode;
791
792 if (!sysctl_protected_hardlinks)
793 return 0;
794
795 cred = current_cred();
796 inode = link->dentry->d_inode;
797
798 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
799 * otherwise, it must be a safe source.
800 */
801 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
802 capable(CAP_FOWNER))
803 return 0;
804
805 audit_log_link_denied("linkat", link);
806 return -EPERM;
807 }
808
809 static __always_inline int
810 follow_link(struct path *link, struct nameidata *nd, void **p)
811 {
812 struct dentry *dentry = link->dentry;
813 int error;
814 char *s;
815
816 BUG_ON(nd->flags & LOOKUP_RCU);
817
818 if (link->mnt == nd->path.mnt)
819 mntget(link->mnt);
820
821 error = -ELOOP;
822 if (unlikely(current->total_link_count >= 40))
823 goto out_put_nd_path;
824
825 cond_resched();
826 current->total_link_count++;
827
828 touch_atime(link);
829 nd_set_link(nd, NULL);
830
831 error = security_inode_follow_link(link->dentry, nd);
832 if (error)
833 goto out_put_nd_path;
834
835 nd->last_type = LAST_BIND;
836 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
837 error = PTR_ERR(*p);
838 if (IS_ERR(*p))
839 goto out_put_nd_path;
840
841 error = 0;
842 s = nd_get_link(nd);
843 if (s) {
844 if (unlikely(IS_ERR(s))) {
845 path_put(&nd->path);
846 put_link(nd, link, *p);
847 return PTR_ERR(s);
848 }
849 if (*s == '/') {
850 set_root(nd);
851 path_put(&nd->path);
852 nd->path = nd->root;
853 path_get(&nd->root);
854 nd->flags |= LOOKUP_JUMPED;
855 }
856 nd->inode = nd->path.dentry->d_inode;
857 error = link_path_walk(s, nd);
858 if (unlikely(error))
859 put_link(nd, link, *p);
860 }
861
862 return error;
863
864 out_put_nd_path:
865 *p = NULL;
866 path_put(&nd->path);
867 path_put(link);
868 return error;
869 }
870
871 static int follow_up_rcu(struct path *path)
872 {
873 struct mount *mnt = real_mount(path->mnt);
874 struct mount *parent;
875 struct dentry *mountpoint;
876
877 parent = mnt->mnt_parent;
878 if (&parent->mnt == path->mnt)
879 return 0;
880 mountpoint = mnt->mnt_mountpoint;
881 path->dentry = mountpoint;
882 path->mnt = &parent->mnt;
883 return 1;
884 }
885
886 /*
887 * follow_up - Find the mountpoint of path's vfsmount
888 *
889 * Given a path, find the mountpoint of its source file system.
890 * Replace @path with the path of the mountpoint in the parent mount.
891 * Up is towards /.
892 *
893 * Return 1 if we went up a level and 0 if we were already at the
894 * root.
895 */
896 int follow_up(struct path *path)
897 {
898 struct mount *mnt = real_mount(path->mnt);
899 struct mount *parent;
900 struct dentry *mountpoint;
901
902 read_seqlock_excl(&mount_lock);
903 parent = mnt->mnt_parent;
904 if (parent == mnt) {
905 read_sequnlock_excl(&mount_lock);
906 return 0;
907 }
908 mntget(&parent->mnt);
909 mountpoint = dget(mnt->mnt_mountpoint);
910 read_sequnlock_excl(&mount_lock);
911 dput(path->dentry);
912 path->dentry = mountpoint;
913 mntput(path->mnt);
914 path->mnt = &parent->mnt;
915 return 1;
916 }
917
918 /*
919 * Perform an automount
920 * - return -EISDIR to tell follow_managed() to stop and return the path we
921 * were called with.
922 */
923 static int follow_automount(struct path *path, unsigned flags,
924 bool *need_mntput)
925 {
926 struct vfsmount *mnt;
927 int err;
928
929 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
930 return -EREMOTE;
931
932 /* We don't want to mount if someone's just doing a stat -
933 * unless they're stat'ing a directory and appended a '/' to
934 * the name.
935 *
936 * We do, however, want to mount if someone wants to open or
937 * create a file of any type under the mountpoint, wants to
938 * traverse through the mountpoint or wants to open the
939 * mounted directory. Also, autofs may mark negative dentries
940 * as being automount points. These will need the attentions
941 * of the daemon to instantiate them before they can be used.
942 */
943 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
944 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
945 path->dentry->d_inode)
946 return -EISDIR;
947
948 current->total_link_count++;
949 if (current->total_link_count >= 40)
950 return -ELOOP;
951
952 mnt = path->dentry->d_op->d_automount(path);
953 if (IS_ERR(mnt)) {
954 /*
955 * The filesystem is allowed to return -EISDIR here to indicate
956 * it doesn't want to automount. For instance, autofs would do
957 * this so that its userspace daemon can mount on this dentry.
958 *
959 * However, we can only permit this if it's a terminal point in
960 * the path being looked up; if it wasn't then the remainder of
961 * the path is inaccessible and we should say so.
962 */
963 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
964 return -EREMOTE;
965 return PTR_ERR(mnt);
966 }
967
968 if (!mnt) /* mount collision */
969 return 0;
970
971 if (!*need_mntput) {
972 /* lock_mount() may release path->mnt on error */
973 mntget(path->mnt);
974 *need_mntput = true;
975 }
976 err = finish_automount(mnt, path);
977
978 switch (err) {
979 case -EBUSY:
980 /* Someone else made a mount here whilst we were busy */
981 return 0;
982 case 0:
983 path_put(path);
984 path->mnt = mnt;
985 path->dentry = dget(mnt->mnt_root);
986 return 0;
987 default:
988 return err;
989 }
990
991 }
992
993 /*
994 * Handle a dentry that is managed in some way.
995 * - Flagged for transit management (autofs)
996 * - Flagged as mountpoint
997 * - Flagged as automount point
998 *
999 * This may only be called in refwalk mode.
1000 *
1001 * Serialization is taken care of in namespace.c
1002 */
1003 static int follow_managed(struct path *path, unsigned flags)
1004 {
1005 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1006 unsigned managed;
1007 bool need_mntput = false;
1008 int ret = 0;
1009
1010 /* Given that we're not holding a lock here, we retain the value in a
1011 * local variable for each dentry as we look at it so that we don't see
1012 * the components of that value change under us */
1013 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1014 managed &= DCACHE_MANAGED_DENTRY,
1015 unlikely(managed != 0)) {
1016 /* Allow the filesystem to manage the transit without i_mutex
1017 * being held. */
1018 if (managed & DCACHE_MANAGE_TRANSIT) {
1019 BUG_ON(!path->dentry->d_op);
1020 BUG_ON(!path->dentry->d_op->d_manage);
1021 ret = path->dentry->d_op->d_manage(path->dentry, false);
1022 if (ret < 0)
1023 break;
1024 }
1025
1026 /* Transit to a mounted filesystem. */
1027 if (managed & DCACHE_MOUNTED) {
1028 struct vfsmount *mounted = lookup_mnt(path);
1029 if (mounted) {
1030 dput(path->dentry);
1031 if (need_mntput)
1032 mntput(path->mnt);
1033 path->mnt = mounted;
1034 path->dentry = dget(mounted->mnt_root);
1035 need_mntput = true;
1036 continue;
1037 }
1038
1039 /* Something is mounted on this dentry in another
1040 * namespace and/or whatever was mounted there in this
1041 * namespace got unmounted before lookup_mnt() could
1042 * get it */
1043 }
1044
1045 /* Handle an automount point */
1046 if (managed & DCACHE_NEED_AUTOMOUNT) {
1047 ret = follow_automount(path, flags, &need_mntput);
1048 if (ret < 0)
1049 break;
1050 continue;
1051 }
1052
1053 /* We didn't change the current path point */
1054 break;
1055 }
1056
1057 if (need_mntput && path->mnt == mnt)
1058 mntput(path->mnt);
1059 if (ret == -EISDIR)
1060 ret = 0;
1061 return ret < 0 ? ret : need_mntput;
1062 }
1063
1064 int follow_down_one(struct path *path)
1065 {
1066 struct vfsmount *mounted;
1067
1068 mounted = lookup_mnt(path);
1069 if (mounted) {
1070 dput(path->dentry);
1071 mntput(path->mnt);
1072 path->mnt = mounted;
1073 path->dentry = dget(mounted->mnt_root);
1074 return 1;
1075 }
1076 return 0;
1077 }
1078
1079 static inline bool managed_dentry_might_block(struct dentry *dentry)
1080 {
1081 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1082 dentry->d_op->d_manage(dentry, true) < 0);
1083 }
1084
1085 /*
1086 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1087 * we meet a managed dentry that would need blocking.
1088 */
1089 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1090 struct inode **inode)
1091 {
1092 for (;;) {
1093 struct mount *mounted;
1094 /*
1095 * Don't forget we might have a non-mountpoint managed dentry
1096 * that wants to block transit.
1097 */
1098 if (unlikely(managed_dentry_might_block(path->dentry)))
1099 return false;
1100
1101 if (!d_mountpoint(path->dentry))
1102 break;
1103
1104 mounted = __lookup_mnt(path->mnt, path->dentry);
1105 if (!mounted)
1106 break;
1107 path->mnt = &mounted->mnt;
1108 path->dentry = mounted->mnt.mnt_root;
1109 nd->flags |= LOOKUP_JUMPED;
1110 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1111 /*
1112 * Update the inode too. We don't need to re-check the
1113 * dentry sequence number here after this d_inode read,
1114 * because a mount-point is always pinned.
1115 */
1116 *inode = path->dentry->d_inode;
1117 }
1118 return true;
1119 }
1120
1121 static void follow_mount_rcu(struct nameidata *nd)
1122 {
1123 while (d_mountpoint(nd->path.dentry)) {
1124 struct mount *mounted;
1125 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1126 if (!mounted)
1127 break;
1128 nd->path.mnt = &mounted->mnt;
1129 nd->path.dentry = mounted->mnt.mnt_root;
1130 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1131 }
1132 }
1133
1134 static int follow_dotdot_rcu(struct nameidata *nd)
1135 {
1136 set_root_rcu(nd);
1137
1138 while (1) {
1139 if (nd->path.dentry == nd->root.dentry &&
1140 nd->path.mnt == nd->root.mnt) {
1141 break;
1142 }
1143 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1144 struct dentry *old = nd->path.dentry;
1145 struct dentry *parent = old->d_parent;
1146 unsigned seq;
1147
1148 seq = read_seqcount_begin(&parent->d_seq);
1149 if (read_seqcount_retry(&old->d_seq, nd->seq))
1150 goto failed;
1151 nd->path.dentry = parent;
1152 nd->seq = seq;
1153 break;
1154 }
1155 if (!follow_up_rcu(&nd->path))
1156 break;
1157 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1158 }
1159 follow_mount_rcu(nd);
1160 nd->inode = nd->path.dentry->d_inode;
1161 return 0;
1162
1163 failed:
1164 nd->flags &= ~LOOKUP_RCU;
1165 if (!(nd->flags & LOOKUP_ROOT))
1166 nd->root.mnt = NULL;
1167 rcu_read_unlock();
1168 return -ECHILD;
1169 }
1170
1171 /*
1172 * Follow down to the covering mount currently visible to userspace. At each
1173 * point, the filesystem owning that dentry may be queried as to whether the
1174 * caller is permitted to proceed or not.
1175 */
1176 int follow_down(struct path *path)
1177 {
1178 unsigned managed;
1179 int ret;
1180
1181 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1182 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1183 /* Allow the filesystem to manage the transit without i_mutex
1184 * being held.
1185 *
1186 * We indicate to the filesystem if someone is trying to mount
1187 * something here. This gives autofs the chance to deny anyone
1188 * other than its daemon the right to mount on its
1189 * superstructure.
1190 *
1191 * The filesystem may sleep at this point.
1192 */
1193 if (managed & DCACHE_MANAGE_TRANSIT) {
1194 BUG_ON(!path->dentry->d_op);
1195 BUG_ON(!path->dentry->d_op->d_manage);
1196 ret = path->dentry->d_op->d_manage(
1197 path->dentry, false);
1198 if (ret < 0)
1199 return ret == -EISDIR ? 0 : ret;
1200 }
1201
1202 /* Transit to a mounted filesystem. */
1203 if (managed & DCACHE_MOUNTED) {
1204 struct vfsmount *mounted = lookup_mnt(path);
1205 if (!mounted)
1206 break;
1207 dput(path->dentry);
1208 mntput(path->mnt);
1209 path->mnt = mounted;
1210 path->dentry = dget(mounted->mnt_root);
1211 continue;
1212 }
1213
1214 /* Don't handle automount points here */
1215 break;
1216 }
1217 return 0;
1218 }
1219
1220 /*
1221 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1222 */
1223 static void follow_mount(struct path *path)
1224 {
1225 while (d_mountpoint(path->dentry)) {
1226 struct vfsmount *mounted = lookup_mnt(path);
1227 if (!mounted)
1228 break;
1229 dput(path->dentry);
1230 mntput(path->mnt);
1231 path->mnt = mounted;
1232 path->dentry = dget(mounted->mnt_root);
1233 }
1234 }
1235
1236 static void follow_dotdot(struct nameidata *nd)
1237 {
1238 set_root(nd);
1239
1240 while(1) {
1241 struct dentry *old = nd->path.dentry;
1242
1243 if (nd->path.dentry == nd->root.dentry &&
1244 nd->path.mnt == nd->root.mnt) {
1245 break;
1246 }
1247 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1248 /* rare case of legitimate dget_parent()... */
1249 nd->path.dentry = dget_parent(nd->path.dentry);
1250 dput(old);
1251 break;
1252 }
1253 if (!follow_up(&nd->path))
1254 break;
1255 }
1256 follow_mount(&nd->path);
1257 nd->inode = nd->path.dentry->d_inode;
1258 }
1259
1260 /*
1261 * This looks up the name in dcache, possibly revalidates the old dentry and
1262 * allocates a new one if not found or not valid. In the need_lookup argument
1263 * returns whether i_op->lookup is necessary.
1264 *
1265 * dir->d_inode->i_mutex must be held
1266 */
1267 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1268 unsigned int flags, bool *need_lookup)
1269 {
1270 struct dentry *dentry;
1271 int error;
1272
1273 *need_lookup = false;
1274 dentry = d_lookup(dir, name);
1275 if (dentry) {
1276 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1277 error = d_revalidate(dentry, flags);
1278 if (unlikely(error <= 0)) {
1279 if (error < 0) {
1280 dput(dentry);
1281 return ERR_PTR(error);
1282 } else if (!d_invalidate(dentry)) {
1283 dput(dentry);
1284 dentry = NULL;
1285 }
1286 }
1287 }
1288 }
1289
1290 if (!dentry) {
1291 dentry = d_alloc(dir, name);
1292 if (unlikely(!dentry))
1293 return ERR_PTR(-ENOMEM);
1294
1295 *need_lookup = true;
1296 }
1297 return dentry;
1298 }
1299
1300 /*
1301 * Call i_op->lookup on the dentry. The dentry must be negative and
1302 * unhashed.
1303 *
1304 * dir->d_inode->i_mutex must be held
1305 */
1306 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1307 unsigned int flags)
1308 {
1309 struct dentry *old;
1310
1311 /* Don't create child dentry for a dead directory. */
1312 if (unlikely(IS_DEADDIR(dir))) {
1313 dput(dentry);
1314 return ERR_PTR(-ENOENT);
1315 }
1316
1317 old = dir->i_op->lookup(dir, dentry, flags);
1318 if (unlikely(old)) {
1319 dput(dentry);
1320 dentry = old;
1321 }
1322 return dentry;
1323 }
1324
1325 static struct dentry *__lookup_hash(struct qstr *name,
1326 struct dentry *base, unsigned int flags)
1327 {
1328 bool need_lookup;
1329 struct dentry *dentry;
1330
1331 dentry = lookup_dcache(name, base, flags, &need_lookup);
1332 if (!need_lookup)
1333 return dentry;
1334
1335 return lookup_real(base->d_inode, dentry, flags);
1336 }
1337
1338 /*
1339 * It's more convoluted than I'd like it to be, but... it's still fairly
1340 * small and for now I'd prefer to have fast path as straight as possible.
1341 * It _is_ time-critical.
1342 */
1343 static int lookup_fast(struct nameidata *nd,
1344 struct path *path, struct inode **inode)
1345 {
1346 struct vfsmount *mnt = nd->path.mnt;
1347 struct dentry *dentry, *parent = nd->path.dentry;
1348 int need_reval = 1;
1349 int status = 1;
1350 int err;
1351
1352 /*
1353 * Rename seqlock is not required here because in the off chance
1354 * of a false negative due to a concurrent rename, we're going to
1355 * do the non-racy lookup, below.
1356 */
1357 if (nd->flags & LOOKUP_RCU) {
1358 unsigned seq;
1359 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1360 if (!dentry)
1361 goto unlazy;
1362
1363 /*
1364 * This sequence count validates that the inode matches
1365 * the dentry name information from lookup.
1366 */
1367 *inode = dentry->d_inode;
1368 if (read_seqcount_retry(&dentry->d_seq, seq))
1369 return -ECHILD;
1370
1371 /*
1372 * This sequence count validates that the parent had no
1373 * changes while we did the lookup of the dentry above.
1374 *
1375 * The memory barrier in read_seqcount_begin of child is
1376 * enough, we can use __read_seqcount_retry here.
1377 */
1378 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1379 return -ECHILD;
1380 nd->seq = seq;
1381
1382 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1383 status = d_revalidate(dentry, nd->flags);
1384 if (unlikely(status <= 0)) {
1385 if (status != -ECHILD)
1386 need_reval = 0;
1387 goto unlazy;
1388 }
1389 }
1390 path->mnt = mnt;
1391 path->dentry = dentry;
1392 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1393 goto unlazy;
1394 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1395 goto unlazy;
1396 return 0;
1397 unlazy:
1398 if (unlazy_walk(nd, dentry))
1399 return -ECHILD;
1400 } else {
1401 dentry = __d_lookup(parent, &nd->last);
1402 }
1403
1404 if (unlikely(!dentry))
1405 goto need_lookup;
1406
1407 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1408 status = d_revalidate(dentry, nd->flags);
1409 if (unlikely(status <= 0)) {
1410 if (status < 0) {
1411 dput(dentry);
1412 return status;
1413 }
1414 if (!d_invalidate(dentry)) {
1415 dput(dentry);
1416 goto need_lookup;
1417 }
1418 }
1419
1420 path->mnt = mnt;
1421 path->dentry = dentry;
1422 err = follow_managed(path, nd->flags);
1423 if (unlikely(err < 0)) {
1424 path_put_conditional(path, nd);
1425 return err;
1426 }
1427 if (err)
1428 nd->flags |= LOOKUP_JUMPED;
1429 *inode = path->dentry->d_inode;
1430 return 0;
1431
1432 need_lookup:
1433 return 1;
1434 }
1435
1436 /* Fast lookup failed, do it the slow way */
1437 static int lookup_slow(struct nameidata *nd, struct path *path)
1438 {
1439 struct dentry *dentry, *parent;
1440 int err;
1441
1442 parent = nd->path.dentry;
1443 BUG_ON(nd->inode != parent->d_inode);
1444
1445 mutex_lock(&parent->d_inode->i_mutex);
1446 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1447 mutex_unlock(&parent->d_inode->i_mutex);
1448 if (IS_ERR(dentry))
1449 return PTR_ERR(dentry);
1450 path->mnt = nd->path.mnt;
1451 path->dentry = dentry;
1452 err = follow_managed(path, nd->flags);
1453 if (unlikely(err < 0)) {
1454 path_put_conditional(path, nd);
1455 return err;
1456 }
1457 if (err)
1458 nd->flags |= LOOKUP_JUMPED;
1459 return 0;
1460 }
1461
1462 static inline int may_lookup(struct nameidata *nd)
1463 {
1464 if (nd->flags & LOOKUP_RCU) {
1465 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1466 if (err != -ECHILD)
1467 return err;
1468 if (unlazy_walk(nd, NULL))
1469 return -ECHILD;
1470 }
1471 return inode_permission(nd->inode, MAY_EXEC);
1472 }
1473
1474 static inline int handle_dots(struct nameidata *nd, int type)
1475 {
1476 if (type == LAST_DOTDOT) {
1477 if (nd->flags & LOOKUP_RCU) {
1478 if (follow_dotdot_rcu(nd))
1479 return -ECHILD;
1480 } else
1481 follow_dotdot(nd);
1482 }
1483 return 0;
1484 }
1485
1486 static void terminate_walk(struct nameidata *nd)
1487 {
1488 if (!(nd->flags & LOOKUP_RCU)) {
1489 path_put(&nd->path);
1490 } else {
1491 nd->flags &= ~LOOKUP_RCU;
1492 if (!(nd->flags & LOOKUP_ROOT))
1493 nd->root.mnt = NULL;
1494 rcu_read_unlock();
1495 }
1496 }
1497
1498 /*
1499 * Do we need to follow links? We _really_ want to be able
1500 * to do this check without having to look at inode->i_op,
1501 * so we keep a cache of "no, this doesn't need follow_link"
1502 * for the common case.
1503 */
1504 static inline int should_follow_link(struct dentry *dentry, int follow)
1505 {
1506 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1507 }
1508
1509 static inline int walk_component(struct nameidata *nd, struct path *path,
1510 int follow)
1511 {
1512 struct inode *inode;
1513 int err;
1514 /*
1515 * "." and ".." are special - ".." especially so because it has
1516 * to be able to know about the current root directory and
1517 * parent relationships.
1518 */
1519 if (unlikely(nd->last_type != LAST_NORM))
1520 return handle_dots(nd, nd->last_type);
1521 err = lookup_fast(nd, path, &inode);
1522 if (unlikely(err)) {
1523 if (err < 0)
1524 goto out_err;
1525
1526 err = lookup_slow(nd, path);
1527 if (err < 0)
1528 goto out_err;
1529
1530 inode = path->dentry->d_inode;
1531 }
1532 err = -ENOENT;
1533 if (!inode)
1534 goto out_path_put;
1535
1536 if (should_follow_link(path->dentry, follow)) {
1537 if (nd->flags & LOOKUP_RCU) {
1538 if (unlikely(unlazy_walk(nd, path->dentry))) {
1539 err = -ECHILD;
1540 goto out_err;
1541 }
1542 }
1543 BUG_ON(inode != path->dentry->d_inode);
1544 return 1;
1545 }
1546 path_to_nameidata(path, nd);
1547 nd->inode = inode;
1548 return 0;
1549
1550 out_path_put:
1551 path_to_nameidata(path, nd);
1552 out_err:
1553 terminate_walk(nd);
1554 return err;
1555 }
1556
1557 /*
1558 * This limits recursive symlink follows to 8, while
1559 * limiting consecutive symlinks to 40.
1560 *
1561 * Without that kind of total limit, nasty chains of consecutive
1562 * symlinks can cause almost arbitrarily long lookups.
1563 */
1564 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1565 {
1566 int res;
1567
1568 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1569 path_put_conditional(path, nd);
1570 path_put(&nd->path);
1571 return -ELOOP;
1572 }
1573 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1574
1575 nd->depth++;
1576 current->link_count++;
1577
1578 do {
1579 struct path link = *path;
1580 void *cookie;
1581
1582 res = follow_link(&link, nd, &cookie);
1583 if (res)
1584 break;
1585 res = walk_component(nd, path, LOOKUP_FOLLOW);
1586 put_link(nd, &link, cookie);
1587 } while (res > 0);
1588
1589 current->link_count--;
1590 nd->depth--;
1591 return res;
1592 }
1593
1594 /*
1595 * We can do the critical dentry name comparison and hashing
1596 * operations one word at a time, but we are limited to:
1597 *
1598 * - Architectures with fast unaligned word accesses. We could
1599 * do a "get_unaligned()" if this helps and is sufficiently
1600 * fast.
1601 *
1602 * - Little-endian machines (so that we can generate the mask
1603 * of low bytes efficiently). Again, we *could* do a byte
1604 * swapping load on big-endian architectures if that is not
1605 * expensive enough to make the optimization worthless.
1606 *
1607 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1608 * do not trap on the (extremely unlikely) case of a page
1609 * crossing operation.
1610 *
1611 * - Furthermore, we need an efficient 64-bit compile for the
1612 * 64-bit case in order to generate the "number of bytes in
1613 * the final mask". Again, that could be replaced with a
1614 * efficient population count instruction or similar.
1615 */
1616 #ifdef CONFIG_DCACHE_WORD_ACCESS
1617
1618 #include <asm/word-at-a-time.h>
1619
1620 #ifdef CONFIG_64BIT
1621
1622 static inline unsigned int fold_hash(unsigned long hash)
1623 {
1624 hash += hash >> (8*sizeof(int));
1625 return hash;
1626 }
1627
1628 #else /* 32-bit case */
1629
1630 #define fold_hash(x) (x)
1631
1632 #endif
1633
1634 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1635 {
1636 unsigned long a, mask;
1637 unsigned long hash = 0;
1638
1639 for (;;) {
1640 a = load_unaligned_zeropad(name);
1641 if (len < sizeof(unsigned long))
1642 break;
1643 hash += a;
1644 hash *= 9;
1645 name += sizeof(unsigned long);
1646 len -= sizeof(unsigned long);
1647 if (!len)
1648 goto done;
1649 }
1650 mask = ~(~0ul << len*8);
1651 hash += mask & a;
1652 done:
1653 return fold_hash(hash);
1654 }
1655 EXPORT_SYMBOL(full_name_hash);
1656
1657 /*
1658 * Calculate the length and hash of the path component, and
1659 * return the length of the component;
1660 */
1661 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1662 {
1663 unsigned long a, b, adata, bdata, mask, hash, len;
1664 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1665
1666 hash = a = 0;
1667 len = -sizeof(unsigned long);
1668 do {
1669 hash = (hash + a) * 9;
1670 len += sizeof(unsigned long);
1671 a = load_unaligned_zeropad(name+len);
1672 b = a ^ REPEAT_BYTE('/');
1673 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1674
1675 adata = prep_zero_mask(a, adata, &constants);
1676 bdata = prep_zero_mask(b, bdata, &constants);
1677
1678 mask = create_zero_mask(adata | bdata);
1679
1680 hash += a & zero_bytemask(mask);
1681 *hashp = fold_hash(hash);
1682
1683 return len + find_zero(mask);
1684 }
1685
1686 #else
1687
1688 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1689 {
1690 unsigned long hash = init_name_hash();
1691 while (len--)
1692 hash = partial_name_hash(*name++, hash);
1693 return end_name_hash(hash);
1694 }
1695 EXPORT_SYMBOL(full_name_hash);
1696
1697 /*
1698 * We know there's a real path component here of at least
1699 * one character.
1700 */
1701 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1702 {
1703 unsigned long hash = init_name_hash();
1704 unsigned long len = 0, c;
1705
1706 c = (unsigned char)*name;
1707 do {
1708 len++;
1709 hash = partial_name_hash(c, hash);
1710 c = (unsigned char)name[len];
1711 } while (c && c != '/');
1712 *hashp = end_name_hash(hash);
1713 return len;
1714 }
1715
1716 #endif
1717
1718 /*
1719 * Name resolution.
1720 * This is the basic name resolution function, turning a pathname into
1721 * the final dentry. We expect 'base' to be positive and a directory.
1722 *
1723 * Returns 0 and nd will have valid dentry and mnt on success.
1724 * Returns error and drops reference to input namei data on failure.
1725 */
1726 static int link_path_walk(const char *name, struct nameidata *nd)
1727 {
1728 struct path next;
1729 int err;
1730
1731 while (*name=='/')
1732 name++;
1733 if (!*name)
1734 return 0;
1735
1736 /* At this point we know we have a real path component. */
1737 for(;;) {
1738 struct qstr this;
1739 long len;
1740 int type;
1741
1742 err = may_lookup(nd);
1743 if (err)
1744 break;
1745
1746 len = hash_name(name, &this.hash);
1747 this.name = name;
1748 this.len = len;
1749
1750 type = LAST_NORM;
1751 if (name[0] == '.') switch (len) {
1752 case 2:
1753 if (name[1] == '.') {
1754 type = LAST_DOTDOT;
1755 nd->flags |= LOOKUP_JUMPED;
1756 }
1757 break;
1758 case 1:
1759 type = LAST_DOT;
1760 }
1761 if (likely(type == LAST_NORM)) {
1762 struct dentry *parent = nd->path.dentry;
1763 nd->flags &= ~LOOKUP_JUMPED;
1764 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1765 err = parent->d_op->d_hash(parent, &this);
1766 if (err < 0)
1767 break;
1768 }
1769 }
1770
1771 nd->last = this;
1772 nd->last_type = type;
1773
1774 if (!name[len])
1775 return 0;
1776 /*
1777 * If it wasn't NUL, we know it was '/'. Skip that
1778 * slash, and continue until no more slashes.
1779 */
1780 do {
1781 len++;
1782 } while (unlikely(name[len] == '/'));
1783 if (!name[len])
1784 return 0;
1785
1786 name += len;
1787
1788 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1789 if (err < 0)
1790 return err;
1791
1792 if (err) {
1793 err = nested_symlink(&next, nd);
1794 if (err)
1795 return err;
1796 }
1797 if (!d_is_directory(nd->path.dentry)) {
1798 err = -ENOTDIR;
1799 break;
1800 }
1801 }
1802 terminate_walk(nd);
1803 return err;
1804 }
1805
1806 static int path_init(int dfd, const char *name, unsigned int flags,
1807 struct nameidata *nd, struct file **fp)
1808 {
1809 int retval = 0;
1810
1811 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1812 nd->flags = flags | LOOKUP_JUMPED;
1813 nd->depth = 0;
1814 if (flags & LOOKUP_ROOT) {
1815 struct dentry *root = nd->root.dentry;
1816 struct inode *inode = root->d_inode;
1817 if (*name) {
1818 if (!d_is_directory(root))
1819 return -ENOTDIR;
1820 retval = inode_permission(inode, MAY_EXEC);
1821 if (retval)
1822 return retval;
1823 }
1824 nd->path = nd->root;
1825 nd->inode = inode;
1826 if (flags & LOOKUP_RCU) {
1827 rcu_read_lock();
1828 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1829 nd->m_seq = read_seqbegin(&mount_lock);
1830 } else {
1831 path_get(&nd->path);
1832 }
1833 return 0;
1834 }
1835
1836 nd->root.mnt = NULL;
1837
1838 nd->m_seq = read_seqbegin(&mount_lock);
1839 if (*name=='/') {
1840 if (flags & LOOKUP_RCU) {
1841 rcu_read_lock();
1842 set_root_rcu(nd);
1843 } else {
1844 set_root(nd);
1845 path_get(&nd->root);
1846 }
1847 nd->path = nd->root;
1848 } else if (dfd == AT_FDCWD) {
1849 if (flags & LOOKUP_RCU) {
1850 struct fs_struct *fs = current->fs;
1851 unsigned seq;
1852
1853 rcu_read_lock();
1854
1855 do {
1856 seq = read_seqcount_begin(&fs->seq);
1857 nd->path = fs->pwd;
1858 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1859 } while (read_seqcount_retry(&fs->seq, seq));
1860 } else {
1861 get_fs_pwd(current->fs, &nd->path);
1862 }
1863 } else {
1864 /* Caller must check execute permissions on the starting path component */
1865 struct fd f = fdget_raw(dfd);
1866 struct dentry *dentry;
1867
1868 if (!f.file)
1869 return -EBADF;
1870
1871 dentry = f.file->f_path.dentry;
1872
1873 if (*name) {
1874 if (!d_is_directory(dentry)) {
1875 fdput(f);
1876 return -ENOTDIR;
1877 }
1878 }
1879
1880 nd->path = f.file->f_path;
1881 if (flags & LOOKUP_RCU) {
1882 if (f.need_put)
1883 *fp = f.file;
1884 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1885 rcu_read_lock();
1886 } else {
1887 path_get(&nd->path);
1888 fdput(f);
1889 }
1890 }
1891
1892 nd->inode = nd->path.dentry->d_inode;
1893 return 0;
1894 }
1895
1896 static inline int lookup_last(struct nameidata *nd, struct path *path)
1897 {
1898 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1899 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1900
1901 nd->flags &= ~LOOKUP_PARENT;
1902 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1903 }
1904
1905 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1906 static int path_lookupat(int dfd, const char *name,
1907 unsigned int flags, struct nameidata *nd)
1908 {
1909 struct file *base = NULL;
1910 struct path path;
1911 int err;
1912
1913 /*
1914 * Path walking is largely split up into 2 different synchronisation
1915 * schemes, rcu-walk and ref-walk (explained in
1916 * Documentation/filesystems/path-lookup.txt). These share much of the
1917 * path walk code, but some things particularly setup, cleanup, and
1918 * following mounts are sufficiently divergent that functions are
1919 * duplicated. Typically there is a function foo(), and its RCU
1920 * analogue, foo_rcu().
1921 *
1922 * -ECHILD is the error number of choice (just to avoid clashes) that
1923 * is returned if some aspect of an rcu-walk fails. Such an error must
1924 * be handled by restarting a traditional ref-walk (which will always
1925 * be able to complete).
1926 */
1927 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1928
1929 if (unlikely(err))
1930 return err;
1931
1932 current->total_link_count = 0;
1933 err = link_path_walk(name, nd);
1934
1935 if (!err && !(flags & LOOKUP_PARENT)) {
1936 err = lookup_last(nd, &path);
1937 while (err > 0) {
1938 void *cookie;
1939 struct path link = path;
1940 err = may_follow_link(&link, nd);
1941 if (unlikely(err))
1942 break;
1943 nd->flags |= LOOKUP_PARENT;
1944 err = follow_link(&link, nd, &cookie);
1945 if (err)
1946 break;
1947 err = lookup_last(nd, &path);
1948 put_link(nd, &link, cookie);
1949 }
1950 }
1951
1952 if (!err)
1953 err = complete_walk(nd);
1954
1955 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1956 if (!d_is_directory(nd->path.dentry)) {
1957 path_put(&nd->path);
1958 err = -ENOTDIR;
1959 }
1960 }
1961
1962 if (base)
1963 fput(base);
1964
1965 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1966 path_put(&nd->root);
1967 nd->root.mnt = NULL;
1968 }
1969 return err;
1970 }
1971
1972 static int filename_lookup(int dfd, struct filename *name,
1973 unsigned int flags, struct nameidata *nd)
1974 {
1975 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
1976 if (unlikely(retval == -ECHILD))
1977 retval = path_lookupat(dfd, name->name, flags, nd);
1978 if (unlikely(retval == -ESTALE))
1979 retval = path_lookupat(dfd, name->name,
1980 flags | LOOKUP_REVAL, nd);
1981
1982 if (likely(!retval))
1983 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
1984 return retval;
1985 }
1986
1987 static int do_path_lookup(int dfd, const char *name,
1988 unsigned int flags, struct nameidata *nd)
1989 {
1990 struct filename filename = { .name = name };
1991
1992 return filename_lookup(dfd, &filename, flags, nd);
1993 }
1994
1995 /* does lookup, returns the object with parent locked */
1996 struct dentry *kern_path_locked(const char *name, struct path *path)
1997 {
1998 struct nameidata nd;
1999 struct dentry *d;
2000 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2001 if (err)
2002 return ERR_PTR(err);
2003 if (nd.last_type != LAST_NORM) {
2004 path_put(&nd.path);
2005 return ERR_PTR(-EINVAL);
2006 }
2007 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2008 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2009 if (IS_ERR(d)) {
2010 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2011 path_put(&nd.path);
2012 return d;
2013 }
2014 *path = nd.path;
2015 return d;
2016 }
2017
2018 int kern_path(const char *name, unsigned int flags, struct path *path)
2019 {
2020 struct nameidata nd;
2021 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2022 if (!res)
2023 *path = nd.path;
2024 return res;
2025 }
2026
2027 /**
2028 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2029 * @dentry: pointer to dentry of the base directory
2030 * @mnt: pointer to vfs mount of the base directory
2031 * @name: pointer to file name
2032 * @flags: lookup flags
2033 * @path: pointer to struct path to fill
2034 */
2035 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2036 const char *name, unsigned int flags,
2037 struct path *path)
2038 {
2039 struct nameidata nd;
2040 int err;
2041 nd.root.dentry = dentry;
2042 nd.root.mnt = mnt;
2043 BUG_ON(flags & LOOKUP_PARENT);
2044 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2045 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2046 if (!err)
2047 *path = nd.path;
2048 return err;
2049 }
2050
2051 /*
2052 * Restricted form of lookup. Doesn't follow links, single-component only,
2053 * needs parent already locked. Doesn't follow mounts.
2054 * SMP-safe.
2055 */
2056 static struct dentry *lookup_hash(struct nameidata *nd)
2057 {
2058 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2059 }
2060
2061 /**
2062 * lookup_one_len - filesystem helper to lookup single pathname component
2063 * @name: pathname component to lookup
2064 * @base: base directory to lookup from
2065 * @len: maximum length @len should be interpreted to
2066 *
2067 * Note that this routine is purely a helper for filesystem usage and should
2068 * not be called by generic code. Also note that by using this function the
2069 * nameidata argument is passed to the filesystem methods and a filesystem
2070 * using this helper needs to be prepared for that.
2071 */
2072 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2073 {
2074 struct qstr this;
2075 unsigned int c;
2076 int err;
2077
2078 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2079
2080 this.name = name;
2081 this.len = len;
2082 this.hash = full_name_hash(name, len);
2083 if (!len)
2084 return ERR_PTR(-EACCES);
2085
2086 if (unlikely(name[0] == '.')) {
2087 if (len < 2 || (len == 2 && name[1] == '.'))
2088 return ERR_PTR(-EACCES);
2089 }
2090
2091 while (len--) {
2092 c = *(const unsigned char *)name++;
2093 if (c == '/' || c == '\0')
2094 return ERR_PTR(-EACCES);
2095 }
2096 /*
2097 * See if the low-level filesystem might want
2098 * to use its own hash..
2099 */
2100 if (base->d_flags & DCACHE_OP_HASH) {
2101 int err = base->d_op->d_hash(base, &this);
2102 if (err < 0)
2103 return ERR_PTR(err);
2104 }
2105
2106 err = inode_permission(base->d_inode, MAY_EXEC);
2107 if (err)
2108 return ERR_PTR(err);
2109
2110 return __lookup_hash(&this, base, 0);
2111 }
2112
2113 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2114 struct path *path, int *empty)
2115 {
2116 struct nameidata nd;
2117 struct filename *tmp = getname_flags(name, flags, empty);
2118 int err = PTR_ERR(tmp);
2119 if (!IS_ERR(tmp)) {
2120
2121 BUG_ON(flags & LOOKUP_PARENT);
2122
2123 err = filename_lookup(dfd, tmp, flags, &nd);
2124 putname(tmp);
2125 if (!err)
2126 *path = nd.path;
2127 }
2128 return err;
2129 }
2130
2131 int user_path_at(int dfd, const char __user *name, unsigned flags,
2132 struct path *path)
2133 {
2134 return user_path_at_empty(dfd, name, flags, path, NULL);
2135 }
2136
2137 /*
2138 * NB: most callers don't do anything directly with the reference to the
2139 * to struct filename, but the nd->last pointer points into the name string
2140 * allocated by getname. So we must hold the reference to it until all
2141 * path-walking is complete.
2142 */
2143 static struct filename *
2144 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2145 unsigned int flags)
2146 {
2147 struct filename *s = getname(path);
2148 int error;
2149
2150 /* only LOOKUP_REVAL is allowed in extra flags */
2151 flags &= LOOKUP_REVAL;
2152
2153 if (IS_ERR(s))
2154 return s;
2155
2156 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2157 if (error) {
2158 putname(s);
2159 return ERR_PTR(error);
2160 }
2161
2162 return s;
2163 }
2164
2165 /**
2166 * mountpoint_last - look up last component for umount
2167 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2168 * @path: pointer to container for result
2169 *
2170 * This is a special lookup_last function just for umount. In this case, we
2171 * need to resolve the path without doing any revalidation.
2172 *
2173 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2174 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2175 * in almost all cases, this lookup will be served out of the dcache. The only
2176 * cases where it won't are if nd->last refers to a symlink or the path is
2177 * bogus and it doesn't exist.
2178 *
2179 * Returns:
2180 * -error: if there was an error during lookup. This includes -ENOENT if the
2181 * lookup found a negative dentry. The nd->path reference will also be
2182 * put in this case.
2183 *
2184 * 0: if we successfully resolved nd->path and found it to not to be a
2185 * symlink that needs to be followed. "path" will also be populated.
2186 * The nd->path reference will also be put.
2187 *
2188 * 1: if we successfully resolved nd->last and found it to be a symlink
2189 * that needs to be followed. "path" will be populated with the path
2190 * to the link, and nd->path will *not* be put.
2191 */
2192 static int
2193 mountpoint_last(struct nameidata *nd, struct path *path)
2194 {
2195 int error = 0;
2196 struct dentry *dentry;
2197 struct dentry *dir = nd->path.dentry;
2198
2199 /* If we're in rcuwalk, drop out of it to handle last component */
2200 if (nd->flags & LOOKUP_RCU) {
2201 if (unlazy_walk(nd, NULL)) {
2202 error = -ECHILD;
2203 goto out;
2204 }
2205 }
2206
2207 nd->flags &= ~LOOKUP_PARENT;
2208
2209 if (unlikely(nd->last_type != LAST_NORM)) {
2210 error = handle_dots(nd, nd->last_type);
2211 if (error)
2212 goto out;
2213 dentry = dget(nd->path.dentry);
2214 goto done;
2215 }
2216
2217 mutex_lock(&dir->d_inode->i_mutex);
2218 dentry = d_lookup(dir, &nd->last);
2219 if (!dentry) {
2220 /*
2221 * No cached dentry. Mounted dentries are pinned in the cache,
2222 * so that means that this dentry is probably a symlink or the
2223 * path doesn't actually point to a mounted dentry.
2224 */
2225 dentry = d_alloc(dir, &nd->last);
2226 if (!dentry) {
2227 error = -ENOMEM;
2228 mutex_unlock(&dir->d_inode->i_mutex);
2229 goto out;
2230 }
2231 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2232 error = PTR_ERR(dentry);
2233 if (IS_ERR(dentry)) {
2234 mutex_unlock(&dir->d_inode->i_mutex);
2235 goto out;
2236 }
2237 }
2238 mutex_unlock(&dir->d_inode->i_mutex);
2239
2240 done:
2241 if (!dentry->d_inode) {
2242 error = -ENOENT;
2243 dput(dentry);
2244 goto out;
2245 }
2246 path->dentry = dentry;
2247 path->mnt = mntget(nd->path.mnt);
2248 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2249 return 1;
2250 follow_mount(path);
2251 error = 0;
2252 out:
2253 terminate_walk(nd);
2254 return error;
2255 }
2256
2257 /**
2258 * path_mountpoint - look up a path to be umounted
2259 * @dfd: directory file descriptor to start walk from
2260 * @name: full pathname to walk
2261 * @flags: lookup flags
2262 *
2263 * Look up the given name, but don't attempt to revalidate the last component.
2264 * Returns 0 and "path" will be valid on success; Retuns error otherwise.
2265 */
2266 static int
2267 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2268 {
2269 struct file *base = NULL;
2270 struct nameidata nd;
2271 int err;
2272
2273 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2274 if (unlikely(err))
2275 return err;
2276
2277 current->total_link_count = 0;
2278 err = link_path_walk(name, &nd);
2279 if (err)
2280 goto out;
2281
2282 err = mountpoint_last(&nd, path);
2283 while (err > 0) {
2284 void *cookie;
2285 struct path link = *path;
2286 err = may_follow_link(&link, &nd);
2287 if (unlikely(err))
2288 break;
2289 nd.flags |= LOOKUP_PARENT;
2290 err = follow_link(&link, &nd, &cookie);
2291 if (err)
2292 break;
2293 err = mountpoint_last(&nd, path);
2294 put_link(&nd, &link, cookie);
2295 }
2296 out:
2297 if (base)
2298 fput(base);
2299
2300 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2301 path_put(&nd.root);
2302
2303 return err;
2304 }
2305
2306 static int
2307 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2308 unsigned int flags)
2309 {
2310 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2311 if (unlikely(error == -ECHILD))
2312 error = path_mountpoint(dfd, s->name, path, flags);
2313 if (unlikely(error == -ESTALE))
2314 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2315 if (likely(!error))
2316 audit_inode(s, path->dentry, 0);
2317 return error;
2318 }
2319
2320 /**
2321 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2322 * @dfd: directory file descriptor
2323 * @name: pathname from userland
2324 * @flags: lookup flags
2325 * @path: pointer to container to hold result
2326 *
2327 * A umount is a special case for path walking. We're not actually interested
2328 * in the inode in this situation, and ESTALE errors can be a problem. We
2329 * simply want track down the dentry and vfsmount attached at the mountpoint
2330 * and avoid revalidating the last component.
2331 *
2332 * Returns 0 and populates "path" on success.
2333 */
2334 int
2335 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2336 struct path *path)
2337 {
2338 struct filename *s = getname(name);
2339 int error;
2340 if (IS_ERR(s))
2341 return PTR_ERR(s);
2342 error = filename_mountpoint(dfd, s, path, flags);
2343 putname(s);
2344 return error;
2345 }
2346
2347 int
2348 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2349 unsigned int flags)
2350 {
2351 struct filename s = {.name = name};
2352 return filename_mountpoint(dfd, &s, path, flags);
2353 }
2354 EXPORT_SYMBOL(kern_path_mountpoint);
2355
2356 /*
2357 * It's inline, so penalty for filesystems that don't use sticky bit is
2358 * minimal.
2359 */
2360 static inline int check_sticky(struct inode *dir, struct inode *inode)
2361 {
2362 kuid_t fsuid = current_fsuid();
2363
2364 if (!(dir->i_mode & S_ISVTX))
2365 return 0;
2366 if (uid_eq(inode->i_uid, fsuid))
2367 return 0;
2368 if (uid_eq(dir->i_uid, fsuid))
2369 return 0;
2370 return !inode_capable(inode, CAP_FOWNER);
2371 }
2372
2373 /*
2374 * Check whether we can remove a link victim from directory dir, check
2375 * whether the type of victim is right.
2376 * 1. We can't do it if dir is read-only (done in permission())
2377 * 2. We should have write and exec permissions on dir
2378 * 3. We can't remove anything from append-only dir
2379 * 4. We can't do anything with immutable dir (done in permission())
2380 * 5. If the sticky bit on dir is set we should either
2381 * a. be owner of dir, or
2382 * b. be owner of victim, or
2383 * c. have CAP_FOWNER capability
2384 * 6. If the victim is append-only or immutable we can't do antyhing with
2385 * links pointing to it.
2386 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2387 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2388 * 9. We can't remove a root or mountpoint.
2389 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2390 * nfs_async_unlink().
2391 */
2392 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2393 {
2394 struct inode *inode = victim->d_inode;
2395 int error;
2396
2397 if (d_is_negative(victim))
2398 return -ENOENT;
2399 BUG_ON(!inode);
2400
2401 BUG_ON(victim->d_parent->d_inode != dir);
2402 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2403
2404 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2405 if (error)
2406 return error;
2407 if (IS_APPEND(dir))
2408 return -EPERM;
2409
2410 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2411 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2412 return -EPERM;
2413 if (isdir) {
2414 if (!d_is_directory(victim) && !d_is_autodir(victim))
2415 return -ENOTDIR;
2416 if (IS_ROOT(victim))
2417 return -EBUSY;
2418 } else if (d_is_directory(victim) || d_is_autodir(victim))
2419 return -EISDIR;
2420 if (IS_DEADDIR(dir))
2421 return -ENOENT;
2422 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2423 return -EBUSY;
2424 return 0;
2425 }
2426
2427 /* Check whether we can create an object with dentry child in directory
2428 * dir.
2429 * 1. We can't do it if child already exists (open has special treatment for
2430 * this case, but since we are inlined it's OK)
2431 * 2. We can't do it if dir is read-only (done in permission())
2432 * 3. We should have write and exec permissions on dir
2433 * 4. We can't do it if dir is immutable (done in permission())
2434 */
2435 static inline int may_create(struct inode *dir, struct dentry *child)
2436 {
2437 if (child->d_inode)
2438 return -EEXIST;
2439 if (IS_DEADDIR(dir))
2440 return -ENOENT;
2441 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2442 }
2443
2444 /*
2445 * p1 and p2 should be directories on the same fs.
2446 */
2447 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2448 {
2449 struct dentry *p;
2450
2451 if (p1 == p2) {
2452 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2453 return NULL;
2454 }
2455
2456 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2457
2458 p = d_ancestor(p2, p1);
2459 if (p) {
2460 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2461 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2462 return p;
2463 }
2464
2465 p = d_ancestor(p1, p2);
2466 if (p) {
2467 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2468 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2469 return p;
2470 }
2471
2472 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2473 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2474 return NULL;
2475 }
2476
2477 void unlock_rename(struct dentry *p1, struct dentry *p2)
2478 {
2479 mutex_unlock(&p1->d_inode->i_mutex);
2480 if (p1 != p2) {
2481 mutex_unlock(&p2->d_inode->i_mutex);
2482 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2483 }
2484 }
2485
2486 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2487 bool want_excl)
2488 {
2489 int error = may_create(dir, dentry);
2490 if (error)
2491 return error;
2492
2493 if (!dir->i_op->create)
2494 return -EACCES; /* shouldn't it be ENOSYS? */
2495 mode &= S_IALLUGO;
2496 mode |= S_IFREG;
2497 error = security_inode_create(dir, dentry, mode);
2498 if (error)
2499 return error;
2500 error = dir->i_op->create(dir, dentry, mode, want_excl);
2501 if (!error)
2502 fsnotify_create(dir, dentry);
2503 return error;
2504 }
2505
2506 static int may_open(struct path *path, int acc_mode, int flag)
2507 {
2508 struct dentry *dentry = path->dentry;
2509 struct inode *inode = dentry->d_inode;
2510 int error;
2511
2512 /* O_PATH? */
2513 if (!acc_mode)
2514 return 0;
2515
2516 if (!inode)
2517 return -ENOENT;
2518
2519 switch (inode->i_mode & S_IFMT) {
2520 case S_IFLNK:
2521 return -ELOOP;
2522 case S_IFDIR:
2523 if (acc_mode & MAY_WRITE)
2524 return -EISDIR;
2525 break;
2526 case S_IFBLK:
2527 case S_IFCHR:
2528 if (path->mnt->mnt_flags & MNT_NODEV)
2529 return -EACCES;
2530 /*FALLTHRU*/
2531 case S_IFIFO:
2532 case S_IFSOCK:
2533 flag &= ~O_TRUNC;
2534 break;
2535 }
2536
2537 error = inode_permission(inode, acc_mode);
2538 if (error)
2539 return error;
2540
2541 /*
2542 * An append-only file must be opened in append mode for writing.
2543 */
2544 if (IS_APPEND(inode)) {
2545 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2546 return -EPERM;
2547 if (flag & O_TRUNC)
2548 return -EPERM;
2549 }
2550
2551 /* O_NOATIME can only be set by the owner or superuser */
2552 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2553 return -EPERM;
2554
2555 return 0;
2556 }
2557
2558 static int handle_truncate(struct file *filp)
2559 {
2560 struct path *path = &filp->f_path;
2561 struct inode *inode = path->dentry->d_inode;
2562 int error = get_write_access(inode);
2563 if (error)
2564 return error;
2565 /*
2566 * Refuse to truncate files with mandatory locks held on them.
2567 */
2568 error = locks_verify_locked(inode);
2569 if (!error)
2570 error = security_path_truncate(path);
2571 if (!error) {
2572 error = do_truncate(path->dentry, 0,
2573 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2574 filp);
2575 }
2576 put_write_access(inode);
2577 return error;
2578 }
2579
2580 static inline int open_to_namei_flags(int flag)
2581 {
2582 if ((flag & O_ACCMODE) == 3)
2583 flag--;
2584 return flag;
2585 }
2586
2587 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2588 {
2589 int error = security_path_mknod(dir, dentry, mode, 0);
2590 if (error)
2591 return error;
2592
2593 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2594 if (error)
2595 return error;
2596
2597 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2598 }
2599
2600 /*
2601 * Attempt to atomically look up, create and open a file from a negative
2602 * dentry.
2603 *
2604 * Returns 0 if successful. The file will have been created and attached to
2605 * @file by the filesystem calling finish_open().
2606 *
2607 * Returns 1 if the file was looked up only or didn't need creating. The
2608 * caller will need to perform the open themselves. @path will have been
2609 * updated to point to the new dentry. This may be negative.
2610 *
2611 * Returns an error code otherwise.
2612 */
2613 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2614 struct path *path, struct file *file,
2615 const struct open_flags *op,
2616 bool got_write, bool need_lookup,
2617 int *opened)
2618 {
2619 struct inode *dir = nd->path.dentry->d_inode;
2620 unsigned open_flag = open_to_namei_flags(op->open_flag);
2621 umode_t mode;
2622 int error;
2623 int acc_mode;
2624 int create_error = 0;
2625 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2626 bool excl;
2627
2628 BUG_ON(dentry->d_inode);
2629
2630 /* Don't create child dentry for a dead directory. */
2631 if (unlikely(IS_DEADDIR(dir))) {
2632 error = -ENOENT;
2633 goto out;
2634 }
2635
2636 mode = op->mode;
2637 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2638 mode &= ~current_umask();
2639
2640 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2641 if (excl)
2642 open_flag &= ~O_TRUNC;
2643
2644 /*
2645 * Checking write permission is tricky, bacuse we don't know if we are
2646 * going to actually need it: O_CREAT opens should work as long as the
2647 * file exists. But checking existence breaks atomicity. The trick is
2648 * to check access and if not granted clear O_CREAT from the flags.
2649 *
2650 * Another problem is returing the "right" error value (e.g. for an
2651 * O_EXCL open we want to return EEXIST not EROFS).
2652 */
2653 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2654 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2655 if (!(open_flag & O_CREAT)) {
2656 /*
2657 * No O_CREATE -> atomicity not a requirement -> fall
2658 * back to lookup + open
2659 */
2660 goto no_open;
2661 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2662 /* Fall back and fail with the right error */
2663 create_error = -EROFS;
2664 goto no_open;
2665 } else {
2666 /* No side effects, safe to clear O_CREAT */
2667 create_error = -EROFS;
2668 open_flag &= ~O_CREAT;
2669 }
2670 }
2671
2672 if (open_flag & O_CREAT) {
2673 error = may_o_create(&nd->path, dentry, mode);
2674 if (error) {
2675 create_error = error;
2676 if (open_flag & O_EXCL)
2677 goto no_open;
2678 open_flag &= ~O_CREAT;
2679 }
2680 }
2681
2682 if (nd->flags & LOOKUP_DIRECTORY)
2683 open_flag |= O_DIRECTORY;
2684
2685 file->f_path.dentry = DENTRY_NOT_SET;
2686 file->f_path.mnt = nd->path.mnt;
2687 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2688 opened);
2689 if (error < 0) {
2690 if (create_error && error == -ENOENT)
2691 error = create_error;
2692 goto out;
2693 }
2694
2695 if (error) { /* returned 1, that is */
2696 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2697 error = -EIO;
2698 goto out;
2699 }
2700 if (file->f_path.dentry) {
2701 dput(dentry);
2702 dentry = file->f_path.dentry;
2703 }
2704 if (*opened & FILE_CREATED)
2705 fsnotify_create(dir, dentry);
2706 if (!dentry->d_inode) {
2707 WARN_ON(*opened & FILE_CREATED);
2708 if (create_error) {
2709 error = create_error;
2710 goto out;
2711 }
2712 } else {
2713 if (excl && !(*opened & FILE_CREATED)) {
2714 error = -EEXIST;
2715 goto out;
2716 }
2717 }
2718 goto looked_up;
2719 }
2720
2721 /*
2722 * We didn't have the inode before the open, so check open permission
2723 * here.
2724 */
2725 acc_mode = op->acc_mode;
2726 if (*opened & FILE_CREATED) {
2727 WARN_ON(!(open_flag & O_CREAT));
2728 fsnotify_create(dir, dentry);
2729 acc_mode = MAY_OPEN;
2730 }
2731 error = may_open(&file->f_path, acc_mode, open_flag);
2732 if (error)
2733 fput(file);
2734
2735 out:
2736 dput(dentry);
2737 return error;
2738
2739 no_open:
2740 if (need_lookup) {
2741 dentry = lookup_real(dir, dentry, nd->flags);
2742 if (IS_ERR(dentry))
2743 return PTR_ERR(dentry);
2744
2745 if (create_error) {
2746 int open_flag = op->open_flag;
2747
2748 error = create_error;
2749 if ((open_flag & O_EXCL)) {
2750 if (!dentry->d_inode)
2751 goto out;
2752 } else if (!dentry->d_inode) {
2753 goto out;
2754 } else if ((open_flag & O_TRUNC) &&
2755 S_ISREG(dentry->d_inode->i_mode)) {
2756 goto out;
2757 }
2758 /* will fail later, go on to get the right error */
2759 }
2760 }
2761 looked_up:
2762 path->dentry = dentry;
2763 path->mnt = nd->path.mnt;
2764 return 1;
2765 }
2766
2767 /*
2768 * Look up and maybe create and open the last component.
2769 *
2770 * Must be called with i_mutex held on parent.
2771 *
2772 * Returns 0 if the file was successfully atomically created (if necessary) and
2773 * opened. In this case the file will be returned attached to @file.
2774 *
2775 * Returns 1 if the file was not completely opened at this time, though lookups
2776 * and creations will have been performed and the dentry returned in @path will
2777 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2778 * specified then a negative dentry may be returned.
2779 *
2780 * An error code is returned otherwise.
2781 *
2782 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2783 * cleared otherwise prior to returning.
2784 */
2785 static int lookup_open(struct nameidata *nd, struct path *path,
2786 struct file *file,
2787 const struct open_flags *op,
2788 bool got_write, int *opened)
2789 {
2790 struct dentry *dir = nd->path.dentry;
2791 struct inode *dir_inode = dir->d_inode;
2792 struct dentry *dentry;
2793 int error;
2794 bool need_lookup;
2795
2796 *opened &= ~FILE_CREATED;
2797 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2798 if (IS_ERR(dentry))
2799 return PTR_ERR(dentry);
2800
2801 /* Cached positive dentry: will open in f_op->open */
2802 if (!need_lookup && dentry->d_inode)
2803 goto out_no_open;
2804
2805 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2806 return atomic_open(nd, dentry, path, file, op, got_write,
2807 need_lookup, opened);
2808 }
2809
2810 if (need_lookup) {
2811 BUG_ON(dentry->d_inode);
2812
2813 dentry = lookup_real(dir_inode, dentry, nd->flags);
2814 if (IS_ERR(dentry))
2815 return PTR_ERR(dentry);
2816 }
2817
2818 /* Negative dentry, just create the file */
2819 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2820 umode_t mode = op->mode;
2821 if (!IS_POSIXACL(dir->d_inode))
2822 mode &= ~current_umask();
2823 /*
2824 * This write is needed to ensure that a
2825 * rw->ro transition does not occur between
2826 * the time when the file is created and when
2827 * a permanent write count is taken through
2828 * the 'struct file' in finish_open().
2829 */
2830 if (!got_write) {
2831 error = -EROFS;
2832 goto out_dput;
2833 }
2834 *opened |= FILE_CREATED;
2835 error = security_path_mknod(&nd->path, dentry, mode, 0);
2836 if (error)
2837 goto out_dput;
2838 error = vfs_create(dir->d_inode, dentry, mode,
2839 nd->flags & LOOKUP_EXCL);
2840 if (error)
2841 goto out_dput;
2842 }
2843 out_no_open:
2844 path->dentry = dentry;
2845 path->mnt = nd->path.mnt;
2846 return 1;
2847
2848 out_dput:
2849 dput(dentry);
2850 return error;
2851 }
2852
2853 /*
2854 * Handle the last step of open()
2855 */
2856 static int do_last(struct nameidata *nd, struct path *path,
2857 struct file *file, const struct open_flags *op,
2858 int *opened, struct filename *name)
2859 {
2860 struct dentry *dir = nd->path.dentry;
2861 int open_flag = op->open_flag;
2862 bool will_truncate = (open_flag & O_TRUNC) != 0;
2863 bool got_write = false;
2864 int acc_mode = op->acc_mode;
2865 struct inode *inode;
2866 bool symlink_ok = false;
2867 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2868 bool retried = false;
2869 int error;
2870
2871 nd->flags &= ~LOOKUP_PARENT;
2872 nd->flags |= op->intent;
2873
2874 if (nd->last_type != LAST_NORM) {
2875 error = handle_dots(nd, nd->last_type);
2876 if (error)
2877 return error;
2878 goto finish_open;
2879 }
2880
2881 if (!(open_flag & O_CREAT)) {
2882 if (nd->last.name[nd->last.len])
2883 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2884 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2885 symlink_ok = true;
2886 /* we _can_ be in RCU mode here */
2887 error = lookup_fast(nd, path, &inode);
2888 if (likely(!error))
2889 goto finish_lookup;
2890
2891 if (error < 0)
2892 goto out;
2893
2894 BUG_ON(nd->inode != dir->d_inode);
2895 } else {
2896 /* create side of things */
2897 /*
2898 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2899 * has been cleared when we got to the last component we are
2900 * about to look up
2901 */
2902 error = complete_walk(nd);
2903 if (error)
2904 return error;
2905
2906 audit_inode(name, dir, LOOKUP_PARENT);
2907 error = -EISDIR;
2908 /* trailing slashes? */
2909 if (nd->last.name[nd->last.len])
2910 goto out;
2911 }
2912
2913 retry_lookup:
2914 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2915 error = mnt_want_write(nd->path.mnt);
2916 if (!error)
2917 got_write = true;
2918 /*
2919 * do _not_ fail yet - we might not need that or fail with
2920 * a different error; let lookup_open() decide; we'll be
2921 * dropping this one anyway.
2922 */
2923 }
2924 mutex_lock(&dir->d_inode->i_mutex);
2925 error = lookup_open(nd, path, file, op, got_write, opened);
2926 mutex_unlock(&dir->d_inode->i_mutex);
2927
2928 if (error <= 0) {
2929 if (error)
2930 goto out;
2931
2932 if ((*opened & FILE_CREATED) ||
2933 !S_ISREG(file_inode(file)->i_mode))
2934 will_truncate = false;
2935
2936 audit_inode(name, file->f_path.dentry, 0);
2937 goto opened;
2938 }
2939
2940 if (*opened & FILE_CREATED) {
2941 /* Don't check for write permission, don't truncate */
2942 open_flag &= ~O_TRUNC;
2943 will_truncate = false;
2944 acc_mode = MAY_OPEN;
2945 path_to_nameidata(path, nd);
2946 goto finish_open_created;
2947 }
2948
2949 /*
2950 * create/update audit record if it already exists.
2951 */
2952 if (d_is_positive(path->dentry))
2953 audit_inode(name, path->dentry, 0);
2954
2955 /*
2956 * If atomic_open() acquired write access it is dropped now due to
2957 * possible mount and symlink following (this might be optimized away if
2958 * necessary...)
2959 */
2960 if (got_write) {
2961 mnt_drop_write(nd->path.mnt);
2962 got_write = false;
2963 }
2964
2965 error = -EEXIST;
2966 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2967 goto exit_dput;
2968
2969 error = follow_managed(path, nd->flags);
2970 if (error < 0)
2971 goto exit_dput;
2972
2973 if (error)
2974 nd->flags |= LOOKUP_JUMPED;
2975
2976 BUG_ON(nd->flags & LOOKUP_RCU);
2977 inode = path->dentry->d_inode;
2978 finish_lookup:
2979 /* we _can_ be in RCU mode here */
2980 error = -ENOENT;
2981 if (d_is_negative(path->dentry)) {
2982 path_to_nameidata(path, nd);
2983 goto out;
2984 }
2985
2986 if (should_follow_link(path->dentry, !symlink_ok)) {
2987 if (nd->flags & LOOKUP_RCU) {
2988 if (unlikely(unlazy_walk(nd, path->dentry))) {
2989 error = -ECHILD;
2990 goto out;
2991 }
2992 }
2993 BUG_ON(inode != path->dentry->d_inode);
2994 return 1;
2995 }
2996
2997 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2998 path_to_nameidata(path, nd);
2999 } else {
3000 save_parent.dentry = nd->path.dentry;
3001 save_parent.mnt = mntget(path->mnt);
3002 nd->path.dentry = path->dentry;
3003
3004 }
3005 nd->inode = inode;
3006 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3007 finish_open:
3008 error = complete_walk(nd);
3009 if (error) {
3010 path_put(&save_parent);
3011 return error;
3012 }
3013 audit_inode(name, nd->path.dentry, 0);
3014 error = -EISDIR;
3015 if ((open_flag & O_CREAT) &&
3016 (d_is_directory(nd->path.dentry) || d_is_autodir(nd->path.dentry)))
3017 goto out;
3018 error = -ENOTDIR;
3019 if ((nd->flags & LOOKUP_DIRECTORY) && !d_is_directory(nd->path.dentry))
3020 goto out;
3021 if (!S_ISREG(nd->inode->i_mode))
3022 will_truncate = false;
3023
3024 if (will_truncate) {
3025 error = mnt_want_write(nd->path.mnt);
3026 if (error)
3027 goto out;
3028 got_write = true;
3029 }
3030 finish_open_created:
3031 error = may_open(&nd->path, acc_mode, open_flag);
3032 if (error)
3033 goto out;
3034 file->f_path.mnt = nd->path.mnt;
3035 error = finish_open(file, nd->path.dentry, NULL, opened);
3036 if (error) {
3037 if (error == -EOPENSTALE)
3038 goto stale_open;
3039 goto out;
3040 }
3041 opened:
3042 error = open_check_o_direct(file);
3043 if (error)
3044 goto exit_fput;
3045 error = ima_file_check(file, op->acc_mode);
3046 if (error)
3047 goto exit_fput;
3048
3049 if (will_truncate) {
3050 error = handle_truncate(file);
3051 if (error)
3052 goto exit_fput;
3053 }
3054 out:
3055 if (got_write)
3056 mnt_drop_write(nd->path.mnt);
3057 path_put(&save_parent);
3058 terminate_walk(nd);
3059 return error;
3060
3061 exit_dput:
3062 path_put_conditional(path, nd);
3063 goto out;
3064 exit_fput:
3065 fput(file);
3066 goto out;
3067
3068 stale_open:
3069 /* If no saved parent or already retried then can't retry */
3070 if (!save_parent.dentry || retried)
3071 goto out;
3072
3073 BUG_ON(save_parent.dentry != dir);
3074 path_put(&nd->path);
3075 nd->path = save_parent;
3076 nd->inode = dir->d_inode;
3077 save_parent.mnt = NULL;
3078 save_parent.dentry = NULL;
3079 if (got_write) {
3080 mnt_drop_write(nd->path.mnt);
3081 got_write = false;
3082 }
3083 retried = true;
3084 goto retry_lookup;
3085 }
3086
3087 static int do_tmpfile(int dfd, struct filename *pathname,
3088 struct nameidata *nd, int flags,
3089 const struct open_flags *op,
3090 struct file *file, int *opened)
3091 {
3092 static const struct qstr name = QSTR_INIT("/", 1);
3093 struct dentry *dentry, *child;
3094 struct inode *dir;
3095 int error = path_lookupat(dfd, pathname->name,
3096 flags | LOOKUP_DIRECTORY, nd);
3097 if (unlikely(error))
3098 return error;
3099 error = mnt_want_write(nd->path.mnt);
3100 if (unlikely(error))
3101 goto out;
3102 /* we want directory to be writable */
3103 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3104 if (error)
3105 goto out2;
3106 dentry = nd->path.dentry;
3107 dir = dentry->d_inode;
3108 if (!dir->i_op->tmpfile) {
3109 error = -EOPNOTSUPP;
3110 goto out2;
3111 }
3112 child = d_alloc(dentry, &name);
3113 if (unlikely(!child)) {
3114 error = -ENOMEM;
3115 goto out2;
3116 }
3117 nd->flags &= ~LOOKUP_DIRECTORY;
3118 nd->flags |= op->intent;
3119 dput(nd->path.dentry);
3120 nd->path.dentry = child;
3121 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3122 if (error)
3123 goto out2;
3124 audit_inode(pathname, nd->path.dentry, 0);
3125 error = may_open(&nd->path, op->acc_mode, op->open_flag);
3126 if (error)
3127 goto out2;
3128 file->f_path.mnt = nd->path.mnt;
3129 error = finish_open(file, nd->path.dentry, NULL, opened);
3130 if (error)
3131 goto out2;
3132 error = open_check_o_direct(file);
3133 if (error) {
3134 fput(file);
3135 } else if (!(op->open_flag & O_EXCL)) {
3136 struct inode *inode = file_inode(file);
3137 spin_lock(&inode->i_lock);
3138 inode->i_state |= I_LINKABLE;
3139 spin_unlock(&inode->i_lock);
3140 }
3141 out2:
3142 mnt_drop_write(nd->path.mnt);
3143 out:
3144 path_put(&nd->path);
3145 return error;
3146 }
3147
3148 static struct file *path_openat(int dfd, struct filename *pathname,
3149 struct nameidata *nd, const struct open_flags *op, int flags)
3150 {
3151 struct file *base = NULL;
3152 struct file *file;
3153 struct path path;
3154 int opened = 0;
3155 int error;
3156
3157 file = get_empty_filp();
3158 if (IS_ERR(file))
3159 return file;
3160
3161 file->f_flags = op->open_flag;
3162
3163 if (unlikely(file->f_flags & __O_TMPFILE)) {
3164 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3165 goto out;
3166 }
3167
3168 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3169 if (unlikely(error))
3170 goto out;
3171
3172 current->total_link_count = 0;
3173 error = link_path_walk(pathname->name, nd);
3174 if (unlikely(error))
3175 goto out;
3176
3177 error = do_last(nd, &path, file, op, &opened, pathname);
3178 while (unlikely(error > 0)) { /* trailing symlink */
3179 struct path link = path;
3180 void *cookie;
3181 if (!(nd->flags & LOOKUP_FOLLOW)) {
3182 path_put_conditional(&path, nd);
3183 path_put(&nd->path);
3184 error = -ELOOP;
3185 break;
3186 }
3187 error = may_follow_link(&link, nd);
3188 if (unlikely(error))
3189 break;
3190 nd->flags |= LOOKUP_PARENT;
3191 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3192 error = follow_link(&link, nd, &cookie);
3193 if (unlikely(error))
3194 break;
3195 error = do_last(nd, &path, file, op, &opened, pathname);
3196 put_link(nd, &link, cookie);
3197 }
3198 out:
3199 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3200 path_put(&nd->root);
3201 if (base)
3202 fput(base);
3203 if (!(opened & FILE_OPENED)) {
3204 BUG_ON(!error);
3205 put_filp(file);
3206 }
3207 if (unlikely(error)) {
3208 if (error == -EOPENSTALE) {
3209 if (flags & LOOKUP_RCU)
3210 error = -ECHILD;
3211 else
3212 error = -ESTALE;
3213 }
3214 file = ERR_PTR(error);
3215 }
3216 return file;
3217 }
3218
3219 struct file *do_filp_open(int dfd, struct filename *pathname,
3220 const struct open_flags *op)
3221 {
3222 struct nameidata nd;
3223 int flags = op->lookup_flags;
3224 struct file *filp;
3225
3226 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3227 if (unlikely(filp == ERR_PTR(-ECHILD)))
3228 filp = path_openat(dfd, pathname, &nd, op, flags);
3229 if (unlikely(filp == ERR_PTR(-ESTALE)))
3230 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3231 return filp;
3232 }
3233
3234 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3235 const char *name, const struct open_flags *op)
3236 {
3237 struct nameidata nd;
3238 struct file *file;
3239 struct filename filename = { .name = name };
3240 int flags = op->lookup_flags | LOOKUP_ROOT;
3241
3242 nd.root.mnt = mnt;
3243 nd.root.dentry = dentry;
3244
3245 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3246 return ERR_PTR(-ELOOP);
3247
3248 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3249 if (unlikely(file == ERR_PTR(-ECHILD)))
3250 file = path_openat(-1, &filename, &nd, op, flags);
3251 if (unlikely(file == ERR_PTR(-ESTALE)))
3252 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3253 return file;
3254 }
3255
3256 struct dentry *kern_path_create(int dfd, const char *pathname,
3257 struct path *path, unsigned int lookup_flags)
3258 {
3259 struct dentry *dentry = ERR_PTR(-EEXIST);
3260 struct nameidata nd;
3261 int err2;
3262 int error;
3263 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3264
3265 /*
3266 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3267 * other flags passed in are ignored!
3268 */
3269 lookup_flags &= LOOKUP_REVAL;
3270
3271 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3272 if (error)
3273 return ERR_PTR(error);
3274
3275 /*
3276 * Yucky last component or no last component at all?
3277 * (foo/., foo/.., /////)
3278 */
3279 if (nd.last_type != LAST_NORM)
3280 goto out;
3281 nd.flags &= ~LOOKUP_PARENT;
3282 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3283
3284 /* don't fail immediately if it's r/o, at least try to report other errors */
3285 err2 = mnt_want_write(nd.path.mnt);
3286 /*
3287 * Do the final lookup.
3288 */
3289 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3290 dentry = lookup_hash(&nd);
3291 if (IS_ERR(dentry))
3292 goto unlock;
3293
3294 error = -EEXIST;
3295 if (d_is_positive(dentry))
3296 goto fail;
3297
3298 /*
3299 * Special case - lookup gave negative, but... we had foo/bar/
3300 * From the vfs_mknod() POV we just have a negative dentry -
3301 * all is fine. Let's be bastards - you had / on the end, you've
3302 * been asking for (non-existent) directory. -ENOENT for you.
3303 */
3304 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3305 error = -ENOENT;
3306 goto fail;
3307 }
3308 if (unlikely(err2)) {
3309 error = err2;
3310 goto fail;
3311 }
3312 *path = nd.path;
3313 return dentry;
3314 fail:
3315 dput(dentry);
3316 dentry = ERR_PTR(error);
3317 unlock:
3318 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3319 if (!err2)
3320 mnt_drop_write(nd.path.mnt);
3321 out:
3322 path_put(&nd.path);
3323 return dentry;
3324 }
3325 EXPORT_SYMBOL(kern_path_create);
3326
3327 void done_path_create(struct path *path, struct dentry *dentry)
3328 {
3329 dput(dentry);
3330 mutex_unlock(&path->dentry->d_inode->i_mutex);
3331 mnt_drop_write(path->mnt);
3332 path_put(path);
3333 }
3334 EXPORT_SYMBOL(done_path_create);
3335
3336 struct dentry *user_path_create(int dfd, const char __user *pathname,
3337 struct path *path, unsigned int lookup_flags)
3338 {
3339 struct filename *tmp = getname(pathname);
3340 struct dentry *res;
3341 if (IS_ERR(tmp))
3342 return ERR_CAST(tmp);
3343 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3344 putname(tmp);
3345 return res;
3346 }
3347 EXPORT_SYMBOL(user_path_create);
3348
3349 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3350 {
3351 int error = may_create(dir, dentry);
3352
3353 if (error)
3354 return error;
3355
3356 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3357 return -EPERM;
3358
3359 if (!dir->i_op->mknod)
3360 return -EPERM;
3361
3362 error = devcgroup_inode_mknod(mode, dev);
3363 if (error)
3364 return error;
3365
3366 error = security_inode_mknod(dir, dentry, mode, dev);
3367 if (error)
3368 return error;
3369
3370 error = dir->i_op->mknod(dir, dentry, mode, dev);
3371 if (!error)
3372 fsnotify_create(dir, dentry);
3373 return error;
3374 }
3375
3376 static int may_mknod(umode_t mode)
3377 {
3378 switch (mode & S_IFMT) {
3379 case S_IFREG:
3380 case S_IFCHR:
3381 case S_IFBLK:
3382 case S_IFIFO:
3383 case S_IFSOCK:
3384 case 0: /* zero mode translates to S_IFREG */
3385 return 0;
3386 case S_IFDIR:
3387 return -EPERM;
3388 default:
3389 return -EINVAL;
3390 }
3391 }
3392
3393 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3394 unsigned, dev)
3395 {
3396 struct dentry *dentry;
3397 struct path path;
3398 int error;
3399 unsigned int lookup_flags = 0;
3400
3401 error = may_mknod(mode);
3402 if (error)
3403 return error;
3404 retry:
3405 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3406 if (IS_ERR(dentry))
3407 return PTR_ERR(dentry);
3408
3409 if (!IS_POSIXACL(path.dentry->d_inode))
3410 mode &= ~current_umask();
3411 error = security_path_mknod(&path, dentry, mode, dev);
3412 if (error)
3413 goto out;
3414 switch (mode & S_IFMT) {
3415 case 0: case S_IFREG:
3416 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3417 break;
3418 case S_IFCHR: case S_IFBLK:
3419 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3420 new_decode_dev(dev));
3421 break;
3422 case S_IFIFO: case S_IFSOCK:
3423 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3424 break;
3425 }
3426 out:
3427 done_path_create(&path, dentry);
3428 if (retry_estale(error, lookup_flags)) {
3429 lookup_flags |= LOOKUP_REVAL;
3430 goto retry;
3431 }
3432 return error;
3433 }
3434
3435 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3436 {
3437 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3438 }
3439
3440 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3441 {
3442 int error = may_create(dir, dentry);
3443 unsigned max_links = dir->i_sb->s_max_links;
3444
3445 if (error)
3446 return error;
3447
3448 if (!dir->i_op->mkdir)
3449 return -EPERM;
3450
3451 mode &= (S_IRWXUGO|S_ISVTX);
3452 error = security_inode_mkdir(dir, dentry, mode);
3453 if (error)
3454 return error;
3455
3456 if (max_links && dir->i_nlink >= max_links)
3457 return -EMLINK;
3458
3459 error = dir->i_op->mkdir(dir, dentry, mode);
3460 if (!error)
3461 fsnotify_mkdir(dir, dentry);
3462 return error;
3463 }
3464
3465 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3466 {
3467 struct dentry *dentry;
3468 struct path path;
3469 int error;
3470 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3471
3472 retry:
3473 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3474 if (IS_ERR(dentry))
3475 return PTR_ERR(dentry);
3476
3477 if (!IS_POSIXACL(path.dentry->d_inode))
3478 mode &= ~current_umask();
3479 error = security_path_mkdir(&path, dentry, mode);
3480 if (!error)
3481 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3482 done_path_create(&path, dentry);
3483 if (retry_estale(error, lookup_flags)) {
3484 lookup_flags |= LOOKUP_REVAL;
3485 goto retry;
3486 }
3487 return error;
3488 }
3489
3490 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3491 {
3492 return sys_mkdirat(AT_FDCWD, pathname, mode);
3493 }
3494
3495 /*
3496 * The dentry_unhash() helper will try to drop the dentry early: we
3497 * should have a usage count of 1 if we're the only user of this
3498 * dentry, and if that is true (possibly after pruning the dcache),
3499 * then we drop the dentry now.
3500 *
3501 * A low-level filesystem can, if it choses, legally
3502 * do a
3503 *
3504 * if (!d_unhashed(dentry))
3505 * return -EBUSY;
3506 *
3507 * if it cannot handle the case of removing a directory
3508 * that is still in use by something else..
3509 */
3510 void dentry_unhash(struct dentry *dentry)
3511 {
3512 shrink_dcache_parent(dentry);
3513 spin_lock(&dentry->d_lock);
3514 if (dentry->d_lockref.count == 1)
3515 __d_drop(dentry);
3516 spin_unlock(&dentry->d_lock);
3517 }
3518
3519 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3520 {
3521 int error = may_delete(dir, dentry, 1);
3522
3523 if (error)
3524 return error;
3525
3526 if (!dir->i_op->rmdir)
3527 return -EPERM;
3528
3529 dget(dentry);
3530 mutex_lock(&dentry->d_inode->i_mutex);
3531
3532 error = -EBUSY;
3533 if (d_mountpoint(dentry))
3534 goto out;
3535
3536 error = security_inode_rmdir(dir, dentry);
3537 if (error)
3538 goto out;
3539
3540 shrink_dcache_parent(dentry);
3541 error = dir->i_op->rmdir(dir, dentry);
3542 if (error)
3543 goto out;
3544
3545 dentry->d_inode->i_flags |= S_DEAD;
3546 dont_mount(dentry);
3547
3548 out:
3549 mutex_unlock(&dentry->d_inode->i_mutex);
3550 dput(dentry);
3551 if (!error)
3552 d_delete(dentry);
3553 return error;
3554 }
3555
3556 static long do_rmdir(int dfd, const char __user *pathname)
3557 {
3558 int error = 0;
3559 struct filename *name;
3560 struct dentry *dentry;
3561 struct nameidata nd;
3562 unsigned int lookup_flags = 0;
3563 retry:
3564 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3565 if (IS_ERR(name))
3566 return PTR_ERR(name);
3567
3568 switch(nd.last_type) {
3569 case LAST_DOTDOT:
3570 error = -ENOTEMPTY;
3571 goto exit1;
3572 case LAST_DOT:
3573 error = -EINVAL;
3574 goto exit1;
3575 case LAST_ROOT:
3576 error = -EBUSY;
3577 goto exit1;
3578 }
3579
3580 nd.flags &= ~LOOKUP_PARENT;
3581 error = mnt_want_write(nd.path.mnt);
3582 if (error)
3583 goto exit1;
3584
3585 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3586 dentry = lookup_hash(&nd);
3587 error = PTR_ERR(dentry);
3588 if (IS_ERR(dentry))
3589 goto exit2;
3590 if (!dentry->d_inode) {
3591 error = -ENOENT;
3592 goto exit3;
3593 }
3594 error = security_path_rmdir(&nd.path, dentry);
3595 if (error)
3596 goto exit3;
3597 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3598 exit3:
3599 dput(dentry);
3600 exit2:
3601 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3602 mnt_drop_write(nd.path.mnt);
3603 exit1:
3604 path_put(&nd.path);
3605 putname(name);
3606 if (retry_estale(error, lookup_flags)) {
3607 lookup_flags |= LOOKUP_REVAL;
3608 goto retry;
3609 }
3610 return error;
3611 }
3612
3613 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3614 {
3615 return do_rmdir(AT_FDCWD, pathname);
3616 }
3617
3618 /**
3619 * vfs_unlink - unlink a filesystem object
3620 * @dir: parent directory
3621 * @dentry: victim
3622 * @delegated_inode: returns victim inode, if the inode is delegated.
3623 *
3624 * The caller must hold dir->i_mutex.
3625 *
3626 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3627 * return a reference to the inode in delegated_inode. The caller
3628 * should then break the delegation on that inode and retry. Because
3629 * breaking a delegation may take a long time, the caller should drop
3630 * dir->i_mutex before doing so.
3631 *
3632 * Alternatively, a caller may pass NULL for delegated_inode. This may
3633 * be appropriate for callers that expect the underlying filesystem not
3634 * to be NFS exported.
3635 */
3636 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3637 {
3638 struct inode *target = dentry->d_inode;
3639 int error = may_delete(dir, dentry, 0);
3640
3641 if (error)
3642 return error;
3643
3644 if (!dir->i_op->unlink)
3645 return -EPERM;
3646
3647 mutex_lock(&target->i_mutex);
3648 if (d_mountpoint(dentry))
3649 error = -EBUSY;
3650 else {
3651 error = security_inode_unlink(dir, dentry);
3652 if (!error) {
3653 error = try_break_deleg(target, delegated_inode);
3654 if (error)
3655 goto out;
3656 error = dir->i_op->unlink(dir, dentry);
3657 if (!error)
3658 dont_mount(dentry);
3659 }
3660 }
3661 out:
3662 mutex_unlock(&target->i_mutex);
3663
3664 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3665 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3666 fsnotify_link_count(target);
3667 d_delete(dentry);
3668 }
3669
3670 return error;
3671 }
3672
3673 /*
3674 * Make sure that the actual truncation of the file will occur outside its
3675 * directory's i_mutex. Truncate can take a long time if there is a lot of
3676 * writeout happening, and we don't want to prevent access to the directory
3677 * while waiting on the I/O.
3678 */
3679 static long do_unlinkat(int dfd, const char __user *pathname)
3680 {
3681 int error;
3682 struct filename *name;
3683 struct dentry *dentry;
3684 struct nameidata nd;
3685 struct inode *inode = NULL;
3686 struct inode *delegated_inode = NULL;
3687 unsigned int lookup_flags = 0;
3688 retry:
3689 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3690 if (IS_ERR(name))
3691 return PTR_ERR(name);
3692
3693 error = -EISDIR;
3694 if (nd.last_type != LAST_NORM)
3695 goto exit1;
3696
3697 nd.flags &= ~LOOKUP_PARENT;
3698 error = mnt_want_write(nd.path.mnt);
3699 if (error)
3700 goto exit1;
3701 retry_deleg:
3702 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3703 dentry = lookup_hash(&nd);
3704 error = PTR_ERR(dentry);
3705 if (!IS_ERR(dentry)) {
3706 /* Why not before? Because we want correct error value */
3707 if (nd.last.name[nd.last.len])
3708 goto slashes;
3709 inode = dentry->d_inode;
3710 if (d_is_negative(dentry))
3711 goto slashes;
3712 ihold(inode);
3713 error = security_path_unlink(&nd.path, dentry);
3714 if (error)
3715 goto exit2;
3716 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3717 exit2:
3718 dput(dentry);
3719 }
3720 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3721 if (inode)
3722 iput(inode); /* truncate the inode here */
3723 inode = NULL;
3724 if (delegated_inode) {
3725 error = break_deleg_wait(&delegated_inode);
3726 if (!error)
3727 goto retry_deleg;
3728 }
3729 mnt_drop_write(nd.path.mnt);
3730 exit1:
3731 path_put(&nd.path);
3732 putname(name);
3733 if (retry_estale(error, lookup_flags)) {
3734 lookup_flags |= LOOKUP_REVAL;
3735 inode = NULL;
3736 goto retry;
3737 }
3738 return error;
3739
3740 slashes:
3741 if (d_is_negative(dentry))
3742 error = -ENOENT;
3743 else if (d_is_directory(dentry) || d_is_autodir(dentry))
3744 error = -EISDIR;
3745 else
3746 error = -ENOTDIR;
3747 goto exit2;
3748 }
3749
3750 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3751 {
3752 if ((flag & ~AT_REMOVEDIR) != 0)
3753 return -EINVAL;
3754
3755 if (flag & AT_REMOVEDIR)
3756 return do_rmdir(dfd, pathname);
3757
3758 return do_unlinkat(dfd, pathname);
3759 }
3760
3761 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3762 {
3763 return do_unlinkat(AT_FDCWD, pathname);
3764 }
3765
3766 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3767 {
3768 int error = may_create(dir, dentry);
3769
3770 if (error)
3771 return error;
3772
3773 if (!dir->i_op->symlink)
3774 return -EPERM;
3775
3776 error = security_inode_symlink(dir, dentry, oldname);
3777 if (error)
3778 return error;
3779
3780 error = dir->i_op->symlink(dir, dentry, oldname);
3781 if (!error)
3782 fsnotify_create(dir, dentry);
3783 return error;
3784 }
3785
3786 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3787 int, newdfd, const char __user *, newname)
3788 {
3789 int error;
3790 struct filename *from;
3791 struct dentry *dentry;
3792 struct path path;
3793 unsigned int lookup_flags = 0;
3794
3795 from = getname(oldname);
3796 if (IS_ERR(from))
3797 return PTR_ERR(from);
3798 retry:
3799 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3800 error = PTR_ERR(dentry);
3801 if (IS_ERR(dentry))
3802 goto out_putname;
3803
3804 error = security_path_symlink(&path, dentry, from->name);
3805 if (!error)
3806 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3807 done_path_create(&path, dentry);
3808 if (retry_estale(error, lookup_flags)) {
3809 lookup_flags |= LOOKUP_REVAL;
3810 goto retry;
3811 }
3812 out_putname:
3813 putname(from);
3814 return error;
3815 }
3816
3817 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3818 {
3819 return sys_symlinkat(oldname, AT_FDCWD, newname);
3820 }
3821
3822 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3823 {
3824 struct inode *inode = old_dentry->d_inode;
3825 unsigned max_links = dir->i_sb->s_max_links;
3826 int error;
3827
3828 if (!inode)
3829 return -ENOENT;
3830
3831 error = may_create(dir, new_dentry);
3832 if (error)
3833 return error;
3834
3835 if (dir->i_sb != inode->i_sb)
3836 return -EXDEV;
3837
3838 /*
3839 * A link to an append-only or immutable file cannot be created.
3840 */
3841 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3842 return -EPERM;
3843 if (!dir->i_op->link)
3844 return -EPERM;
3845 if (S_ISDIR(inode->i_mode))
3846 return -EPERM;
3847
3848 error = security_inode_link(old_dentry, dir, new_dentry);
3849 if (error)
3850 return error;
3851
3852 mutex_lock(&inode->i_mutex);
3853 /* Make sure we don't allow creating hardlink to an unlinked file */
3854 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3855 error = -ENOENT;
3856 else if (max_links && inode->i_nlink >= max_links)
3857 error = -EMLINK;
3858 else
3859 error = dir->i_op->link(old_dentry, dir, new_dentry);
3860
3861 if (!error && (inode->i_state & I_LINKABLE)) {
3862 spin_lock(&inode->i_lock);
3863 inode->i_state &= ~I_LINKABLE;
3864 spin_unlock(&inode->i_lock);
3865 }
3866 mutex_unlock(&inode->i_mutex);
3867 if (!error)
3868 fsnotify_link(dir, inode, new_dentry);
3869 return error;
3870 }
3871
3872 /*
3873 * Hardlinks are often used in delicate situations. We avoid
3874 * security-related surprises by not following symlinks on the
3875 * newname. --KAB
3876 *
3877 * We don't follow them on the oldname either to be compatible
3878 * with linux 2.0, and to avoid hard-linking to directories
3879 * and other special files. --ADM
3880 */
3881 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3882 int, newdfd, const char __user *, newname, int, flags)
3883 {
3884 struct dentry *new_dentry;
3885 struct path old_path, new_path;
3886 int how = 0;
3887 int error;
3888
3889 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3890 return -EINVAL;
3891 /*
3892 * To use null names we require CAP_DAC_READ_SEARCH
3893 * This ensures that not everyone will be able to create
3894 * handlink using the passed filedescriptor.
3895 */
3896 if (flags & AT_EMPTY_PATH) {
3897 if (!capable(CAP_DAC_READ_SEARCH))
3898 return -ENOENT;
3899 how = LOOKUP_EMPTY;
3900 }
3901
3902 if (flags & AT_SYMLINK_FOLLOW)
3903 how |= LOOKUP_FOLLOW;
3904 retry:
3905 error = user_path_at(olddfd, oldname, how, &old_path);
3906 if (error)
3907 return error;
3908
3909 new_dentry = user_path_create(newdfd, newname, &new_path,
3910 (how & LOOKUP_REVAL));
3911 error = PTR_ERR(new_dentry);
3912 if (IS_ERR(new_dentry))
3913 goto out;
3914
3915 error = -EXDEV;
3916 if (old_path.mnt != new_path.mnt)
3917 goto out_dput;
3918 error = may_linkat(&old_path);
3919 if (unlikely(error))
3920 goto out_dput;
3921 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3922 if (error)
3923 goto out_dput;
3924 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3925 out_dput:
3926 done_path_create(&new_path, new_dentry);
3927 if (retry_estale(error, how)) {
3928 how |= LOOKUP_REVAL;
3929 goto retry;
3930 }
3931 out:
3932 path_put(&old_path);
3933
3934 return error;
3935 }
3936
3937 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3938 {
3939 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3940 }
3941
3942 /*
3943 * The worst of all namespace operations - renaming directory. "Perverted"
3944 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3945 * Problems:
3946 * a) we can get into loop creation. Check is done in is_subdir().
3947 * b) race potential - two innocent renames can create a loop together.
3948 * That's where 4.4 screws up. Current fix: serialization on
3949 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3950 * story.
3951 * c) we have to lock _four_ objects - parents and victim (if it exists),
3952 * and source (if it is not a directory).
3953 * And that - after we got ->i_mutex on parents (until then we don't know
3954 * whether the target exists). Solution: try to be smart with locking
3955 * order for inodes. We rely on the fact that tree topology may change
3956 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3957 * move will be locked. Thus we can rank directories by the tree
3958 * (ancestors first) and rank all non-directories after them.
3959 * That works since everybody except rename does "lock parent, lookup,
3960 * lock child" and rename is under ->s_vfs_rename_mutex.
3961 * HOWEVER, it relies on the assumption that any object with ->lookup()
3962 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3963 * we'd better make sure that there's no link(2) for them.
3964 * d) conversion from fhandle to dentry may come in the wrong moment - when
3965 * we are removing the target. Solution: we will have to grab ->i_mutex
3966 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3967 * ->i_mutex on parents, which works but leads to some truly excessive
3968 * locking].
3969 */
3970 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3971 struct inode *new_dir, struct dentry *new_dentry)
3972 {
3973 int error = 0;
3974 struct inode *target = new_dentry->d_inode;
3975 unsigned max_links = new_dir->i_sb->s_max_links;
3976
3977 /*
3978 * If we are going to change the parent - check write permissions,
3979 * we'll need to flip '..'.
3980 */
3981 if (new_dir != old_dir) {
3982 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3983 if (error)
3984 return error;
3985 }
3986
3987 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3988 if (error)
3989 return error;
3990
3991 dget(new_dentry);
3992 if (target)
3993 mutex_lock(&target->i_mutex);
3994
3995 error = -EBUSY;
3996 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3997 goto out;
3998
3999 error = -EMLINK;
4000 if (max_links && !target && new_dir != old_dir &&
4001 new_dir->i_nlink >= max_links)
4002 goto out;
4003
4004 if (target)
4005 shrink_dcache_parent(new_dentry);
4006 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4007 if (error)
4008 goto out;
4009
4010 if (target) {
4011 target->i_flags |= S_DEAD;
4012 dont_mount(new_dentry);
4013 }
4014 out:
4015 if (target)
4016 mutex_unlock(&target->i_mutex);
4017 dput(new_dentry);
4018 if (!error)
4019 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4020 d_move(old_dentry,new_dentry);
4021 return error;
4022 }
4023
4024 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
4025 struct inode *new_dir, struct dentry *new_dentry)
4026 {
4027 struct inode *target = new_dentry->d_inode;
4028 struct inode *source = old_dentry->d_inode;
4029 int error;
4030
4031 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
4032 if (error)
4033 return error;
4034
4035 dget(new_dentry);
4036 lock_two_nondirectories(source, target);
4037
4038 error = -EBUSY;
4039 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
4040 goto out;
4041
4042 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4043 if (error)
4044 goto out;
4045
4046 if (target)
4047 dont_mount(new_dentry);
4048 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4049 d_move(old_dentry, new_dentry);
4050 out:
4051 unlock_two_nondirectories(source, target);
4052 dput(new_dentry);
4053 return error;
4054 }
4055
4056 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4057 struct inode *new_dir, struct dentry *new_dentry)
4058 {
4059 int error;
4060 int is_dir = d_is_directory(old_dentry) || d_is_autodir(old_dentry);
4061 const unsigned char *old_name;
4062
4063 if (old_dentry->d_inode == new_dentry->d_inode)
4064 return 0;
4065
4066 error = may_delete(old_dir, old_dentry, is_dir);
4067 if (error)
4068 return error;
4069
4070 if (!new_dentry->d_inode)
4071 error = may_create(new_dir, new_dentry);
4072 else
4073 error = may_delete(new_dir, new_dentry, is_dir);
4074 if (error)
4075 return error;
4076
4077 if (!old_dir->i_op->rename)
4078 return -EPERM;
4079
4080 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4081
4082 if (is_dir)
4083 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
4084 else
4085 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
4086 if (!error)
4087 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4088 new_dentry->d_inode, old_dentry);
4089 fsnotify_oldname_free(old_name);
4090
4091 return error;
4092 }
4093
4094 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4095 int, newdfd, const char __user *, newname)
4096 {
4097 struct dentry *old_dir, *new_dir;
4098 struct dentry *old_dentry, *new_dentry;
4099 struct dentry *trap;
4100 struct nameidata oldnd, newnd;
4101 struct filename *from;
4102 struct filename *to;
4103 unsigned int lookup_flags = 0;
4104 bool should_retry = false;
4105 int error;
4106 retry:
4107 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4108 if (IS_ERR(from)) {
4109 error = PTR_ERR(from);
4110 goto exit;
4111 }
4112
4113 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4114 if (IS_ERR(to)) {
4115 error = PTR_ERR(to);
4116 goto exit1;
4117 }
4118
4119 error = -EXDEV;
4120 if (oldnd.path.mnt != newnd.path.mnt)
4121 goto exit2;
4122
4123 old_dir = oldnd.path.dentry;
4124 error = -EBUSY;
4125 if (oldnd.last_type != LAST_NORM)
4126 goto exit2;
4127
4128 new_dir = newnd.path.dentry;
4129 if (newnd.last_type != LAST_NORM)
4130 goto exit2;
4131
4132 error = mnt_want_write(oldnd.path.mnt);
4133 if (error)
4134 goto exit2;
4135
4136 oldnd.flags &= ~LOOKUP_PARENT;
4137 newnd.flags &= ~LOOKUP_PARENT;
4138 newnd.flags |= LOOKUP_RENAME_TARGET;
4139
4140 trap = lock_rename(new_dir, old_dir);
4141
4142 old_dentry = lookup_hash(&oldnd);
4143 error = PTR_ERR(old_dentry);
4144 if (IS_ERR(old_dentry))
4145 goto exit3;
4146 /* source must exist */
4147 error = -ENOENT;
4148 if (d_is_negative(old_dentry))
4149 goto exit4;
4150 /* unless the source is a directory trailing slashes give -ENOTDIR */
4151 if (!d_is_directory(old_dentry) && !d_is_autodir(old_dentry)) {
4152 error = -ENOTDIR;
4153 if (oldnd.last.name[oldnd.last.len])
4154 goto exit4;
4155 if (newnd.last.name[newnd.last.len])
4156 goto exit4;
4157 }
4158 /* source should not be ancestor of target */
4159 error = -EINVAL;
4160 if (old_dentry == trap)
4161 goto exit4;
4162 new_dentry = lookup_hash(&newnd);
4163 error = PTR_ERR(new_dentry);
4164 if (IS_ERR(new_dentry))
4165 goto exit4;
4166 /* target should not be an ancestor of source */
4167 error = -ENOTEMPTY;
4168 if (new_dentry == trap)
4169 goto exit5;
4170
4171 error = security_path_rename(&oldnd.path, old_dentry,
4172 &newnd.path, new_dentry);
4173 if (error)
4174 goto exit5;
4175 error = vfs_rename(old_dir->d_inode, old_dentry,
4176 new_dir->d_inode, new_dentry);
4177 exit5:
4178 dput(new_dentry);
4179 exit4:
4180 dput(old_dentry);
4181 exit3:
4182 unlock_rename(new_dir, old_dir);
4183 mnt_drop_write(oldnd.path.mnt);
4184 exit2:
4185 if (retry_estale(error, lookup_flags))
4186 should_retry = true;
4187 path_put(&newnd.path);
4188 putname(to);
4189 exit1:
4190 path_put(&oldnd.path);
4191 putname(from);
4192 if (should_retry) {
4193 should_retry = false;
4194 lookup_flags |= LOOKUP_REVAL;
4195 goto retry;
4196 }
4197 exit:
4198 return error;
4199 }
4200
4201 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4202 {
4203 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
4204 }
4205
4206 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
4207 {
4208 int len;
4209
4210 len = PTR_ERR(link);
4211 if (IS_ERR(link))
4212 goto out;
4213
4214 len = strlen(link);
4215 if (len > (unsigned) buflen)
4216 len = buflen;
4217 if (copy_to_user(buffer, link, len))
4218 len = -EFAULT;
4219 out:
4220 return len;
4221 }
4222
4223 /*
4224 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4225 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4226 * using) it for any given inode is up to filesystem.
4227 */
4228 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4229 {
4230 struct nameidata nd;
4231 void *cookie;
4232 int res;
4233
4234 nd.depth = 0;
4235 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4236 if (IS_ERR(cookie))
4237 return PTR_ERR(cookie);
4238
4239 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
4240 if (dentry->d_inode->i_op->put_link)
4241 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4242 return res;
4243 }
4244
4245 /* get the link contents into pagecache */
4246 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4247 {
4248 char *kaddr;
4249 struct page *page;
4250 struct address_space *mapping = dentry->d_inode->i_mapping;
4251 page = read_mapping_page(mapping, 0, NULL);
4252 if (IS_ERR(page))
4253 return (char*)page;
4254 *ppage = page;
4255 kaddr = kmap(page);
4256 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4257 return kaddr;
4258 }
4259
4260 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4261 {
4262 struct page *page = NULL;
4263 char *s = page_getlink(dentry, &page);
4264 int res = vfs_readlink(dentry,buffer,buflen,s);
4265 if (page) {
4266 kunmap(page);
4267 page_cache_release(page);
4268 }
4269 return res;
4270 }
4271
4272 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4273 {
4274 struct page *page = NULL;
4275 nd_set_link(nd, page_getlink(dentry, &page));
4276 return page;
4277 }
4278
4279 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4280 {
4281 struct page *page = cookie;
4282
4283 if (page) {
4284 kunmap(page);
4285 page_cache_release(page);
4286 }
4287 }
4288
4289 /*
4290 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4291 */
4292 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4293 {
4294 struct address_space *mapping = inode->i_mapping;
4295 struct page *page;
4296 void *fsdata;
4297 int err;
4298 char *kaddr;
4299 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4300 if (nofs)
4301 flags |= AOP_FLAG_NOFS;
4302
4303 retry:
4304 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4305 flags, &page, &fsdata);
4306 if (err)
4307 goto fail;
4308
4309 kaddr = kmap_atomic(page);
4310 memcpy(kaddr, symname, len-1);
4311 kunmap_atomic(kaddr);
4312
4313 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4314 page, fsdata);
4315 if (err < 0)
4316 goto fail;
4317 if (err < len-1)
4318 goto retry;
4319
4320 mark_inode_dirty(inode);
4321 return 0;
4322 fail:
4323 return err;
4324 }
4325
4326 int page_symlink(struct inode *inode, const char *symname, int len)
4327 {
4328 return __page_symlink(inode, symname, len,
4329 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4330 }
4331
4332 const struct inode_operations page_symlink_inode_operations = {
4333 .readlink = generic_readlink,
4334 .follow_link = page_follow_link_light,
4335 .put_link = page_put_link,
4336 };
4337
4338 EXPORT_SYMBOL(user_path_at);
4339 EXPORT_SYMBOL(follow_down_one);
4340 EXPORT_SYMBOL(follow_down);
4341 EXPORT_SYMBOL(follow_up);
4342 EXPORT_SYMBOL(get_write_access); /* nfsd */
4343 EXPORT_SYMBOL(lock_rename);
4344 EXPORT_SYMBOL(lookup_one_len);
4345 EXPORT_SYMBOL(page_follow_link_light);
4346 EXPORT_SYMBOL(page_put_link);
4347 EXPORT_SYMBOL(page_readlink);
4348 EXPORT_SYMBOL(__page_symlink);
4349 EXPORT_SYMBOL(page_symlink);
4350 EXPORT_SYMBOL(page_symlink_inode_operations);
4351 EXPORT_SYMBOL(kern_path);
4352 EXPORT_SYMBOL(vfs_path_lookup);
4353 EXPORT_SYMBOL(inode_permission);
4354 EXPORT_SYMBOL(unlock_rename);
4355 EXPORT_SYMBOL(vfs_create);
4356 EXPORT_SYMBOL(vfs_link);
4357 EXPORT_SYMBOL(vfs_mkdir);
4358 EXPORT_SYMBOL(vfs_mknod);
4359 EXPORT_SYMBOL(generic_permission);
4360 EXPORT_SYMBOL(vfs_readlink);
4361 EXPORT_SYMBOL(vfs_rename);
4362 EXPORT_SYMBOL(vfs_rmdir);
4363 EXPORT_SYMBOL(vfs_symlink);
4364 EXPORT_SYMBOL(vfs_unlink);
4365 EXPORT_SYMBOL(dentry_unhash);
4366 EXPORT_SYMBOL(generic_readlink);