]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/namei.c
Merge branch 'fix/hda' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[mirror_ubuntu-zesty-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <asm/uaccess.h>
37
38 #include "internal.h"
39
40 /* [Feb-1997 T. Schoebel-Theuer]
41 * Fundamental changes in the pathname lookup mechanisms (namei)
42 * were necessary because of omirr. The reason is that omirr needs
43 * to know the _real_ pathname, not the user-supplied one, in case
44 * of symlinks (and also when transname replacements occur).
45 *
46 * The new code replaces the old recursive symlink resolution with
47 * an iterative one (in case of non-nested symlink chains). It does
48 * this with calls to <fs>_follow_link().
49 * As a side effect, dir_namei(), _namei() and follow_link() are now
50 * replaced with a single function lookup_dentry() that can handle all
51 * the special cases of the former code.
52 *
53 * With the new dcache, the pathname is stored at each inode, at least as
54 * long as the refcount of the inode is positive. As a side effect, the
55 * size of the dcache depends on the inode cache and thus is dynamic.
56 *
57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58 * resolution to correspond with current state of the code.
59 *
60 * Note that the symlink resolution is not *completely* iterative.
61 * There is still a significant amount of tail- and mid- recursion in
62 * the algorithm. Also, note that <fs>_readlink() is not used in
63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64 * may return different results than <fs>_follow_link(). Many virtual
65 * filesystems (including /proc) exhibit this behavior.
66 */
67
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70 * and the name already exists in form of a symlink, try to create the new
71 * name indicated by the symlink. The old code always complained that the
72 * name already exists, due to not following the symlink even if its target
73 * is nonexistent. The new semantics affects also mknod() and link() when
74 * the name is a symlink pointing to a non-existant name.
75 *
76 * I don't know which semantics is the right one, since I have no access
77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79 * "old" one. Personally, I think the new semantics is much more logical.
80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81 * file does succeed in both HP-UX and SunOs, but not in Solaris
82 * and in the old Linux semantics.
83 */
84
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86 * semantics. See the comments in "open_namei" and "do_link" below.
87 *
88 * [10-Sep-98 Alan Modra] Another symlink change.
89 */
90
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92 * inside the path - always follow.
93 * in the last component in creation/removal/renaming - never follow.
94 * if LOOKUP_FOLLOW passed - follow.
95 * if the pathname has trailing slashes - follow.
96 * otherwise - don't follow.
97 * (applied in that order).
98 *
99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101 * During the 2.4 we need to fix the userland stuff depending on it -
102 * hopefully we will be able to get rid of that wart in 2.5. So far only
103 * XEmacs seems to be relying on it...
104 */
105 /*
106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
108 * any extra contention...
109 */
110
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
114 *
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
117 */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 int retval;
121 unsigned long len = PATH_MAX;
122
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
128 }
129
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
138 }
139
140 char * getname(const char __user * filename)
141 {
142 char *tmp, *result;
143
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
148
149 result = tmp;
150 if (retval < 0) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 audit_getname(result);
156 return result;
157 }
158
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
161 {
162 if (unlikely(!audit_dummy_context()))
163 audit_putname(name);
164 else
165 __putname(name);
166 }
167 EXPORT_SYMBOL(putname);
168 #endif
169
170 /*
171 * This does basic POSIX ACL permission checking
172 */
173 static int acl_permission_check(struct inode *inode, int mask,
174 int (*check_acl)(struct inode *inode, int mask))
175 {
176 umode_t mode = inode->i_mode;
177
178 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
179
180 if (current_fsuid() == inode->i_uid)
181 mode >>= 6;
182 else {
183 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
184 int error = check_acl(inode, mask);
185 if (error != -EAGAIN)
186 return error;
187 }
188
189 if (in_group_p(inode->i_gid))
190 mode >>= 3;
191 }
192
193 /*
194 * If the DACs are ok we don't need any capability check.
195 */
196 if ((mask & ~mode) == 0)
197 return 0;
198 return -EACCES;
199 }
200
201 /**
202 * generic_permission - check for access rights on a Posix-like filesystem
203 * @inode: inode to check access rights for
204 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
205 * @check_acl: optional callback to check for Posix ACLs
206 *
207 * Used to check for read/write/execute permissions on a file.
208 * We use "fsuid" for this, letting us set arbitrary permissions
209 * for filesystem access without changing the "normal" uids which
210 * are used for other things..
211 */
212 int generic_permission(struct inode *inode, int mask,
213 int (*check_acl)(struct inode *inode, int mask))
214 {
215 int ret;
216
217 /*
218 * Do the basic POSIX ACL permission checks.
219 */
220 ret = acl_permission_check(inode, mask, check_acl);
221 if (ret != -EACCES)
222 return ret;
223
224 /*
225 * Read/write DACs are always overridable.
226 * Executable DACs are overridable if at least one exec bit is set.
227 */
228 if (!(mask & MAY_EXEC) || execute_ok(inode))
229 if (capable(CAP_DAC_OVERRIDE))
230 return 0;
231
232 /*
233 * Searching includes executable on directories, else just read.
234 */
235 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
236 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
237 if (capable(CAP_DAC_READ_SEARCH))
238 return 0;
239
240 return -EACCES;
241 }
242
243 /**
244 * inode_permission - check for access rights to a given inode
245 * @inode: inode to check permission on
246 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
247 *
248 * Used to check for read/write/execute permissions on an inode.
249 * We use "fsuid" for this, letting us set arbitrary permissions
250 * for filesystem access without changing the "normal" uids which
251 * are used for other things.
252 */
253 int inode_permission(struct inode *inode, int mask)
254 {
255 int retval;
256
257 if (mask & MAY_WRITE) {
258 umode_t mode = inode->i_mode;
259
260 /*
261 * Nobody gets write access to a read-only fs.
262 */
263 if (IS_RDONLY(inode) &&
264 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
265 return -EROFS;
266
267 /*
268 * Nobody gets write access to an immutable file.
269 */
270 if (IS_IMMUTABLE(inode))
271 return -EACCES;
272 }
273
274 if (inode->i_op->permission)
275 retval = inode->i_op->permission(inode, mask);
276 else
277 retval = generic_permission(inode, mask, inode->i_op->check_acl);
278
279 if (retval)
280 return retval;
281
282 retval = devcgroup_inode_permission(inode, mask);
283 if (retval)
284 return retval;
285
286 return security_inode_permission(inode,
287 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
288 }
289
290 /**
291 * file_permission - check for additional access rights to a given file
292 * @file: file to check access rights for
293 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
294 *
295 * Used to check for read/write/execute permissions on an already opened
296 * file.
297 *
298 * Note:
299 * Do not use this function in new code. All access checks should
300 * be done using inode_permission().
301 */
302 int file_permission(struct file *file, int mask)
303 {
304 return inode_permission(file->f_path.dentry->d_inode, mask);
305 }
306
307 /*
308 * get_write_access() gets write permission for a file.
309 * put_write_access() releases this write permission.
310 * This is used for regular files.
311 * We cannot support write (and maybe mmap read-write shared) accesses and
312 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
313 * can have the following values:
314 * 0: no writers, no VM_DENYWRITE mappings
315 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
316 * > 0: (i_writecount) users are writing to the file.
317 *
318 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
319 * except for the cases where we don't hold i_writecount yet. Then we need to
320 * use {get,deny}_write_access() - these functions check the sign and refuse
321 * to do the change if sign is wrong. Exclusion between them is provided by
322 * the inode->i_lock spinlock.
323 */
324
325 int get_write_access(struct inode * inode)
326 {
327 spin_lock(&inode->i_lock);
328 if (atomic_read(&inode->i_writecount) < 0) {
329 spin_unlock(&inode->i_lock);
330 return -ETXTBSY;
331 }
332 atomic_inc(&inode->i_writecount);
333 spin_unlock(&inode->i_lock);
334
335 return 0;
336 }
337
338 int deny_write_access(struct file * file)
339 {
340 struct inode *inode = file->f_path.dentry->d_inode;
341
342 spin_lock(&inode->i_lock);
343 if (atomic_read(&inode->i_writecount) > 0) {
344 spin_unlock(&inode->i_lock);
345 return -ETXTBSY;
346 }
347 atomic_dec(&inode->i_writecount);
348 spin_unlock(&inode->i_lock);
349
350 return 0;
351 }
352
353 /**
354 * path_get - get a reference to a path
355 * @path: path to get the reference to
356 *
357 * Given a path increment the reference count to the dentry and the vfsmount.
358 */
359 void path_get(struct path *path)
360 {
361 mntget(path->mnt);
362 dget(path->dentry);
363 }
364 EXPORT_SYMBOL(path_get);
365
366 /**
367 * path_put - put a reference to a path
368 * @path: path to put the reference to
369 *
370 * Given a path decrement the reference count to the dentry and the vfsmount.
371 */
372 void path_put(struct path *path)
373 {
374 dput(path->dentry);
375 mntput(path->mnt);
376 }
377 EXPORT_SYMBOL(path_put);
378
379 /**
380 * release_open_intent - free up open intent resources
381 * @nd: pointer to nameidata
382 */
383 void release_open_intent(struct nameidata *nd)
384 {
385 if (nd->intent.open.file->f_path.dentry == NULL)
386 put_filp(nd->intent.open.file);
387 else
388 fput(nd->intent.open.file);
389 }
390
391 static inline struct dentry *
392 do_revalidate(struct dentry *dentry, struct nameidata *nd)
393 {
394 int status = dentry->d_op->d_revalidate(dentry, nd);
395 if (unlikely(status <= 0)) {
396 /*
397 * The dentry failed validation.
398 * If d_revalidate returned 0 attempt to invalidate
399 * the dentry otherwise d_revalidate is asking us
400 * to return a fail status.
401 */
402 if (!status) {
403 if (!d_invalidate(dentry)) {
404 dput(dentry);
405 dentry = NULL;
406 }
407 } else {
408 dput(dentry);
409 dentry = ERR_PTR(status);
410 }
411 }
412 return dentry;
413 }
414
415 /*
416 * force_reval_path - force revalidation of a dentry
417 *
418 * In some situations the path walking code will trust dentries without
419 * revalidating them. This causes problems for filesystems that depend on
420 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
421 * (which indicates that it's possible for the dentry to go stale), force
422 * a d_revalidate call before proceeding.
423 *
424 * Returns 0 if the revalidation was successful. If the revalidation fails,
425 * either return the error returned by d_revalidate or -ESTALE if the
426 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
427 * invalidate the dentry. It's up to the caller to handle putting references
428 * to the path if necessary.
429 */
430 static int
431 force_reval_path(struct path *path, struct nameidata *nd)
432 {
433 int status;
434 struct dentry *dentry = path->dentry;
435
436 /*
437 * only check on filesystems where it's possible for the dentry to
438 * become stale. It's assumed that if this flag is set then the
439 * d_revalidate op will also be defined.
440 */
441 if (!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))
442 return 0;
443
444 status = dentry->d_op->d_revalidate(dentry, nd);
445 if (status > 0)
446 return 0;
447
448 if (!status) {
449 d_invalidate(dentry);
450 status = -ESTALE;
451 }
452 return status;
453 }
454
455 /*
456 * Short-cut version of permission(), for calling on directories
457 * during pathname resolution. Combines parts of permission()
458 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
459 *
460 * If appropriate, check DAC only. If not appropriate, or
461 * short-cut DAC fails, then call ->permission() to do more
462 * complete permission check.
463 */
464 static int exec_permission(struct inode *inode)
465 {
466 int ret;
467
468 if (inode->i_op->permission) {
469 ret = inode->i_op->permission(inode, MAY_EXEC);
470 if (!ret)
471 goto ok;
472 return ret;
473 }
474 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
475 if (!ret)
476 goto ok;
477
478 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
479 goto ok;
480
481 return ret;
482 ok:
483 return security_inode_permission(inode, MAY_EXEC);
484 }
485
486 static __always_inline void set_root(struct nameidata *nd)
487 {
488 if (!nd->root.mnt) {
489 struct fs_struct *fs = current->fs;
490 read_lock(&fs->lock);
491 nd->root = fs->root;
492 path_get(&nd->root);
493 read_unlock(&fs->lock);
494 }
495 }
496
497 static int link_path_walk(const char *, struct nameidata *);
498
499 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
500 {
501 int res = 0;
502 char *name;
503 if (IS_ERR(link))
504 goto fail;
505
506 if (*link == '/') {
507 set_root(nd);
508 path_put(&nd->path);
509 nd->path = nd->root;
510 path_get(&nd->root);
511 }
512
513 res = link_path_walk(link, nd);
514 if (nd->depth || res || nd->last_type!=LAST_NORM)
515 return res;
516 /*
517 * If it is an iterative symlinks resolution in open_namei() we
518 * have to copy the last component. And all that crap because of
519 * bloody create() on broken symlinks. Furrfu...
520 */
521 name = __getname();
522 if (unlikely(!name)) {
523 path_put(&nd->path);
524 return -ENOMEM;
525 }
526 strcpy(name, nd->last.name);
527 nd->last.name = name;
528 return 0;
529 fail:
530 path_put(&nd->path);
531 return PTR_ERR(link);
532 }
533
534 static void path_put_conditional(struct path *path, struct nameidata *nd)
535 {
536 dput(path->dentry);
537 if (path->mnt != nd->path.mnt)
538 mntput(path->mnt);
539 }
540
541 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
542 {
543 dput(nd->path.dentry);
544 if (nd->path.mnt != path->mnt)
545 mntput(nd->path.mnt);
546 nd->path.mnt = path->mnt;
547 nd->path.dentry = path->dentry;
548 }
549
550 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
551 {
552 int error;
553 void *cookie;
554 struct dentry *dentry = path->dentry;
555
556 touch_atime(path->mnt, dentry);
557 nd_set_link(nd, NULL);
558
559 if (path->mnt != nd->path.mnt) {
560 path_to_nameidata(path, nd);
561 dget(dentry);
562 }
563 mntget(path->mnt);
564 nd->last_type = LAST_BIND;
565 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
566 error = PTR_ERR(cookie);
567 if (!IS_ERR(cookie)) {
568 char *s = nd_get_link(nd);
569 error = 0;
570 if (s)
571 error = __vfs_follow_link(nd, s);
572 else if (nd->last_type == LAST_BIND) {
573 error = force_reval_path(&nd->path, nd);
574 if (error)
575 path_put(&nd->path);
576 }
577 if (dentry->d_inode->i_op->put_link)
578 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
579 }
580 return error;
581 }
582
583 /*
584 * This limits recursive symlink follows to 8, while
585 * limiting consecutive symlinks to 40.
586 *
587 * Without that kind of total limit, nasty chains of consecutive
588 * symlinks can cause almost arbitrarily long lookups.
589 */
590 static inline int do_follow_link(struct path *path, struct nameidata *nd)
591 {
592 int err = -ELOOP;
593 if (current->link_count >= MAX_NESTED_LINKS)
594 goto loop;
595 if (current->total_link_count >= 40)
596 goto loop;
597 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
598 cond_resched();
599 err = security_inode_follow_link(path->dentry, nd);
600 if (err)
601 goto loop;
602 current->link_count++;
603 current->total_link_count++;
604 nd->depth++;
605 err = __do_follow_link(path, nd);
606 path_put(path);
607 current->link_count--;
608 nd->depth--;
609 return err;
610 loop:
611 path_put_conditional(path, nd);
612 path_put(&nd->path);
613 return err;
614 }
615
616 int follow_up(struct path *path)
617 {
618 struct vfsmount *parent;
619 struct dentry *mountpoint;
620 spin_lock(&vfsmount_lock);
621 parent = path->mnt->mnt_parent;
622 if (parent == path->mnt) {
623 spin_unlock(&vfsmount_lock);
624 return 0;
625 }
626 mntget(parent);
627 mountpoint = dget(path->mnt->mnt_mountpoint);
628 spin_unlock(&vfsmount_lock);
629 dput(path->dentry);
630 path->dentry = mountpoint;
631 mntput(path->mnt);
632 path->mnt = parent;
633 return 1;
634 }
635
636 /* no need for dcache_lock, as serialization is taken care in
637 * namespace.c
638 */
639 static int __follow_mount(struct path *path)
640 {
641 int res = 0;
642 while (d_mountpoint(path->dentry)) {
643 struct vfsmount *mounted = lookup_mnt(path);
644 if (!mounted)
645 break;
646 dput(path->dentry);
647 if (res)
648 mntput(path->mnt);
649 path->mnt = mounted;
650 path->dentry = dget(mounted->mnt_root);
651 res = 1;
652 }
653 return res;
654 }
655
656 static void follow_mount(struct path *path)
657 {
658 while (d_mountpoint(path->dentry)) {
659 struct vfsmount *mounted = lookup_mnt(path);
660 if (!mounted)
661 break;
662 dput(path->dentry);
663 mntput(path->mnt);
664 path->mnt = mounted;
665 path->dentry = dget(mounted->mnt_root);
666 }
667 }
668
669 /* no need for dcache_lock, as serialization is taken care in
670 * namespace.c
671 */
672 int follow_down(struct path *path)
673 {
674 struct vfsmount *mounted;
675
676 mounted = lookup_mnt(path);
677 if (mounted) {
678 dput(path->dentry);
679 mntput(path->mnt);
680 path->mnt = mounted;
681 path->dentry = dget(mounted->mnt_root);
682 return 1;
683 }
684 return 0;
685 }
686
687 static __always_inline void follow_dotdot(struct nameidata *nd)
688 {
689 set_root(nd);
690
691 while(1) {
692 struct vfsmount *parent;
693 struct dentry *old = nd->path.dentry;
694
695 if (nd->path.dentry == nd->root.dentry &&
696 nd->path.mnt == nd->root.mnt) {
697 break;
698 }
699 spin_lock(&dcache_lock);
700 if (nd->path.dentry != nd->path.mnt->mnt_root) {
701 nd->path.dentry = dget(nd->path.dentry->d_parent);
702 spin_unlock(&dcache_lock);
703 dput(old);
704 break;
705 }
706 spin_unlock(&dcache_lock);
707 spin_lock(&vfsmount_lock);
708 parent = nd->path.mnt->mnt_parent;
709 if (parent == nd->path.mnt) {
710 spin_unlock(&vfsmount_lock);
711 break;
712 }
713 mntget(parent);
714 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
715 spin_unlock(&vfsmount_lock);
716 dput(old);
717 mntput(nd->path.mnt);
718 nd->path.mnt = parent;
719 }
720 follow_mount(&nd->path);
721 }
722
723 /*
724 * It's more convoluted than I'd like it to be, but... it's still fairly
725 * small and for now I'd prefer to have fast path as straight as possible.
726 * It _is_ time-critical.
727 */
728 static int do_lookup(struct nameidata *nd, struct qstr *name,
729 struct path *path)
730 {
731 struct vfsmount *mnt = nd->path.mnt;
732 struct dentry *dentry, *parent;
733 struct inode *dir;
734 /*
735 * See if the low-level filesystem might want
736 * to use its own hash..
737 */
738 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
739 int err = nd->path.dentry->d_op->d_hash(nd->path.dentry, name);
740 if (err < 0)
741 return err;
742 }
743
744 dentry = __d_lookup(nd->path.dentry, name);
745 if (!dentry)
746 goto need_lookup;
747 if (dentry->d_op && dentry->d_op->d_revalidate)
748 goto need_revalidate;
749 done:
750 path->mnt = mnt;
751 path->dentry = dentry;
752 __follow_mount(path);
753 return 0;
754
755 need_lookup:
756 parent = nd->path.dentry;
757 dir = parent->d_inode;
758
759 mutex_lock(&dir->i_mutex);
760 /*
761 * First re-do the cached lookup just in case it was created
762 * while we waited for the directory semaphore..
763 *
764 * FIXME! This could use version numbering or similar to
765 * avoid unnecessary cache lookups.
766 *
767 * The "dcache_lock" is purely to protect the RCU list walker
768 * from concurrent renames at this point (we mustn't get false
769 * negatives from the RCU list walk here, unlike the optimistic
770 * fast walk).
771 *
772 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
773 */
774 dentry = d_lookup(parent, name);
775 if (!dentry) {
776 struct dentry *new;
777
778 /* Don't create child dentry for a dead directory. */
779 dentry = ERR_PTR(-ENOENT);
780 if (IS_DEADDIR(dir))
781 goto out_unlock;
782
783 new = d_alloc(parent, name);
784 dentry = ERR_PTR(-ENOMEM);
785 if (new) {
786 dentry = dir->i_op->lookup(dir, new, nd);
787 if (dentry)
788 dput(new);
789 else
790 dentry = new;
791 }
792 out_unlock:
793 mutex_unlock(&dir->i_mutex);
794 if (IS_ERR(dentry))
795 goto fail;
796 goto done;
797 }
798
799 /*
800 * Uhhuh! Nasty case: the cache was re-populated while
801 * we waited on the semaphore. Need to revalidate.
802 */
803 mutex_unlock(&dir->i_mutex);
804 if (dentry->d_op && dentry->d_op->d_revalidate) {
805 dentry = do_revalidate(dentry, nd);
806 if (!dentry)
807 dentry = ERR_PTR(-ENOENT);
808 }
809 if (IS_ERR(dentry))
810 goto fail;
811 goto done;
812
813 need_revalidate:
814 dentry = do_revalidate(dentry, nd);
815 if (!dentry)
816 goto need_lookup;
817 if (IS_ERR(dentry))
818 goto fail;
819 goto done;
820
821 fail:
822 return PTR_ERR(dentry);
823 }
824
825 /*
826 * Name resolution.
827 * This is the basic name resolution function, turning a pathname into
828 * the final dentry. We expect 'base' to be positive and a directory.
829 *
830 * Returns 0 and nd will have valid dentry and mnt on success.
831 * Returns error and drops reference to input namei data on failure.
832 */
833 static int link_path_walk(const char *name, struct nameidata *nd)
834 {
835 struct path next;
836 struct inode *inode;
837 int err;
838 unsigned int lookup_flags = nd->flags;
839
840 while (*name=='/')
841 name++;
842 if (!*name)
843 goto return_reval;
844
845 inode = nd->path.dentry->d_inode;
846 if (nd->depth)
847 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
848
849 /* At this point we know we have a real path component. */
850 for(;;) {
851 unsigned long hash;
852 struct qstr this;
853 unsigned int c;
854
855 nd->flags |= LOOKUP_CONTINUE;
856 err = exec_permission(inode);
857 if (err)
858 break;
859
860 this.name = name;
861 c = *(const unsigned char *)name;
862
863 hash = init_name_hash();
864 do {
865 name++;
866 hash = partial_name_hash(c, hash);
867 c = *(const unsigned char *)name;
868 } while (c && (c != '/'));
869 this.len = name - (const char *) this.name;
870 this.hash = end_name_hash(hash);
871
872 /* remove trailing slashes? */
873 if (!c)
874 goto last_component;
875 while (*++name == '/');
876 if (!*name)
877 goto last_with_slashes;
878
879 /*
880 * "." and ".." are special - ".." especially so because it has
881 * to be able to know about the current root directory and
882 * parent relationships.
883 */
884 if (this.name[0] == '.') switch (this.len) {
885 default:
886 break;
887 case 2:
888 if (this.name[1] != '.')
889 break;
890 follow_dotdot(nd);
891 inode = nd->path.dentry->d_inode;
892 /* fallthrough */
893 case 1:
894 continue;
895 }
896 /* This does the actual lookups.. */
897 err = do_lookup(nd, &this, &next);
898 if (err)
899 break;
900
901 err = -ENOENT;
902 inode = next.dentry->d_inode;
903 if (!inode)
904 goto out_dput;
905
906 if (inode->i_op->follow_link) {
907 err = do_follow_link(&next, nd);
908 if (err)
909 goto return_err;
910 err = -ENOENT;
911 inode = nd->path.dentry->d_inode;
912 if (!inode)
913 break;
914 } else
915 path_to_nameidata(&next, nd);
916 err = -ENOTDIR;
917 if (!inode->i_op->lookup)
918 break;
919 continue;
920 /* here ends the main loop */
921
922 last_with_slashes:
923 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
924 last_component:
925 /* Clear LOOKUP_CONTINUE iff it was previously unset */
926 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
927 if (lookup_flags & LOOKUP_PARENT)
928 goto lookup_parent;
929 if (this.name[0] == '.') switch (this.len) {
930 default:
931 break;
932 case 2:
933 if (this.name[1] != '.')
934 break;
935 follow_dotdot(nd);
936 inode = nd->path.dentry->d_inode;
937 /* fallthrough */
938 case 1:
939 goto return_reval;
940 }
941 err = do_lookup(nd, &this, &next);
942 if (err)
943 break;
944 inode = next.dentry->d_inode;
945 if ((lookup_flags & LOOKUP_FOLLOW)
946 && inode && inode->i_op->follow_link) {
947 err = do_follow_link(&next, nd);
948 if (err)
949 goto return_err;
950 inode = nd->path.dentry->d_inode;
951 } else
952 path_to_nameidata(&next, nd);
953 err = -ENOENT;
954 if (!inode)
955 break;
956 if (lookup_flags & LOOKUP_DIRECTORY) {
957 err = -ENOTDIR;
958 if (!inode->i_op->lookup)
959 break;
960 }
961 goto return_base;
962 lookup_parent:
963 nd->last = this;
964 nd->last_type = LAST_NORM;
965 if (this.name[0] != '.')
966 goto return_base;
967 if (this.len == 1)
968 nd->last_type = LAST_DOT;
969 else if (this.len == 2 && this.name[1] == '.')
970 nd->last_type = LAST_DOTDOT;
971 else
972 goto return_base;
973 return_reval:
974 /*
975 * We bypassed the ordinary revalidation routines.
976 * We may need to check the cached dentry for staleness.
977 */
978 if (nd->path.dentry && nd->path.dentry->d_sb &&
979 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
980 err = -ESTALE;
981 /* Note: we do not d_invalidate() */
982 if (!nd->path.dentry->d_op->d_revalidate(
983 nd->path.dentry, nd))
984 break;
985 }
986 return_base:
987 return 0;
988 out_dput:
989 path_put_conditional(&next, nd);
990 break;
991 }
992 path_put(&nd->path);
993 return_err:
994 return err;
995 }
996
997 static int path_walk(const char *name, struct nameidata *nd)
998 {
999 struct path save = nd->path;
1000 int result;
1001
1002 current->total_link_count = 0;
1003
1004 /* make sure the stuff we saved doesn't go away */
1005 path_get(&save);
1006
1007 result = link_path_walk(name, nd);
1008 if (result == -ESTALE) {
1009 /* nd->path had been dropped */
1010 current->total_link_count = 0;
1011 nd->path = save;
1012 path_get(&nd->path);
1013 nd->flags |= LOOKUP_REVAL;
1014 result = link_path_walk(name, nd);
1015 }
1016
1017 path_put(&save);
1018
1019 return result;
1020 }
1021
1022 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1023 {
1024 int retval = 0;
1025 int fput_needed;
1026 struct file *file;
1027
1028 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1029 nd->flags = flags;
1030 nd->depth = 0;
1031 nd->root.mnt = NULL;
1032
1033 if (*name=='/') {
1034 set_root(nd);
1035 nd->path = nd->root;
1036 path_get(&nd->root);
1037 } else if (dfd == AT_FDCWD) {
1038 struct fs_struct *fs = current->fs;
1039 read_lock(&fs->lock);
1040 nd->path = fs->pwd;
1041 path_get(&fs->pwd);
1042 read_unlock(&fs->lock);
1043 } else {
1044 struct dentry *dentry;
1045
1046 file = fget_light(dfd, &fput_needed);
1047 retval = -EBADF;
1048 if (!file)
1049 goto out_fail;
1050
1051 dentry = file->f_path.dentry;
1052
1053 retval = -ENOTDIR;
1054 if (!S_ISDIR(dentry->d_inode->i_mode))
1055 goto fput_fail;
1056
1057 retval = file_permission(file, MAY_EXEC);
1058 if (retval)
1059 goto fput_fail;
1060
1061 nd->path = file->f_path;
1062 path_get(&file->f_path);
1063
1064 fput_light(file, fput_needed);
1065 }
1066 return 0;
1067
1068 fput_fail:
1069 fput_light(file, fput_needed);
1070 out_fail:
1071 return retval;
1072 }
1073
1074 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1075 static int do_path_lookup(int dfd, const char *name,
1076 unsigned int flags, struct nameidata *nd)
1077 {
1078 int retval = path_init(dfd, name, flags, nd);
1079 if (!retval)
1080 retval = path_walk(name, nd);
1081 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1082 nd->path.dentry->d_inode))
1083 audit_inode(name, nd->path.dentry);
1084 if (nd->root.mnt) {
1085 path_put(&nd->root);
1086 nd->root.mnt = NULL;
1087 }
1088 return retval;
1089 }
1090
1091 int path_lookup(const char *name, unsigned int flags,
1092 struct nameidata *nd)
1093 {
1094 return do_path_lookup(AT_FDCWD, name, flags, nd);
1095 }
1096
1097 int kern_path(const char *name, unsigned int flags, struct path *path)
1098 {
1099 struct nameidata nd;
1100 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1101 if (!res)
1102 *path = nd.path;
1103 return res;
1104 }
1105
1106 /**
1107 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1108 * @dentry: pointer to dentry of the base directory
1109 * @mnt: pointer to vfs mount of the base directory
1110 * @name: pointer to file name
1111 * @flags: lookup flags
1112 * @nd: pointer to nameidata
1113 */
1114 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1115 const char *name, unsigned int flags,
1116 struct nameidata *nd)
1117 {
1118 int retval;
1119
1120 /* same as do_path_lookup */
1121 nd->last_type = LAST_ROOT;
1122 nd->flags = flags;
1123 nd->depth = 0;
1124
1125 nd->path.dentry = dentry;
1126 nd->path.mnt = mnt;
1127 path_get(&nd->path);
1128 nd->root = nd->path;
1129 path_get(&nd->root);
1130
1131 retval = path_walk(name, nd);
1132 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1133 nd->path.dentry->d_inode))
1134 audit_inode(name, nd->path.dentry);
1135
1136 path_put(&nd->root);
1137 nd->root.mnt = NULL;
1138
1139 return retval;
1140 }
1141
1142 static struct dentry *__lookup_hash(struct qstr *name,
1143 struct dentry *base, struct nameidata *nd)
1144 {
1145 struct dentry *dentry;
1146 struct inode *inode;
1147 int err;
1148
1149 inode = base->d_inode;
1150
1151 /*
1152 * See if the low-level filesystem might want
1153 * to use its own hash..
1154 */
1155 if (base->d_op && base->d_op->d_hash) {
1156 err = base->d_op->d_hash(base, name);
1157 dentry = ERR_PTR(err);
1158 if (err < 0)
1159 goto out;
1160 }
1161
1162 dentry = __d_lookup(base, name);
1163
1164 /* lockess __d_lookup may fail due to concurrent d_move()
1165 * in some unrelated directory, so try with d_lookup
1166 */
1167 if (!dentry)
1168 dentry = d_lookup(base, name);
1169
1170 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
1171 dentry = do_revalidate(dentry, nd);
1172
1173 if (!dentry) {
1174 struct dentry *new;
1175
1176 /* Don't create child dentry for a dead directory. */
1177 dentry = ERR_PTR(-ENOENT);
1178 if (IS_DEADDIR(inode))
1179 goto out;
1180
1181 new = d_alloc(base, name);
1182 dentry = ERR_PTR(-ENOMEM);
1183 if (!new)
1184 goto out;
1185 dentry = inode->i_op->lookup(inode, new, nd);
1186 if (!dentry)
1187 dentry = new;
1188 else
1189 dput(new);
1190 }
1191 out:
1192 return dentry;
1193 }
1194
1195 /*
1196 * Restricted form of lookup. Doesn't follow links, single-component only,
1197 * needs parent already locked. Doesn't follow mounts.
1198 * SMP-safe.
1199 */
1200 static struct dentry *lookup_hash(struct nameidata *nd)
1201 {
1202 int err;
1203
1204 err = exec_permission(nd->path.dentry->d_inode);
1205 if (err)
1206 return ERR_PTR(err);
1207 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1208 }
1209
1210 static int __lookup_one_len(const char *name, struct qstr *this,
1211 struct dentry *base, int len)
1212 {
1213 unsigned long hash;
1214 unsigned int c;
1215
1216 this->name = name;
1217 this->len = len;
1218 if (!len)
1219 return -EACCES;
1220
1221 hash = init_name_hash();
1222 while (len--) {
1223 c = *(const unsigned char *)name++;
1224 if (c == '/' || c == '\0')
1225 return -EACCES;
1226 hash = partial_name_hash(c, hash);
1227 }
1228 this->hash = end_name_hash(hash);
1229 return 0;
1230 }
1231
1232 /**
1233 * lookup_one_len - filesystem helper to lookup single pathname component
1234 * @name: pathname component to lookup
1235 * @base: base directory to lookup from
1236 * @len: maximum length @len should be interpreted to
1237 *
1238 * Note that this routine is purely a helper for filesystem usage and should
1239 * not be called by generic code. Also note that by using this function the
1240 * nameidata argument is passed to the filesystem methods and a filesystem
1241 * using this helper needs to be prepared for that.
1242 */
1243 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1244 {
1245 int err;
1246 struct qstr this;
1247
1248 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1249
1250 err = __lookup_one_len(name, &this, base, len);
1251 if (err)
1252 return ERR_PTR(err);
1253
1254 err = exec_permission(base->d_inode);
1255 if (err)
1256 return ERR_PTR(err);
1257 return __lookup_hash(&this, base, NULL);
1258 }
1259
1260 int user_path_at(int dfd, const char __user *name, unsigned flags,
1261 struct path *path)
1262 {
1263 struct nameidata nd;
1264 char *tmp = getname(name);
1265 int err = PTR_ERR(tmp);
1266 if (!IS_ERR(tmp)) {
1267
1268 BUG_ON(flags & LOOKUP_PARENT);
1269
1270 err = do_path_lookup(dfd, tmp, flags, &nd);
1271 putname(tmp);
1272 if (!err)
1273 *path = nd.path;
1274 }
1275 return err;
1276 }
1277
1278 static int user_path_parent(int dfd, const char __user *path,
1279 struct nameidata *nd, char **name)
1280 {
1281 char *s = getname(path);
1282 int error;
1283
1284 if (IS_ERR(s))
1285 return PTR_ERR(s);
1286
1287 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1288 if (error)
1289 putname(s);
1290 else
1291 *name = s;
1292
1293 return error;
1294 }
1295
1296 /*
1297 * It's inline, so penalty for filesystems that don't use sticky bit is
1298 * minimal.
1299 */
1300 static inline int check_sticky(struct inode *dir, struct inode *inode)
1301 {
1302 uid_t fsuid = current_fsuid();
1303
1304 if (!(dir->i_mode & S_ISVTX))
1305 return 0;
1306 if (inode->i_uid == fsuid)
1307 return 0;
1308 if (dir->i_uid == fsuid)
1309 return 0;
1310 return !capable(CAP_FOWNER);
1311 }
1312
1313 /*
1314 * Check whether we can remove a link victim from directory dir, check
1315 * whether the type of victim is right.
1316 * 1. We can't do it if dir is read-only (done in permission())
1317 * 2. We should have write and exec permissions on dir
1318 * 3. We can't remove anything from append-only dir
1319 * 4. We can't do anything with immutable dir (done in permission())
1320 * 5. If the sticky bit on dir is set we should either
1321 * a. be owner of dir, or
1322 * b. be owner of victim, or
1323 * c. have CAP_FOWNER capability
1324 * 6. If the victim is append-only or immutable we can't do antyhing with
1325 * links pointing to it.
1326 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1327 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1328 * 9. We can't remove a root or mountpoint.
1329 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1330 * nfs_async_unlink().
1331 */
1332 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1333 {
1334 int error;
1335
1336 if (!victim->d_inode)
1337 return -ENOENT;
1338
1339 BUG_ON(victim->d_parent->d_inode != dir);
1340 audit_inode_child(victim->d_name.name, victim, dir);
1341
1342 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1343 if (error)
1344 return error;
1345 if (IS_APPEND(dir))
1346 return -EPERM;
1347 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1348 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1349 return -EPERM;
1350 if (isdir) {
1351 if (!S_ISDIR(victim->d_inode->i_mode))
1352 return -ENOTDIR;
1353 if (IS_ROOT(victim))
1354 return -EBUSY;
1355 } else if (S_ISDIR(victim->d_inode->i_mode))
1356 return -EISDIR;
1357 if (IS_DEADDIR(dir))
1358 return -ENOENT;
1359 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1360 return -EBUSY;
1361 return 0;
1362 }
1363
1364 /* Check whether we can create an object with dentry child in directory
1365 * dir.
1366 * 1. We can't do it if child already exists (open has special treatment for
1367 * this case, but since we are inlined it's OK)
1368 * 2. We can't do it if dir is read-only (done in permission())
1369 * 3. We should have write and exec permissions on dir
1370 * 4. We can't do it if dir is immutable (done in permission())
1371 */
1372 static inline int may_create(struct inode *dir, struct dentry *child)
1373 {
1374 if (child->d_inode)
1375 return -EEXIST;
1376 if (IS_DEADDIR(dir))
1377 return -ENOENT;
1378 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1379 }
1380
1381 /*
1382 * O_DIRECTORY translates into forcing a directory lookup.
1383 */
1384 static inline int lookup_flags(unsigned int f)
1385 {
1386 unsigned long retval = LOOKUP_FOLLOW;
1387
1388 if (f & O_NOFOLLOW)
1389 retval &= ~LOOKUP_FOLLOW;
1390
1391 if (f & O_DIRECTORY)
1392 retval |= LOOKUP_DIRECTORY;
1393
1394 return retval;
1395 }
1396
1397 /*
1398 * p1 and p2 should be directories on the same fs.
1399 */
1400 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1401 {
1402 struct dentry *p;
1403
1404 if (p1 == p2) {
1405 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1406 return NULL;
1407 }
1408
1409 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1410
1411 p = d_ancestor(p2, p1);
1412 if (p) {
1413 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1414 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1415 return p;
1416 }
1417
1418 p = d_ancestor(p1, p2);
1419 if (p) {
1420 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1421 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1422 return p;
1423 }
1424
1425 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1426 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1427 return NULL;
1428 }
1429
1430 void unlock_rename(struct dentry *p1, struct dentry *p2)
1431 {
1432 mutex_unlock(&p1->d_inode->i_mutex);
1433 if (p1 != p2) {
1434 mutex_unlock(&p2->d_inode->i_mutex);
1435 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1436 }
1437 }
1438
1439 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1440 struct nameidata *nd)
1441 {
1442 int error = may_create(dir, dentry);
1443
1444 if (error)
1445 return error;
1446
1447 if (!dir->i_op->create)
1448 return -EACCES; /* shouldn't it be ENOSYS? */
1449 mode &= S_IALLUGO;
1450 mode |= S_IFREG;
1451 error = security_inode_create(dir, dentry, mode);
1452 if (error)
1453 return error;
1454 vfs_dq_init(dir);
1455 error = dir->i_op->create(dir, dentry, mode, nd);
1456 if (!error)
1457 fsnotify_create(dir, dentry);
1458 return error;
1459 }
1460
1461 int may_open(struct path *path, int acc_mode, int flag)
1462 {
1463 struct dentry *dentry = path->dentry;
1464 struct inode *inode = dentry->d_inode;
1465 int error;
1466
1467 if (!inode)
1468 return -ENOENT;
1469
1470 switch (inode->i_mode & S_IFMT) {
1471 case S_IFLNK:
1472 return -ELOOP;
1473 case S_IFDIR:
1474 if (acc_mode & MAY_WRITE)
1475 return -EISDIR;
1476 break;
1477 case S_IFBLK:
1478 case S_IFCHR:
1479 if (path->mnt->mnt_flags & MNT_NODEV)
1480 return -EACCES;
1481 /*FALLTHRU*/
1482 case S_IFIFO:
1483 case S_IFSOCK:
1484 flag &= ~O_TRUNC;
1485 break;
1486 }
1487
1488 error = inode_permission(inode, acc_mode);
1489 if (error)
1490 return error;
1491
1492 /*
1493 * An append-only file must be opened in append mode for writing.
1494 */
1495 if (IS_APPEND(inode)) {
1496 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1497 return -EPERM;
1498 if (flag & O_TRUNC)
1499 return -EPERM;
1500 }
1501
1502 /* O_NOATIME can only be set by the owner or superuser */
1503 if (flag & O_NOATIME && !is_owner_or_cap(inode))
1504 return -EPERM;
1505
1506 /*
1507 * Ensure there are no outstanding leases on the file.
1508 */
1509 return break_lease(inode, flag);
1510 }
1511
1512 static int handle_truncate(struct path *path)
1513 {
1514 struct inode *inode = path->dentry->d_inode;
1515 int error = get_write_access(inode);
1516 if (error)
1517 return error;
1518 /*
1519 * Refuse to truncate files with mandatory locks held on them.
1520 */
1521 error = locks_verify_locked(inode);
1522 if (!error)
1523 error = security_path_truncate(path, 0,
1524 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1525 if (!error) {
1526 error = do_truncate(path->dentry, 0,
1527 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1528 NULL);
1529 }
1530 put_write_access(inode);
1531 return error;
1532 }
1533
1534 /*
1535 * Be careful about ever adding any more callers of this
1536 * function. Its flags must be in the namei format, not
1537 * what get passed to sys_open().
1538 */
1539 static int __open_namei_create(struct nameidata *nd, struct path *path,
1540 int flag, int mode)
1541 {
1542 int error;
1543 struct dentry *dir = nd->path.dentry;
1544
1545 if (!IS_POSIXACL(dir->d_inode))
1546 mode &= ~current_umask();
1547 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1548 if (error)
1549 goto out_unlock;
1550 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1551 out_unlock:
1552 mutex_unlock(&dir->d_inode->i_mutex);
1553 dput(nd->path.dentry);
1554 nd->path.dentry = path->dentry;
1555 if (error)
1556 return error;
1557 /* Don't check for write permission, don't truncate */
1558 return may_open(&nd->path, 0, flag & ~O_TRUNC);
1559 }
1560
1561 /*
1562 * Note that while the flag value (low two bits) for sys_open means:
1563 * 00 - read-only
1564 * 01 - write-only
1565 * 10 - read-write
1566 * 11 - special
1567 * it is changed into
1568 * 00 - no permissions needed
1569 * 01 - read-permission
1570 * 10 - write-permission
1571 * 11 - read-write
1572 * for the internal routines (ie open_namei()/follow_link() etc)
1573 * This is more logical, and also allows the 00 "no perm needed"
1574 * to be used for symlinks (where the permissions are checked
1575 * later).
1576 *
1577 */
1578 static inline int open_to_namei_flags(int flag)
1579 {
1580 if ((flag+1) & O_ACCMODE)
1581 flag++;
1582 return flag;
1583 }
1584
1585 static int open_will_truncate(int flag, struct inode *inode)
1586 {
1587 /*
1588 * We'll never write to the fs underlying
1589 * a device file.
1590 */
1591 if (special_file(inode->i_mode))
1592 return 0;
1593 return (flag & O_TRUNC);
1594 }
1595
1596 /*
1597 * Note that the low bits of the passed in "open_flag"
1598 * are not the same as in the local variable "flag". See
1599 * open_to_namei_flags() for more details.
1600 */
1601 struct file *do_filp_open(int dfd, const char *pathname,
1602 int open_flag, int mode, int acc_mode)
1603 {
1604 struct file *filp;
1605 struct nameidata nd;
1606 int error;
1607 struct path path;
1608 struct dentry *dir;
1609 int count = 0;
1610 int will_truncate;
1611 int flag = open_to_namei_flags(open_flag);
1612 int force_reval = 0;
1613
1614 /*
1615 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
1616 * check for O_DSYNC if the need any syncing at all we enforce it's
1617 * always set instead of having to deal with possibly weird behaviour
1618 * for malicious applications setting only __O_SYNC.
1619 */
1620 if (open_flag & __O_SYNC)
1621 open_flag |= O_DSYNC;
1622
1623 if (!acc_mode)
1624 acc_mode = MAY_OPEN | ACC_MODE(open_flag);
1625
1626 /* O_TRUNC implies we need access checks for write permissions */
1627 if (flag & O_TRUNC)
1628 acc_mode |= MAY_WRITE;
1629
1630 /* Allow the LSM permission hook to distinguish append
1631 access from general write access. */
1632 if (flag & O_APPEND)
1633 acc_mode |= MAY_APPEND;
1634
1635 /*
1636 * The simplest case - just a plain lookup.
1637 */
1638 if (!(flag & O_CREAT)) {
1639 filp = get_empty_filp();
1640
1641 if (filp == NULL)
1642 return ERR_PTR(-ENFILE);
1643 nd.intent.open.file = filp;
1644 filp->f_flags = open_flag;
1645 nd.intent.open.flags = flag;
1646 nd.intent.open.create_mode = 0;
1647 error = do_path_lookup(dfd, pathname,
1648 lookup_flags(flag)|LOOKUP_OPEN, &nd);
1649 if (IS_ERR(nd.intent.open.file)) {
1650 if (error == 0) {
1651 error = PTR_ERR(nd.intent.open.file);
1652 path_put(&nd.path);
1653 }
1654 } else if (error)
1655 release_open_intent(&nd);
1656 if (error)
1657 return ERR_PTR(error);
1658 goto ok;
1659 }
1660
1661 /*
1662 * Create - we need to know the parent.
1663 */
1664 reval:
1665 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1666 if (error)
1667 return ERR_PTR(error);
1668 if (force_reval)
1669 nd.flags |= LOOKUP_REVAL;
1670 error = path_walk(pathname, &nd);
1671 if (error) {
1672 if (nd.root.mnt)
1673 path_put(&nd.root);
1674 return ERR_PTR(error);
1675 }
1676 if (unlikely(!audit_dummy_context()))
1677 audit_inode(pathname, nd.path.dentry);
1678
1679 /*
1680 * We have the parent and last component. First of all, check
1681 * that we are not asked to creat(2) an obvious directory - that
1682 * will not do.
1683 */
1684 error = -EISDIR;
1685 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1686 goto exit_parent;
1687
1688 error = -ENFILE;
1689 filp = get_empty_filp();
1690 if (filp == NULL)
1691 goto exit_parent;
1692 nd.intent.open.file = filp;
1693 filp->f_flags = open_flag;
1694 nd.intent.open.flags = flag;
1695 nd.intent.open.create_mode = mode;
1696 dir = nd.path.dentry;
1697 nd.flags &= ~LOOKUP_PARENT;
1698 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1699 if (flag & O_EXCL)
1700 nd.flags |= LOOKUP_EXCL;
1701 mutex_lock(&dir->d_inode->i_mutex);
1702 path.dentry = lookup_hash(&nd);
1703 path.mnt = nd.path.mnt;
1704
1705 do_last:
1706 error = PTR_ERR(path.dentry);
1707 if (IS_ERR(path.dentry)) {
1708 mutex_unlock(&dir->d_inode->i_mutex);
1709 goto exit;
1710 }
1711
1712 if (IS_ERR(nd.intent.open.file)) {
1713 error = PTR_ERR(nd.intent.open.file);
1714 goto exit_mutex_unlock;
1715 }
1716
1717 /* Negative dentry, just create the file */
1718 if (!path.dentry->d_inode) {
1719 /*
1720 * This write is needed to ensure that a
1721 * ro->rw transition does not occur between
1722 * the time when the file is created and when
1723 * a permanent write count is taken through
1724 * the 'struct file' in nameidata_to_filp().
1725 */
1726 error = mnt_want_write(nd.path.mnt);
1727 if (error)
1728 goto exit_mutex_unlock;
1729 error = __open_namei_create(&nd, &path, flag, mode);
1730 if (error) {
1731 mnt_drop_write(nd.path.mnt);
1732 goto exit;
1733 }
1734 filp = nameidata_to_filp(&nd);
1735 mnt_drop_write(nd.path.mnt);
1736 if (nd.root.mnt)
1737 path_put(&nd.root);
1738 if (!IS_ERR(filp)) {
1739 error = ima_file_check(filp, acc_mode);
1740 if (error) {
1741 fput(filp);
1742 filp = ERR_PTR(error);
1743 }
1744 }
1745 return filp;
1746 }
1747
1748 /*
1749 * It already exists.
1750 */
1751 mutex_unlock(&dir->d_inode->i_mutex);
1752 audit_inode(pathname, path.dentry);
1753
1754 error = -EEXIST;
1755 if (flag & O_EXCL)
1756 goto exit_dput;
1757
1758 if (__follow_mount(&path)) {
1759 error = -ELOOP;
1760 if (flag & O_NOFOLLOW)
1761 goto exit_dput;
1762 }
1763
1764 error = -ENOENT;
1765 if (!path.dentry->d_inode)
1766 goto exit_dput;
1767 if (path.dentry->d_inode->i_op->follow_link)
1768 goto do_link;
1769
1770 path_to_nameidata(&path, &nd);
1771 error = -EISDIR;
1772 if (S_ISDIR(path.dentry->d_inode->i_mode))
1773 goto exit;
1774 ok:
1775 /*
1776 * Consider:
1777 * 1. may_open() truncates a file
1778 * 2. a rw->ro mount transition occurs
1779 * 3. nameidata_to_filp() fails due to
1780 * the ro mount.
1781 * That would be inconsistent, and should
1782 * be avoided. Taking this mnt write here
1783 * ensures that (2) can not occur.
1784 */
1785 will_truncate = open_will_truncate(flag, nd.path.dentry->d_inode);
1786 if (will_truncate) {
1787 error = mnt_want_write(nd.path.mnt);
1788 if (error)
1789 goto exit;
1790 }
1791 error = may_open(&nd.path, acc_mode, flag);
1792 if (error) {
1793 if (will_truncate)
1794 mnt_drop_write(nd.path.mnt);
1795 goto exit;
1796 }
1797 filp = nameidata_to_filp(&nd);
1798 if (!IS_ERR(filp)) {
1799 error = ima_file_check(filp, acc_mode);
1800 if (error) {
1801 fput(filp);
1802 filp = ERR_PTR(error);
1803 }
1804 }
1805 if (!IS_ERR(filp)) {
1806 if (acc_mode & MAY_WRITE)
1807 vfs_dq_init(nd.path.dentry->d_inode);
1808
1809 if (will_truncate) {
1810 error = handle_truncate(&nd.path);
1811 if (error) {
1812 fput(filp);
1813 filp = ERR_PTR(error);
1814 }
1815 }
1816 }
1817 /*
1818 * It is now safe to drop the mnt write
1819 * because the filp has had a write taken
1820 * on its behalf.
1821 */
1822 if (will_truncate)
1823 mnt_drop_write(nd.path.mnt);
1824 if (nd.root.mnt)
1825 path_put(&nd.root);
1826 return filp;
1827
1828 exit_mutex_unlock:
1829 mutex_unlock(&dir->d_inode->i_mutex);
1830 exit_dput:
1831 path_put_conditional(&path, &nd);
1832 exit:
1833 if (!IS_ERR(nd.intent.open.file))
1834 release_open_intent(&nd);
1835 exit_parent:
1836 if (nd.root.mnt)
1837 path_put(&nd.root);
1838 path_put(&nd.path);
1839 return ERR_PTR(error);
1840
1841 do_link:
1842 error = -ELOOP;
1843 if (flag & O_NOFOLLOW)
1844 goto exit_dput;
1845 /*
1846 * This is subtle. Instead of calling do_follow_link() we do the
1847 * thing by hands. The reason is that this way we have zero link_count
1848 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1849 * After that we have the parent and last component, i.e.
1850 * we are in the same situation as after the first path_walk().
1851 * Well, almost - if the last component is normal we get its copy
1852 * stored in nd->last.name and we will have to putname() it when we
1853 * are done. Procfs-like symlinks just set LAST_BIND.
1854 */
1855 nd.flags |= LOOKUP_PARENT;
1856 error = security_inode_follow_link(path.dentry, &nd);
1857 if (error)
1858 goto exit_dput;
1859 error = __do_follow_link(&path, &nd);
1860 path_put(&path);
1861 if (error) {
1862 /* Does someone understand code flow here? Or it is only
1863 * me so stupid? Anathema to whoever designed this non-sense
1864 * with "intent.open".
1865 */
1866 release_open_intent(&nd);
1867 if (nd.root.mnt)
1868 path_put(&nd.root);
1869 if (error == -ESTALE && !force_reval) {
1870 force_reval = 1;
1871 goto reval;
1872 }
1873 return ERR_PTR(error);
1874 }
1875 nd.flags &= ~LOOKUP_PARENT;
1876 if (nd.last_type == LAST_BIND)
1877 goto ok;
1878 error = -EISDIR;
1879 if (nd.last_type != LAST_NORM)
1880 goto exit;
1881 if (nd.last.name[nd.last.len]) {
1882 __putname(nd.last.name);
1883 goto exit;
1884 }
1885 error = -ELOOP;
1886 if (count++==32) {
1887 __putname(nd.last.name);
1888 goto exit;
1889 }
1890 dir = nd.path.dentry;
1891 mutex_lock(&dir->d_inode->i_mutex);
1892 path.dentry = lookup_hash(&nd);
1893 path.mnt = nd.path.mnt;
1894 __putname(nd.last.name);
1895 goto do_last;
1896 }
1897
1898 /**
1899 * filp_open - open file and return file pointer
1900 *
1901 * @filename: path to open
1902 * @flags: open flags as per the open(2) second argument
1903 * @mode: mode for the new file if O_CREAT is set, else ignored
1904 *
1905 * This is the helper to open a file from kernelspace if you really
1906 * have to. But in generally you should not do this, so please move
1907 * along, nothing to see here..
1908 */
1909 struct file *filp_open(const char *filename, int flags, int mode)
1910 {
1911 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1912 }
1913 EXPORT_SYMBOL(filp_open);
1914
1915 /**
1916 * lookup_create - lookup a dentry, creating it if it doesn't exist
1917 * @nd: nameidata info
1918 * @is_dir: directory flag
1919 *
1920 * Simple function to lookup and return a dentry and create it
1921 * if it doesn't exist. Is SMP-safe.
1922 *
1923 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1924 */
1925 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1926 {
1927 struct dentry *dentry = ERR_PTR(-EEXIST);
1928
1929 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1930 /*
1931 * Yucky last component or no last component at all?
1932 * (foo/., foo/.., /////)
1933 */
1934 if (nd->last_type != LAST_NORM)
1935 goto fail;
1936 nd->flags &= ~LOOKUP_PARENT;
1937 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1938 nd->intent.open.flags = O_EXCL;
1939
1940 /*
1941 * Do the final lookup.
1942 */
1943 dentry = lookup_hash(nd);
1944 if (IS_ERR(dentry))
1945 goto fail;
1946
1947 if (dentry->d_inode)
1948 goto eexist;
1949 /*
1950 * Special case - lookup gave negative, but... we had foo/bar/
1951 * From the vfs_mknod() POV we just have a negative dentry -
1952 * all is fine. Let's be bastards - you had / on the end, you've
1953 * been asking for (non-existent) directory. -ENOENT for you.
1954 */
1955 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1956 dput(dentry);
1957 dentry = ERR_PTR(-ENOENT);
1958 }
1959 return dentry;
1960 eexist:
1961 dput(dentry);
1962 dentry = ERR_PTR(-EEXIST);
1963 fail:
1964 return dentry;
1965 }
1966 EXPORT_SYMBOL_GPL(lookup_create);
1967
1968 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1969 {
1970 int error = may_create(dir, dentry);
1971
1972 if (error)
1973 return error;
1974
1975 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1976 return -EPERM;
1977
1978 if (!dir->i_op->mknod)
1979 return -EPERM;
1980
1981 error = devcgroup_inode_mknod(mode, dev);
1982 if (error)
1983 return error;
1984
1985 error = security_inode_mknod(dir, dentry, mode, dev);
1986 if (error)
1987 return error;
1988
1989 vfs_dq_init(dir);
1990 error = dir->i_op->mknod(dir, dentry, mode, dev);
1991 if (!error)
1992 fsnotify_create(dir, dentry);
1993 return error;
1994 }
1995
1996 static int may_mknod(mode_t mode)
1997 {
1998 switch (mode & S_IFMT) {
1999 case S_IFREG:
2000 case S_IFCHR:
2001 case S_IFBLK:
2002 case S_IFIFO:
2003 case S_IFSOCK:
2004 case 0: /* zero mode translates to S_IFREG */
2005 return 0;
2006 case S_IFDIR:
2007 return -EPERM;
2008 default:
2009 return -EINVAL;
2010 }
2011 }
2012
2013 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2014 unsigned, dev)
2015 {
2016 int error;
2017 char *tmp;
2018 struct dentry *dentry;
2019 struct nameidata nd;
2020
2021 if (S_ISDIR(mode))
2022 return -EPERM;
2023
2024 error = user_path_parent(dfd, filename, &nd, &tmp);
2025 if (error)
2026 return error;
2027
2028 dentry = lookup_create(&nd, 0);
2029 if (IS_ERR(dentry)) {
2030 error = PTR_ERR(dentry);
2031 goto out_unlock;
2032 }
2033 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2034 mode &= ~current_umask();
2035 error = may_mknod(mode);
2036 if (error)
2037 goto out_dput;
2038 error = mnt_want_write(nd.path.mnt);
2039 if (error)
2040 goto out_dput;
2041 error = security_path_mknod(&nd.path, dentry, mode, dev);
2042 if (error)
2043 goto out_drop_write;
2044 switch (mode & S_IFMT) {
2045 case 0: case S_IFREG:
2046 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2047 break;
2048 case S_IFCHR: case S_IFBLK:
2049 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2050 new_decode_dev(dev));
2051 break;
2052 case S_IFIFO: case S_IFSOCK:
2053 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2054 break;
2055 }
2056 out_drop_write:
2057 mnt_drop_write(nd.path.mnt);
2058 out_dput:
2059 dput(dentry);
2060 out_unlock:
2061 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2062 path_put(&nd.path);
2063 putname(tmp);
2064
2065 return error;
2066 }
2067
2068 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2069 {
2070 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2071 }
2072
2073 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2074 {
2075 int error = may_create(dir, dentry);
2076
2077 if (error)
2078 return error;
2079
2080 if (!dir->i_op->mkdir)
2081 return -EPERM;
2082
2083 mode &= (S_IRWXUGO|S_ISVTX);
2084 error = security_inode_mkdir(dir, dentry, mode);
2085 if (error)
2086 return error;
2087
2088 vfs_dq_init(dir);
2089 error = dir->i_op->mkdir(dir, dentry, mode);
2090 if (!error)
2091 fsnotify_mkdir(dir, dentry);
2092 return error;
2093 }
2094
2095 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2096 {
2097 int error = 0;
2098 char * tmp;
2099 struct dentry *dentry;
2100 struct nameidata nd;
2101
2102 error = user_path_parent(dfd, pathname, &nd, &tmp);
2103 if (error)
2104 goto out_err;
2105
2106 dentry = lookup_create(&nd, 1);
2107 error = PTR_ERR(dentry);
2108 if (IS_ERR(dentry))
2109 goto out_unlock;
2110
2111 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2112 mode &= ~current_umask();
2113 error = mnt_want_write(nd.path.mnt);
2114 if (error)
2115 goto out_dput;
2116 error = security_path_mkdir(&nd.path, dentry, mode);
2117 if (error)
2118 goto out_drop_write;
2119 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2120 out_drop_write:
2121 mnt_drop_write(nd.path.mnt);
2122 out_dput:
2123 dput(dentry);
2124 out_unlock:
2125 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2126 path_put(&nd.path);
2127 putname(tmp);
2128 out_err:
2129 return error;
2130 }
2131
2132 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2133 {
2134 return sys_mkdirat(AT_FDCWD, pathname, mode);
2135 }
2136
2137 /*
2138 * We try to drop the dentry early: we should have
2139 * a usage count of 2 if we're the only user of this
2140 * dentry, and if that is true (possibly after pruning
2141 * the dcache), then we drop the dentry now.
2142 *
2143 * A low-level filesystem can, if it choses, legally
2144 * do a
2145 *
2146 * if (!d_unhashed(dentry))
2147 * return -EBUSY;
2148 *
2149 * if it cannot handle the case of removing a directory
2150 * that is still in use by something else..
2151 */
2152 void dentry_unhash(struct dentry *dentry)
2153 {
2154 dget(dentry);
2155 shrink_dcache_parent(dentry);
2156 spin_lock(&dcache_lock);
2157 spin_lock(&dentry->d_lock);
2158 if (atomic_read(&dentry->d_count) == 2)
2159 __d_drop(dentry);
2160 spin_unlock(&dentry->d_lock);
2161 spin_unlock(&dcache_lock);
2162 }
2163
2164 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2165 {
2166 int error = may_delete(dir, dentry, 1);
2167
2168 if (error)
2169 return error;
2170
2171 if (!dir->i_op->rmdir)
2172 return -EPERM;
2173
2174 vfs_dq_init(dir);
2175
2176 mutex_lock(&dentry->d_inode->i_mutex);
2177 dentry_unhash(dentry);
2178 if (d_mountpoint(dentry))
2179 error = -EBUSY;
2180 else {
2181 error = security_inode_rmdir(dir, dentry);
2182 if (!error) {
2183 error = dir->i_op->rmdir(dir, dentry);
2184 if (!error)
2185 dentry->d_inode->i_flags |= S_DEAD;
2186 }
2187 }
2188 mutex_unlock(&dentry->d_inode->i_mutex);
2189 if (!error) {
2190 d_delete(dentry);
2191 }
2192 dput(dentry);
2193
2194 return error;
2195 }
2196
2197 static long do_rmdir(int dfd, const char __user *pathname)
2198 {
2199 int error = 0;
2200 char * name;
2201 struct dentry *dentry;
2202 struct nameidata nd;
2203
2204 error = user_path_parent(dfd, pathname, &nd, &name);
2205 if (error)
2206 return error;
2207
2208 switch(nd.last_type) {
2209 case LAST_DOTDOT:
2210 error = -ENOTEMPTY;
2211 goto exit1;
2212 case LAST_DOT:
2213 error = -EINVAL;
2214 goto exit1;
2215 case LAST_ROOT:
2216 error = -EBUSY;
2217 goto exit1;
2218 }
2219
2220 nd.flags &= ~LOOKUP_PARENT;
2221
2222 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2223 dentry = lookup_hash(&nd);
2224 error = PTR_ERR(dentry);
2225 if (IS_ERR(dentry))
2226 goto exit2;
2227 error = mnt_want_write(nd.path.mnt);
2228 if (error)
2229 goto exit3;
2230 error = security_path_rmdir(&nd.path, dentry);
2231 if (error)
2232 goto exit4;
2233 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2234 exit4:
2235 mnt_drop_write(nd.path.mnt);
2236 exit3:
2237 dput(dentry);
2238 exit2:
2239 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2240 exit1:
2241 path_put(&nd.path);
2242 putname(name);
2243 return error;
2244 }
2245
2246 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2247 {
2248 return do_rmdir(AT_FDCWD, pathname);
2249 }
2250
2251 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2252 {
2253 int error = may_delete(dir, dentry, 0);
2254
2255 if (error)
2256 return error;
2257
2258 if (!dir->i_op->unlink)
2259 return -EPERM;
2260
2261 vfs_dq_init(dir);
2262
2263 mutex_lock(&dentry->d_inode->i_mutex);
2264 if (d_mountpoint(dentry))
2265 error = -EBUSY;
2266 else {
2267 error = security_inode_unlink(dir, dentry);
2268 if (!error)
2269 error = dir->i_op->unlink(dir, dentry);
2270 }
2271 mutex_unlock(&dentry->d_inode->i_mutex);
2272
2273 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2274 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2275 fsnotify_link_count(dentry->d_inode);
2276 d_delete(dentry);
2277 }
2278
2279 return error;
2280 }
2281
2282 /*
2283 * Make sure that the actual truncation of the file will occur outside its
2284 * directory's i_mutex. Truncate can take a long time if there is a lot of
2285 * writeout happening, and we don't want to prevent access to the directory
2286 * while waiting on the I/O.
2287 */
2288 static long do_unlinkat(int dfd, const char __user *pathname)
2289 {
2290 int error;
2291 char *name;
2292 struct dentry *dentry;
2293 struct nameidata nd;
2294 struct inode *inode = NULL;
2295
2296 error = user_path_parent(dfd, pathname, &nd, &name);
2297 if (error)
2298 return error;
2299
2300 error = -EISDIR;
2301 if (nd.last_type != LAST_NORM)
2302 goto exit1;
2303
2304 nd.flags &= ~LOOKUP_PARENT;
2305
2306 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2307 dentry = lookup_hash(&nd);
2308 error = PTR_ERR(dentry);
2309 if (!IS_ERR(dentry)) {
2310 /* Why not before? Because we want correct error value */
2311 if (nd.last.name[nd.last.len])
2312 goto slashes;
2313 inode = dentry->d_inode;
2314 if (inode)
2315 atomic_inc(&inode->i_count);
2316 error = mnt_want_write(nd.path.mnt);
2317 if (error)
2318 goto exit2;
2319 error = security_path_unlink(&nd.path, dentry);
2320 if (error)
2321 goto exit3;
2322 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2323 exit3:
2324 mnt_drop_write(nd.path.mnt);
2325 exit2:
2326 dput(dentry);
2327 }
2328 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2329 if (inode)
2330 iput(inode); /* truncate the inode here */
2331 exit1:
2332 path_put(&nd.path);
2333 putname(name);
2334 return error;
2335
2336 slashes:
2337 error = !dentry->d_inode ? -ENOENT :
2338 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2339 goto exit2;
2340 }
2341
2342 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2343 {
2344 if ((flag & ~AT_REMOVEDIR) != 0)
2345 return -EINVAL;
2346
2347 if (flag & AT_REMOVEDIR)
2348 return do_rmdir(dfd, pathname);
2349
2350 return do_unlinkat(dfd, pathname);
2351 }
2352
2353 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2354 {
2355 return do_unlinkat(AT_FDCWD, pathname);
2356 }
2357
2358 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2359 {
2360 int error = may_create(dir, dentry);
2361
2362 if (error)
2363 return error;
2364
2365 if (!dir->i_op->symlink)
2366 return -EPERM;
2367
2368 error = security_inode_symlink(dir, dentry, oldname);
2369 if (error)
2370 return error;
2371
2372 vfs_dq_init(dir);
2373 error = dir->i_op->symlink(dir, dentry, oldname);
2374 if (!error)
2375 fsnotify_create(dir, dentry);
2376 return error;
2377 }
2378
2379 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2380 int, newdfd, const char __user *, newname)
2381 {
2382 int error;
2383 char *from;
2384 char *to;
2385 struct dentry *dentry;
2386 struct nameidata nd;
2387
2388 from = getname(oldname);
2389 if (IS_ERR(from))
2390 return PTR_ERR(from);
2391
2392 error = user_path_parent(newdfd, newname, &nd, &to);
2393 if (error)
2394 goto out_putname;
2395
2396 dentry = lookup_create(&nd, 0);
2397 error = PTR_ERR(dentry);
2398 if (IS_ERR(dentry))
2399 goto out_unlock;
2400
2401 error = mnt_want_write(nd.path.mnt);
2402 if (error)
2403 goto out_dput;
2404 error = security_path_symlink(&nd.path, dentry, from);
2405 if (error)
2406 goto out_drop_write;
2407 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2408 out_drop_write:
2409 mnt_drop_write(nd.path.mnt);
2410 out_dput:
2411 dput(dentry);
2412 out_unlock:
2413 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2414 path_put(&nd.path);
2415 putname(to);
2416 out_putname:
2417 putname(from);
2418 return error;
2419 }
2420
2421 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2422 {
2423 return sys_symlinkat(oldname, AT_FDCWD, newname);
2424 }
2425
2426 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2427 {
2428 struct inode *inode = old_dentry->d_inode;
2429 int error;
2430
2431 if (!inode)
2432 return -ENOENT;
2433
2434 error = may_create(dir, new_dentry);
2435 if (error)
2436 return error;
2437
2438 if (dir->i_sb != inode->i_sb)
2439 return -EXDEV;
2440
2441 /*
2442 * A link to an append-only or immutable file cannot be created.
2443 */
2444 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2445 return -EPERM;
2446 if (!dir->i_op->link)
2447 return -EPERM;
2448 if (S_ISDIR(inode->i_mode))
2449 return -EPERM;
2450
2451 error = security_inode_link(old_dentry, dir, new_dentry);
2452 if (error)
2453 return error;
2454
2455 mutex_lock(&inode->i_mutex);
2456 vfs_dq_init(dir);
2457 error = dir->i_op->link(old_dentry, dir, new_dentry);
2458 mutex_unlock(&inode->i_mutex);
2459 if (!error)
2460 fsnotify_link(dir, inode, new_dentry);
2461 return error;
2462 }
2463
2464 /*
2465 * Hardlinks are often used in delicate situations. We avoid
2466 * security-related surprises by not following symlinks on the
2467 * newname. --KAB
2468 *
2469 * We don't follow them on the oldname either to be compatible
2470 * with linux 2.0, and to avoid hard-linking to directories
2471 * and other special files. --ADM
2472 */
2473 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2474 int, newdfd, const char __user *, newname, int, flags)
2475 {
2476 struct dentry *new_dentry;
2477 struct nameidata nd;
2478 struct path old_path;
2479 int error;
2480 char *to;
2481
2482 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2483 return -EINVAL;
2484
2485 error = user_path_at(olddfd, oldname,
2486 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2487 &old_path);
2488 if (error)
2489 return error;
2490
2491 error = user_path_parent(newdfd, newname, &nd, &to);
2492 if (error)
2493 goto out;
2494 error = -EXDEV;
2495 if (old_path.mnt != nd.path.mnt)
2496 goto out_release;
2497 new_dentry = lookup_create(&nd, 0);
2498 error = PTR_ERR(new_dentry);
2499 if (IS_ERR(new_dentry))
2500 goto out_unlock;
2501 error = mnt_want_write(nd.path.mnt);
2502 if (error)
2503 goto out_dput;
2504 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2505 if (error)
2506 goto out_drop_write;
2507 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2508 out_drop_write:
2509 mnt_drop_write(nd.path.mnt);
2510 out_dput:
2511 dput(new_dentry);
2512 out_unlock:
2513 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2514 out_release:
2515 path_put(&nd.path);
2516 putname(to);
2517 out:
2518 path_put(&old_path);
2519
2520 return error;
2521 }
2522
2523 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2524 {
2525 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2526 }
2527
2528 /*
2529 * The worst of all namespace operations - renaming directory. "Perverted"
2530 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2531 * Problems:
2532 * a) we can get into loop creation. Check is done in is_subdir().
2533 * b) race potential - two innocent renames can create a loop together.
2534 * That's where 4.4 screws up. Current fix: serialization on
2535 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2536 * story.
2537 * c) we have to lock _three_ objects - parents and victim (if it exists).
2538 * And that - after we got ->i_mutex on parents (until then we don't know
2539 * whether the target exists). Solution: try to be smart with locking
2540 * order for inodes. We rely on the fact that tree topology may change
2541 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2542 * move will be locked. Thus we can rank directories by the tree
2543 * (ancestors first) and rank all non-directories after them.
2544 * That works since everybody except rename does "lock parent, lookup,
2545 * lock child" and rename is under ->s_vfs_rename_mutex.
2546 * HOWEVER, it relies on the assumption that any object with ->lookup()
2547 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2548 * we'd better make sure that there's no link(2) for them.
2549 * d) some filesystems don't support opened-but-unlinked directories,
2550 * either because of layout or because they are not ready to deal with
2551 * all cases correctly. The latter will be fixed (taking this sort of
2552 * stuff into VFS), but the former is not going away. Solution: the same
2553 * trick as in rmdir().
2554 * e) conversion from fhandle to dentry may come in the wrong moment - when
2555 * we are removing the target. Solution: we will have to grab ->i_mutex
2556 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2557 * ->i_mutex on parents, which works but leads to some truely excessive
2558 * locking].
2559 */
2560 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2561 struct inode *new_dir, struct dentry *new_dentry)
2562 {
2563 int error = 0;
2564 struct inode *target;
2565
2566 /*
2567 * If we are going to change the parent - check write permissions,
2568 * we'll need to flip '..'.
2569 */
2570 if (new_dir != old_dir) {
2571 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2572 if (error)
2573 return error;
2574 }
2575
2576 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2577 if (error)
2578 return error;
2579
2580 target = new_dentry->d_inode;
2581 if (target) {
2582 mutex_lock(&target->i_mutex);
2583 dentry_unhash(new_dentry);
2584 }
2585 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2586 error = -EBUSY;
2587 else
2588 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2589 if (target) {
2590 if (!error)
2591 target->i_flags |= S_DEAD;
2592 mutex_unlock(&target->i_mutex);
2593 if (d_unhashed(new_dentry))
2594 d_rehash(new_dentry);
2595 dput(new_dentry);
2596 }
2597 if (!error)
2598 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2599 d_move(old_dentry,new_dentry);
2600 return error;
2601 }
2602
2603 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2604 struct inode *new_dir, struct dentry *new_dentry)
2605 {
2606 struct inode *target;
2607 int error;
2608
2609 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2610 if (error)
2611 return error;
2612
2613 dget(new_dentry);
2614 target = new_dentry->d_inode;
2615 if (target)
2616 mutex_lock(&target->i_mutex);
2617 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2618 error = -EBUSY;
2619 else
2620 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2621 if (!error) {
2622 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2623 d_move(old_dentry, new_dentry);
2624 }
2625 if (target)
2626 mutex_unlock(&target->i_mutex);
2627 dput(new_dentry);
2628 return error;
2629 }
2630
2631 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2632 struct inode *new_dir, struct dentry *new_dentry)
2633 {
2634 int error;
2635 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2636 const char *old_name;
2637
2638 if (old_dentry->d_inode == new_dentry->d_inode)
2639 return 0;
2640
2641 error = may_delete(old_dir, old_dentry, is_dir);
2642 if (error)
2643 return error;
2644
2645 if (!new_dentry->d_inode)
2646 error = may_create(new_dir, new_dentry);
2647 else
2648 error = may_delete(new_dir, new_dentry, is_dir);
2649 if (error)
2650 return error;
2651
2652 if (!old_dir->i_op->rename)
2653 return -EPERM;
2654
2655 vfs_dq_init(old_dir);
2656 vfs_dq_init(new_dir);
2657
2658 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2659
2660 if (is_dir)
2661 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2662 else
2663 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2664 if (!error) {
2665 const char *new_name = old_dentry->d_name.name;
2666 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2667 new_dentry->d_inode, old_dentry);
2668 }
2669 fsnotify_oldname_free(old_name);
2670
2671 return error;
2672 }
2673
2674 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2675 int, newdfd, const char __user *, newname)
2676 {
2677 struct dentry *old_dir, *new_dir;
2678 struct dentry *old_dentry, *new_dentry;
2679 struct dentry *trap;
2680 struct nameidata oldnd, newnd;
2681 char *from;
2682 char *to;
2683 int error;
2684
2685 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2686 if (error)
2687 goto exit;
2688
2689 error = user_path_parent(newdfd, newname, &newnd, &to);
2690 if (error)
2691 goto exit1;
2692
2693 error = -EXDEV;
2694 if (oldnd.path.mnt != newnd.path.mnt)
2695 goto exit2;
2696
2697 old_dir = oldnd.path.dentry;
2698 error = -EBUSY;
2699 if (oldnd.last_type != LAST_NORM)
2700 goto exit2;
2701
2702 new_dir = newnd.path.dentry;
2703 if (newnd.last_type != LAST_NORM)
2704 goto exit2;
2705
2706 oldnd.flags &= ~LOOKUP_PARENT;
2707 newnd.flags &= ~LOOKUP_PARENT;
2708 newnd.flags |= LOOKUP_RENAME_TARGET;
2709
2710 trap = lock_rename(new_dir, old_dir);
2711
2712 old_dentry = lookup_hash(&oldnd);
2713 error = PTR_ERR(old_dentry);
2714 if (IS_ERR(old_dentry))
2715 goto exit3;
2716 /* source must exist */
2717 error = -ENOENT;
2718 if (!old_dentry->d_inode)
2719 goto exit4;
2720 /* unless the source is a directory trailing slashes give -ENOTDIR */
2721 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2722 error = -ENOTDIR;
2723 if (oldnd.last.name[oldnd.last.len])
2724 goto exit4;
2725 if (newnd.last.name[newnd.last.len])
2726 goto exit4;
2727 }
2728 /* source should not be ancestor of target */
2729 error = -EINVAL;
2730 if (old_dentry == trap)
2731 goto exit4;
2732 new_dentry = lookup_hash(&newnd);
2733 error = PTR_ERR(new_dentry);
2734 if (IS_ERR(new_dentry))
2735 goto exit4;
2736 /* target should not be an ancestor of source */
2737 error = -ENOTEMPTY;
2738 if (new_dentry == trap)
2739 goto exit5;
2740
2741 error = mnt_want_write(oldnd.path.mnt);
2742 if (error)
2743 goto exit5;
2744 error = security_path_rename(&oldnd.path, old_dentry,
2745 &newnd.path, new_dentry);
2746 if (error)
2747 goto exit6;
2748 error = vfs_rename(old_dir->d_inode, old_dentry,
2749 new_dir->d_inode, new_dentry);
2750 exit6:
2751 mnt_drop_write(oldnd.path.mnt);
2752 exit5:
2753 dput(new_dentry);
2754 exit4:
2755 dput(old_dentry);
2756 exit3:
2757 unlock_rename(new_dir, old_dir);
2758 exit2:
2759 path_put(&newnd.path);
2760 putname(to);
2761 exit1:
2762 path_put(&oldnd.path);
2763 putname(from);
2764 exit:
2765 return error;
2766 }
2767
2768 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2769 {
2770 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2771 }
2772
2773 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2774 {
2775 int len;
2776
2777 len = PTR_ERR(link);
2778 if (IS_ERR(link))
2779 goto out;
2780
2781 len = strlen(link);
2782 if (len > (unsigned) buflen)
2783 len = buflen;
2784 if (copy_to_user(buffer, link, len))
2785 len = -EFAULT;
2786 out:
2787 return len;
2788 }
2789
2790 /*
2791 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2792 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2793 * using) it for any given inode is up to filesystem.
2794 */
2795 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2796 {
2797 struct nameidata nd;
2798 void *cookie;
2799 int res;
2800
2801 nd.depth = 0;
2802 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2803 if (IS_ERR(cookie))
2804 return PTR_ERR(cookie);
2805
2806 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2807 if (dentry->d_inode->i_op->put_link)
2808 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2809 return res;
2810 }
2811
2812 int vfs_follow_link(struct nameidata *nd, const char *link)
2813 {
2814 return __vfs_follow_link(nd, link);
2815 }
2816
2817 /* get the link contents into pagecache */
2818 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2819 {
2820 char *kaddr;
2821 struct page *page;
2822 struct address_space *mapping = dentry->d_inode->i_mapping;
2823 page = read_mapping_page(mapping, 0, NULL);
2824 if (IS_ERR(page))
2825 return (char*)page;
2826 *ppage = page;
2827 kaddr = kmap(page);
2828 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2829 return kaddr;
2830 }
2831
2832 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2833 {
2834 struct page *page = NULL;
2835 char *s = page_getlink(dentry, &page);
2836 int res = vfs_readlink(dentry,buffer,buflen,s);
2837 if (page) {
2838 kunmap(page);
2839 page_cache_release(page);
2840 }
2841 return res;
2842 }
2843
2844 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2845 {
2846 struct page *page = NULL;
2847 nd_set_link(nd, page_getlink(dentry, &page));
2848 return page;
2849 }
2850
2851 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2852 {
2853 struct page *page = cookie;
2854
2855 if (page) {
2856 kunmap(page);
2857 page_cache_release(page);
2858 }
2859 }
2860
2861 /*
2862 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2863 */
2864 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2865 {
2866 struct address_space *mapping = inode->i_mapping;
2867 struct page *page;
2868 void *fsdata;
2869 int err;
2870 char *kaddr;
2871 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2872 if (nofs)
2873 flags |= AOP_FLAG_NOFS;
2874
2875 retry:
2876 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2877 flags, &page, &fsdata);
2878 if (err)
2879 goto fail;
2880
2881 kaddr = kmap_atomic(page, KM_USER0);
2882 memcpy(kaddr, symname, len-1);
2883 kunmap_atomic(kaddr, KM_USER0);
2884
2885 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2886 page, fsdata);
2887 if (err < 0)
2888 goto fail;
2889 if (err < len-1)
2890 goto retry;
2891
2892 mark_inode_dirty(inode);
2893 return 0;
2894 fail:
2895 return err;
2896 }
2897
2898 int page_symlink(struct inode *inode, const char *symname, int len)
2899 {
2900 return __page_symlink(inode, symname, len,
2901 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2902 }
2903
2904 const struct inode_operations page_symlink_inode_operations = {
2905 .readlink = generic_readlink,
2906 .follow_link = page_follow_link_light,
2907 .put_link = page_put_link,
2908 };
2909
2910 EXPORT_SYMBOL(user_path_at);
2911 EXPORT_SYMBOL(follow_down);
2912 EXPORT_SYMBOL(follow_up);
2913 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2914 EXPORT_SYMBOL(getname);
2915 EXPORT_SYMBOL(lock_rename);
2916 EXPORT_SYMBOL(lookup_one_len);
2917 EXPORT_SYMBOL(page_follow_link_light);
2918 EXPORT_SYMBOL(page_put_link);
2919 EXPORT_SYMBOL(page_readlink);
2920 EXPORT_SYMBOL(__page_symlink);
2921 EXPORT_SYMBOL(page_symlink);
2922 EXPORT_SYMBOL(page_symlink_inode_operations);
2923 EXPORT_SYMBOL(path_lookup);
2924 EXPORT_SYMBOL(kern_path);
2925 EXPORT_SYMBOL(vfs_path_lookup);
2926 EXPORT_SYMBOL(inode_permission);
2927 EXPORT_SYMBOL(file_permission);
2928 EXPORT_SYMBOL(unlock_rename);
2929 EXPORT_SYMBOL(vfs_create);
2930 EXPORT_SYMBOL(vfs_follow_link);
2931 EXPORT_SYMBOL(vfs_link);
2932 EXPORT_SYMBOL(vfs_mkdir);
2933 EXPORT_SYMBOL(vfs_mknod);
2934 EXPORT_SYMBOL(generic_permission);
2935 EXPORT_SYMBOL(vfs_readlink);
2936 EXPORT_SYMBOL(vfs_rename);
2937 EXPORT_SYMBOL(vfs_rmdir);
2938 EXPORT_SYMBOL(vfs_symlink);
2939 EXPORT_SYMBOL(vfs_unlink);
2940 EXPORT_SYMBOL(dentry_unhash);
2941 EXPORT_SYMBOL(generic_readlink);