]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/namei.c
Input: goodix - add support for getting IRQ + reset GPIOs on Bay Trail devices
[mirror_ubuntu-hirsute-kernel.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /* [Feb-1997 T. Schoebel-Theuer]
47 * Fundamental changes in the pathname lookup mechanisms (namei)
48 * were necessary because of omirr. The reason is that omirr needs
49 * to know the _real_ pathname, not the user-supplied one, in case
50 * of symlinks (and also when transname replacements occur).
51 *
52 * The new code replaces the old recursive symlink resolution with
53 * an iterative one (in case of non-nested symlink chains). It does
54 * this with calls to <fs>_follow_link().
55 * As a side effect, dir_namei(), _namei() and follow_link() are now
56 * replaced with a single function lookup_dentry() that can handle all
57 * the special cases of the former code.
58 *
59 * With the new dcache, the pathname is stored at each inode, at least as
60 * long as the refcount of the inode is positive. As a side effect, the
61 * size of the dcache depends on the inode cache and thus is dynamic.
62 *
63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64 * resolution to correspond with current state of the code.
65 *
66 * Note that the symlink resolution is not *completely* iterative.
67 * There is still a significant amount of tail- and mid- recursion in
68 * the algorithm. Also, note that <fs>_readlink() is not used in
69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70 * may return different results than <fs>_follow_link(). Many virtual
71 * filesystems (including /proc) exhibit this behavior.
72 */
73
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76 * and the name already exists in form of a symlink, try to create the new
77 * name indicated by the symlink. The old code always complained that the
78 * name already exists, due to not following the symlink even if its target
79 * is nonexistent. The new semantics affects also mknod() and link() when
80 * the name is a symlink pointing to a non-existent name.
81 *
82 * I don't know which semantics is the right one, since I have no access
83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85 * "old" one. Personally, I think the new semantics is much more logical.
86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87 * file does succeed in both HP-UX and SunOs, but not in Solaris
88 * and in the old Linux semantics.
89 */
90
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92 * semantics. See the comments in "open_namei" and "do_link" below.
93 *
94 * [10-Sep-98 Alan Modra] Another symlink change.
95 */
96
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98 * inside the path - always follow.
99 * in the last component in creation/removal/renaming - never follow.
100 * if LOOKUP_FOLLOW passed - follow.
101 * if the pathname has trailing slashes - follow.
102 * otherwise - don't follow.
103 * (applied in that order).
104 *
105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107 * During the 2.4 we need to fix the userland stuff depending on it -
108 * hopefully we will be able to get rid of that wart in 2.5. So far only
109 * XEmacs seems to be relying on it...
110 */
111 /*
112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
114 * any extra contention...
115 */
116
117 /* In order to reduce some races, while at the same time doing additional
118 * checking and hopefully speeding things up, we copy filenames to the
119 * kernel data space before using them..
120 *
121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122 * PATH_MAX includes the nul terminator --RR.
123 */
124
125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
126
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 struct filename *result;
131 char *kname;
132 int len;
133
134 result = audit_reusename(filename);
135 if (result)
136 return result;
137
138 result = __getname();
139 if (unlikely(!result))
140 return ERR_PTR(-ENOMEM);
141
142 /*
143 * First, try to embed the struct filename inside the names_cache
144 * allocation
145 */
146 kname = (char *)result->iname;
147 result->name = kname;
148
149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 if (unlikely(len < 0)) {
151 __putname(result);
152 return ERR_PTR(len);
153 }
154
155 /*
156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 * separate struct filename so we can dedicate the entire
158 * names_cache allocation for the pathname, and re-do the copy from
159 * userland.
160 */
161 if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 const size_t size = offsetof(struct filename, iname[1]);
163 kname = (char *)result;
164
165 /*
166 * size is chosen that way we to guarantee that
167 * result->iname[0] is within the same object and that
168 * kname can't be equal to result->iname, no matter what.
169 */
170 result = kzalloc(size, GFP_KERNEL);
171 if (unlikely(!result)) {
172 __putname(kname);
173 return ERR_PTR(-ENOMEM);
174 }
175 result->name = kname;
176 len = strncpy_from_user(kname, filename, PATH_MAX);
177 if (unlikely(len < 0)) {
178 __putname(kname);
179 kfree(result);
180 return ERR_PTR(len);
181 }
182 if (unlikely(len == PATH_MAX)) {
183 __putname(kname);
184 kfree(result);
185 return ERR_PTR(-ENAMETOOLONG);
186 }
187 }
188
189 result->refcnt = 1;
190 /* The empty path is special. */
191 if (unlikely(!len)) {
192 if (empty)
193 *empty = 1;
194 if (!(flags & LOOKUP_EMPTY)) {
195 putname(result);
196 return ERR_PTR(-ENOENT);
197 }
198 }
199
200 result->uptr = filename;
201 result->aname = NULL;
202 audit_getname(result);
203 return result;
204 }
205
206 struct filename *
207 getname(const char __user * filename)
208 {
209 return getname_flags(filename, 0, NULL);
210 }
211
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 struct filename *result;
216 int len = strlen(filename) + 1;
217
218 result = __getname();
219 if (unlikely(!result))
220 return ERR_PTR(-ENOMEM);
221
222 if (len <= EMBEDDED_NAME_MAX) {
223 result->name = (char *)result->iname;
224 } else if (len <= PATH_MAX) {
225 const size_t size = offsetof(struct filename, iname[1]);
226 struct filename *tmp;
227
228 tmp = kmalloc(size, GFP_KERNEL);
229 if (unlikely(!tmp)) {
230 __putname(result);
231 return ERR_PTR(-ENOMEM);
232 }
233 tmp->name = (char *)result;
234 result = tmp;
235 } else {
236 __putname(result);
237 return ERR_PTR(-ENAMETOOLONG);
238 }
239 memcpy((char *)result->name, filename, len);
240 result->uptr = NULL;
241 result->aname = NULL;
242 result->refcnt = 1;
243 audit_getname(result);
244
245 return result;
246 }
247
248 void putname(struct filename *name)
249 {
250 BUG_ON(name->refcnt <= 0);
251
252 if (--name->refcnt > 0)
253 return;
254
255 if (name->name != name->iname) {
256 __putname(name->name);
257 kfree(name);
258 } else
259 __putname(name);
260 }
261
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265 struct posix_acl *acl;
266
267 if (mask & MAY_NOT_BLOCK) {
268 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 if (!acl)
270 return -EAGAIN;
271 /* no ->get_acl() calls in RCU mode... */
272 if (is_uncached_acl(acl))
273 return -ECHILD;
274 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
275 }
276
277 acl = get_acl(inode, ACL_TYPE_ACCESS);
278 if (IS_ERR(acl))
279 return PTR_ERR(acl);
280 if (acl) {
281 int error = posix_acl_permission(inode, acl, mask);
282 posix_acl_release(acl);
283 return error;
284 }
285 #endif
286
287 return -EAGAIN;
288 }
289
290 /*
291 * This does the basic permission checking
292 */
293 static int acl_permission_check(struct inode *inode, int mask)
294 {
295 unsigned int mode = inode->i_mode;
296
297 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
298 mode >>= 6;
299 else {
300 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
301 int error = check_acl(inode, mask);
302 if (error != -EAGAIN)
303 return error;
304 }
305
306 if (in_group_p(inode->i_gid))
307 mode >>= 3;
308 }
309
310 /*
311 * If the DACs are ok we don't need any capability check.
312 */
313 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
314 return 0;
315 return -EACCES;
316 }
317
318 /**
319 * generic_permission - check for access rights on a Posix-like filesystem
320 * @inode: inode to check access rights for
321 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
322 *
323 * Used to check for read/write/execute permissions on a file.
324 * We use "fsuid" for this, letting us set arbitrary permissions
325 * for filesystem access without changing the "normal" uids which
326 * are used for other things.
327 *
328 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
329 * request cannot be satisfied (eg. requires blocking or too much complexity).
330 * It would then be called again in ref-walk mode.
331 */
332 int generic_permission(struct inode *inode, int mask)
333 {
334 int ret;
335
336 /*
337 * Do the basic permission checks.
338 */
339 ret = acl_permission_check(inode, mask);
340 if (ret != -EACCES)
341 return ret;
342
343 if (S_ISDIR(inode->i_mode)) {
344 /* DACs are overridable for directories */
345 if (!(mask & MAY_WRITE))
346 if (capable_wrt_inode_uidgid(inode,
347 CAP_DAC_READ_SEARCH))
348 return 0;
349 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
350 return 0;
351 return -EACCES;
352 }
353
354 /*
355 * Searching includes executable on directories, else just read.
356 */
357 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
358 if (mask == MAY_READ)
359 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
360 return 0;
361 /*
362 * Read/write DACs are always overridable.
363 * Executable DACs are overridable when there is
364 * at least one exec bit set.
365 */
366 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
367 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
368 return 0;
369
370 return -EACCES;
371 }
372 EXPORT_SYMBOL(generic_permission);
373
374 /*
375 * We _really_ want to just do "generic_permission()" without
376 * even looking at the inode->i_op values. So we keep a cache
377 * flag in inode->i_opflags, that says "this has not special
378 * permission function, use the fast case".
379 */
380 static inline int do_inode_permission(struct inode *inode, int mask)
381 {
382 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
383 if (likely(inode->i_op->permission))
384 return inode->i_op->permission(inode, mask);
385
386 /* This gets set once for the inode lifetime */
387 spin_lock(&inode->i_lock);
388 inode->i_opflags |= IOP_FASTPERM;
389 spin_unlock(&inode->i_lock);
390 }
391 return generic_permission(inode, mask);
392 }
393
394 /**
395 * sb_permission - Check superblock-level permissions
396 * @sb: Superblock of inode to check permission on
397 * @inode: Inode to check permission on
398 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
399 *
400 * Separate out file-system wide checks from inode-specific permission checks.
401 */
402 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
403 {
404 if (unlikely(mask & MAY_WRITE)) {
405 umode_t mode = inode->i_mode;
406
407 /* Nobody gets write access to a read-only fs. */
408 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
409 return -EROFS;
410 }
411 return 0;
412 }
413
414 /**
415 * inode_permission - Check for access rights to a given inode
416 * @inode: Inode to check permission on
417 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
418 *
419 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
420 * this, letting us set arbitrary permissions for filesystem access without
421 * changing the "normal" UIDs which are used for other things.
422 *
423 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
424 */
425 int inode_permission(struct inode *inode, int mask)
426 {
427 int retval;
428
429 retval = sb_permission(inode->i_sb, inode, mask);
430 if (retval)
431 return retval;
432
433 if (unlikely(mask & MAY_WRITE)) {
434 /*
435 * Nobody gets write access to an immutable file.
436 */
437 if (IS_IMMUTABLE(inode))
438 return -EPERM;
439
440 /*
441 * Updating mtime will likely cause i_uid and i_gid to be
442 * written back improperly if their true value is unknown
443 * to the vfs.
444 */
445 if (HAS_UNMAPPED_ID(inode))
446 return -EACCES;
447 }
448
449 retval = do_inode_permission(inode, mask);
450 if (retval)
451 return retval;
452
453 retval = devcgroup_inode_permission(inode, mask);
454 if (retval)
455 return retval;
456
457 return security_inode_permission(inode, mask);
458 }
459 EXPORT_SYMBOL(inode_permission);
460
461 /**
462 * path_get - get a reference to a path
463 * @path: path to get the reference to
464 *
465 * Given a path increment the reference count to the dentry and the vfsmount.
466 */
467 void path_get(const struct path *path)
468 {
469 mntget(path->mnt);
470 dget(path->dentry);
471 }
472 EXPORT_SYMBOL(path_get);
473
474 /**
475 * path_put - put a reference to a path
476 * @path: path to put the reference to
477 *
478 * Given a path decrement the reference count to the dentry and the vfsmount.
479 */
480 void path_put(const struct path *path)
481 {
482 dput(path->dentry);
483 mntput(path->mnt);
484 }
485 EXPORT_SYMBOL(path_put);
486
487 #define EMBEDDED_LEVELS 2
488 struct nameidata {
489 struct path path;
490 struct qstr last;
491 struct path root;
492 struct inode *inode; /* path.dentry.d_inode */
493 unsigned int flags;
494 unsigned seq, m_seq;
495 int last_type;
496 unsigned depth;
497 int total_link_count;
498 struct saved {
499 struct path link;
500 struct delayed_call done;
501 const char *name;
502 unsigned seq;
503 } *stack, internal[EMBEDDED_LEVELS];
504 struct filename *name;
505 struct nameidata *saved;
506 struct inode *link_inode;
507 unsigned root_seq;
508 int dfd;
509 } __randomize_layout;
510
511 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
512 {
513 struct nameidata *old = current->nameidata;
514 p->stack = p->internal;
515 p->dfd = dfd;
516 p->name = name;
517 p->total_link_count = old ? old->total_link_count : 0;
518 p->saved = old;
519 current->nameidata = p;
520 }
521
522 static void restore_nameidata(void)
523 {
524 struct nameidata *now = current->nameidata, *old = now->saved;
525
526 current->nameidata = old;
527 if (old)
528 old->total_link_count = now->total_link_count;
529 if (now->stack != now->internal)
530 kfree(now->stack);
531 }
532
533 static int __nd_alloc_stack(struct nameidata *nd)
534 {
535 struct saved *p;
536
537 if (nd->flags & LOOKUP_RCU) {
538 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
539 GFP_ATOMIC);
540 if (unlikely(!p))
541 return -ECHILD;
542 } else {
543 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
544 GFP_KERNEL);
545 if (unlikely(!p))
546 return -ENOMEM;
547 }
548 memcpy(p, nd->internal, sizeof(nd->internal));
549 nd->stack = p;
550 return 0;
551 }
552
553 /**
554 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
555 * @path: nameidate to verify
556 *
557 * Rename can sometimes move a file or directory outside of a bind
558 * mount, path_connected allows those cases to be detected.
559 */
560 static bool path_connected(const struct path *path)
561 {
562 struct vfsmount *mnt = path->mnt;
563 struct super_block *sb = mnt->mnt_sb;
564
565 /* Bind mounts and multi-root filesystems can have disconnected paths */
566 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
567 return true;
568
569 return is_subdir(path->dentry, mnt->mnt_root);
570 }
571
572 static inline int nd_alloc_stack(struct nameidata *nd)
573 {
574 if (likely(nd->depth != EMBEDDED_LEVELS))
575 return 0;
576 if (likely(nd->stack != nd->internal))
577 return 0;
578 return __nd_alloc_stack(nd);
579 }
580
581 static void drop_links(struct nameidata *nd)
582 {
583 int i = nd->depth;
584 while (i--) {
585 struct saved *last = nd->stack + i;
586 do_delayed_call(&last->done);
587 clear_delayed_call(&last->done);
588 }
589 }
590
591 static void terminate_walk(struct nameidata *nd)
592 {
593 drop_links(nd);
594 if (!(nd->flags & LOOKUP_RCU)) {
595 int i;
596 path_put(&nd->path);
597 for (i = 0; i < nd->depth; i++)
598 path_put(&nd->stack[i].link);
599 if (nd->flags & LOOKUP_ROOT_GRABBED) {
600 path_put(&nd->root);
601 nd->flags &= ~LOOKUP_ROOT_GRABBED;
602 }
603 } else {
604 nd->flags &= ~LOOKUP_RCU;
605 rcu_read_unlock();
606 }
607 nd->depth = 0;
608 }
609
610 /* path_put is needed afterwards regardless of success or failure */
611 static bool legitimize_path(struct nameidata *nd,
612 struct path *path, unsigned seq)
613 {
614 int res = __legitimize_mnt(path->mnt, nd->m_seq);
615 if (unlikely(res)) {
616 if (res > 0)
617 path->mnt = NULL;
618 path->dentry = NULL;
619 return false;
620 }
621 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
622 path->dentry = NULL;
623 return false;
624 }
625 return !read_seqcount_retry(&path->dentry->d_seq, seq);
626 }
627
628 static bool legitimize_links(struct nameidata *nd)
629 {
630 int i;
631 for (i = 0; i < nd->depth; i++) {
632 struct saved *last = nd->stack + i;
633 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
634 drop_links(nd);
635 nd->depth = i + 1;
636 return false;
637 }
638 }
639 return true;
640 }
641
642 static bool legitimize_root(struct nameidata *nd)
643 {
644 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
645 return true;
646 nd->flags |= LOOKUP_ROOT_GRABBED;
647 return legitimize_path(nd, &nd->root, nd->root_seq);
648 }
649
650 /*
651 * Path walking has 2 modes, rcu-walk and ref-walk (see
652 * Documentation/filesystems/path-lookup.txt). In situations when we can't
653 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
654 * normal reference counts on dentries and vfsmounts to transition to ref-walk
655 * mode. Refcounts are grabbed at the last known good point before rcu-walk
656 * got stuck, so ref-walk may continue from there. If this is not successful
657 * (eg. a seqcount has changed), then failure is returned and it's up to caller
658 * to restart the path walk from the beginning in ref-walk mode.
659 */
660
661 /**
662 * unlazy_walk - try to switch to ref-walk mode.
663 * @nd: nameidata pathwalk data
664 * Returns: 0 on success, -ECHILD on failure
665 *
666 * unlazy_walk attempts to legitimize the current nd->path and nd->root
667 * for ref-walk mode.
668 * Must be called from rcu-walk context.
669 * Nothing should touch nameidata between unlazy_walk() failure and
670 * terminate_walk().
671 */
672 static int unlazy_walk(struct nameidata *nd)
673 {
674 struct dentry *parent = nd->path.dentry;
675
676 BUG_ON(!(nd->flags & LOOKUP_RCU));
677
678 nd->flags &= ~LOOKUP_RCU;
679 if (unlikely(!legitimize_links(nd)))
680 goto out1;
681 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
682 goto out;
683 if (unlikely(!legitimize_root(nd)))
684 goto out;
685 rcu_read_unlock();
686 BUG_ON(nd->inode != parent->d_inode);
687 return 0;
688
689 out1:
690 nd->path.mnt = NULL;
691 nd->path.dentry = NULL;
692 out:
693 rcu_read_unlock();
694 return -ECHILD;
695 }
696
697 /**
698 * unlazy_child - try to switch to ref-walk mode.
699 * @nd: nameidata pathwalk data
700 * @dentry: child of nd->path.dentry
701 * @seq: seq number to check dentry against
702 * Returns: 0 on success, -ECHILD on failure
703 *
704 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
705 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
706 * @nd. Must be called from rcu-walk context.
707 * Nothing should touch nameidata between unlazy_child() failure and
708 * terminate_walk().
709 */
710 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
711 {
712 BUG_ON(!(nd->flags & LOOKUP_RCU));
713
714 nd->flags &= ~LOOKUP_RCU;
715 if (unlikely(!legitimize_links(nd)))
716 goto out2;
717 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
718 goto out2;
719 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
720 goto out1;
721
722 /*
723 * We need to move both the parent and the dentry from the RCU domain
724 * to be properly refcounted. And the sequence number in the dentry
725 * validates *both* dentry counters, since we checked the sequence
726 * number of the parent after we got the child sequence number. So we
727 * know the parent must still be valid if the child sequence number is
728 */
729 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
730 goto out;
731 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
732 goto out_dput;
733 /*
734 * Sequence counts matched. Now make sure that the root is
735 * still valid and get it if required.
736 */
737 if (unlikely(!legitimize_root(nd)))
738 goto out_dput;
739 rcu_read_unlock();
740 return 0;
741
742 out2:
743 nd->path.mnt = NULL;
744 out1:
745 nd->path.dentry = NULL;
746 out:
747 rcu_read_unlock();
748 return -ECHILD;
749 out_dput:
750 rcu_read_unlock();
751 dput(dentry);
752 return -ECHILD;
753 }
754
755 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
756 {
757 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
758 return dentry->d_op->d_revalidate(dentry, flags);
759 else
760 return 1;
761 }
762
763 /**
764 * complete_walk - successful completion of path walk
765 * @nd: pointer nameidata
766 *
767 * If we had been in RCU mode, drop out of it and legitimize nd->path.
768 * Revalidate the final result, unless we'd already done that during
769 * the path walk or the filesystem doesn't ask for it. Return 0 on
770 * success, -error on failure. In case of failure caller does not
771 * need to drop nd->path.
772 */
773 static int complete_walk(struct nameidata *nd)
774 {
775 struct dentry *dentry = nd->path.dentry;
776 int status;
777
778 if (nd->flags & LOOKUP_RCU) {
779 if (!(nd->flags & LOOKUP_ROOT))
780 nd->root.mnt = NULL;
781 if (unlikely(unlazy_walk(nd)))
782 return -ECHILD;
783 }
784
785 if (likely(!(nd->flags & LOOKUP_JUMPED)))
786 return 0;
787
788 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
789 return 0;
790
791 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
792 if (status > 0)
793 return 0;
794
795 if (!status)
796 status = -ESTALE;
797
798 return status;
799 }
800
801 static void set_root(struct nameidata *nd)
802 {
803 struct fs_struct *fs = current->fs;
804
805 if (nd->flags & LOOKUP_RCU) {
806 unsigned seq;
807
808 do {
809 seq = read_seqcount_begin(&fs->seq);
810 nd->root = fs->root;
811 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
812 } while (read_seqcount_retry(&fs->seq, seq));
813 } else {
814 get_fs_root(fs, &nd->root);
815 nd->flags |= LOOKUP_ROOT_GRABBED;
816 }
817 }
818
819 static void path_put_conditional(struct path *path, struct nameidata *nd)
820 {
821 dput(path->dentry);
822 if (path->mnt != nd->path.mnt)
823 mntput(path->mnt);
824 }
825
826 static inline void path_to_nameidata(const struct path *path,
827 struct nameidata *nd)
828 {
829 if (!(nd->flags & LOOKUP_RCU)) {
830 dput(nd->path.dentry);
831 if (nd->path.mnt != path->mnt)
832 mntput(nd->path.mnt);
833 }
834 nd->path.mnt = path->mnt;
835 nd->path.dentry = path->dentry;
836 }
837
838 static int nd_jump_root(struct nameidata *nd)
839 {
840 if (nd->flags & LOOKUP_RCU) {
841 struct dentry *d;
842 nd->path = nd->root;
843 d = nd->path.dentry;
844 nd->inode = d->d_inode;
845 nd->seq = nd->root_seq;
846 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
847 return -ECHILD;
848 } else {
849 path_put(&nd->path);
850 nd->path = nd->root;
851 path_get(&nd->path);
852 nd->inode = nd->path.dentry->d_inode;
853 }
854 nd->flags |= LOOKUP_JUMPED;
855 return 0;
856 }
857
858 /*
859 * Helper to directly jump to a known parsed path from ->get_link,
860 * caller must have taken a reference to path beforehand.
861 */
862 void nd_jump_link(struct path *path)
863 {
864 struct nameidata *nd = current->nameidata;
865 path_put(&nd->path);
866
867 nd->path = *path;
868 nd->inode = nd->path.dentry->d_inode;
869 nd->flags |= LOOKUP_JUMPED;
870 }
871
872 static inline void put_link(struct nameidata *nd)
873 {
874 struct saved *last = nd->stack + --nd->depth;
875 do_delayed_call(&last->done);
876 if (!(nd->flags & LOOKUP_RCU))
877 path_put(&last->link);
878 }
879
880 int sysctl_protected_symlinks __read_mostly = 0;
881 int sysctl_protected_hardlinks __read_mostly = 0;
882 int sysctl_protected_fifos __read_mostly;
883 int sysctl_protected_regular __read_mostly;
884
885 /**
886 * may_follow_link - Check symlink following for unsafe situations
887 * @nd: nameidata pathwalk data
888 *
889 * In the case of the sysctl_protected_symlinks sysctl being enabled,
890 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
891 * in a sticky world-writable directory. This is to protect privileged
892 * processes from failing races against path names that may change out
893 * from under them by way of other users creating malicious symlinks.
894 * It will permit symlinks to be followed only when outside a sticky
895 * world-writable directory, or when the uid of the symlink and follower
896 * match, or when the directory owner matches the symlink's owner.
897 *
898 * Returns 0 if following the symlink is allowed, -ve on error.
899 */
900 static inline int may_follow_link(struct nameidata *nd)
901 {
902 const struct inode *inode;
903 const struct inode *parent;
904 kuid_t puid;
905
906 if (!sysctl_protected_symlinks)
907 return 0;
908
909 /* Allowed if owner and follower match. */
910 inode = nd->link_inode;
911 if (uid_eq(current_cred()->fsuid, inode->i_uid))
912 return 0;
913
914 /* Allowed if parent directory not sticky and world-writable. */
915 parent = nd->inode;
916 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
917 return 0;
918
919 /* Allowed if parent directory and link owner match. */
920 puid = parent->i_uid;
921 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
922 return 0;
923
924 if (nd->flags & LOOKUP_RCU)
925 return -ECHILD;
926
927 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
928 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
929 return -EACCES;
930 }
931
932 /**
933 * safe_hardlink_source - Check for safe hardlink conditions
934 * @inode: the source inode to hardlink from
935 *
936 * Return false if at least one of the following conditions:
937 * - inode is not a regular file
938 * - inode is setuid
939 * - inode is setgid and group-exec
940 * - access failure for read and write
941 *
942 * Otherwise returns true.
943 */
944 static bool safe_hardlink_source(struct inode *inode)
945 {
946 umode_t mode = inode->i_mode;
947
948 /* Special files should not get pinned to the filesystem. */
949 if (!S_ISREG(mode))
950 return false;
951
952 /* Setuid files should not get pinned to the filesystem. */
953 if (mode & S_ISUID)
954 return false;
955
956 /* Executable setgid files should not get pinned to the filesystem. */
957 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
958 return false;
959
960 /* Hardlinking to unreadable or unwritable sources is dangerous. */
961 if (inode_permission(inode, MAY_READ | MAY_WRITE))
962 return false;
963
964 return true;
965 }
966
967 /**
968 * may_linkat - Check permissions for creating a hardlink
969 * @link: the source to hardlink from
970 *
971 * Block hardlink when all of:
972 * - sysctl_protected_hardlinks enabled
973 * - fsuid does not match inode
974 * - hardlink source is unsafe (see safe_hardlink_source() above)
975 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
976 *
977 * Returns 0 if successful, -ve on error.
978 */
979 static int may_linkat(struct path *link)
980 {
981 struct inode *inode = link->dentry->d_inode;
982
983 /* Inode writeback is not safe when the uid or gid are invalid. */
984 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
985 return -EOVERFLOW;
986
987 if (!sysctl_protected_hardlinks)
988 return 0;
989
990 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
991 * otherwise, it must be a safe source.
992 */
993 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
994 return 0;
995
996 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
997 return -EPERM;
998 }
999
1000 /**
1001 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1002 * should be allowed, or not, on files that already
1003 * exist.
1004 * @dir: the sticky parent directory
1005 * @inode: the inode of the file to open
1006 *
1007 * Block an O_CREAT open of a FIFO (or a regular file) when:
1008 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1009 * - the file already exists
1010 * - we are in a sticky directory
1011 * - we don't own the file
1012 * - the owner of the directory doesn't own the file
1013 * - the directory is world writable
1014 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1015 * the directory doesn't have to be world writable: being group writable will
1016 * be enough.
1017 *
1018 * Returns 0 if the open is allowed, -ve on error.
1019 */
1020 static int may_create_in_sticky(struct dentry * const dir,
1021 struct inode * const inode)
1022 {
1023 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1024 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1025 likely(!(dir->d_inode->i_mode & S_ISVTX)) ||
1026 uid_eq(inode->i_uid, dir->d_inode->i_uid) ||
1027 uid_eq(current_fsuid(), inode->i_uid))
1028 return 0;
1029
1030 if (likely(dir->d_inode->i_mode & 0002) ||
1031 (dir->d_inode->i_mode & 0020 &&
1032 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1033 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1034 const char *operation = S_ISFIFO(inode->i_mode) ?
1035 "sticky_create_fifo" :
1036 "sticky_create_regular";
1037 audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1038 return -EACCES;
1039 }
1040 return 0;
1041 }
1042
1043 static __always_inline
1044 const char *get_link(struct nameidata *nd)
1045 {
1046 struct saved *last = nd->stack + nd->depth - 1;
1047 struct dentry *dentry = last->link.dentry;
1048 struct inode *inode = nd->link_inode;
1049 int error;
1050 const char *res;
1051
1052 if (!(nd->flags & LOOKUP_RCU)) {
1053 touch_atime(&last->link);
1054 cond_resched();
1055 } else if (atime_needs_update(&last->link, inode)) {
1056 if (unlikely(unlazy_walk(nd)))
1057 return ERR_PTR(-ECHILD);
1058 touch_atime(&last->link);
1059 }
1060
1061 error = security_inode_follow_link(dentry, inode,
1062 nd->flags & LOOKUP_RCU);
1063 if (unlikely(error))
1064 return ERR_PTR(error);
1065
1066 nd->last_type = LAST_BIND;
1067 res = READ_ONCE(inode->i_link);
1068 if (!res) {
1069 const char * (*get)(struct dentry *, struct inode *,
1070 struct delayed_call *);
1071 get = inode->i_op->get_link;
1072 if (nd->flags & LOOKUP_RCU) {
1073 res = get(NULL, inode, &last->done);
1074 if (res == ERR_PTR(-ECHILD)) {
1075 if (unlikely(unlazy_walk(nd)))
1076 return ERR_PTR(-ECHILD);
1077 res = get(dentry, inode, &last->done);
1078 }
1079 } else {
1080 res = get(dentry, inode, &last->done);
1081 }
1082 if (IS_ERR_OR_NULL(res))
1083 return res;
1084 }
1085 if (*res == '/') {
1086 if (!nd->root.mnt)
1087 set_root(nd);
1088 if (unlikely(nd_jump_root(nd)))
1089 return ERR_PTR(-ECHILD);
1090 while (unlikely(*++res == '/'))
1091 ;
1092 }
1093 if (!*res)
1094 res = NULL;
1095 return res;
1096 }
1097
1098 /*
1099 * follow_up - Find the mountpoint of path's vfsmount
1100 *
1101 * Given a path, find the mountpoint of its source file system.
1102 * Replace @path with the path of the mountpoint in the parent mount.
1103 * Up is towards /.
1104 *
1105 * Return 1 if we went up a level and 0 if we were already at the
1106 * root.
1107 */
1108 int follow_up(struct path *path)
1109 {
1110 struct mount *mnt = real_mount(path->mnt);
1111 struct mount *parent;
1112 struct dentry *mountpoint;
1113
1114 read_seqlock_excl(&mount_lock);
1115 parent = mnt->mnt_parent;
1116 if (parent == mnt) {
1117 read_sequnlock_excl(&mount_lock);
1118 return 0;
1119 }
1120 mntget(&parent->mnt);
1121 mountpoint = dget(mnt->mnt_mountpoint);
1122 read_sequnlock_excl(&mount_lock);
1123 dput(path->dentry);
1124 path->dentry = mountpoint;
1125 mntput(path->mnt);
1126 path->mnt = &parent->mnt;
1127 return 1;
1128 }
1129 EXPORT_SYMBOL(follow_up);
1130
1131 /*
1132 * Perform an automount
1133 * - return -EISDIR to tell follow_managed() to stop and return the path we
1134 * were called with.
1135 */
1136 static int follow_automount(struct path *path, struct nameidata *nd,
1137 bool *need_mntput)
1138 {
1139 struct vfsmount *mnt;
1140 int err;
1141
1142 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1143 return -EREMOTE;
1144
1145 /* We don't want to mount if someone's just doing a stat -
1146 * unless they're stat'ing a directory and appended a '/' to
1147 * the name.
1148 *
1149 * We do, however, want to mount if someone wants to open or
1150 * create a file of any type under the mountpoint, wants to
1151 * traverse through the mountpoint or wants to open the
1152 * mounted directory. Also, autofs may mark negative dentries
1153 * as being automount points. These will need the attentions
1154 * of the daemon to instantiate them before they can be used.
1155 */
1156 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1157 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1158 path->dentry->d_inode)
1159 return -EISDIR;
1160
1161 nd->total_link_count++;
1162 if (nd->total_link_count >= 40)
1163 return -ELOOP;
1164
1165 mnt = path->dentry->d_op->d_automount(path);
1166 if (IS_ERR(mnt)) {
1167 /*
1168 * The filesystem is allowed to return -EISDIR here to indicate
1169 * it doesn't want to automount. For instance, autofs would do
1170 * this so that its userspace daemon can mount on this dentry.
1171 *
1172 * However, we can only permit this if it's a terminal point in
1173 * the path being looked up; if it wasn't then the remainder of
1174 * the path is inaccessible and we should say so.
1175 */
1176 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1177 return -EREMOTE;
1178 return PTR_ERR(mnt);
1179 }
1180
1181 if (!mnt) /* mount collision */
1182 return 0;
1183
1184 if (!*need_mntput) {
1185 /* lock_mount() may release path->mnt on error */
1186 mntget(path->mnt);
1187 *need_mntput = true;
1188 }
1189 err = finish_automount(mnt, path);
1190
1191 switch (err) {
1192 case -EBUSY:
1193 /* Someone else made a mount here whilst we were busy */
1194 return 0;
1195 case 0:
1196 path_put(path);
1197 path->mnt = mnt;
1198 path->dentry = dget(mnt->mnt_root);
1199 return 0;
1200 default:
1201 return err;
1202 }
1203
1204 }
1205
1206 /*
1207 * Handle a dentry that is managed in some way.
1208 * - Flagged for transit management (autofs)
1209 * - Flagged as mountpoint
1210 * - Flagged as automount point
1211 *
1212 * This may only be called in refwalk mode.
1213 * On success path->dentry is known positive.
1214 *
1215 * Serialization is taken care of in namespace.c
1216 */
1217 static int follow_managed(struct path *path, struct nameidata *nd)
1218 {
1219 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1220 unsigned flags;
1221 bool need_mntput = false;
1222 int ret = 0;
1223
1224 /* Given that we're not holding a lock here, we retain the value in a
1225 * local variable for each dentry as we look at it so that we don't see
1226 * the components of that value change under us */
1227 while (flags = smp_load_acquire(&path->dentry->d_flags),
1228 unlikely(flags & DCACHE_MANAGED_DENTRY)) {
1229 /* Allow the filesystem to manage the transit without i_mutex
1230 * being held. */
1231 if (flags & DCACHE_MANAGE_TRANSIT) {
1232 BUG_ON(!path->dentry->d_op);
1233 BUG_ON(!path->dentry->d_op->d_manage);
1234 ret = path->dentry->d_op->d_manage(path, false);
1235 if (ret < 0)
1236 break;
1237 }
1238
1239 /* Transit to a mounted filesystem. */
1240 if (flags & DCACHE_MOUNTED) {
1241 struct vfsmount *mounted = lookup_mnt(path);
1242 if (mounted) {
1243 dput(path->dentry);
1244 if (need_mntput)
1245 mntput(path->mnt);
1246 path->mnt = mounted;
1247 path->dentry = dget(mounted->mnt_root);
1248 need_mntput = true;
1249 continue;
1250 }
1251
1252 /* Something is mounted on this dentry in another
1253 * namespace and/or whatever was mounted there in this
1254 * namespace got unmounted before lookup_mnt() could
1255 * get it */
1256 }
1257
1258 /* Handle an automount point */
1259 if (flags & DCACHE_NEED_AUTOMOUNT) {
1260 ret = follow_automount(path, nd, &need_mntput);
1261 if (ret < 0)
1262 break;
1263 continue;
1264 }
1265
1266 /* We didn't change the current path point */
1267 break;
1268 }
1269
1270 if (need_mntput && path->mnt == mnt)
1271 mntput(path->mnt);
1272 if (need_mntput)
1273 nd->flags |= LOOKUP_JUMPED;
1274 if (ret == -EISDIR || !ret)
1275 ret = 1;
1276 if (ret > 0 && unlikely(d_flags_negative(flags)))
1277 ret = -ENOENT;
1278 if (unlikely(ret < 0))
1279 path_put_conditional(path, nd);
1280 return ret;
1281 }
1282
1283 int follow_down_one(struct path *path)
1284 {
1285 struct vfsmount *mounted;
1286
1287 mounted = lookup_mnt(path);
1288 if (mounted) {
1289 dput(path->dentry);
1290 mntput(path->mnt);
1291 path->mnt = mounted;
1292 path->dentry = dget(mounted->mnt_root);
1293 return 1;
1294 }
1295 return 0;
1296 }
1297 EXPORT_SYMBOL(follow_down_one);
1298
1299 static inline int managed_dentry_rcu(const struct path *path)
1300 {
1301 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1302 path->dentry->d_op->d_manage(path, true) : 0;
1303 }
1304
1305 /*
1306 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1307 * we meet a managed dentry that would need blocking.
1308 */
1309 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1310 struct inode **inode, unsigned *seqp)
1311 {
1312 for (;;) {
1313 struct mount *mounted;
1314 /*
1315 * Don't forget we might have a non-mountpoint managed dentry
1316 * that wants to block transit.
1317 */
1318 switch (managed_dentry_rcu(path)) {
1319 case -ECHILD:
1320 default:
1321 return false;
1322 case -EISDIR:
1323 return true;
1324 case 0:
1325 break;
1326 }
1327
1328 if (!d_mountpoint(path->dentry))
1329 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1330
1331 mounted = __lookup_mnt(path->mnt, path->dentry);
1332 if (!mounted)
1333 break;
1334 path->mnt = &mounted->mnt;
1335 path->dentry = mounted->mnt.mnt_root;
1336 nd->flags |= LOOKUP_JUMPED;
1337 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1338 /*
1339 * Update the inode too. We don't need to re-check the
1340 * dentry sequence number here after this d_inode read,
1341 * because a mount-point is always pinned.
1342 */
1343 *inode = path->dentry->d_inode;
1344 }
1345 return !read_seqretry(&mount_lock, nd->m_seq) &&
1346 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1347 }
1348
1349 static int follow_dotdot_rcu(struct nameidata *nd)
1350 {
1351 struct inode *inode = nd->inode;
1352
1353 while (1) {
1354 if (path_equal(&nd->path, &nd->root))
1355 break;
1356 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1357 struct dentry *old = nd->path.dentry;
1358 struct dentry *parent = old->d_parent;
1359 unsigned seq;
1360
1361 inode = parent->d_inode;
1362 seq = read_seqcount_begin(&parent->d_seq);
1363 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1364 return -ECHILD;
1365 nd->path.dentry = parent;
1366 nd->seq = seq;
1367 if (unlikely(!path_connected(&nd->path)))
1368 return -ENOENT;
1369 break;
1370 } else {
1371 struct mount *mnt = real_mount(nd->path.mnt);
1372 struct mount *mparent = mnt->mnt_parent;
1373 struct dentry *mountpoint = mnt->mnt_mountpoint;
1374 struct inode *inode2 = mountpoint->d_inode;
1375 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1376 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1377 return -ECHILD;
1378 if (&mparent->mnt == nd->path.mnt)
1379 break;
1380 /* we know that mountpoint was pinned */
1381 nd->path.dentry = mountpoint;
1382 nd->path.mnt = &mparent->mnt;
1383 inode = inode2;
1384 nd->seq = seq;
1385 }
1386 }
1387 while (unlikely(d_mountpoint(nd->path.dentry))) {
1388 struct mount *mounted;
1389 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1390 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1391 return -ECHILD;
1392 if (!mounted)
1393 break;
1394 nd->path.mnt = &mounted->mnt;
1395 nd->path.dentry = mounted->mnt.mnt_root;
1396 inode = nd->path.dentry->d_inode;
1397 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1398 }
1399 nd->inode = inode;
1400 return 0;
1401 }
1402
1403 /*
1404 * Follow down to the covering mount currently visible to userspace. At each
1405 * point, the filesystem owning that dentry may be queried as to whether the
1406 * caller is permitted to proceed or not.
1407 */
1408 int follow_down(struct path *path)
1409 {
1410 unsigned managed;
1411 int ret;
1412
1413 while (managed = READ_ONCE(path->dentry->d_flags),
1414 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1415 /* Allow the filesystem to manage the transit without i_mutex
1416 * being held.
1417 *
1418 * We indicate to the filesystem if someone is trying to mount
1419 * something here. This gives autofs the chance to deny anyone
1420 * other than its daemon the right to mount on its
1421 * superstructure.
1422 *
1423 * The filesystem may sleep at this point.
1424 */
1425 if (managed & DCACHE_MANAGE_TRANSIT) {
1426 BUG_ON(!path->dentry->d_op);
1427 BUG_ON(!path->dentry->d_op->d_manage);
1428 ret = path->dentry->d_op->d_manage(path, false);
1429 if (ret < 0)
1430 return ret == -EISDIR ? 0 : ret;
1431 }
1432
1433 /* Transit to a mounted filesystem. */
1434 if (managed & DCACHE_MOUNTED) {
1435 struct vfsmount *mounted = lookup_mnt(path);
1436 if (!mounted)
1437 break;
1438 dput(path->dentry);
1439 mntput(path->mnt);
1440 path->mnt = mounted;
1441 path->dentry = dget(mounted->mnt_root);
1442 continue;
1443 }
1444
1445 /* Don't handle automount points here */
1446 break;
1447 }
1448 return 0;
1449 }
1450 EXPORT_SYMBOL(follow_down);
1451
1452 /*
1453 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1454 */
1455 static void follow_mount(struct path *path)
1456 {
1457 while (d_mountpoint(path->dentry)) {
1458 struct vfsmount *mounted = lookup_mnt(path);
1459 if (!mounted)
1460 break;
1461 dput(path->dentry);
1462 mntput(path->mnt);
1463 path->mnt = mounted;
1464 path->dentry = dget(mounted->mnt_root);
1465 }
1466 }
1467
1468 static int path_parent_directory(struct path *path)
1469 {
1470 struct dentry *old = path->dentry;
1471 /* rare case of legitimate dget_parent()... */
1472 path->dentry = dget_parent(path->dentry);
1473 dput(old);
1474 if (unlikely(!path_connected(path)))
1475 return -ENOENT;
1476 return 0;
1477 }
1478
1479 static int follow_dotdot(struct nameidata *nd)
1480 {
1481 while(1) {
1482 if (path_equal(&nd->path, &nd->root))
1483 break;
1484 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1485 int ret = path_parent_directory(&nd->path);
1486 if (ret)
1487 return ret;
1488 break;
1489 }
1490 if (!follow_up(&nd->path))
1491 break;
1492 }
1493 follow_mount(&nd->path);
1494 nd->inode = nd->path.dentry->d_inode;
1495 return 0;
1496 }
1497
1498 /*
1499 * This looks up the name in dcache and possibly revalidates the found dentry.
1500 * NULL is returned if the dentry does not exist in the cache.
1501 */
1502 static struct dentry *lookup_dcache(const struct qstr *name,
1503 struct dentry *dir,
1504 unsigned int flags)
1505 {
1506 struct dentry *dentry = d_lookup(dir, name);
1507 if (dentry) {
1508 int error = d_revalidate(dentry, flags);
1509 if (unlikely(error <= 0)) {
1510 if (!error)
1511 d_invalidate(dentry);
1512 dput(dentry);
1513 return ERR_PTR(error);
1514 }
1515 }
1516 return dentry;
1517 }
1518
1519 /*
1520 * Parent directory has inode locked exclusive. This is one
1521 * and only case when ->lookup() gets called on non in-lookup
1522 * dentries - as the matter of fact, this only gets called
1523 * when directory is guaranteed to have no in-lookup children
1524 * at all.
1525 */
1526 static struct dentry *__lookup_hash(const struct qstr *name,
1527 struct dentry *base, unsigned int flags)
1528 {
1529 struct dentry *dentry = lookup_dcache(name, base, flags);
1530 struct dentry *old;
1531 struct inode *dir = base->d_inode;
1532
1533 if (dentry)
1534 return dentry;
1535
1536 /* Don't create child dentry for a dead directory. */
1537 if (unlikely(IS_DEADDIR(dir)))
1538 return ERR_PTR(-ENOENT);
1539
1540 dentry = d_alloc(base, name);
1541 if (unlikely(!dentry))
1542 return ERR_PTR(-ENOMEM);
1543
1544 old = dir->i_op->lookup(dir, dentry, flags);
1545 if (unlikely(old)) {
1546 dput(dentry);
1547 dentry = old;
1548 }
1549 return dentry;
1550 }
1551
1552 static int lookup_fast(struct nameidata *nd,
1553 struct path *path, struct inode **inode,
1554 unsigned *seqp)
1555 {
1556 struct vfsmount *mnt = nd->path.mnt;
1557 struct dentry *dentry, *parent = nd->path.dentry;
1558 int status = 1;
1559 int err;
1560
1561 /*
1562 * Rename seqlock is not required here because in the off chance
1563 * of a false negative due to a concurrent rename, the caller is
1564 * going to fall back to non-racy lookup.
1565 */
1566 if (nd->flags & LOOKUP_RCU) {
1567 unsigned seq;
1568 bool negative;
1569 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1570 if (unlikely(!dentry)) {
1571 if (unlazy_walk(nd))
1572 return -ECHILD;
1573 return 0;
1574 }
1575
1576 /*
1577 * This sequence count validates that the inode matches
1578 * the dentry name information from lookup.
1579 */
1580 *inode = d_backing_inode(dentry);
1581 negative = d_is_negative(dentry);
1582 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1583 return -ECHILD;
1584
1585 /*
1586 * This sequence count validates that the parent had no
1587 * changes while we did the lookup of the dentry above.
1588 *
1589 * The memory barrier in read_seqcount_begin of child is
1590 * enough, we can use __read_seqcount_retry here.
1591 */
1592 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1593 return -ECHILD;
1594
1595 *seqp = seq;
1596 status = d_revalidate(dentry, nd->flags);
1597 if (likely(status > 0)) {
1598 /*
1599 * Note: do negative dentry check after revalidation in
1600 * case that drops it.
1601 */
1602 if (unlikely(negative))
1603 return -ENOENT;
1604 path->mnt = mnt;
1605 path->dentry = dentry;
1606 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1607 return 1;
1608 }
1609 if (unlazy_child(nd, dentry, seq))
1610 return -ECHILD;
1611 if (unlikely(status == -ECHILD))
1612 /* we'd been told to redo it in non-rcu mode */
1613 status = d_revalidate(dentry, nd->flags);
1614 } else {
1615 dentry = __d_lookup(parent, &nd->last);
1616 if (unlikely(!dentry))
1617 return 0;
1618 status = d_revalidate(dentry, nd->flags);
1619 }
1620 if (unlikely(status <= 0)) {
1621 if (!status)
1622 d_invalidate(dentry);
1623 dput(dentry);
1624 return status;
1625 }
1626
1627 path->mnt = mnt;
1628 path->dentry = dentry;
1629 err = follow_managed(path, nd);
1630 if (likely(err > 0))
1631 *inode = d_backing_inode(path->dentry);
1632 return err;
1633 }
1634
1635 /* Fast lookup failed, do it the slow way */
1636 static struct dentry *__lookup_slow(const struct qstr *name,
1637 struct dentry *dir,
1638 unsigned int flags)
1639 {
1640 struct dentry *dentry, *old;
1641 struct inode *inode = dir->d_inode;
1642 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1643
1644 /* Don't go there if it's already dead */
1645 if (unlikely(IS_DEADDIR(inode)))
1646 return ERR_PTR(-ENOENT);
1647 again:
1648 dentry = d_alloc_parallel(dir, name, &wq);
1649 if (IS_ERR(dentry))
1650 return dentry;
1651 if (unlikely(!d_in_lookup(dentry))) {
1652 if (!(flags & LOOKUP_NO_REVAL)) {
1653 int error = d_revalidate(dentry, flags);
1654 if (unlikely(error <= 0)) {
1655 if (!error) {
1656 d_invalidate(dentry);
1657 dput(dentry);
1658 goto again;
1659 }
1660 dput(dentry);
1661 dentry = ERR_PTR(error);
1662 }
1663 }
1664 } else {
1665 old = inode->i_op->lookup(inode, dentry, flags);
1666 d_lookup_done(dentry);
1667 if (unlikely(old)) {
1668 dput(dentry);
1669 dentry = old;
1670 }
1671 }
1672 return dentry;
1673 }
1674
1675 static struct dentry *lookup_slow(const struct qstr *name,
1676 struct dentry *dir,
1677 unsigned int flags)
1678 {
1679 struct inode *inode = dir->d_inode;
1680 struct dentry *res;
1681 inode_lock_shared(inode);
1682 res = __lookup_slow(name, dir, flags);
1683 inode_unlock_shared(inode);
1684 return res;
1685 }
1686
1687 static inline int may_lookup(struct nameidata *nd)
1688 {
1689 if (nd->flags & LOOKUP_RCU) {
1690 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1691 if (err != -ECHILD)
1692 return err;
1693 if (unlazy_walk(nd))
1694 return -ECHILD;
1695 }
1696 return inode_permission(nd->inode, MAY_EXEC);
1697 }
1698
1699 static inline int handle_dots(struct nameidata *nd, int type)
1700 {
1701 if (type == LAST_DOTDOT) {
1702 if (!nd->root.mnt)
1703 set_root(nd);
1704 if (nd->flags & LOOKUP_RCU) {
1705 return follow_dotdot_rcu(nd);
1706 } else
1707 return follow_dotdot(nd);
1708 }
1709 return 0;
1710 }
1711
1712 static int pick_link(struct nameidata *nd, struct path *link,
1713 struct inode *inode, unsigned seq)
1714 {
1715 int error;
1716 struct saved *last;
1717 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1718 path_to_nameidata(link, nd);
1719 return -ELOOP;
1720 }
1721 if (!(nd->flags & LOOKUP_RCU)) {
1722 if (link->mnt == nd->path.mnt)
1723 mntget(link->mnt);
1724 }
1725 error = nd_alloc_stack(nd);
1726 if (unlikely(error)) {
1727 if (error == -ECHILD) {
1728 if (unlikely(!legitimize_path(nd, link, seq))) {
1729 drop_links(nd);
1730 nd->depth = 0;
1731 nd->flags &= ~LOOKUP_RCU;
1732 nd->path.mnt = NULL;
1733 nd->path.dentry = NULL;
1734 rcu_read_unlock();
1735 } else if (likely(unlazy_walk(nd)) == 0)
1736 error = nd_alloc_stack(nd);
1737 }
1738 if (error) {
1739 path_put(link);
1740 return error;
1741 }
1742 }
1743
1744 last = nd->stack + nd->depth++;
1745 last->link = *link;
1746 clear_delayed_call(&last->done);
1747 nd->link_inode = inode;
1748 last->seq = seq;
1749 return 1;
1750 }
1751
1752 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1753
1754 /*
1755 * Do we need to follow links? We _really_ want to be able
1756 * to do this check without having to look at inode->i_op,
1757 * so we keep a cache of "no, this doesn't need follow_link"
1758 * for the common case.
1759 */
1760 static inline int step_into(struct nameidata *nd, struct path *path,
1761 int flags, struct inode *inode, unsigned seq)
1762 {
1763 if (!(flags & WALK_MORE) && nd->depth)
1764 put_link(nd);
1765 if (likely(!d_is_symlink(path->dentry)) ||
1766 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1767 /* not a symlink or should not follow */
1768 path_to_nameidata(path, nd);
1769 nd->inode = inode;
1770 nd->seq = seq;
1771 return 0;
1772 }
1773 /* make sure that d_is_symlink above matches inode */
1774 if (nd->flags & LOOKUP_RCU) {
1775 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1776 return -ECHILD;
1777 }
1778 return pick_link(nd, path, inode, seq);
1779 }
1780
1781 static int walk_component(struct nameidata *nd, int flags)
1782 {
1783 struct path path;
1784 struct inode *inode;
1785 unsigned seq;
1786 int err;
1787 /*
1788 * "." and ".." are special - ".." especially so because it has
1789 * to be able to know about the current root directory and
1790 * parent relationships.
1791 */
1792 if (unlikely(nd->last_type != LAST_NORM)) {
1793 err = handle_dots(nd, nd->last_type);
1794 if (!(flags & WALK_MORE) && nd->depth)
1795 put_link(nd);
1796 return err;
1797 }
1798 err = lookup_fast(nd, &path, &inode, &seq);
1799 if (unlikely(err <= 0)) {
1800 if (err < 0)
1801 return err;
1802 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1803 nd->flags);
1804 if (IS_ERR(path.dentry))
1805 return PTR_ERR(path.dentry);
1806
1807 path.mnt = nd->path.mnt;
1808 err = follow_managed(&path, nd);
1809 if (unlikely(err < 0))
1810 return err;
1811
1812 seq = 0; /* we are already out of RCU mode */
1813 inode = d_backing_inode(path.dentry);
1814 }
1815
1816 return step_into(nd, &path, flags, inode, seq);
1817 }
1818
1819 /*
1820 * We can do the critical dentry name comparison and hashing
1821 * operations one word at a time, but we are limited to:
1822 *
1823 * - Architectures with fast unaligned word accesses. We could
1824 * do a "get_unaligned()" if this helps and is sufficiently
1825 * fast.
1826 *
1827 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1828 * do not trap on the (extremely unlikely) case of a page
1829 * crossing operation.
1830 *
1831 * - Furthermore, we need an efficient 64-bit compile for the
1832 * 64-bit case in order to generate the "number of bytes in
1833 * the final mask". Again, that could be replaced with a
1834 * efficient population count instruction or similar.
1835 */
1836 #ifdef CONFIG_DCACHE_WORD_ACCESS
1837
1838 #include <asm/word-at-a-time.h>
1839
1840 #ifdef HASH_MIX
1841
1842 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1843
1844 #elif defined(CONFIG_64BIT)
1845 /*
1846 * Register pressure in the mixing function is an issue, particularly
1847 * on 32-bit x86, but almost any function requires one state value and
1848 * one temporary. Instead, use a function designed for two state values
1849 * and no temporaries.
1850 *
1851 * This function cannot create a collision in only two iterations, so
1852 * we have two iterations to achieve avalanche. In those two iterations,
1853 * we have six layers of mixing, which is enough to spread one bit's
1854 * influence out to 2^6 = 64 state bits.
1855 *
1856 * Rotate constants are scored by considering either 64 one-bit input
1857 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1858 * probability of that delta causing a change to each of the 128 output
1859 * bits, using a sample of random initial states.
1860 *
1861 * The Shannon entropy of the computed probabilities is then summed
1862 * to produce a score. Ideally, any input change has a 50% chance of
1863 * toggling any given output bit.
1864 *
1865 * Mixing scores (in bits) for (12,45):
1866 * Input delta: 1-bit 2-bit
1867 * 1 round: 713.3 42542.6
1868 * 2 rounds: 2753.7 140389.8
1869 * 3 rounds: 5954.1 233458.2
1870 * 4 rounds: 7862.6 256672.2
1871 * Perfect: 8192 258048
1872 * (64*128) (64*63/2 * 128)
1873 */
1874 #define HASH_MIX(x, y, a) \
1875 ( x ^= (a), \
1876 y ^= x, x = rol64(x,12),\
1877 x += y, y = rol64(y,45),\
1878 y *= 9 )
1879
1880 /*
1881 * Fold two longs into one 32-bit hash value. This must be fast, but
1882 * latency isn't quite as critical, as there is a fair bit of additional
1883 * work done before the hash value is used.
1884 */
1885 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1886 {
1887 y ^= x * GOLDEN_RATIO_64;
1888 y *= GOLDEN_RATIO_64;
1889 return y >> 32;
1890 }
1891
1892 #else /* 32-bit case */
1893
1894 /*
1895 * Mixing scores (in bits) for (7,20):
1896 * Input delta: 1-bit 2-bit
1897 * 1 round: 330.3 9201.6
1898 * 2 rounds: 1246.4 25475.4
1899 * 3 rounds: 1907.1 31295.1
1900 * 4 rounds: 2042.3 31718.6
1901 * Perfect: 2048 31744
1902 * (32*64) (32*31/2 * 64)
1903 */
1904 #define HASH_MIX(x, y, a) \
1905 ( x ^= (a), \
1906 y ^= x, x = rol32(x, 7),\
1907 x += y, y = rol32(y,20),\
1908 y *= 9 )
1909
1910 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1911 {
1912 /* Use arch-optimized multiply if one exists */
1913 return __hash_32(y ^ __hash_32(x));
1914 }
1915
1916 #endif
1917
1918 /*
1919 * Return the hash of a string of known length. This is carfully
1920 * designed to match hash_name(), which is the more critical function.
1921 * In particular, we must end by hashing a final word containing 0..7
1922 * payload bytes, to match the way that hash_name() iterates until it
1923 * finds the delimiter after the name.
1924 */
1925 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1926 {
1927 unsigned long a, x = 0, y = (unsigned long)salt;
1928
1929 for (;;) {
1930 if (!len)
1931 goto done;
1932 a = load_unaligned_zeropad(name);
1933 if (len < sizeof(unsigned long))
1934 break;
1935 HASH_MIX(x, y, a);
1936 name += sizeof(unsigned long);
1937 len -= sizeof(unsigned long);
1938 }
1939 x ^= a & bytemask_from_count(len);
1940 done:
1941 return fold_hash(x, y);
1942 }
1943 EXPORT_SYMBOL(full_name_hash);
1944
1945 /* Return the "hash_len" (hash and length) of a null-terminated string */
1946 u64 hashlen_string(const void *salt, const char *name)
1947 {
1948 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1949 unsigned long adata, mask, len;
1950 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1951
1952 len = 0;
1953 goto inside;
1954
1955 do {
1956 HASH_MIX(x, y, a);
1957 len += sizeof(unsigned long);
1958 inside:
1959 a = load_unaligned_zeropad(name+len);
1960 } while (!has_zero(a, &adata, &constants));
1961
1962 adata = prep_zero_mask(a, adata, &constants);
1963 mask = create_zero_mask(adata);
1964 x ^= a & zero_bytemask(mask);
1965
1966 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1967 }
1968 EXPORT_SYMBOL(hashlen_string);
1969
1970 /*
1971 * Calculate the length and hash of the path component, and
1972 * return the "hash_len" as the result.
1973 */
1974 static inline u64 hash_name(const void *salt, const char *name)
1975 {
1976 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1977 unsigned long adata, bdata, mask, len;
1978 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1979
1980 len = 0;
1981 goto inside;
1982
1983 do {
1984 HASH_MIX(x, y, a);
1985 len += sizeof(unsigned long);
1986 inside:
1987 a = load_unaligned_zeropad(name+len);
1988 b = a ^ REPEAT_BYTE('/');
1989 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1990
1991 adata = prep_zero_mask(a, adata, &constants);
1992 bdata = prep_zero_mask(b, bdata, &constants);
1993 mask = create_zero_mask(adata | bdata);
1994 x ^= a & zero_bytemask(mask);
1995
1996 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1997 }
1998
1999 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2000
2001 /* Return the hash of a string of known length */
2002 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2003 {
2004 unsigned long hash = init_name_hash(salt);
2005 while (len--)
2006 hash = partial_name_hash((unsigned char)*name++, hash);
2007 return end_name_hash(hash);
2008 }
2009 EXPORT_SYMBOL(full_name_hash);
2010
2011 /* Return the "hash_len" (hash and length) of a null-terminated string */
2012 u64 hashlen_string(const void *salt, const char *name)
2013 {
2014 unsigned long hash = init_name_hash(salt);
2015 unsigned long len = 0, c;
2016
2017 c = (unsigned char)*name;
2018 while (c) {
2019 len++;
2020 hash = partial_name_hash(c, hash);
2021 c = (unsigned char)name[len];
2022 }
2023 return hashlen_create(end_name_hash(hash), len);
2024 }
2025 EXPORT_SYMBOL(hashlen_string);
2026
2027 /*
2028 * We know there's a real path component here of at least
2029 * one character.
2030 */
2031 static inline u64 hash_name(const void *salt, const char *name)
2032 {
2033 unsigned long hash = init_name_hash(salt);
2034 unsigned long len = 0, c;
2035
2036 c = (unsigned char)*name;
2037 do {
2038 len++;
2039 hash = partial_name_hash(c, hash);
2040 c = (unsigned char)name[len];
2041 } while (c && c != '/');
2042 return hashlen_create(end_name_hash(hash), len);
2043 }
2044
2045 #endif
2046
2047 /*
2048 * Name resolution.
2049 * This is the basic name resolution function, turning a pathname into
2050 * the final dentry. We expect 'base' to be positive and a directory.
2051 *
2052 * Returns 0 and nd will have valid dentry and mnt on success.
2053 * Returns error and drops reference to input namei data on failure.
2054 */
2055 static int link_path_walk(const char *name, struct nameidata *nd)
2056 {
2057 int err;
2058
2059 if (IS_ERR(name))
2060 return PTR_ERR(name);
2061 while (*name=='/')
2062 name++;
2063 if (!*name)
2064 return 0;
2065
2066 /* At this point we know we have a real path component. */
2067 for(;;) {
2068 u64 hash_len;
2069 int type;
2070
2071 err = may_lookup(nd);
2072 if (err)
2073 return err;
2074
2075 hash_len = hash_name(nd->path.dentry, name);
2076
2077 type = LAST_NORM;
2078 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2079 case 2:
2080 if (name[1] == '.') {
2081 type = LAST_DOTDOT;
2082 nd->flags |= LOOKUP_JUMPED;
2083 }
2084 break;
2085 case 1:
2086 type = LAST_DOT;
2087 }
2088 if (likely(type == LAST_NORM)) {
2089 struct dentry *parent = nd->path.dentry;
2090 nd->flags &= ~LOOKUP_JUMPED;
2091 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2092 struct qstr this = { { .hash_len = hash_len }, .name = name };
2093 err = parent->d_op->d_hash(parent, &this);
2094 if (err < 0)
2095 return err;
2096 hash_len = this.hash_len;
2097 name = this.name;
2098 }
2099 }
2100
2101 nd->last.hash_len = hash_len;
2102 nd->last.name = name;
2103 nd->last_type = type;
2104
2105 name += hashlen_len(hash_len);
2106 if (!*name)
2107 goto OK;
2108 /*
2109 * If it wasn't NUL, we know it was '/'. Skip that
2110 * slash, and continue until no more slashes.
2111 */
2112 do {
2113 name++;
2114 } while (unlikely(*name == '/'));
2115 if (unlikely(!*name)) {
2116 OK:
2117 /* pathname body, done */
2118 if (!nd->depth)
2119 return 0;
2120 name = nd->stack[nd->depth - 1].name;
2121 /* trailing symlink, done */
2122 if (!name)
2123 return 0;
2124 /* last component of nested symlink */
2125 err = walk_component(nd, WALK_FOLLOW);
2126 } else {
2127 /* not the last component */
2128 err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2129 }
2130 if (err < 0)
2131 return err;
2132
2133 if (err) {
2134 const char *s = get_link(nd);
2135
2136 if (IS_ERR(s))
2137 return PTR_ERR(s);
2138 err = 0;
2139 if (unlikely(!s)) {
2140 /* jumped */
2141 put_link(nd);
2142 } else {
2143 nd->stack[nd->depth - 1].name = name;
2144 name = s;
2145 continue;
2146 }
2147 }
2148 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2149 if (nd->flags & LOOKUP_RCU) {
2150 if (unlazy_walk(nd))
2151 return -ECHILD;
2152 }
2153 return -ENOTDIR;
2154 }
2155 }
2156 }
2157
2158 /* must be paired with terminate_walk() */
2159 static const char *path_init(struct nameidata *nd, unsigned flags)
2160 {
2161 const char *s = nd->name->name;
2162
2163 if (!*s)
2164 flags &= ~LOOKUP_RCU;
2165 if (flags & LOOKUP_RCU)
2166 rcu_read_lock();
2167
2168 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2169 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2170 nd->depth = 0;
2171 if (flags & LOOKUP_ROOT) {
2172 struct dentry *root = nd->root.dentry;
2173 struct inode *inode = root->d_inode;
2174 if (*s && unlikely(!d_can_lookup(root)))
2175 return ERR_PTR(-ENOTDIR);
2176 nd->path = nd->root;
2177 nd->inode = inode;
2178 if (flags & LOOKUP_RCU) {
2179 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2180 nd->root_seq = nd->seq;
2181 nd->m_seq = read_seqbegin(&mount_lock);
2182 } else {
2183 path_get(&nd->path);
2184 }
2185 return s;
2186 }
2187
2188 nd->root.mnt = NULL;
2189 nd->path.mnt = NULL;
2190 nd->path.dentry = NULL;
2191
2192 nd->m_seq = read_seqbegin(&mount_lock);
2193 if (*s == '/') {
2194 set_root(nd);
2195 if (likely(!nd_jump_root(nd)))
2196 return s;
2197 return ERR_PTR(-ECHILD);
2198 } else if (nd->dfd == AT_FDCWD) {
2199 if (flags & LOOKUP_RCU) {
2200 struct fs_struct *fs = current->fs;
2201 unsigned seq;
2202
2203 do {
2204 seq = read_seqcount_begin(&fs->seq);
2205 nd->path = fs->pwd;
2206 nd->inode = nd->path.dentry->d_inode;
2207 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2208 } while (read_seqcount_retry(&fs->seq, seq));
2209 } else {
2210 get_fs_pwd(current->fs, &nd->path);
2211 nd->inode = nd->path.dentry->d_inode;
2212 }
2213 return s;
2214 } else {
2215 /* Caller must check execute permissions on the starting path component */
2216 struct fd f = fdget_raw(nd->dfd);
2217 struct dentry *dentry;
2218
2219 if (!f.file)
2220 return ERR_PTR(-EBADF);
2221
2222 dentry = f.file->f_path.dentry;
2223
2224 if (*s && unlikely(!d_can_lookup(dentry))) {
2225 fdput(f);
2226 return ERR_PTR(-ENOTDIR);
2227 }
2228
2229 nd->path = f.file->f_path;
2230 if (flags & LOOKUP_RCU) {
2231 nd->inode = nd->path.dentry->d_inode;
2232 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2233 } else {
2234 path_get(&nd->path);
2235 nd->inode = nd->path.dentry->d_inode;
2236 }
2237 fdput(f);
2238 return s;
2239 }
2240 }
2241
2242 static const char *trailing_symlink(struct nameidata *nd)
2243 {
2244 const char *s;
2245 int error = may_follow_link(nd);
2246 if (unlikely(error))
2247 return ERR_PTR(error);
2248 nd->flags |= LOOKUP_PARENT;
2249 nd->stack[0].name = NULL;
2250 s = get_link(nd);
2251 return s ? s : "";
2252 }
2253
2254 static inline int lookup_last(struct nameidata *nd)
2255 {
2256 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2257 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2258
2259 nd->flags &= ~LOOKUP_PARENT;
2260 return walk_component(nd, 0);
2261 }
2262
2263 static int handle_lookup_down(struct nameidata *nd)
2264 {
2265 struct path path = nd->path;
2266 struct inode *inode = nd->inode;
2267 unsigned seq = nd->seq;
2268 int err;
2269
2270 if (nd->flags & LOOKUP_RCU) {
2271 /*
2272 * don't bother with unlazy_walk on failure - we are
2273 * at the very beginning of walk, so we lose nothing
2274 * if we simply redo everything in non-RCU mode
2275 */
2276 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2277 return -ECHILD;
2278 } else {
2279 dget(path.dentry);
2280 err = follow_managed(&path, nd);
2281 if (unlikely(err < 0))
2282 return err;
2283 inode = d_backing_inode(path.dentry);
2284 seq = 0;
2285 }
2286 path_to_nameidata(&path, nd);
2287 nd->inode = inode;
2288 nd->seq = seq;
2289 return 0;
2290 }
2291
2292 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2293 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2294 {
2295 const char *s = path_init(nd, flags);
2296 int err;
2297
2298 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2299 err = handle_lookup_down(nd);
2300 if (unlikely(err < 0))
2301 s = ERR_PTR(err);
2302 }
2303
2304 while (!(err = link_path_walk(s, nd))
2305 && ((err = lookup_last(nd)) > 0)) {
2306 s = trailing_symlink(nd);
2307 }
2308 if (!err)
2309 err = complete_walk(nd);
2310
2311 if (!err && nd->flags & LOOKUP_DIRECTORY)
2312 if (!d_can_lookup(nd->path.dentry))
2313 err = -ENOTDIR;
2314 if (!err) {
2315 *path = nd->path;
2316 nd->path.mnt = NULL;
2317 nd->path.dentry = NULL;
2318 }
2319 terminate_walk(nd);
2320 return err;
2321 }
2322
2323 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2324 struct path *path, struct path *root)
2325 {
2326 int retval;
2327 struct nameidata nd;
2328 if (IS_ERR(name))
2329 return PTR_ERR(name);
2330 if (unlikely(root)) {
2331 nd.root = *root;
2332 flags |= LOOKUP_ROOT;
2333 }
2334 set_nameidata(&nd, dfd, name);
2335 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2336 if (unlikely(retval == -ECHILD))
2337 retval = path_lookupat(&nd, flags, path);
2338 if (unlikely(retval == -ESTALE))
2339 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2340
2341 if (likely(!retval))
2342 audit_inode(name, path->dentry, 0);
2343 restore_nameidata();
2344 putname(name);
2345 return retval;
2346 }
2347
2348 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2349 static int path_parentat(struct nameidata *nd, unsigned flags,
2350 struct path *parent)
2351 {
2352 const char *s = path_init(nd, flags);
2353 int err = link_path_walk(s, nd);
2354 if (!err)
2355 err = complete_walk(nd);
2356 if (!err) {
2357 *parent = nd->path;
2358 nd->path.mnt = NULL;
2359 nd->path.dentry = NULL;
2360 }
2361 terminate_walk(nd);
2362 return err;
2363 }
2364
2365 static struct filename *filename_parentat(int dfd, struct filename *name,
2366 unsigned int flags, struct path *parent,
2367 struct qstr *last, int *type)
2368 {
2369 int retval;
2370 struct nameidata nd;
2371
2372 if (IS_ERR(name))
2373 return name;
2374 set_nameidata(&nd, dfd, name);
2375 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2376 if (unlikely(retval == -ECHILD))
2377 retval = path_parentat(&nd, flags, parent);
2378 if (unlikely(retval == -ESTALE))
2379 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2380 if (likely(!retval)) {
2381 *last = nd.last;
2382 *type = nd.last_type;
2383 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2384 } else {
2385 putname(name);
2386 name = ERR_PTR(retval);
2387 }
2388 restore_nameidata();
2389 return name;
2390 }
2391
2392 /* does lookup, returns the object with parent locked */
2393 struct dentry *kern_path_locked(const char *name, struct path *path)
2394 {
2395 struct filename *filename;
2396 struct dentry *d;
2397 struct qstr last;
2398 int type;
2399
2400 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2401 &last, &type);
2402 if (IS_ERR(filename))
2403 return ERR_CAST(filename);
2404 if (unlikely(type != LAST_NORM)) {
2405 path_put(path);
2406 putname(filename);
2407 return ERR_PTR(-EINVAL);
2408 }
2409 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2410 d = __lookup_hash(&last, path->dentry, 0);
2411 if (IS_ERR(d)) {
2412 inode_unlock(path->dentry->d_inode);
2413 path_put(path);
2414 }
2415 putname(filename);
2416 return d;
2417 }
2418
2419 int kern_path(const char *name, unsigned int flags, struct path *path)
2420 {
2421 return filename_lookup(AT_FDCWD, getname_kernel(name),
2422 flags, path, NULL);
2423 }
2424 EXPORT_SYMBOL(kern_path);
2425
2426 /**
2427 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2428 * @dentry: pointer to dentry of the base directory
2429 * @mnt: pointer to vfs mount of the base directory
2430 * @name: pointer to file name
2431 * @flags: lookup flags
2432 * @path: pointer to struct path to fill
2433 */
2434 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2435 const char *name, unsigned int flags,
2436 struct path *path)
2437 {
2438 struct path root = {.mnt = mnt, .dentry = dentry};
2439 /* the first argument of filename_lookup() is ignored with root */
2440 return filename_lookup(AT_FDCWD, getname_kernel(name),
2441 flags , path, &root);
2442 }
2443 EXPORT_SYMBOL(vfs_path_lookup);
2444
2445 static int lookup_one_len_common(const char *name, struct dentry *base,
2446 int len, struct qstr *this)
2447 {
2448 this->name = name;
2449 this->len = len;
2450 this->hash = full_name_hash(base, name, len);
2451 if (!len)
2452 return -EACCES;
2453
2454 if (unlikely(name[0] == '.')) {
2455 if (len < 2 || (len == 2 && name[1] == '.'))
2456 return -EACCES;
2457 }
2458
2459 while (len--) {
2460 unsigned int c = *(const unsigned char *)name++;
2461 if (c == '/' || c == '\0')
2462 return -EACCES;
2463 }
2464 /*
2465 * See if the low-level filesystem might want
2466 * to use its own hash..
2467 */
2468 if (base->d_flags & DCACHE_OP_HASH) {
2469 int err = base->d_op->d_hash(base, this);
2470 if (err < 0)
2471 return err;
2472 }
2473
2474 return inode_permission(base->d_inode, MAY_EXEC);
2475 }
2476
2477 /**
2478 * try_lookup_one_len - filesystem helper to lookup single pathname component
2479 * @name: pathname component to lookup
2480 * @base: base directory to lookup from
2481 * @len: maximum length @len should be interpreted to
2482 *
2483 * Look up a dentry by name in the dcache, returning NULL if it does not
2484 * currently exist. The function does not try to create a dentry.
2485 *
2486 * Note that this routine is purely a helper for filesystem usage and should
2487 * not be called by generic code.
2488 *
2489 * The caller must hold base->i_mutex.
2490 */
2491 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2492 {
2493 struct qstr this;
2494 int err;
2495
2496 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2497
2498 err = lookup_one_len_common(name, base, len, &this);
2499 if (err)
2500 return ERR_PTR(err);
2501
2502 return lookup_dcache(&this, base, 0);
2503 }
2504 EXPORT_SYMBOL(try_lookup_one_len);
2505
2506 /**
2507 * lookup_one_len - filesystem helper to lookup single pathname component
2508 * @name: pathname component to lookup
2509 * @base: base directory to lookup from
2510 * @len: maximum length @len should be interpreted to
2511 *
2512 * Note that this routine is purely a helper for filesystem usage and should
2513 * not be called by generic code.
2514 *
2515 * The caller must hold base->i_mutex.
2516 */
2517 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2518 {
2519 struct dentry *dentry;
2520 struct qstr this;
2521 int err;
2522
2523 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2524
2525 err = lookup_one_len_common(name, base, len, &this);
2526 if (err)
2527 return ERR_PTR(err);
2528
2529 dentry = lookup_dcache(&this, base, 0);
2530 return dentry ? dentry : __lookup_slow(&this, base, 0);
2531 }
2532 EXPORT_SYMBOL(lookup_one_len);
2533
2534 /**
2535 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2536 * @name: pathname component to lookup
2537 * @base: base directory to lookup from
2538 * @len: maximum length @len should be interpreted to
2539 *
2540 * Note that this routine is purely a helper for filesystem usage and should
2541 * not be called by generic code.
2542 *
2543 * Unlike lookup_one_len, it should be called without the parent
2544 * i_mutex held, and will take the i_mutex itself if necessary.
2545 */
2546 struct dentry *lookup_one_len_unlocked(const char *name,
2547 struct dentry *base, int len)
2548 {
2549 struct qstr this;
2550 int err;
2551 struct dentry *ret;
2552
2553 err = lookup_one_len_common(name, base, len, &this);
2554 if (err)
2555 return ERR_PTR(err);
2556
2557 ret = lookup_dcache(&this, base, 0);
2558 if (!ret)
2559 ret = lookup_slow(&this, base, 0);
2560 return ret;
2561 }
2562 EXPORT_SYMBOL(lookup_one_len_unlocked);
2563
2564 /*
2565 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2566 * on negatives. Returns known positive or ERR_PTR(); that's what
2567 * most of the users want. Note that pinned negative with unlocked parent
2568 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2569 * need to be very careful; pinned positives have ->d_inode stable, so
2570 * this one avoids such problems.
2571 */
2572 struct dentry *lookup_positive_unlocked(const char *name,
2573 struct dentry *base, int len)
2574 {
2575 struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2576 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2577 dput(ret);
2578 ret = ERR_PTR(-ENOENT);
2579 }
2580 return ret;
2581 }
2582 EXPORT_SYMBOL(lookup_positive_unlocked);
2583
2584 #ifdef CONFIG_UNIX98_PTYS
2585 int path_pts(struct path *path)
2586 {
2587 /* Find something mounted on "pts" in the same directory as
2588 * the input path.
2589 */
2590 struct dentry *child, *parent;
2591 struct qstr this;
2592 int ret;
2593
2594 ret = path_parent_directory(path);
2595 if (ret)
2596 return ret;
2597
2598 parent = path->dentry;
2599 this.name = "pts";
2600 this.len = 3;
2601 child = d_hash_and_lookup(parent, &this);
2602 if (!child)
2603 return -ENOENT;
2604
2605 path->dentry = child;
2606 dput(parent);
2607 follow_mount(path);
2608 return 0;
2609 }
2610 #endif
2611
2612 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2613 struct path *path, int *empty)
2614 {
2615 return filename_lookup(dfd, getname_flags(name, flags, empty),
2616 flags, path, NULL);
2617 }
2618 EXPORT_SYMBOL(user_path_at_empty);
2619
2620 /**
2621 * mountpoint_last - look up last component for umount
2622 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2623 *
2624 * This is a special lookup_last function just for umount. In this case, we
2625 * need to resolve the path without doing any revalidation.
2626 *
2627 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2628 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2629 * in almost all cases, this lookup will be served out of the dcache. The only
2630 * cases where it won't are if nd->last refers to a symlink or the path is
2631 * bogus and it doesn't exist.
2632 *
2633 * Returns:
2634 * -error: if there was an error during lookup. This includes -ENOENT if the
2635 * lookup found a negative dentry.
2636 *
2637 * 0: if we successfully resolved nd->last and found it to not to be a
2638 * symlink that needs to be followed.
2639 *
2640 * 1: if we successfully resolved nd->last and found it to be a symlink
2641 * that needs to be followed.
2642 */
2643 static int
2644 mountpoint_last(struct nameidata *nd)
2645 {
2646 int error = 0;
2647 struct dentry *dir = nd->path.dentry;
2648 struct path path;
2649
2650 /* If we're in rcuwalk, drop out of it to handle last component */
2651 if (nd->flags & LOOKUP_RCU) {
2652 if (unlazy_walk(nd))
2653 return -ECHILD;
2654 }
2655
2656 nd->flags &= ~LOOKUP_PARENT;
2657
2658 if (unlikely(nd->last_type != LAST_NORM)) {
2659 error = handle_dots(nd, nd->last_type);
2660 if (error)
2661 return error;
2662 path.dentry = dget(nd->path.dentry);
2663 } else {
2664 path.dentry = d_lookup(dir, &nd->last);
2665 if (!path.dentry) {
2666 /*
2667 * No cached dentry. Mounted dentries are pinned in the
2668 * cache, so that means that this dentry is probably
2669 * a symlink or the path doesn't actually point
2670 * to a mounted dentry.
2671 */
2672 path.dentry = lookup_slow(&nd->last, dir,
2673 nd->flags | LOOKUP_NO_REVAL);
2674 if (IS_ERR(path.dentry))
2675 return PTR_ERR(path.dentry);
2676 }
2677 }
2678 if (d_flags_negative(smp_load_acquire(&path.dentry->d_flags))) {
2679 dput(path.dentry);
2680 return -ENOENT;
2681 }
2682 path.mnt = nd->path.mnt;
2683 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2684 }
2685
2686 /**
2687 * path_mountpoint - look up a path to be umounted
2688 * @nd: lookup context
2689 * @flags: lookup flags
2690 * @path: pointer to container for result
2691 *
2692 * Look up the given name, but don't attempt to revalidate the last component.
2693 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2694 */
2695 static int
2696 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2697 {
2698 const char *s = path_init(nd, flags);
2699 int err;
2700
2701 while (!(err = link_path_walk(s, nd)) &&
2702 (err = mountpoint_last(nd)) > 0) {
2703 s = trailing_symlink(nd);
2704 }
2705 if (!err) {
2706 *path = nd->path;
2707 nd->path.mnt = NULL;
2708 nd->path.dentry = NULL;
2709 follow_mount(path);
2710 }
2711 terminate_walk(nd);
2712 return err;
2713 }
2714
2715 static int
2716 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2717 unsigned int flags)
2718 {
2719 struct nameidata nd;
2720 int error;
2721 if (IS_ERR(name))
2722 return PTR_ERR(name);
2723 set_nameidata(&nd, dfd, name);
2724 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2725 if (unlikely(error == -ECHILD))
2726 error = path_mountpoint(&nd, flags, path);
2727 if (unlikely(error == -ESTALE))
2728 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2729 if (likely(!error))
2730 audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL);
2731 restore_nameidata();
2732 putname(name);
2733 return error;
2734 }
2735
2736 /**
2737 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2738 * @dfd: directory file descriptor
2739 * @name: pathname from userland
2740 * @flags: lookup flags
2741 * @path: pointer to container to hold result
2742 *
2743 * A umount is a special case for path walking. We're not actually interested
2744 * in the inode in this situation, and ESTALE errors can be a problem. We
2745 * simply want track down the dentry and vfsmount attached at the mountpoint
2746 * and avoid revalidating the last component.
2747 *
2748 * Returns 0 and populates "path" on success.
2749 */
2750 int
2751 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2752 struct path *path)
2753 {
2754 return filename_mountpoint(dfd, getname(name), path, flags);
2755 }
2756
2757 int
2758 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2759 unsigned int flags)
2760 {
2761 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2762 }
2763 EXPORT_SYMBOL(kern_path_mountpoint);
2764
2765 int __check_sticky(struct inode *dir, struct inode *inode)
2766 {
2767 kuid_t fsuid = current_fsuid();
2768
2769 if (uid_eq(inode->i_uid, fsuid))
2770 return 0;
2771 if (uid_eq(dir->i_uid, fsuid))
2772 return 0;
2773 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2774 }
2775 EXPORT_SYMBOL(__check_sticky);
2776
2777 /*
2778 * Check whether we can remove a link victim from directory dir, check
2779 * whether the type of victim is right.
2780 * 1. We can't do it if dir is read-only (done in permission())
2781 * 2. We should have write and exec permissions on dir
2782 * 3. We can't remove anything from append-only dir
2783 * 4. We can't do anything with immutable dir (done in permission())
2784 * 5. If the sticky bit on dir is set we should either
2785 * a. be owner of dir, or
2786 * b. be owner of victim, or
2787 * c. have CAP_FOWNER capability
2788 * 6. If the victim is append-only or immutable we can't do antyhing with
2789 * links pointing to it.
2790 * 7. If the victim has an unknown uid or gid we can't change the inode.
2791 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2792 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2793 * 10. We can't remove a root or mountpoint.
2794 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2795 * nfs_async_unlink().
2796 */
2797 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2798 {
2799 struct inode *inode = d_backing_inode(victim);
2800 int error;
2801
2802 if (d_is_negative(victim))
2803 return -ENOENT;
2804 BUG_ON(!inode);
2805
2806 BUG_ON(victim->d_parent->d_inode != dir);
2807
2808 /* Inode writeback is not safe when the uid or gid are invalid. */
2809 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2810 return -EOVERFLOW;
2811
2812 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2813
2814 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2815 if (error)
2816 return error;
2817 if (IS_APPEND(dir))
2818 return -EPERM;
2819
2820 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2821 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2822 return -EPERM;
2823 if (isdir) {
2824 if (!d_is_dir(victim))
2825 return -ENOTDIR;
2826 if (IS_ROOT(victim))
2827 return -EBUSY;
2828 } else if (d_is_dir(victim))
2829 return -EISDIR;
2830 if (IS_DEADDIR(dir))
2831 return -ENOENT;
2832 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2833 return -EBUSY;
2834 return 0;
2835 }
2836
2837 /* Check whether we can create an object with dentry child in directory
2838 * dir.
2839 * 1. We can't do it if child already exists (open has special treatment for
2840 * this case, but since we are inlined it's OK)
2841 * 2. We can't do it if dir is read-only (done in permission())
2842 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2843 * 4. We should have write and exec permissions on dir
2844 * 5. We can't do it if dir is immutable (done in permission())
2845 */
2846 static inline int may_create(struct inode *dir, struct dentry *child)
2847 {
2848 struct user_namespace *s_user_ns;
2849 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2850 if (child->d_inode)
2851 return -EEXIST;
2852 if (IS_DEADDIR(dir))
2853 return -ENOENT;
2854 s_user_ns = dir->i_sb->s_user_ns;
2855 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2856 !kgid_has_mapping(s_user_ns, current_fsgid()))
2857 return -EOVERFLOW;
2858 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2859 }
2860
2861 /*
2862 * p1 and p2 should be directories on the same fs.
2863 */
2864 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2865 {
2866 struct dentry *p;
2867
2868 if (p1 == p2) {
2869 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2870 return NULL;
2871 }
2872
2873 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2874
2875 p = d_ancestor(p2, p1);
2876 if (p) {
2877 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2878 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2879 return p;
2880 }
2881
2882 p = d_ancestor(p1, p2);
2883 if (p) {
2884 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2885 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2886 return p;
2887 }
2888
2889 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2890 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2891 return NULL;
2892 }
2893 EXPORT_SYMBOL(lock_rename);
2894
2895 void unlock_rename(struct dentry *p1, struct dentry *p2)
2896 {
2897 inode_unlock(p1->d_inode);
2898 if (p1 != p2) {
2899 inode_unlock(p2->d_inode);
2900 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2901 }
2902 }
2903 EXPORT_SYMBOL(unlock_rename);
2904
2905 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2906 bool want_excl)
2907 {
2908 int error = may_create(dir, dentry);
2909 if (error)
2910 return error;
2911
2912 if (!dir->i_op->create)
2913 return -EACCES; /* shouldn't it be ENOSYS? */
2914 mode &= S_IALLUGO;
2915 mode |= S_IFREG;
2916 error = security_inode_create(dir, dentry, mode);
2917 if (error)
2918 return error;
2919 error = dir->i_op->create(dir, dentry, mode, want_excl);
2920 if (!error)
2921 fsnotify_create(dir, dentry);
2922 return error;
2923 }
2924 EXPORT_SYMBOL(vfs_create);
2925
2926 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2927 int (*f)(struct dentry *, umode_t, void *),
2928 void *arg)
2929 {
2930 struct inode *dir = dentry->d_parent->d_inode;
2931 int error = may_create(dir, dentry);
2932 if (error)
2933 return error;
2934
2935 mode &= S_IALLUGO;
2936 mode |= S_IFREG;
2937 error = security_inode_create(dir, dentry, mode);
2938 if (error)
2939 return error;
2940 error = f(dentry, mode, arg);
2941 if (!error)
2942 fsnotify_create(dir, dentry);
2943 return error;
2944 }
2945 EXPORT_SYMBOL(vfs_mkobj);
2946
2947 bool may_open_dev(const struct path *path)
2948 {
2949 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2950 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2951 }
2952
2953 static int may_open(const struct path *path, int acc_mode, int flag)
2954 {
2955 struct dentry *dentry = path->dentry;
2956 struct inode *inode = dentry->d_inode;
2957 int error;
2958
2959 if (!inode)
2960 return -ENOENT;
2961
2962 switch (inode->i_mode & S_IFMT) {
2963 case S_IFLNK:
2964 return -ELOOP;
2965 case S_IFDIR:
2966 if (acc_mode & MAY_WRITE)
2967 return -EISDIR;
2968 break;
2969 case S_IFBLK:
2970 case S_IFCHR:
2971 if (!may_open_dev(path))
2972 return -EACCES;
2973 /*FALLTHRU*/
2974 case S_IFIFO:
2975 case S_IFSOCK:
2976 flag &= ~O_TRUNC;
2977 break;
2978 }
2979
2980 error = inode_permission(inode, MAY_OPEN | acc_mode);
2981 if (error)
2982 return error;
2983
2984 /*
2985 * An append-only file must be opened in append mode for writing.
2986 */
2987 if (IS_APPEND(inode)) {
2988 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2989 return -EPERM;
2990 if (flag & O_TRUNC)
2991 return -EPERM;
2992 }
2993
2994 /* O_NOATIME can only be set by the owner or superuser */
2995 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2996 return -EPERM;
2997
2998 return 0;
2999 }
3000
3001 static int handle_truncate(struct file *filp)
3002 {
3003 const struct path *path = &filp->f_path;
3004 struct inode *inode = path->dentry->d_inode;
3005 int error = get_write_access(inode);
3006 if (error)
3007 return error;
3008 /*
3009 * Refuse to truncate files with mandatory locks held on them.
3010 */
3011 error = locks_verify_locked(filp);
3012 if (!error)
3013 error = security_path_truncate(path);
3014 if (!error) {
3015 error = do_truncate(path->dentry, 0,
3016 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3017 filp);
3018 }
3019 put_write_access(inode);
3020 return error;
3021 }
3022
3023 static inline int open_to_namei_flags(int flag)
3024 {
3025 if ((flag & O_ACCMODE) == 3)
3026 flag--;
3027 return flag;
3028 }
3029
3030 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3031 {
3032 struct user_namespace *s_user_ns;
3033 int error = security_path_mknod(dir, dentry, mode, 0);
3034 if (error)
3035 return error;
3036
3037 s_user_ns = dir->dentry->d_sb->s_user_ns;
3038 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3039 !kgid_has_mapping(s_user_ns, current_fsgid()))
3040 return -EOVERFLOW;
3041
3042 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3043 if (error)
3044 return error;
3045
3046 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3047 }
3048
3049 /*
3050 * Attempt to atomically look up, create and open a file from a negative
3051 * dentry.
3052 *
3053 * Returns 0 if successful. The file will have been created and attached to
3054 * @file by the filesystem calling finish_open().
3055 *
3056 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3057 * be set. The caller will need to perform the open themselves. @path will
3058 * have been updated to point to the new dentry. This may be negative.
3059 *
3060 * Returns an error code otherwise.
3061 */
3062 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3063 struct path *path, struct file *file,
3064 const struct open_flags *op,
3065 int open_flag, umode_t mode)
3066 {
3067 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3068 struct inode *dir = nd->path.dentry->d_inode;
3069 int error;
3070
3071 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3072 open_flag &= ~O_TRUNC;
3073
3074 if (nd->flags & LOOKUP_DIRECTORY)
3075 open_flag |= O_DIRECTORY;
3076
3077 file->f_path.dentry = DENTRY_NOT_SET;
3078 file->f_path.mnt = nd->path.mnt;
3079 error = dir->i_op->atomic_open(dir, dentry, file,
3080 open_to_namei_flags(open_flag), mode);
3081 d_lookup_done(dentry);
3082 if (!error) {
3083 if (file->f_mode & FMODE_OPENED) {
3084 /*
3085 * We didn't have the inode before the open, so check open
3086 * permission here.
3087 */
3088 int acc_mode = op->acc_mode;
3089 if (file->f_mode & FMODE_CREATED) {
3090 WARN_ON(!(open_flag & O_CREAT));
3091 fsnotify_create(dir, dentry);
3092 acc_mode = 0;
3093 }
3094 error = may_open(&file->f_path, acc_mode, open_flag);
3095 if (WARN_ON(error > 0))
3096 error = -EINVAL;
3097 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3098 error = -EIO;
3099 } else {
3100 if (file->f_path.dentry) {
3101 dput(dentry);
3102 dentry = file->f_path.dentry;
3103 }
3104 if (file->f_mode & FMODE_CREATED)
3105 fsnotify_create(dir, dentry);
3106 if (unlikely(d_is_negative(dentry))) {
3107 error = -ENOENT;
3108 } else {
3109 path->dentry = dentry;
3110 path->mnt = nd->path.mnt;
3111 return 0;
3112 }
3113 }
3114 }
3115 dput(dentry);
3116 return error;
3117 }
3118
3119 /*
3120 * Look up and maybe create and open the last component.
3121 *
3122 * Must be called with parent locked (exclusive in O_CREAT case).
3123 *
3124 * Returns 0 on success, that is, if
3125 * the file was successfully atomically created (if necessary) and opened, or
3126 * the file was not completely opened at this time, though lookups and
3127 * creations were performed.
3128 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3129 * In the latter case dentry returned in @path might be negative if O_CREAT
3130 * hadn't been specified.
3131 *
3132 * An error code is returned on failure.
3133 */
3134 static int lookup_open(struct nameidata *nd, struct path *path,
3135 struct file *file,
3136 const struct open_flags *op,
3137 bool got_write)
3138 {
3139 struct dentry *dir = nd->path.dentry;
3140 struct inode *dir_inode = dir->d_inode;
3141 int open_flag = op->open_flag;
3142 struct dentry *dentry;
3143 int error, create_error = 0;
3144 umode_t mode = op->mode;
3145 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3146
3147 if (unlikely(IS_DEADDIR(dir_inode)))
3148 return -ENOENT;
3149
3150 file->f_mode &= ~FMODE_CREATED;
3151 dentry = d_lookup(dir, &nd->last);
3152 for (;;) {
3153 if (!dentry) {
3154 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3155 if (IS_ERR(dentry))
3156 return PTR_ERR(dentry);
3157 }
3158 if (d_in_lookup(dentry))
3159 break;
3160
3161 error = d_revalidate(dentry, nd->flags);
3162 if (likely(error > 0))
3163 break;
3164 if (error)
3165 goto out_dput;
3166 d_invalidate(dentry);
3167 dput(dentry);
3168 dentry = NULL;
3169 }
3170 if (dentry->d_inode) {
3171 /* Cached positive dentry: will open in f_op->open */
3172 goto out_no_open;
3173 }
3174
3175 /*
3176 * Checking write permission is tricky, bacuse we don't know if we are
3177 * going to actually need it: O_CREAT opens should work as long as the
3178 * file exists. But checking existence breaks atomicity. The trick is
3179 * to check access and if not granted clear O_CREAT from the flags.
3180 *
3181 * Another problem is returing the "right" error value (e.g. for an
3182 * O_EXCL open we want to return EEXIST not EROFS).
3183 */
3184 if (open_flag & O_CREAT) {
3185 if (!IS_POSIXACL(dir->d_inode))
3186 mode &= ~current_umask();
3187 if (unlikely(!got_write)) {
3188 create_error = -EROFS;
3189 open_flag &= ~O_CREAT;
3190 if (open_flag & (O_EXCL | O_TRUNC))
3191 goto no_open;
3192 /* No side effects, safe to clear O_CREAT */
3193 } else {
3194 create_error = may_o_create(&nd->path, dentry, mode);
3195 if (create_error) {
3196 open_flag &= ~O_CREAT;
3197 if (open_flag & O_EXCL)
3198 goto no_open;
3199 }
3200 }
3201 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3202 unlikely(!got_write)) {
3203 /*
3204 * No O_CREATE -> atomicity not a requirement -> fall
3205 * back to lookup + open
3206 */
3207 goto no_open;
3208 }
3209
3210 if (dir_inode->i_op->atomic_open) {
3211 error = atomic_open(nd, dentry, path, file, op, open_flag,
3212 mode);
3213 if (unlikely(error == -ENOENT) && create_error)
3214 error = create_error;
3215 return error;
3216 }
3217
3218 no_open:
3219 if (d_in_lookup(dentry)) {
3220 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3221 nd->flags);
3222 d_lookup_done(dentry);
3223 if (unlikely(res)) {
3224 if (IS_ERR(res)) {
3225 error = PTR_ERR(res);
3226 goto out_dput;
3227 }
3228 dput(dentry);
3229 dentry = res;
3230 }
3231 }
3232
3233 /* Negative dentry, just create the file */
3234 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3235 file->f_mode |= FMODE_CREATED;
3236 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3237 if (!dir_inode->i_op->create) {
3238 error = -EACCES;
3239 goto out_dput;
3240 }
3241 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3242 open_flag & O_EXCL);
3243 if (error)
3244 goto out_dput;
3245 fsnotify_create(dir_inode, dentry);
3246 }
3247 if (unlikely(create_error) && !dentry->d_inode) {
3248 error = create_error;
3249 goto out_dput;
3250 }
3251 out_no_open:
3252 path->dentry = dentry;
3253 path->mnt = nd->path.mnt;
3254 return 0;
3255
3256 out_dput:
3257 dput(dentry);
3258 return error;
3259 }
3260
3261 /*
3262 * Handle the last step of open()
3263 */
3264 static int do_last(struct nameidata *nd,
3265 struct file *file, const struct open_flags *op)
3266 {
3267 struct dentry *dir = nd->path.dentry;
3268 int open_flag = op->open_flag;
3269 bool will_truncate = (open_flag & O_TRUNC) != 0;
3270 bool got_write = false;
3271 int acc_mode = op->acc_mode;
3272 unsigned seq;
3273 struct inode *inode;
3274 struct path path;
3275 int error;
3276
3277 nd->flags &= ~LOOKUP_PARENT;
3278 nd->flags |= op->intent;
3279
3280 if (nd->last_type != LAST_NORM) {
3281 error = handle_dots(nd, nd->last_type);
3282 if (unlikely(error))
3283 return error;
3284 goto finish_open;
3285 }
3286
3287 if (!(open_flag & O_CREAT)) {
3288 if (nd->last.name[nd->last.len])
3289 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3290 /* we _can_ be in RCU mode here */
3291 error = lookup_fast(nd, &path, &inode, &seq);
3292 if (likely(error > 0))
3293 goto finish_lookup;
3294
3295 if (error < 0)
3296 return error;
3297
3298 BUG_ON(nd->inode != dir->d_inode);
3299 BUG_ON(nd->flags & LOOKUP_RCU);
3300 } else {
3301 /* create side of things */
3302 /*
3303 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3304 * has been cleared when we got to the last component we are
3305 * about to look up
3306 */
3307 error = complete_walk(nd);
3308 if (error)
3309 return error;
3310
3311 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3312 /* trailing slashes? */
3313 if (unlikely(nd->last.name[nd->last.len]))
3314 return -EISDIR;
3315 }
3316
3317 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3318 error = mnt_want_write(nd->path.mnt);
3319 if (!error)
3320 got_write = true;
3321 /*
3322 * do _not_ fail yet - we might not need that or fail with
3323 * a different error; let lookup_open() decide; we'll be
3324 * dropping this one anyway.
3325 */
3326 }
3327 if (open_flag & O_CREAT)
3328 inode_lock(dir->d_inode);
3329 else
3330 inode_lock_shared(dir->d_inode);
3331 error = lookup_open(nd, &path, file, op, got_write);
3332 if (open_flag & O_CREAT)
3333 inode_unlock(dir->d_inode);
3334 else
3335 inode_unlock_shared(dir->d_inode);
3336
3337 if (error)
3338 goto out;
3339
3340 if (file->f_mode & FMODE_OPENED) {
3341 if ((file->f_mode & FMODE_CREATED) ||
3342 !S_ISREG(file_inode(file)->i_mode))
3343 will_truncate = false;
3344
3345 audit_inode(nd->name, file->f_path.dentry, 0);
3346 goto opened;
3347 }
3348
3349 if (file->f_mode & FMODE_CREATED) {
3350 /* Don't check for write permission, don't truncate */
3351 open_flag &= ~O_TRUNC;
3352 will_truncate = false;
3353 acc_mode = 0;
3354 path_to_nameidata(&path, nd);
3355 goto finish_open_created;
3356 }
3357
3358 /*
3359 * If atomic_open() acquired write access it is dropped now due to
3360 * possible mount and symlink following (this might be optimized away if
3361 * necessary...)
3362 */
3363 if (got_write) {
3364 mnt_drop_write(nd->path.mnt);
3365 got_write = false;
3366 }
3367
3368 error = follow_managed(&path, nd);
3369 if (unlikely(error < 0))
3370 return error;
3371
3372 /*
3373 * create/update audit record if it already exists.
3374 */
3375 audit_inode(nd->name, path.dentry, 0);
3376
3377 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3378 path_to_nameidata(&path, nd);
3379 return -EEXIST;
3380 }
3381
3382 seq = 0; /* out of RCU mode, so the value doesn't matter */
3383 inode = d_backing_inode(path.dentry);
3384 finish_lookup:
3385 error = step_into(nd, &path, 0, inode, seq);
3386 if (unlikely(error))
3387 return error;
3388 finish_open:
3389 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3390 error = complete_walk(nd);
3391 if (error)
3392 return error;
3393 audit_inode(nd->name, nd->path.dentry, 0);
3394 if (open_flag & O_CREAT) {
3395 error = -EISDIR;
3396 if (d_is_dir(nd->path.dentry))
3397 goto out;
3398 error = may_create_in_sticky(dir,
3399 d_backing_inode(nd->path.dentry));
3400 if (unlikely(error))
3401 goto out;
3402 }
3403 error = -ENOTDIR;
3404 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3405 goto out;
3406 if (!d_is_reg(nd->path.dentry))
3407 will_truncate = false;
3408
3409 if (will_truncate) {
3410 error = mnt_want_write(nd->path.mnt);
3411 if (error)
3412 goto out;
3413 got_write = true;
3414 }
3415 finish_open_created:
3416 error = may_open(&nd->path, acc_mode, open_flag);
3417 if (error)
3418 goto out;
3419 BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3420 error = vfs_open(&nd->path, file);
3421 if (error)
3422 goto out;
3423 opened:
3424 error = ima_file_check(file, op->acc_mode);
3425 if (!error && will_truncate)
3426 error = handle_truncate(file);
3427 out:
3428 if (unlikely(error > 0)) {
3429 WARN_ON(1);
3430 error = -EINVAL;
3431 }
3432 if (got_write)
3433 mnt_drop_write(nd->path.mnt);
3434 return error;
3435 }
3436
3437 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3438 {
3439 struct dentry *child = NULL;
3440 struct inode *dir = dentry->d_inode;
3441 struct inode *inode;
3442 int error;
3443
3444 /* we want directory to be writable */
3445 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3446 if (error)
3447 goto out_err;
3448 error = -EOPNOTSUPP;
3449 if (!dir->i_op->tmpfile)
3450 goto out_err;
3451 error = -ENOMEM;
3452 child = d_alloc(dentry, &slash_name);
3453 if (unlikely(!child))
3454 goto out_err;
3455 error = dir->i_op->tmpfile(dir, child, mode);
3456 if (error)
3457 goto out_err;
3458 error = -ENOENT;
3459 inode = child->d_inode;
3460 if (unlikely(!inode))
3461 goto out_err;
3462 if (!(open_flag & O_EXCL)) {
3463 spin_lock(&inode->i_lock);
3464 inode->i_state |= I_LINKABLE;
3465 spin_unlock(&inode->i_lock);
3466 }
3467 ima_post_create_tmpfile(inode);
3468 return child;
3469
3470 out_err:
3471 dput(child);
3472 return ERR_PTR(error);
3473 }
3474 EXPORT_SYMBOL(vfs_tmpfile);
3475
3476 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3477 const struct open_flags *op,
3478 struct file *file)
3479 {
3480 struct dentry *child;
3481 struct path path;
3482 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3483 if (unlikely(error))
3484 return error;
3485 error = mnt_want_write(path.mnt);
3486 if (unlikely(error))
3487 goto out;
3488 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3489 error = PTR_ERR(child);
3490 if (IS_ERR(child))
3491 goto out2;
3492 dput(path.dentry);
3493 path.dentry = child;
3494 audit_inode(nd->name, child, 0);
3495 /* Don't check for other permissions, the inode was just created */
3496 error = may_open(&path, 0, op->open_flag);
3497 if (error)
3498 goto out2;
3499 file->f_path.mnt = path.mnt;
3500 error = finish_open(file, child, NULL);
3501 out2:
3502 mnt_drop_write(path.mnt);
3503 out:
3504 path_put(&path);
3505 return error;
3506 }
3507
3508 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3509 {
3510 struct path path;
3511 int error = path_lookupat(nd, flags, &path);
3512 if (!error) {
3513 audit_inode(nd->name, path.dentry, 0);
3514 error = vfs_open(&path, file);
3515 path_put(&path);
3516 }
3517 return error;
3518 }
3519
3520 static struct file *path_openat(struct nameidata *nd,
3521 const struct open_flags *op, unsigned flags)
3522 {
3523 struct file *file;
3524 int error;
3525
3526 file = alloc_empty_file(op->open_flag, current_cred());
3527 if (IS_ERR(file))
3528 return file;
3529
3530 if (unlikely(file->f_flags & __O_TMPFILE)) {
3531 error = do_tmpfile(nd, flags, op, file);
3532 } else if (unlikely(file->f_flags & O_PATH)) {
3533 error = do_o_path(nd, flags, file);
3534 } else {
3535 const char *s = path_init(nd, flags);
3536 while (!(error = link_path_walk(s, nd)) &&
3537 (error = do_last(nd, file, op)) > 0) {
3538 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3539 s = trailing_symlink(nd);
3540 }
3541 terminate_walk(nd);
3542 }
3543 if (likely(!error)) {
3544 if (likely(file->f_mode & FMODE_OPENED))
3545 return file;
3546 WARN_ON(1);
3547 error = -EINVAL;
3548 }
3549 fput(file);
3550 if (error == -EOPENSTALE) {
3551 if (flags & LOOKUP_RCU)
3552 error = -ECHILD;
3553 else
3554 error = -ESTALE;
3555 }
3556 return ERR_PTR(error);
3557 }
3558
3559 struct file *do_filp_open(int dfd, struct filename *pathname,
3560 const struct open_flags *op)
3561 {
3562 struct nameidata nd;
3563 int flags = op->lookup_flags;
3564 struct file *filp;
3565
3566 set_nameidata(&nd, dfd, pathname);
3567 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3568 if (unlikely(filp == ERR_PTR(-ECHILD)))
3569 filp = path_openat(&nd, op, flags);
3570 if (unlikely(filp == ERR_PTR(-ESTALE)))
3571 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3572 restore_nameidata();
3573 return filp;
3574 }
3575
3576 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3577 const char *name, const struct open_flags *op)
3578 {
3579 struct nameidata nd;
3580 struct file *file;
3581 struct filename *filename;
3582 int flags = op->lookup_flags | LOOKUP_ROOT;
3583
3584 nd.root.mnt = mnt;
3585 nd.root.dentry = dentry;
3586
3587 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3588 return ERR_PTR(-ELOOP);
3589
3590 filename = getname_kernel(name);
3591 if (IS_ERR(filename))
3592 return ERR_CAST(filename);
3593
3594 set_nameidata(&nd, -1, filename);
3595 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3596 if (unlikely(file == ERR_PTR(-ECHILD)))
3597 file = path_openat(&nd, op, flags);
3598 if (unlikely(file == ERR_PTR(-ESTALE)))
3599 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3600 restore_nameidata();
3601 putname(filename);
3602 return file;
3603 }
3604
3605 static struct dentry *filename_create(int dfd, struct filename *name,
3606 struct path *path, unsigned int lookup_flags)
3607 {
3608 struct dentry *dentry = ERR_PTR(-EEXIST);
3609 struct qstr last;
3610 int type;
3611 int err2;
3612 int error;
3613 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3614
3615 /*
3616 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3617 * other flags passed in are ignored!
3618 */
3619 lookup_flags &= LOOKUP_REVAL;
3620
3621 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3622 if (IS_ERR(name))
3623 return ERR_CAST(name);
3624
3625 /*
3626 * Yucky last component or no last component at all?
3627 * (foo/., foo/.., /////)
3628 */
3629 if (unlikely(type != LAST_NORM))
3630 goto out;
3631
3632 /* don't fail immediately if it's r/o, at least try to report other errors */
3633 err2 = mnt_want_write(path->mnt);
3634 /*
3635 * Do the final lookup.
3636 */
3637 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3638 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3639 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3640 if (IS_ERR(dentry))
3641 goto unlock;
3642
3643 error = -EEXIST;
3644 if (d_is_positive(dentry))
3645 goto fail;
3646
3647 /*
3648 * Special case - lookup gave negative, but... we had foo/bar/
3649 * From the vfs_mknod() POV we just have a negative dentry -
3650 * all is fine. Let's be bastards - you had / on the end, you've
3651 * been asking for (non-existent) directory. -ENOENT for you.
3652 */
3653 if (unlikely(!is_dir && last.name[last.len])) {
3654 error = -ENOENT;
3655 goto fail;
3656 }
3657 if (unlikely(err2)) {
3658 error = err2;
3659 goto fail;
3660 }
3661 putname(name);
3662 return dentry;
3663 fail:
3664 dput(dentry);
3665 dentry = ERR_PTR(error);
3666 unlock:
3667 inode_unlock(path->dentry->d_inode);
3668 if (!err2)
3669 mnt_drop_write(path->mnt);
3670 out:
3671 path_put(path);
3672 putname(name);
3673 return dentry;
3674 }
3675
3676 struct dentry *kern_path_create(int dfd, const char *pathname,
3677 struct path *path, unsigned int lookup_flags)
3678 {
3679 return filename_create(dfd, getname_kernel(pathname),
3680 path, lookup_flags);
3681 }
3682 EXPORT_SYMBOL(kern_path_create);
3683
3684 void done_path_create(struct path *path, struct dentry *dentry)
3685 {
3686 dput(dentry);
3687 inode_unlock(path->dentry->d_inode);
3688 mnt_drop_write(path->mnt);
3689 path_put(path);
3690 }
3691 EXPORT_SYMBOL(done_path_create);
3692
3693 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3694 struct path *path, unsigned int lookup_flags)
3695 {
3696 return filename_create(dfd, getname(pathname), path, lookup_flags);
3697 }
3698 EXPORT_SYMBOL(user_path_create);
3699
3700 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3701 {
3702 int error = may_create(dir, dentry);
3703
3704 if (error)
3705 return error;
3706
3707 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3708 return -EPERM;
3709
3710 if (!dir->i_op->mknod)
3711 return -EPERM;
3712
3713 error = devcgroup_inode_mknod(mode, dev);
3714 if (error)
3715 return error;
3716
3717 error = security_inode_mknod(dir, dentry, mode, dev);
3718 if (error)
3719 return error;
3720
3721 error = dir->i_op->mknod(dir, dentry, mode, dev);
3722 if (!error)
3723 fsnotify_create(dir, dentry);
3724 return error;
3725 }
3726 EXPORT_SYMBOL(vfs_mknod);
3727
3728 static int may_mknod(umode_t mode)
3729 {
3730 switch (mode & S_IFMT) {
3731 case S_IFREG:
3732 case S_IFCHR:
3733 case S_IFBLK:
3734 case S_IFIFO:
3735 case S_IFSOCK:
3736 case 0: /* zero mode translates to S_IFREG */
3737 return 0;
3738 case S_IFDIR:
3739 return -EPERM;
3740 default:
3741 return -EINVAL;
3742 }
3743 }
3744
3745 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3746 unsigned int dev)
3747 {
3748 struct dentry *dentry;
3749 struct path path;
3750 int error;
3751 unsigned int lookup_flags = 0;
3752
3753 error = may_mknod(mode);
3754 if (error)
3755 return error;
3756 retry:
3757 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3758 if (IS_ERR(dentry))
3759 return PTR_ERR(dentry);
3760
3761 if (!IS_POSIXACL(path.dentry->d_inode))
3762 mode &= ~current_umask();
3763 error = security_path_mknod(&path, dentry, mode, dev);
3764 if (error)
3765 goto out;
3766 switch (mode & S_IFMT) {
3767 case 0: case S_IFREG:
3768 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3769 if (!error)
3770 ima_post_path_mknod(dentry);
3771 break;
3772 case S_IFCHR: case S_IFBLK:
3773 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3774 new_decode_dev(dev));
3775 break;
3776 case S_IFIFO: case S_IFSOCK:
3777 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3778 break;
3779 }
3780 out:
3781 done_path_create(&path, dentry);
3782 if (retry_estale(error, lookup_flags)) {
3783 lookup_flags |= LOOKUP_REVAL;
3784 goto retry;
3785 }
3786 return error;
3787 }
3788
3789 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3790 unsigned int, dev)
3791 {
3792 return do_mknodat(dfd, filename, mode, dev);
3793 }
3794
3795 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3796 {
3797 return do_mknodat(AT_FDCWD, filename, mode, dev);
3798 }
3799
3800 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3801 {
3802 int error = may_create(dir, dentry);
3803 unsigned max_links = dir->i_sb->s_max_links;
3804
3805 if (error)
3806 return error;
3807
3808 if (!dir->i_op->mkdir)
3809 return -EPERM;
3810
3811 mode &= (S_IRWXUGO|S_ISVTX);
3812 error = security_inode_mkdir(dir, dentry, mode);
3813 if (error)
3814 return error;
3815
3816 if (max_links && dir->i_nlink >= max_links)
3817 return -EMLINK;
3818
3819 error = dir->i_op->mkdir(dir, dentry, mode);
3820 if (!error)
3821 fsnotify_mkdir(dir, dentry);
3822 return error;
3823 }
3824 EXPORT_SYMBOL(vfs_mkdir);
3825
3826 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3827 {
3828 struct dentry *dentry;
3829 struct path path;
3830 int error;
3831 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3832
3833 retry:
3834 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3835 if (IS_ERR(dentry))
3836 return PTR_ERR(dentry);
3837
3838 if (!IS_POSIXACL(path.dentry->d_inode))
3839 mode &= ~current_umask();
3840 error = security_path_mkdir(&path, dentry, mode);
3841 if (!error)
3842 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3843 done_path_create(&path, dentry);
3844 if (retry_estale(error, lookup_flags)) {
3845 lookup_flags |= LOOKUP_REVAL;
3846 goto retry;
3847 }
3848 return error;
3849 }
3850
3851 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3852 {
3853 return do_mkdirat(dfd, pathname, mode);
3854 }
3855
3856 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3857 {
3858 return do_mkdirat(AT_FDCWD, pathname, mode);
3859 }
3860
3861 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3862 {
3863 int error = may_delete(dir, dentry, 1);
3864
3865 if (error)
3866 return error;
3867
3868 if (!dir->i_op->rmdir)
3869 return -EPERM;
3870
3871 dget(dentry);
3872 inode_lock(dentry->d_inode);
3873
3874 error = -EBUSY;
3875 if (is_local_mountpoint(dentry))
3876 goto out;
3877
3878 error = security_inode_rmdir(dir, dentry);
3879 if (error)
3880 goto out;
3881
3882 error = dir->i_op->rmdir(dir, dentry);
3883 if (error)
3884 goto out;
3885
3886 shrink_dcache_parent(dentry);
3887 dentry->d_inode->i_flags |= S_DEAD;
3888 dont_mount(dentry);
3889 detach_mounts(dentry);
3890 fsnotify_rmdir(dir, dentry);
3891
3892 out:
3893 inode_unlock(dentry->d_inode);
3894 dput(dentry);
3895 if (!error)
3896 d_delete(dentry);
3897 return error;
3898 }
3899 EXPORT_SYMBOL(vfs_rmdir);
3900
3901 long do_rmdir(int dfd, const char __user *pathname)
3902 {
3903 int error = 0;
3904 struct filename *name;
3905 struct dentry *dentry;
3906 struct path path;
3907 struct qstr last;
3908 int type;
3909 unsigned int lookup_flags = 0;
3910 retry:
3911 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3912 &path, &last, &type);
3913 if (IS_ERR(name))
3914 return PTR_ERR(name);
3915
3916 switch (type) {
3917 case LAST_DOTDOT:
3918 error = -ENOTEMPTY;
3919 goto exit1;
3920 case LAST_DOT:
3921 error = -EINVAL;
3922 goto exit1;
3923 case LAST_ROOT:
3924 error = -EBUSY;
3925 goto exit1;
3926 }
3927
3928 error = mnt_want_write(path.mnt);
3929 if (error)
3930 goto exit1;
3931
3932 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3933 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3934 error = PTR_ERR(dentry);
3935 if (IS_ERR(dentry))
3936 goto exit2;
3937 if (!dentry->d_inode) {
3938 error = -ENOENT;
3939 goto exit3;
3940 }
3941 error = security_path_rmdir(&path, dentry);
3942 if (error)
3943 goto exit3;
3944 error = vfs_rmdir(path.dentry->d_inode, dentry);
3945 exit3:
3946 dput(dentry);
3947 exit2:
3948 inode_unlock(path.dentry->d_inode);
3949 mnt_drop_write(path.mnt);
3950 exit1:
3951 path_put(&path);
3952 putname(name);
3953 if (retry_estale(error, lookup_flags)) {
3954 lookup_flags |= LOOKUP_REVAL;
3955 goto retry;
3956 }
3957 return error;
3958 }
3959
3960 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3961 {
3962 return do_rmdir(AT_FDCWD, pathname);
3963 }
3964
3965 /**
3966 * vfs_unlink - unlink a filesystem object
3967 * @dir: parent directory
3968 * @dentry: victim
3969 * @delegated_inode: returns victim inode, if the inode is delegated.
3970 *
3971 * The caller must hold dir->i_mutex.
3972 *
3973 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3974 * return a reference to the inode in delegated_inode. The caller
3975 * should then break the delegation on that inode and retry. Because
3976 * breaking a delegation may take a long time, the caller should drop
3977 * dir->i_mutex before doing so.
3978 *
3979 * Alternatively, a caller may pass NULL for delegated_inode. This may
3980 * be appropriate for callers that expect the underlying filesystem not
3981 * to be NFS exported.
3982 */
3983 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3984 {
3985 struct inode *target = dentry->d_inode;
3986 int error = may_delete(dir, dentry, 0);
3987
3988 if (error)
3989 return error;
3990
3991 if (!dir->i_op->unlink)
3992 return -EPERM;
3993
3994 inode_lock(target);
3995 if (is_local_mountpoint(dentry))
3996 error = -EBUSY;
3997 else {
3998 error = security_inode_unlink(dir, dentry);
3999 if (!error) {
4000 error = try_break_deleg(target, delegated_inode);
4001 if (error)
4002 goto out;
4003 error = dir->i_op->unlink(dir, dentry);
4004 if (!error) {
4005 dont_mount(dentry);
4006 detach_mounts(dentry);
4007 fsnotify_unlink(dir, dentry);
4008 }
4009 }
4010 }
4011 out:
4012 inode_unlock(target);
4013
4014 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4015 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4016 fsnotify_link_count(target);
4017 d_delete(dentry);
4018 }
4019
4020 return error;
4021 }
4022 EXPORT_SYMBOL(vfs_unlink);
4023
4024 /*
4025 * Make sure that the actual truncation of the file will occur outside its
4026 * directory's i_mutex. Truncate can take a long time if there is a lot of
4027 * writeout happening, and we don't want to prevent access to the directory
4028 * while waiting on the I/O.
4029 */
4030 long do_unlinkat(int dfd, struct filename *name)
4031 {
4032 int error;
4033 struct dentry *dentry;
4034 struct path path;
4035 struct qstr last;
4036 int type;
4037 struct inode *inode = NULL;
4038 struct inode *delegated_inode = NULL;
4039 unsigned int lookup_flags = 0;
4040 retry:
4041 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4042 if (IS_ERR(name))
4043 return PTR_ERR(name);
4044
4045 error = -EISDIR;
4046 if (type != LAST_NORM)
4047 goto exit1;
4048
4049 error = mnt_want_write(path.mnt);
4050 if (error)
4051 goto exit1;
4052 retry_deleg:
4053 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4054 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4055 error = PTR_ERR(dentry);
4056 if (!IS_ERR(dentry)) {
4057 /* Why not before? Because we want correct error value */
4058 if (last.name[last.len])
4059 goto slashes;
4060 inode = dentry->d_inode;
4061 if (d_is_negative(dentry))
4062 goto slashes;
4063 ihold(inode);
4064 error = security_path_unlink(&path, dentry);
4065 if (error)
4066 goto exit2;
4067 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4068 exit2:
4069 dput(dentry);
4070 }
4071 inode_unlock(path.dentry->d_inode);
4072 if (inode)
4073 iput(inode); /* truncate the inode here */
4074 inode = NULL;
4075 if (delegated_inode) {
4076 error = break_deleg_wait(&delegated_inode);
4077 if (!error)
4078 goto retry_deleg;
4079 }
4080 mnt_drop_write(path.mnt);
4081 exit1:
4082 path_put(&path);
4083 if (retry_estale(error, lookup_flags)) {
4084 lookup_flags |= LOOKUP_REVAL;
4085 inode = NULL;
4086 goto retry;
4087 }
4088 putname(name);
4089 return error;
4090
4091 slashes:
4092 if (d_is_negative(dentry))
4093 error = -ENOENT;
4094 else if (d_is_dir(dentry))
4095 error = -EISDIR;
4096 else
4097 error = -ENOTDIR;
4098 goto exit2;
4099 }
4100
4101 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4102 {
4103 if ((flag & ~AT_REMOVEDIR) != 0)
4104 return -EINVAL;
4105
4106 if (flag & AT_REMOVEDIR)
4107 return do_rmdir(dfd, pathname);
4108
4109 return do_unlinkat(dfd, getname(pathname));
4110 }
4111
4112 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4113 {
4114 return do_unlinkat(AT_FDCWD, getname(pathname));
4115 }
4116
4117 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4118 {
4119 int error = may_create(dir, dentry);
4120
4121 if (error)
4122 return error;
4123
4124 if (!dir->i_op->symlink)
4125 return -EPERM;
4126
4127 error = security_inode_symlink(dir, dentry, oldname);
4128 if (error)
4129 return error;
4130
4131 error = dir->i_op->symlink(dir, dentry, oldname);
4132 if (!error)
4133 fsnotify_create(dir, dentry);
4134 return error;
4135 }
4136 EXPORT_SYMBOL(vfs_symlink);
4137
4138 long do_symlinkat(const char __user *oldname, int newdfd,
4139 const char __user *newname)
4140 {
4141 int error;
4142 struct filename *from;
4143 struct dentry *dentry;
4144 struct path path;
4145 unsigned int lookup_flags = 0;
4146
4147 from = getname(oldname);
4148 if (IS_ERR(from))
4149 return PTR_ERR(from);
4150 retry:
4151 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4152 error = PTR_ERR(dentry);
4153 if (IS_ERR(dentry))
4154 goto out_putname;
4155
4156 error = security_path_symlink(&path, dentry, from->name);
4157 if (!error)
4158 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4159 done_path_create(&path, dentry);
4160 if (retry_estale(error, lookup_flags)) {
4161 lookup_flags |= LOOKUP_REVAL;
4162 goto retry;
4163 }
4164 out_putname:
4165 putname(from);
4166 return error;
4167 }
4168
4169 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4170 int, newdfd, const char __user *, newname)
4171 {
4172 return do_symlinkat(oldname, newdfd, newname);
4173 }
4174
4175 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4176 {
4177 return do_symlinkat(oldname, AT_FDCWD, newname);
4178 }
4179
4180 /**
4181 * vfs_link - create a new link
4182 * @old_dentry: object to be linked
4183 * @dir: new parent
4184 * @new_dentry: where to create the new link
4185 * @delegated_inode: returns inode needing a delegation break
4186 *
4187 * The caller must hold dir->i_mutex
4188 *
4189 * If vfs_link discovers a delegation on the to-be-linked file in need
4190 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4191 * inode in delegated_inode. The caller should then break the delegation
4192 * and retry. Because breaking a delegation may take a long time, the
4193 * caller should drop the i_mutex before doing so.
4194 *
4195 * Alternatively, a caller may pass NULL for delegated_inode. This may
4196 * be appropriate for callers that expect the underlying filesystem not
4197 * to be NFS exported.
4198 */
4199 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4200 {
4201 struct inode *inode = old_dentry->d_inode;
4202 unsigned max_links = dir->i_sb->s_max_links;
4203 int error;
4204
4205 if (!inode)
4206 return -ENOENT;
4207
4208 error = may_create(dir, new_dentry);
4209 if (error)
4210 return error;
4211
4212 if (dir->i_sb != inode->i_sb)
4213 return -EXDEV;
4214
4215 /*
4216 * A link to an append-only or immutable file cannot be created.
4217 */
4218 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4219 return -EPERM;
4220 /*
4221 * Updating the link count will likely cause i_uid and i_gid to
4222 * be writen back improperly if their true value is unknown to
4223 * the vfs.
4224 */
4225 if (HAS_UNMAPPED_ID(inode))
4226 return -EPERM;
4227 if (!dir->i_op->link)
4228 return -EPERM;
4229 if (S_ISDIR(inode->i_mode))
4230 return -EPERM;
4231
4232 error = security_inode_link(old_dentry, dir, new_dentry);
4233 if (error)
4234 return error;
4235
4236 inode_lock(inode);
4237 /* Make sure we don't allow creating hardlink to an unlinked file */
4238 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4239 error = -ENOENT;
4240 else if (max_links && inode->i_nlink >= max_links)
4241 error = -EMLINK;
4242 else {
4243 error = try_break_deleg(inode, delegated_inode);
4244 if (!error)
4245 error = dir->i_op->link(old_dentry, dir, new_dentry);
4246 }
4247
4248 if (!error && (inode->i_state & I_LINKABLE)) {
4249 spin_lock(&inode->i_lock);
4250 inode->i_state &= ~I_LINKABLE;
4251 spin_unlock(&inode->i_lock);
4252 }
4253 inode_unlock(inode);
4254 if (!error)
4255 fsnotify_link(dir, inode, new_dentry);
4256 return error;
4257 }
4258 EXPORT_SYMBOL(vfs_link);
4259
4260 /*
4261 * Hardlinks are often used in delicate situations. We avoid
4262 * security-related surprises by not following symlinks on the
4263 * newname. --KAB
4264 *
4265 * We don't follow them on the oldname either to be compatible
4266 * with linux 2.0, and to avoid hard-linking to directories
4267 * and other special files. --ADM
4268 */
4269 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4270 const char __user *newname, int flags)
4271 {
4272 struct dentry *new_dentry;
4273 struct path old_path, new_path;
4274 struct inode *delegated_inode = NULL;
4275 int how = 0;
4276 int error;
4277
4278 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4279 return -EINVAL;
4280 /*
4281 * To use null names we require CAP_DAC_READ_SEARCH
4282 * This ensures that not everyone will be able to create
4283 * handlink using the passed filedescriptor.
4284 */
4285 if (flags & AT_EMPTY_PATH) {
4286 if (!capable(CAP_DAC_READ_SEARCH))
4287 return -ENOENT;
4288 how = LOOKUP_EMPTY;
4289 }
4290
4291 if (flags & AT_SYMLINK_FOLLOW)
4292 how |= LOOKUP_FOLLOW;
4293 retry:
4294 error = user_path_at(olddfd, oldname, how, &old_path);
4295 if (error)
4296 return error;
4297
4298 new_dentry = user_path_create(newdfd, newname, &new_path,
4299 (how & LOOKUP_REVAL));
4300 error = PTR_ERR(new_dentry);
4301 if (IS_ERR(new_dentry))
4302 goto out;
4303
4304 error = -EXDEV;
4305 if (old_path.mnt != new_path.mnt)
4306 goto out_dput;
4307 error = may_linkat(&old_path);
4308 if (unlikely(error))
4309 goto out_dput;
4310 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4311 if (error)
4312 goto out_dput;
4313 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4314 out_dput:
4315 done_path_create(&new_path, new_dentry);
4316 if (delegated_inode) {
4317 error = break_deleg_wait(&delegated_inode);
4318 if (!error) {
4319 path_put(&old_path);
4320 goto retry;
4321 }
4322 }
4323 if (retry_estale(error, how)) {
4324 path_put(&old_path);
4325 how |= LOOKUP_REVAL;
4326 goto retry;
4327 }
4328 out:
4329 path_put(&old_path);
4330
4331 return error;
4332 }
4333
4334 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4335 int, newdfd, const char __user *, newname, int, flags)
4336 {
4337 return do_linkat(olddfd, oldname, newdfd, newname, flags);
4338 }
4339
4340 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4341 {
4342 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4343 }
4344
4345 /**
4346 * vfs_rename - rename a filesystem object
4347 * @old_dir: parent of source
4348 * @old_dentry: source
4349 * @new_dir: parent of destination
4350 * @new_dentry: destination
4351 * @delegated_inode: returns an inode needing a delegation break
4352 * @flags: rename flags
4353 *
4354 * The caller must hold multiple mutexes--see lock_rename()).
4355 *
4356 * If vfs_rename discovers a delegation in need of breaking at either
4357 * the source or destination, it will return -EWOULDBLOCK and return a
4358 * reference to the inode in delegated_inode. The caller should then
4359 * break the delegation and retry. Because breaking a delegation may
4360 * take a long time, the caller should drop all locks before doing
4361 * so.
4362 *
4363 * Alternatively, a caller may pass NULL for delegated_inode. This may
4364 * be appropriate for callers that expect the underlying filesystem not
4365 * to be NFS exported.
4366 *
4367 * The worst of all namespace operations - renaming directory. "Perverted"
4368 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4369 * Problems:
4370 *
4371 * a) we can get into loop creation.
4372 * b) race potential - two innocent renames can create a loop together.
4373 * That's where 4.4 screws up. Current fix: serialization on
4374 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4375 * story.
4376 * c) we have to lock _four_ objects - parents and victim (if it exists),
4377 * and source (if it is not a directory).
4378 * And that - after we got ->i_mutex on parents (until then we don't know
4379 * whether the target exists). Solution: try to be smart with locking
4380 * order for inodes. We rely on the fact that tree topology may change
4381 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4382 * move will be locked. Thus we can rank directories by the tree
4383 * (ancestors first) and rank all non-directories after them.
4384 * That works since everybody except rename does "lock parent, lookup,
4385 * lock child" and rename is under ->s_vfs_rename_mutex.
4386 * HOWEVER, it relies on the assumption that any object with ->lookup()
4387 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4388 * we'd better make sure that there's no link(2) for them.
4389 * d) conversion from fhandle to dentry may come in the wrong moment - when
4390 * we are removing the target. Solution: we will have to grab ->i_mutex
4391 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4392 * ->i_mutex on parents, which works but leads to some truly excessive
4393 * locking].
4394 */
4395 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4396 struct inode *new_dir, struct dentry *new_dentry,
4397 struct inode **delegated_inode, unsigned int flags)
4398 {
4399 int error;
4400 bool is_dir = d_is_dir(old_dentry);
4401 struct inode *source = old_dentry->d_inode;
4402 struct inode *target = new_dentry->d_inode;
4403 bool new_is_dir = false;
4404 unsigned max_links = new_dir->i_sb->s_max_links;
4405 struct name_snapshot old_name;
4406
4407 if (source == target)
4408 return 0;
4409
4410 error = may_delete(old_dir, old_dentry, is_dir);
4411 if (error)
4412 return error;
4413
4414 if (!target) {
4415 error = may_create(new_dir, new_dentry);
4416 } else {
4417 new_is_dir = d_is_dir(new_dentry);
4418
4419 if (!(flags & RENAME_EXCHANGE))
4420 error = may_delete(new_dir, new_dentry, is_dir);
4421 else
4422 error = may_delete(new_dir, new_dentry, new_is_dir);
4423 }
4424 if (error)
4425 return error;
4426
4427 if (!old_dir->i_op->rename)
4428 return -EPERM;
4429
4430 /*
4431 * If we are going to change the parent - check write permissions,
4432 * we'll need to flip '..'.
4433 */
4434 if (new_dir != old_dir) {
4435 if (is_dir) {
4436 error = inode_permission(source, MAY_WRITE);
4437 if (error)
4438 return error;
4439 }
4440 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4441 error = inode_permission(target, MAY_WRITE);
4442 if (error)
4443 return error;
4444 }
4445 }
4446
4447 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4448 flags);
4449 if (error)
4450 return error;
4451
4452 take_dentry_name_snapshot(&old_name, old_dentry);
4453 dget(new_dentry);
4454 if (!is_dir || (flags & RENAME_EXCHANGE))
4455 lock_two_nondirectories(source, target);
4456 else if (target)
4457 inode_lock(target);
4458
4459 error = -EBUSY;
4460 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4461 goto out;
4462
4463 if (max_links && new_dir != old_dir) {
4464 error = -EMLINK;
4465 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4466 goto out;
4467 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4468 old_dir->i_nlink >= max_links)
4469 goto out;
4470 }
4471 if (!is_dir) {
4472 error = try_break_deleg(source, delegated_inode);
4473 if (error)
4474 goto out;
4475 }
4476 if (target && !new_is_dir) {
4477 error = try_break_deleg(target, delegated_inode);
4478 if (error)
4479 goto out;
4480 }
4481 error = old_dir->i_op->rename(old_dir, old_dentry,
4482 new_dir, new_dentry, flags);
4483 if (error)
4484 goto out;
4485
4486 if (!(flags & RENAME_EXCHANGE) && target) {
4487 if (is_dir) {
4488 shrink_dcache_parent(new_dentry);
4489 target->i_flags |= S_DEAD;
4490 }
4491 dont_mount(new_dentry);
4492 detach_mounts(new_dentry);
4493 }
4494 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4495 if (!(flags & RENAME_EXCHANGE))
4496 d_move(old_dentry, new_dentry);
4497 else
4498 d_exchange(old_dentry, new_dentry);
4499 }
4500 out:
4501 if (!is_dir || (flags & RENAME_EXCHANGE))
4502 unlock_two_nondirectories(source, target);
4503 else if (target)
4504 inode_unlock(target);
4505 dput(new_dentry);
4506 if (!error) {
4507 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4508 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4509 if (flags & RENAME_EXCHANGE) {
4510 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4511 new_is_dir, NULL, new_dentry);
4512 }
4513 }
4514 release_dentry_name_snapshot(&old_name);
4515
4516 return error;
4517 }
4518 EXPORT_SYMBOL(vfs_rename);
4519
4520 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4521 const char __user *newname, unsigned int flags)
4522 {
4523 struct dentry *old_dentry, *new_dentry;
4524 struct dentry *trap;
4525 struct path old_path, new_path;
4526 struct qstr old_last, new_last;
4527 int old_type, new_type;
4528 struct inode *delegated_inode = NULL;
4529 struct filename *from;
4530 struct filename *to;
4531 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4532 bool should_retry = false;
4533 int error;
4534
4535 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4536 return -EINVAL;
4537
4538 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4539 (flags & RENAME_EXCHANGE))
4540 return -EINVAL;
4541
4542 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4543 return -EPERM;
4544
4545 if (flags & RENAME_EXCHANGE)
4546 target_flags = 0;
4547
4548 retry:
4549 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4550 &old_path, &old_last, &old_type);
4551 if (IS_ERR(from)) {
4552 error = PTR_ERR(from);
4553 goto exit;
4554 }
4555
4556 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4557 &new_path, &new_last, &new_type);
4558 if (IS_ERR(to)) {
4559 error = PTR_ERR(to);
4560 goto exit1;
4561 }
4562
4563 error = -EXDEV;
4564 if (old_path.mnt != new_path.mnt)
4565 goto exit2;
4566
4567 error = -EBUSY;
4568 if (old_type != LAST_NORM)
4569 goto exit2;
4570
4571 if (flags & RENAME_NOREPLACE)
4572 error = -EEXIST;
4573 if (new_type != LAST_NORM)
4574 goto exit2;
4575
4576 error = mnt_want_write(old_path.mnt);
4577 if (error)
4578 goto exit2;
4579
4580 retry_deleg:
4581 trap = lock_rename(new_path.dentry, old_path.dentry);
4582
4583 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4584 error = PTR_ERR(old_dentry);
4585 if (IS_ERR(old_dentry))
4586 goto exit3;
4587 /* source must exist */
4588 error = -ENOENT;
4589 if (d_is_negative(old_dentry))
4590 goto exit4;
4591 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4592 error = PTR_ERR(new_dentry);
4593 if (IS_ERR(new_dentry))
4594 goto exit4;
4595 error = -EEXIST;
4596 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4597 goto exit5;
4598 if (flags & RENAME_EXCHANGE) {
4599 error = -ENOENT;
4600 if (d_is_negative(new_dentry))
4601 goto exit5;
4602
4603 if (!d_is_dir(new_dentry)) {
4604 error = -ENOTDIR;
4605 if (new_last.name[new_last.len])
4606 goto exit5;
4607 }
4608 }
4609 /* unless the source is a directory trailing slashes give -ENOTDIR */
4610 if (!d_is_dir(old_dentry)) {
4611 error = -ENOTDIR;
4612 if (old_last.name[old_last.len])
4613 goto exit5;
4614 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4615 goto exit5;
4616 }
4617 /* source should not be ancestor of target */
4618 error = -EINVAL;
4619 if (old_dentry == trap)
4620 goto exit5;
4621 /* target should not be an ancestor of source */
4622 if (!(flags & RENAME_EXCHANGE))
4623 error = -ENOTEMPTY;
4624 if (new_dentry == trap)
4625 goto exit5;
4626
4627 error = security_path_rename(&old_path, old_dentry,
4628 &new_path, new_dentry, flags);
4629 if (error)
4630 goto exit5;
4631 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4632 new_path.dentry->d_inode, new_dentry,
4633 &delegated_inode, flags);
4634 exit5:
4635 dput(new_dentry);
4636 exit4:
4637 dput(old_dentry);
4638 exit3:
4639 unlock_rename(new_path.dentry, old_path.dentry);
4640 if (delegated_inode) {
4641 error = break_deleg_wait(&delegated_inode);
4642 if (!error)
4643 goto retry_deleg;
4644 }
4645 mnt_drop_write(old_path.mnt);
4646 exit2:
4647 if (retry_estale(error, lookup_flags))
4648 should_retry = true;
4649 path_put(&new_path);
4650 putname(to);
4651 exit1:
4652 path_put(&old_path);
4653 putname(from);
4654 if (should_retry) {
4655 should_retry = false;
4656 lookup_flags |= LOOKUP_REVAL;
4657 goto retry;
4658 }
4659 exit:
4660 return error;
4661 }
4662
4663 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4664 int, newdfd, const char __user *, newname, unsigned int, flags)
4665 {
4666 return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4667 }
4668
4669 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4670 int, newdfd, const char __user *, newname)
4671 {
4672 return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4673 }
4674
4675 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4676 {
4677 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4678 }
4679
4680 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4681 {
4682 int error = may_create(dir, dentry);
4683 if (error)
4684 return error;
4685
4686 if (!dir->i_op->mknod)
4687 return -EPERM;
4688
4689 return dir->i_op->mknod(dir, dentry,
4690 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4691 }
4692 EXPORT_SYMBOL(vfs_whiteout);
4693
4694 int readlink_copy(char __user *buffer, int buflen, const char *link)
4695 {
4696 int len = PTR_ERR(link);
4697 if (IS_ERR(link))
4698 goto out;
4699
4700 len = strlen(link);
4701 if (len > (unsigned) buflen)
4702 len = buflen;
4703 if (copy_to_user(buffer, link, len))
4704 len = -EFAULT;
4705 out:
4706 return len;
4707 }
4708
4709 /**
4710 * vfs_readlink - copy symlink body into userspace buffer
4711 * @dentry: dentry on which to get symbolic link
4712 * @buffer: user memory pointer
4713 * @buflen: size of buffer
4714 *
4715 * Does not touch atime. That's up to the caller if necessary
4716 *
4717 * Does not call security hook.
4718 */
4719 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4720 {
4721 struct inode *inode = d_inode(dentry);
4722 DEFINE_DELAYED_CALL(done);
4723 const char *link;
4724 int res;
4725
4726 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4727 if (unlikely(inode->i_op->readlink))
4728 return inode->i_op->readlink(dentry, buffer, buflen);
4729
4730 if (!d_is_symlink(dentry))
4731 return -EINVAL;
4732
4733 spin_lock(&inode->i_lock);
4734 inode->i_opflags |= IOP_DEFAULT_READLINK;
4735 spin_unlock(&inode->i_lock);
4736 }
4737
4738 link = READ_ONCE(inode->i_link);
4739 if (!link) {
4740 link = inode->i_op->get_link(dentry, inode, &done);
4741 if (IS_ERR(link))
4742 return PTR_ERR(link);
4743 }
4744 res = readlink_copy(buffer, buflen, link);
4745 do_delayed_call(&done);
4746 return res;
4747 }
4748 EXPORT_SYMBOL(vfs_readlink);
4749
4750 /**
4751 * vfs_get_link - get symlink body
4752 * @dentry: dentry on which to get symbolic link
4753 * @done: caller needs to free returned data with this
4754 *
4755 * Calls security hook and i_op->get_link() on the supplied inode.
4756 *
4757 * It does not touch atime. That's up to the caller if necessary.
4758 *
4759 * Does not work on "special" symlinks like /proc/$$/fd/N
4760 */
4761 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4762 {
4763 const char *res = ERR_PTR(-EINVAL);
4764 struct inode *inode = d_inode(dentry);
4765
4766 if (d_is_symlink(dentry)) {
4767 res = ERR_PTR(security_inode_readlink(dentry));
4768 if (!res)
4769 res = inode->i_op->get_link(dentry, inode, done);
4770 }
4771 return res;
4772 }
4773 EXPORT_SYMBOL(vfs_get_link);
4774
4775 /* get the link contents into pagecache */
4776 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4777 struct delayed_call *callback)
4778 {
4779 char *kaddr;
4780 struct page *page;
4781 struct address_space *mapping = inode->i_mapping;
4782
4783 if (!dentry) {
4784 page = find_get_page(mapping, 0);
4785 if (!page)
4786 return ERR_PTR(-ECHILD);
4787 if (!PageUptodate(page)) {
4788 put_page(page);
4789 return ERR_PTR(-ECHILD);
4790 }
4791 } else {
4792 page = read_mapping_page(mapping, 0, NULL);
4793 if (IS_ERR(page))
4794 return (char*)page;
4795 }
4796 set_delayed_call(callback, page_put_link, page);
4797 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4798 kaddr = page_address(page);
4799 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4800 return kaddr;
4801 }
4802
4803 EXPORT_SYMBOL(page_get_link);
4804
4805 void page_put_link(void *arg)
4806 {
4807 put_page(arg);
4808 }
4809 EXPORT_SYMBOL(page_put_link);
4810
4811 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4812 {
4813 DEFINE_DELAYED_CALL(done);
4814 int res = readlink_copy(buffer, buflen,
4815 page_get_link(dentry, d_inode(dentry),
4816 &done));
4817 do_delayed_call(&done);
4818 return res;
4819 }
4820 EXPORT_SYMBOL(page_readlink);
4821
4822 /*
4823 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4824 */
4825 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4826 {
4827 struct address_space *mapping = inode->i_mapping;
4828 struct page *page;
4829 void *fsdata;
4830 int err;
4831 unsigned int flags = 0;
4832 if (nofs)
4833 flags |= AOP_FLAG_NOFS;
4834
4835 retry:
4836 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4837 flags, &page, &fsdata);
4838 if (err)
4839 goto fail;
4840
4841 memcpy(page_address(page), symname, len-1);
4842
4843 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4844 page, fsdata);
4845 if (err < 0)
4846 goto fail;
4847 if (err < len-1)
4848 goto retry;
4849
4850 mark_inode_dirty(inode);
4851 return 0;
4852 fail:
4853 return err;
4854 }
4855 EXPORT_SYMBOL(__page_symlink);
4856
4857 int page_symlink(struct inode *inode, const char *symname, int len)
4858 {
4859 return __page_symlink(inode, symname, len,
4860 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4861 }
4862 EXPORT_SYMBOL(page_symlink);
4863
4864 const struct inode_operations page_symlink_inode_operations = {
4865 .get_link = page_get_link,
4866 };
4867 EXPORT_SYMBOL(page_symlink_inode_operations);