]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/namei.c
ARM: ux500: replace legacy *,wakeup property with wakeup-source
[mirror_ubuntu-zesty-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 struct path path;
498 struct qstr last;
499 struct path root;
500 struct inode *inode; /* path.dentry.d_inode */
501 unsigned int flags;
502 unsigned seq, m_seq;
503 int last_type;
504 unsigned depth;
505 int total_link_count;
506 struct saved {
507 struct path link;
508 void *cookie;
509 const char *name;
510 struct inode *inode;
511 unsigned seq;
512 } *stack, internal[EMBEDDED_LEVELS];
513 struct filename *name;
514 struct nameidata *saved;
515 unsigned root_seq;
516 int dfd;
517 };
518
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521 struct nameidata *old = current->nameidata;
522 p->stack = p->internal;
523 p->dfd = dfd;
524 p->name = name;
525 p->total_link_count = old ? old->total_link_count : 0;
526 p->saved = old;
527 current->nameidata = p;
528 }
529
530 static void restore_nameidata(void)
531 {
532 struct nameidata *now = current->nameidata, *old = now->saved;
533
534 current->nameidata = old;
535 if (old)
536 old->total_link_count = now->total_link_count;
537 if (now->stack != now->internal) {
538 kfree(now->stack);
539 now->stack = now->internal;
540 }
541 }
542
543 static int __nd_alloc_stack(struct nameidata *nd)
544 {
545 struct saved *p;
546
547 if (nd->flags & LOOKUP_RCU) {
548 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
549 GFP_ATOMIC);
550 if (unlikely(!p))
551 return -ECHILD;
552 } else {
553 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
554 GFP_KERNEL);
555 if (unlikely(!p))
556 return -ENOMEM;
557 }
558 memcpy(p, nd->internal, sizeof(nd->internal));
559 nd->stack = p;
560 return 0;
561 }
562
563 /**
564 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
565 * @path: nameidate to verify
566 *
567 * Rename can sometimes move a file or directory outside of a bind
568 * mount, path_connected allows those cases to be detected.
569 */
570 static bool path_connected(const struct path *path)
571 {
572 struct vfsmount *mnt = path->mnt;
573
574 /* Only bind mounts can have disconnected paths */
575 if (mnt->mnt_root == mnt->mnt_sb->s_root)
576 return true;
577
578 return is_subdir(path->dentry, mnt->mnt_root);
579 }
580
581 static inline int nd_alloc_stack(struct nameidata *nd)
582 {
583 if (likely(nd->depth != EMBEDDED_LEVELS))
584 return 0;
585 if (likely(nd->stack != nd->internal))
586 return 0;
587 return __nd_alloc_stack(nd);
588 }
589
590 static void drop_links(struct nameidata *nd)
591 {
592 int i = nd->depth;
593 while (i--) {
594 struct saved *last = nd->stack + i;
595 struct inode *inode = last->inode;
596 if (last->cookie && inode->i_op->put_link) {
597 inode->i_op->put_link(inode, last->cookie);
598 last->cookie = NULL;
599 }
600 }
601 }
602
603 static void terminate_walk(struct nameidata *nd)
604 {
605 drop_links(nd);
606 if (!(nd->flags & LOOKUP_RCU)) {
607 int i;
608 path_put(&nd->path);
609 for (i = 0; i < nd->depth; i++)
610 path_put(&nd->stack[i].link);
611 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
612 path_put(&nd->root);
613 nd->root.mnt = NULL;
614 }
615 } else {
616 nd->flags &= ~LOOKUP_RCU;
617 if (!(nd->flags & LOOKUP_ROOT))
618 nd->root.mnt = NULL;
619 rcu_read_unlock();
620 }
621 nd->depth = 0;
622 }
623
624 /* path_put is needed afterwards regardless of success or failure */
625 static bool legitimize_path(struct nameidata *nd,
626 struct path *path, unsigned seq)
627 {
628 int res = __legitimize_mnt(path->mnt, nd->m_seq);
629 if (unlikely(res)) {
630 if (res > 0)
631 path->mnt = NULL;
632 path->dentry = NULL;
633 return false;
634 }
635 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
636 path->dentry = NULL;
637 return false;
638 }
639 return !read_seqcount_retry(&path->dentry->d_seq, seq);
640 }
641
642 static bool legitimize_links(struct nameidata *nd)
643 {
644 int i;
645 for (i = 0; i < nd->depth; i++) {
646 struct saved *last = nd->stack + i;
647 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
648 drop_links(nd);
649 nd->depth = i + 1;
650 return false;
651 }
652 }
653 return true;
654 }
655
656 /*
657 * Path walking has 2 modes, rcu-walk and ref-walk (see
658 * Documentation/filesystems/path-lookup.txt). In situations when we can't
659 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
660 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
661 * mode. Refcounts are grabbed at the last known good point before rcu-walk
662 * got stuck, so ref-walk may continue from there. If this is not successful
663 * (eg. a seqcount has changed), then failure is returned and it's up to caller
664 * to restart the path walk from the beginning in ref-walk mode.
665 */
666
667 /**
668 * unlazy_walk - try to switch to ref-walk mode.
669 * @nd: nameidata pathwalk data
670 * @dentry: child of nd->path.dentry or NULL
671 * @seq: seq number to check dentry against
672 * Returns: 0 on success, -ECHILD on failure
673 *
674 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
675 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
676 * @nd or NULL. Must be called from rcu-walk context.
677 * Nothing should touch nameidata between unlazy_walk() failure and
678 * terminate_walk().
679 */
680 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
681 {
682 struct dentry *parent = nd->path.dentry;
683
684 BUG_ON(!(nd->flags & LOOKUP_RCU));
685
686 nd->flags &= ~LOOKUP_RCU;
687 if (unlikely(!legitimize_links(nd)))
688 goto out2;
689 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
690 goto out2;
691 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
692 goto out1;
693
694 /*
695 * For a negative lookup, the lookup sequence point is the parents
696 * sequence point, and it only needs to revalidate the parent dentry.
697 *
698 * For a positive lookup, we need to move both the parent and the
699 * dentry from the RCU domain to be properly refcounted. And the
700 * sequence number in the dentry validates *both* dentry counters,
701 * since we checked the sequence number of the parent after we got
702 * the child sequence number. So we know the parent must still
703 * be valid if the child sequence number is still valid.
704 */
705 if (!dentry) {
706 if (read_seqcount_retry(&parent->d_seq, nd->seq))
707 goto out;
708 BUG_ON(nd->inode != parent->d_inode);
709 } else {
710 if (!lockref_get_not_dead(&dentry->d_lockref))
711 goto out;
712 if (read_seqcount_retry(&dentry->d_seq, seq))
713 goto drop_dentry;
714 }
715
716 /*
717 * Sequence counts matched. Now make sure that the root is
718 * still valid and get it if required.
719 */
720 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
721 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
722 rcu_read_unlock();
723 dput(dentry);
724 return -ECHILD;
725 }
726 }
727
728 rcu_read_unlock();
729 return 0;
730
731 drop_dentry:
732 rcu_read_unlock();
733 dput(dentry);
734 goto drop_root_mnt;
735 out2:
736 nd->path.mnt = NULL;
737 out1:
738 nd->path.dentry = NULL;
739 out:
740 rcu_read_unlock();
741 drop_root_mnt:
742 if (!(nd->flags & LOOKUP_ROOT))
743 nd->root.mnt = NULL;
744 return -ECHILD;
745 }
746
747 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
748 {
749 if (unlikely(!legitimize_path(nd, link, seq))) {
750 drop_links(nd);
751 nd->depth = 0;
752 nd->flags &= ~LOOKUP_RCU;
753 nd->path.mnt = NULL;
754 nd->path.dentry = NULL;
755 if (!(nd->flags & LOOKUP_ROOT))
756 nd->root.mnt = NULL;
757 rcu_read_unlock();
758 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
759 return 0;
760 }
761 path_put(link);
762 return -ECHILD;
763 }
764
765 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
766 {
767 return dentry->d_op->d_revalidate(dentry, flags);
768 }
769
770 /**
771 * complete_walk - successful completion of path walk
772 * @nd: pointer nameidata
773 *
774 * If we had been in RCU mode, drop out of it and legitimize nd->path.
775 * Revalidate the final result, unless we'd already done that during
776 * the path walk or the filesystem doesn't ask for it. Return 0 on
777 * success, -error on failure. In case of failure caller does not
778 * need to drop nd->path.
779 */
780 static int complete_walk(struct nameidata *nd)
781 {
782 struct dentry *dentry = nd->path.dentry;
783 int status;
784
785 if (nd->flags & LOOKUP_RCU) {
786 if (!(nd->flags & LOOKUP_ROOT))
787 nd->root.mnt = NULL;
788 if (unlikely(unlazy_walk(nd, NULL, 0)))
789 return -ECHILD;
790 }
791
792 if (likely(!(nd->flags & LOOKUP_JUMPED)))
793 return 0;
794
795 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
796 return 0;
797
798 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
799 if (status > 0)
800 return 0;
801
802 if (!status)
803 status = -ESTALE;
804
805 return status;
806 }
807
808 static void set_root(struct nameidata *nd)
809 {
810 get_fs_root(current->fs, &nd->root);
811 }
812
813 static void set_root_rcu(struct nameidata *nd)
814 {
815 struct fs_struct *fs = current->fs;
816 unsigned seq;
817
818 do {
819 seq = read_seqcount_begin(&fs->seq);
820 nd->root = fs->root;
821 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
822 } while (read_seqcount_retry(&fs->seq, seq));
823 }
824
825 static void path_put_conditional(struct path *path, struct nameidata *nd)
826 {
827 dput(path->dentry);
828 if (path->mnt != nd->path.mnt)
829 mntput(path->mnt);
830 }
831
832 static inline void path_to_nameidata(const struct path *path,
833 struct nameidata *nd)
834 {
835 if (!(nd->flags & LOOKUP_RCU)) {
836 dput(nd->path.dentry);
837 if (nd->path.mnt != path->mnt)
838 mntput(nd->path.mnt);
839 }
840 nd->path.mnt = path->mnt;
841 nd->path.dentry = path->dentry;
842 }
843
844 /*
845 * Helper to directly jump to a known parsed path from ->follow_link,
846 * caller must have taken a reference to path beforehand.
847 */
848 void nd_jump_link(struct path *path)
849 {
850 struct nameidata *nd = current->nameidata;
851 path_put(&nd->path);
852
853 nd->path = *path;
854 nd->inode = nd->path.dentry->d_inode;
855 nd->flags |= LOOKUP_JUMPED;
856 }
857
858 static inline void put_link(struct nameidata *nd)
859 {
860 struct saved *last = nd->stack + --nd->depth;
861 struct inode *inode = last->inode;
862 if (last->cookie && inode->i_op->put_link)
863 inode->i_op->put_link(inode, last->cookie);
864 if (!(nd->flags & LOOKUP_RCU))
865 path_put(&last->link);
866 }
867
868 int sysctl_protected_symlinks __read_mostly = 0;
869 int sysctl_protected_hardlinks __read_mostly = 0;
870
871 /**
872 * may_follow_link - Check symlink following for unsafe situations
873 * @nd: nameidata pathwalk data
874 *
875 * In the case of the sysctl_protected_symlinks sysctl being enabled,
876 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
877 * in a sticky world-writable directory. This is to protect privileged
878 * processes from failing races against path names that may change out
879 * from under them by way of other users creating malicious symlinks.
880 * It will permit symlinks to be followed only when outside a sticky
881 * world-writable directory, or when the uid of the symlink and follower
882 * match, or when the directory owner matches the symlink's owner.
883 *
884 * Returns 0 if following the symlink is allowed, -ve on error.
885 */
886 static inline int may_follow_link(struct nameidata *nd)
887 {
888 const struct inode *inode;
889 const struct inode *parent;
890
891 if (!sysctl_protected_symlinks)
892 return 0;
893
894 /* Allowed if owner and follower match. */
895 inode = nd->stack[0].inode;
896 if (uid_eq(current_cred()->fsuid, inode->i_uid))
897 return 0;
898
899 /* Allowed if parent directory not sticky and world-writable. */
900 parent = nd->inode;
901 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
902 return 0;
903
904 /* Allowed if parent directory and link owner match. */
905 if (uid_eq(parent->i_uid, inode->i_uid))
906 return 0;
907
908 if (nd->flags & LOOKUP_RCU)
909 return -ECHILD;
910
911 audit_log_link_denied("follow_link", &nd->stack[0].link);
912 return -EACCES;
913 }
914
915 /**
916 * safe_hardlink_source - Check for safe hardlink conditions
917 * @inode: the source inode to hardlink from
918 *
919 * Return false if at least one of the following conditions:
920 * - inode is not a regular file
921 * - inode is setuid
922 * - inode is setgid and group-exec
923 * - access failure for read and write
924 *
925 * Otherwise returns true.
926 */
927 static bool safe_hardlink_source(struct inode *inode)
928 {
929 umode_t mode = inode->i_mode;
930
931 /* Special files should not get pinned to the filesystem. */
932 if (!S_ISREG(mode))
933 return false;
934
935 /* Setuid files should not get pinned to the filesystem. */
936 if (mode & S_ISUID)
937 return false;
938
939 /* Executable setgid files should not get pinned to the filesystem. */
940 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
941 return false;
942
943 /* Hardlinking to unreadable or unwritable sources is dangerous. */
944 if (inode_permission(inode, MAY_READ | MAY_WRITE))
945 return false;
946
947 return true;
948 }
949
950 /**
951 * may_linkat - Check permissions for creating a hardlink
952 * @link: the source to hardlink from
953 *
954 * Block hardlink when all of:
955 * - sysctl_protected_hardlinks enabled
956 * - fsuid does not match inode
957 * - hardlink source is unsafe (see safe_hardlink_source() above)
958 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
959 *
960 * Returns 0 if successful, -ve on error.
961 */
962 static int may_linkat(struct path *link)
963 {
964 struct inode *inode;
965
966 if (!sysctl_protected_hardlinks)
967 return 0;
968
969 inode = link->dentry->d_inode;
970
971 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
972 * otherwise, it must be a safe source.
973 */
974 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
975 return 0;
976
977 audit_log_link_denied("linkat", link);
978 return -EPERM;
979 }
980
981 static __always_inline
982 const char *get_link(struct nameidata *nd)
983 {
984 struct saved *last = nd->stack + nd->depth - 1;
985 struct dentry *dentry = last->link.dentry;
986 struct inode *inode = last->inode;
987 int error;
988 const char *res;
989
990 if (!(nd->flags & LOOKUP_RCU)) {
991 touch_atime(&last->link);
992 cond_resched();
993 } else if (atime_needs_update(&last->link, inode)) {
994 if (unlikely(unlazy_walk(nd, NULL, 0)))
995 return ERR_PTR(-ECHILD);
996 touch_atime(&last->link);
997 }
998
999 error = security_inode_follow_link(dentry, inode,
1000 nd->flags & LOOKUP_RCU);
1001 if (unlikely(error))
1002 return ERR_PTR(error);
1003
1004 nd->last_type = LAST_BIND;
1005 res = inode->i_link;
1006 if (!res) {
1007 if (nd->flags & LOOKUP_RCU) {
1008 if (unlikely(unlazy_walk(nd, NULL, 0)))
1009 return ERR_PTR(-ECHILD);
1010 }
1011 res = inode->i_op->follow_link(dentry, &last->cookie);
1012 if (IS_ERR_OR_NULL(res)) {
1013 last->cookie = NULL;
1014 return res;
1015 }
1016 }
1017 if (*res == '/') {
1018 if (nd->flags & LOOKUP_RCU) {
1019 struct dentry *d;
1020 if (!nd->root.mnt)
1021 set_root_rcu(nd);
1022 nd->path = nd->root;
1023 d = nd->path.dentry;
1024 nd->inode = d->d_inode;
1025 nd->seq = nd->root_seq;
1026 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
1027 return ERR_PTR(-ECHILD);
1028 } else {
1029 if (!nd->root.mnt)
1030 set_root(nd);
1031 path_put(&nd->path);
1032 nd->path = nd->root;
1033 path_get(&nd->root);
1034 nd->inode = nd->path.dentry->d_inode;
1035 }
1036 nd->flags |= LOOKUP_JUMPED;
1037 while (unlikely(*++res == '/'))
1038 ;
1039 }
1040 if (!*res)
1041 res = NULL;
1042 return res;
1043 }
1044
1045 /*
1046 * follow_up - Find the mountpoint of path's vfsmount
1047 *
1048 * Given a path, find the mountpoint of its source file system.
1049 * Replace @path with the path of the mountpoint in the parent mount.
1050 * Up is towards /.
1051 *
1052 * Return 1 if we went up a level and 0 if we were already at the
1053 * root.
1054 */
1055 int follow_up(struct path *path)
1056 {
1057 struct mount *mnt = real_mount(path->mnt);
1058 struct mount *parent;
1059 struct dentry *mountpoint;
1060
1061 read_seqlock_excl(&mount_lock);
1062 parent = mnt->mnt_parent;
1063 if (parent == mnt) {
1064 read_sequnlock_excl(&mount_lock);
1065 return 0;
1066 }
1067 mntget(&parent->mnt);
1068 mountpoint = dget(mnt->mnt_mountpoint);
1069 read_sequnlock_excl(&mount_lock);
1070 dput(path->dentry);
1071 path->dentry = mountpoint;
1072 mntput(path->mnt);
1073 path->mnt = &parent->mnt;
1074 return 1;
1075 }
1076 EXPORT_SYMBOL(follow_up);
1077
1078 /*
1079 * Perform an automount
1080 * - return -EISDIR to tell follow_managed() to stop and return the path we
1081 * were called with.
1082 */
1083 static int follow_automount(struct path *path, struct nameidata *nd,
1084 bool *need_mntput)
1085 {
1086 struct vfsmount *mnt;
1087 int err;
1088
1089 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1090 return -EREMOTE;
1091
1092 /* We don't want to mount if someone's just doing a stat -
1093 * unless they're stat'ing a directory and appended a '/' to
1094 * the name.
1095 *
1096 * We do, however, want to mount if someone wants to open or
1097 * create a file of any type under the mountpoint, wants to
1098 * traverse through the mountpoint or wants to open the
1099 * mounted directory. Also, autofs may mark negative dentries
1100 * as being automount points. These will need the attentions
1101 * of the daemon to instantiate them before they can be used.
1102 */
1103 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1104 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1105 path->dentry->d_inode)
1106 return -EISDIR;
1107
1108 nd->total_link_count++;
1109 if (nd->total_link_count >= 40)
1110 return -ELOOP;
1111
1112 mnt = path->dentry->d_op->d_automount(path);
1113 if (IS_ERR(mnt)) {
1114 /*
1115 * The filesystem is allowed to return -EISDIR here to indicate
1116 * it doesn't want to automount. For instance, autofs would do
1117 * this so that its userspace daemon can mount on this dentry.
1118 *
1119 * However, we can only permit this if it's a terminal point in
1120 * the path being looked up; if it wasn't then the remainder of
1121 * the path is inaccessible and we should say so.
1122 */
1123 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1124 return -EREMOTE;
1125 return PTR_ERR(mnt);
1126 }
1127
1128 if (!mnt) /* mount collision */
1129 return 0;
1130
1131 if (!*need_mntput) {
1132 /* lock_mount() may release path->mnt on error */
1133 mntget(path->mnt);
1134 *need_mntput = true;
1135 }
1136 err = finish_automount(mnt, path);
1137
1138 switch (err) {
1139 case -EBUSY:
1140 /* Someone else made a mount here whilst we were busy */
1141 return 0;
1142 case 0:
1143 path_put(path);
1144 path->mnt = mnt;
1145 path->dentry = dget(mnt->mnt_root);
1146 return 0;
1147 default:
1148 return err;
1149 }
1150
1151 }
1152
1153 /*
1154 * Handle a dentry that is managed in some way.
1155 * - Flagged for transit management (autofs)
1156 * - Flagged as mountpoint
1157 * - Flagged as automount point
1158 *
1159 * This may only be called in refwalk mode.
1160 *
1161 * Serialization is taken care of in namespace.c
1162 */
1163 static int follow_managed(struct path *path, struct nameidata *nd)
1164 {
1165 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1166 unsigned managed;
1167 bool need_mntput = false;
1168 int ret = 0;
1169
1170 /* Given that we're not holding a lock here, we retain the value in a
1171 * local variable for each dentry as we look at it so that we don't see
1172 * the components of that value change under us */
1173 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1174 managed &= DCACHE_MANAGED_DENTRY,
1175 unlikely(managed != 0)) {
1176 /* Allow the filesystem to manage the transit without i_mutex
1177 * being held. */
1178 if (managed & DCACHE_MANAGE_TRANSIT) {
1179 BUG_ON(!path->dentry->d_op);
1180 BUG_ON(!path->dentry->d_op->d_manage);
1181 ret = path->dentry->d_op->d_manage(path->dentry, false);
1182 if (ret < 0)
1183 break;
1184 }
1185
1186 /* Transit to a mounted filesystem. */
1187 if (managed & DCACHE_MOUNTED) {
1188 struct vfsmount *mounted = lookup_mnt(path);
1189 if (mounted) {
1190 dput(path->dentry);
1191 if (need_mntput)
1192 mntput(path->mnt);
1193 path->mnt = mounted;
1194 path->dentry = dget(mounted->mnt_root);
1195 need_mntput = true;
1196 continue;
1197 }
1198
1199 /* Something is mounted on this dentry in another
1200 * namespace and/or whatever was mounted there in this
1201 * namespace got unmounted before lookup_mnt() could
1202 * get it */
1203 }
1204
1205 /* Handle an automount point */
1206 if (managed & DCACHE_NEED_AUTOMOUNT) {
1207 ret = follow_automount(path, nd, &need_mntput);
1208 if (ret < 0)
1209 break;
1210 continue;
1211 }
1212
1213 /* We didn't change the current path point */
1214 break;
1215 }
1216
1217 if (need_mntput && path->mnt == mnt)
1218 mntput(path->mnt);
1219 if (ret == -EISDIR)
1220 ret = 0;
1221 if (need_mntput)
1222 nd->flags |= LOOKUP_JUMPED;
1223 if (unlikely(ret < 0))
1224 path_put_conditional(path, nd);
1225 return ret;
1226 }
1227
1228 int follow_down_one(struct path *path)
1229 {
1230 struct vfsmount *mounted;
1231
1232 mounted = lookup_mnt(path);
1233 if (mounted) {
1234 dput(path->dentry);
1235 mntput(path->mnt);
1236 path->mnt = mounted;
1237 path->dentry = dget(mounted->mnt_root);
1238 return 1;
1239 }
1240 return 0;
1241 }
1242 EXPORT_SYMBOL(follow_down_one);
1243
1244 static inline int managed_dentry_rcu(struct dentry *dentry)
1245 {
1246 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1247 dentry->d_op->d_manage(dentry, true) : 0;
1248 }
1249
1250 /*
1251 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1252 * we meet a managed dentry that would need blocking.
1253 */
1254 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1255 struct inode **inode, unsigned *seqp)
1256 {
1257 for (;;) {
1258 struct mount *mounted;
1259 /*
1260 * Don't forget we might have a non-mountpoint managed dentry
1261 * that wants to block transit.
1262 */
1263 switch (managed_dentry_rcu(path->dentry)) {
1264 case -ECHILD:
1265 default:
1266 return false;
1267 case -EISDIR:
1268 return true;
1269 case 0:
1270 break;
1271 }
1272
1273 if (!d_mountpoint(path->dentry))
1274 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1275
1276 mounted = __lookup_mnt(path->mnt, path->dentry);
1277 if (!mounted)
1278 break;
1279 path->mnt = &mounted->mnt;
1280 path->dentry = mounted->mnt.mnt_root;
1281 nd->flags |= LOOKUP_JUMPED;
1282 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1283 /*
1284 * Update the inode too. We don't need to re-check the
1285 * dentry sequence number here after this d_inode read,
1286 * because a mount-point is always pinned.
1287 */
1288 *inode = path->dentry->d_inode;
1289 }
1290 return !read_seqretry(&mount_lock, nd->m_seq) &&
1291 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1292 }
1293
1294 static int follow_dotdot_rcu(struct nameidata *nd)
1295 {
1296 struct inode *inode = nd->inode;
1297 if (!nd->root.mnt)
1298 set_root_rcu(nd);
1299
1300 while (1) {
1301 if (path_equal(&nd->path, &nd->root))
1302 break;
1303 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1304 struct dentry *old = nd->path.dentry;
1305 struct dentry *parent = old->d_parent;
1306 unsigned seq;
1307
1308 inode = parent->d_inode;
1309 seq = read_seqcount_begin(&parent->d_seq);
1310 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1311 return -ECHILD;
1312 nd->path.dentry = parent;
1313 nd->seq = seq;
1314 if (unlikely(!path_connected(&nd->path)))
1315 return -ENOENT;
1316 break;
1317 } else {
1318 struct mount *mnt = real_mount(nd->path.mnt);
1319 struct mount *mparent = mnt->mnt_parent;
1320 struct dentry *mountpoint = mnt->mnt_mountpoint;
1321 struct inode *inode2 = mountpoint->d_inode;
1322 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1323 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1324 return -ECHILD;
1325 if (&mparent->mnt == nd->path.mnt)
1326 break;
1327 /* we know that mountpoint was pinned */
1328 nd->path.dentry = mountpoint;
1329 nd->path.mnt = &mparent->mnt;
1330 inode = inode2;
1331 nd->seq = seq;
1332 }
1333 }
1334 while (unlikely(d_mountpoint(nd->path.dentry))) {
1335 struct mount *mounted;
1336 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1337 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1338 return -ECHILD;
1339 if (!mounted)
1340 break;
1341 nd->path.mnt = &mounted->mnt;
1342 nd->path.dentry = mounted->mnt.mnt_root;
1343 inode = nd->path.dentry->d_inode;
1344 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1345 }
1346 nd->inode = inode;
1347 return 0;
1348 }
1349
1350 /*
1351 * Follow down to the covering mount currently visible to userspace. At each
1352 * point, the filesystem owning that dentry may be queried as to whether the
1353 * caller is permitted to proceed or not.
1354 */
1355 int follow_down(struct path *path)
1356 {
1357 unsigned managed;
1358 int ret;
1359
1360 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1361 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1362 /* Allow the filesystem to manage the transit without i_mutex
1363 * being held.
1364 *
1365 * We indicate to the filesystem if someone is trying to mount
1366 * something here. This gives autofs the chance to deny anyone
1367 * other than its daemon the right to mount on its
1368 * superstructure.
1369 *
1370 * The filesystem may sleep at this point.
1371 */
1372 if (managed & DCACHE_MANAGE_TRANSIT) {
1373 BUG_ON(!path->dentry->d_op);
1374 BUG_ON(!path->dentry->d_op->d_manage);
1375 ret = path->dentry->d_op->d_manage(
1376 path->dentry, false);
1377 if (ret < 0)
1378 return ret == -EISDIR ? 0 : ret;
1379 }
1380
1381 /* Transit to a mounted filesystem. */
1382 if (managed & DCACHE_MOUNTED) {
1383 struct vfsmount *mounted = lookup_mnt(path);
1384 if (!mounted)
1385 break;
1386 dput(path->dentry);
1387 mntput(path->mnt);
1388 path->mnt = mounted;
1389 path->dentry = dget(mounted->mnt_root);
1390 continue;
1391 }
1392
1393 /* Don't handle automount points here */
1394 break;
1395 }
1396 return 0;
1397 }
1398 EXPORT_SYMBOL(follow_down);
1399
1400 /*
1401 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1402 */
1403 static void follow_mount(struct path *path)
1404 {
1405 while (d_mountpoint(path->dentry)) {
1406 struct vfsmount *mounted = lookup_mnt(path);
1407 if (!mounted)
1408 break;
1409 dput(path->dentry);
1410 mntput(path->mnt);
1411 path->mnt = mounted;
1412 path->dentry = dget(mounted->mnt_root);
1413 }
1414 }
1415
1416 static int follow_dotdot(struct nameidata *nd)
1417 {
1418 if (!nd->root.mnt)
1419 set_root(nd);
1420
1421 while(1) {
1422 struct dentry *old = nd->path.dentry;
1423
1424 if (nd->path.dentry == nd->root.dentry &&
1425 nd->path.mnt == nd->root.mnt) {
1426 break;
1427 }
1428 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1429 /* rare case of legitimate dget_parent()... */
1430 nd->path.dentry = dget_parent(nd->path.dentry);
1431 dput(old);
1432 if (unlikely(!path_connected(&nd->path)))
1433 return -ENOENT;
1434 break;
1435 }
1436 if (!follow_up(&nd->path))
1437 break;
1438 }
1439 follow_mount(&nd->path);
1440 nd->inode = nd->path.dentry->d_inode;
1441 return 0;
1442 }
1443
1444 /*
1445 * This looks up the name in dcache, possibly revalidates the old dentry and
1446 * allocates a new one if not found or not valid. In the need_lookup argument
1447 * returns whether i_op->lookup is necessary.
1448 *
1449 * dir->d_inode->i_mutex must be held
1450 */
1451 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1452 unsigned int flags, bool *need_lookup)
1453 {
1454 struct dentry *dentry;
1455 int error;
1456
1457 *need_lookup = false;
1458 dentry = d_lookup(dir, name);
1459 if (dentry) {
1460 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1461 error = d_revalidate(dentry, flags);
1462 if (unlikely(error <= 0)) {
1463 if (error < 0) {
1464 dput(dentry);
1465 return ERR_PTR(error);
1466 } else {
1467 d_invalidate(dentry);
1468 dput(dentry);
1469 dentry = NULL;
1470 }
1471 }
1472 }
1473 }
1474
1475 if (!dentry) {
1476 dentry = d_alloc(dir, name);
1477 if (unlikely(!dentry))
1478 return ERR_PTR(-ENOMEM);
1479
1480 *need_lookup = true;
1481 }
1482 return dentry;
1483 }
1484
1485 /*
1486 * Call i_op->lookup on the dentry. The dentry must be negative and
1487 * unhashed.
1488 *
1489 * dir->d_inode->i_mutex must be held
1490 */
1491 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1492 unsigned int flags)
1493 {
1494 struct dentry *old;
1495
1496 /* Don't create child dentry for a dead directory. */
1497 if (unlikely(IS_DEADDIR(dir))) {
1498 dput(dentry);
1499 return ERR_PTR(-ENOENT);
1500 }
1501
1502 old = dir->i_op->lookup(dir, dentry, flags);
1503 if (unlikely(old)) {
1504 dput(dentry);
1505 dentry = old;
1506 }
1507 return dentry;
1508 }
1509
1510 static struct dentry *__lookup_hash(struct qstr *name,
1511 struct dentry *base, unsigned int flags)
1512 {
1513 bool need_lookup;
1514 struct dentry *dentry;
1515
1516 dentry = lookup_dcache(name, base, flags, &need_lookup);
1517 if (!need_lookup)
1518 return dentry;
1519
1520 return lookup_real(base->d_inode, dentry, flags);
1521 }
1522
1523 /*
1524 * It's more convoluted than I'd like it to be, but... it's still fairly
1525 * small and for now I'd prefer to have fast path as straight as possible.
1526 * It _is_ time-critical.
1527 */
1528 static int lookup_fast(struct nameidata *nd,
1529 struct path *path, struct inode **inode,
1530 unsigned *seqp)
1531 {
1532 struct vfsmount *mnt = nd->path.mnt;
1533 struct dentry *dentry, *parent = nd->path.dentry;
1534 int need_reval = 1;
1535 int status = 1;
1536 int err;
1537
1538 /*
1539 * Rename seqlock is not required here because in the off chance
1540 * of a false negative due to a concurrent rename, we're going to
1541 * do the non-racy lookup, below.
1542 */
1543 if (nd->flags & LOOKUP_RCU) {
1544 unsigned seq;
1545 bool negative;
1546 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1547 if (!dentry)
1548 goto unlazy;
1549
1550 /*
1551 * This sequence count validates that the inode matches
1552 * the dentry name information from lookup.
1553 */
1554 *inode = d_backing_inode(dentry);
1555 negative = d_is_negative(dentry);
1556 if (read_seqcount_retry(&dentry->d_seq, seq))
1557 return -ECHILD;
1558
1559 /*
1560 * This sequence count validates that the parent had no
1561 * changes while we did the lookup of the dentry above.
1562 *
1563 * The memory barrier in read_seqcount_begin of child is
1564 * enough, we can use __read_seqcount_retry here.
1565 */
1566 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1567 return -ECHILD;
1568
1569 *seqp = seq;
1570 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1571 status = d_revalidate(dentry, nd->flags);
1572 if (unlikely(status <= 0)) {
1573 if (status != -ECHILD)
1574 need_reval = 0;
1575 goto unlazy;
1576 }
1577 }
1578 /*
1579 * Note: do negative dentry check after revalidation in
1580 * case that drops it.
1581 */
1582 if (negative)
1583 return -ENOENT;
1584 path->mnt = mnt;
1585 path->dentry = dentry;
1586 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1587 return 0;
1588 unlazy:
1589 if (unlazy_walk(nd, dentry, seq))
1590 return -ECHILD;
1591 } else {
1592 dentry = __d_lookup(parent, &nd->last);
1593 }
1594
1595 if (unlikely(!dentry))
1596 goto need_lookup;
1597
1598 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1599 status = d_revalidate(dentry, nd->flags);
1600 if (unlikely(status <= 0)) {
1601 if (status < 0) {
1602 dput(dentry);
1603 return status;
1604 }
1605 d_invalidate(dentry);
1606 dput(dentry);
1607 goto need_lookup;
1608 }
1609
1610 if (unlikely(d_is_negative(dentry))) {
1611 dput(dentry);
1612 return -ENOENT;
1613 }
1614 path->mnt = mnt;
1615 path->dentry = dentry;
1616 err = follow_managed(path, nd);
1617 if (likely(!err))
1618 *inode = d_backing_inode(path->dentry);
1619 return err;
1620
1621 need_lookup:
1622 return 1;
1623 }
1624
1625 /* Fast lookup failed, do it the slow way */
1626 static int lookup_slow(struct nameidata *nd, struct path *path)
1627 {
1628 struct dentry *dentry, *parent;
1629
1630 parent = nd->path.dentry;
1631 BUG_ON(nd->inode != parent->d_inode);
1632
1633 mutex_lock(&parent->d_inode->i_mutex);
1634 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1635 mutex_unlock(&parent->d_inode->i_mutex);
1636 if (IS_ERR(dentry))
1637 return PTR_ERR(dentry);
1638 path->mnt = nd->path.mnt;
1639 path->dentry = dentry;
1640 return follow_managed(path, nd);
1641 }
1642
1643 static inline int may_lookup(struct nameidata *nd)
1644 {
1645 if (nd->flags & LOOKUP_RCU) {
1646 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1647 if (err != -ECHILD)
1648 return err;
1649 if (unlazy_walk(nd, NULL, 0))
1650 return -ECHILD;
1651 }
1652 return inode_permission(nd->inode, MAY_EXEC);
1653 }
1654
1655 static inline int handle_dots(struct nameidata *nd, int type)
1656 {
1657 if (type == LAST_DOTDOT) {
1658 if (nd->flags & LOOKUP_RCU) {
1659 return follow_dotdot_rcu(nd);
1660 } else
1661 return follow_dotdot(nd);
1662 }
1663 return 0;
1664 }
1665
1666 static int pick_link(struct nameidata *nd, struct path *link,
1667 struct inode *inode, unsigned seq)
1668 {
1669 int error;
1670 struct saved *last;
1671 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1672 path_to_nameidata(link, nd);
1673 return -ELOOP;
1674 }
1675 if (!(nd->flags & LOOKUP_RCU)) {
1676 if (link->mnt == nd->path.mnt)
1677 mntget(link->mnt);
1678 }
1679 error = nd_alloc_stack(nd);
1680 if (unlikely(error)) {
1681 if (error == -ECHILD) {
1682 if (unlikely(unlazy_link(nd, link, seq)))
1683 return -ECHILD;
1684 error = nd_alloc_stack(nd);
1685 }
1686 if (error) {
1687 path_put(link);
1688 return error;
1689 }
1690 }
1691
1692 last = nd->stack + nd->depth++;
1693 last->link = *link;
1694 last->cookie = NULL;
1695 last->inode = inode;
1696 last->seq = seq;
1697 return 1;
1698 }
1699
1700 /*
1701 * Do we need to follow links? We _really_ want to be able
1702 * to do this check without having to look at inode->i_op,
1703 * so we keep a cache of "no, this doesn't need follow_link"
1704 * for the common case.
1705 */
1706 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1707 int follow,
1708 struct inode *inode, unsigned seq)
1709 {
1710 if (likely(!d_is_symlink(link->dentry)))
1711 return 0;
1712 if (!follow)
1713 return 0;
1714 return pick_link(nd, link, inode, seq);
1715 }
1716
1717 enum {WALK_GET = 1, WALK_PUT = 2};
1718
1719 static int walk_component(struct nameidata *nd, int flags)
1720 {
1721 struct path path;
1722 struct inode *inode;
1723 unsigned seq;
1724 int err;
1725 /*
1726 * "." and ".." are special - ".." especially so because it has
1727 * to be able to know about the current root directory and
1728 * parent relationships.
1729 */
1730 if (unlikely(nd->last_type != LAST_NORM)) {
1731 err = handle_dots(nd, nd->last_type);
1732 if (flags & WALK_PUT)
1733 put_link(nd);
1734 return err;
1735 }
1736 err = lookup_fast(nd, &path, &inode, &seq);
1737 if (unlikely(err)) {
1738 if (err < 0)
1739 return err;
1740
1741 err = lookup_slow(nd, &path);
1742 if (err < 0)
1743 return err;
1744
1745 inode = d_backing_inode(path.dentry);
1746 seq = 0; /* we are already out of RCU mode */
1747 err = -ENOENT;
1748 if (d_is_negative(path.dentry))
1749 goto out_path_put;
1750 }
1751
1752 if (flags & WALK_PUT)
1753 put_link(nd);
1754 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1755 if (unlikely(err))
1756 return err;
1757 path_to_nameidata(&path, nd);
1758 nd->inode = inode;
1759 nd->seq = seq;
1760 return 0;
1761
1762 out_path_put:
1763 path_to_nameidata(&path, nd);
1764 return err;
1765 }
1766
1767 /*
1768 * We can do the critical dentry name comparison and hashing
1769 * operations one word at a time, but we are limited to:
1770 *
1771 * - Architectures with fast unaligned word accesses. We could
1772 * do a "get_unaligned()" if this helps and is sufficiently
1773 * fast.
1774 *
1775 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1776 * do not trap on the (extremely unlikely) case of a page
1777 * crossing operation.
1778 *
1779 * - Furthermore, we need an efficient 64-bit compile for the
1780 * 64-bit case in order to generate the "number of bytes in
1781 * the final mask". Again, that could be replaced with a
1782 * efficient population count instruction or similar.
1783 */
1784 #ifdef CONFIG_DCACHE_WORD_ACCESS
1785
1786 #include <asm/word-at-a-time.h>
1787
1788 #ifdef CONFIG_64BIT
1789
1790 static inline unsigned int fold_hash(unsigned long hash)
1791 {
1792 return hash_64(hash, 32);
1793 }
1794
1795 #else /* 32-bit case */
1796
1797 #define fold_hash(x) (x)
1798
1799 #endif
1800
1801 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1802 {
1803 unsigned long a, mask;
1804 unsigned long hash = 0;
1805
1806 for (;;) {
1807 a = load_unaligned_zeropad(name);
1808 if (len < sizeof(unsigned long))
1809 break;
1810 hash += a;
1811 hash *= 9;
1812 name += sizeof(unsigned long);
1813 len -= sizeof(unsigned long);
1814 if (!len)
1815 goto done;
1816 }
1817 mask = bytemask_from_count(len);
1818 hash += mask & a;
1819 done:
1820 return fold_hash(hash);
1821 }
1822 EXPORT_SYMBOL(full_name_hash);
1823
1824 /*
1825 * Calculate the length and hash of the path component, and
1826 * return the "hash_len" as the result.
1827 */
1828 static inline u64 hash_name(const char *name)
1829 {
1830 unsigned long a, b, adata, bdata, mask, hash, len;
1831 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1832
1833 hash = a = 0;
1834 len = -sizeof(unsigned long);
1835 do {
1836 hash = (hash + a) * 9;
1837 len += sizeof(unsigned long);
1838 a = load_unaligned_zeropad(name+len);
1839 b = a ^ REPEAT_BYTE('/');
1840 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1841
1842 adata = prep_zero_mask(a, adata, &constants);
1843 bdata = prep_zero_mask(b, bdata, &constants);
1844
1845 mask = create_zero_mask(adata | bdata);
1846
1847 hash += a & zero_bytemask(mask);
1848 len += find_zero(mask);
1849 return hashlen_create(fold_hash(hash), len);
1850 }
1851
1852 #else
1853
1854 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1855 {
1856 unsigned long hash = init_name_hash();
1857 while (len--)
1858 hash = partial_name_hash(*name++, hash);
1859 return end_name_hash(hash);
1860 }
1861 EXPORT_SYMBOL(full_name_hash);
1862
1863 /*
1864 * We know there's a real path component here of at least
1865 * one character.
1866 */
1867 static inline u64 hash_name(const char *name)
1868 {
1869 unsigned long hash = init_name_hash();
1870 unsigned long len = 0, c;
1871
1872 c = (unsigned char)*name;
1873 do {
1874 len++;
1875 hash = partial_name_hash(c, hash);
1876 c = (unsigned char)name[len];
1877 } while (c && c != '/');
1878 return hashlen_create(end_name_hash(hash), len);
1879 }
1880
1881 #endif
1882
1883 /*
1884 * Name resolution.
1885 * This is the basic name resolution function, turning a pathname into
1886 * the final dentry. We expect 'base' to be positive and a directory.
1887 *
1888 * Returns 0 and nd will have valid dentry and mnt on success.
1889 * Returns error and drops reference to input namei data on failure.
1890 */
1891 static int link_path_walk(const char *name, struct nameidata *nd)
1892 {
1893 int err;
1894
1895 while (*name=='/')
1896 name++;
1897 if (!*name)
1898 return 0;
1899
1900 /* At this point we know we have a real path component. */
1901 for(;;) {
1902 u64 hash_len;
1903 int type;
1904
1905 err = may_lookup(nd);
1906 if (err)
1907 return err;
1908
1909 hash_len = hash_name(name);
1910
1911 type = LAST_NORM;
1912 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1913 case 2:
1914 if (name[1] == '.') {
1915 type = LAST_DOTDOT;
1916 nd->flags |= LOOKUP_JUMPED;
1917 }
1918 break;
1919 case 1:
1920 type = LAST_DOT;
1921 }
1922 if (likely(type == LAST_NORM)) {
1923 struct dentry *parent = nd->path.dentry;
1924 nd->flags &= ~LOOKUP_JUMPED;
1925 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1926 struct qstr this = { { .hash_len = hash_len }, .name = name };
1927 err = parent->d_op->d_hash(parent, &this);
1928 if (err < 0)
1929 return err;
1930 hash_len = this.hash_len;
1931 name = this.name;
1932 }
1933 }
1934
1935 nd->last.hash_len = hash_len;
1936 nd->last.name = name;
1937 nd->last_type = type;
1938
1939 name += hashlen_len(hash_len);
1940 if (!*name)
1941 goto OK;
1942 /*
1943 * If it wasn't NUL, we know it was '/'. Skip that
1944 * slash, and continue until no more slashes.
1945 */
1946 do {
1947 name++;
1948 } while (unlikely(*name == '/'));
1949 if (unlikely(!*name)) {
1950 OK:
1951 /* pathname body, done */
1952 if (!nd->depth)
1953 return 0;
1954 name = nd->stack[nd->depth - 1].name;
1955 /* trailing symlink, done */
1956 if (!name)
1957 return 0;
1958 /* last component of nested symlink */
1959 err = walk_component(nd, WALK_GET | WALK_PUT);
1960 } else {
1961 err = walk_component(nd, WALK_GET);
1962 }
1963 if (err < 0)
1964 return err;
1965
1966 if (err) {
1967 const char *s = get_link(nd);
1968
1969 if (IS_ERR(s))
1970 return PTR_ERR(s);
1971 err = 0;
1972 if (unlikely(!s)) {
1973 /* jumped */
1974 put_link(nd);
1975 } else {
1976 nd->stack[nd->depth - 1].name = name;
1977 name = s;
1978 continue;
1979 }
1980 }
1981 if (unlikely(!d_can_lookup(nd->path.dentry))) {
1982 if (nd->flags & LOOKUP_RCU) {
1983 if (unlazy_walk(nd, NULL, 0))
1984 return -ECHILD;
1985 }
1986 return -ENOTDIR;
1987 }
1988 }
1989 }
1990
1991 static const char *path_init(struct nameidata *nd, unsigned flags)
1992 {
1993 int retval = 0;
1994 const char *s = nd->name->name;
1995
1996 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1997 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1998 nd->depth = 0;
1999 nd->total_link_count = 0;
2000 if (flags & LOOKUP_ROOT) {
2001 struct dentry *root = nd->root.dentry;
2002 struct inode *inode = root->d_inode;
2003 if (*s) {
2004 if (!d_can_lookup(root))
2005 return ERR_PTR(-ENOTDIR);
2006 retval = inode_permission(inode, MAY_EXEC);
2007 if (retval)
2008 return ERR_PTR(retval);
2009 }
2010 nd->path = nd->root;
2011 nd->inode = inode;
2012 if (flags & LOOKUP_RCU) {
2013 rcu_read_lock();
2014 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2015 nd->root_seq = nd->seq;
2016 nd->m_seq = read_seqbegin(&mount_lock);
2017 } else {
2018 path_get(&nd->path);
2019 }
2020 return s;
2021 }
2022
2023 nd->root.mnt = NULL;
2024
2025 nd->m_seq = read_seqbegin(&mount_lock);
2026 if (*s == '/') {
2027 if (flags & LOOKUP_RCU) {
2028 rcu_read_lock();
2029 set_root_rcu(nd);
2030 nd->seq = nd->root_seq;
2031 } else {
2032 set_root(nd);
2033 path_get(&nd->root);
2034 }
2035 nd->path = nd->root;
2036 } else if (nd->dfd == AT_FDCWD) {
2037 if (flags & LOOKUP_RCU) {
2038 struct fs_struct *fs = current->fs;
2039 unsigned seq;
2040
2041 rcu_read_lock();
2042
2043 do {
2044 seq = read_seqcount_begin(&fs->seq);
2045 nd->path = fs->pwd;
2046 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2047 } while (read_seqcount_retry(&fs->seq, seq));
2048 } else {
2049 get_fs_pwd(current->fs, &nd->path);
2050 }
2051 } else {
2052 /* Caller must check execute permissions on the starting path component */
2053 struct fd f = fdget_raw(nd->dfd);
2054 struct dentry *dentry;
2055
2056 if (!f.file)
2057 return ERR_PTR(-EBADF);
2058
2059 dentry = f.file->f_path.dentry;
2060
2061 if (*s) {
2062 if (!d_can_lookup(dentry)) {
2063 fdput(f);
2064 return ERR_PTR(-ENOTDIR);
2065 }
2066 }
2067
2068 nd->path = f.file->f_path;
2069 if (flags & LOOKUP_RCU) {
2070 rcu_read_lock();
2071 nd->inode = nd->path.dentry->d_inode;
2072 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2073 } else {
2074 path_get(&nd->path);
2075 nd->inode = nd->path.dentry->d_inode;
2076 }
2077 fdput(f);
2078 return s;
2079 }
2080
2081 nd->inode = nd->path.dentry->d_inode;
2082 if (!(flags & LOOKUP_RCU))
2083 return s;
2084 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
2085 return s;
2086 if (!(nd->flags & LOOKUP_ROOT))
2087 nd->root.mnt = NULL;
2088 rcu_read_unlock();
2089 return ERR_PTR(-ECHILD);
2090 }
2091
2092 static const char *trailing_symlink(struct nameidata *nd)
2093 {
2094 const char *s;
2095 int error = may_follow_link(nd);
2096 if (unlikely(error))
2097 return ERR_PTR(error);
2098 nd->flags |= LOOKUP_PARENT;
2099 nd->stack[0].name = NULL;
2100 s = get_link(nd);
2101 return s ? s : "";
2102 }
2103
2104 static inline int lookup_last(struct nameidata *nd)
2105 {
2106 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2107 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2108
2109 nd->flags &= ~LOOKUP_PARENT;
2110 return walk_component(nd,
2111 nd->flags & LOOKUP_FOLLOW
2112 ? nd->depth
2113 ? WALK_PUT | WALK_GET
2114 : WALK_GET
2115 : 0);
2116 }
2117
2118 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2119 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2120 {
2121 const char *s = path_init(nd, flags);
2122 int err;
2123
2124 if (IS_ERR(s))
2125 return PTR_ERR(s);
2126 while (!(err = link_path_walk(s, nd))
2127 && ((err = lookup_last(nd)) > 0)) {
2128 s = trailing_symlink(nd);
2129 if (IS_ERR(s)) {
2130 err = PTR_ERR(s);
2131 break;
2132 }
2133 }
2134 if (!err)
2135 err = complete_walk(nd);
2136
2137 if (!err && nd->flags & LOOKUP_DIRECTORY)
2138 if (!d_can_lookup(nd->path.dentry))
2139 err = -ENOTDIR;
2140 if (!err) {
2141 *path = nd->path;
2142 nd->path.mnt = NULL;
2143 nd->path.dentry = NULL;
2144 }
2145 terminate_walk(nd);
2146 return err;
2147 }
2148
2149 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2150 struct path *path, struct path *root)
2151 {
2152 int retval;
2153 struct nameidata nd;
2154 if (IS_ERR(name))
2155 return PTR_ERR(name);
2156 if (unlikely(root)) {
2157 nd.root = *root;
2158 flags |= LOOKUP_ROOT;
2159 }
2160 set_nameidata(&nd, dfd, name);
2161 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2162 if (unlikely(retval == -ECHILD))
2163 retval = path_lookupat(&nd, flags, path);
2164 if (unlikely(retval == -ESTALE))
2165 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2166
2167 if (likely(!retval))
2168 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2169 restore_nameidata();
2170 putname(name);
2171 return retval;
2172 }
2173
2174 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2175 static int path_parentat(struct nameidata *nd, unsigned flags,
2176 struct path *parent)
2177 {
2178 const char *s = path_init(nd, flags);
2179 int err;
2180 if (IS_ERR(s))
2181 return PTR_ERR(s);
2182 err = link_path_walk(s, nd);
2183 if (!err)
2184 err = complete_walk(nd);
2185 if (!err) {
2186 *parent = nd->path;
2187 nd->path.mnt = NULL;
2188 nd->path.dentry = NULL;
2189 }
2190 terminate_walk(nd);
2191 return err;
2192 }
2193
2194 static struct filename *filename_parentat(int dfd, struct filename *name,
2195 unsigned int flags, struct path *parent,
2196 struct qstr *last, int *type)
2197 {
2198 int retval;
2199 struct nameidata nd;
2200
2201 if (IS_ERR(name))
2202 return name;
2203 set_nameidata(&nd, dfd, name);
2204 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2205 if (unlikely(retval == -ECHILD))
2206 retval = path_parentat(&nd, flags, parent);
2207 if (unlikely(retval == -ESTALE))
2208 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2209 if (likely(!retval)) {
2210 *last = nd.last;
2211 *type = nd.last_type;
2212 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2213 } else {
2214 putname(name);
2215 name = ERR_PTR(retval);
2216 }
2217 restore_nameidata();
2218 return name;
2219 }
2220
2221 /* does lookup, returns the object with parent locked */
2222 struct dentry *kern_path_locked(const char *name, struct path *path)
2223 {
2224 struct filename *filename;
2225 struct dentry *d;
2226 struct qstr last;
2227 int type;
2228
2229 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2230 &last, &type);
2231 if (IS_ERR(filename))
2232 return ERR_CAST(filename);
2233 if (unlikely(type != LAST_NORM)) {
2234 path_put(path);
2235 putname(filename);
2236 return ERR_PTR(-EINVAL);
2237 }
2238 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2239 d = __lookup_hash(&last, path->dentry, 0);
2240 if (IS_ERR(d)) {
2241 mutex_unlock(&path->dentry->d_inode->i_mutex);
2242 path_put(path);
2243 }
2244 putname(filename);
2245 return d;
2246 }
2247
2248 int kern_path(const char *name, unsigned int flags, struct path *path)
2249 {
2250 return filename_lookup(AT_FDCWD, getname_kernel(name),
2251 flags, path, NULL);
2252 }
2253 EXPORT_SYMBOL(kern_path);
2254
2255 /**
2256 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2257 * @dentry: pointer to dentry of the base directory
2258 * @mnt: pointer to vfs mount of the base directory
2259 * @name: pointer to file name
2260 * @flags: lookup flags
2261 * @path: pointer to struct path to fill
2262 */
2263 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2264 const char *name, unsigned int flags,
2265 struct path *path)
2266 {
2267 struct path root = {.mnt = mnt, .dentry = dentry};
2268 /* the first argument of filename_lookup() is ignored with root */
2269 return filename_lookup(AT_FDCWD, getname_kernel(name),
2270 flags , path, &root);
2271 }
2272 EXPORT_SYMBOL(vfs_path_lookup);
2273
2274 /**
2275 * lookup_one_len - filesystem helper to lookup single pathname component
2276 * @name: pathname component to lookup
2277 * @base: base directory to lookup from
2278 * @len: maximum length @len should be interpreted to
2279 *
2280 * Note that this routine is purely a helper for filesystem usage and should
2281 * not be called by generic code.
2282 */
2283 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2284 {
2285 struct qstr this;
2286 unsigned int c;
2287 int err;
2288
2289 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2290
2291 this.name = name;
2292 this.len = len;
2293 this.hash = full_name_hash(name, len);
2294 if (!len)
2295 return ERR_PTR(-EACCES);
2296
2297 if (unlikely(name[0] == '.')) {
2298 if (len < 2 || (len == 2 && name[1] == '.'))
2299 return ERR_PTR(-EACCES);
2300 }
2301
2302 while (len--) {
2303 c = *(const unsigned char *)name++;
2304 if (c == '/' || c == '\0')
2305 return ERR_PTR(-EACCES);
2306 }
2307 /*
2308 * See if the low-level filesystem might want
2309 * to use its own hash..
2310 */
2311 if (base->d_flags & DCACHE_OP_HASH) {
2312 int err = base->d_op->d_hash(base, &this);
2313 if (err < 0)
2314 return ERR_PTR(err);
2315 }
2316
2317 err = inode_permission(base->d_inode, MAY_EXEC);
2318 if (err)
2319 return ERR_PTR(err);
2320
2321 return __lookup_hash(&this, base, 0);
2322 }
2323 EXPORT_SYMBOL(lookup_one_len);
2324
2325 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2326 struct path *path, int *empty)
2327 {
2328 return filename_lookup(dfd, getname_flags(name, flags, empty),
2329 flags, path, NULL);
2330 }
2331 EXPORT_SYMBOL(user_path_at_empty);
2332
2333 /*
2334 * NB: most callers don't do anything directly with the reference to the
2335 * to struct filename, but the nd->last pointer points into the name string
2336 * allocated by getname. So we must hold the reference to it until all
2337 * path-walking is complete.
2338 */
2339 static inline struct filename *
2340 user_path_parent(int dfd, const char __user *path,
2341 struct path *parent,
2342 struct qstr *last,
2343 int *type,
2344 unsigned int flags)
2345 {
2346 /* only LOOKUP_REVAL is allowed in extra flags */
2347 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2348 parent, last, type);
2349 }
2350
2351 /**
2352 * mountpoint_last - look up last component for umount
2353 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2354 * @path: pointer to container for result
2355 *
2356 * This is a special lookup_last function just for umount. In this case, we
2357 * need to resolve the path without doing any revalidation.
2358 *
2359 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2360 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2361 * in almost all cases, this lookup will be served out of the dcache. The only
2362 * cases where it won't are if nd->last refers to a symlink or the path is
2363 * bogus and it doesn't exist.
2364 *
2365 * Returns:
2366 * -error: if there was an error during lookup. This includes -ENOENT if the
2367 * lookup found a negative dentry. The nd->path reference will also be
2368 * put in this case.
2369 *
2370 * 0: if we successfully resolved nd->path and found it to not to be a
2371 * symlink that needs to be followed. "path" will also be populated.
2372 * The nd->path reference will also be put.
2373 *
2374 * 1: if we successfully resolved nd->last and found it to be a symlink
2375 * that needs to be followed. "path" will be populated with the path
2376 * to the link, and nd->path will *not* be put.
2377 */
2378 static int
2379 mountpoint_last(struct nameidata *nd, struct path *path)
2380 {
2381 int error = 0;
2382 struct dentry *dentry;
2383 struct dentry *dir = nd->path.dentry;
2384
2385 /* If we're in rcuwalk, drop out of it to handle last component */
2386 if (nd->flags & LOOKUP_RCU) {
2387 if (unlazy_walk(nd, NULL, 0))
2388 return -ECHILD;
2389 }
2390
2391 nd->flags &= ~LOOKUP_PARENT;
2392
2393 if (unlikely(nd->last_type != LAST_NORM)) {
2394 error = handle_dots(nd, nd->last_type);
2395 if (error)
2396 return error;
2397 dentry = dget(nd->path.dentry);
2398 goto done;
2399 }
2400
2401 mutex_lock(&dir->d_inode->i_mutex);
2402 dentry = d_lookup(dir, &nd->last);
2403 if (!dentry) {
2404 /*
2405 * No cached dentry. Mounted dentries are pinned in the cache,
2406 * so that means that this dentry is probably a symlink or the
2407 * path doesn't actually point to a mounted dentry.
2408 */
2409 dentry = d_alloc(dir, &nd->last);
2410 if (!dentry) {
2411 mutex_unlock(&dir->d_inode->i_mutex);
2412 return -ENOMEM;
2413 }
2414 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2415 if (IS_ERR(dentry)) {
2416 mutex_unlock(&dir->d_inode->i_mutex);
2417 return PTR_ERR(dentry);
2418 }
2419 }
2420 mutex_unlock(&dir->d_inode->i_mutex);
2421
2422 done:
2423 if (d_is_negative(dentry)) {
2424 dput(dentry);
2425 return -ENOENT;
2426 }
2427 if (nd->depth)
2428 put_link(nd);
2429 path->dentry = dentry;
2430 path->mnt = nd->path.mnt;
2431 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2432 d_backing_inode(dentry), 0);
2433 if (unlikely(error))
2434 return error;
2435 mntget(path->mnt);
2436 follow_mount(path);
2437 return 0;
2438 }
2439
2440 /**
2441 * path_mountpoint - look up a path to be umounted
2442 * @nd: lookup context
2443 * @flags: lookup flags
2444 * @path: pointer to container for result
2445 *
2446 * Look up the given name, but don't attempt to revalidate the last component.
2447 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2448 */
2449 static int
2450 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2451 {
2452 const char *s = path_init(nd, flags);
2453 int err;
2454 if (IS_ERR(s))
2455 return PTR_ERR(s);
2456 while (!(err = link_path_walk(s, nd)) &&
2457 (err = mountpoint_last(nd, path)) > 0) {
2458 s = trailing_symlink(nd);
2459 if (IS_ERR(s)) {
2460 err = PTR_ERR(s);
2461 break;
2462 }
2463 }
2464 terminate_walk(nd);
2465 return err;
2466 }
2467
2468 static int
2469 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2470 unsigned int flags)
2471 {
2472 struct nameidata nd;
2473 int error;
2474 if (IS_ERR(name))
2475 return PTR_ERR(name);
2476 set_nameidata(&nd, dfd, name);
2477 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2478 if (unlikely(error == -ECHILD))
2479 error = path_mountpoint(&nd, flags, path);
2480 if (unlikely(error == -ESTALE))
2481 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2482 if (likely(!error))
2483 audit_inode(name, path->dentry, 0);
2484 restore_nameidata();
2485 putname(name);
2486 return error;
2487 }
2488
2489 /**
2490 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2491 * @dfd: directory file descriptor
2492 * @name: pathname from userland
2493 * @flags: lookup flags
2494 * @path: pointer to container to hold result
2495 *
2496 * A umount is a special case for path walking. We're not actually interested
2497 * in the inode in this situation, and ESTALE errors can be a problem. We
2498 * simply want track down the dentry and vfsmount attached at the mountpoint
2499 * and avoid revalidating the last component.
2500 *
2501 * Returns 0 and populates "path" on success.
2502 */
2503 int
2504 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2505 struct path *path)
2506 {
2507 return filename_mountpoint(dfd, getname(name), path, flags);
2508 }
2509
2510 int
2511 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2512 unsigned int flags)
2513 {
2514 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2515 }
2516 EXPORT_SYMBOL(kern_path_mountpoint);
2517
2518 int __check_sticky(struct inode *dir, struct inode *inode)
2519 {
2520 kuid_t fsuid = current_fsuid();
2521
2522 if (uid_eq(inode->i_uid, fsuid))
2523 return 0;
2524 if (uid_eq(dir->i_uid, fsuid))
2525 return 0;
2526 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2527 }
2528 EXPORT_SYMBOL(__check_sticky);
2529
2530 /*
2531 * Check whether we can remove a link victim from directory dir, check
2532 * whether the type of victim is right.
2533 * 1. We can't do it if dir is read-only (done in permission())
2534 * 2. We should have write and exec permissions on dir
2535 * 3. We can't remove anything from append-only dir
2536 * 4. We can't do anything with immutable dir (done in permission())
2537 * 5. If the sticky bit on dir is set we should either
2538 * a. be owner of dir, or
2539 * b. be owner of victim, or
2540 * c. have CAP_FOWNER capability
2541 * 6. If the victim is append-only or immutable we can't do antyhing with
2542 * links pointing to it.
2543 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2544 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2545 * 9. We can't remove a root or mountpoint.
2546 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2547 * nfs_async_unlink().
2548 */
2549 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2550 {
2551 struct inode *inode = d_backing_inode(victim);
2552 int error;
2553
2554 if (d_is_negative(victim))
2555 return -ENOENT;
2556 BUG_ON(!inode);
2557
2558 BUG_ON(victim->d_parent->d_inode != dir);
2559 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2560
2561 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2562 if (error)
2563 return error;
2564 if (IS_APPEND(dir))
2565 return -EPERM;
2566
2567 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2568 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2569 return -EPERM;
2570 if (isdir) {
2571 if (!d_is_dir(victim))
2572 return -ENOTDIR;
2573 if (IS_ROOT(victim))
2574 return -EBUSY;
2575 } else if (d_is_dir(victim))
2576 return -EISDIR;
2577 if (IS_DEADDIR(dir))
2578 return -ENOENT;
2579 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2580 return -EBUSY;
2581 return 0;
2582 }
2583
2584 /* Check whether we can create an object with dentry child in directory
2585 * dir.
2586 * 1. We can't do it if child already exists (open has special treatment for
2587 * this case, but since we are inlined it's OK)
2588 * 2. We can't do it if dir is read-only (done in permission())
2589 * 3. We should have write and exec permissions on dir
2590 * 4. We can't do it if dir is immutable (done in permission())
2591 */
2592 static inline int may_create(struct inode *dir, struct dentry *child)
2593 {
2594 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2595 if (child->d_inode)
2596 return -EEXIST;
2597 if (IS_DEADDIR(dir))
2598 return -ENOENT;
2599 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2600 }
2601
2602 /*
2603 * p1 and p2 should be directories on the same fs.
2604 */
2605 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2606 {
2607 struct dentry *p;
2608
2609 if (p1 == p2) {
2610 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2611 return NULL;
2612 }
2613
2614 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2615
2616 p = d_ancestor(p2, p1);
2617 if (p) {
2618 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2619 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2620 return p;
2621 }
2622
2623 p = d_ancestor(p1, p2);
2624 if (p) {
2625 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2626 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2627 return p;
2628 }
2629
2630 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2631 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2632 return NULL;
2633 }
2634 EXPORT_SYMBOL(lock_rename);
2635
2636 void unlock_rename(struct dentry *p1, struct dentry *p2)
2637 {
2638 mutex_unlock(&p1->d_inode->i_mutex);
2639 if (p1 != p2) {
2640 mutex_unlock(&p2->d_inode->i_mutex);
2641 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2642 }
2643 }
2644 EXPORT_SYMBOL(unlock_rename);
2645
2646 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2647 bool want_excl)
2648 {
2649 int error = may_create(dir, dentry);
2650 if (error)
2651 return error;
2652
2653 if (!dir->i_op->create)
2654 return -EACCES; /* shouldn't it be ENOSYS? */
2655 mode &= S_IALLUGO;
2656 mode |= S_IFREG;
2657 error = security_inode_create(dir, dentry, mode);
2658 if (error)
2659 return error;
2660 error = dir->i_op->create(dir, dentry, mode, want_excl);
2661 if (!error)
2662 fsnotify_create(dir, dentry);
2663 return error;
2664 }
2665 EXPORT_SYMBOL(vfs_create);
2666
2667 static int may_open(struct path *path, int acc_mode, int flag)
2668 {
2669 struct dentry *dentry = path->dentry;
2670 struct inode *inode = dentry->d_inode;
2671 int error;
2672
2673 /* O_PATH? */
2674 if (!acc_mode)
2675 return 0;
2676
2677 if (!inode)
2678 return -ENOENT;
2679
2680 switch (inode->i_mode & S_IFMT) {
2681 case S_IFLNK:
2682 return -ELOOP;
2683 case S_IFDIR:
2684 if (acc_mode & MAY_WRITE)
2685 return -EISDIR;
2686 break;
2687 case S_IFBLK:
2688 case S_IFCHR:
2689 if (path->mnt->mnt_flags & MNT_NODEV)
2690 return -EACCES;
2691 /*FALLTHRU*/
2692 case S_IFIFO:
2693 case S_IFSOCK:
2694 flag &= ~O_TRUNC;
2695 break;
2696 }
2697
2698 error = inode_permission(inode, acc_mode);
2699 if (error)
2700 return error;
2701
2702 /*
2703 * An append-only file must be opened in append mode for writing.
2704 */
2705 if (IS_APPEND(inode)) {
2706 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2707 return -EPERM;
2708 if (flag & O_TRUNC)
2709 return -EPERM;
2710 }
2711
2712 /* O_NOATIME can only be set by the owner or superuser */
2713 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2714 return -EPERM;
2715
2716 return 0;
2717 }
2718
2719 static int handle_truncate(struct file *filp)
2720 {
2721 struct path *path = &filp->f_path;
2722 struct inode *inode = path->dentry->d_inode;
2723 int error = get_write_access(inode);
2724 if (error)
2725 return error;
2726 /*
2727 * Refuse to truncate files with mandatory locks held on them.
2728 */
2729 error = locks_verify_locked(filp);
2730 if (!error)
2731 error = security_path_truncate(path);
2732 if (!error) {
2733 error = do_truncate(path->dentry, 0,
2734 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2735 filp);
2736 }
2737 put_write_access(inode);
2738 return error;
2739 }
2740
2741 static inline int open_to_namei_flags(int flag)
2742 {
2743 if ((flag & O_ACCMODE) == 3)
2744 flag--;
2745 return flag;
2746 }
2747
2748 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2749 {
2750 int error = security_path_mknod(dir, dentry, mode, 0);
2751 if (error)
2752 return error;
2753
2754 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2755 if (error)
2756 return error;
2757
2758 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2759 }
2760
2761 /*
2762 * Attempt to atomically look up, create and open a file from a negative
2763 * dentry.
2764 *
2765 * Returns 0 if successful. The file will have been created and attached to
2766 * @file by the filesystem calling finish_open().
2767 *
2768 * Returns 1 if the file was looked up only or didn't need creating. The
2769 * caller will need to perform the open themselves. @path will have been
2770 * updated to point to the new dentry. This may be negative.
2771 *
2772 * Returns an error code otherwise.
2773 */
2774 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2775 struct path *path, struct file *file,
2776 const struct open_flags *op,
2777 bool got_write, bool need_lookup,
2778 int *opened)
2779 {
2780 struct inode *dir = nd->path.dentry->d_inode;
2781 unsigned open_flag = open_to_namei_flags(op->open_flag);
2782 umode_t mode;
2783 int error;
2784 int acc_mode;
2785 int create_error = 0;
2786 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2787 bool excl;
2788
2789 BUG_ON(dentry->d_inode);
2790
2791 /* Don't create child dentry for a dead directory. */
2792 if (unlikely(IS_DEADDIR(dir))) {
2793 error = -ENOENT;
2794 goto out;
2795 }
2796
2797 mode = op->mode;
2798 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2799 mode &= ~current_umask();
2800
2801 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2802 if (excl)
2803 open_flag &= ~O_TRUNC;
2804
2805 /*
2806 * Checking write permission is tricky, bacuse we don't know if we are
2807 * going to actually need it: O_CREAT opens should work as long as the
2808 * file exists. But checking existence breaks atomicity. The trick is
2809 * to check access and if not granted clear O_CREAT from the flags.
2810 *
2811 * Another problem is returing the "right" error value (e.g. for an
2812 * O_EXCL open we want to return EEXIST not EROFS).
2813 */
2814 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2815 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2816 if (!(open_flag & O_CREAT)) {
2817 /*
2818 * No O_CREATE -> atomicity not a requirement -> fall
2819 * back to lookup + open
2820 */
2821 goto no_open;
2822 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2823 /* Fall back and fail with the right error */
2824 create_error = -EROFS;
2825 goto no_open;
2826 } else {
2827 /* No side effects, safe to clear O_CREAT */
2828 create_error = -EROFS;
2829 open_flag &= ~O_CREAT;
2830 }
2831 }
2832
2833 if (open_flag & O_CREAT) {
2834 error = may_o_create(&nd->path, dentry, mode);
2835 if (error) {
2836 create_error = error;
2837 if (open_flag & O_EXCL)
2838 goto no_open;
2839 open_flag &= ~O_CREAT;
2840 }
2841 }
2842
2843 if (nd->flags & LOOKUP_DIRECTORY)
2844 open_flag |= O_DIRECTORY;
2845
2846 file->f_path.dentry = DENTRY_NOT_SET;
2847 file->f_path.mnt = nd->path.mnt;
2848 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2849 opened);
2850 if (error < 0) {
2851 if (create_error && error == -ENOENT)
2852 error = create_error;
2853 goto out;
2854 }
2855
2856 if (error) { /* returned 1, that is */
2857 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2858 error = -EIO;
2859 goto out;
2860 }
2861 if (file->f_path.dentry) {
2862 dput(dentry);
2863 dentry = file->f_path.dentry;
2864 }
2865 if (*opened & FILE_CREATED)
2866 fsnotify_create(dir, dentry);
2867 if (!dentry->d_inode) {
2868 WARN_ON(*opened & FILE_CREATED);
2869 if (create_error) {
2870 error = create_error;
2871 goto out;
2872 }
2873 } else {
2874 if (excl && !(*opened & FILE_CREATED)) {
2875 error = -EEXIST;
2876 goto out;
2877 }
2878 }
2879 goto looked_up;
2880 }
2881
2882 /*
2883 * We didn't have the inode before the open, so check open permission
2884 * here.
2885 */
2886 acc_mode = op->acc_mode;
2887 if (*opened & FILE_CREATED) {
2888 WARN_ON(!(open_flag & O_CREAT));
2889 fsnotify_create(dir, dentry);
2890 acc_mode = MAY_OPEN;
2891 }
2892 error = may_open(&file->f_path, acc_mode, open_flag);
2893 if (error)
2894 fput(file);
2895
2896 out:
2897 dput(dentry);
2898 return error;
2899
2900 no_open:
2901 if (need_lookup) {
2902 dentry = lookup_real(dir, dentry, nd->flags);
2903 if (IS_ERR(dentry))
2904 return PTR_ERR(dentry);
2905
2906 if (create_error) {
2907 int open_flag = op->open_flag;
2908
2909 error = create_error;
2910 if ((open_flag & O_EXCL)) {
2911 if (!dentry->d_inode)
2912 goto out;
2913 } else if (!dentry->d_inode) {
2914 goto out;
2915 } else if ((open_flag & O_TRUNC) &&
2916 d_is_reg(dentry)) {
2917 goto out;
2918 }
2919 /* will fail later, go on to get the right error */
2920 }
2921 }
2922 looked_up:
2923 path->dentry = dentry;
2924 path->mnt = nd->path.mnt;
2925 return 1;
2926 }
2927
2928 /*
2929 * Look up and maybe create and open the last component.
2930 *
2931 * Must be called with i_mutex held on parent.
2932 *
2933 * Returns 0 if the file was successfully atomically created (if necessary) and
2934 * opened. In this case the file will be returned attached to @file.
2935 *
2936 * Returns 1 if the file was not completely opened at this time, though lookups
2937 * and creations will have been performed and the dentry returned in @path will
2938 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2939 * specified then a negative dentry may be returned.
2940 *
2941 * An error code is returned otherwise.
2942 *
2943 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2944 * cleared otherwise prior to returning.
2945 */
2946 static int lookup_open(struct nameidata *nd, struct path *path,
2947 struct file *file,
2948 const struct open_flags *op,
2949 bool got_write, int *opened)
2950 {
2951 struct dentry *dir = nd->path.dentry;
2952 struct inode *dir_inode = dir->d_inode;
2953 struct dentry *dentry;
2954 int error;
2955 bool need_lookup;
2956
2957 *opened &= ~FILE_CREATED;
2958 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2959 if (IS_ERR(dentry))
2960 return PTR_ERR(dentry);
2961
2962 /* Cached positive dentry: will open in f_op->open */
2963 if (!need_lookup && dentry->d_inode)
2964 goto out_no_open;
2965
2966 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2967 return atomic_open(nd, dentry, path, file, op, got_write,
2968 need_lookup, opened);
2969 }
2970
2971 if (need_lookup) {
2972 BUG_ON(dentry->d_inode);
2973
2974 dentry = lookup_real(dir_inode, dentry, nd->flags);
2975 if (IS_ERR(dentry))
2976 return PTR_ERR(dentry);
2977 }
2978
2979 /* Negative dentry, just create the file */
2980 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2981 umode_t mode = op->mode;
2982 if (!IS_POSIXACL(dir->d_inode))
2983 mode &= ~current_umask();
2984 /*
2985 * This write is needed to ensure that a
2986 * rw->ro transition does not occur between
2987 * the time when the file is created and when
2988 * a permanent write count is taken through
2989 * the 'struct file' in finish_open().
2990 */
2991 if (!got_write) {
2992 error = -EROFS;
2993 goto out_dput;
2994 }
2995 *opened |= FILE_CREATED;
2996 error = security_path_mknod(&nd->path, dentry, mode, 0);
2997 if (error)
2998 goto out_dput;
2999 error = vfs_create(dir->d_inode, dentry, mode,
3000 nd->flags & LOOKUP_EXCL);
3001 if (error)
3002 goto out_dput;
3003 }
3004 out_no_open:
3005 path->dentry = dentry;
3006 path->mnt = nd->path.mnt;
3007 return 1;
3008
3009 out_dput:
3010 dput(dentry);
3011 return error;
3012 }
3013
3014 /*
3015 * Handle the last step of open()
3016 */
3017 static int do_last(struct nameidata *nd,
3018 struct file *file, const struct open_flags *op,
3019 int *opened)
3020 {
3021 struct dentry *dir = nd->path.dentry;
3022 int open_flag = op->open_flag;
3023 bool will_truncate = (open_flag & O_TRUNC) != 0;
3024 bool got_write = false;
3025 int acc_mode = op->acc_mode;
3026 unsigned seq;
3027 struct inode *inode;
3028 struct path save_parent = { .dentry = NULL, .mnt = NULL };
3029 struct path path;
3030 bool retried = false;
3031 int error;
3032
3033 nd->flags &= ~LOOKUP_PARENT;
3034 nd->flags |= op->intent;
3035
3036 if (nd->last_type != LAST_NORM) {
3037 error = handle_dots(nd, nd->last_type);
3038 if (unlikely(error))
3039 return error;
3040 goto finish_open;
3041 }
3042
3043 if (!(open_flag & O_CREAT)) {
3044 if (nd->last.name[nd->last.len])
3045 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3046 /* we _can_ be in RCU mode here */
3047 error = lookup_fast(nd, &path, &inode, &seq);
3048 if (likely(!error))
3049 goto finish_lookup;
3050
3051 if (error < 0)
3052 return error;
3053
3054 BUG_ON(nd->inode != dir->d_inode);
3055 } else {
3056 /* create side of things */
3057 /*
3058 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3059 * has been cleared when we got to the last component we are
3060 * about to look up
3061 */
3062 error = complete_walk(nd);
3063 if (error)
3064 return error;
3065
3066 audit_inode(nd->name, dir, LOOKUP_PARENT);
3067 /* trailing slashes? */
3068 if (unlikely(nd->last.name[nd->last.len]))
3069 return -EISDIR;
3070 }
3071
3072 retry_lookup:
3073 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3074 error = mnt_want_write(nd->path.mnt);
3075 if (!error)
3076 got_write = true;
3077 /*
3078 * do _not_ fail yet - we might not need that or fail with
3079 * a different error; let lookup_open() decide; we'll be
3080 * dropping this one anyway.
3081 */
3082 }
3083 mutex_lock(&dir->d_inode->i_mutex);
3084 error = lookup_open(nd, &path, file, op, got_write, opened);
3085 mutex_unlock(&dir->d_inode->i_mutex);
3086
3087 if (error <= 0) {
3088 if (error)
3089 goto out;
3090
3091 if ((*opened & FILE_CREATED) ||
3092 !S_ISREG(file_inode(file)->i_mode))
3093 will_truncate = false;
3094
3095 audit_inode(nd->name, file->f_path.dentry, 0);
3096 goto opened;
3097 }
3098
3099 if (*opened & FILE_CREATED) {
3100 /* Don't check for write permission, don't truncate */
3101 open_flag &= ~O_TRUNC;
3102 will_truncate = false;
3103 acc_mode = MAY_OPEN;
3104 path_to_nameidata(&path, nd);
3105 goto finish_open_created;
3106 }
3107
3108 /*
3109 * create/update audit record if it already exists.
3110 */
3111 if (d_is_positive(path.dentry))
3112 audit_inode(nd->name, path.dentry, 0);
3113
3114 /*
3115 * If atomic_open() acquired write access it is dropped now due to
3116 * possible mount and symlink following (this might be optimized away if
3117 * necessary...)
3118 */
3119 if (got_write) {
3120 mnt_drop_write(nd->path.mnt);
3121 got_write = false;
3122 }
3123
3124 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3125 path_to_nameidata(&path, nd);
3126 return -EEXIST;
3127 }
3128
3129 error = follow_managed(&path, nd);
3130 if (unlikely(error < 0))
3131 return error;
3132
3133 BUG_ON(nd->flags & LOOKUP_RCU);
3134 inode = d_backing_inode(path.dentry);
3135 seq = 0; /* out of RCU mode, so the value doesn't matter */
3136 if (unlikely(d_is_negative(path.dentry))) {
3137 path_to_nameidata(&path, nd);
3138 return -ENOENT;
3139 }
3140 finish_lookup:
3141 if (nd->depth)
3142 put_link(nd);
3143 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3144 inode, seq);
3145 if (unlikely(error))
3146 return error;
3147
3148 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3149 path_to_nameidata(&path, nd);
3150 return -ELOOP;
3151 }
3152
3153 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3154 path_to_nameidata(&path, nd);
3155 } else {
3156 save_parent.dentry = nd->path.dentry;
3157 save_parent.mnt = mntget(path.mnt);
3158 nd->path.dentry = path.dentry;
3159
3160 }
3161 nd->inode = inode;
3162 nd->seq = seq;
3163 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3164 finish_open:
3165 error = complete_walk(nd);
3166 if (error) {
3167 path_put(&save_parent);
3168 return error;
3169 }
3170 audit_inode(nd->name, nd->path.dentry, 0);
3171 error = -EISDIR;
3172 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3173 goto out;
3174 error = -ENOTDIR;
3175 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3176 goto out;
3177 if (!d_is_reg(nd->path.dentry))
3178 will_truncate = false;
3179
3180 if (will_truncate) {
3181 error = mnt_want_write(nd->path.mnt);
3182 if (error)
3183 goto out;
3184 got_write = true;
3185 }
3186 finish_open_created:
3187 error = may_open(&nd->path, acc_mode, open_flag);
3188 if (error)
3189 goto out;
3190
3191 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3192 error = vfs_open(&nd->path, file, current_cred());
3193 if (!error) {
3194 *opened |= FILE_OPENED;
3195 } else {
3196 if (error == -EOPENSTALE)
3197 goto stale_open;
3198 goto out;
3199 }
3200 opened:
3201 error = open_check_o_direct(file);
3202 if (error)
3203 goto exit_fput;
3204 error = ima_file_check(file, op->acc_mode, *opened);
3205 if (error)
3206 goto exit_fput;
3207
3208 if (will_truncate) {
3209 error = handle_truncate(file);
3210 if (error)
3211 goto exit_fput;
3212 }
3213 out:
3214 if (got_write)
3215 mnt_drop_write(nd->path.mnt);
3216 path_put(&save_parent);
3217 return error;
3218
3219 exit_fput:
3220 fput(file);
3221 goto out;
3222
3223 stale_open:
3224 /* If no saved parent or already retried then can't retry */
3225 if (!save_parent.dentry || retried)
3226 goto out;
3227
3228 BUG_ON(save_parent.dentry != dir);
3229 path_put(&nd->path);
3230 nd->path = save_parent;
3231 nd->inode = dir->d_inode;
3232 save_parent.mnt = NULL;
3233 save_parent.dentry = NULL;
3234 if (got_write) {
3235 mnt_drop_write(nd->path.mnt);
3236 got_write = false;
3237 }
3238 retried = true;
3239 goto retry_lookup;
3240 }
3241
3242 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3243 const struct open_flags *op,
3244 struct file *file, int *opened)
3245 {
3246 static const struct qstr name = QSTR_INIT("/", 1);
3247 struct dentry *child;
3248 struct inode *dir;
3249 struct path path;
3250 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3251 if (unlikely(error))
3252 return error;
3253 error = mnt_want_write(path.mnt);
3254 if (unlikely(error))
3255 goto out;
3256 dir = path.dentry->d_inode;
3257 /* we want directory to be writable */
3258 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3259 if (error)
3260 goto out2;
3261 if (!dir->i_op->tmpfile) {
3262 error = -EOPNOTSUPP;
3263 goto out2;
3264 }
3265 child = d_alloc(path.dentry, &name);
3266 if (unlikely(!child)) {
3267 error = -ENOMEM;
3268 goto out2;
3269 }
3270 dput(path.dentry);
3271 path.dentry = child;
3272 error = dir->i_op->tmpfile(dir, child, op->mode);
3273 if (error)
3274 goto out2;
3275 audit_inode(nd->name, child, 0);
3276 /* Don't check for other permissions, the inode was just created */
3277 error = may_open(&path, MAY_OPEN, op->open_flag);
3278 if (error)
3279 goto out2;
3280 file->f_path.mnt = path.mnt;
3281 error = finish_open(file, child, NULL, opened);
3282 if (error)
3283 goto out2;
3284 error = open_check_o_direct(file);
3285 if (error) {
3286 fput(file);
3287 } else if (!(op->open_flag & O_EXCL)) {
3288 struct inode *inode = file_inode(file);
3289 spin_lock(&inode->i_lock);
3290 inode->i_state |= I_LINKABLE;
3291 spin_unlock(&inode->i_lock);
3292 }
3293 out2:
3294 mnt_drop_write(path.mnt);
3295 out:
3296 path_put(&path);
3297 return error;
3298 }
3299
3300 static struct file *path_openat(struct nameidata *nd,
3301 const struct open_flags *op, unsigned flags)
3302 {
3303 const char *s;
3304 struct file *file;
3305 int opened = 0;
3306 int error;
3307
3308 file = get_empty_filp();
3309 if (IS_ERR(file))
3310 return file;
3311
3312 file->f_flags = op->open_flag;
3313
3314 if (unlikely(file->f_flags & __O_TMPFILE)) {
3315 error = do_tmpfile(nd, flags, op, file, &opened);
3316 goto out2;
3317 }
3318
3319 s = path_init(nd, flags);
3320 if (IS_ERR(s)) {
3321 put_filp(file);
3322 return ERR_CAST(s);
3323 }
3324 while (!(error = link_path_walk(s, nd)) &&
3325 (error = do_last(nd, file, op, &opened)) > 0) {
3326 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3327 s = trailing_symlink(nd);
3328 if (IS_ERR(s)) {
3329 error = PTR_ERR(s);
3330 break;
3331 }
3332 }
3333 terminate_walk(nd);
3334 out2:
3335 if (!(opened & FILE_OPENED)) {
3336 BUG_ON(!error);
3337 put_filp(file);
3338 }
3339 if (unlikely(error)) {
3340 if (error == -EOPENSTALE) {
3341 if (flags & LOOKUP_RCU)
3342 error = -ECHILD;
3343 else
3344 error = -ESTALE;
3345 }
3346 file = ERR_PTR(error);
3347 }
3348 return file;
3349 }
3350
3351 struct file *do_filp_open(int dfd, struct filename *pathname,
3352 const struct open_flags *op)
3353 {
3354 struct nameidata nd;
3355 int flags = op->lookup_flags;
3356 struct file *filp;
3357
3358 set_nameidata(&nd, dfd, pathname);
3359 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3360 if (unlikely(filp == ERR_PTR(-ECHILD)))
3361 filp = path_openat(&nd, op, flags);
3362 if (unlikely(filp == ERR_PTR(-ESTALE)))
3363 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3364 restore_nameidata();
3365 return filp;
3366 }
3367
3368 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3369 const char *name, const struct open_flags *op)
3370 {
3371 struct nameidata nd;
3372 struct file *file;
3373 struct filename *filename;
3374 int flags = op->lookup_flags | LOOKUP_ROOT;
3375
3376 nd.root.mnt = mnt;
3377 nd.root.dentry = dentry;
3378
3379 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3380 return ERR_PTR(-ELOOP);
3381
3382 filename = getname_kernel(name);
3383 if (IS_ERR(filename))
3384 return ERR_CAST(filename);
3385
3386 set_nameidata(&nd, -1, filename);
3387 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3388 if (unlikely(file == ERR_PTR(-ECHILD)))
3389 file = path_openat(&nd, op, flags);
3390 if (unlikely(file == ERR_PTR(-ESTALE)))
3391 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3392 restore_nameidata();
3393 putname(filename);
3394 return file;
3395 }
3396
3397 static struct dentry *filename_create(int dfd, struct filename *name,
3398 struct path *path, unsigned int lookup_flags)
3399 {
3400 struct dentry *dentry = ERR_PTR(-EEXIST);
3401 struct qstr last;
3402 int type;
3403 int err2;
3404 int error;
3405 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3406
3407 /*
3408 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3409 * other flags passed in are ignored!
3410 */
3411 lookup_flags &= LOOKUP_REVAL;
3412
3413 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3414 if (IS_ERR(name))
3415 return ERR_CAST(name);
3416
3417 /*
3418 * Yucky last component or no last component at all?
3419 * (foo/., foo/.., /////)
3420 */
3421 if (unlikely(type != LAST_NORM))
3422 goto out;
3423
3424 /* don't fail immediately if it's r/o, at least try to report other errors */
3425 err2 = mnt_want_write(path->mnt);
3426 /*
3427 * Do the final lookup.
3428 */
3429 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3430 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3431 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3432 if (IS_ERR(dentry))
3433 goto unlock;
3434
3435 error = -EEXIST;
3436 if (d_is_positive(dentry))
3437 goto fail;
3438
3439 /*
3440 * Special case - lookup gave negative, but... we had foo/bar/
3441 * From the vfs_mknod() POV we just have a negative dentry -
3442 * all is fine. Let's be bastards - you had / on the end, you've
3443 * been asking for (non-existent) directory. -ENOENT for you.
3444 */
3445 if (unlikely(!is_dir && last.name[last.len])) {
3446 error = -ENOENT;
3447 goto fail;
3448 }
3449 if (unlikely(err2)) {
3450 error = err2;
3451 goto fail;
3452 }
3453 putname(name);
3454 return dentry;
3455 fail:
3456 dput(dentry);
3457 dentry = ERR_PTR(error);
3458 unlock:
3459 mutex_unlock(&path->dentry->d_inode->i_mutex);
3460 if (!err2)
3461 mnt_drop_write(path->mnt);
3462 out:
3463 path_put(path);
3464 putname(name);
3465 return dentry;
3466 }
3467
3468 struct dentry *kern_path_create(int dfd, const char *pathname,
3469 struct path *path, unsigned int lookup_flags)
3470 {
3471 return filename_create(dfd, getname_kernel(pathname),
3472 path, lookup_flags);
3473 }
3474 EXPORT_SYMBOL(kern_path_create);
3475
3476 void done_path_create(struct path *path, struct dentry *dentry)
3477 {
3478 dput(dentry);
3479 mutex_unlock(&path->dentry->d_inode->i_mutex);
3480 mnt_drop_write(path->mnt);
3481 path_put(path);
3482 }
3483 EXPORT_SYMBOL(done_path_create);
3484
3485 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3486 struct path *path, unsigned int lookup_flags)
3487 {
3488 return filename_create(dfd, getname(pathname), path, lookup_flags);
3489 }
3490 EXPORT_SYMBOL(user_path_create);
3491
3492 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3493 {
3494 int error = may_create(dir, dentry);
3495
3496 if (error)
3497 return error;
3498
3499 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3500 return -EPERM;
3501
3502 if (!dir->i_op->mknod)
3503 return -EPERM;
3504
3505 error = devcgroup_inode_mknod(mode, dev);
3506 if (error)
3507 return error;
3508
3509 error = security_inode_mknod(dir, dentry, mode, dev);
3510 if (error)
3511 return error;
3512
3513 error = dir->i_op->mknod(dir, dentry, mode, dev);
3514 if (!error)
3515 fsnotify_create(dir, dentry);
3516 return error;
3517 }
3518 EXPORT_SYMBOL(vfs_mknod);
3519
3520 static int may_mknod(umode_t mode)
3521 {
3522 switch (mode & S_IFMT) {
3523 case S_IFREG:
3524 case S_IFCHR:
3525 case S_IFBLK:
3526 case S_IFIFO:
3527 case S_IFSOCK:
3528 case 0: /* zero mode translates to S_IFREG */
3529 return 0;
3530 case S_IFDIR:
3531 return -EPERM;
3532 default:
3533 return -EINVAL;
3534 }
3535 }
3536
3537 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3538 unsigned, dev)
3539 {
3540 struct dentry *dentry;
3541 struct path path;
3542 int error;
3543 unsigned int lookup_flags = 0;
3544
3545 error = may_mknod(mode);
3546 if (error)
3547 return error;
3548 retry:
3549 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3550 if (IS_ERR(dentry))
3551 return PTR_ERR(dentry);
3552
3553 if (!IS_POSIXACL(path.dentry->d_inode))
3554 mode &= ~current_umask();
3555 error = security_path_mknod(&path, dentry, mode, dev);
3556 if (error)
3557 goto out;
3558 switch (mode & S_IFMT) {
3559 case 0: case S_IFREG:
3560 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3561 break;
3562 case S_IFCHR: case S_IFBLK:
3563 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3564 new_decode_dev(dev));
3565 break;
3566 case S_IFIFO: case S_IFSOCK:
3567 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3568 break;
3569 }
3570 out:
3571 done_path_create(&path, dentry);
3572 if (retry_estale(error, lookup_flags)) {
3573 lookup_flags |= LOOKUP_REVAL;
3574 goto retry;
3575 }
3576 return error;
3577 }
3578
3579 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3580 {
3581 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3582 }
3583
3584 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3585 {
3586 int error = may_create(dir, dentry);
3587 unsigned max_links = dir->i_sb->s_max_links;
3588
3589 if (error)
3590 return error;
3591
3592 if (!dir->i_op->mkdir)
3593 return -EPERM;
3594
3595 mode &= (S_IRWXUGO|S_ISVTX);
3596 error = security_inode_mkdir(dir, dentry, mode);
3597 if (error)
3598 return error;
3599
3600 if (max_links && dir->i_nlink >= max_links)
3601 return -EMLINK;
3602
3603 error = dir->i_op->mkdir(dir, dentry, mode);
3604 if (!error)
3605 fsnotify_mkdir(dir, dentry);
3606 return error;
3607 }
3608 EXPORT_SYMBOL(vfs_mkdir);
3609
3610 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3611 {
3612 struct dentry *dentry;
3613 struct path path;
3614 int error;
3615 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3616
3617 retry:
3618 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3619 if (IS_ERR(dentry))
3620 return PTR_ERR(dentry);
3621
3622 if (!IS_POSIXACL(path.dentry->d_inode))
3623 mode &= ~current_umask();
3624 error = security_path_mkdir(&path, dentry, mode);
3625 if (!error)
3626 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3627 done_path_create(&path, dentry);
3628 if (retry_estale(error, lookup_flags)) {
3629 lookup_flags |= LOOKUP_REVAL;
3630 goto retry;
3631 }
3632 return error;
3633 }
3634
3635 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3636 {
3637 return sys_mkdirat(AT_FDCWD, pathname, mode);
3638 }
3639
3640 /*
3641 * The dentry_unhash() helper will try to drop the dentry early: we
3642 * should have a usage count of 1 if we're the only user of this
3643 * dentry, and if that is true (possibly after pruning the dcache),
3644 * then we drop the dentry now.
3645 *
3646 * A low-level filesystem can, if it choses, legally
3647 * do a
3648 *
3649 * if (!d_unhashed(dentry))
3650 * return -EBUSY;
3651 *
3652 * if it cannot handle the case of removing a directory
3653 * that is still in use by something else..
3654 */
3655 void dentry_unhash(struct dentry *dentry)
3656 {
3657 shrink_dcache_parent(dentry);
3658 spin_lock(&dentry->d_lock);
3659 if (dentry->d_lockref.count == 1)
3660 __d_drop(dentry);
3661 spin_unlock(&dentry->d_lock);
3662 }
3663 EXPORT_SYMBOL(dentry_unhash);
3664
3665 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3666 {
3667 int error = may_delete(dir, dentry, 1);
3668
3669 if (error)
3670 return error;
3671
3672 if (!dir->i_op->rmdir)
3673 return -EPERM;
3674
3675 dget(dentry);
3676 mutex_lock(&dentry->d_inode->i_mutex);
3677
3678 error = -EBUSY;
3679 if (is_local_mountpoint(dentry))
3680 goto out;
3681
3682 error = security_inode_rmdir(dir, dentry);
3683 if (error)
3684 goto out;
3685
3686 shrink_dcache_parent(dentry);
3687 error = dir->i_op->rmdir(dir, dentry);
3688 if (error)
3689 goto out;
3690
3691 dentry->d_inode->i_flags |= S_DEAD;
3692 dont_mount(dentry);
3693 detach_mounts(dentry);
3694
3695 out:
3696 mutex_unlock(&dentry->d_inode->i_mutex);
3697 dput(dentry);
3698 if (!error)
3699 d_delete(dentry);
3700 return error;
3701 }
3702 EXPORT_SYMBOL(vfs_rmdir);
3703
3704 static long do_rmdir(int dfd, const char __user *pathname)
3705 {
3706 int error = 0;
3707 struct filename *name;
3708 struct dentry *dentry;
3709 struct path path;
3710 struct qstr last;
3711 int type;
3712 unsigned int lookup_flags = 0;
3713 retry:
3714 name = user_path_parent(dfd, pathname,
3715 &path, &last, &type, lookup_flags);
3716 if (IS_ERR(name))
3717 return PTR_ERR(name);
3718
3719 switch (type) {
3720 case LAST_DOTDOT:
3721 error = -ENOTEMPTY;
3722 goto exit1;
3723 case LAST_DOT:
3724 error = -EINVAL;
3725 goto exit1;
3726 case LAST_ROOT:
3727 error = -EBUSY;
3728 goto exit1;
3729 }
3730
3731 error = mnt_want_write(path.mnt);
3732 if (error)
3733 goto exit1;
3734
3735 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3736 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3737 error = PTR_ERR(dentry);
3738 if (IS_ERR(dentry))
3739 goto exit2;
3740 if (!dentry->d_inode) {
3741 error = -ENOENT;
3742 goto exit3;
3743 }
3744 error = security_path_rmdir(&path, dentry);
3745 if (error)
3746 goto exit3;
3747 error = vfs_rmdir(path.dentry->d_inode, dentry);
3748 exit3:
3749 dput(dentry);
3750 exit2:
3751 mutex_unlock(&path.dentry->d_inode->i_mutex);
3752 mnt_drop_write(path.mnt);
3753 exit1:
3754 path_put(&path);
3755 putname(name);
3756 if (retry_estale(error, lookup_flags)) {
3757 lookup_flags |= LOOKUP_REVAL;
3758 goto retry;
3759 }
3760 return error;
3761 }
3762
3763 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3764 {
3765 return do_rmdir(AT_FDCWD, pathname);
3766 }
3767
3768 /**
3769 * vfs_unlink - unlink a filesystem object
3770 * @dir: parent directory
3771 * @dentry: victim
3772 * @delegated_inode: returns victim inode, if the inode is delegated.
3773 *
3774 * The caller must hold dir->i_mutex.
3775 *
3776 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3777 * return a reference to the inode in delegated_inode. The caller
3778 * should then break the delegation on that inode and retry. Because
3779 * breaking a delegation may take a long time, the caller should drop
3780 * dir->i_mutex before doing so.
3781 *
3782 * Alternatively, a caller may pass NULL for delegated_inode. This may
3783 * be appropriate for callers that expect the underlying filesystem not
3784 * to be NFS exported.
3785 */
3786 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3787 {
3788 struct inode *target = dentry->d_inode;
3789 int error = may_delete(dir, dentry, 0);
3790
3791 if (error)
3792 return error;
3793
3794 if (!dir->i_op->unlink)
3795 return -EPERM;
3796
3797 mutex_lock(&target->i_mutex);
3798 if (is_local_mountpoint(dentry))
3799 error = -EBUSY;
3800 else {
3801 error = security_inode_unlink(dir, dentry);
3802 if (!error) {
3803 error = try_break_deleg(target, delegated_inode);
3804 if (error)
3805 goto out;
3806 error = dir->i_op->unlink(dir, dentry);
3807 if (!error) {
3808 dont_mount(dentry);
3809 detach_mounts(dentry);
3810 }
3811 }
3812 }
3813 out:
3814 mutex_unlock(&target->i_mutex);
3815
3816 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3817 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3818 fsnotify_link_count(target);
3819 d_delete(dentry);
3820 }
3821
3822 return error;
3823 }
3824 EXPORT_SYMBOL(vfs_unlink);
3825
3826 /*
3827 * Make sure that the actual truncation of the file will occur outside its
3828 * directory's i_mutex. Truncate can take a long time if there is a lot of
3829 * writeout happening, and we don't want to prevent access to the directory
3830 * while waiting on the I/O.
3831 */
3832 static long do_unlinkat(int dfd, const char __user *pathname)
3833 {
3834 int error;
3835 struct filename *name;
3836 struct dentry *dentry;
3837 struct path path;
3838 struct qstr last;
3839 int type;
3840 struct inode *inode = NULL;
3841 struct inode *delegated_inode = NULL;
3842 unsigned int lookup_flags = 0;
3843 retry:
3844 name = user_path_parent(dfd, pathname,
3845 &path, &last, &type, lookup_flags);
3846 if (IS_ERR(name))
3847 return PTR_ERR(name);
3848
3849 error = -EISDIR;
3850 if (type != LAST_NORM)
3851 goto exit1;
3852
3853 error = mnt_want_write(path.mnt);
3854 if (error)
3855 goto exit1;
3856 retry_deleg:
3857 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3858 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3859 error = PTR_ERR(dentry);
3860 if (!IS_ERR(dentry)) {
3861 /* Why not before? Because we want correct error value */
3862 if (last.name[last.len])
3863 goto slashes;
3864 inode = dentry->d_inode;
3865 if (d_is_negative(dentry))
3866 goto slashes;
3867 ihold(inode);
3868 error = security_path_unlink(&path, dentry);
3869 if (error)
3870 goto exit2;
3871 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3872 exit2:
3873 dput(dentry);
3874 }
3875 mutex_unlock(&path.dentry->d_inode->i_mutex);
3876 if (inode)
3877 iput(inode); /* truncate the inode here */
3878 inode = NULL;
3879 if (delegated_inode) {
3880 error = break_deleg_wait(&delegated_inode);
3881 if (!error)
3882 goto retry_deleg;
3883 }
3884 mnt_drop_write(path.mnt);
3885 exit1:
3886 path_put(&path);
3887 putname(name);
3888 if (retry_estale(error, lookup_flags)) {
3889 lookup_flags |= LOOKUP_REVAL;
3890 inode = NULL;
3891 goto retry;
3892 }
3893 return error;
3894
3895 slashes:
3896 if (d_is_negative(dentry))
3897 error = -ENOENT;
3898 else if (d_is_dir(dentry))
3899 error = -EISDIR;
3900 else
3901 error = -ENOTDIR;
3902 goto exit2;
3903 }
3904
3905 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3906 {
3907 if ((flag & ~AT_REMOVEDIR) != 0)
3908 return -EINVAL;
3909
3910 if (flag & AT_REMOVEDIR)
3911 return do_rmdir(dfd, pathname);
3912
3913 return do_unlinkat(dfd, pathname);
3914 }
3915
3916 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3917 {
3918 return do_unlinkat(AT_FDCWD, pathname);
3919 }
3920
3921 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3922 {
3923 int error = may_create(dir, dentry);
3924
3925 if (error)
3926 return error;
3927
3928 if (!dir->i_op->symlink)
3929 return -EPERM;
3930
3931 error = security_inode_symlink(dir, dentry, oldname);
3932 if (error)
3933 return error;
3934
3935 error = dir->i_op->symlink(dir, dentry, oldname);
3936 if (!error)
3937 fsnotify_create(dir, dentry);
3938 return error;
3939 }
3940 EXPORT_SYMBOL(vfs_symlink);
3941
3942 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3943 int, newdfd, const char __user *, newname)
3944 {
3945 int error;
3946 struct filename *from;
3947 struct dentry *dentry;
3948 struct path path;
3949 unsigned int lookup_flags = 0;
3950
3951 from = getname(oldname);
3952 if (IS_ERR(from))
3953 return PTR_ERR(from);
3954 retry:
3955 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3956 error = PTR_ERR(dentry);
3957 if (IS_ERR(dentry))
3958 goto out_putname;
3959
3960 error = security_path_symlink(&path, dentry, from->name);
3961 if (!error)
3962 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3963 done_path_create(&path, dentry);
3964 if (retry_estale(error, lookup_flags)) {
3965 lookup_flags |= LOOKUP_REVAL;
3966 goto retry;
3967 }
3968 out_putname:
3969 putname(from);
3970 return error;
3971 }
3972
3973 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3974 {
3975 return sys_symlinkat(oldname, AT_FDCWD, newname);
3976 }
3977
3978 /**
3979 * vfs_link - create a new link
3980 * @old_dentry: object to be linked
3981 * @dir: new parent
3982 * @new_dentry: where to create the new link
3983 * @delegated_inode: returns inode needing a delegation break
3984 *
3985 * The caller must hold dir->i_mutex
3986 *
3987 * If vfs_link discovers a delegation on the to-be-linked file in need
3988 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3989 * inode in delegated_inode. The caller should then break the delegation
3990 * and retry. Because breaking a delegation may take a long time, the
3991 * caller should drop the i_mutex before doing so.
3992 *
3993 * Alternatively, a caller may pass NULL for delegated_inode. This may
3994 * be appropriate for callers that expect the underlying filesystem not
3995 * to be NFS exported.
3996 */
3997 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3998 {
3999 struct inode *inode = old_dentry->d_inode;
4000 unsigned max_links = dir->i_sb->s_max_links;
4001 int error;
4002
4003 if (!inode)
4004 return -ENOENT;
4005
4006 error = may_create(dir, new_dentry);
4007 if (error)
4008 return error;
4009
4010 if (dir->i_sb != inode->i_sb)
4011 return -EXDEV;
4012
4013 /*
4014 * A link to an append-only or immutable file cannot be created.
4015 */
4016 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4017 return -EPERM;
4018 if (!dir->i_op->link)
4019 return -EPERM;
4020 if (S_ISDIR(inode->i_mode))
4021 return -EPERM;
4022
4023 error = security_inode_link(old_dentry, dir, new_dentry);
4024 if (error)
4025 return error;
4026
4027 mutex_lock(&inode->i_mutex);
4028 /* Make sure we don't allow creating hardlink to an unlinked file */
4029 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4030 error = -ENOENT;
4031 else if (max_links && inode->i_nlink >= max_links)
4032 error = -EMLINK;
4033 else {
4034 error = try_break_deleg(inode, delegated_inode);
4035 if (!error)
4036 error = dir->i_op->link(old_dentry, dir, new_dentry);
4037 }
4038
4039 if (!error && (inode->i_state & I_LINKABLE)) {
4040 spin_lock(&inode->i_lock);
4041 inode->i_state &= ~I_LINKABLE;
4042 spin_unlock(&inode->i_lock);
4043 }
4044 mutex_unlock(&inode->i_mutex);
4045 if (!error)
4046 fsnotify_link(dir, inode, new_dentry);
4047 return error;
4048 }
4049 EXPORT_SYMBOL(vfs_link);
4050
4051 /*
4052 * Hardlinks are often used in delicate situations. We avoid
4053 * security-related surprises by not following symlinks on the
4054 * newname. --KAB
4055 *
4056 * We don't follow them on the oldname either to be compatible
4057 * with linux 2.0, and to avoid hard-linking to directories
4058 * and other special files. --ADM
4059 */
4060 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4061 int, newdfd, const char __user *, newname, int, flags)
4062 {
4063 struct dentry *new_dentry;
4064 struct path old_path, new_path;
4065 struct inode *delegated_inode = NULL;
4066 int how = 0;
4067 int error;
4068
4069 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4070 return -EINVAL;
4071 /*
4072 * To use null names we require CAP_DAC_READ_SEARCH
4073 * This ensures that not everyone will be able to create
4074 * handlink using the passed filedescriptor.
4075 */
4076 if (flags & AT_EMPTY_PATH) {
4077 if (!capable(CAP_DAC_READ_SEARCH))
4078 return -ENOENT;
4079 how = LOOKUP_EMPTY;
4080 }
4081
4082 if (flags & AT_SYMLINK_FOLLOW)
4083 how |= LOOKUP_FOLLOW;
4084 retry:
4085 error = user_path_at(olddfd, oldname, how, &old_path);
4086 if (error)
4087 return error;
4088
4089 new_dentry = user_path_create(newdfd, newname, &new_path,
4090 (how & LOOKUP_REVAL));
4091 error = PTR_ERR(new_dentry);
4092 if (IS_ERR(new_dentry))
4093 goto out;
4094
4095 error = -EXDEV;
4096 if (old_path.mnt != new_path.mnt)
4097 goto out_dput;
4098 error = may_linkat(&old_path);
4099 if (unlikely(error))
4100 goto out_dput;
4101 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4102 if (error)
4103 goto out_dput;
4104 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4105 out_dput:
4106 done_path_create(&new_path, new_dentry);
4107 if (delegated_inode) {
4108 error = break_deleg_wait(&delegated_inode);
4109 if (!error) {
4110 path_put(&old_path);
4111 goto retry;
4112 }
4113 }
4114 if (retry_estale(error, how)) {
4115 path_put(&old_path);
4116 how |= LOOKUP_REVAL;
4117 goto retry;
4118 }
4119 out:
4120 path_put(&old_path);
4121
4122 return error;
4123 }
4124
4125 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4126 {
4127 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4128 }
4129
4130 /**
4131 * vfs_rename - rename a filesystem object
4132 * @old_dir: parent of source
4133 * @old_dentry: source
4134 * @new_dir: parent of destination
4135 * @new_dentry: destination
4136 * @delegated_inode: returns an inode needing a delegation break
4137 * @flags: rename flags
4138 *
4139 * The caller must hold multiple mutexes--see lock_rename()).
4140 *
4141 * If vfs_rename discovers a delegation in need of breaking at either
4142 * the source or destination, it will return -EWOULDBLOCK and return a
4143 * reference to the inode in delegated_inode. The caller should then
4144 * break the delegation and retry. Because breaking a delegation may
4145 * take a long time, the caller should drop all locks before doing
4146 * so.
4147 *
4148 * Alternatively, a caller may pass NULL for delegated_inode. This may
4149 * be appropriate for callers that expect the underlying filesystem not
4150 * to be NFS exported.
4151 *
4152 * The worst of all namespace operations - renaming directory. "Perverted"
4153 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4154 * Problems:
4155 * a) we can get into loop creation.
4156 * b) race potential - two innocent renames can create a loop together.
4157 * That's where 4.4 screws up. Current fix: serialization on
4158 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4159 * story.
4160 * c) we have to lock _four_ objects - parents and victim (if it exists),
4161 * and source (if it is not a directory).
4162 * And that - after we got ->i_mutex on parents (until then we don't know
4163 * whether the target exists). Solution: try to be smart with locking
4164 * order for inodes. We rely on the fact that tree topology may change
4165 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4166 * move will be locked. Thus we can rank directories by the tree
4167 * (ancestors first) and rank all non-directories after them.
4168 * That works since everybody except rename does "lock parent, lookup,
4169 * lock child" and rename is under ->s_vfs_rename_mutex.
4170 * HOWEVER, it relies on the assumption that any object with ->lookup()
4171 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4172 * we'd better make sure that there's no link(2) for them.
4173 * d) conversion from fhandle to dentry may come in the wrong moment - when
4174 * we are removing the target. Solution: we will have to grab ->i_mutex
4175 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4176 * ->i_mutex on parents, which works but leads to some truly excessive
4177 * locking].
4178 */
4179 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4180 struct inode *new_dir, struct dentry *new_dentry,
4181 struct inode **delegated_inode, unsigned int flags)
4182 {
4183 int error;
4184 bool is_dir = d_is_dir(old_dentry);
4185 const unsigned char *old_name;
4186 struct inode *source = old_dentry->d_inode;
4187 struct inode *target = new_dentry->d_inode;
4188 bool new_is_dir = false;
4189 unsigned max_links = new_dir->i_sb->s_max_links;
4190
4191 if (source == target)
4192 return 0;
4193
4194 error = may_delete(old_dir, old_dentry, is_dir);
4195 if (error)
4196 return error;
4197
4198 if (!target) {
4199 error = may_create(new_dir, new_dentry);
4200 } else {
4201 new_is_dir = d_is_dir(new_dentry);
4202
4203 if (!(flags & RENAME_EXCHANGE))
4204 error = may_delete(new_dir, new_dentry, is_dir);
4205 else
4206 error = may_delete(new_dir, new_dentry, new_is_dir);
4207 }
4208 if (error)
4209 return error;
4210
4211 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4212 return -EPERM;
4213
4214 if (flags && !old_dir->i_op->rename2)
4215 return -EINVAL;
4216
4217 /*
4218 * If we are going to change the parent - check write permissions,
4219 * we'll need to flip '..'.
4220 */
4221 if (new_dir != old_dir) {
4222 if (is_dir) {
4223 error = inode_permission(source, MAY_WRITE);
4224 if (error)
4225 return error;
4226 }
4227 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4228 error = inode_permission(target, MAY_WRITE);
4229 if (error)
4230 return error;
4231 }
4232 }
4233
4234 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4235 flags);
4236 if (error)
4237 return error;
4238
4239 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4240 dget(new_dentry);
4241 if (!is_dir || (flags & RENAME_EXCHANGE))
4242 lock_two_nondirectories(source, target);
4243 else if (target)
4244 mutex_lock(&target->i_mutex);
4245
4246 error = -EBUSY;
4247 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4248 goto out;
4249
4250 if (max_links && new_dir != old_dir) {
4251 error = -EMLINK;
4252 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4253 goto out;
4254 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4255 old_dir->i_nlink >= max_links)
4256 goto out;
4257 }
4258 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4259 shrink_dcache_parent(new_dentry);
4260 if (!is_dir) {
4261 error = try_break_deleg(source, delegated_inode);
4262 if (error)
4263 goto out;
4264 }
4265 if (target && !new_is_dir) {
4266 error = try_break_deleg(target, delegated_inode);
4267 if (error)
4268 goto out;
4269 }
4270 if (!old_dir->i_op->rename2) {
4271 error = old_dir->i_op->rename(old_dir, old_dentry,
4272 new_dir, new_dentry);
4273 } else {
4274 WARN_ON(old_dir->i_op->rename != NULL);
4275 error = old_dir->i_op->rename2(old_dir, old_dentry,
4276 new_dir, new_dentry, flags);
4277 }
4278 if (error)
4279 goto out;
4280
4281 if (!(flags & RENAME_EXCHANGE) && target) {
4282 if (is_dir)
4283 target->i_flags |= S_DEAD;
4284 dont_mount(new_dentry);
4285 detach_mounts(new_dentry);
4286 }
4287 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4288 if (!(flags & RENAME_EXCHANGE))
4289 d_move(old_dentry, new_dentry);
4290 else
4291 d_exchange(old_dentry, new_dentry);
4292 }
4293 out:
4294 if (!is_dir || (flags & RENAME_EXCHANGE))
4295 unlock_two_nondirectories(source, target);
4296 else if (target)
4297 mutex_unlock(&target->i_mutex);
4298 dput(new_dentry);
4299 if (!error) {
4300 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4301 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4302 if (flags & RENAME_EXCHANGE) {
4303 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4304 new_is_dir, NULL, new_dentry);
4305 }
4306 }
4307 fsnotify_oldname_free(old_name);
4308
4309 return error;
4310 }
4311 EXPORT_SYMBOL(vfs_rename);
4312
4313 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4314 int, newdfd, const char __user *, newname, unsigned int, flags)
4315 {
4316 struct dentry *old_dentry, *new_dentry;
4317 struct dentry *trap;
4318 struct path old_path, new_path;
4319 struct qstr old_last, new_last;
4320 int old_type, new_type;
4321 struct inode *delegated_inode = NULL;
4322 struct filename *from;
4323 struct filename *to;
4324 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4325 bool should_retry = false;
4326 int error;
4327
4328 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4329 return -EINVAL;
4330
4331 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4332 (flags & RENAME_EXCHANGE))
4333 return -EINVAL;
4334
4335 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4336 return -EPERM;
4337
4338 if (flags & RENAME_EXCHANGE)
4339 target_flags = 0;
4340
4341 retry:
4342 from = user_path_parent(olddfd, oldname,
4343 &old_path, &old_last, &old_type, lookup_flags);
4344 if (IS_ERR(from)) {
4345 error = PTR_ERR(from);
4346 goto exit;
4347 }
4348
4349 to = user_path_parent(newdfd, newname,
4350 &new_path, &new_last, &new_type, lookup_flags);
4351 if (IS_ERR(to)) {
4352 error = PTR_ERR(to);
4353 goto exit1;
4354 }
4355
4356 error = -EXDEV;
4357 if (old_path.mnt != new_path.mnt)
4358 goto exit2;
4359
4360 error = -EBUSY;
4361 if (old_type != LAST_NORM)
4362 goto exit2;
4363
4364 if (flags & RENAME_NOREPLACE)
4365 error = -EEXIST;
4366 if (new_type != LAST_NORM)
4367 goto exit2;
4368
4369 error = mnt_want_write(old_path.mnt);
4370 if (error)
4371 goto exit2;
4372
4373 retry_deleg:
4374 trap = lock_rename(new_path.dentry, old_path.dentry);
4375
4376 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4377 error = PTR_ERR(old_dentry);
4378 if (IS_ERR(old_dentry))
4379 goto exit3;
4380 /* source must exist */
4381 error = -ENOENT;
4382 if (d_is_negative(old_dentry))
4383 goto exit4;
4384 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4385 error = PTR_ERR(new_dentry);
4386 if (IS_ERR(new_dentry))
4387 goto exit4;
4388 error = -EEXIST;
4389 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4390 goto exit5;
4391 if (flags & RENAME_EXCHANGE) {
4392 error = -ENOENT;
4393 if (d_is_negative(new_dentry))
4394 goto exit5;
4395
4396 if (!d_is_dir(new_dentry)) {
4397 error = -ENOTDIR;
4398 if (new_last.name[new_last.len])
4399 goto exit5;
4400 }
4401 }
4402 /* unless the source is a directory trailing slashes give -ENOTDIR */
4403 if (!d_is_dir(old_dentry)) {
4404 error = -ENOTDIR;
4405 if (old_last.name[old_last.len])
4406 goto exit5;
4407 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4408 goto exit5;
4409 }
4410 /* source should not be ancestor of target */
4411 error = -EINVAL;
4412 if (old_dentry == trap)
4413 goto exit5;
4414 /* target should not be an ancestor of source */
4415 if (!(flags & RENAME_EXCHANGE))
4416 error = -ENOTEMPTY;
4417 if (new_dentry == trap)
4418 goto exit5;
4419
4420 error = security_path_rename(&old_path, old_dentry,
4421 &new_path, new_dentry, flags);
4422 if (error)
4423 goto exit5;
4424 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4425 new_path.dentry->d_inode, new_dentry,
4426 &delegated_inode, flags);
4427 exit5:
4428 dput(new_dentry);
4429 exit4:
4430 dput(old_dentry);
4431 exit3:
4432 unlock_rename(new_path.dentry, old_path.dentry);
4433 if (delegated_inode) {
4434 error = break_deleg_wait(&delegated_inode);
4435 if (!error)
4436 goto retry_deleg;
4437 }
4438 mnt_drop_write(old_path.mnt);
4439 exit2:
4440 if (retry_estale(error, lookup_flags))
4441 should_retry = true;
4442 path_put(&new_path);
4443 putname(to);
4444 exit1:
4445 path_put(&old_path);
4446 putname(from);
4447 if (should_retry) {
4448 should_retry = false;
4449 lookup_flags |= LOOKUP_REVAL;
4450 goto retry;
4451 }
4452 exit:
4453 return error;
4454 }
4455
4456 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4457 int, newdfd, const char __user *, newname)
4458 {
4459 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4460 }
4461
4462 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4463 {
4464 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4465 }
4466
4467 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4468 {
4469 int error = may_create(dir, dentry);
4470 if (error)
4471 return error;
4472
4473 if (!dir->i_op->mknod)
4474 return -EPERM;
4475
4476 return dir->i_op->mknod(dir, dentry,
4477 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4478 }
4479 EXPORT_SYMBOL(vfs_whiteout);
4480
4481 int readlink_copy(char __user *buffer, int buflen, const char *link)
4482 {
4483 int len = PTR_ERR(link);
4484 if (IS_ERR(link))
4485 goto out;
4486
4487 len = strlen(link);
4488 if (len > (unsigned) buflen)
4489 len = buflen;
4490 if (copy_to_user(buffer, link, len))
4491 len = -EFAULT;
4492 out:
4493 return len;
4494 }
4495 EXPORT_SYMBOL(readlink_copy);
4496
4497 /*
4498 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4499 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4500 * using) it for any given inode is up to filesystem.
4501 */
4502 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4503 {
4504 void *cookie;
4505 struct inode *inode = d_inode(dentry);
4506 const char *link = inode->i_link;
4507 int res;
4508
4509 if (!link) {
4510 link = inode->i_op->follow_link(dentry, &cookie);
4511 if (IS_ERR(link))
4512 return PTR_ERR(link);
4513 }
4514 res = readlink_copy(buffer, buflen, link);
4515 if (inode->i_op->put_link)
4516 inode->i_op->put_link(inode, cookie);
4517 return res;
4518 }
4519 EXPORT_SYMBOL(generic_readlink);
4520
4521 /* get the link contents into pagecache */
4522 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4523 {
4524 char *kaddr;
4525 struct page *page;
4526 struct address_space *mapping = dentry->d_inode->i_mapping;
4527 page = read_mapping_page(mapping, 0, NULL);
4528 if (IS_ERR(page))
4529 return (char*)page;
4530 *ppage = page;
4531 kaddr = kmap(page);
4532 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4533 return kaddr;
4534 }
4535
4536 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4537 {
4538 struct page *page = NULL;
4539 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4540 if (page) {
4541 kunmap(page);
4542 page_cache_release(page);
4543 }
4544 return res;
4545 }
4546 EXPORT_SYMBOL(page_readlink);
4547
4548 const char *page_follow_link_light(struct dentry *dentry, void **cookie)
4549 {
4550 struct page *page = NULL;
4551 char *res = page_getlink(dentry, &page);
4552 if (!IS_ERR(res))
4553 *cookie = page;
4554 return res;
4555 }
4556 EXPORT_SYMBOL(page_follow_link_light);
4557
4558 void page_put_link(struct inode *unused, void *cookie)
4559 {
4560 struct page *page = cookie;
4561 kunmap(page);
4562 page_cache_release(page);
4563 }
4564 EXPORT_SYMBOL(page_put_link);
4565
4566 /*
4567 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4568 */
4569 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4570 {
4571 struct address_space *mapping = inode->i_mapping;
4572 struct page *page;
4573 void *fsdata;
4574 int err;
4575 char *kaddr;
4576 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4577 if (nofs)
4578 flags |= AOP_FLAG_NOFS;
4579
4580 retry:
4581 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4582 flags, &page, &fsdata);
4583 if (err)
4584 goto fail;
4585
4586 kaddr = kmap_atomic(page);
4587 memcpy(kaddr, symname, len-1);
4588 kunmap_atomic(kaddr);
4589
4590 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4591 page, fsdata);
4592 if (err < 0)
4593 goto fail;
4594 if (err < len-1)
4595 goto retry;
4596
4597 mark_inode_dirty(inode);
4598 return 0;
4599 fail:
4600 return err;
4601 }
4602 EXPORT_SYMBOL(__page_symlink);
4603
4604 int page_symlink(struct inode *inode, const char *symname, int len)
4605 {
4606 return __page_symlink(inode, symname, len,
4607 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4608 }
4609 EXPORT_SYMBOL(page_symlink);
4610
4611 const struct inode_operations page_symlink_inode_operations = {
4612 .readlink = generic_readlink,
4613 .follow_link = page_follow_link_light,
4614 .put_link = page_put_link,
4615 };
4616 EXPORT_SYMBOL(page_symlink_inode_operations);