]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namei.c
ceph: tolerate (and warn on) extraneous dentry from mds
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 static char *getname_flags(const char __user *filename, int flags, int *empty)
121 {
122 char *result = __getname(), *err;
123 int len;
124
125 if (unlikely(!result))
126 return ERR_PTR(-ENOMEM);
127
128 len = strncpy_from_user(result, filename, PATH_MAX);
129 err = ERR_PTR(len);
130 if (unlikely(len < 0))
131 goto error;
132
133 /* The empty path is special. */
134 if (unlikely(!len)) {
135 if (empty)
136 *empty = 1;
137 err = ERR_PTR(-ENOENT);
138 if (!(flags & LOOKUP_EMPTY))
139 goto error;
140 }
141
142 err = ERR_PTR(-ENAMETOOLONG);
143 if (likely(len < PATH_MAX)) {
144 audit_getname(result);
145 return result;
146 }
147
148 error:
149 __putname(result);
150 return err;
151 }
152
153 char *getname(const char __user * filename)
154 {
155 return getname_flags(filename, 0, NULL);
156 }
157
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168
169 static int check_acl(struct inode *inode, int mask)
170 {
171 #ifdef CONFIG_FS_POSIX_ACL
172 struct posix_acl *acl;
173
174 if (mask & MAY_NOT_BLOCK) {
175 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
176 if (!acl)
177 return -EAGAIN;
178 /* no ->get_acl() calls in RCU mode... */
179 if (acl == ACL_NOT_CACHED)
180 return -ECHILD;
181 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
182 }
183
184 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
185
186 /*
187 * A filesystem can force a ACL callback by just never filling the
188 * ACL cache. But normally you'd fill the cache either at inode
189 * instantiation time, or on the first ->get_acl call.
190 *
191 * If the filesystem doesn't have a get_acl() function at all, we'll
192 * just create the negative cache entry.
193 */
194 if (acl == ACL_NOT_CACHED) {
195 if (inode->i_op->get_acl) {
196 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
197 if (IS_ERR(acl))
198 return PTR_ERR(acl);
199 } else {
200 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
201 return -EAGAIN;
202 }
203 }
204
205 if (acl) {
206 int error = posix_acl_permission(inode, acl, mask);
207 posix_acl_release(acl);
208 return error;
209 }
210 #endif
211
212 return -EAGAIN;
213 }
214
215 /*
216 * This does the basic permission checking
217 */
218 static int acl_permission_check(struct inode *inode, int mask)
219 {
220 unsigned int mode = inode->i_mode;
221
222 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
223 mode >>= 6;
224 else {
225 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
226 int error = check_acl(inode, mask);
227 if (error != -EAGAIN)
228 return error;
229 }
230
231 if (in_group_p(inode->i_gid))
232 mode >>= 3;
233 }
234
235 /*
236 * If the DACs are ok we don't need any capability check.
237 */
238 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
239 return 0;
240 return -EACCES;
241 }
242
243 /**
244 * generic_permission - check for access rights on a Posix-like filesystem
245 * @inode: inode to check access rights for
246 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
247 *
248 * Used to check for read/write/execute permissions on a file.
249 * We use "fsuid" for this, letting us set arbitrary permissions
250 * for filesystem access without changing the "normal" uids which
251 * are used for other things.
252 *
253 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
254 * request cannot be satisfied (eg. requires blocking or too much complexity).
255 * It would then be called again in ref-walk mode.
256 */
257 int generic_permission(struct inode *inode, int mask)
258 {
259 int ret;
260
261 /*
262 * Do the basic permission checks.
263 */
264 ret = acl_permission_check(inode, mask);
265 if (ret != -EACCES)
266 return ret;
267
268 if (S_ISDIR(inode->i_mode)) {
269 /* DACs are overridable for directories */
270 if (inode_capable(inode, CAP_DAC_OVERRIDE))
271 return 0;
272 if (!(mask & MAY_WRITE))
273 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
274 return 0;
275 return -EACCES;
276 }
277 /*
278 * Read/write DACs are always overridable.
279 * Executable DACs are overridable when there is
280 * at least one exec bit set.
281 */
282 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
283 if (inode_capable(inode, CAP_DAC_OVERRIDE))
284 return 0;
285
286 /*
287 * Searching includes executable on directories, else just read.
288 */
289 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
290 if (mask == MAY_READ)
291 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
292 return 0;
293
294 return -EACCES;
295 }
296
297 /*
298 * We _really_ want to just do "generic_permission()" without
299 * even looking at the inode->i_op values. So we keep a cache
300 * flag in inode->i_opflags, that says "this has not special
301 * permission function, use the fast case".
302 */
303 static inline int do_inode_permission(struct inode *inode, int mask)
304 {
305 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
306 if (likely(inode->i_op->permission))
307 return inode->i_op->permission(inode, mask);
308
309 /* This gets set once for the inode lifetime */
310 spin_lock(&inode->i_lock);
311 inode->i_opflags |= IOP_FASTPERM;
312 spin_unlock(&inode->i_lock);
313 }
314 return generic_permission(inode, mask);
315 }
316
317 /**
318 * __inode_permission - Check for access rights to a given inode
319 * @inode: Inode to check permission on
320 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
321 *
322 * Check for read/write/execute permissions on an inode.
323 *
324 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
325 *
326 * This does not check for a read-only file system. You probably want
327 * inode_permission().
328 */
329 int __inode_permission(struct inode *inode, int mask)
330 {
331 int retval;
332
333 if (unlikely(mask & MAY_WRITE)) {
334 /*
335 * Nobody gets write access to an immutable file.
336 */
337 if (IS_IMMUTABLE(inode))
338 return -EACCES;
339 }
340
341 retval = do_inode_permission(inode, mask);
342 if (retval)
343 return retval;
344
345 retval = devcgroup_inode_permission(inode, mask);
346 if (retval)
347 return retval;
348
349 return security_inode_permission(inode, mask);
350 }
351
352 /**
353 * sb_permission - Check superblock-level permissions
354 * @sb: Superblock of inode to check permission on
355 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
356 *
357 * Separate out file-system wide checks from inode-specific permission checks.
358 */
359 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
360 {
361 if (unlikely(mask & MAY_WRITE)) {
362 umode_t mode = inode->i_mode;
363
364 /* Nobody gets write access to a read-only fs. */
365 if ((sb->s_flags & MS_RDONLY) &&
366 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
367 return -EROFS;
368 }
369 return 0;
370 }
371
372 /**
373 * inode_permission - Check for access rights to a given inode
374 * @inode: Inode to check permission on
375 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
376 *
377 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
378 * this, letting us set arbitrary permissions for filesystem access without
379 * changing the "normal" UIDs which are used for other things.
380 *
381 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
382 */
383 int inode_permission(struct inode *inode, int mask)
384 {
385 int retval;
386
387 retval = sb_permission(inode->i_sb, inode, mask);
388 if (retval)
389 return retval;
390 return __inode_permission(inode, mask);
391 }
392
393 /**
394 * path_get - get a reference to a path
395 * @path: path to get the reference to
396 *
397 * Given a path increment the reference count to the dentry and the vfsmount.
398 */
399 void path_get(struct path *path)
400 {
401 mntget(path->mnt);
402 dget(path->dentry);
403 }
404 EXPORT_SYMBOL(path_get);
405
406 /**
407 * path_put - put a reference to a path
408 * @path: path to put the reference to
409 *
410 * Given a path decrement the reference count to the dentry and the vfsmount.
411 */
412 void path_put(struct path *path)
413 {
414 dput(path->dentry);
415 mntput(path->mnt);
416 }
417 EXPORT_SYMBOL(path_put);
418
419 /*
420 * Path walking has 2 modes, rcu-walk and ref-walk (see
421 * Documentation/filesystems/path-lookup.txt). In situations when we can't
422 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
423 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
424 * mode. Refcounts are grabbed at the last known good point before rcu-walk
425 * got stuck, so ref-walk may continue from there. If this is not successful
426 * (eg. a seqcount has changed), then failure is returned and it's up to caller
427 * to restart the path walk from the beginning in ref-walk mode.
428 */
429
430 static inline void lock_rcu_walk(void)
431 {
432 br_read_lock(&vfsmount_lock);
433 rcu_read_lock();
434 }
435
436 static inline void unlock_rcu_walk(void)
437 {
438 rcu_read_unlock();
439 br_read_unlock(&vfsmount_lock);
440 }
441
442 /**
443 * unlazy_walk - try to switch to ref-walk mode.
444 * @nd: nameidata pathwalk data
445 * @dentry: child of nd->path.dentry or NULL
446 * Returns: 0 on success, -ECHILD on failure
447 *
448 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
449 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
450 * @nd or NULL. Must be called from rcu-walk context.
451 */
452 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
453 {
454 struct fs_struct *fs = current->fs;
455 struct dentry *parent = nd->path.dentry;
456 int want_root = 0;
457
458 BUG_ON(!(nd->flags & LOOKUP_RCU));
459 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
460 want_root = 1;
461 spin_lock(&fs->lock);
462 if (nd->root.mnt != fs->root.mnt ||
463 nd->root.dentry != fs->root.dentry)
464 goto err_root;
465 }
466 spin_lock(&parent->d_lock);
467 if (!dentry) {
468 if (!__d_rcu_to_refcount(parent, nd->seq))
469 goto err_parent;
470 BUG_ON(nd->inode != parent->d_inode);
471 } else {
472 if (dentry->d_parent != parent)
473 goto err_parent;
474 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
475 if (!__d_rcu_to_refcount(dentry, nd->seq))
476 goto err_child;
477 /*
478 * If the sequence check on the child dentry passed, then
479 * the child has not been removed from its parent. This
480 * means the parent dentry must be valid and able to take
481 * a reference at this point.
482 */
483 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
484 BUG_ON(!parent->d_count);
485 parent->d_count++;
486 spin_unlock(&dentry->d_lock);
487 }
488 spin_unlock(&parent->d_lock);
489 if (want_root) {
490 path_get(&nd->root);
491 spin_unlock(&fs->lock);
492 }
493 mntget(nd->path.mnt);
494
495 unlock_rcu_walk();
496 nd->flags &= ~LOOKUP_RCU;
497 return 0;
498
499 err_child:
500 spin_unlock(&dentry->d_lock);
501 err_parent:
502 spin_unlock(&parent->d_lock);
503 err_root:
504 if (want_root)
505 spin_unlock(&fs->lock);
506 return -ECHILD;
507 }
508
509 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
510 {
511 return dentry->d_op->d_revalidate(dentry, flags);
512 }
513
514 /**
515 * complete_walk - successful completion of path walk
516 * @nd: pointer nameidata
517 *
518 * If we had been in RCU mode, drop out of it and legitimize nd->path.
519 * Revalidate the final result, unless we'd already done that during
520 * the path walk or the filesystem doesn't ask for it. Return 0 on
521 * success, -error on failure. In case of failure caller does not
522 * need to drop nd->path.
523 */
524 static int complete_walk(struct nameidata *nd)
525 {
526 struct dentry *dentry = nd->path.dentry;
527 int status;
528
529 if (nd->flags & LOOKUP_RCU) {
530 nd->flags &= ~LOOKUP_RCU;
531 if (!(nd->flags & LOOKUP_ROOT))
532 nd->root.mnt = NULL;
533 spin_lock(&dentry->d_lock);
534 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
535 spin_unlock(&dentry->d_lock);
536 unlock_rcu_walk();
537 return -ECHILD;
538 }
539 BUG_ON(nd->inode != dentry->d_inode);
540 spin_unlock(&dentry->d_lock);
541 mntget(nd->path.mnt);
542 unlock_rcu_walk();
543 }
544
545 if (likely(!(nd->flags & LOOKUP_JUMPED)))
546 return 0;
547
548 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
549 return 0;
550
551 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
552 return 0;
553
554 /* Note: we do not d_invalidate() */
555 status = d_revalidate(dentry, nd->flags);
556 if (status > 0)
557 return 0;
558
559 if (!status)
560 status = -ESTALE;
561
562 path_put(&nd->path);
563 return status;
564 }
565
566 static __always_inline void set_root(struct nameidata *nd)
567 {
568 if (!nd->root.mnt)
569 get_fs_root(current->fs, &nd->root);
570 }
571
572 static int link_path_walk(const char *, struct nameidata *);
573
574 static __always_inline void set_root_rcu(struct nameidata *nd)
575 {
576 if (!nd->root.mnt) {
577 struct fs_struct *fs = current->fs;
578 unsigned seq;
579
580 do {
581 seq = read_seqcount_begin(&fs->seq);
582 nd->root = fs->root;
583 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
584 } while (read_seqcount_retry(&fs->seq, seq));
585 }
586 }
587
588 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
589 {
590 int ret;
591
592 if (IS_ERR(link))
593 goto fail;
594
595 if (*link == '/') {
596 set_root(nd);
597 path_put(&nd->path);
598 nd->path = nd->root;
599 path_get(&nd->root);
600 nd->flags |= LOOKUP_JUMPED;
601 }
602 nd->inode = nd->path.dentry->d_inode;
603
604 ret = link_path_walk(link, nd);
605 return ret;
606 fail:
607 path_put(&nd->path);
608 return PTR_ERR(link);
609 }
610
611 static void path_put_conditional(struct path *path, struct nameidata *nd)
612 {
613 dput(path->dentry);
614 if (path->mnt != nd->path.mnt)
615 mntput(path->mnt);
616 }
617
618 static inline void path_to_nameidata(const struct path *path,
619 struct nameidata *nd)
620 {
621 if (!(nd->flags & LOOKUP_RCU)) {
622 dput(nd->path.dentry);
623 if (nd->path.mnt != path->mnt)
624 mntput(nd->path.mnt);
625 }
626 nd->path.mnt = path->mnt;
627 nd->path.dentry = path->dentry;
628 }
629
630 /*
631 * Helper to directly jump to a known parsed path from ->follow_link,
632 * caller must have taken a reference to path beforehand.
633 */
634 void nd_jump_link(struct nameidata *nd, struct path *path)
635 {
636 path_put(&nd->path);
637
638 nd->path = *path;
639 nd->inode = nd->path.dentry->d_inode;
640 nd->flags |= LOOKUP_JUMPED;
641
642 BUG_ON(nd->inode->i_op->follow_link);
643 }
644
645 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
646 {
647 struct inode *inode = link->dentry->d_inode;
648 if (inode->i_op->put_link)
649 inode->i_op->put_link(link->dentry, nd, cookie);
650 path_put(link);
651 }
652
653 int sysctl_protected_symlinks __read_mostly = 1;
654 int sysctl_protected_hardlinks __read_mostly = 1;
655
656 /**
657 * may_follow_link - Check symlink following for unsafe situations
658 * @link: The path of the symlink
659 *
660 * In the case of the sysctl_protected_symlinks sysctl being enabled,
661 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
662 * in a sticky world-writable directory. This is to protect privileged
663 * processes from failing races against path names that may change out
664 * from under them by way of other users creating malicious symlinks.
665 * It will permit symlinks to be followed only when outside a sticky
666 * world-writable directory, or when the uid of the symlink and follower
667 * match, or when the directory owner matches the symlink's owner.
668 *
669 * Returns 0 if following the symlink is allowed, -ve on error.
670 */
671 static inline int may_follow_link(struct path *link, struct nameidata *nd)
672 {
673 const struct inode *inode;
674 const struct inode *parent;
675
676 if (!sysctl_protected_symlinks)
677 return 0;
678
679 /* Allowed if owner and follower match. */
680 inode = link->dentry->d_inode;
681 if (current_cred()->fsuid == inode->i_uid)
682 return 0;
683
684 /* Allowed if parent directory not sticky and world-writable. */
685 parent = nd->path.dentry->d_inode;
686 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
687 return 0;
688
689 /* Allowed if parent directory and link owner match. */
690 if (parent->i_uid == inode->i_uid)
691 return 0;
692
693 path_put_conditional(link, nd);
694 path_put(&nd->path);
695 audit_log_link_denied("follow_link", link);
696 return -EACCES;
697 }
698
699 /**
700 * safe_hardlink_source - Check for safe hardlink conditions
701 * @inode: the source inode to hardlink from
702 *
703 * Return false if at least one of the following conditions:
704 * - inode is not a regular file
705 * - inode is setuid
706 * - inode is setgid and group-exec
707 * - access failure for read and write
708 *
709 * Otherwise returns true.
710 */
711 static bool safe_hardlink_source(struct inode *inode)
712 {
713 umode_t mode = inode->i_mode;
714
715 /* Special files should not get pinned to the filesystem. */
716 if (!S_ISREG(mode))
717 return false;
718
719 /* Setuid files should not get pinned to the filesystem. */
720 if (mode & S_ISUID)
721 return false;
722
723 /* Executable setgid files should not get pinned to the filesystem. */
724 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
725 return false;
726
727 /* Hardlinking to unreadable or unwritable sources is dangerous. */
728 if (inode_permission(inode, MAY_READ | MAY_WRITE))
729 return false;
730
731 return true;
732 }
733
734 /**
735 * may_linkat - Check permissions for creating a hardlink
736 * @link: the source to hardlink from
737 *
738 * Block hardlink when all of:
739 * - sysctl_protected_hardlinks enabled
740 * - fsuid does not match inode
741 * - hardlink source is unsafe (see safe_hardlink_source() above)
742 * - not CAP_FOWNER
743 *
744 * Returns 0 if successful, -ve on error.
745 */
746 static int may_linkat(struct path *link)
747 {
748 const struct cred *cred;
749 struct inode *inode;
750
751 if (!sysctl_protected_hardlinks)
752 return 0;
753
754 cred = current_cred();
755 inode = link->dentry->d_inode;
756
757 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
758 * otherwise, it must be a safe source.
759 */
760 if (cred->fsuid == inode->i_uid || safe_hardlink_source(inode) ||
761 capable(CAP_FOWNER))
762 return 0;
763
764 audit_log_link_denied("linkat", link);
765 return -EPERM;
766 }
767
768 static __always_inline int
769 follow_link(struct path *link, struct nameidata *nd, void **p)
770 {
771 struct dentry *dentry = link->dentry;
772 int error;
773 char *s;
774
775 BUG_ON(nd->flags & LOOKUP_RCU);
776
777 if (link->mnt == nd->path.mnt)
778 mntget(link->mnt);
779
780 error = -ELOOP;
781 if (unlikely(current->total_link_count >= 40))
782 goto out_put_nd_path;
783
784 cond_resched();
785 current->total_link_count++;
786
787 touch_atime(link);
788 nd_set_link(nd, NULL);
789
790 error = security_inode_follow_link(link->dentry, nd);
791 if (error)
792 goto out_put_nd_path;
793
794 nd->last_type = LAST_BIND;
795 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
796 error = PTR_ERR(*p);
797 if (IS_ERR(*p))
798 goto out_put_nd_path;
799
800 error = 0;
801 s = nd_get_link(nd);
802 if (s) {
803 error = __vfs_follow_link(nd, s);
804 if (unlikely(error))
805 put_link(nd, link, *p);
806 }
807
808 return error;
809
810 out_put_nd_path:
811 path_put(&nd->path);
812 path_put(link);
813 return error;
814 }
815
816 static int follow_up_rcu(struct path *path)
817 {
818 struct mount *mnt = real_mount(path->mnt);
819 struct mount *parent;
820 struct dentry *mountpoint;
821
822 parent = mnt->mnt_parent;
823 if (&parent->mnt == path->mnt)
824 return 0;
825 mountpoint = mnt->mnt_mountpoint;
826 path->dentry = mountpoint;
827 path->mnt = &parent->mnt;
828 return 1;
829 }
830
831 /*
832 * follow_up - Find the mountpoint of path's vfsmount
833 *
834 * Given a path, find the mountpoint of its source file system.
835 * Replace @path with the path of the mountpoint in the parent mount.
836 * Up is towards /.
837 *
838 * Return 1 if we went up a level and 0 if we were already at the
839 * root.
840 */
841 int follow_up(struct path *path)
842 {
843 struct mount *mnt = real_mount(path->mnt);
844 struct mount *parent;
845 struct dentry *mountpoint;
846
847 br_read_lock(&vfsmount_lock);
848 parent = mnt->mnt_parent;
849 if (parent == mnt) {
850 br_read_unlock(&vfsmount_lock);
851 return 0;
852 }
853 mntget(&parent->mnt);
854 mountpoint = dget(mnt->mnt_mountpoint);
855 br_read_unlock(&vfsmount_lock);
856 dput(path->dentry);
857 path->dentry = mountpoint;
858 mntput(path->mnt);
859 path->mnt = &parent->mnt;
860 return 1;
861 }
862
863 /*
864 * Perform an automount
865 * - return -EISDIR to tell follow_managed() to stop and return the path we
866 * were called with.
867 */
868 static int follow_automount(struct path *path, unsigned flags,
869 bool *need_mntput)
870 {
871 struct vfsmount *mnt;
872 int err;
873
874 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
875 return -EREMOTE;
876
877 /* We don't want to mount if someone's just doing a stat -
878 * unless they're stat'ing a directory and appended a '/' to
879 * the name.
880 *
881 * We do, however, want to mount if someone wants to open or
882 * create a file of any type under the mountpoint, wants to
883 * traverse through the mountpoint or wants to open the
884 * mounted directory. Also, autofs may mark negative dentries
885 * as being automount points. These will need the attentions
886 * of the daemon to instantiate them before they can be used.
887 */
888 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
889 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
890 path->dentry->d_inode)
891 return -EISDIR;
892
893 current->total_link_count++;
894 if (current->total_link_count >= 40)
895 return -ELOOP;
896
897 mnt = path->dentry->d_op->d_automount(path);
898 if (IS_ERR(mnt)) {
899 /*
900 * The filesystem is allowed to return -EISDIR here to indicate
901 * it doesn't want to automount. For instance, autofs would do
902 * this so that its userspace daemon can mount on this dentry.
903 *
904 * However, we can only permit this if it's a terminal point in
905 * the path being looked up; if it wasn't then the remainder of
906 * the path is inaccessible and we should say so.
907 */
908 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
909 return -EREMOTE;
910 return PTR_ERR(mnt);
911 }
912
913 if (!mnt) /* mount collision */
914 return 0;
915
916 if (!*need_mntput) {
917 /* lock_mount() may release path->mnt on error */
918 mntget(path->mnt);
919 *need_mntput = true;
920 }
921 err = finish_automount(mnt, path);
922
923 switch (err) {
924 case -EBUSY:
925 /* Someone else made a mount here whilst we were busy */
926 return 0;
927 case 0:
928 path_put(path);
929 path->mnt = mnt;
930 path->dentry = dget(mnt->mnt_root);
931 return 0;
932 default:
933 return err;
934 }
935
936 }
937
938 /*
939 * Handle a dentry that is managed in some way.
940 * - Flagged for transit management (autofs)
941 * - Flagged as mountpoint
942 * - Flagged as automount point
943 *
944 * This may only be called in refwalk mode.
945 *
946 * Serialization is taken care of in namespace.c
947 */
948 static int follow_managed(struct path *path, unsigned flags)
949 {
950 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
951 unsigned managed;
952 bool need_mntput = false;
953 int ret = 0;
954
955 /* Given that we're not holding a lock here, we retain the value in a
956 * local variable for each dentry as we look at it so that we don't see
957 * the components of that value change under us */
958 while (managed = ACCESS_ONCE(path->dentry->d_flags),
959 managed &= DCACHE_MANAGED_DENTRY,
960 unlikely(managed != 0)) {
961 /* Allow the filesystem to manage the transit without i_mutex
962 * being held. */
963 if (managed & DCACHE_MANAGE_TRANSIT) {
964 BUG_ON(!path->dentry->d_op);
965 BUG_ON(!path->dentry->d_op->d_manage);
966 ret = path->dentry->d_op->d_manage(path->dentry, false);
967 if (ret < 0)
968 break;
969 }
970
971 /* Transit to a mounted filesystem. */
972 if (managed & DCACHE_MOUNTED) {
973 struct vfsmount *mounted = lookup_mnt(path);
974 if (mounted) {
975 dput(path->dentry);
976 if (need_mntput)
977 mntput(path->mnt);
978 path->mnt = mounted;
979 path->dentry = dget(mounted->mnt_root);
980 need_mntput = true;
981 continue;
982 }
983
984 /* Something is mounted on this dentry in another
985 * namespace and/or whatever was mounted there in this
986 * namespace got unmounted before we managed to get the
987 * vfsmount_lock */
988 }
989
990 /* Handle an automount point */
991 if (managed & DCACHE_NEED_AUTOMOUNT) {
992 ret = follow_automount(path, flags, &need_mntput);
993 if (ret < 0)
994 break;
995 continue;
996 }
997
998 /* We didn't change the current path point */
999 break;
1000 }
1001
1002 if (need_mntput && path->mnt == mnt)
1003 mntput(path->mnt);
1004 if (ret == -EISDIR)
1005 ret = 0;
1006 return ret < 0 ? ret : need_mntput;
1007 }
1008
1009 int follow_down_one(struct path *path)
1010 {
1011 struct vfsmount *mounted;
1012
1013 mounted = lookup_mnt(path);
1014 if (mounted) {
1015 dput(path->dentry);
1016 mntput(path->mnt);
1017 path->mnt = mounted;
1018 path->dentry = dget(mounted->mnt_root);
1019 return 1;
1020 }
1021 return 0;
1022 }
1023
1024 static inline bool managed_dentry_might_block(struct dentry *dentry)
1025 {
1026 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1027 dentry->d_op->d_manage(dentry, true) < 0);
1028 }
1029
1030 /*
1031 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1032 * we meet a managed dentry that would need blocking.
1033 */
1034 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1035 struct inode **inode)
1036 {
1037 for (;;) {
1038 struct mount *mounted;
1039 /*
1040 * Don't forget we might have a non-mountpoint managed dentry
1041 * that wants to block transit.
1042 */
1043 if (unlikely(managed_dentry_might_block(path->dentry)))
1044 return false;
1045
1046 if (!d_mountpoint(path->dentry))
1047 break;
1048
1049 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1050 if (!mounted)
1051 break;
1052 path->mnt = &mounted->mnt;
1053 path->dentry = mounted->mnt.mnt_root;
1054 nd->flags |= LOOKUP_JUMPED;
1055 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1056 /*
1057 * Update the inode too. We don't need to re-check the
1058 * dentry sequence number here after this d_inode read,
1059 * because a mount-point is always pinned.
1060 */
1061 *inode = path->dentry->d_inode;
1062 }
1063 return true;
1064 }
1065
1066 static void follow_mount_rcu(struct nameidata *nd)
1067 {
1068 while (d_mountpoint(nd->path.dentry)) {
1069 struct mount *mounted;
1070 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1071 if (!mounted)
1072 break;
1073 nd->path.mnt = &mounted->mnt;
1074 nd->path.dentry = mounted->mnt.mnt_root;
1075 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1076 }
1077 }
1078
1079 static int follow_dotdot_rcu(struct nameidata *nd)
1080 {
1081 set_root_rcu(nd);
1082
1083 while (1) {
1084 if (nd->path.dentry == nd->root.dentry &&
1085 nd->path.mnt == nd->root.mnt) {
1086 break;
1087 }
1088 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1089 struct dentry *old = nd->path.dentry;
1090 struct dentry *parent = old->d_parent;
1091 unsigned seq;
1092
1093 seq = read_seqcount_begin(&parent->d_seq);
1094 if (read_seqcount_retry(&old->d_seq, nd->seq))
1095 goto failed;
1096 nd->path.dentry = parent;
1097 nd->seq = seq;
1098 break;
1099 }
1100 if (!follow_up_rcu(&nd->path))
1101 break;
1102 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1103 }
1104 follow_mount_rcu(nd);
1105 nd->inode = nd->path.dentry->d_inode;
1106 return 0;
1107
1108 failed:
1109 nd->flags &= ~LOOKUP_RCU;
1110 if (!(nd->flags & LOOKUP_ROOT))
1111 nd->root.mnt = NULL;
1112 unlock_rcu_walk();
1113 return -ECHILD;
1114 }
1115
1116 /*
1117 * Follow down to the covering mount currently visible to userspace. At each
1118 * point, the filesystem owning that dentry may be queried as to whether the
1119 * caller is permitted to proceed or not.
1120 */
1121 int follow_down(struct path *path)
1122 {
1123 unsigned managed;
1124 int ret;
1125
1126 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1127 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1128 /* Allow the filesystem to manage the transit without i_mutex
1129 * being held.
1130 *
1131 * We indicate to the filesystem if someone is trying to mount
1132 * something here. This gives autofs the chance to deny anyone
1133 * other than its daemon the right to mount on its
1134 * superstructure.
1135 *
1136 * The filesystem may sleep at this point.
1137 */
1138 if (managed & DCACHE_MANAGE_TRANSIT) {
1139 BUG_ON(!path->dentry->d_op);
1140 BUG_ON(!path->dentry->d_op->d_manage);
1141 ret = path->dentry->d_op->d_manage(
1142 path->dentry, false);
1143 if (ret < 0)
1144 return ret == -EISDIR ? 0 : ret;
1145 }
1146
1147 /* Transit to a mounted filesystem. */
1148 if (managed & DCACHE_MOUNTED) {
1149 struct vfsmount *mounted = lookup_mnt(path);
1150 if (!mounted)
1151 break;
1152 dput(path->dentry);
1153 mntput(path->mnt);
1154 path->mnt = mounted;
1155 path->dentry = dget(mounted->mnt_root);
1156 continue;
1157 }
1158
1159 /* Don't handle automount points here */
1160 break;
1161 }
1162 return 0;
1163 }
1164
1165 /*
1166 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1167 */
1168 static void follow_mount(struct path *path)
1169 {
1170 while (d_mountpoint(path->dentry)) {
1171 struct vfsmount *mounted = lookup_mnt(path);
1172 if (!mounted)
1173 break;
1174 dput(path->dentry);
1175 mntput(path->mnt);
1176 path->mnt = mounted;
1177 path->dentry = dget(mounted->mnt_root);
1178 }
1179 }
1180
1181 static void follow_dotdot(struct nameidata *nd)
1182 {
1183 set_root(nd);
1184
1185 while(1) {
1186 struct dentry *old = nd->path.dentry;
1187
1188 if (nd->path.dentry == nd->root.dentry &&
1189 nd->path.mnt == nd->root.mnt) {
1190 break;
1191 }
1192 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1193 /* rare case of legitimate dget_parent()... */
1194 nd->path.dentry = dget_parent(nd->path.dentry);
1195 dput(old);
1196 break;
1197 }
1198 if (!follow_up(&nd->path))
1199 break;
1200 }
1201 follow_mount(&nd->path);
1202 nd->inode = nd->path.dentry->d_inode;
1203 }
1204
1205 /*
1206 * This looks up the name in dcache, possibly revalidates the old dentry and
1207 * allocates a new one if not found or not valid. In the need_lookup argument
1208 * returns whether i_op->lookup is necessary.
1209 *
1210 * dir->d_inode->i_mutex must be held
1211 */
1212 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1213 unsigned int flags, bool *need_lookup)
1214 {
1215 struct dentry *dentry;
1216 int error;
1217
1218 *need_lookup = false;
1219 dentry = d_lookup(dir, name);
1220 if (dentry) {
1221 if (d_need_lookup(dentry)) {
1222 *need_lookup = true;
1223 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1224 error = d_revalidate(dentry, flags);
1225 if (unlikely(error <= 0)) {
1226 if (error < 0) {
1227 dput(dentry);
1228 return ERR_PTR(error);
1229 } else if (!d_invalidate(dentry)) {
1230 dput(dentry);
1231 dentry = NULL;
1232 }
1233 }
1234 }
1235 }
1236
1237 if (!dentry) {
1238 dentry = d_alloc(dir, name);
1239 if (unlikely(!dentry))
1240 return ERR_PTR(-ENOMEM);
1241
1242 *need_lookup = true;
1243 }
1244 return dentry;
1245 }
1246
1247 /*
1248 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1249 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1250 *
1251 * dir->d_inode->i_mutex must be held
1252 */
1253 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1254 unsigned int flags)
1255 {
1256 struct dentry *old;
1257
1258 /* Don't create child dentry for a dead directory. */
1259 if (unlikely(IS_DEADDIR(dir))) {
1260 dput(dentry);
1261 return ERR_PTR(-ENOENT);
1262 }
1263
1264 old = dir->i_op->lookup(dir, dentry, flags);
1265 if (unlikely(old)) {
1266 dput(dentry);
1267 dentry = old;
1268 }
1269 return dentry;
1270 }
1271
1272 static struct dentry *__lookup_hash(struct qstr *name,
1273 struct dentry *base, unsigned int flags)
1274 {
1275 bool need_lookup;
1276 struct dentry *dentry;
1277
1278 dentry = lookup_dcache(name, base, flags, &need_lookup);
1279 if (!need_lookup)
1280 return dentry;
1281
1282 return lookup_real(base->d_inode, dentry, flags);
1283 }
1284
1285 /*
1286 * It's more convoluted than I'd like it to be, but... it's still fairly
1287 * small and for now I'd prefer to have fast path as straight as possible.
1288 * It _is_ time-critical.
1289 */
1290 static int lookup_fast(struct nameidata *nd, struct qstr *name,
1291 struct path *path, struct inode **inode)
1292 {
1293 struct vfsmount *mnt = nd->path.mnt;
1294 struct dentry *dentry, *parent = nd->path.dentry;
1295 int need_reval = 1;
1296 int status = 1;
1297 int err;
1298
1299 /*
1300 * Rename seqlock is not required here because in the off chance
1301 * of a false negative due to a concurrent rename, we're going to
1302 * do the non-racy lookup, below.
1303 */
1304 if (nd->flags & LOOKUP_RCU) {
1305 unsigned seq;
1306 dentry = __d_lookup_rcu(parent, name, &seq, nd->inode);
1307 if (!dentry)
1308 goto unlazy;
1309
1310 /*
1311 * This sequence count validates that the inode matches
1312 * the dentry name information from lookup.
1313 */
1314 *inode = dentry->d_inode;
1315 if (read_seqcount_retry(&dentry->d_seq, seq))
1316 return -ECHILD;
1317
1318 /*
1319 * This sequence count validates that the parent had no
1320 * changes while we did the lookup of the dentry above.
1321 *
1322 * The memory barrier in read_seqcount_begin of child is
1323 * enough, we can use __read_seqcount_retry here.
1324 */
1325 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1326 return -ECHILD;
1327 nd->seq = seq;
1328
1329 if (unlikely(d_need_lookup(dentry)))
1330 goto unlazy;
1331 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1332 status = d_revalidate(dentry, nd->flags);
1333 if (unlikely(status <= 0)) {
1334 if (status != -ECHILD)
1335 need_reval = 0;
1336 goto unlazy;
1337 }
1338 }
1339 path->mnt = mnt;
1340 path->dentry = dentry;
1341 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1342 goto unlazy;
1343 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1344 goto unlazy;
1345 return 0;
1346 unlazy:
1347 if (unlazy_walk(nd, dentry))
1348 return -ECHILD;
1349 } else {
1350 dentry = __d_lookup(parent, name);
1351 }
1352
1353 if (unlikely(!dentry))
1354 goto need_lookup;
1355
1356 if (unlikely(d_need_lookup(dentry))) {
1357 dput(dentry);
1358 goto need_lookup;
1359 }
1360
1361 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1362 status = d_revalidate(dentry, nd->flags);
1363 if (unlikely(status <= 0)) {
1364 if (status < 0) {
1365 dput(dentry);
1366 return status;
1367 }
1368 if (!d_invalidate(dentry)) {
1369 dput(dentry);
1370 goto need_lookup;
1371 }
1372 }
1373
1374 path->mnt = mnt;
1375 path->dentry = dentry;
1376 err = follow_managed(path, nd->flags);
1377 if (unlikely(err < 0)) {
1378 path_put_conditional(path, nd);
1379 return err;
1380 }
1381 if (err)
1382 nd->flags |= LOOKUP_JUMPED;
1383 *inode = path->dentry->d_inode;
1384 return 0;
1385
1386 need_lookup:
1387 return 1;
1388 }
1389
1390 /* Fast lookup failed, do it the slow way */
1391 static int lookup_slow(struct nameidata *nd, struct qstr *name,
1392 struct path *path)
1393 {
1394 struct dentry *dentry, *parent;
1395 int err;
1396
1397 parent = nd->path.dentry;
1398 BUG_ON(nd->inode != parent->d_inode);
1399
1400 mutex_lock(&parent->d_inode->i_mutex);
1401 dentry = __lookup_hash(name, parent, nd->flags);
1402 mutex_unlock(&parent->d_inode->i_mutex);
1403 if (IS_ERR(dentry))
1404 return PTR_ERR(dentry);
1405 path->mnt = nd->path.mnt;
1406 path->dentry = dentry;
1407 err = follow_managed(path, nd->flags);
1408 if (unlikely(err < 0)) {
1409 path_put_conditional(path, nd);
1410 return err;
1411 }
1412 if (err)
1413 nd->flags |= LOOKUP_JUMPED;
1414 return 0;
1415 }
1416
1417 static inline int may_lookup(struct nameidata *nd)
1418 {
1419 if (nd->flags & LOOKUP_RCU) {
1420 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1421 if (err != -ECHILD)
1422 return err;
1423 if (unlazy_walk(nd, NULL))
1424 return -ECHILD;
1425 }
1426 return inode_permission(nd->inode, MAY_EXEC);
1427 }
1428
1429 static inline int handle_dots(struct nameidata *nd, int type)
1430 {
1431 if (type == LAST_DOTDOT) {
1432 if (nd->flags & LOOKUP_RCU) {
1433 if (follow_dotdot_rcu(nd))
1434 return -ECHILD;
1435 } else
1436 follow_dotdot(nd);
1437 }
1438 return 0;
1439 }
1440
1441 static void terminate_walk(struct nameidata *nd)
1442 {
1443 if (!(nd->flags & LOOKUP_RCU)) {
1444 path_put(&nd->path);
1445 } else {
1446 nd->flags &= ~LOOKUP_RCU;
1447 if (!(nd->flags & LOOKUP_ROOT))
1448 nd->root.mnt = NULL;
1449 unlock_rcu_walk();
1450 }
1451 }
1452
1453 /*
1454 * Do we need to follow links? We _really_ want to be able
1455 * to do this check without having to look at inode->i_op,
1456 * so we keep a cache of "no, this doesn't need follow_link"
1457 * for the common case.
1458 */
1459 static inline int should_follow_link(struct inode *inode, int follow)
1460 {
1461 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1462 if (likely(inode->i_op->follow_link))
1463 return follow;
1464
1465 /* This gets set once for the inode lifetime */
1466 spin_lock(&inode->i_lock);
1467 inode->i_opflags |= IOP_NOFOLLOW;
1468 spin_unlock(&inode->i_lock);
1469 }
1470 return 0;
1471 }
1472
1473 static inline int walk_component(struct nameidata *nd, struct path *path,
1474 struct qstr *name, int type, int follow)
1475 {
1476 struct inode *inode;
1477 int err;
1478 /*
1479 * "." and ".." are special - ".." especially so because it has
1480 * to be able to know about the current root directory and
1481 * parent relationships.
1482 */
1483 if (unlikely(type != LAST_NORM))
1484 return handle_dots(nd, type);
1485 err = lookup_fast(nd, name, path, &inode);
1486 if (unlikely(err)) {
1487 if (err < 0)
1488 goto out_err;
1489
1490 err = lookup_slow(nd, name, path);
1491 if (err < 0)
1492 goto out_err;
1493
1494 inode = path->dentry->d_inode;
1495 }
1496 err = -ENOENT;
1497 if (!inode)
1498 goto out_path_put;
1499
1500 if (should_follow_link(inode, follow)) {
1501 if (nd->flags & LOOKUP_RCU) {
1502 if (unlikely(unlazy_walk(nd, path->dentry))) {
1503 err = -ECHILD;
1504 goto out_err;
1505 }
1506 }
1507 BUG_ON(inode != path->dentry->d_inode);
1508 return 1;
1509 }
1510 path_to_nameidata(path, nd);
1511 nd->inode = inode;
1512 return 0;
1513
1514 out_path_put:
1515 path_to_nameidata(path, nd);
1516 out_err:
1517 terminate_walk(nd);
1518 return err;
1519 }
1520
1521 /*
1522 * This limits recursive symlink follows to 8, while
1523 * limiting consecutive symlinks to 40.
1524 *
1525 * Without that kind of total limit, nasty chains of consecutive
1526 * symlinks can cause almost arbitrarily long lookups.
1527 */
1528 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1529 {
1530 int res;
1531
1532 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1533 path_put_conditional(path, nd);
1534 path_put(&nd->path);
1535 return -ELOOP;
1536 }
1537 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1538
1539 nd->depth++;
1540 current->link_count++;
1541
1542 do {
1543 struct path link = *path;
1544 void *cookie;
1545
1546 res = follow_link(&link, nd, &cookie);
1547 if (res)
1548 break;
1549 res = walk_component(nd, path, &nd->last,
1550 nd->last_type, LOOKUP_FOLLOW);
1551 put_link(nd, &link, cookie);
1552 } while (res > 0);
1553
1554 current->link_count--;
1555 nd->depth--;
1556 return res;
1557 }
1558
1559 /*
1560 * We really don't want to look at inode->i_op->lookup
1561 * when we don't have to. So we keep a cache bit in
1562 * the inode ->i_opflags field that says "yes, we can
1563 * do lookup on this inode".
1564 */
1565 static inline int can_lookup(struct inode *inode)
1566 {
1567 if (likely(inode->i_opflags & IOP_LOOKUP))
1568 return 1;
1569 if (likely(!inode->i_op->lookup))
1570 return 0;
1571
1572 /* We do this once for the lifetime of the inode */
1573 spin_lock(&inode->i_lock);
1574 inode->i_opflags |= IOP_LOOKUP;
1575 spin_unlock(&inode->i_lock);
1576 return 1;
1577 }
1578
1579 /*
1580 * We can do the critical dentry name comparison and hashing
1581 * operations one word at a time, but we are limited to:
1582 *
1583 * - Architectures with fast unaligned word accesses. We could
1584 * do a "get_unaligned()" if this helps and is sufficiently
1585 * fast.
1586 *
1587 * - Little-endian machines (so that we can generate the mask
1588 * of low bytes efficiently). Again, we *could* do a byte
1589 * swapping load on big-endian architectures if that is not
1590 * expensive enough to make the optimization worthless.
1591 *
1592 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1593 * do not trap on the (extremely unlikely) case of a page
1594 * crossing operation.
1595 *
1596 * - Furthermore, we need an efficient 64-bit compile for the
1597 * 64-bit case in order to generate the "number of bytes in
1598 * the final mask". Again, that could be replaced with a
1599 * efficient population count instruction or similar.
1600 */
1601 #ifdef CONFIG_DCACHE_WORD_ACCESS
1602
1603 #include <asm/word-at-a-time.h>
1604
1605 #ifdef CONFIG_64BIT
1606
1607 static inline unsigned int fold_hash(unsigned long hash)
1608 {
1609 hash += hash >> (8*sizeof(int));
1610 return hash;
1611 }
1612
1613 #else /* 32-bit case */
1614
1615 #define fold_hash(x) (x)
1616
1617 #endif
1618
1619 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1620 {
1621 unsigned long a, mask;
1622 unsigned long hash = 0;
1623
1624 for (;;) {
1625 a = load_unaligned_zeropad(name);
1626 if (len < sizeof(unsigned long))
1627 break;
1628 hash += a;
1629 hash *= 9;
1630 name += sizeof(unsigned long);
1631 len -= sizeof(unsigned long);
1632 if (!len)
1633 goto done;
1634 }
1635 mask = ~(~0ul << len*8);
1636 hash += mask & a;
1637 done:
1638 return fold_hash(hash);
1639 }
1640 EXPORT_SYMBOL(full_name_hash);
1641
1642 /*
1643 * Calculate the length and hash of the path component, and
1644 * return the length of the component;
1645 */
1646 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1647 {
1648 unsigned long a, b, adata, bdata, mask, hash, len;
1649 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1650
1651 hash = a = 0;
1652 len = -sizeof(unsigned long);
1653 do {
1654 hash = (hash + a) * 9;
1655 len += sizeof(unsigned long);
1656 a = load_unaligned_zeropad(name+len);
1657 b = a ^ REPEAT_BYTE('/');
1658 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1659
1660 adata = prep_zero_mask(a, adata, &constants);
1661 bdata = prep_zero_mask(b, bdata, &constants);
1662
1663 mask = create_zero_mask(adata | bdata);
1664
1665 hash += a & zero_bytemask(mask);
1666 *hashp = fold_hash(hash);
1667
1668 return len + find_zero(mask);
1669 }
1670
1671 #else
1672
1673 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1674 {
1675 unsigned long hash = init_name_hash();
1676 while (len--)
1677 hash = partial_name_hash(*name++, hash);
1678 return end_name_hash(hash);
1679 }
1680 EXPORT_SYMBOL(full_name_hash);
1681
1682 /*
1683 * We know there's a real path component here of at least
1684 * one character.
1685 */
1686 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1687 {
1688 unsigned long hash = init_name_hash();
1689 unsigned long len = 0, c;
1690
1691 c = (unsigned char)*name;
1692 do {
1693 len++;
1694 hash = partial_name_hash(c, hash);
1695 c = (unsigned char)name[len];
1696 } while (c && c != '/');
1697 *hashp = end_name_hash(hash);
1698 return len;
1699 }
1700
1701 #endif
1702
1703 /*
1704 * Name resolution.
1705 * This is the basic name resolution function, turning a pathname into
1706 * the final dentry. We expect 'base' to be positive and a directory.
1707 *
1708 * Returns 0 and nd will have valid dentry and mnt on success.
1709 * Returns error and drops reference to input namei data on failure.
1710 */
1711 static int link_path_walk(const char *name, struct nameidata *nd)
1712 {
1713 struct path next;
1714 int err;
1715
1716 while (*name=='/')
1717 name++;
1718 if (!*name)
1719 return 0;
1720
1721 /* At this point we know we have a real path component. */
1722 for(;;) {
1723 struct qstr this;
1724 long len;
1725 int type;
1726
1727 err = may_lookup(nd);
1728 if (err)
1729 break;
1730
1731 len = hash_name(name, &this.hash);
1732 this.name = name;
1733 this.len = len;
1734
1735 type = LAST_NORM;
1736 if (name[0] == '.') switch (len) {
1737 case 2:
1738 if (name[1] == '.') {
1739 type = LAST_DOTDOT;
1740 nd->flags |= LOOKUP_JUMPED;
1741 }
1742 break;
1743 case 1:
1744 type = LAST_DOT;
1745 }
1746 if (likely(type == LAST_NORM)) {
1747 struct dentry *parent = nd->path.dentry;
1748 nd->flags &= ~LOOKUP_JUMPED;
1749 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1750 err = parent->d_op->d_hash(parent, nd->inode,
1751 &this);
1752 if (err < 0)
1753 break;
1754 }
1755 }
1756
1757 if (!name[len])
1758 goto last_component;
1759 /*
1760 * If it wasn't NUL, we know it was '/'. Skip that
1761 * slash, and continue until no more slashes.
1762 */
1763 do {
1764 len++;
1765 } while (unlikely(name[len] == '/'));
1766 if (!name[len])
1767 goto last_component;
1768 name += len;
1769
1770 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1771 if (err < 0)
1772 return err;
1773
1774 if (err) {
1775 err = nested_symlink(&next, nd);
1776 if (err)
1777 return err;
1778 }
1779 if (can_lookup(nd->inode))
1780 continue;
1781 err = -ENOTDIR;
1782 break;
1783 /* here ends the main loop */
1784
1785 last_component:
1786 nd->last = this;
1787 nd->last_type = type;
1788 return 0;
1789 }
1790 terminate_walk(nd);
1791 return err;
1792 }
1793
1794 static int path_init(int dfd, const char *name, unsigned int flags,
1795 struct nameidata *nd, struct file **fp)
1796 {
1797 int retval = 0;
1798 int fput_needed;
1799 struct file *file;
1800
1801 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1802 nd->flags = flags | LOOKUP_JUMPED;
1803 nd->depth = 0;
1804 if (flags & LOOKUP_ROOT) {
1805 struct inode *inode = nd->root.dentry->d_inode;
1806 if (*name) {
1807 if (!inode->i_op->lookup)
1808 return -ENOTDIR;
1809 retval = inode_permission(inode, MAY_EXEC);
1810 if (retval)
1811 return retval;
1812 }
1813 nd->path = nd->root;
1814 nd->inode = inode;
1815 if (flags & LOOKUP_RCU) {
1816 lock_rcu_walk();
1817 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1818 } else {
1819 path_get(&nd->path);
1820 }
1821 return 0;
1822 }
1823
1824 nd->root.mnt = NULL;
1825
1826 if (*name=='/') {
1827 if (flags & LOOKUP_RCU) {
1828 lock_rcu_walk();
1829 set_root_rcu(nd);
1830 } else {
1831 set_root(nd);
1832 path_get(&nd->root);
1833 }
1834 nd->path = nd->root;
1835 } else if (dfd == AT_FDCWD) {
1836 if (flags & LOOKUP_RCU) {
1837 struct fs_struct *fs = current->fs;
1838 unsigned seq;
1839
1840 lock_rcu_walk();
1841
1842 do {
1843 seq = read_seqcount_begin(&fs->seq);
1844 nd->path = fs->pwd;
1845 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1846 } while (read_seqcount_retry(&fs->seq, seq));
1847 } else {
1848 get_fs_pwd(current->fs, &nd->path);
1849 }
1850 } else {
1851 struct dentry *dentry;
1852
1853 file = fget_raw_light(dfd, &fput_needed);
1854 retval = -EBADF;
1855 if (!file)
1856 goto out_fail;
1857
1858 dentry = file->f_path.dentry;
1859
1860 if (*name) {
1861 retval = -ENOTDIR;
1862 if (!S_ISDIR(dentry->d_inode->i_mode))
1863 goto fput_fail;
1864
1865 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1866 if (retval)
1867 goto fput_fail;
1868 }
1869
1870 nd->path = file->f_path;
1871 if (flags & LOOKUP_RCU) {
1872 if (fput_needed)
1873 *fp = file;
1874 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1875 lock_rcu_walk();
1876 } else {
1877 path_get(&file->f_path);
1878 fput_light(file, fput_needed);
1879 }
1880 }
1881
1882 nd->inode = nd->path.dentry->d_inode;
1883 return 0;
1884
1885 fput_fail:
1886 fput_light(file, fput_needed);
1887 out_fail:
1888 return retval;
1889 }
1890
1891 static inline int lookup_last(struct nameidata *nd, struct path *path)
1892 {
1893 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1894 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1895
1896 nd->flags &= ~LOOKUP_PARENT;
1897 return walk_component(nd, path, &nd->last, nd->last_type,
1898 nd->flags & LOOKUP_FOLLOW);
1899 }
1900
1901 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1902 static int path_lookupat(int dfd, const char *name,
1903 unsigned int flags, struct nameidata *nd)
1904 {
1905 struct file *base = NULL;
1906 struct path path;
1907 int err;
1908
1909 /*
1910 * Path walking is largely split up into 2 different synchronisation
1911 * schemes, rcu-walk and ref-walk (explained in
1912 * Documentation/filesystems/path-lookup.txt). These share much of the
1913 * path walk code, but some things particularly setup, cleanup, and
1914 * following mounts are sufficiently divergent that functions are
1915 * duplicated. Typically there is a function foo(), and its RCU
1916 * analogue, foo_rcu().
1917 *
1918 * -ECHILD is the error number of choice (just to avoid clashes) that
1919 * is returned if some aspect of an rcu-walk fails. Such an error must
1920 * be handled by restarting a traditional ref-walk (which will always
1921 * be able to complete).
1922 */
1923 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1924
1925 if (unlikely(err))
1926 return err;
1927
1928 current->total_link_count = 0;
1929 err = link_path_walk(name, nd);
1930
1931 if (!err && !(flags & LOOKUP_PARENT)) {
1932 err = lookup_last(nd, &path);
1933 while (err > 0) {
1934 void *cookie;
1935 struct path link = path;
1936 err = may_follow_link(&link, nd);
1937 if (unlikely(err))
1938 break;
1939 nd->flags |= LOOKUP_PARENT;
1940 err = follow_link(&link, nd, &cookie);
1941 if (err)
1942 break;
1943 err = lookup_last(nd, &path);
1944 put_link(nd, &link, cookie);
1945 }
1946 }
1947
1948 if (!err)
1949 err = complete_walk(nd);
1950
1951 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1952 if (!nd->inode->i_op->lookup) {
1953 path_put(&nd->path);
1954 err = -ENOTDIR;
1955 }
1956 }
1957
1958 if (base)
1959 fput(base);
1960
1961 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1962 path_put(&nd->root);
1963 nd->root.mnt = NULL;
1964 }
1965 return err;
1966 }
1967
1968 static int do_path_lookup(int dfd, const char *name,
1969 unsigned int flags, struct nameidata *nd)
1970 {
1971 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1972 if (unlikely(retval == -ECHILD))
1973 retval = path_lookupat(dfd, name, flags, nd);
1974 if (unlikely(retval == -ESTALE))
1975 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1976
1977 if (likely(!retval)) {
1978 if (unlikely(!audit_dummy_context())) {
1979 if (nd->path.dentry && nd->inode)
1980 audit_inode(name, nd->path.dentry);
1981 }
1982 }
1983 return retval;
1984 }
1985
1986 /* does lookup, returns the object with parent locked */
1987 struct dentry *kern_path_locked(const char *name, struct path *path)
1988 {
1989 struct nameidata nd;
1990 struct dentry *d;
1991 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
1992 if (err)
1993 return ERR_PTR(err);
1994 if (nd.last_type != LAST_NORM) {
1995 path_put(&nd.path);
1996 return ERR_PTR(-EINVAL);
1997 }
1998 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1999 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2000 if (IS_ERR(d)) {
2001 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2002 path_put(&nd.path);
2003 return d;
2004 }
2005 *path = nd.path;
2006 return d;
2007 }
2008
2009 int kern_path(const char *name, unsigned int flags, struct path *path)
2010 {
2011 struct nameidata nd;
2012 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2013 if (!res)
2014 *path = nd.path;
2015 return res;
2016 }
2017
2018 /**
2019 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2020 * @dentry: pointer to dentry of the base directory
2021 * @mnt: pointer to vfs mount of the base directory
2022 * @name: pointer to file name
2023 * @flags: lookup flags
2024 * @path: pointer to struct path to fill
2025 */
2026 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2027 const char *name, unsigned int flags,
2028 struct path *path)
2029 {
2030 struct nameidata nd;
2031 int err;
2032 nd.root.dentry = dentry;
2033 nd.root.mnt = mnt;
2034 BUG_ON(flags & LOOKUP_PARENT);
2035 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2036 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2037 if (!err)
2038 *path = nd.path;
2039 return err;
2040 }
2041
2042 /*
2043 * Restricted form of lookup. Doesn't follow links, single-component only,
2044 * needs parent already locked. Doesn't follow mounts.
2045 * SMP-safe.
2046 */
2047 static struct dentry *lookup_hash(struct nameidata *nd)
2048 {
2049 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2050 }
2051
2052 /**
2053 * lookup_one_len - filesystem helper to lookup single pathname component
2054 * @name: pathname component to lookup
2055 * @base: base directory to lookup from
2056 * @len: maximum length @len should be interpreted to
2057 *
2058 * Note that this routine is purely a helper for filesystem usage and should
2059 * not be called by generic code. Also note that by using this function the
2060 * nameidata argument is passed to the filesystem methods and a filesystem
2061 * using this helper needs to be prepared for that.
2062 */
2063 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2064 {
2065 struct qstr this;
2066 unsigned int c;
2067 int err;
2068
2069 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2070
2071 this.name = name;
2072 this.len = len;
2073 this.hash = full_name_hash(name, len);
2074 if (!len)
2075 return ERR_PTR(-EACCES);
2076
2077 while (len--) {
2078 c = *(const unsigned char *)name++;
2079 if (c == '/' || c == '\0')
2080 return ERR_PTR(-EACCES);
2081 }
2082 /*
2083 * See if the low-level filesystem might want
2084 * to use its own hash..
2085 */
2086 if (base->d_flags & DCACHE_OP_HASH) {
2087 int err = base->d_op->d_hash(base, base->d_inode, &this);
2088 if (err < 0)
2089 return ERR_PTR(err);
2090 }
2091
2092 err = inode_permission(base->d_inode, MAY_EXEC);
2093 if (err)
2094 return ERR_PTR(err);
2095
2096 return __lookup_hash(&this, base, 0);
2097 }
2098
2099 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2100 struct path *path, int *empty)
2101 {
2102 struct nameidata nd;
2103 char *tmp = getname_flags(name, flags, empty);
2104 int err = PTR_ERR(tmp);
2105 if (!IS_ERR(tmp)) {
2106
2107 BUG_ON(flags & LOOKUP_PARENT);
2108
2109 err = do_path_lookup(dfd, tmp, flags, &nd);
2110 putname(tmp);
2111 if (!err)
2112 *path = nd.path;
2113 }
2114 return err;
2115 }
2116
2117 int user_path_at(int dfd, const char __user *name, unsigned flags,
2118 struct path *path)
2119 {
2120 return user_path_at_empty(dfd, name, flags, path, NULL);
2121 }
2122
2123 static int user_path_parent(int dfd, const char __user *path,
2124 struct nameidata *nd, char **name)
2125 {
2126 char *s = getname(path);
2127 int error;
2128
2129 if (IS_ERR(s))
2130 return PTR_ERR(s);
2131
2132 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
2133 if (error)
2134 putname(s);
2135 else
2136 *name = s;
2137
2138 return error;
2139 }
2140
2141 /*
2142 * It's inline, so penalty for filesystems that don't use sticky bit is
2143 * minimal.
2144 */
2145 static inline int check_sticky(struct inode *dir, struct inode *inode)
2146 {
2147 kuid_t fsuid = current_fsuid();
2148
2149 if (!(dir->i_mode & S_ISVTX))
2150 return 0;
2151 if (uid_eq(inode->i_uid, fsuid))
2152 return 0;
2153 if (uid_eq(dir->i_uid, fsuid))
2154 return 0;
2155 return !inode_capable(inode, CAP_FOWNER);
2156 }
2157
2158 /*
2159 * Check whether we can remove a link victim from directory dir, check
2160 * whether the type of victim is right.
2161 * 1. We can't do it if dir is read-only (done in permission())
2162 * 2. We should have write and exec permissions on dir
2163 * 3. We can't remove anything from append-only dir
2164 * 4. We can't do anything with immutable dir (done in permission())
2165 * 5. If the sticky bit on dir is set we should either
2166 * a. be owner of dir, or
2167 * b. be owner of victim, or
2168 * c. have CAP_FOWNER capability
2169 * 6. If the victim is append-only or immutable we can't do antyhing with
2170 * links pointing to it.
2171 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2172 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2173 * 9. We can't remove a root or mountpoint.
2174 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2175 * nfs_async_unlink().
2176 */
2177 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2178 {
2179 int error;
2180
2181 if (!victim->d_inode)
2182 return -ENOENT;
2183
2184 BUG_ON(victim->d_parent->d_inode != dir);
2185 audit_inode_child(victim, dir);
2186
2187 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2188 if (error)
2189 return error;
2190 if (IS_APPEND(dir))
2191 return -EPERM;
2192 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2193 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2194 return -EPERM;
2195 if (isdir) {
2196 if (!S_ISDIR(victim->d_inode->i_mode))
2197 return -ENOTDIR;
2198 if (IS_ROOT(victim))
2199 return -EBUSY;
2200 } else if (S_ISDIR(victim->d_inode->i_mode))
2201 return -EISDIR;
2202 if (IS_DEADDIR(dir))
2203 return -ENOENT;
2204 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2205 return -EBUSY;
2206 return 0;
2207 }
2208
2209 /* Check whether we can create an object with dentry child in directory
2210 * dir.
2211 * 1. We can't do it if child already exists (open has special treatment for
2212 * this case, but since we are inlined it's OK)
2213 * 2. We can't do it if dir is read-only (done in permission())
2214 * 3. We should have write and exec permissions on dir
2215 * 4. We can't do it if dir is immutable (done in permission())
2216 */
2217 static inline int may_create(struct inode *dir, struct dentry *child)
2218 {
2219 if (child->d_inode)
2220 return -EEXIST;
2221 if (IS_DEADDIR(dir))
2222 return -ENOENT;
2223 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2224 }
2225
2226 /*
2227 * p1 and p2 should be directories on the same fs.
2228 */
2229 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2230 {
2231 struct dentry *p;
2232
2233 if (p1 == p2) {
2234 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2235 return NULL;
2236 }
2237
2238 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2239
2240 p = d_ancestor(p2, p1);
2241 if (p) {
2242 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2243 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2244 return p;
2245 }
2246
2247 p = d_ancestor(p1, p2);
2248 if (p) {
2249 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2250 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2251 return p;
2252 }
2253
2254 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2255 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2256 return NULL;
2257 }
2258
2259 void unlock_rename(struct dentry *p1, struct dentry *p2)
2260 {
2261 mutex_unlock(&p1->d_inode->i_mutex);
2262 if (p1 != p2) {
2263 mutex_unlock(&p2->d_inode->i_mutex);
2264 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2265 }
2266 }
2267
2268 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2269 bool want_excl)
2270 {
2271 int error = may_create(dir, dentry);
2272 if (error)
2273 return error;
2274
2275 if (!dir->i_op->create)
2276 return -EACCES; /* shouldn't it be ENOSYS? */
2277 mode &= S_IALLUGO;
2278 mode |= S_IFREG;
2279 error = security_inode_create(dir, dentry, mode);
2280 if (error)
2281 return error;
2282 error = dir->i_op->create(dir, dentry, mode, want_excl);
2283 if (!error)
2284 fsnotify_create(dir, dentry);
2285 return error;
2286 }
2287
2288 static int may_open(struct path *path, int acc_mode, int flag)
2289 {
2290 struct dentry *dentry = path->dentry;
2291 struct inode *inode = dentry->d_inode;
2292 int error;
2293
2294 /* O_PATH? */
2295 if (!acc_mode)
2296 return 0;
2297
2298 if (!inode)
2299 return -ENOENT;
2300
2301 switch (inode->i_mode & S_IFMT) {
2302 case S_IFLNK:
2303 return -ELOOP;
2304 case S_IFDIR:
2305 if (acc_mode & MAY_WRITE)
2306 return -EISDIR;
2307 break;
2308 case S_IFBLK:
2309 case S_IFCHR:
2310 if (path->mnt->mnt_flags & MNT_NODEV)
2311 return -EACCES;
2312 /*FALLTHRU*/
2313 case S_IFIFO:
2314 case S_IFSOCK:
2315 flag &= ~O_TRUNC;
2316 break;
2317 }
2318
2319 error = inode_permission(inode, acc_mode);
2320 if (error)
2321 return error;
2322
2323 /*
2324 * An append-only file must be opened in append mode for writing.
2325 */
2326 if (IS_APPEND(inode)) {
2327 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2328 return -EPERM;
2329 if (flag & O_TRUNC)
2330 return -EPERM;
2331 }
2332
2333 /* O_NOATIME can only be set by the owner or superuser */
2334 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2335 return -EPERM;
2336
2337 return 0;
2338 }
2339
2340 static int handle_truncate(struct file *filp)
2341 {
2342 struct path *path = &filp->f_path;
2343 struct inode *inode = path->dentry->d_inode;
2344 int error = get_write_access(inode);
2345 if (error)
2346 return error;
2347 /*
2348 * Refuse to truncate files with mandatory locks held on them.
2349 */
2350 error = locks_verify_locked(inode);
2351 if (!error)
2352 error = security_path_truncate(path);
2353 if (!error) {
2354 error = do_truncate(path->dentry, 0,
2355 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2356 filp);
2357 }
2358 put_write_access(inode);
2359 return error;
2360 }
2361
2362 static inline int open_to_namei_flags(int flag)
2363 {
2364 if ((flag & O_ACCMODE) == 3)
2365 flag--;
2366 return flag;
2367 }
2368
2369 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2370 {
2371 int error = security_path_mknod(dir, dentry, mode, 0);
2372 if (error)
2373 return error;
2374
2375 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2376 if (error)
2377 return error;
2378
2379 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2380 }
2381
2382 /*
2383 * Attempt to atomically look up, create and open a file from a negative
2384 * dentry.
2385 *
2386 * Returns 0 if successful. The file will have been created and attached to
2387 * @file by the filesystem calling finish_open().
2388 *
2389 * Returns 1 if the file was looked up only or didn't need creating. The
2390 * caller will need to perform the open themselves. @path will have been
2391 * updated to point to the new dentry. This may be negative.
2392 *
2393 * Returns an error code otherwise.
2394 */
2395 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2396 struct path *path, struct file *file,
2397 const struct open_flags *op,
2398 bool got_write, bool need_lookup,
2399 int *opened)
2400 {
2401 struct inode *dir = nd->path.dentry->d_inode;
2402 unsigned open_flag = open_to_namei_flags(op->open_flag);
2403 umode_t mode;
2404 int error;
2405 int acc_mode;
2406 int create_error = 0;
2407 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2408
2409 BUG_ON(dentry->d_inode);
2410
2411 /* Don't create child dentry for a dead directory. */
2412 if (unlikely(IS_DEADDIR(dir))) {
2413 error = -ENOENT;
2414 goto out;
2415 }
2416
2417 mode = op->mode;
2418 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2419 mode &= ~current_umask();
2420
2421 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2422 open_flag &= ~O_TRUNC;
2423 *opened |= FILE_CREATED;
2424 }
2425
2426 /*
2427 * Checking write permission is tricky, bacuse we don't know if we are
2428 * going to actually need it: O_CREAT opens should work as long as the
2429 * file exists. But checking existence breaks atomicity. The trick is
2430 * to check access and if not granted clear O_CREAT from the flags.
2431 *
2432 * Another problem is returing the "right" error value (e.g. for an
2433 * O_EXCL open we want to return EEXIST not EROFS).
2434 */
2435 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2436 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2437 if (!(open_flag & O_CREAT)) {
2438 /*
2439 * No O_CREATE -> atomicity not a requirement -> fall
2440 * back to lookup + open
2441 */
2442 goto no_open;
2443 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2444 /* Fall back and fail with the right error */
2445 create_error = -EROFS;
2446 goto no_open;
2447 } else {
2448 /* No side effects, safe to clear O_CREAT */
2449 create_error = -EROFS;
2450 open_flag &= ~O_CREAT;
2451 }
2452 }
2453
2454 if (open_flag & O_CREAT) {
2455 error = may_o_create(&nd->path, dentry, mode);
2456 if (error) {
2457 create_error = error;
2458 if (open_flag & O_EXCL)
2459 goto no_open;
2460 open_flag &= ~O_CREAT;
2461 }
2462 }
2463
2464 if (nd->flags & LOOKUP_DIRECTORY)
2465 open_flag |= O_DIRECTORY;
2466
2467 file->f_path.dentry = DENTRY_NOT_SET;
2468 file->f_path.mnt = nd->path.mnt;
2469 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2470 opened);
2471 if (error < 0) {
2472 if (create_error && error == -ENOENT)
2473 error = create_error;
2474 goto out;
2475 }
2476
2477 acc_mode = op->acc_mode;
2478 if (*opened & FILE_CREATED) {
2479 fsnotify_create(dir, dentry);
2480 acc_mode = MAY_OPEN;
2481 }
2482
2483 if (error) { /* returned 1, that is */
2484 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2485 error = -EIO;
2486 goto out;
2487 }
2488 if (file->f_path.dentry) {
2489 dput(dentry);
2490 dentry = file->f_path.dentry;
2491 }
2492 if (create_error && dentry->d_inode == NULL) {
2493 error = create_error;
2494 goto out;
2495 }
2496 goto looked_up;
2497 }
2498
2499 /*
2500 * We didn't have the inode before the open, so check open permission
2501 * here.
2502 */
2503 error = may_open(&file->f_path, acc_mode, open_flag);
2504 if (error)
2505 fput(file);
2506
2507 out:
2508 dput(dentry);
2509 return error;
2510
2511 no_open:
2512 if (need_lookup) {
2513 dentry = lookup_real(dir, dentry, nd->flags);
2514 if (IS_ERR(dentry))
2515 return PTR_ERR(dentry);
2516
2517 if (create_error) {
2518 int open_flag = op->open_flag;
2519
2520 error = create_error;
2521 if ((open_flag & O_EXCL)) {
2522 if (!dentry->d_inode)
2523 goto out;
2524 } else if (!dentry->d_inode) {
2525 goto out;
2526 } else if ((open_flag & O_TRUNC) &&
2527 S_ISREG(dentry->d_inode->i_mode)) {
2528 goto out;
2529 }
2530 /* will fail later, go on to get the right error */
2531 }
2532 }
2533 looked_up:
2534 path->dentry = dentry;
2535 path->mnt = nd->path.mnt;
2536 return 1;
2537 }
2538
2539 /*
2540 * Look up and maybe create and open the last component.
2541 *
2542 * Must be called with i_mutex held on parent.
2543 *
2544 * Returns 0 if the file was successfully atomically created (if necessary) and
2545 * opened. In this case the file will be returned attached to @file.
2546 *
2547 * Returns 1 if the file was not completely opened at this time, though lookups
2548 * and creations will have been performed and the dentry returned in @path will
2549 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2550 * specified then a negative dentry may be returned.
2551 *
2552 * An error code is returned otherwise.
2553 *
2554 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2555 * cleared otherwise prior to returning.
2556 */
2557 static int lookup_open(struct nameidata *nd, struct path *path,
2558 struct file *file,
2559 const struct open_flags *op,
2560 bool got_write, int *opened)
2561 {
2562 struct dentry *dir = nd->path.dentry;
2563 struct inode *dir_inode = dir->d_inode;
2564 struct dentry *dentry;
2565 int error;
2566 bool need_lookup;
2567
2568 *opened &= ~FILE_CREATED;
2569 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2570 if (IS_ERR(dentry))
2571 return PTR_ERR(dentry);
2572
2573 /* Cached positive dentry: will open in f_op->open */
2574 if (!need_lookup && dentry->d_inode)
2575 goto out_no_open;
2576
2577 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2578 return atomic_open(nd, dentry, path, file, op, got_write,
2579 need_lookup, opened);
2580 }
2581
2582 if (need_lookup) {
2583 BUG_ON(dentry->d_inode);
2584
2585 dentry = lookup_real(dir_inode, dentry, nd->flags);
2586 if (IS_ERR(dentry))
2587 return PTR_ERR(dentry);
2588 }
2589
2590 /* Negative dentry, just create the file */
2591 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2592 umode_t mode = op->mode;
2593 if (!IS_POSIXACL(dir->d_inode))
2594 mode &= ~current_umask();
2595 /*
2596 * This write is needed to ensure that a
2597 * rw->ro transition does not occur between
2598 * the time when the file is created and when
2599 * a permanent write count is taken through
2600 * the 'struct file' in finish_open().
2601 */
2602 if (!got_write) {
2603 error = -EROFS;
2604 goto out_dput;
2605 }
2606 *opened |= FILE_CREATED;
2607 error = security_path_mknod(&nd->path, dentry, mode, 0);
2608 if (error)
2609 goto out_dput;
2610 error = vfs_create(dir->d_inode, dentry, mode,
2611 nd->flags & LOOKUP_EXCL);
2612 if (error)
2613 goto out_dput;
2614 }
2615 out_no_open:
2616 path->dentry = dentry;
2617 path->mnt = nd->path.mnt;
2618 return 1;
2619
2620 out_dput:
2621 dput(dentry);
2622 return error;
2623 }
2624
2625 /*
2626 * Handle the last step of open()
2627 */
2628 static int do_last(struct nameidata *nd, struct path *path,
2629 struct file *file, const struct open_flags *op,
2630 int *opened, const char *pathname)
2631 {
2632 struct dentry *dir = nd->path.dentry;
2633 int open_flag = op->open_flag;
2634 bool will_truncate = (open_flag & O_TRUNC) != 0;
2635 bool got_write = false;
2636 int acc_mode = op->acc_mode;
2637 struct inode *inode;
2638 bool symlink_ok = false;
2639 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2640 bool retried = false;
2641 int error;
2642
2643 nd->flags &= ~LOOKUP_PARENT;
2644 nd->flags |= op->intent;
2645
2646 switch (nd->last_type) {
2647 case LAST_DOTDOT:
2648 case LAST_DOT:
2649 error = handle_dots(nd, nd->last_type);
2650 if (error)
2651 return error;
2652 /* fallthrough */
2653 case LAST_ROOT:
2654 error = complete_walk(nd);
2655 if (error)
2656 return error;
2657 audit_inode(pathname, nd->path.dentry);
2658 if (open_flag & O_CREAT) {
2659 error = -EISDIR;
2660 goto out;
2661 }
2662 goto finish_open;
2663 case LAST_BIND:
2664 error = complete_walk(nd);
2665 if (error)
2666 return error;
2667 audit_inode(pathname, dir);
2668 goto finish_open;
2669 }
2670
2671 if (!(open_flag & O_CREAT)) {
2672 if (nd->last.name[nd->last.len])
2673 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2674 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2675 symlink_ok = true;
2676 /* we _can_ be in RCU mode here */
2677 error = lookup_fast(nd, &nd->last, path, &inode);
2678 if (likely(!error))
2679 goto finish_lookup;
2680
2681 if (error < 0)
2682 goto out;
2683
2684 BUG_ON(nd->inode != dir->d_inode);
2685 } else {
2686 /* create side of things */
2687 /*
2688 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2689 * has been cleared when we got to the last component we are
2690 * about to look up
2691 */
2692 error = complete_walk(nd);
2693 if (error)
2694 return error;
2695
2696 audit_inode(pathname, dir);
2697 error = -EISDIR;
2698 /* trailing slashes? */
2699 if (nd->last.name[nd->last.len])
2700 goto out;
2701 }
2702
2703 retry_lookup:
2704 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2705 error = mnt_want_write(nd->path.mnt);
2706 if (!error)
2707 got_write = true;
2708 /*
2709 * do _not_ fail yet - we might not need that or fail with
2710 * a different error; let lookup_open() decide; we'll be
2711 * dropping this one anyway.
2712 */
2713 }
2714 mutex_lock(&dir->d_inode->i_mutex);
2715 error = lookup_open(nd, path, file, op, got_write, opened);
2716 mutex_unlock(&dir->d_inode->i_mutex);
2717
2718 if (error <= 0) {
2719 if (error)
2720 goto out;
2721
2722 if ((*opened & FILE_CREATED) ||
2723 !S_ISREG(file->f_path.dentry->d_inode->i_mode))
2724 will_truncate = false;
2725
2726 audit_inode(pathname, file->f_path.dentry);
2727 goto opened;
2728 }
2729
2730 if (*opened & FILE_CREATED) {
2731 /* Don't check for write permission, don't truncate */
2732 open_flag &= ~O_TRUNC;
2733 will_truncate = false;
2734 acc_mode = MAY_OPEN;
2735 path_to_nameidata(path, nd);
2736 goto finish_open_created;
2737 }
2738
2739 /*
2740 * create/update audit record if it already exists.
2741 */
2742 if (path->dentry->d_inode)
2743 audit_inode(pathname, path->dentry);
2744
2745 /*
2746 * If atomic_open() acquired write access it is dropped now due to
2747 * possible mount and symlink following (this might be optimized away if
2748 * necessary...)
2749 */
2750 if (got_write) {
2751 mnt_drop_write(nd->path.mnt);
2752 got_write = false;
2753 }
2754
2755 error = -EEXIST;
2756 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2757 goto exit_dput;
2758
2759 error = follow_managed(path, nd->flags);
2760 if (error < 0)
2761 goto exit_dput;
2762
2763 if (error)
2764 nd->flags |= LOOKUP_JUMPED;
2765
2766 BUG_ON(nd->flags & LOOKUP_RCU);
2767 inode = path->dentry->d_inode;
2768 finish_lookup:
2769 /* we _can_ be in RCU mode here */
2770 error = -ENOENT;
2771 if (!inode) {
2772 path_to_nameidata(path, nd);
2773 goto out;
2774 }
2775
2776 if (should_follow_link(inode, !symlink_ok)) {
2777 if (nd->flags & LOOKUP_RCU) {
2778 if (unlikely(unlazy_walk(nd, path->dentry))) {
2779 error = -ECHILD;
2780 goto out;
2781 }
2782 }
2783 BUG_ON(inode != path->dentry->d_inode);
2784 return 1;
2785 }
2786
2787 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2788 path_to_nameidata(path, nd);
2789 } else {
2790 save_parent.dentry = nd->path.dentry;
2791 save_parent.mnt = mntget(path->mnt);
2792 nd->path.dentry = path->dentry;
2793
2794 }
2795 nd->inode = inode;
2796 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2797 error = complete_walk(nd);
2798 if (error) {
2799 path_put(&save_parent);
2800 return error;
2801 }
2802 error = -EISDIR;
2803 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2804 goto out;
2805 error = -ENOTDIR;
2806 if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup)
2807 goto out;
2808 audit_inode(pathname, nd->path.dentry);
2809 finish_open:
2810 if (!S_ISREG(nd->inode->i_mode))
2811 will_truncate = false;
2812
2813 if (will_truncate) {
2814 error = mnt_want_write(nd->path.mnt);
2815 if (error)
2816 goto out;
2817 got_write = true;
2818 }
2819 finish_open_created:
2820 error = may_open(&nd->path, acc_mode, open_flag);
2821 if (error)
2822 goto out;
2823 file->f_path.mnt = nd->path.mnt;
2824 error = finish_open(file, nd->path.dentry, NULL, opened);
2825 if (error) {
2826 if (error == -EOPENSTALE)
2827 goto stale_open;
2828 goto out;
2829 }
2830 opened:
2831 error = open_check_o_direct(file);
2832 if (error)
2833 goto exit_fput;
2834 error = ima_file_check(file, op->acc_mode);
2835 if (error)
2836 goto exit_fput;
2837
2838 if (will_truncate) {
2839 error = handle_truncate(file);
2840 if (error)
2841 goto exit_fput;
2842 }
2843 out:
2844 if (got_write)
2845 mnt_drop_write(nd->path.mnt);
2846 path_put(&save_parent);
2847 terminate_walk(nd);
2848 return error;
2849
2850 exit_dput:
2851 path_put_conditional(path, nd);
2852 goto out;
2853 exit_fput:
2854 fput(file);
2855 goto out;
2856
2857 stale_open:
2858 /* If no saved parent or already retried then can't retry */
2859 if (!save_parent.dentry || retried)
2860 goto out;
2861
2862 BUG_ON(save_parent.dentry != dir);
2863 path_put(&nd->path);
2864 nd->path = save_parent;
2865 nd->inode = dir->d_inode;
2866 save_parent.mnt = NULL;
2867 save_parent.dentry = NULL;
2868 if (got_write) {
2869 mnt_drop_write(nd->path.mnt);
2870 got_write = false;
2871 }
2872 retried = true;
2873 goto retry_lookup;
2874 }
2875
2876 static struct file *path_openat(int dfd, const char *pathname,
2877 struct nameidata *nd, const struct open_flags *op, int flags)
2878 {
2879 struct file *base = NULL;
2880 struct file *file;
2881 struct path path;
2882 int opened = 0;
2883 int error;
2884
2885 file = get_empty_filp();
2886 if (!file)
2887 return ERR_PTR(-ENFILE);
2888
2889 file->f_flags = op->open_flag;
2890
2891 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2892 if (unlikely(error))
2893 goto out;
2894
2895 current->total_link_count = 0;
2896 error = link_path_walk(pathname, nd);
2897 if (unlikely(error))
2898 goto out;
2899
2900 error = do_last(nd, &path, file, op, &opened, pathname);
2901 while (unlikely(error > 0)) { /* trailing symlink */
2902 struct path link = path;
2903 void *cookie;
2904 if (!(nd->flags & LOOKUP_FOLLOW)) {
2905 path_put_conditional(&path, nd);
2906 path_put(&nd->path);
2907 error = -ELOOP;
2908 break;
2909 }
2910 error = may_follow_link(&link, nd);
2911 if (unlikely(error))
2912 break;
2913 nd->flags |= LOOKUP_PARENT;
2914 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2915 error = follow_link(&link, nd, &cookie);
2916 if (unlikely(error))
2917 break;
2918 error = do_last(nd, &path, file, op, &opened, pathname);
2919 put_link(nd, &link, cookie);
2920 }
2921 out:
2922 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2923 path_put(&nd->root);
2924 if (base)
2925 fput(base);
2926 if (!(opened & FILE_OPENED)) {
2927 BUG_ON(!error);
2928 put_filp(file);
2929 }
2930 if (unlikely(error)) {
2931 if (error == -EOPENSTALE) {
2932 if (flags & LOOKUP_RCU)
2933 error = -ECHILD;
2934 else
2935 error = -ESTALE;
2936 }
2937 file = ERR_PTR(error);
2938 }
2939 return file;
2940 }
2941
2942 struct file *do_filp_open(int dfd, const char *pathname,
2943 const struct open_flags *op, int flags)
2944 {
2945 struct nameidata nd;
2946 struct file *filp;
2947
2948 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2949 if (unlikely(filp == ERR_PTR(-ECHILD)))
2950 filp = path_openat(dfd, pathname, &nd, op, flags);
2951 if (unlikely(filp == ERR_PTR(-ESTALE)))
2952 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2953 return filp;
2954 }
2955
2956 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2957 const char *name, const struct open_flags *op, int flags)
2958 {
2959 struct nameidata nd;
2960 struct file *file;
2961
2962 nd.root.mnt = mnt;
2963 nd.root.dentry = dentry;
2964
2965 flags |= LOOKUP_ROOT;
2966
2967 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2968 return ERR_PTR(-ELOOP);
2969
2970 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2971 if (unlikely(file == ERR_PTR(-ECHILD)))
2972 file = path_openat(-1, name, &nd, op, flags);
2973 if (unlikely(file == ERR_PTR(-ESTALE)))
2974 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2975 return file;
2976 }
2977
2978 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2979 {
2980 struct dentry *dentry = ERR_PTR(-EEXIST);
2981 struct nameidata nd;
2982 int err2;
2983 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2984 if (error)
2985 return ERR_PTR(error);
2986
2987 /*
2988 * Yucky last component or no last component at all?
2989 * (foo/., foo/.., /////)
2990 */
2991 if (nd.last_type != LAST_NORM)
2992 goto out;
2993 nd.flags &= ~LOOKUP_PARENT;
2994 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2995
2996 /* don't fail immediately if it's r/o, at least try to report other errors */
2997 err2 = mnt_want_write(nd.path.mnt);
2998 /*
2999 * Do the final lookup.
3000 */
3001 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3002 dentry = lookup_hash(&nd);
3003 if (IS_ERR(dentry))
3004 goto unlock;
3005
3006 error = -EEXIST;
3007 if (dentry->d_inode)
3008 goto fail;
3009 /*
3010 * Special case - lookup gave negative, but... we had foo/bar/
3011 * From the vfs_mknod() POV we just have a negative dentry -
3012 * all is fine. Let's be bastards - you had / on the end, you've
3013 * been asking for (non-existent) directory. -ENOENT for you.
3014 */
3015 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3016 error = -ENOENT;
3017 goto fail;
3018 }
3019 if (unlikely(err2)) {
3020 error = err2;
3021 goto fail;
3022 }
3023 *path = nd.path;
3024 return dentry;
3025 fail:
3026 dput(dentry);
3027 dentry = ERR_PTR(error);
3028 unlock:
3029 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3030 if (!err2)
3031 mnt_drop_write(nd.path.mnt);
3032 out:
3033 path_put(&nd.path);
3034 return dentry;
3035 }
3036 EXPORT_SYMBOL(kern_path_create);
3037
3038 void done_path_create(struct path *path, struct dentry *dentry)
3039 {
3040 dput(dentry);
3041 mutex_unlock(&path->dentry->d_inode->i_mutex);
3042 mnt_drop_write(path->mnt);
3043 path_put(path);
3044 }
3045 EXPORT_SYMBOL(done_path_create);
3046
3047 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
3048 {
3049 char *tmp = getname(pathname);
3050 struct dentry *res;
3051 if (IS_ERR(tmp))
3052 return ERR_CAST(tmp);
3053 res = kern_path_create(dfd, tmp, path, is_dir);
3054 putname(tmp);
3055 return res;
3056 }
3057 EXPORT_SYMBOL(user_path_create);
3058
3059 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3060 {
3061 int error = may_create(dir, dentry);
3062
3063 if (error)
3064 return error;
3065
3066 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3067 return -EPERM;
3068
3069 if (!dir->i_op->mknod)
3070 return -EPERM;
3071
3072 error = devcgroup_inode_mknod(mode, dev);
3073 if (error)
3074 return error;
3075
3076 error = security_inode_mknod(dir, dentry, mode, dev);
3077 if (error)
3078 return error;
3079
3080 error = dir->i_op->mknod(dir, dentry, mode, dev);
3081 if (!error)
3082 fsnotify_create(dir, dentry);
3083 return error;
3084 }
3085
3086 static int may_mknod(umode_t mode)
3087 {
3088 switch (mode & S_IFMT) {
3089 case S_IFREG:
3090 case S_IFCHR:
3091 case S_IFBLK:
3092 case S_IFIFO:
3093 case S_IFSOCK:
3094 case 0: /* zero mode translates to S_IFREG */
3095 return 0;
3096 case S_IFDIR:
3097 return -EPERM;
3098 default:
3099 return -EINVAL;
3100 }
3101 }
3102
3103 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3104 unsigned, dev)
3105 {
3106 struct dentry *dentry;
3107 struct path path;
3108 int error;
3109
3110 error = may_mknod(mode);
3111 if (error)
3112 return error;
3113
3114 dentry = user_path_create(dfd, filename, &path, 0);
3115 if (IS_ERR(dentry))
3116 return PTR_ERR(dentry);
3117
3118 if (!IS_POSIXACL(path.dentry->d_inode))
3119 mode &= ~current_umask();
3120 error = security_path_mknod(&path, dentry, mode, dev);
3121 if (error)
3122 goto out;
3123 switch (mode & S_IFMT) {
3124 case 0: case S_IFREG:
3125 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3126 break;
3127 case S_IFCHR: case S_IFBLK:
3128 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3129 new_decode_dev(dev));
3130 break;
3131 case S_IFIFO: case S_IFSOCK:
3132 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3133 break;
3134 }
3135 out:
3136 done_path_create(&path, dentry);
3137 return error;
3138 }
3139
3140 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3141 {
3142 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3143 }
3144
3145 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3146 {
3147 int error = may_create(dir, dentry);
3148 unsigned max_links = dir->i_sb->s_max_links;
3149
3150 if (error)
3151 return error;
3152
3153 if (!dir->i_op->mkdir)
3154 return -EPERM;
3155
3156 mode &= (S_IRWXUGO|S_ISVTX);
3157 error = security_inode_mkdir(dir, dentry, mode);
3158 if (error)
3159 return error;
3160
3161 if (max_links && dir->i_nlink >= max_links)
3162 return -EMLINK;
3163
3164 error = dir->i_op->mkdir(dir, dentry, mode);
3165 if (!error)
3166 fsnotify_mkdir(dir, dentry);
3167 return error;
3168 }
3169
3170 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3171 {
3172 struct dentry *dentry;
3173 struct path path;
3174 int error;
3175
3176 dentry = user_path_create(dfd, pathname, &path, 1);
3177 if (IS_ERR(dentry))
3178 return PTR_ERR(dentry);
3179
3180 if (!IS_POSIXACL(path.dentry->d_inode))
3181 mode &= ~current_umask();
3182 error = security_path_mkdir(&path, dentry, mode);
3183 if (!error)
3184 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3185 done_path_create(&path, dentry);
3186 return error;
3187 }
3188
3189 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3190 {
3191 return sys_mkdirat(AT_FDCWD, pathname, mode);
3192 }
3193
3194 /*
3195 * The dentry_unhash() helper will try to drop the dentry early: we
3196 * should have a usage count of 1 if we're the only user of this
3197 * dentry, and if that is true (possibly after pruning the dcache),
3198 * then we drop the dentry now.
3199 *
3200 * A low-level filesystem can, if it choses, legally
3201 * do a
3202 *
3203 * if (!d_unhashed(dentry))
3204 * return -EBUSY;
3205 *
3206 * if it cannot handle the case of removing a directory
3207 * that is still in use by something else..
3208 */
3209 void dentry_unhash(struct dentry *dentry)
3210 {
3211 shrink_dcache_parent(dentry);
3212 spin_lock(&dentry->d_lock);
3213 if (dentry->d_count == 1)
3214 __d_drop(dentry);
3215 spin_unlock(&dentry->d_lock);
3216 }
3217
3218 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3219 {
3220 int error = may_delete(dir, dentry, 1);
3221
3222 if (error)
3223 return error;
3224
3225 if (!dir->i_op->rmdir)
3226 return -EPERM;
3227
3228 dget(dentry);
3229 mutex_lock(&dentry->d_inode->i_mutex);
3230
3231 error = -EBUSY;
3232 if (d_mountpoint(dentry))
3233 goto out;
3234
3235 error = security_inode_rmdir(dir, dentry);
3236 if (error)
3237 goto out;
3238
3239 shrink_dcache_parent(dentry);
3240 error = dir->i_op->rmdir(dir, dentry);
3241 if (error)
3242 goto out;
3243
3244 dentry->d_inode->i_flags |= S_DEAD;
3245 dont_mount(dentry);
3246
3247 out:
3248 mutex_unlock(&dentry->d_inode->i_mutex);
3249 dput(dentry);
3250 if (!error)
3251 d_delete(dentry);
3252 return error;
3253 }
3254
3255 static long do_rmdir(int dfd, const char __user *pathname)
3256 {
3257 int error = 0;
3258 char * name;
3259 struct dentry *dentry;
3260 struct nameidata nd;
3261
3262 error = user_path_parent(dfd, pathname, &nd, &name);
3263 if (error)
3264 return error;
3265
3266 switch(nd.last_type) {
3267 case LAST_DOTDOT:
3268 error = -ENOTEMPTY;
3269 goto exit1;
3270 case LAST_DOT:
3271 error = -EINVAL;
3272 goto exit1;
3273 case LAST_ROOT:
3274 error = -EBUSY;
3275 goto exit1;
3276 }
3277
3278 nd.flags &= ~LOOKUP_PARENT;
3279 error = mnt_want_write(nd.path.mnt);
3280 if (error)
3281 goto exit1;
3282
3283 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3284 dentry = lookup_hash(&nd);
3285 error = PTR_ERR(dentry);
3286 if (IS_ERR(dentry))
3287 goto exit2;
3288 if (!dentry->d_inode) {
3289 error = -ENOENT;
3290 goto exit3;
3291 }
3292 error = security_path_rmdir(&nd.path, dentry);
3293 if (error)
3294 goto exit3;
3295 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3296 exit3:
3297 dput(dentry);
3298 exit2:
3299 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3300 mnt_drop_write(nd.path.mnt);
3301 exit1:
3302 path_put(&nd.path);
3303 putname(name);
3304 return error;
3305 }
3306
3307 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3308 {
3309 return do_rmdir(AT_FDCWD, pathname);
3310 }
3311
3312 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3313 {
3314 int error = may_delete(dir, dentry, 0);
3315
3316 if (error)
3317 return error;
3318
3319 if (!dir->i_op->unlink)
3320 return -EPERM;
3321
3322 mutex_lock(&dentry->d_inode->i_mutex);
3323 if (d_mountpoint(dentry))
3324 error = -EBUSY;
3325 else {
3326 error = security_inode_unlink(dir, dentry);
3327 if (!error) {
3328 error = dir->i_op->unlink(dir, dentry);
3329 if (!error)
3330 dont_mount(dentry);
3331 }
3332 }
3333 mutex_unlock(&dentry->d_inode->i_mutex);
3334
3335 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3336 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3337 fsnotify_link_count(dentry->d_inode);
3338 d_delete(dentry);
3339 }
3340
3341 return error;
3342 }
3343
3344 /*
3345 * Make sure that the actual truncation of the file will occur outside its
3346 * directory's i_mutex. Truncate can take a long time if there is a lot of
3347 * writeout happening, and we don't want to prevent access to the directory
3348 * while waiting on the I/O.
3349 */
3350 static long do_unlinkat(int dfd, const char __user *pathname)
3351 {
3352 int error;
3353 char *name;
3354 struct dentry *dentry;
3355 struct nameidata nd;
3356 struct inode *inode = NULL;
3357
3358 error = user_path_parent(dfd, pathname, &nd, &name);
3359 if (error)
3360 return error;
3361
3362 error = -EISDIR;
3363 if (nd.last_type != LAST_NORM)
3364 goto exit1;
3365
3366 nd.flags &= ~LOOKUP_PARENT;
3367 error = mnt_want_write(nd.path.mnt);
3368 if (error)
3369 goto exit1;
3370
3371 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3372 dentry = lookup_hash(&nd);
3373 error = PTR_ERR(dentry);
3374 if (!IS_ERR(dentry)) {
3375 /* Why not before? Because we want correct error value */
3376 if (nd.last.name[nd.last.len])
3377 goto slashes;
3378 inode = dentry->d_inode;
3379 if (!inode)
3380 goto slashes;
3381 ihold(inode);
3382 error = security_path_unlink(&nd.path, dentry);
3383 if (error)
3384 goto exit2;
3385 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3386 exit2:
3387 dput(dentry);
3388 }
3389 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3390 if (inode)
3391 iput(inode); /* truncate the inode here */
3392 mnt_drop_write(nd.path.mnt);
3393 exit1:
3394 path_put(&nd.path);
3395 putname(name);
3396 return error;
3397
3398 slashes:
3399 error = !dentry->d_inode ? -ENOENT :
3400 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3401 goto exit2;
3402 }
3403
3404 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3405 {
3406 if ((flag & ~AT_REMOVEDIR) != 0)
3407 return -EINVAL;
3408
3409 if (flag & AT_REMOVEDIR)
3410 return do_rmdir(dfd, pathname);
3411
3412 return do_unlinkat(dfd, pathname);
3413 }
3414
3415 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3416 {
3417 return do_unlinkat(AT_FDCWD, pathname);
3418 }
3419
3420 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3421 {
3422 int error = may_create(dir, dentry);
3423
3424 if (error)
3425 return error;
3426
3427 if (!dir->i_op->symlink)
3428 return -EPERM;
3429
3430 error = security_inode_symlink(dir, dentry, oldname);
3431 if (error)
3432 return error;
3433
3434 error = dir->i_op->symlink(dir, dentry, oldname);
3435 if (!error)
3436 fsnotify_create(dir, dentry);
3437 return error;
3438 }
3439
3440 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3441 int, newdfd, const char __user *, newname)
3442 {
3443 int error;
3444 char *from;
3445 struct dentry *dentry;
3446 struct path path;
3447
3448 from = getname(oldname);
3449 if (IS_ERR(from))
3450 return PTR_ERR(from);
3451
3452 dentry = user_path_create(newdfd, newname, &path, 0);
3453 error = PTR_ERR(dentry);
3454 if (IS_ERR(dentry))
3455 goto out_putname;
3456
3457 error = security_path_symlink(&path, dentry, from);
3458 if (!error)
3459 error = vfs_symlink(path.dentry->d_inode, dentry, from);
3460 done_path_create(&path, dentry);
3461 out_putname:
3462 putname(from);
3463 return error;
3464 }
3465
3466 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3467 {
3468 return sys_symlinkat(oldname, AT_FDCWD, newname);
3469 }
3470
3471 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3472 {
3473 struct inode *inode = old_dentry->d_inode;
3474 unsigned max_links = dir->i_sb->s_max_links;
3475 int error;
3476
3477 if (!inode)
3478 return -ENOENT;
3479
3480 error = may_create(dir, new_dentry);
3481 if (error)
3482 return error;
3483
3484 if (dir->i_sb != inode->i_sb)
3485 return -EXDEV;
3486
3487 /*
3488 * A link to an append-only or immutable file cannot be created.
3489 */
3490 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3491 return -EPERM;
3492 if (!dir->i_op->link)
3493 return -EPERM;
3494 if (S_ISDIR(inode->i_mode))
3495 return -EPERM;
3496
3497 error = security_inode_link(old_dentry, dir, new_dentry);
3498 if (error)
3499 return error;
3500
3501 mutex_lock(&inode->i_mutex);
3502 /* Make sure we don't allow creating hardlink to an unlinked file */
3503 if (inode->i_nlink == 0)
3504 error = -ENOENT;
3505 else if (max_links && inode->i_nlink >= max_links)
3506 error = -EMLINK;
3507 else
3508 error = dir->i_op->link(old_dentry, dir, new_dentry);
3509 mutex_unlock(&inode->i_mutex);
3510 if (!error)
3511 fsnotify_link(dir, inode, new_dentry);
3512 return error;
3513 }
3514
3515 /*
3516 * Hardlinks are often used in delicate situations. We avoid
3517 * security-related surprises by not following symlinks on the
3518 * newname. --KAB
3519 *
3520 * We don't follow them on the oldname either to be compatible
3521 * with linux 2.0, and to avoid hard-linking to directories
3522 * and other special files. --ADM
3523 */
3524 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3525 int, newdfd, const char __user *, newname, int, flags)
3526 {
3527 struct dentry *new_dentry;
3528 struct path old_path, new_path;
3529 int how = 0;
3530 int error;
3531
3532 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3533 return -EINVAL;
3534 /*
3535 * To use null names we require CAP_DAC_READ_SEARCH
3536 * This ensures that not everyone will be able to create
3537 * handlink using the passed filedescriptor.
3538 */
3539 if (flags & AT_EMPTY_PATH) {
3540 if (!capable(CAP_DAC_READ_SEARCH))
3541 return -ENOENT;
3542 how = LOOKUP_EMPTY;
3543 }
3544
3545 if (flags & AT_SYMLINK_FOLLOW)
3546 how |= LOOKUP_FOLLOW;
3547
3548 error = user_path_at(olddfd, oldname, how, &old_path);
3549 if (error)
3550 return error;
3551
3552 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3553 error = PTR_ERR(new_dentry);
3554 if (IS_ERR(new_dentry))
3555 goto out;
3556
3557 error = -EXDEV;
3558 if (old_path.mnt != new_path.mnt)
3559 goto out_dput;
3560 error = may_linkat(&old_path);
3561 if (unlikely(error))
3562 goto out_dput;
3563 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3564 if (error)
3565 goto out_dput;
3566 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3567 out_dput:
3568 done_path_create(&new_path, new_dentry);
3569 out:
3570 path_put(&old_path);
3571
3572 return error;
3573 }
3574
3575 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3576 {
3577 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3578 }
3579
3580 /*
3581 * The worst of all namespace operations - renaming directory. "Perverted"
3582 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3583 * Problems:
3584 * a) we can get into loop creation. Check is done in is_subdir().
3585 * b) race potential - two innocent renames can create a loop together.
3586 * That's where 4.4 screws up. Current fix: serialization on
3587 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3588 * story.
3589 * c) we have to lock _three_ objects - parents and victim (if it exists).
3590 * And that - after we got ->i_mutex on parents (until then we don't know
3591 * whether the target exists). Solution: try to be smart with locking
3592 * order for inodes. We rely on the fact that tree topology may change
3593 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3594 * move will be locked. Thus we can rank directories by the tree
3595 * (ancestors first) and rank all non-directories after them.
3596 * That works since everybody except rename does "lock parent, lookup,
3597 * lock child" and rename is under ->s_vfs_rename_mutex.
3598 * HOWEVER, it relies on the assumption that any object with ->lookup()
3599 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3600 * we'd better make sure that there's no link(2) for them.
3601 * d) conversion from fhandle to dentry may come in the wrong moment - when
3602 * we are removing the target. Solution: we will have to grab ->i_mutex
3603 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3604 * ->i_mutex on parents, which works but leads to some truly excessive
3605 * locking].
3606 */
3607 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3608 struct inode *new_dir, struct dentry *new_dentry)
3609 {
3610 int error = 0;
3611 struct inode *target = new_dentry->d_inode;
3612 unsigned max_links = new_dir->i_sb->s_max_links;
3613
3614 /*
3615 * If we are going to change the parent - check write permissions,
3616 * we'll need to flip '..'.
3617 */
3618 if (new_dir != old_dir) {
3619 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3620 if (error)
3621 return error;
3622 }
3623
3624 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3625 if (error)
3626 return error;
3627
3628 dget(new_dentry);
3629 if (target)
3630 mutex_lock(&target->i_mutex);
3631
3632 error = -EBUSY;
3633 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3634 goto out;
3635
3636 error = -EMLINK;
3637 if (max_links && !target && new_dir != old_dir &&
3638 new_dir->i_nlink >= max_links)
3639 goto out;
3640
3641 if (target)
3642 shrink_dcache_parent(new_dentry);
3643 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3644 if (error)
3645 goto out;
3646
3647 if (target) {
3648 target->i_flags |= S_DEAD;
3649 dont_mount(new_dentry);
3650 }
3651 out:
3652 if (target)
3653 mutex_unlock(&target->i_mutex);
3654 dput(new_dentry);
3655 if (!error)
3656 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3657 d_move(old_dentry,new_dentry);
3658 return error;
3659 }
3660
3661 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3662 struct inode *new_dir, struct dentry *new_dentry)
3663 {
3664 struct inode *target = new_dentry->d_inode;
3665 int error;
3666
3667 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3668 if (error)
3669 return error;
3670
3671 dget(new_dentry);
3672 if (target)
3673 mutex_lock(&target->i_mutex);
3674
3675 error = -EBUSY;
3676 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3677 goto out;
3678
3679 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3680 if (error)
3681 goto out;
3682
3683 if (target)
3684 dont_mount(new_dentry);
3685 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3686 d_move(old_dentry, new_dentry);
3687 out:
3688 if (target)
3689 mutex_unlock(&target->i_mutex);
3690 dput(new_dentry);
3691 return error;
3692 }
3693
3694 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3695 struct inode *new_dir, struct dentry *new_dentry)
3696 {
3697 int error;
3698 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3699 const unsigned char *old_name;
3700
3701 if (old_dentry->d_inode == new_dentry->d_inode)
3702 return 0;
3703
3704 error = may_delete(old_dir, old_dentry, is_dir);
3705 if (error)
3706 return error;
3707
3708 if (!new_dentry->d_inode)
3709 error = may_create(new_dir, new_dentry);
3710 else
3711 error = may_delete(new_dir, new_dentry, is_dir);
3712 if (error)
3713 return error;
3714
3715 if (!old_dir->i_op->rename)
3716 return -EPERM;
3717
3718 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3719
3720 if (is_dir)
3721 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3722 else
3723 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3724 if (!error)
3725 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3726 new_dentry->d_inode, old_dentry);
3727 fsnotify_oldname_free(old_name);
3728
3729 return error;
3730 }
3731
3732 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3733 int, newdfd, const char __user *, newname)
3734 {
3735 struct dentry *old_dir, *new_dir;
3736 struct dentry *old_dentry, *new_dentry;
3737 struct dentry *trap;
3738 struct nameidata oldnd, newnd;
3739 char *from;
3740 char *to;
3741 int error;
3742
3743 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3744 if (error)
3745 goto exit;
3746
3747 error = user_path_parent(newdfd, newname, &newnd, &to);
3748 if (error)
3749 goto exit1;
3750
3751 error = -EXDEV;
3752 if (oldnd.path.mnt != newnd.path.mnt)
3753 goto exit2;
3754
3755 old_dir = oldnd.path.dentry;
3756 error = -EBUSY;
3757 if (oldnd.last_type != LAST_NORM)
3758 goto exit2;
3759
3760 new_dir = newnd.path.dentry;
3761 if (newnd.last_type != LAST_NORM)
3762 goto exit2;
3763
3764 error = mnt_want_write(oldnd.path.mnt);
3765 if (error)
3766 goto exit2;
3767
3768 oldnd.flags &= ~LOOKUP_PARENT;
3769 newnd.flags &= ~LOOKUP_PARENT;
3770 newnd.flags |= LOOKUP_RENAME_TARGET;
3771
3772 trap = lock_rename(new_dir, old_dir);
3773
3774 old_dentry = lookup_hash(&oldnd);
3775 error = PTR_ERR(old_dentry);
3776 if (IS_ERR(old_dentry))
3777 goto exit3;
3778 /* source must exist */
3779 error = -ENOENT;
3780 if (!old_dentry->d_inode)
3781 goto exit4;
3782 /* unless the source is a directory trailing slashes give -ENOTDIR */
3783 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3784 error = -ENOTDIR;
3785 if (oldnd.last.name[oldnd.last.len])
3786 goto exit4;
3787 if (newnd.last.name[newnd.last.len])
3788 goto exit4;
3789 }
3790 /* source should not be ancestor of target */
3791 error = -EINVAL;
3792 if (old_dentry == trap)
3793 goto exit4;
3794 new_dentry = lookup_hash(&newnd);
3795 error = PTR_ERR(new_dentry);
3796 if (IS_ERR(new_dentry))
3797 goto exit4;
3798 /* target should not be an ancestor of source */
3799 error = -ENOTEMPTY;
3800 if (new_dentry == trap)
3801 goto exit5;
3802
3803 error = security_path_rename(&oldnd.path, old_dentry,
3804 &newnd.path, new_dentry);
3805 if (error)
3806 goto exit5;
3807 error = vfs_rename(old_dir->d_inode, old_dentry,
3808 new_dir->d_inode, new_dentry);
3809 exit5:
3810 dput(new_dentry);
3811 exit4:
3812 dput(old_dentry);
3813 exit3:
3814 unlock_rename(new_dir, old_dir);
3815 mnt_drop_write(oldnd.path.mnt);
3816 exit2:
3817 path_put(&newnd.path);
3818 putname(to);
3819 exit1:
3820 path_put(&oldnd.path);
3821 putname(from);
3822 exit:
3823 return error;
3824 }
3825
3826 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3827 {
3828 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3829 }
3830
3831 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3832 {
3833 int len;
3834
3835 len = PTR_ERR(link);
3836 if (IS_ERR(link))
3837 goto out;
3838
3839 len = strlen(link);
3840 if (len > (unsigned) buflen)
3841 len = buflen;
3842 if (copy_to_user(buffer, link, len))
3843 len = -EFAULT;
3844 out:
3845 return len;
3846 }
3847
3848 /*
3849 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3850 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3851 * using) it for any given inode is up to filesystem.
3852 */
3853 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3854 {
3855 struct nameidata nd;
3856 void *cookie;
3857 int res;
3858
3859 nd.depth = 0;
3860 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3861 if (IS_ERR(cookie))
3862 return PTR_ERR(cookie);
3863
3864 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3865 if (dentry->d_inode->i_op->put_link)
3866 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3867 return res;
3868 }
3869
3870 int vfs_follow_link(struct nameidata *nd, const char *link)
3871 {
3872 return __vfs_follow_link(nd, link);
3873 }
3874
3875 /* get the link contents into pagecache */
3876 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3877 {
3878 char *kaddr;
3879 struct page *page;
3880 struct address_space *mapping = dentry->d_inode->i_mapping;
3881 page = read_mapping_page(mapping, 0, NULL);
3882 if (IS_ERR(page))
3883 return (char*)page;
3884 *ppage = page;
3885 kaddr = kmap(page);
3886 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3887 return kaddr;
3888 }
3889
3890 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3891 {
3892 struct page *page = NULL;
3893 char *s = page_getlink(dentry, &page);
3894 int res = vfs_readlink(dentry,buffer,buflen,s);
3895 if (page) {
3896 kunmap(page);
3897 page_cache_release(page);
3898 }
3899 return res;
3900 }
3901
3902 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3903 {
3904 struct page *page = NULL;
3905 nd_set_link(nd, page_getlink(dentry, &page));
3906 return page;
3907 }
3908
3909 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3910 {
3911 struct page *page = cookie;
3912
3913 if (page) {
3914 kunmap(page);
3915 page_cache_release(page);
3916 }
3917 }
3918
3919 /*
3920 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3921 */
3922 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3923 {
3924 struct address_space *mapping = inode->i_mapping;
3925 struct page *page;
3926 void *fsdata;
3927 int err;
3928 char *kaddr;
3929 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3930 if (nofs)
3931 flags |= AOP_FLAG_NOFS;
3932
3933 retry:
3934 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3935 flags, &page, &fsdata);
3936 if (err)
3937 goto fail;
3938
3939 kaddr = kmap_atomic(page);
3940 memcpy(kaddr, symname, len-1);
3941 kunmap_atomic(kaddr);
3942
3943 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3944 page, fsdata);
3945 if (err < 0)
3946 goto fail;
3947 if (err < len-1)
3948 goto retry;
3949
3950 mark_inode_dirty(inode);
3951 return 0;
3952 fail:
3953 return err;
3954 }
3955
3956 int page_symlink(struct inode *inode, const char *symname, int len)
3957 {
3958 return __page_symlink(inode, symname, len,
3959 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3960 }
3961
3962 const struct inode_operations page_symlink_inode_operations = {
3963 .readlink = generic_readlink,
3964 .follow_link = page_follow_link_light,
3965 .put_link = page_put_link,
3966 };
3967
3968 EXPORT_SYMBOL(user_path_at);
3969 EXPORT_SYMBOL(follow_down_one);
3970 EXPORT_SYMBOL(follow_down);
3971 EXPORT_SYMBOL(follow_up);
3972 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3973 EXPORT_SYMBOL(getname);
3974 EXPORT_SYMBOL(lock_rename);
3975 EXPORT_SYMBOL(lookup_one_len);
3976 EXPORT_SYMBOL(page_follow_link_light);
3977 EXPORT_SYMBOL(page_put_link);
3978 EXPORT_SYMBOL(page_readlink);
3979 EXPORT_SYMBOL(__page_symlink);
3980 EXPORT_SYMBOL(page_symlink);
3981 EXPORT_SYMBOL(page_symlink_inode_operations);
3982 EXPORT_SYMBOL(kern_path);
3983 EXPORT_SYMBOL(vfs_path_lookup);
3984 EXPORT_SYMBOL(inode_permission);
3985 EXPORT_SYMBOL(unlock_rename);
3986 EXPORT_SYMBOL(vfs_create);
3987 EXPORT_SYMBOL(vfs_follow_link);
3988 EXPORT_SYMBOL(vfs_link);
3989 EXPORT_SYMBOL(vfs_mkdir);
3990 EXPORT_SYMBOL(vfs_mknod);
3991 EXPORT_SYMBOL(generic_permission);
3992 EXPORT_SYMBOL(vfs_readlink);
3993 EXPORT_SYMBOL(vfs_rename);
3994 EXPORT_SYMBOL(vfs_rmdir);
3995 EXPORT_SYMBOL(vfs_symlink);
3996 EXPORT_SYMBOL(vfs_unlink);
3997 EXPORT_SYMBOL(dentry_unhash);
3998 EXPORT_SYMBOL(generic_readlink);