]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/namei.c
restore pinning the victim dentry in vfs_rmdir()/vfs_rename_dir()
[mirror_ubuntu-bionic-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
37
38 #include "internal.h"
39
40 /* [Feb-1997 T. Schoebel-Theuer]
41 * Fundamental changes in the pathname lookup mechanisms (namei)
42 * were necessary because of omirr. The reason is that omirr needs
43 * to know the _real_ pathname, not the user-supplied one, in case
44 * of symlinks (and also when transname replacements occur).
45 *
46 * The new code replaces the old recursive symlink resolution with
47 * an iterative one (in case of non-nested symlink chains). It does
48 * this with calls to <fs>_follow_link().
49 * As a side effect, dir_namei(), _namei() and follow_link() are now
50 * replaced with a single function lookup_dentry() that can handle all
51 * the special cases of the former code.
52 *
53 * With the new dcache, the pathname is stored at each inode, at least as
54 * long as the refcount of the inode is positive. As a side effect, the
55 * size of the dcache depends on the inode cache and thus is dynamic.
56 *
57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58 * resolution to correspond with current state of the code.
59 *
60 * Note that the symlink resolution is not *completely* iterative.
61 * There is still a significant amount of tail- and mid- recursion in
62 * the algorithm. Also, note that <fs>_readlink() is not used in
63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64 * may return different results than <fs>_follow_link(). Many virtual
65 * filesystems (including /proc) exhibit this behavior.
66 */
67
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70 * and the name already exists in form of a symlink, try to create the new
71 * name indicated by the symlink. The old code always complained that the
72 * name already exists, due to not following the symlink even if its target
73 * is nonexistent. The new semantics affects also mknod() and link() when
74 * the name is a symlink pointing to a non-existent name.
75 *
76 * I don't know which semantics is the right one, since I have no access
77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79 * "old" one. Personally, I think the new semantics is much more logical.
80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81 * file does succeed in both HP-UX and SunOs, but not in Solaris
82 * and in the old Linux semantics.
83 */
84
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86 * semantics. See the comments in "open_namei" and "do_link" below.
87 *
88 * [10-Sep-98 Alan Modra] Another symlink change.
89 */
90
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92 * inside the path - always follow.
93 * in the last component in creation/removal/renaming - never follow.
94 * if LOOKUP_FOLLOW passed - follow.
95 * if the pathname has trailing slashes - follow.
96 * otherwise - don't follow.
97 * (applied in that order).
98 *
99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101 * During the 2.4 we need to fix the userland stuff depending on it -
102 * hopefully we will be able to get rid of that wart in 2.5. So far only
103 * XEmacs seems to be relying on it...
104 */
105 /*
106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
108 * any extra contention...
109 */
110
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
114 *
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
117 */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 int retval;
121 unsigned long len = PATH_MAX;
122
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
128 }
129
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
138 }
139
140 static char *getname_flags(const char __user * filename, int flags)
141 {
142 char *tmp, *result;
143
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
148
149 result = tmp;
150 if (retval < 0) {
151 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
152 __putname(tmp);
153 result = ERR_PTR(retval);
154 }
155 }
156 }
157 audit_getname(result);
158 return result;
159 }
160
161 char *getname(const char __user * filename)
162 {
163 return getname_flags(filename, 0);
164 }
165
166 #ifdef CONFIG_AUDITSYSCALL
167 void putname(const char *name)
168 {
169 if (unlikely(!audit_dummy_context()))
170 audit_putname(name);
171 else
172 __putname(name);
173 }
174 EXPORT_SYMBOL(putname);
175 #endif
176
177 static int check_acl(struct inode *inode, int mask)
178 {
179 #ifdef CONFIG_FS_POSIX_ACL
180 struct posix_acl *acl;
181
182 if (mask & MAY_NOT_BLOCK) {
183 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
184 if (!acl)
185 return -EAGAIN;
186 /* no ->get_acl() calls in RCU mode... */
187 if (acl == ACL_NOT_CACHED)
188 return -ECHILD;
189 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
190 }
191
192 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
193
194 /*
195 * A filesystem can force a ACL callback by just never filling the
196 * ACL cache. But normally you'd fill the cache either at inode
197 * instantiation time, or on the first ->get_acl call.
198 *
199 * If the filesystem doesn't have a get_acl() function at all, we'll
200 * just create the negative cache entry.
201 */
202 if (acl == ACL_NOT_CACHED) {
203 if (inode->i_op->get_acl) {
204 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
205 if (IS_ERR(acl))
206 return PTR_ERR(acl);
207 } else {
208 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
209 return -EAGAIN;
210 }
211 }
212
213 if (acl) {
214 int error = posix_acl_permission(inode, acl, mask);
215 posix_acl_release(acl);
216 return error;
217 }
218 #endif
219
220 return -EAGAIN;
221 }
222
223 /*
224 * This does basic POSIX ACL permission checking
225 */
226 static int acl_permission_check(struct inode *inode, int mask)
227 {
228 unsigned int mode = inode->i_mode;
229
230 mask &= MAY_READ | MAY_WRITE | MAY_EXEC | MAY_NOT_BLOCK;
231
232 if (current_user_ns() != inode_userns(inode))
233 goto other_perms;
234
235 if (likely(current_fsuid() == inode->i_uid))
236 mode >>= 6;
237 else {
238 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
239 int error = check_acl(inode, mask);
240 if (error != -EAGAIN)
241 return error;
242 }
243
244 if (in_group_p(inode->i_gid))
245 mode >>= 3;
246 }
247
248 other_perms:
249 /*
250 * If the DACs are ok we don't need any capability check.
251 */
252 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
253 return 0;
254 return -EACCES;
255 }
256
257 /**
258 * generic_permission - check for access rights on a Posix-like filesystem
259 * @inode: inode to check access rights for
260 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
261 *
262 * Used to check for read/write/execute permissions on a file.
263 * We use "fsuid" for this, letting us set arbitrary permissions
264 * for filesystem access without changing the "normal" uids which
265 * are used for other things.
266 *
267 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
268 * request cannot be satisfied (eg. requires blocking or too much complexity).
269 * It would then be called again in ref-walk mode.
270 */
271 int generic_permission(struct inode *inode, int mask)
272 {
273 int ret;
274
275 /*
276 * Do the basic POSIX ACL permission checks.
277 */
278 ret = acl_permission_check(inode, mask);
279 if (ret != -EACCES)
280 return ret;
281
282 if (S_ISDIR(inode->i_mode)) {
283 /* DACs are overridable for directories */
284 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
285 return 0;
286 if (!(mask & MAY_WRITE))
287 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
288 return 0;
289 return -EACCES;
290 }
291 /*
292 * Read/write DACs are always overridable.
293 * Executable DACs are overridable when there is
294 * at least one exec bit set.
295 */
296 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
297 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
298 return 0;
299
300 /*
301 * Searching includes executable on directories, else just read.
302 */
303 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
304 if (mask == MAY_READ)
305 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
306 return 0;
307
308 return -EACCES;
309 }
310
311 /*
312 * We _really_ want to just do "generic_permission()" without
313 * even looking at the inode->i_op values. So we keep a cache
314 * flag in inode->i_opflags, that says "this has not special
315 * permission function, use the fast case".
316 */
317 static inline int do_inode_permission(struct inode *inode, int mask)
318 {
319 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
320 if (likely(inode->i_op->permission))
321 return inode->i_op->permission(inode, mask);
322
323 /* This gets set once for the inode lifetime */
324 spin_lock(&inode->i_lock);
325 inode->i_opflags |= IOP_FASTPERM;
326 spin_unlock(&inode->i_lock);
327 }
328 return generic_permission(inode, mask);
329 }
330
331 /**
332 * inode_permission - check for access rights to a given inode
333 * @inode: inode to check permission on
334 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
335 *
336 * Used to check for read/write/execute permissions on an inode.
337 * We use "fsuid" for this, letting us set arbitrary permissions
338 * for filesystem access without changing the "normal" uids which
339 * are used for other things.
340 */
341 int inode_permission(struct inode *inode, int mask)
342 {
343 int retval;
344
345 if (unlikely(mask & MAY_WRITE)) {
346 umode_t mode = inode->i_mode;
347
348 /*
349 * Nobody gets write access to a read-only fs.
350 */
351 if (IS_RDONLY(inode) &&
352 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
353 return -EROFS;
354
355 /*
356 * Nobody gets write access to an immutable file.
357 */
358 if (IS_IMMUTABLE(inode))
359 return -EACCES;
360 }
361
362 retval = do_inode_permission(inode, mask);
363 if (retval)
364 return retval;
365
366 retval = devcgroup_inode_permission(inode, mask);
367 if (retval)
368 return retval;
369
370 return security_inode_permission(inode, mask);
371 }
372
373 /**
374 * path_get - get a reference to a path
375 * @path: path to get the reference to
376 *
377 * Given a path increment the reference count to the dentry and the vfsmount.
378 */
379 void path_get(struct path *path)
380 {
381 mntget(path->mnt);
382 dget(path->dentry);
383 }
384 EXPORT_SYMBOL(path_get);
385
386 /**
387 * path_put - put a reference to a path
388 * @path: path to put the reference to
389 *
390 * Given a path decrement the reference count to the dentry and the vfsmount.
391 */
392 void path_put(struct path *path)
393 {
394 dput(path->dentry);
395 mntput(path->mnt);
396 }
397 EXPORT_SYMBOL(path_put);
398
399 /*
400 * Path walking has 2 modes, rcu-walk and ref-walk (see
401 * Documentation/filesystems/path-lookup.txt). In situations when we can't
402 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
403 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
404 * mode. Refcounts are grabbed at the last known good point before rcu-walk
405 * got stuck, so ref-walk may continue from there. If this is not successful
406 * (eg. a seqcount has changed), then failure is returned and it's up to caller
407 * to restart the path walk from the beginning in ref-walk mode.
408 */
409
410 /**
411 * unlazy_walk - try to switch to ref-walk mode.
412 * @nd: nameidata pathwalk data
413 * @dentry: child of nd->path.dentry or NULL
414 * Returns: 0 on success, -ECHILD on failure
415 *
416 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
417 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
418 * @nd or NULL. Must be called from rcu-walk context.
419 */
420 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
421 {
422 struct fs_struct *fs = current->fs;
423 struct dentry *parent = nd->path.dentry;
424 int want_root = 0;
425
426 BUG_ON(!(nd->flags & LOOKUP_RCU));
427 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
428 want_root = 1;
429 spin_lock(&fs->lock);
430 if (nd->root.mnt != fs->root.mnt ||
431 nd->root.dentry != fs->root.dentry)
432 goto err_root;
433 }
434 spin_lock(&parent->d_lock);
435 if (!dentry) {
436 if (!__d_rcu_to_refcount(parent, nd->seq))
437 goto err_parent;
438 BUG_ON(nd->inode != parent->d_inode);
439 } else {
440 if (dentry->d_parent != parent)
441 goto err_parent;
442 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
443 if (!__d_rcu_to_refcount(dentry, nd->seq))
444 goto err_child;
445 /*
446 * If the sequence check on the child dentry passed, then
447 * the child has not been removed from its parent. This
448 * means the parent dentry must be valid and able to take
449 * a reference at this point.
450 */
451 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
452 BUG_ON(!parent->d_count);
453 parent->d_count++;
454 spin_unlock(&dentry->d_lock);
455 }
456 spin_unlock(&parent->d_lock);
457 if (want_root) {
458 path_get(&nd->root);
459 spin_unlock(&fs->lock);
460 }
461 mntget(nd->path.mnt);
462
463 rcu_read_unlock();
464 br_read_unlock(vfsmount_lock);
465 nd->flags &= ~LOOKUP_RCU;
466 return 0;
467
468 err_child:
469 spin_unlock(&dentry->d_lock);
470 err_parent:
471 spin_unlock(&parent->d_lock);
472 err_root:
473 if (want_root)
474 spin_unlock(&fs->lock);
475 return -ECHILD;
476 }
477
478 /**
479 * release_open_intent - free up open intent resources
480 * @nd: pointer to nameidata
481 */
482 void release_open_intent(struct nameidata *nd)
483 {
484 struct file *file = nd->intent.open.file;
485
486 if (file && !IS_ERR(file)) {
487 if (file->f_path.dentry == NULL)
488 put_filp(file);
489 else
490 fput(file);
491 }
492 }
493
494 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
495 {
496 return dentry->d_op->d_revalidate(dentry, nd);
497 }
498
499 /**
500 * complete_walk - successful completion of path walk
501 * @nd: pointer nameidata
502 *
503 * If we had been in RCU mode, drop out of it and legitimize nd->path.
504 * Revalidate the final result, unless we'd already done that during
505 * the path walk or the filesystem doesn't ask for it. Return 0 on
506 * success, -error on failure. In case of failure caller does not
507 * need to drop nd->path.
508 */
509 static int complete_walk(struct nameidata *nd)
510 {
511 struct dentry *dentry = nd->path.dentry;
512 int status;
513
514 if (nd->flags & LOOKUP_RCU) {
515 nd->flags &= ~LOOKUP_RCU;
516 if (!(nd->flags & LOOKUP_ROOT))
517 nd->root.mnt = NULL;
518 spin_lock(&dentry->d_lock);
519 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
520 spin_unlock(&dentry->d_lock);
521 rcu_read_unlock();
522 br_read_unlock(vfsmount_lock);
523 return -ECHILD;
524 }
525 BUG_ON(nd->inode != dentry->d_inode);
526 spin_unlock(&dentry->d_lock);
527 mntget(nd->path.mnt);
528 rcu_read_unlock();
529 br_read_unlock(vfsmount_lock);
530 }
531
532 if (likely(!(nd->flags & LOOKUP_JUMPED)))
533 return 0;
534
535 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
536 return 0;
537
538 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
539 return 0;
540
541 /* Note: we do not d_invalidate() */
542 status = d_revalidate(dentry, nd);
543 if (status > 0)
544 return 0;
545
546 if (!status)
547 status = -ESTALE;
548
549 path_put(&nd->path);
550 return status;
551 }
552
553 static __always_inline void set_root(struct nameidata *nd)
554 {
555 if (!nd->root.mnt)
556 get_fs_root(current->fs, &nd->root);
557 }
558
559 static int link_path_walk(const char *, struct nameidata *);
560
561 static __always_inline void set_root_rcu(struct nameidata *nd)
562 {
563 if (!nd->root.mnt) {
564 struct fs_struct *fs = current->fs;
565 unsigned seq;
566
567 do {
568 seq = read_seqcount_begin(&fs->seq);
569 nd->root = fs->root;
570 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
571 } while (read_seqcount_retry(&fs->seq, seq));
572 }
573 }
574
575 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
576 {
577 int ret;
578
579 if (IS_ERR(link))
580 goto fail;
581
582 if (*link == '/') {
583 set_root(nd);
584 path_put(&nd->path);
585 nd->path = nd->root;
586 path_get(&nd->root);
587 nd->flags |= LOOKUP_JUMPED;
588 }
589 nd->inode = nd->path.dentry->d_inode;
590
591 ret = link_path_walk(link, nd);
592 return ret;
593 fail:
594 path_put(&nd->path);
595 return PTR_ERR(link);
596 }
597
598 static void path_put_conditional(struct path *path, struct nameidata *nd)
599 {
600 dput(path->dentry);
601 if (path->mnt != nd->path.mnt)
602 mntput(path->mnt);
603 }
604
605 static inline void path_to_nameidata(const struct path *path,
606 struct nameidata *nd)
607 {
608 if (!(nd->flags & LOOKUP_RCU)) {
609 dput(nd->path.dentry);
610 if (nd->path.mnt != path->mnt)
611 mntput(nd->path.mnt);
612 }
613 nd->path.mnt = path->mnt;
614 nd->path.dentry = path->dentry;
615 }
616
617 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
618 {
619 struct inode *inode = link->dentry->d_inode;
620 if (!IS_ERR(cookie) && inode->i_op->put_link)
621 inode->i_op->put_link(link->dentry, nd, cookie);
622 path_put(link);
623 }
624
625 static __always_inline int
626 follow_link(struct path *link, struct nameidata *nd, void **p)
627 {
628 int error;
629 struct dentry *dentry = link->dentry;
630
631 BUG_ON(nd->flags & LOOKUP_RCU);
632
633 if (link->mnt == nd->path.mnt)
634 mntget(link->mnt);
635
636 if (unlikely(current->total_link_count >= 40)) {
637 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
638 path_put(&nd->path);
639 return -ELOOP;
640 }
641 cond_resched();
642 current->total_link_count++;
643
644 touch_atime(link->mnt, dentry);
645 nd_set_link(nd, NULL);
646
647 error = security_inode_follow_link(link->dentry, nd);
648 if (error) {
649 *p = ERR_PTR(error); /* no ->put_link(), please */
650 path_put(&nd->path);
651 return error;
652 }
653
654 nd->last_type = LAST_BIND;
655 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
656 error = PTR_ERR(*p);
657 if (!IS_ERR(*p)) {
658 char *s = nd_get_link(nd);
659 error = 0;
660 if (s)
661 error = __vfs_follow_link(nd, s);
662 else if (nd->last_type == LAST_BIND) {
663 nd->flags |= LOOKUP_JUMPED;
664 nd->inode = nd->path.dentry->d_inode;
665 if (nd->inode->i_op->follow_link) {
666 /* stepped on a _really_ weird one */
667 path_put(&nd->path);
668 error = -ELOOP;
669 }
670 }
671 }
672 return error;
673 }
674
675 static int follow_up_rcu(struct path *path)
676 {
677 struct vfsmount *parent;
678 struct dentry *mountpoint;
679
680 parent = path->mnt->mnt_parent;
681 if (parent == path->mnt)
682 return 0;
683 mountpoint = path->mnt->mnt_mountpoint;
684 path->dentry = mountpoint;
685 path->mnt = parent;
686 return 1;
687 }
688
689 int follow_up(struct path *path)
690 {
691 struct vfsmount *parent;
692 struct dentry *mountpoint;
693
694 br_read_lock(vfsmount_lock);
695 parent = path->mnt->mnt_parent;
696 if (parent == path->mnt) {
697 br_read_unlock(vfsmount_lock);
698 return 0;
699 }
700 mntget(parent);
701 mountpoint = dget(path->mnt->mnt_mountpoint);
702 br_read_unlock(vfsmount_lock);
703 dput(path->dentry);
704 path->dentry = mountpoint;
705 mntput(path->mnt);
706 path->mnt = parent;
707 return 1;
708 }
709
710 /*
711 * Perform an automount
712 * - return -EISDIR to tell follow_managed() to stop and return the path we
713 * were called with.
714 */
715 static int follow_automount(struct path *path, unsigned flags,
716 bool *need_mntput)
717 {
718 struct vfsmount *mnt;
719 int err;
720
721 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
722 return -EREMOTE;
723
724 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
725 * and this is the terminal part of the path.
726 */
727 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_PARENT))
728 return -EISDIR; /* we actually want to stop here */
729
730 /* We don't want to mount if someone's just doing a stat -
731 * unless they're stat'ing a directory and appended a '/' to
732 * the name.
733 *
734 * We do, however, want to mount if someone wants to open or
735 * create a file of any type under the mountpoint, wants to
736 * traverse through the mountpoint or wants to open the
737 * mounted directory. Also, autofs may mark negative dentries
738 * as being automount points. These will need the attentions
739 * of the daemon to instantiate them before they can be used.
740 */
741 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
742 LOOKUP_OPEN | LOOKUP_CREATE)) &&
743 path->dentry->d_inode)
744 return -EISDIR;
745
746 current->total_link_count++;
747 if (current->total_link_count >= 40)
748 return -ELOOP;
749
750 mnt = path->dentry->d_op->d_automount(path);
751 if (IS_ERR(mnt)) {
752 /*
753 * The filesystem is allowed to return -EISDIR here to indicate
754 * it doesn't want to automount. For instance, autofs would do
755 * this so that its userspace daemon can mount on this dentry.
756 *
757 * However, we can only permit this if it's a terminal point in
758 * the path being looked up; if it wasn't then the remainder of
759 * the path is inaccessible and we should say so.
760 */
761 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
762 return -EREMOTE;
763 return PTR_ERR(mnt);
764 }
765
766 if (!mnt) /* mount collision */
767 return 0;
768
769 if (!*need_mntput) {
770 /* lock_mount() may release path->mnt on error */
771 mntget(path->mnt);
772 *need_mntput = true;
773 }
774 err = finish_automount(mnt, path);
775
776 switch (err) {
777 case -EBUSY:
778 /* Someone else made a mount here whilst we were busy */
779 return 0;
780 case 0:
781 path_put(path);
782 path->mnt = mnt;
783 path->dentry = dget(mnt->mnt_root);
784 return 0;
785 default:
786 return err;
787 }
788
789 }
790
791 /*
792 * Handle a dentry that is managed in some way.
793 * - Flagged for transit management (autofs)
794 * - Flagged as mountpoint
795 * - Flagged as automount point
796 *
797 * This may only be called in refwalk mode.
798 *
799 * Serialization is taken care of in namespace.c
800 */
801 static int follow_managed(struct path *path, unsigned flags)
802 {
803 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
804 unsigned managed;
805 bool need_mntput = false;
806 int ret = 0;
807
808 /* Given that we're not holding a lock here, we retain the value in a
809 * local variable for each dentry as we look at it so that we don't see
810 * the components of that value change under us */
811 while (managed = ACCESS_ONCE(path->dentry->d_flags),
812 managed &= DCACHE_MANAGED_DENTRY,
813 unlikely(managed != 0)) {
814 /* Allow the filesystem to manage the transit without i_mutex
815 * being held. */
816 if (managed & DCACHE_MANAGE_TRANSIT) {
817 BUG_ON(!path->dentry->d_op);
818 BUG_ON(!path->dentry->d_op->d_manage);
819 ret = path->dentry->d_op->d_manage(path->dentry, false);
820 if (ret < 0)
821 break;
822 }
823
824 /* Transit to a mounted filesystem. */
825 if (managed & DCACHE_MOUNTED) {
826 struct vfsmount *mounted = lookup_mnt(path);
827 if (mounted) {
828 dput(path->dentry);
829 if (need_mntput)
830 mntput(path->mnt);
831 path->mnt = mounted;
832 path->dentry = dget(mounted->mnt_root);
833 need_mntput = true;
834 continue;
835 }
836
837 /* Something is mounted on this dentry in another
838 * namespace and/or whatever was mounted there in this
839 * namespace got unmounted before we managed to get the
840 * vfsmount_lock */
841 }
842
843 /* Handle an automount point */
844 if (managed & DCACHE_NEED_AUTOMOUNT) {
845 ret = follow_automount(path, flags, &need_mntput);
846 if (ret < 0)
847 break;
848 continue;
849 }
850
851 /* We didn't change the current path point */
852 break;
853 }
854
855 if (need_mntput && path->mnt == mnt)
856 mntput(path->mnt);
857 if (ret == -EISDIR)
858 ret = 0;
859 return ret;
860 }
861
862 int follow_down_one(struct path *path)
863 {
864 struct vfsmount *mounted;
865
866 mounted = lookup_mnt(path);
867 if (mounted) {
868 dput(path->dentry);
869 mntput(path->mnt);
870 path->mnt = mounted;
871 path->dentry = dget(mounted->mnt_root);
872 return 1;
873 }
874 return 0;
875 }
876
877 static inline bool managed_dentry_might_block(struct dentry *dentry)
878 {
879 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
880 dentry->d_op->d_manage(dentry, true) < 0);
881 }
882
883 /*
884 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
885 * we meet a managed dentry that would need blocking.
886 */
887 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
888 struct inode **inode)
889 {
890 for (;;) {
891 struct vfsmount *mounted;
892 /*
893 * Don't forget we might have a non-mountpoint managed dentry
894 * that wants to block transit.
895 */
896 if (unlikely(managed_dentry_might_block(path->dentry)))
897 return false;
898
899 if (!d_mountpoint(path->dentry))
900 break;
901
902 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
903 if (!mounted)
904 break;
905 path->mnt = mounted;
906 path->dentry = mounted->mnt_root;
907 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
908 /*
909 * Update the inode too. We don't need to re-check the
910 * dentry sequence number here after this d_inode read,
911 * because a mount-point is always pinned.
912 */
913 *inode = path->dentry->d_inode;
914 }
915 return true;
916 }
917
918 static void follow_mount_rcu(struct nameidata *nd)
919 {
920 while (d_mountpoint(nd->path.dentry)) {
921 struct vfsmount *mounted;
922 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
923 if (!mounted)
924 break;
925 nd->path.mnt = mounted;
926 nd->path.dentry = mounted->mnt_root;
927 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
928 }
929 }
930
931 static int follow_dotdot_rcu(struct nameidata *nd)
932 {
933 set_root_rcu(nd);
934
935 while (1) {
936 if (nd->path.dentry == nd->root.dentry &&
937 nd->path.mnt == nd->root.mnt) {
938 break;
939 }
940 if (nd->path.dentry != nd->path.mnt->mnt_root) {
941 struct dentry *old = nd->path.dentry;
942 struct dentry *parent = old->d_parent;
943 unsigned seq;
944
945 seq = read_seqcount_begin(&parent->d_seq);
946 if (read_seqcount_retry(&old->d_seq, nd->seq))
947 goto failed;
948 nd->path.dentry = parent;
949 nd->seq = seq;
950 break;
951 }
952 if (!follow_up_rcu(&nd->path))
953 break;
954 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
955 }
956 follow_mount_rcu(nd);
957 nd->inode = nd->path.dentry->d_inode;
958 return 0;
959
960 failed:
961 nd->flags &= ~LOOKUP_RCU;
962 if (!(nd->flags & LOOKUP_ROOT))
963 nd->root.mnt = NULL;
964 rcu_read_unlock();
965 br_read_unlock(vfsmount_lock);
966 return -ECHILD;
967 }
968
969 /*
970 * Follow down to the covering mount currently visible to userspace. At each
971 * point, the filesystem owning that dentry may be queried as to whether the
972 * caller is permitted to proceed or not.
973 */
974 int follow_down(struct path *path)
975 {
976 unsigned managed;
977 int ret;
978
979 while (managed = ACCESS_ONCE(path->dentry->d_flags),
980 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
981 /* Allow the filesystem to manage the transit without i_mutex
982 * being held.
983 *
984 * We indicate to the filesystem if someone is trying to mount
985 * something here. This gives autofs the chance to deny anyone
986 * other than its daemon the right to mount on its
987 * superstructure.
988 *
989 * The filesystem may sleep at this point.
990 */
991 if (managed & DCACHE_MANAGE_TRANSIT) {
992 BUG_ON(!path->dentry->d_op);
993 BUG_ON(!path->dentry->d_op->d_manage);
994 ret = path->dentry->d_op->d_manage(
995 path->dentry, false);
996 if (ret < 0)
997 return ret == -EISDIR ? 0 : ret;
998 }
999
1000 /* Transit to a mounted filesystem. */
1001 if (managed & DCACHE_MOUNTED) {
1002 struct vfsmount *mounted = lookup_mnt(path);
1003 if (!mounted)
1004 break;
1005 dput(path->dentry);
1006 mntput(path->mnt);
1007 path->mnt = mounted;
1008 path->dentry = dget(mounted->mnt_root);
1009 continue;
1010 }
1011
1012 /* Don't handle automount points here */
1013 break;
1014 }
1015 return 0;
1016 }
1017
1018 /*
1019 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1020 */
1021 static void follow_mount(struct path *path)
1022 {
1023 while (d_mountpoint(path->dentry)) {
1024 struct vfsmount *mounted = lookup_mnt(path);
1025 if (!mounted)
1026 break;
1027 dput(path->dentry);
1028 mntput(path->mnt);
1029 path->mnt = mounted;
1030 path->dentry = dget(mounted->mnt_root);
1031 }
1032 }
1033
1034 static void follow_dotdot(struct nameidata *nd)
1035 {
1036 set_root(nd);
1037
1038 while(1) {
1039 struct dentry *old = nd->path.dentry;
1040
1041 if (nd->path.dentry == nd->root.dentry &&
1042 nd->path.mnt == nd->root.mnt) {
1043 break;
1044 }
1045 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1046 /* rare case of legitimate dget_parent()... */
1047 nd->path.dentry = dget_parent(nd->path.dentry);
1048 dput(old);
1049 break;
1050 }
1051 if (!follow_up(&nd->path))
1052 break;
1053 }
1054 follow_mount(&nd->path);
1055 nd->inode = nd->path.dentry->d_inode;
1056 }
1057
1058 /*
1059 * Allocate a dentry with name and parent, and perform a parent
1060 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1061 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1062 * have verified that no child exists while under i_mutex.
1063 */
1064 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1065 struct qstr *name, struct nameidata *nd)
1066 {
1067 struct inode *inode = parent->d_inode;
1068 struct dentry *dentry;
1069 struct dentry *old;
1070
1071 /* Don't create child dentry for a dead directory. */
1072 if (unlikely(IS_DEADDIR(inode)))
1073 return ERR_PTR(-ENOENT);
1074
1075 dentry = d_alloc(parent, name);
1076 if (unlikely(!dentry))
1077 return ERR_PTR(-ENOMEM);
1078
1079 old = inode->i_op->lookup(inode, dentry, nd);
1080 if (unlikely(old)) {
1081 dput(dentry);
1082 dentry = old;
1083 }
1084 return dentry;
1085 }
1086
1087 /*
1088 * We already have a dentry, but require a lookup to be performed on the parent
1089 * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error.
1090 * parent->d_inode->i_mutex must be held. d_lookup must have verified that no
1091 * child exists while under i_mutex.
1092 */
1093 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry,
1094 struct nameidata *nd)
1095 {
1096 struct inode *inode = parent->d_inode;
1097 struct dentry *old;
1098
1099 /* Don't create child dentry for a dead directory. */
1100 if (unlikely(IS_DEADDIR(inode)))
1101 return ERR_PTR(-ENOENT);
1102
1103 old = inode->i_op->lookup(inode, dentry, nd);
1104 if (unlikely(old)) {
1105 dput(dentry);
1106 dentry = old;
1107 }
1108 return dentry;
1109 }
1110
1111 /*
1112 * It's more convoluted than I'd like it to be, but... it's still fairly
1113 * small and for now I'd prefer to have fast path as straight as possible.
1114 * It _is_ time-critical.
1115 */
1116 static int do_lookup(struct nameidata *nd, struct qstr *name,
1117 struct path *path, struct inode **inode)
1118 {
1119 struct vfsmount *mnt = nd->path.mnt;
1120 struct dentry *dentry, *parent = nd->path.dentry;
1121 int need_reval = 1;
1122 int status = 1;
1123 int err;
1124
1125 /*
1126 * Rename seqlock is not required here because in the off chance
1127 * of a false negative due to a concurrent rename, we're going to
1128 * do the non-racy lookup, below.
1129 */
1130 if (nd->flags & LOOKUP_RCU) {
1131 unsigned seq;
1132 *inode = nd->inode;
1133 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1134 if (!dentry)
1135 goto unlazy;
1136
1137 /* Memory barrier in read_seqcount_begin of child is enough */
1138 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1139 return -ECHILD;
1140 nd->seq = seq;
1141
1142 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1143 status = d_revalidate(dentry, nd);
1144 if (unlikely(status <= 0)) {
1145 if (status != -ECHILD)
1146 need_reval = 0;
1147 goto unlazy;
1148 }
1149 }
1150 if (unlikely(d_need_lookup(dentry)))
1151 goto unlazy;
1152 path->mnt = mnt;
1153 path->dentry = dentry;
1154 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1155 goto unlazy;
1156 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1157 goto unlazy;
1158 return 0;
1159 unlazy:
1160 if (unlazy_walk(nd, dentry))
1161 return -ECHILD;
1162 } else {
1163 dentry = __d_lookup(parent, name);
1164 }
1165
1166 if (dentry && unlikely(d_need_lookup(dentry))) {
1167 dput(dentry);
1168 dentry = NULL;
1169 }
1170 retry:
1171 if (unlikely(!dentry)) {
1172 struct inode *dir = parent->d_inode;
1173 BUG_ON(nd->inode != dir);
1174
1175 mutex_lock(&dir->i_mutex);
1176 dentry = d_lookup(parent, name);
1177 if (likely(!dentry)) {
1178 dentry = d_alloc_and_lookup(parent, name, nd);
1179 if (IS_ERR(dentry)) {
1180 mutex_unlock(&dir->i_mutex);
1181 return PTR_ERR(dentry);
1182 }
1183 /* known good */
1184 need_reval = 0;
1185 status = 1;
1186 } else if (unlikely(d_need_lookup(dentry))) {
1187 dentry = d_inode_lookup(parent, dentry, nd);
1188 if (IS_ERR(dentry)) {
1189 mutex_unlock(&dir->i_mutex);
1190 return PTR_ERR(dentry);
1191 }
1192 /* known good */
1193 need_reval = 0;
1194 status = 1;
1195 }
1196 mutex_unlock(&dir->i_mutex);
1197 }
1198 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1199 status = d_revalidate(dentry, nd);
1200 if (unlikely(status <= 0)) {
1201 if (status < 0) {
1202 dput(dentry);
1203 return status;
1204 }
1205 if (!d_invalidate(dentry)) {
1206 dput(dentry);
1207 dentry = NULL;
1208 need_reval = 1;
1209 goto retry;
1210 }
1211 }
1212
1213 path->mnt = mnt;
1214 path->dentry = dentry;
1215 err = follow_managed(path, nd->flags);
1216 if (unlikely(err < 0)) {
1217 path_put_conditional(path, nd);
1218 return err;
1219 }
1220 *inode = path->dentry->d_inode;
1221 return 0;
1222 }
1223
1224 static inline int may_lookup(struct nameidata *nd)
1225 {
1226 if (nd->flags & LOOKUP_RCU) {
1227 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1228 if (err != -ECHILD)
1229 return err;
1230 if (unlazy_walk(nd, NULL))
1231 return -ECHILD;
1232 }
1233 return inode_permission(nd->inode, MAY_EXEC);
1234 }
1235
1236 static inline int handle_dots(struct nameidata *nd, int type)
1237 {
1238 if (type == LAST_DOTDOT) {
1239 if (nd->flags & LOOKUP_RCU) {
1240 if (follow_dotdot_rcu(nd))
1241 return -ECHILD;
1242 } else
1243 follow_dotdot(nd);
1244 }
1245 return 0;
1246 }
1247
1248 static void terminate_walk(struct nameidata *nd)
1249 {
1250 if (!(nd->flags & LOOKUP_RCU)) {
1251 path_put(&nd->path);
1252 } else {
1253 nd->flags &= ~LOOKUP_RCU;
1254 if (!(nd->flags & LOOKUP_ROOT))
1255 nd->root.mnt = NULL;
1256 rcu_read_unlock();
1257 br_read_unlock(vfsmount_lock);
1258 }
1259 }
1260
1261 /*
1262 * Do we need to follow links? We _really_ want to be able
1263 * to do this check without having to look at inode->i_op,
1264 * so we keep a cache of "no, this doesn't need follow_link"
1265 * for the common case.
1266 */
1267 static inline int should_follow_link(struct inode *inode, int follow)
1268 {
1269 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1270 if (likely(inode->i_op->follow_link))
1271 return follow;
1272
1273 /* This gets set once for the inode lifetime */
1274 spin_lock(&inode->i_lock);
1275 inode->i_opflags |= IOP_NOFOLLOW;
1276 spin_unlock(&inode->i_lock);
1277 }
1278 return 0;
1279 }
1280
1281 static inline int walk_component(struct nameidata *nd, struct path *path,
1282 struct qstr *name, int type, int follow)
1283 {
1284 struct inode *inode;
1285 int err;
1286 /*
1287 * "." and ".." are special - ".." especially so because it has
1288 * to be able to know about the current root directory and
1289 * parent relationships.
1290 */
1291 if (unlikely(type != LAST_NORM))
1292 return handle_dots(nd, type);
1293 err = do_lookup(nd, name, path, &inode);
1294 if (unlikely(err)) {
1295 terminate_walk(nd);
1296 return err;
1297 }
1298 if (!inode) {
1299 path_to_nameidata(path, nd);
1300 terminate_walk(nd);
1301 return -ENOENT;
1302 }
1303 if (should_follow_link(inode, follow)) {
1304 if (nd->flags & LOOKUP_RCU) {
1305 if (unlikely(unlazy_walk(nd, path->dentry))) {
1306 terminate_walk(nd);
1307 return -ECHILD;
1308 }
1309 }
1310 BUG_ON(inode != path->dentry->d_inode);
1311 return 1;
1312 }
1313 path_to_nameidata(path, nd);
1314 nd->inode = inode;
1315 return 0;
1316 }
1317
1318 /*
1319 * This limits recursive symlink follows to 8, while
1320 * limiting consecutive symlinks to 40.
1321 *
1322 * Without that kind of total limit, nasty chains of consecutive
1323 * symlinks can cause almost arbitrarily long lookups.
1324 */
1325 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1326 {
1327 int res;
1328
1329 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1330 path_put_conditional(path, nd);
1331 path_put(&nd->path);
1332 return -ELOOP;
1333 }
1334 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1335
1336 nd->depth++;
1337 current->link_count++;
1338
1339 do {
1340 struct path link = *path;
1341 void *cookie;
1342
1343 res = follow_link(&link, nd, &cookie);
1344 if (!res)
1345 res = walk_component(nd, path, &nd->last,
1346 nd->last_type, LOOKUP_FOLLOW);
1347 put_link(nd, &link, cookie);
1348 } while (res > 0);
1349
1350 current->link_count--;
1351 nd->depth--;
1352 return res;
1353 }
1354
1355 /*
1356 * We really don't want to look at inode->i_op->lookup
1357 * when we don't have to. So we keep a cache bit in
1358 * the inode ->i_opflags field that says "yes, we can
1359 * do lookup on this inode".
1360 */
1361 static inline int can_lookup(struct inode *inode)
1362 {
1363 if (likely(inode->i_opflags & IOP_LOOKUP))
1364 return 1;
1365 if (likely(!inode->i_op->lookup))
1366 return 0;
1367
1368 /* We do this once for the lifetime of the inode */
1369 spin_lock(&inode->i_lock);
1370 inode->i_opflags |= IOP_LOOKUP;
1371 spin_unlock(&inode->i_lock);
1372 return 1;
1373 }
1374
1375 /*
1376 * Name resolution.
1377 * This is the basic name resolution function, turning a pathname into
1378 * the final dentry. We expect 'base' to be positive and a directory.
1379 *
1380 * Returns 0 and nd will have valid dentry and mnt on success.
1381 * Returns error and drops reference to input namei data on failure.
1382 */
1383 static int link_path_walk(const char *name, struct nameidata *nd)
1384 {
1385 struct path next;
1386 int err;
1387
1388 while (*name=='/')
1389 name++;
1390 if (!*name)
1391 return 0;
1392
1393 /* At this point we know we have a real path component. */
1394 for(;;) {
1395 unsigned long hash;
1396 struct qstr this;
1397 unsigned int c;
1398 int type;
1399
1400 err = may_lookup(nd);
1401 if (err)
1402 break;
1403
1404 this.name = name;
1405 c = *(const unsigned char *)name;
1406
1407 hash = init_name_hash();
1408 do {
1409 name++;
1410 hash = partial_name_hash(c, hash);
1411 c = *(const unsigned char *)name;
1412 } while (c && (c != '/'));
1413 this.len = name - (const char *) this.name;
1414 this.hash = end_name_hash(hash);
1415
1416 type = LAST_NORM;
1417 if (this.name[0] == '.') switch (this.len) {
1418 case 2:
1419 if (this.name[1] == '.') {
1420 type = LAST_DOTDOT;
1421 nd->flags |= LOOKUP_JUMPED;
1422 }
1423 break;
1424 case 1:
1425 type = LAST_DOT;
1426 }
1427 if (likely(type == LAST_NORM)) {
1428 struct dentry *parent = nd->path.dentry;
1429 nd->flags &= ~LOOKUP_JUMPED;
1430 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1431 err = parent->d_op->d_hash(parent, nd->inode,
1432 &this);
1433 if (err < 0)
1434 break;
1435 }
1436 }
1437
1438 /* remove trailing slashes? */
1439 if (!c)
1440 goto last_component;
1441 while (*++name == '/');
1442 if (!*name)
1443 goto last_component;
1444
1445 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1446 if (err < 0)
1447 return err;
1448
1449 if (err) {
1450 err = nested_symlink(&next, nd);
1451 if (err)
1452 return err;
1453 }
1454 if (can_lookup(nd->inode))
1455 continue;
1456 err = -ENOTDIR;
1457 break;
1458 /* here ends the main loop */
1459
1460 last_component:
1461 nd->last = this;
1462 nd->last_type = type;
1463 return 0;
1464 }
1465 terminate_walk(nd);
1466 return err;
1467 }
1468
1469 static int path_init(int dfd, const char *name, unsigned int flags,
1470 struct nameidata *nd, struct file **fp)
1471 {
1472 int retval = 0;
1473 int fput_needed;
1474 struct file *file;
1475
1476 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1477 nd->flags = flags | LOOKUP_JUMPED;
1478 nd->depth = 0;
1479 if (flags & LOOKUP_ROOT) {
1480 struct inode *inode = nd->root.dentry->d_inode;
1481 if (*name) {
1482 if (!inode->i_op->lookup)
1483 return -ENOTDIR;
1484 retval = inode_permission(inode, MAY_EXEC);
1485 if (retval)
1486 return retval;
1487 }
1488 nd->path = nd->root;
1489 nd->inode = inode;
1490 if (flags & LOOKUP_RCU) {
1491 br_read_lock(vfsmount_lock);
1492 rcu_read_lock();
1493 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1494 } else {
1495 path_get(&nd->path);
1496 }
1497 return 0;
1498 }
1499
1500 nd->root.mnt = NULL;
1501
1502 if (*name=='/') {
1503 if (flags & LOOKUP_RCU) {
1504 br_read_lock(vfsmount_lock);
1505 rcu_read_lock();
1506 set_root_rcu(nd);
1507 } else {
1508 set_root(nd);
1509 path_get(&nd->root);
1510 }
1511 nd->path = nd->root;
1512 } else if (dfd == AT_FDCWD) {
1513 if (flags & LOOKUP_RCU) {
1514 struct fs_struct *fs = current->fs;
1515 unsigned seq;
1516
1517 br_read_lock(vfsmount_lock);
1518 rcu_read_lock();
1519
1520 do {
1521 seq = read_seqcount_begin(&fs->seq);
1522 nd->path = fs->pwd;
1523 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1524 } while (read_seqcount_retry(&fs->seq, seq));
1525 } else {
1526 get_fs_pwd(current->fs, &nd->path);
1527 }
1528 } else {
1529 struct dentry *dentry;
1530
1531 file = fget_raw_light(dfd, &fput_needed);
1532 retval = -EBADF;
1533 if (!file)
1534 goto out_fail;
1535
1536 dentry = file->f_path.dentry;
1537
1538 if (*name) {
1539 retval = -ENOTDIR;
1540 if (!S_ISDIR(dentry->d_inode->i_mode))
1541 goto fput_fail;
1542
1543 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1544 if (retval)
1545 goto fput_fail;
1546 }
1547
1548 nd->path = file->f_path;
1549 if (flags & LOOKUP_RCU) {
1550 if (fput_needed)
1551 *fp = file;
1552 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1553 br_read_lock(vfsmount_lock);
1554 rcu_read_lock();
1555 } else {
1556 path_get(&file->f_path);
1557 fput_light(file, fput_needed);
1558 }
1559 }
1560
1561 nd->inode = nd->path.dentry->d_inode;
1562 return 0;
1563
1564 fput_fail:
1565 fput_light(file, fput_needed);
1566 out_fail:
1567 return retval;
1568 }
1569
1570 static inline int lookup_last(struct nameidata *nd, struct path *path)
1571 {
1572 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1573 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1574
1575 nd->flags &= ~LOOKUP_PARENT;
1576 return walk_component(nd, path, &nd->last, nd->last_type,
1577 nd->flags & LOOKUP_FOLLOW);
1578 }
1579
1580 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1581 static int path_lookupat(int dfd, const char *name,
1582 unsigned int flags, struct nameidata *nd)
1583 {
1584 struct file *base = NULL;
1585 struct path path;
1586 int err;
1587
1588 /*
1589 * Path walking is largely split up into 2 different synchronisation
1590 * schemes, rcu-walk and ref-walk (explained in
1591 * Documentation/filesystems/path-lookup.txt). These share much of the
1592 * path walk code, but some things particularly setup, cleanup, and
1593 * following mounts are sufficiently divergent that functions are
1594 * duplicated. Typically there is a function foo(), and its RCU
1595 * analogue, foo_rcu().
1596 *
1597 * -ECHILD is the error number of choice (just to avoid clashes) that
1598 * is returned if some aspect of an rcu-walk fails. Such an error must
1599 * be handled by restarting a traditional ref-walk (which will always
1600 * be able to complete).
1601 */
1602 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1603
1604 if (unlikely(err))
1605 return err;
1606
1607 current->total_link_count = 0;
1608 err = link_path_walk(name, nd);
1609
1610 if (!err && !(flags & LOOKUP_PARENT)) {
1611 err = lookup_last(nd, &path);
1612 while (err > 0) {
1613 void *cookie;
1614 struct path link = path;
1615 nd->flags |= LOOKUP_PARENT;
1616 err = follow_link(&link, nd, &cookie);
1617 if (!err)
1618 err = lookup_last(nd, &path);
1619 put_link(nd, &link, cookie);
1620 }
1621 }
1622
1623 if (!err)
1624 err = complete_walk(nd);
1625
1626 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1627 if (!nd->inode->i_op->lookup) {
1628 path_put(&nd->path);
1629 err = -ENOTDIR;
1630 }
1631 }
1632
1633 if (base)
1634 fput(base);
1635
1636 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1637 path_put(&nd->root);
1638 nd->root.mnt = NULL;
1639 }
1640 return err;
1641 }
1642
1643 static int do_path_lookup(int dfd, const char *name,
1644 unsigned int flags, struct nameidata *nd)
1645 {
1646 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1647 if (unlikely(retval == -ECHILD))
1648 retval = path_lookupat(dfd, name, flags, nd);
1649 if (unlikely(retval == -ESTALE))
1650 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1651
1652 if (likely(!retval)) {
1653 if (unlikely(!audit_dummy_context())) {
1654 if (nd->path.dentry && nd->inode)
1655 audit_inode(name, nd->path.dentry);
1656 }
1657 }
1658 return retval;
1659 }
1660
1661 int kern_path_parent(const char *name, struct nameidata *nd)
1662 {
1663 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1664 }
1665
1666 int kern_path(const char *name, unsigned int flags, struct path *path)
1667 {
1668 struct nameidata nd;
1669 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1670 if (!res)
1671 *path = nd.path;
1672 return res;
1673 }
1674
1675 /**
1676 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1677 * @dentry: pointer to dentry of the base directory
1678 * @mnt: pointer to vfs mount of the base directory
1679 * @name: pointer to file name
1680 * @flags: lookup flags
1681 * @path: pointer to struct path to fill
1682 */
1683 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1684 const char *name, unsigned int flags,
1685 struct path *path)
1686 {
1687 struct nameidata nd;
1688 int err;
1689 nd.root.dentry = dentry;
1690 nd.root.mnt = mnt;
1691 BUG_ON(flags & LOOKUP_PARENT);
1692 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1693 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1694 if (!err)
1695 *path = nd.path;
1696 return err;
1697 }
1698
1699 static struct dentry *__lookup_hash(struct qstr *name,
1700 struct dentry *base, struct nameidata *nd)
1701 {
1702 struct inode *inode = base->d_inode;
1703 struct dentry *dentry;
1704 int err;
1705
1706 err = inode_permission(inode, MAY_EXEC);
1707 if (err)
1708 return ERR_PTR(err);
1709
1710 /*
1711 * Don't bother with __d_lookup: callers are for creat as
1712 * well as unlink, so a lot of the time it would cost
1713 * a double lookup.
1714 */
1715 dentry = d_lookup(base, name);
1716
1717 if (dentry && d_need_lookup(dentry)) {
1718 /*
1719 * __lookup_hash is called with the parent dir's i_mutex already
1720 * held, so we are good to go here.
1721 */
1722 dentry = d_inode_lookup(base, dentry, nd);
1723 if (IS_ERR(dentry))
1724 return dentry;
1725 }
1726
1727 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1728 int status = d_revalidate(dentry, nd);
1729 if (unlikely(status <= 0)) {
1730 /*
1731 * The dentry failed validation.
1732 * If d_revalidate returned 0 attempt to invalidate
1733 * the dentry otherwise d_revalidate is asking us
1734 * to return a fail status.
1735 */
1736 if (status < 0) {
1737 dput(dentry);
1738 return ERR_PTR(status);
1739 } else if (!d_invalidate(dentry)) {
1740 dput(dentry);
1741 dentry = NULL;
1742 }
1743 }
1744 }
1745
1746 if (!dentry)
1747 dentry = d_alloc_and_lookup(base, name, nd);
1748
1749 return dentry;
1750 }
1751
1752 /*
1753 * Restricted form of lookup. Doesn't follow links, single-component only,
1754 * needs parent already locked. Doesn't follow mounts.
1755 * SMP-safe.
1756 */
1757 static struct dentry *lookup_hash(struct nameidata *nd)
1758 {
1759 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1760 }
1761
1762 /**
1763 * lookup_one_len - filesystem helper to lookup single pathname component
1764 * @name: pathname component to lookup
1765 * @base: base directory to lookup from
1766 * @len: maximum length @len should be interpreted to
1767 *
1768 * Note that this routine is purely a helper for filesystem usage and should
1769 * not be called by generic code. Also note that by using this function the
1770 * nameidata argument is passed to the filesystem methods and a filesystem
1771 * using this helper needs to be prepared for that.
1772 */
1773 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1774 {
1775 struct qstr this;
1776 unsigned long hash;
1777 unsigned int c;
1778
1779 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1780
1781 this.name = name;
1782 this.len = len;
1783 if (!len)
1784 return ERR_PTR(-EACCES);
1785
1786 hash = init_name_hash();
1787 while (len--) {
1788 c = *(const unsigned char *)name++;
1789 if (c == '/' || c == '\0')
1790 return ERR_PTR(-EACCES);
1791 hash = partial_name_hash(c, hash);
1792 }
1793 this.hash = end_name_hash(hash);
1794 /*
1795 * See if the low-level filesystem might want
1796 * to use its own hash..
1797 */
1798 if (base->d_flags & DCACHE_OP_HASH) {
1799 int err = base->d_op->d_hash(base, base->d_inode, &this);
1800 if (err < 0)
1801 return ERR_PTR(err);
1802 }
1803
1804 return __lookup_hash(&this, base, NULL);
1805 }
1806
1807 int user_path_at(int dfd, const char __user *name, unsigned flags,
1808 struct path *path)
1809 {
1810 struct nameidata nd;
1811 char *tmp = getname_flags(name, flags);
1812 int err = PTR_ERR(tmp);
1813 if (!IS_ERR(tmp)) {
1814
1815 BUG_ON(flags & LOOKUP_PARENT);
1816
1817 err = do_path_lookup(dfd, tmp, flags, &nd);
1818 putname(tmp);
1819 if (!err)
1820 *path = nd.path;
1821 }
1822 return err;
1823 }
1824
1825 static int user_path_parent(int dfd, const char __user *path,
1826 struct nameidata *nd, char **name)
1827 {
1828 char *s = getname(path);
1829 int error;
1830
1831 if (IS_ERR(s))
1832 return PTR_ERR(s);
1833
1834 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1835 if (error)
1836 putname(s);
1837 else
1838 *name = s;
1839
1840 return error;
1841 }
1842
1843 /*
1844 * It's inline, so penalty for filesystems that don't use sticky bit is
1845 * minimal.
1846 */
1847 static inline int check_sticky(struct inode *dir, struct inode *inode)
1848 {
1849 uid_t fsuid = current_fsuid();
1850
1851 if (!(dir->i_mode & S_ISVTX))
1852 return 0;
1853 if (current_user_ns() != inode_userns(inode))
1854 goto other_userns;
1855 if (inode->i_uid == fsuid)
1856 return 0;
1857 if (dir->i_uid == fsuid)
1858 return 0;
1859
1860 other_userns:
1861 return !ns_capable(inode_userns(inode), CAP_FOWNER);
1862 }
1863
1864 /*
1865 * Check whether we can remove a link victim from directory dir, check
1866 * whether the type of victim is right.
1867 * 1. We can't do it if dir is read-only (done in permission())
1868 * 2. We should have write and exec permissions on dir
1869 * 3. We can't remove anything from append-only dir
1870 * 4. We can't do anything with immutable dir (done in permission())
1871 * 5. If the sticky bit on dir is set we should either
1872 * a. be owner of dir, or
1873 * b. be owner of victim, or
1874 * c. have CAP_FOWNER capability
1875 * 6. If the victim is append-only or immutable we can't do antyhing with
1876 * links pointing to it.
1877 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1878 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1879 * 9. We can't remove a root or mountpoint.
1880 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1881 * nfs_async_unlink().
1882 */
1883 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1884 {
1885 int error;
1886
1887 if (!victim->d_inode)
1888 return -ENOENT;
1889
1890 BUG_ON(victim->d_parent->d_inode != dir);
1891 audit_inode_child(victim, dir);
1892
1893 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1894 if (error)
1895 return error;
1896 if (IS_APPEND(dir))
1897 return -EPERM;
1898 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1899 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1900 return -EPERM;
1901 if (isdir) {
1902 if (!S_ISDIR(victim->d_inode->i_mode))
1903 return -ENOTDIR;
1904 if (IS_ROOT(victim))
1905 return -EBUSY;
1906 } else if (S_ISDIR(victim->d_inode->i_mode))
1907 return -EISDIR;
1908 if (IS_DEADDIR(dir))
1909 return -ENOENT;
1910 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1911 return -EBUSY;
1912 return 0;
1913 }
1914
1915 /* Check whether we can create an object with dentry child in directory
1916 * dir.
1917 * 1. We can't do it if child already exists (open has special treatment for
1918 * this case, but since we are inlined it's OK)
1919 * 2. We can't do it if dir is read-only (done in permission())
1920 * 3. We should have write and exec permissions on dir
1921 * 4. We can't do it if dir is immutable (done in permission())
1922 */
1923 static inline int may_create(struct inode *dir, struct dentry *child)
1924 {
1925 if (child->d_inode)
1926 return -EEXIST;
1927 if (IS_DEADDIR(dir))
1928 return -ENOENT;
1929 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1930 }
1931
1932 /*
1933 * p1 and p2 should be directories on the same fs.
1934 */
1935 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1936 {
1937 struct dentry *p;
1938
1939 if (p1 == p2) {
1940 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1941 return NULL;
1942 }
1943
1944 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1945
1946 p = d_ancestor(p2, p1);
1947 if (p) {
1948 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1949 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1950 return p;
1951 }
1952
1953 p = d_ancestor(p1, p2);
1954 if (p) {
1955 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1956 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1957 return p;
1958 }
1959
1960 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1961 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1962 return NULL;
1963 }
1964
1965 void unlock_rename(struct dentry *p1, struct dentry *p2)
1966 {
1967 mutex_unlock(&p1->d_inode->i_mutex);
1968 if (p1 != p2) {
1969 mutex_unlock(&p2->d_inode->i_mutex);
1970 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1971 }
1972 }
1973
1974 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1975 struct nameidata *nd)
1976 {
1977 int error = may_create(dir, dentry);
1978
1979 if (error)
1980 return error;
1981
1982 if (!dir->i_op->create)
1983 return -EACCES; /* shouldn't it be ENOSYS? */
1984 mode &= S_IALLUGO;
1985 mode |= S_IFREG;
1986 error = security_inode_create(dir, dentry, mode);
1987 if (error)
1988 return error;
1989 error = dir->i_op->create(dir, dentry, mode, nd);
1990 if (!error)
1991 fsnotify_create(dir, dentry);
1992 return error;
1993 }
1994
1995 static int may_open(struct path *path, int acc_mode, int flag)
1996 {
1997 struct dentry *dentry = path->dentry;
1998 struct inode *inode = dentry->d_inode;
1999 int error;
2000
2001 /* O_PATH? */
2002 if (!acc_mode)
2003 return 0;
2004
2005 if (!inode)
2006 return -ENOENT;
2007
2008 switch (inode->i_mode & S_IFMT) {
2009 case S_IFLNK:
2010 return -ELOOP;
2011 case S_IFDIR:
2012 if (acc_mode & MAY_WRITE)
2013 return -EISDIR;
2014 break;
2015 case S_IFBLK:
2016 case S_IFCHR:
2017 if (path->mnt->mnt_flags & MNT_NODEV)
2018 return -EACCES;
2019 /*FALLTHRU*/
2020 case S_IFIFO:
2021 case S_IFSOCK:
2022 flag &= ~O_TRUNC;
2023 break;
2024 }
2025
2026 error = inode_permission(inode, acc_mode);
2027 if (error)
2028 return error;
2029
2030 /*
2031 * An append-only file must be opened in append mode for writing.
2032 */
2033 if (IS_APPEND(inode)) {
2034 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2035 return -EPERM;
2036 if (flag & O_TRUNC)
2037 return -EPERM;
2038 }
2039
2040 /* O_NOATIME can only be set by the owner or superuser */
2041 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2042 return -EPERM;
2043
2044 /*
2045 * Ensure there are no outstanding leases on the file.
2046 */
2047 return break_lease(inode, flag);
2048 }
2049
2050 static int handle_truncate(struct file *filp)
2051 {
2052 struct path *path = &filp->f_path;
2053 struct inode *inode = path->dentry->d_inode;
2054 int error = get_write_access(inode);
2055 if (error)
2056 return error;
2057 /*
2058 * Refuse to truncate files with mandatory locks held on them.
2059 */
2060 error = locks_verify_locked(inode);
2061 if (!error)
2062 error = security_path_truncate(path);
2063 if (!error) {
2064 error = do_truncate(path->dentry, 0,
2065 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2066 filp);
2067 }
2068 put_write_access(inode);
2069 return error;
2070 }
2071
2072 static inline int open_to_namei_flags(int flag)
2073 {
2074 if ((flag & O_ACCMODE) == 3)
2075 flag--;
2076 return flag;
2077 }
2078
2079 /*
2080 * Handle the last step of open()
2081 */
2082 static struct file *do_last(struct nameidata *nd, struct path *path,
2083 const struct open_flags *op, const char *pathname)
2084 {
2085 struct dentry *dir = nd->path.dentry;
2086 struct dentry *dentry;
2087 int open_flag = op->open_flag;
2088 int will_truncate = open_flag & O_TRUNC;
2089 int want_write = 0;
2090 int acc_mode = op->acc_mode;
2091 struct file *filp;
2092 int error;
2093
2094 nd->flags &= ~LOOKUP_PARENT;
2095 nd->flags |= op->intent;
2096
2097 switch (nd->last_type) {
2098 case LAST_DOTDOT:
2099 case LAST_DOT:
2100 error = handle_dots(nd, nd->last_type);
2101 if (error)
2102 return ERR_PTR(error);
2103 /* fallthrough */
2104 case LAST_ROOT:
2105 error = complete_walk(nd);
2106 if (error)
2107 return ERR_PTR(error);
2108 audit_inode(pathname, nd->path.dentry);
2109 if (open_flag & O_CREAT) {
2110 error = -EISDIR;
2111 goto exit;
2112 }
2113 goto ok;
2114 case LAST_BIND:
2115 error = complete_walk(nd);
2116 if (error)
2117 return ERR_PTR(error);
2118 audit_inode(pathname, dir);
2119 goto ok;
2120 }
2121
2122 if (!(open_flag & O_CREAT)) {
2123 int symlink_ok = 0;
2124 if (nd->last.name[nd->last.len])
2125 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2126 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2127 symlink_ok = 1;
2128 /* we _can_ be in RCU mode here */
2129 error = walk_component(nd, path, &nd->last, LAST_NORM,
2130 !symlink_ok);
2131 if (error < 0)
2132 return ERR_PTR(error);
2133 if (error) /* symlink */
2134 return NULL;
2135 /* sayonara */
2136 error = complete_walk(nd);
2137 if (error)
2138 return ERR_PTR(-ECHILD);
2139
2140 error = -ENOTDIR;
2141 if (nd->flags & LOOKUP_DIRECTORY) {
2142 if (!nd->inode->i_op->lookup)
2143 goto exit;
2144 }
2145 audit_inode(pathname, nd->path.dentry);
2146 goto ok;
2147 }
2148
2149 /* create side of things */
2150 error = complete_walk(nd);
2151 if (error)
2152 return ERR_PTR(error);
2153
2154 audit_inode(pathname, dir);
2155 error = -EISDIR;
2156 /* trailing slashes? */
2157 if (nd->last.name[nd->last.len])
2158 goto exit;
2159
2160 mutex_lock(&dir->d_inode->i_mutex);
2161
2162 dentry = lookup_hash(nd);
2163 error = PTR_ERR(dentry);
2164 if (IS_ERR(dentry)) {
2165 mutex_unlock(&dir->d_inode->i_mutex);
2166 goto exit;
2167 }
2168
2169 path->dentry = dentry;
2170 path->mnt = nd->path.mnt;
2171
2172 /* Negative dentry, just create the file */
2173 if (!dentry->d_inode) {
2174 int mode = op->mode;
2175 if (!IS_POSIXACL(dir->d_inode))
2176 mode &= ~current_umask();
2177 /*
2178 * This write is needed to ensure that a
2179 * rw->ro transition does not occur between
2180 * the time when the file is created and when
2181 * a permanent write count is taken through
2182 * the 'struct file' in nameidata_to_filp().
2183 */
2184 error = mnt_want_write(nd->path.mnt);
2185 if (error)
2186 goto exit_mutex_unlock;
2187 want_write = 1;
2188 /* Don't check for write permission, don't truncate */
2189 open_flag &= ~O_TRUNC;
2190 will_truncate = 0;
2191 acc_mode = MAY_OPEN;
2192 error = security_path_mknod(&nd->path, dentry, mode, 0);
2193 if (error)
2194 goto exit_mutex_unlock;
2195 error = vfs_create(dir->d_inode, dentry, mode, nd);
2196 if (error)
2197 goto exit_mutex_unlock;
2198 mutex_unlock(&dir->d_inode->i_mutex);
2199 dput(nd->path.dentry);
2200 nd->path.dentry = dentry;
2201 goto common;
2202 }
2203
2204 /*
2205 * It already exists.
2206 */
2207 mutex_unlock(&dir->d_inode->i_mutex);
2208 audit_inode(pathname, path->dentry);
2209
2210 error = -EEXIST;
2211 if (open_flag & O_EXCL)
2212 goto exit_dput;
2213
2214 error = follow_managed(path, nd->flags);
2215 if (error < 0)
2216 goto exit_dput;
2217
2218 error = -ENOENT;
2219 if (!path->dentry->d_inode)
2220 goto exit_dput;
2221
2222 if (path->dentry->d_inode->i_op->follow_link)
2223 return NULL;
2224
2225 path_to_nameidata(path, nd);
2226 nd->inode = path->dentry->d_inode;
2227 error = -EISDIR;
2228 if (S_ISDIR(nd->inode->i_mode))
2229 goto exit;
2230 ok:
2231 if (!S_ISREG(nd->inode->i_mode))
2232 will_truncate = 0;
2233
2234 if (will_truncate) {
2235 error = mnt_want_write(nd->path.mnt);
2236 if (error)
2237 goto exit;
2238 want_write = 1;
2239 }
2240 common:
2241 error = may_open(&nd->path, acc_mode, open_flag);
2242 if (error)
2243 goto exit;
2244 filp = nameidata_to_filp(nd);
2245 if (!IS_ERR(filp)) {
2246 error = ima_file_check(filp, op->acc_mode);
2247 if (error) {
2248 fput(filp);
2249 filp = ERR_PTR(error);
2250 }
2251 }
2252 if (!IS_ERR(filp)) {
2253 if (will_truncate) {
2254 error = handle_truncate(filp);
2255 if (error) {
2256 fput(filp);
2257 filp = ERR_PTR(error);
2258 }
2259 }
2260 }
2261 out:
2262 if (want_write)
2263 mnt_drop_write(nd->path.mnt);
2264 path_put(&nd->path);
2265 return filp;
2266
2267 exit_mutex_unlock:
2268 mutex_unlock(&dir->d_inode->i_mutex);
2269 exit_dput:
2270 path_put_conditional(path, nd);
2271 exit:
2272 filp = ERR_PTR(error);
2273 goto out;
2274 }
2275
2276 static struct file *path_openat(int dfd, const char *pathname,
2277 struct nameidata *nd, const struct open_flags *op, int flags)
2278 {
2279 struct file *base = NULL;
2280 struct file *filp;
2281 struct path path;
2282 int error;
2283
2284 filp = get_empty_filp();
2285 if (!filp)
2286 return ERR_PTR(-ENFILE);
2287
2288 filp->f_flags = op->open_flag;
2289 nd->intent.open.file = filp;
2290 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2291 nd->intent.open.create_mode = op->mode;
2292
2293 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2294 if (unlikely(error))
2295 goto out_filp;
2296
2297 current->total_link_count = 0;
2298 error = link_path_walk(pathname, nd);
2299 if (unlikely(error))
2300 goto out_filp;
2301
2302 filp = do_last(nd, &path, op, pathname);
2303 while (unlikely(!filp)) { /* trailing symlink */
2304 struct path link = path;
2305 void *cookie;
2306 if (!(nd->flags & LOOKUP_FOLLOW)) {
2307 path_put_conditional(&path, nd);
2308 path_put(&nd->path);
2309 filp = ERR_PTR(-ELOOP);
2310 break;
2311 }
2312 nd->flags |= LOOKUP_PARENT;
2313 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2314 error = follow_link(&link, nd, &cookie);
2315 if (unlikely(error))
2316 filp = ERR_PTR(error);
2317 else
2318 filp = do_last(nd, &path, op, pathname);
2319 put_link(nd, &link, cookie);
2320 }
2321 out:
2322 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2323 path_put(&nd->root);
2324 if (base)
2325 fput(base);
2326 release_open_intent(nd);
2327 return filp;
2328
2329 out_filp:
2330 filp = ERR_PTR(error);
2331 goto out;
2332 }
2333
2334 struct file *do_filp_open(int dfd, const char *pathname,
2335 const struct open_flags *op, int flags)
2336 {
2337 struct nameidata nd;
2338 struct file *filp;
2339
2340 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2341 if (unlikely(filp == ERR_PTR(-ECHILD)))
2342 filp = path_openat(dfd, pathname, &nd, op, flags);
2343 if (unlikely(filp == ERR_PTR(-ESTALE)))
2344 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2345 return filp;
2346 }
2347
2348 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2349 const char *name, const struct open_flags *op, int flags)
2350 {
2351 struct nameidata nd;
2352 struct file *file;
2353
2354 nd.root.mnt = mnt;
2355 nd.root.dentry = dentry;
2356
2357 flags |= LOOKUP_ROOT;
2358
2359 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2360 return ERR_PTR(-ELOOP);
2361
2362 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2363 if (unlikely(file == ERR_PTR(-ECHILD)))
2364 file = path_openat(-1, name, &nd, op, flags);
2365 if (unlikely(file == ERR_PTR(-ESTALE)))
2366 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2367 return file;
2368 }
2369
2370 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2371 {
2372 struct dentry *dentry = ERR_PTR(-EEXIST);
2373 struct nameidata nd;
2374 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2375 if (error)
2376 return ERR_PTR(error);
2377
2378 /*
2379 * Yucky last component or no last component at all?
2380 * (foo/., foo/.., /////)
2381 */
2382 if (nd.last_type != LAST_NORM)
2383 goto out;
2384 nd.flags &= ~LOOKUP_PARENT;
2385 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2386 nd.intent.open.flags = O_EXCL;
2387
2388 /*
2389 * Do the final lookup.
2390 */
2391 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2392 dentry = lookup_hash(&nd);
2393 if (IS_ERR(dentry))
2394 goto fail;
2395
2396 if (dentry->d_inode)
2397 goto eexist;
2398 /*
2399 * Special case - lookup gave negative, but... we had foo/bar/
2400 * From the vfs_mknod() POV we just have a negative dentry -
2401 * all is fine. Let's be bastards - you had / on the end, you've
2402 * been asking for (non-existent) directory. -ENOENT for you.
2403 */
2404 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2405 dput(dentry);
2406 dentry = ERR_PTR(-ENOENT);
2407 goto fail;
2408 }
2409 *path = nd.path;
2410 return dentry;
2411 eexist:
2412 dput(dentry);
2413 dentry = ERR_PTR(-EEXIST);
2414 fail:
2415 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2416 out:
2417 path_put(&nd.path);
2418 return dentry;
2419 }
2420 EXPORT_SYMBOL(kern_path_create);
2421
2422 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2423 {
2424 char *tmp = getname(pathname);
2425 struct dentry *res;
2426 if (IS_ERR(tmp))
2427 return ERR_CAST(tmp);
2428 res = kern_path_create(dfd, tmp, path, is_dir);
2429 putname(tmp);
2430 return res;
2431 }
2432 EXPORT_SYMBOL(user_path_create);
2433
2434 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2435 {
2436 int error = may_create(dir, dentry);
2437
2438 if (error)
2439 return error;
2440
2441 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2442 !ns_capable(inode_userns(dir), CAP_MKNOD))
2443 return -EPERM;
2444
2445 if (!dir->i_op->mknod)
2446 return -EPERM;
2447
2448 error = devcgroup_inode_mknod(mode, dev);
2449 if (error)
2450 return error;
2451
2452 error = security_inode_mknod(dir, dentry, mode, dev);
2453 if (error)
2454 return error;
2455
2456 error = dir->i_op->mknod(dir, dentry, mode, dev);
2457 if (!error)
2458 fsnotify_create(dir, dentry);
2459 return error;
2460 }
2461
2462 static int may_mknod(mode_t mode)
2463 {
2464 switch (mode & S_IFMT) {
2465 case S_IFREG:
2466 case S_IFCHR:
2467 case S_IFBLK:
2468 case S_IFIFO:
2469 case S_IFSOCK:
2470 case 0: /* zero mode translates to S_IFREG */
2471 return 0;
2472 case S_IFDIR:
2473 return -EPERM;
2474 default:
2475 return -EINVAL;
2476 }
2477 }
2478
2479 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2480 unsigned, dev)
2481 {
2482 struct dentry *dentry;
2483 struct path path;
2484 int error;
2485
2486 if (S_ISDIR(mode))
2487 return -EPERM;
2488
2489 dentry = user_path_create(dfd, filename, &path, 0);
2490 if (IS_ERR(dentry))
2491 return PTR_ERR(dentry);
2492
2493 if (!IS_POSIXACL(path.dentry->d_inode))
2494 mode &= ~current_umask();
2495 error = may_mknod(mode);
2496 if (error)
2497 goto out_dput;
2498 error = mnt_want_write(path.mnt);
2499 if (error)
2500 goto out_dput;
2501 error = security_path_mknod(&path, dentry, mode, dev);
2502 if (error)
2503 goto out_drop_write;
2504 switch (mode & S_IFMT) {
2505 case 0: case S_IFREG:
2506 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2507 break;
2508 case S_IFCHR: case S_IFBLK:
2509 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2510 new_decode_dev(dev));
2511 break;
2512 case S_IFIFO: case S_IFSOCK:
2513 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2514 break;
2515 }
2516 out_drop_write:
2517 mnt_drop_write(path.mnt);
2518 out_dput:
2519 dput(dentry);
2520 mutex_unlock(&path.dentry->d_inode->i_mutex);
2521 path_put(&path);
2522
2523 return error;
2524 }
2525
2526 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2527 {
2528 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2529 }
2530
2531 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2532 {
2533 int error = may_create(dir, dentry);
2534
2535 if (error)
2536 return error;
2537
2538 if (!dir->i_op->mkdir)
2539 return -EPERM;
2540
2541 mode &= (S_IRWXUGO|S_ISVTX);
2542 error = security_inode_mkdir(dir, dentry, mode);
2543 if (error)
2544 return error;
2545
2546 error = dir->i_op->mkdir(dir, dentry, mode);
2547 if (!error)
2548 fsnotify_mkdir(dir, dentry);
2549 return error;
2550 }
2551
2552 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2553 {
2554 struct dentry *dentry;
2555 struct path path;
2556 int error;
2557
2558 dentry = user_path_create(dfd, pathname, &path, 1);
2559 if (IS_ERR(dentry))
2560 return PTR_ERR(dentry);
2561
2562 if (!IS_POSIXACL(path.dentry->d_inode))
2563 mode &= ~current_umask();
2564 error = mnt_want_write(path.mnt);
2565 if (error)
2566 goto out_dput;
2567 error = security_path_mkdir(&path, dentry, mode);
2568 if (error)
2569 goto out_drop_write;
2570 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2571 out_drop_write:
2572 mnt_drop_write(path.mnt);
2573 out_dput:
2574 dput(dentry);
2575 mutex_unlock(&path.dentry->d_inode->i_mutex);
2576 path_put(&path);
2577 return error;
2578 }
2579
2580 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2581 {
2582 return sys_mkdirat(AT_FDCWD, pathname, mode);
2583 }
2584
2585 /*
2586 * The dentry_unhash() helper will try to drop the dentry early: we
2587 * should have a usage count of 2 if we're the only user of this
2588 * dentry, and if that is true (possibly after pruning the dcache),
2589 * then we drop the dentry now.
2590 *
2591 * A low-level filesystem can, if it choses, legally
2592 * do a
2593 *
2594 * if (!d_unhashed(dentry))
2595 * return -EBUSY;
2596 *
2597 * if it cannot handle the case of removing a directory
2598 * that is still in use by something else..
2599 */
2600 void dentry_unhash(struct dentry *dentry)
2601 {
2602 shrink_dcache_parent(dentry);
2603 spin_lock(&dentry->d_lock);
2604 if (dentry->d_count == 1)
2605 __d_drop(dentry);
2606 spin_unlock(&dentry->d_lock);
2607 }
2608
2609 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2610 {
2611 int error = may_delete(dir, dentry, 1);
2612
2613 if (error)
2614 return error;
2615
2616 if (!dir->i_op->rmdir)
2617 return -EPERM;
2618
2619 dget(dentry);
2620 mutex_lock(&dentry->d_inode->i_mutex);
2621
2622 error = -EBUSY;
2623 if (d_mountpoint(dentry))
2624 goto out;
2625
2626 error = security_inode_rmdir(dir, dentry);
2627 if (error)
2628 goto out;
2629
2630 shrink_dcache_parent(dentry);
2631 error = dir->i_op->rmdir(dir, dentry);
2632 if (error)
2633 goto out;
2634
2635 dentry->d_inode->i_flags |= S_DEAD;
2636 dont_mount(dentry);
2637
2638 out:
2639 mutex_unlock(&dentry->d_inode->i_mutex);
2640 dput(dentry);
2641 if (!error)
2642 d_delete(dentry);
2643 return error;
2644 }
2645
2646 static long do_rmdir(int dfd, const char __user *pathname)
2647 {
2648 int error = 0;
2649 char * name;
2650 struct dentry *dentry;
2651 struct nameidata nd;
2652
2653 error = user_path_parent(dfd, pathname, &nd, &name);
2654 if (error)
2655 return error;
2656
2657 switch(nd.last_type) {
2658 case LAST_DOTDOT:
2659 error = -ENOTEMPTY;
2660 goto exit1;
2661 case LAST_DOT:
2662 error = -EINVAL;
2663 goto exit1;
2664 case LAST_ROOT:
2665 error = -EBUSY;
2666 goto exit1;
2667 }
2668
2669 nd.flags &= ~LOOKUP_PARENT;
2670
2671 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2672 dentry = lookup_hash(&nd);
2673 error = PTR_ERR(dentry);
2674 if (IS_ERR(dentry))
2675 goto exit2;
2676 if (!dentry->d_inode) {
2677 error = -ENOENT;
2678 goto exit3;
2679 }
2680 error = mnt_want_write(nd.path.mnt);
2681 if (error)
2682 goto exit3;
2683 error = security_path_rmdir(&nd.path, dentry);
2684 if (error)
2685 goto exit4;
2686 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2687 exit4:
2688 mnt_drop_write(nd.path.mnt);
2689 exit3:
2690 dput(dentry);
2691 exit2:
2692 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2693 exit1:
2694 path_put(&nd.path);
2695 putname(name);
2696 return error;
2697 }
2698
2699 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2700 {
2701 return do_rmdir(AT_FDCWD, pathname);
2702 }
2703
2704 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2705 {
2706 int error = may_delete(dir, dentry, 0);
2707
2708 if (error)
2709 return error;
2710
2711 if (!dir->i_op->unlink)
2712 return -EPERM;
2713
2714 mutex_lock(&dentry->d_inode->i_mutex);
2715 if (d_mountpoint(dentry))
2716 error = -EBUSY;
2717 else {
2718 error = security_inode_unlink(dir, dentry);
2719 if (!error) {
2720 error = dir->i_op->unlink(dir, dentry);
2721 if (!error)
2722 dont_mount(dentry);
2723 }
2724 }
2725 mutex_unlock(&dentry->d_inode->i_mutex);
2726
2727 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2728 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2729 fsnotify_link_count(dentry->d_inode);
2730 d_delete(dentry);
2731 }
2732
2733 return error;
2734 }
2735
2736 /*
2737 * Make sure that the actual truncation of the file will occur outside its
2738 * directory's i_mutex. Truncate can take a long time if there is a lot of
2739 * writeout happening, and we don't want to prevent access to the directory
2740 * while waiting on the I/O.
2741 */
2742 static long do_unlinkat(int dfd, const char __user *pathname)
2743 {
2744 int error;
2745 char *name;
2746 struct dentry *dentry;
2747 struct nameidata nd;
2748 struct inode *inode = NULL;
2749
2750 error = user_path_parent(dfd, pathname, &nd, &name);
2751 if (error)
2752 return error;
2753
2754 error = -EISDIR;
2755 if (nd.last_type != LAST_NORM)
2756 goto exit1;
2757
2758 nd.flags &= ~LOOKUP_PARENT;
2759
2760 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2761 dentry = lookup_hash(&nd);
2762 error = PTR_ERR(dentry);
2763 if (!IS_ERR(dentry)) {
2764 /* Why not before? Because we want correct error value */
2765 if (nd.last.name[nd.last.len])
2766 goto slashes;
2767 inode = dentry->d_inode;
2768 if (!inode)
2769 goto slashes;
2770 ihold(inode);
2771 error = mnt_want_write(nd.path.mnt);
2772 if (error)
2773 goto exit2;
2774 error = security_path_unlink(&nd.path, dentry);
2775 if (error)
2776 goto exit3;
2777 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2778 exit3:
2779 mnt_drop_write(nd.path.mnt);
2780 exit2:
2781 dput(dentry);
2782 }
2783 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2784 if (inode)
2785 iput(inode); /* truncate the inode here */
2786 exit1:
2787 path_put(&nd.path);
2788 putname(name);
2789 return error;
2790
2791 slashes:
2792 error = !dentry->d_inode ? -ENOENT :
2793 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2794 goto exit2;
2795 }
2796
2797 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2798 {
2799 if ((flag & ~AT_REMOVEDIR) != 0)
2800 return -EINVAL;
2801
2802 if (flag & AT_REMOVEDIR)
2803 return do_rmdir(dfd, pathname);
2804
2805 return do_unlinkat(dfd, pathname);
2806 }
2807
2808 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2809 {
2810 return do_unlinkat(AT_FDCWD, pathname);
2811 }
2812
2813 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2814 {
2815 int error = may_create(dir, dentry);
2816
2817 if (error)
2818 return error;
2819
2820 if (!dir->i_op->symlink)
2821 return -EPERM;
2822
2823 error = security_inode_symlink(dir, dentry, oldname);
2824 if (error)
2825 return error;
2826
2827 error = dir->i_op->symlink(dir, dentry, oldname);
2828 if (!error)
2829 fsnotify_create(dir, dentry);
2830 return error;
2831 }
2832
2833 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2834 int, newdfd, const char __user *, newname)
2835 {
2836 int error;
2837 char *from;
2838 struct dentry *dentry;
2839 struct path path;
2840
2841 from = getname(oldname);
2842 if (IS_ERR(from))
2843 return PTR_ERR(from);
2844
2845 dentry = user_path_create(newdfd, newname, &path, 0);
2846 error = PTR_ERR(dentry);
2847 if (IS_ERR(dentry))
2848 goto out_putname;
2849
2850 error = mnt_want_write(path.mnt);
2851 if (error)
2852 goto out_dput;
2853 error = security_path_symlink(&path, dentry, from);
2854 if (error)
2855 goto out_drop_write;
2856 error = vfs_symlink(path.dentry->d_inode, dentry, from);
2857 out_drop_write:
2858 mnt_drop_write(path.mnt);
2859 out_dput:
2860 dput(dentry);
2861 mutex_unlock(&path.dentry->d_inode->i_mutex);
2862 path_put(&path);
2863 out_putname:
2864 putname(from);
2865 return error;
2866 }
2867
2868 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2869 {
2870 return sys_symlinkat(oldname, AT_FDCWD, newname);
2871 }
2872
2873 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2874 {
2875 struct inode *inode = old_dentry->d_inode;
2876 int error;
2877
2878 if (!inode)
2879 return -ENOENT;
2880
2881 error = may_create(dir, new_dentry);
2882 if (error)
2883 return error;
2884
2885 if (dir->i_sb != inode->i_sb)
2886 return -EXDEV;
2887
2888 /*
2889 * A link to an append-only or immutable file cannot be created.
2890 */
2891 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2892 return -EPERM;
2893 if (!dir->i_op->link)
2894 return -EPERM;
2895 if (S_ISDIR(inode->i_mode))
2896 return -EPERM;
2897
2898 error = security_inode_link(old_dentry, dir, new_dentry);
2899 if (error)
2900 return error;
2901
2902 mutex_lock(&inode->i_mutex);
2903 /* Make sure we don't allow creating hardlink to an unlinked file */
2904 if (inode->i_nlink == 0)
2905 error = -ENOENT;
2906 else
2907 error = dir->i_op->link(old_dentry, dir, new_dentry);
2908 mutex_unlock(&inode->i_mutex);
2909 if (!error)
2910 fsnotify_link(dir, inode, new_dentry);
2911 return error;
2912 }
2913
2914 /*
2915 * Hardlinks are often used in delicate situations. We avoid
2916 * security-related surprises by not following symlinks on the
2917 * newname. --KAB
2918 *
2919 * We don't follow them on the oldname either to be compatible
2920 * with linux 2.0, and to avoid hard-linking to directories
2921 * and other special files. --ADM
2922 */
2923 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2924 int, newdfd, const char __user *, newname, int, flags)
2925 {
2926 struct dentry *new_dentry;
2927 struct path old_path, new_path;
2928 int how = 0;
2929 int error;
2930
2931 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2932 return -EINVAL;
2933 /*
2934 * To use null names we require CAP_DAC_READ_SEARCH
2935 * This ensures that not everyone will be able to create
2936 * handlink using the passed filedescriptor.
2937 */
2938 if (flags & AT_EMPTY_PATH) {
2939 if (!capable(CAP_DAC_READ_SEARCH))
2940 return -ENOENT;
2941 how = LOOKUP_EMPTY;
2942 }
2943
2944 if (flags & AT_SYMLINK_FOLLOW)
2945 how |= LOOKUP_FOLLOW;
2946
2947 error = user_path_at(olddfd, oldname, how, &old_path);
2948 if (error)
2949 return error;
2950
2951 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
2952 error = PTR_ERR(new_dentry);
2953 if (IS_ERR(new_dentry))
2954 goto out;
2955
2956 error = -EXDEV;
2957 if (old_path.mnt != new_path.mnt)
2958 goto out_dput;
2959 error = mnt_want_write(new_path.mnt);
2960 if (error)
2961 goto out_dput;
2962 error = security_path_link(old_path.dentry, &new_path, new_dentry);
2963 if (error)
2964 goto out_drop_write;
2965 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
2966 out_drop_write:
2967 mnt_drop_write(new_path.mnt);
2968 out_dput:
2969 dput(new_dentry);
2970 mutex_unlock(&new_path.dentry->d_inode->i_mutex);
2971 path_put(&new_path);
2972 out:
2973 path_put(&old_path);
2974
2975 return error;
2976 }
2977
2978 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2979 {
2980 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2981 }
2982
2983 /*
2984 * The worst of all namespace operations - renaming directory. "Perverted"
2985 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2986 * Problems:
2987 * a) we can get into loop creation. Check is done in is_subdir().
2988 * b) race potential - two innocent renames can create a loop together.
2989 * That's where 4.4 screws up. Current fix: serialization on
2990 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2991 * story.
2992 * c) we have to lock _three_ objects - parents and victim (if it exists).
2993 * And that - after we got ->i_mutex on parents (until then we don't know
2994 * whether the target exists). Solution: try to be smart with locking
2995 * order for inodes. We rely on the fact that tree topology may change
2996 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2997 * move will be locked. Thus we can rank directories by the tree
2998 * (ancestors first) and rank all non-directories after them.
2999 * That works since everybody except rename does "lock parent, lookup,
3000 * lock child" and rename is under ->s_vfs_rename_mutex.
3001 * HOWEVER, it relies on the assumption that any object with ->lookup()
3002 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3003 * we'd better make sure that there's no link(2) for them.
3004 * d) conversion from fhandle to dentry may come in the wrong moment - when
3005 * we are removing the target. Solution: we will have to grab ->i_mutex
3006 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3007 * ->i_mutex on parents, which works but leads to some truly excessive
3008 * locking].
3009 */
3010 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3011 struct inode *new_dir, struct dentry *new_dentry)
3012 {
3013 int error = 0;
3014 struct inode *target = new_dentry->d_inode;
3015
3016 /*
3017 * If we are going to change the parent - check write permissions,
3018 * we'll need to flip '..'.
3019 */
3020 if (new_dir != old_dir) {
3021 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3022 if (error)
3023 return error;
3024 }
3025
3026 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3027 if (error)
3028 return error;
3029
3030 dget(new_dentry);
3031 if (target)
3032 mutex_lock(&target->i_mutex);
3033
3034 error = -EBUSY;
3035 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3036 goto out;
3037
3038 if (target)
3039 shrink_dcache_parent(new_dentry);
3040 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3041 if (error)
3042 goto out;
3043
3044 if (target) {
3045 target->i_flags |= S_DEAD;
3046 dont_mount(new_dentry);
3047 }
3048 out:
3049 if (target)
3050 mutex_unlock(&target->i_mutex);
3051 dput(new_dentry);
3052 if (!error)
3053 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3054 d_move(old_dentry,new_dentry);
3055 return error;
3056 }
3057
3058 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3059 struct inode *new_dir, struct dentry *new_dentry)
3060 {
3061 struct inode *target = new_dentry->d_inode;
3062 int error;
3063
3064 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3065 if (error)
3066 return error;
3067
3068 dget(new_dentry);
3069 if (target)
3070 mutex_lock(&target->i_mutex);
3071
3072 error = -EBUSY;
3073 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3074 goto out;
3075
3076 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3077 if (error)
3078 goto out;
3079
3080 if (target)
3081 dont_mount(new_dentry);
3082 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3083 d_move(old_dentry, new_dentry);
3084 out:
3085 if (target)
3086 mutex_unlock(&target->i_mutex);
3087 dput(new_dentry);
3088 return error;
3089 }
3090
3091 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3092 struct inode *new_dir, struct dentry *new_dentry)
3093 {
3094 int error;
3095 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3096 const unsigned char *old_name;
3097
3098 if (old_dentry->d_inode == new_dentry->d_inode)
3099 return 0;
3100
3101 error = may_delete(old_dir, old_dentry, is_dir);
3102 if (error)
3103 return error;
3104
3105 if (!new_dentry->d_inode)
3106 error = may_create(new_dir, new_dentry);
3107 else
3108 error = may_delete(new_dir, new_dentry, is_dir);
3109 if (error)
3110 return error;
3111
3112 if (!old_dir->i_op->rename)
3113 return -EPERM;
3114
3115 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3116
3117 if (is_dir)
3118 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3119 else
3120 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3121 if (!error)
3122 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3123 new_dentry->d_inode, old_dentry);
3124 fsnotify_oldname_free(old_name);
3125
3126 return error;
3127 }
3128
3129 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3130 int, newdfd, const char __user *, newname)
3131 {
3132 struct dentry *old_dir, *new_dir;
3133 struct dentry *old_dentry, *new_dentry;
3134 struct dentry *trap;
3135 struct nameidata oldnd, newnd;
3136 char *from;
3137 char *to;
3138 int error;
3139
3140 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3141 if (error)
3142 goto exit;
3143
3144 error = user_path_parent(newdfd, newname, &newnd, &to);
3145 if (error)
3146 goto exit1;
3147
3148 error = -EXDEV;
3149 if (oldnd.path.mnt != newnd.path.mnt)
3150 goto exit2;
3151
3152 old_dir = oldnd.path.dentry;
3153 error = -EBUSY;
3154 if (oldnd.last_type != LAST_NORM)
3155 goto exit2;
3156
3157 new_dir = newnd.path.dentry;
3158 if (newnd.last_type != LAST_NORM)
3159 goto exit2;
3160
3161 oldnd.flags &= ~LOOKUP_PARENT;
3162 newnd.flags &= ~LOOKUP_PARENT;
3163 newnd.flags |= LOOKUP_RENAME_TARGET;
3164
3165 trap = lock_rename(new_dir, old_dir);
3166
3167 old_dentry = lookup_hash(&oldnd);
3168 error = PTR_ERR(old_dentry);
3169 if (IS_ERR(old_dentry))
3170 goto exit3;
3171 /* source must exist */
3172 error = -ENOENT;
3173 if (!old_dentry->d_inode)
3174 goto exit4;
3175 /* unless the source is a directory trailing slashes give -ENOTDIR */
3176 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3177 error = -ENOTDIR;
3178 if (oldnd.last.name[oldnd.last.len])
3179 goto exit4;
3180 if (newnd.last.name[newnd.last.len])
3181 goto exit4;
3182 }
3183 /* source should not be ancestor of target */
3184 error = -EINVAL;
3185 if (old_dentry == trap)
3186 goto exit4;
3187 new_dentry = lookup_hash(&newnd);
3188 error = PTR_ERR(new_dentry);
3189 if (IS_ERR(new_dentry))
3190 goto exit4;
3191 /* target should not be an ancestor of source */
3192 error = -ENOTEMPTY;
3193 if (new_dentry == trap)
3194 goto exit5;
3195
3196 error = mnt_want_write(oldnd.path.mnt);
3197 if (error)
3198 goto exit5;
3199 error = security_path_rename(&oldnd.path, old_dentry,
3200 &newnd.path, new_dentry);
3201 if (error)
3202 goto exit6;
3203 error = vfs_rename(old_dir->d_inode, old_dentry,
3204 new_dir->d_inode, new_dentry);
3205 exit6:
3206 mnt_drop_write(oldnd.path.mnt);
3207 exit5:
3208 dput(new_dentry);
3209 exit4:
3210 dput(old_dentry);
3211 exit3:
3212 unlock_rename(new_dir, old_dir);
3213 exit2:
3214 path_put(&newnd.path);
3215 putname(to);
3216 exit1:
3217 path_put(&oldnd.path);
3218 putname(from);
3219 exit:
3220 return error;
3221 }
3222
3223 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3224 {
3225 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3226 }
3227
3228 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3229 {
3230 int len;
3231
3232 len = PTR_ERR(link);
3233 if (IS_ERR(link))
3234 goto out;
3235
3236 len = strlen(link);
3237 if (len > (unsigned) buflen)
3238 len = buflen;
3239 if (copy_to_user(buffer, link, len))
3240 len = -EFAULT;
3241 out:
3242 return len;
3243 }
3244
3245 /*
3246 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3247 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3248 * using) it for any given inode is up to filesystem.
3249 */
3250 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3251 {
3252 struct nameidata nd;
3253 void *cookie;
3254 int res;
3255
3256 nd.depth = 0;
3257 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3258 if (IS_ERR(cookie))
3259 return PTR_ERR(cookie);
3260
3261 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3262 if (dentry->d_inode->i_op->put_link)
3263 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3264 return res;
3265 }
3266
3267 int vfs_follow_link(struct nameidata *nd, const char *link)
3268 {
3269 return __vfs_follow_link(nd, link);
3270 }
3271
3272 /* get the link contents into pagecache */
3273 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3274 {
3275 char *kaddr;
3276 struct page *page;
3277 struct address_space *mapping = dentry->d_inode->i_mapping;
3278 page = read_mapping_page(mapping, 0, NULL);
3279 if (IS_ERR(page))
3280 return (char*)page;
3281 *ppage = page;
3282 kaddr = kmap(page);
3283 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3284 return kaddr;
3285 }
3286
3287 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3288 {
3289 struct page *page = NULL;
3290 char *s = page_getlink(dentry, &page);
3291 int res = vfs_readlink(dentry,buffer,buflen,s);
3292 if (page) {
3293 kunmap(page);
3294 page_cache_release(page);
3295 }
3296 return res;
3297 }
3298
3299 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3300 {
3301 struct page *page = NULL;
3302 nd_set_link(nd, page_getlink(dentry, &page));
3303 return page;
3304 }
3305
3306 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3307 {
3308 struct page *page = cookie;
3309
3310 if (page) {
3311 kunmap(page);
3312 page_cache_release(page);
3313 }
3314 }
3315
3316 /*
3317 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3318 */
3319 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3320 {
3321 struct address_space *mapping = inode->i_mapping;
3322 struct page *page;
3323 void *fsdata;
3324 int err;
3325 char *kaddr;
3326 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3327 if (nofs)
3328 flags |= AOP_FLAG_NOFS;
3329
3330 retry:
3331 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3332 flags, &page, &fsdata);
3333 if (err)
3334 goto fail;
3335
3336 kaddr = kmap_atomic(page, KM_USER0);
3337 memcpy(kaddr, symname, len-1);
3338 kunmap_atomic(kaddr, KM_USER0);
3339
3340 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3341 page, fsdata);
3342 if (err < 0)
3343 goto fail;
3344 if (err < len-1)
3345 goto retry;
3346
3347 mark_inode_dirty(inode);
3348 return 0;
3349 fail:
3350 return err;
3351 }
3352
3353 int page_symlink(struct inode *inode, const char *symname, int len)
3354 {
3355 return __page_symlink(inode, symname, len,
3356 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3357 }
3358
3359 const struct inode_operations page_symlink_inode_operations = {
3360 .readlink = generic_readlink,
3361 .follow_link = page_follow_link_light,
3362 .put_link = page_put_link,
3363 };
3364
3365 EXPORT_SYMBOL(user_path_at);
3366 EXPORT_SYMBOL(follow_down_one);
3367 EXPORT_SYMBOL(follow_down);
3368 EXPORT_SYMBOL(follow_up);
3369 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3370 EXPORT_SYMBOL(getname);
3371 EXPORT_SYMBOL(lock_rename);
3372 EXPORT_SYMBOL(lookup_one_len);
3373 EXPORT_SYMBOL(page_follow_link_light);
3374 EXPORT_SYMBOL(page_put_link);
3375 EXPORT_SYMBOL(page_readlink);
3376 EXPORT_SYMBOL(__page_symlink);
3377 EXPORT_SYMBOL(page_symlink);
3378 EXPORT_SYMBOL(page_symlink_inode_operations);
3379 EXPORT_SYMBOL(kern_path);
3380 EXPORT_SYMBOL(vfs_path_lookup);
3381 EXPORT_SYMBOL(inode_permission);
3382 EXPORT_SYMBOL(unlock_rename);
3383 EXPORT_SYMBOL(vfs_create);
3384 EXPORT_SYMBOL(vfs_follow_link);
3385 EXPORT_SYMBOL(vfs_link);
3386 EXPORT_SYMBOL(vfs_mkdir);
3387 EXPORT_SYMBOL(vfs_mknod);
3388 EXPORT_SYMBOL(generic_permission);
3389 EXPORT_SYMBOL(vfs_readlink);
3390 EXPORT_SYMBOL(vfs_rename);
3391 EXPORT_SYMBOL(vfs_rmdir);
3392 EXPORT_SYMBOL(vfs_symlink);
3393 EXPORT_SYMBOL(vfs_unlink);
3394 EXPORT_SYMBOL(dentry_unhash);
3395 EXPORT_SYMBOL(generic_readlink);