]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namei.c
floppy: refactor open() flags handling
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 struct path path;
498 struct qstr last;
499 struct path root;
500 struct inode *inode; /* path.dentry.d_inode */
501 unsigned int flags;
502 unsigned seq, m_seq;
503 int last_type;
504 unsigned depth;
505 int total_link_count;
506 struct saved {
507 struct path link;
508 struct delayed_call done;
509 const char *name;
510 unsigned seq;
511 } *stack, internal[EMBEDDED_LEVELS];
512 struct filename *name;
513 struct nameidata *saved;
514 struct inode *link_inode;
515 unsigned root_seq;
516 int dfd;
517 };
518
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521 struct nameidata *old = current->nameidata;
522 p->stack = p->internal;
523 p->dfd = dfd;
524 p->name = name;
525 p->total_link_count = old ? old->total_link_count : 0;
526 p->saved = old;
527 current->nameidata = p;
528 }
529
530 static void restore_nameidata(void)
531 {
532 struct nameidata *now = current->nameidata, *old = now->saved;
533
534 current->nameidata = old;
535 if (old)
536 old->total_link_count = now->total_link_count;
537 if (now->stack != now->internal)
538 kfree(now->stack);
539 }
540
541 static int __nd_alloc_stack(struct nameidata *nd)
542 {
543 struct saved *p;
544
545 if (nd->flags & LOOKUP_RCU) {
546 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
547 GFP_ATOMIC);
548 if (unlikely(!p))
549 return -ECHILD;
550 } else {
551 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
552 GFP_KERNEL);
553 if (unlikely(!p))
554 return -ENOMEM;
555 }
556 memcpy(p, nd->internal, sizeof(nd->internal));
557 nd->stack = p;
558 return 0;
559 }
560
561 /**
562 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
563 * @path: nameidate to verify
564 *
565 * Rename can sometimes move a file or directory outside of a bind
566 * mount, path_connected allows those cases to be detected.
567 */
568 static bool path_connected(const struct path *path)
569 {
570 struct vfsmount *mnt = path->mnt;
571
572 /* Only bind mounts can have disconnected paths */
573 if (mnt->mnt_root == mnt->mnt_sb->s_root)
574 return true;
575
576 return is_subdir(path->dentry, mnt->mnt_root);
577 }
578
579 static inline int nd_alloc_stack(struct nameidata *nd)
580 {
581 if (likely(nd->depth != EMBEDDED_LEVELS))
582 return 0;
583 if (likely(nd->stack != nd->internal))
584 return 0;
585 return __nd_alloc_stack(nd);
586 }
587
588 static void drop_links(struct nameidata *nd)
589 {
590 int i = nd->depth;
591 while (i--) {
592 struct saved *last = nd->stack + i;
593 do_delayed_call(&last->done);
594 clear_delayed_call(&last->done);
595 }
596 }
597
598 static void terminate_walk(struct nameidata *nd)
599 {
600 drop_links(nd);
601 if (!(nd->flags & LOOKUP_RCU)) {
602 int i;
603 path_put(&nd->path);
604 for (i = 0; i < nd->depth; i++)
605 path_put(&nd->stack[i].link);
606 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
607 path_put(&nd->root);
608 nd->root.mnt = NULL;
609 }
610 } else {
611 nd->flags &= ~LOOKUP_RCU;
612 if (!(nd->flags & LOOKUP_ROOT))
613 nd->root.mnt = NULL;
614 rcu_read_unlock();
615 }
616 nd->depth = 0;
617 }
618
619 /* path_put is needed afterwards regardless of success or failure */
620 static bool legitimize_path(struct nameidata *nd,
621 struct path *path, unsigned seq)
622 {
623 int res = __legitimize_mnt(path->mnt, nd->m_seq);
624 if (unlikely(res)) {
625 if (res > 0)
626 path->mnt = NULL;
627 path->dentry = NULL;
628 return false;
629 }
630 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
631 path->dentry = NULL;
632 return false;
633 }
634 return !read_seqcount_retry(&path->dentry->d_seq, seq);
635 }
636
637 static bool legitimize_links(struct nameidata *nd)
638 {
639 int i;
640 for (i = 0; i < nd->depth; i++) {
641 struct saved *last = nd->stack + i;
642 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
643 drop_links(nd);
644 nd->depth = i + 1;
645 return false;
646 }
647 }
648 return true;
649 }
650
651 /*
652 * Path walking has 2 modes, rcu-walk and ref-walk (see
653 * Documentation/filesystems/path-lookup.txt). In situations when we can't
654 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
655 * normal reference counts on dentries and vfsmounts to transition to ref-walk
656 * mode. Refcounts are grabbed at the last known good point before rcu-walk
657 * got stuck, so ref-walk may continue from there. If this is not successful
658 * (eg. a seqcount has changed), then failure is returned and it's up to caller
659 * to restart the path walk from the beginning in ref-walk mode.
660 */
661
662 /**
663 * unlazy_walk - try to switch to ref-walk mode.
664 * @nd: nameidata pathwalk data
665 * @dentry: child of nd->path.dentry or NULL
666 * @seq: seq number to check dentry against
667 * Returns: 0 on success, -ECHILD on failure
668 *
669 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
670 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
671 * @nd or NULL. Must be called from rcu-walk context.
672 * Nothing should touch nameidata between unlazy_walk() failure and
673 * terminate_walk().
674 */
675 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
676 {
677 struct dentry *parent = nd->path.dentry;
678
679 BUG_ON(!(nd->flags & LOOKUP_RCU));
680
681 nd->flags &= ~LOOKUP_RCU;
682 if (unlikely(!legitimize_links(nd)))
683 goto out2;
684 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
685 goto out2;
686 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
687 goto out1;
688
689 /*
690 * For a negative lookup, the lookup sequence point is the parents
691 * sequence point, and it only needs to revalidate the parent dentry.
692 *
693 * For a positive lookup, we need to move both the parent and the
694 * dentry from the RCU domain to be properly refcounted. And the
695 * sequence number in the dentry validates *both* dentry counters,
696 * since we checked the sequence number of the parent after we got
697 * the child sequence number. So we know the parent must still
698 * be valid if the child sequence number is still valid.
699 */
700 if (!dentry) {
701 if (read_seqcount_retry(&parent->d_seq, nd->seq))
702 goto out;
703 BUG_ON(nd->inode != parent->d_inode);
704 } else {
705 if (!lockref_get_not_dead(&dentry->d_lockref))
706 goto out;
707 if (read_seqcount_retry(&dentry->d_seq, seq))
708 goto drop_dentry;
709 }
710
711 /*
712 * Sequence counts matched. Now make sure that the root is
713 * still valid and get it if required.
714 */
715 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
716 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
717 rcu_read_unlock();
718 dput(dentry);
719 return -ECHILD;
720 }
721 }
722
723 rcu_read_unlock();
724 return 0;
725
726 drop_dentry:
727 rcu_read_unlock();
728 dput(dentry);
729 goto drop_root_mnt;
730 out2:
731 nd->path.mnt = NULL;
732 out1:
733 nd->path.dentry = NULL;
734 out:
735 rcu_read_unlock();
736 drop_root_mnt:
737 if (!(nd->flags & LOOKUP_ROOT))
738 nd->root.mnt = NULL;
739 return -ECHILD;
740 }
741
742 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
743 {
744 if (unlikely(!legitimize_path(nd, link, seq))) {
745 drop_links(nd);
746 nd->depth = 0;
747 nd->flags &= ~LOOKUP_RCU;
748 nd->path.mnt = NULL;
749 nd->path.dentry = NULL;
750 if (!(nd->flags & LOOKUP_ROOT))
751 nd->root.mnt = NULL;
752 rcu_read_unlock();
753 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
754 return 0;
755 }
756 path_put(link);
757 return -ECHILD;
758 }
759
760 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
761 {
762 return dentry->d_op->d_revalidate(dentry, flags);
763 }
764
765 /**
766 * complete_walk - successful completion of path walk
767 * @nd: pointer nameidata
768 *
769 * If we had been in RCU mode, drop out of it and legitimize nd->path.
770 * Revalidate the final result, unless we'd already done that during
771 * the path walk or the filesystem doesn't ask for it. Return 0 on
772 * success, -error on failure. In case of failure caller does not
773 * need to drop nd->path.
774 */
775 static int complete_walk(struct nameidata *nd)
776 {
777 struct dentry *dentry = nd->path.dentry;
778 int status;
779
780 if (nd->flags & LOOKUP_RCU) {
781 if (!(nd->flags & LOOKUP_ROOT))
782 nd->root.mnt = NULL;
783 if (unlikely(unlazy_walk(nd, NULL, 0)))
784 return -ECHILD;
785 }
786
787 if (likely(!(nd->flags & LOOKUP_JUMPED)))
788 return 0;
789
790 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
791 return 0;
792
793 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
794 if (status > 0)
795 return 0;
796
797 if (!status)
798 status = -ESTALE;
799
800 return status;
801 }
802
803 static void set_root(struct nameidata *nd)
804 {
805 struct fs_struct *fs = current->fs;
806
807 if (nd->flags & LOOKUP_RCU) {
808 unsigned seq;
809
810 do {
811 seq = read_seqcount_begin(&fs->seq);
812 nd->root = fs->root;
813 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
814 } while (read_seqcount_retry(&fs->seq, seq));
815 } else {
816 get_fs_root(fs, &nd->root);
817 }
818 }
819
820 static void path_put_conditional(struct path *path, struct nameidata *nd)
821 {
822 dput(path->dentry);
823 if (path->mnt != nd->path.mnt)
824 mntput(path->mnt);
825 }
826
827 static inline void path_to_nameidata(const struct path *path,
828 struct nameidata *nd)
829 {
830 if (!(nd->flags & LOOKUP_RCU)) {
831 dput(nd->path.dentry);
832 if (nd->path.mnt != path->mnt)
833 mntput(nd->path.mnt);
834 }
835 nd->path.mnt = path->mnt;
836 nd->path.dentry = path->dentry;
837 }
838
839 static int nd_jump_root(struct nameidata *nd)
840 {
841 if (nd->flags & LOOKUP_RCU) {
842 struct dentry *d;
843 nd->path = nd->root;
844 d = nd->path.dentry;
845 nd->inode = d->d_inode;
846 nd->seq = nd->root_seq;
847 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
848 return -ECHILD;
849 } else {
850 path_put(&nd->path);
851 nd->path = nd->root;
852 path_get(&nd->path);
853 nd->inode = nd->path.dentry->d_inode;
854 }
855 nd->flags |= LOOKUP_JUMPED;
856 return 0;
857 }
858
859 /*
860 * Helper to directly jump to a known parsed path from ->get_link,
861 * caller must have taken a reference to path beforehand.
862 */
863 void nd_jump_link(struct path *path)
864 {
865 struct nameidata *nd = current->nameidata;
866 path_put(&nd->path);
867
868 nd->path = *path;
869 nd->inode = nd->path.dentry->d_inode;
870 nd->flags |= LOOKUP_JUMPED;
871 }
872
873 static inline void put_link(struct nameidata *nd)
874 {
875 struct saved *last = nd->stack + --nd->depth;
876 do_delayed_call(&last->done);
877 if (!(nd->flags & LOOKUP_RCU))
878 path_put(&last->link);
879 }
880
881 int sysctl_protected_symlinks __read_mostly = 0;
882 int sysctl_protected_hardlinks __read_mostly = 0;
883
884 /**
885 * may_follow_link - Check symlink following for unsafe situations
886 * @nd: nameidata pathwalk data
887 *
888 * In the case of the sysctl_protected_symlinks sysctl being enabled,
889 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
890 * in a sticky world-writable directory. This is to protect privileged
891 * processes from failing races against path names that may change out
892 * from under them by way of other users creating malicious symlinks.
893 * It will permit symlinks to be followed only when outside a sticky
894 * world-writable directory, or when the uid of the symlink and follower
895 * match, or when the directory owner matches the symlink's owner.
896 *
897 * Returns 0 if following the symlink is allowed, -ve on error.
898 */
899 static inline int may_follow_link(struct nameidata *nd)
900 {
901 const struct inode *inode;
902 const struct inode *parent;
903
904 if (!sysctl_protected_symlinks)
905 return 0;
906
907 /* Allowed if owner and follower match. */
908 inode = nd->link_inode;
909 if (uid_eq(current_cred()->fsuid, inode->i_uid))
910 return 0;
911
912 /* Allowed if parent directory not sticky and world-writable. */
913 parent = nd->inode;
914 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
915 return 0;
916
917 /* Allowed if parent directory and link owner match. */
918 if (uid_eq(parent->i_uid, inode->i_uid))
919 return 0;
920
921 if (nd->flags & LOOKUP_RCU)
922 return -ECHILD;
923
924 audit_log_link_denied("follow_link", &nd->stack[0].link);
925 return -EACCES;
926 }
927
928 /**
929 * safe_hardlink_source - Check for safe hardlink conditions
930 * @inode: the source inode to hardlink from
931 *
932 * Return false if at least one of the following conditions:
933 * - inode is not a regular file
934 * - inode is setuid
935 * - inode is setgid and group-exec
936 * - access failure for read and write
937 *
938 * Otherwise returns true.
939 */
940 static bool safe_hardlink_source(struct inode *inode)
941 {
942 umode_t mode = inode->i_mode;
943
944 /* Special files should not get pinned to the filesystem. */
945 if (!S_ISREG(mode))
946 return false;
947
948 /* Setuid files should not get pinned to the filesystem. */
949 if (mode & S_ISUID)
950 return false;
951
952 /* Executable setgid files should not get pinned to the filesystem. */
953 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
954 return false;
955
956 /* Hardlinking to unreadable or unwritable sources is dangerous. */
957 if (inode_permission(inode, MAY_READ | MAY_WRITE))
958 return false;
959
960 return true;
961 }
962
963 /**
964 * may_linkat - Check permissions for creating a hardlink
965 * @link: the source to hardlink from
966 *
967 * Block hardlink when all of:
968 * - sysctl_protected_hardlinks enabled
969 * - fsuid does not match inode
970 * - hardlink source is unsafe (see safe_hardlink_source() above)
971 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
972 *
973 * Returns 0 if successful, -ve on error.
974 */
975 static int may_linkat(struct path *link)
976 {
977 struct inode *inode;
978
979 if (!sysctl_protected_hardlinks)
980 return 0;
981
982 inode = link->dentry->d_inode;
983
984 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
985 * otherwise, it must be a safe source.
986 */
987 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
988 return 0;
989
990 audit_log_link_denied("linkat", link);
991 return -EPERM;
992 }
993
994 static __always_inline
995 const char *get_link(struct nameidata *nd)
996 {
997 struct saved *last = nd->stack + nd->depth - 1;
998 struct dentry *dentry = last->link.dentry;
999 struct inode *inode = nd->link_inode;
1000 int error;
1001 const char *res;
1002
1003 if (!(nd->flags & LOOKUP_RCU)) {
1004 touch_atime(&last->link);
1005 cond_resched();
1006 } else if (atime_needs_update(&last->link, inode)) {
1007 if (unlikely(unlazy_walk(nd, NULL, 0)))
1008 return ERR_PTR(-ECHILD);
1009 touch_atime(&last->link);
1010 }
1011
1012 error = security_inode_follow_link(dentry, inode,
1013 nd->flags & LOOKUP_RCU);
1014 if (unlikely(error))
1015 return ERR_PTR(error);
1016
1017 nd->last_type = LAST_BIND;
1018 res = inode->i_link;
1019 if (!res) {
1020 const char * (*get)(struct dentry *, struct inode *,
1021 struct delayed_call *);
1022 get = inode->i_op->get_link;
1023 if (nd->flags & LOOKUP_RCU) {
1024 res = get(NULL, inode, &last->done);
1025 if (res == ERR_PTR(-ECHILD)) {
1026 if (unlikely(unlazy_walk(nd, NULL, 0)))
1027 return ERR_PTR(-ECHILD);
1028 res = get(dentry, inode, &last->done);
1029 }
1030 } else {
1031 res = get(dentry, inode, &last->done);
1032 }
1033 if (IS_ERR_OR_NULL(res))
1034 return res;
1035 }
1036 if (*res == '/') {
1037 if (!nd->root.mnt)
1038 set_root(nd);
1039 if (unlikely(nd_jump_root(nd)))
1040 return ERR_PTR(-ECHILD);
1041 while (unlikely(*++res == '/'))
1042 ;
1043 }
1044 if (!*res)
1045 res = NULL;
1046 return res;
1047 }
1048
1049 /*
1050 * follow_up - Find the mountpoint of path's vfsmount
1051 *
1052 * Given a path, find the mountpoint of its source file system.
1053 * Replace @path with the path of the mountpoint in the parent mount.
1054 * Up is towards /.
1055 *
1056 * Return 1 if we went up a level and 0 if we were already at the
1057 * root.
1058 */
1059 int follow_up(struct path *path)
1060 {
1061 struct mount *mnt = real_mount(path->mnt);
1062 struct mount *parent;
1063 struct dentry *mountpoint;
1064
1065 read_seqlock_excl(&mount_lock);
1066 parent = mnt->mnt_parent;
1067 if (parent == mnt) {
1068 read_sequnlock_excl(&mount_lock);
1069 return 0;
1070 }
1071 mntget(&parent->mnt);
1072 mountpoint = dget(mnt->mnt_mountpoint);
1073 read_sequnlock_excl(&mount_lock);
1074 dput(path->dentry);
1075 path->dentry = mountpoint;
1076 mntput(path->mnt);
1077 path->mnt = &parent->mnt;
1078 return 1;
1079 }
1080 EXPORT_SYMBOL(follow_up);
1081
1082 /*
1083 * Perform an automount
1084 * - return -EISDIR to tell follow_managed() to stop and return the path we
1085 * were called with.
1086 */
1087 static int follow_automount(struct path *path, struct nameidata *nd,
1088 bool *need_mntput)
1089 {
1090 struct vfsmount *mnt;
1091 int err;
1092
1093 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1094 return -EREMOTE;
1095
1096 /* We don't want to mount if someone's just doing a stat -
1097 * unless they're stat'ing a directory and appended a '/' to
1098 * the name.
1099 *
1100 * We do, however, want to mount if someone wants to open or
1101 * create a file of any type under the mountpoint, wants to
1102 * traverse through the mountpoint or wants to open the
1103 * mounted directory. Also, autofs may mark negative dentries
1104 * as being automount points. These will need the attentions
1105 * of the daemon to instantiate them before they can be used.
1106 */
1107 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1108 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1109 path->dentry->d_inode)
1110 return -EISDIR;
1111
1112 nd->total_link_count++;
1113 if (nd->total_link_count >= 40)
1114 return -ELOOP;
1115
1116 mnt = path->dentry->d_op->d_automount(path);
1117 if (IS_ERR(mnt)) {
1118 /*
1119 * The filesystem is allowed to return -EISDIR here to indicate
1120 * it doesn't want to automount. For instance, autofs would do
1121 * this so that its userspace daemon can mount on this dentry.
1122 *
1123 * However, we can only permit this if it's a terminal point in
1124 * the path being looked up; if it wasn't then the remainder of
1125 * the path is inaccessible and we should say so.
1126 */
1127 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1128 return -EREMOTE;
1129 return PTR_ERR(mnt);
1130 }
1131
1132 if (!mnt) /* mount collision */
1133 return 0;
1134
1135 if (!*need_mntput) {
1136 /* lock_mount() may release path->mnt on error */
1137 mntget(path->mnt);
1138 *need_mntput = true;
1139 }
1140 err = finish_automount(mnt, path);
1141
1142 switch (err) {
1143 case -EBUSY:
1144 /* Someone else made a mount here whilst we were busy */
1145 return 0;
1146 case 0:
1147 path_put(path);
1148 path->mnt = mnt;
1149 path->dentry = dget(mnt->mnt_root);
1150 return 0;
1151 default:
1152 return err;
1153 }
1154
1155 }
1156
1157 /*
1158 * Handle a dentry that is managed in some way.
1159 * - Flagged for transit management (autofs)
1160 * - Flagged as mountpoint
1161 * - Flagged as automount point
1162 *
1163 * This may only be called in refwalk mode.
1164 *
1165 * Serialization is taken care of in namespace.c
1166 */
1167 static int follow_managed(struct path *path, struct nameidata *nd)
1168 {
1169 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1170 unsigned managed;
1171 bool need_mntput = false;
1172 int ret = 0;
1173
1174 /* Given that we're not holding a lock here, we retain the value in a
1175 * local variable for each dentry as we look at it so that we don't see
1176 * the components of that value change under us */
1177 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1178 managed &= DCACHE_MANAGED_DENTRY,
1179 unlikely(managed != 0)) {
1180 /* Allow the filesystem to manage the transit without i_mutex
1181 * being held. */
1182 if (managed & DCACHE_MANAGE_TRANSIT) {
1183 BUG_ON(!path->dentry->d_op);
1184 BUG_ON(!path->dentry->d_op->d_manage);
1185 ret = path->dentry->d_op->d_manage(path->dentry, false);
1186 if (ret < 0)
1187 break;
1188 }
1189
1190 /* Transit to a mounted filesystem. */
1191 if (managed & DCACHE_MOUNTED) {
1192 struct vfsmount *mounted = lookup_mnt(path);
1193 if (mounted) {
1194 dput(path->dentry);
1195 if (need_mntput)
1196 mntput(path->mnt);
1197 path->mnt = mounted;
1198 path->dentry = dget(mounted->mnt_root);
1199 need_mntput = true;
1200 continue;
1201 }
1202
1203 /* Something is mounted on this dentry in another
1204 * namespace and/or whatever was mounted there in this
1205 * namespace got unmounted before lookup_mnt() could
1206 * get it */
1207 }
1208
1209 /* Handle an automount point */
1210 if (managed & DCACHE_NEED_AUTOMOUNT) {
1211 ret = follow_automount(path, nd, &need_mntput);
1212 if (ret < 0)
1213 break;
1214 continue;
1215 }
1216
1217 /* We didn't change the current path point */
1218 break;
1219 }
1220
1221 if (need_mntput && path->mnt == mnt)
1222 mntput(path->mnt);
1223 if (ret == -EISDIR)
1224 ret = 0;
1225 if (need_mntput)
1226 nd->flags |= LOOKUP_JUMPED;
1227 if (unlikely(ret < 0))
1228 path_put_conditional(path, nd);
1229 return ret;
1230 }
1231
1232 int follow_down_one(struct path *path)
1233 {
1234 struct vfsmount *mounted;
1235
1236 mounted = lookup_mnt(path);
1237 if (mounted) {
1238 dput(path->dentry);
1239 mntput(path->mnt);
1240 path->mnt = mounted;
1241 path->dentry = dget(mounted->mnt_root);
1242 return 1;
1243 }
1244 return 0;
1245 }
1246 EXPORT_SYMBOL(follow_down_one);
1247
1248 static inline int managed_dentry_rcu(struct dentry *dentry)
1249 {
1250 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1251 dentry->d_op->d_manage(dentry, true) : 0;
1252 }
1253
1254 /*
1255 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1256 * we meet a managed dentry that would need blocking.
1257 */
1258 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1259 struct inode **inode, unsigned *seqp)
1260 {
1261 for (;;) {
1262 struct mount *mounted;
1263 /*
1264 * Don't forget we might have a non-mountpoint managed dentry
1265 * that wants to block transit.
1266 */
1267 switch (managed_dentry_rcu(path->dentry)) {
1268 case -ECHILD:
1269 default:
1270 return false;
1271 case -EISDIR:
1272 return true;
1273 case 0:
1274 break;
1275 }
1276
1277 if (!d_mountpoint(path->dentry))
1278 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1279
1280 mounted = __lookup_mnt(path->mnt, path->dentry);
1281 if (!mounted)
1282 break;
1283 path->mnt = &mounted->mnt;
1284 path->dentry = mounted->mnt.mnt_root;
1285 nd->flags |= LOOKUP_JUMPED;
1286 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1287 /*
1288 * Update the inode too. We don't need to re-check the
1289 * dentry sequence number here after this d_inode read,
1290 * because a mount-point is always pinned.
1291 */
1292 *inode = path->dentry->d_inode;
1293 }
1294 return !read_seqretry(&mount_lock, nd->m_seq) &&
1295 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1296 }
1297
1298 static int follow_dotdot_rcu(struct nameidata *nd)
1299 {
1300 struct inode *inode = nd->inode;
1301
1302 while (1) {
1303 if (path_equal(&nd->path, &nd->root))
1304 break;
1305 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1306 struct dentry *old = nd->path.dentry;
1307 struct dentry *parent = old->d_parent;
1308 unsigned seq;
1309
1310 inode = parent->d_inode;
1311 seq = read_seqcount_begin(&parent->d_seq);
1312 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1313 return -ECHILD;
1314 nd->path.dentry = parent;
1315 nd->seq = seq;
1316 if (unlikely(!path_connected(&nd->path)))
1317 return -ENOENT;
1318 break;
1319 } else {
1320 struct mount *mnt = real_mount(nd->path.mnt);
1321 struct mount *mparent = mnt->mnt_parent;
1322 struct dentry *mountpoint = mnt->mnt_mountpoint;
1323 struct inode *inode2 = mountpoint->d_inode;
1324 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1325 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1326 return -ECHILD;
1327 if (&mparent->mnt == nd->path.mnt)
1328 break;
1329 /* we know that mountpoint was pinned */
1330 nd->path.dentry = mountpoint;
1331 nd->path.mnt = &mparent->mnt;
1332 inode = inode2;
1333 nd->seq = seq;
1334 }
1335 }
1336 while (unlikely(d_mountpoint(nd->path.dentry))) {
1337 struct mount *mounted;
1338 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1339 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1340 return -ECHILD;
1341 if (!mounted)
1342 break;
1343 nd->path.mnt = &mounted->mnt;
1344 nd->path.dentry = mounted->mnt.mnt_root;
1345 inode = nd->path.dentry->d_inode;
1346 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1347 }
1348 nd->inode = inode;
1349 return 0;
1350 }
1351
1352 /*
1353 * Follow down to the covering mount currently visible to userspace. At each
1354 * point, the filesystem owning that dentry may be queried as to whether the
1355 * caller is permitted to proceed or not.
1356 */
1357 int follow_down(struct path *path)
1358 {
1359 unsigned managed;
1360 int ret;
1361
1362 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1363 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1364 /* Allow the filesystem to manage the transit without i_mutex
1365 * being held.
1366 *
1367 * We indicate to the filesystem if someone is trying to mount
1368 * something here. This gives autofs the chance to deny anyone
1369 * other than its daemon the right to mount on its
1370 * superstructure.
1371 *
1372 * The filesystem may sleep at this point.
1373 */
1374 if (managed & DCACHE_MANAGE_TRANSIT) {
1375 BUG_ON(!path->dentry->d_op);
1376 BUG_ON(!path->dentry->d_op->d_manage);
1377 ret = path->dentry->d_op->d_manage(
1378 path->dentry, false);
1379 if (ret < 0)
1380 return ret == -EISDIR ? 0 : ret;
1381 }
1382
1383 /* Transit to a mounted filesystem. */
1384 if (managed & DCACHE_MOUNTED) {
1385 struct vfsmount *mounted = lookup_mnt(path);
1386 if (!mounted)
1387 break;
1388 dput(path->dentry);
1389 mntput(path->mnt);
1390 path->mnt = mounted;
1391 path->dentry = dget(mounted->mnt_root);
1392 continue;
1393 }
1394
1395 /* Don't handle automount points here */
1396 break;
1397 }
1398 return 0;
1399 }
1400 EXPORT_SYMBOL(follow_down);
1401
1402 /*
1403 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1404 */
1405 static void follow_mount(struct path *path)
1406 {
1407 while (d_mountpoint(path->dentry)) {
1408 struct vfsmount *mounted = lookup_mnt(path);
1409 if (!mounted)
1410 break;
1411 dput(path->dentry);
1412 mntput(path->mnt);
1413 path->mnt = mounted;
1414 path->dentry = dget(mounted->mnt_root);
1415 }
1416 }
1417
1418 static int follow_dotdot(struct nameidata *nd)
1419 {
1420 while(1) {
1421 struct dentry *old = nd->path.dentry;
1422
1423 if (nd->path.dentry == nd->root.dentry &&
1424 nd->path.mnt == nd->root.mnt) {
1425 break;
1426 }
1427 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1428 /* rare case of legitimate dget_parent()... */
1429 nd->path.dentry = dget_parent(nd->path.dentry);
1430 dput(old);
1431 if (unlikely(!path_connected(&nd->path)))
1432 return -ENOENT;
1433 break;
1434 }
1435 if (!follow_up(&nd->path))
1436 break;
1437 }
1438 follow_mount(&nd->path);
1439 nd->inode = nd->path.dentry->d_inode;
1440 return 0;
1441 }
1442
1443 /*
1444 * This looks up the name in dcache, possibly revalidates the old dentry and
1445 * allocates a new one if not found or not valid. In the need_lookup argument
1446 * returns whether i_op->lookup is necessary.
1447 *
1448 * dir->d_inode->i_mutex must be held
1449 */
1450 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1451 unsigned int flags, bool *need_lookup)
1452 {
1453 struct dentry *dentry;
1454 int error;
1455
1456 *need_lookup = false;
1457 dentry = d_lookup(dir, name);
1458 if (dentry) {
1459 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1460 error = d_revalidate(dentry, flags);
1461 if (unlikely(error <= 0)) {
1462 if (error < 0) {
1463 dput(dentry);
1464 return ERR_PTR(error);
1465 } else {
1466 d_invalidate(dentry);
1467 dput(dentry);
1468 dentry = NULL;
1469 }
1470 }
1471 }
1472 }
1473
1474 if (!dentry) {
1475 dentry = d_alloc(dir, name);
1476 if (unlikely(!dentry))
1477 return ERR_PTR(-ENOMEM);
1478
1479 *need_lookup = true;
1480 }
1481 return dentry;
1482 }
1483
1484 /*
1485 * Call i_op->lookup on the dentry. The dentry must be negative and
1486 * unhashed.
1487 *
1488 * dir->d_inode->i_mutex must be held
1489 */
1490 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1491 unsigned int flags)
1492 {
1493 struct dentry *old;
1494
1495 /* Don't create child dentry for a dead directory. */
1496 if (unlikely(IS_DEADDIR(dir))) {
1497 dput(dentry);
1498 return ERR_PTR(-ENOENT);
1499 }
1500
1501 old = dir->i_op->lookup(dir, dentry, flags);
1502 if (unlikely(old)) {
1503 dput(dentry);
1504 dentry = old;
1505 }
1506 return dentry;
1507 }
1508
1509 static struct dentry *__lookup_hash(struct qstr *name,
1510 struct dentry *base, unsigned int flags)
1511 {
1512 bool need_lookup;
1513 struct dentry *dentry;
1514
1515 dentry = lookup_dcache(name, base, flags, &need_lookup);
1516 if (!need_lookup)
1517 return dentry;
1518
1519 return lookup_real(base->d_inode, dentry, flags);
1520 }
1521
1522 /*
1523 * It's more convoluted than I'd like it to be, but... it's still fairly
1524 * small and for now I'd prefer to have fast path as straight as possible.
1525 * It _is_ time-critical.
1526 */
1527 static int lookup_fast(struct nameidata *nd,
1528 struct path *path, struct inode **inode,
1529 unsigned *seqp)
1530 {
1531 struct vfsmount *mnt = nd->path.mnt;
1532 struct dentry *dentry, *parent = nd->path.dentry;
1533 int need_reval = 1;
1534 int status = 1;
1535 int err;
1536
1537 /*
1538 * Rename seqlock is not required here because in the off chance
1539 * of a false negative due to a concurrent rename, we're going to
1540 * do the non-racy lookup, below.
1541 */
1542 if (nd->flags & LOOKUP_RCU) {
1543 unsigned seq;
1544 bool negative;
1545 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1546 if (!dentry)
1547 goto unlazy;
1548
1549 /*
1550 * This sequence count validates that the inode matches
1551 * the dentry name information from lookup.
1552 */
1553 *inode = d_backing_inode(dentry);
1554 negative = d_is_negative(dentry);
1555 if (read_seqcount_retry(&dentry->d_seq, seq))
1556 return -ECHILD;
1557
1558 /*
1559 * This sequence count validates that the parent had no
1560 * changes while we did the lookup of the dentry above.
1561 *
1562 * The memory barrier in read_seqcount_begin of child is
1563 * enough, we can use __read_seqcount_retry here.
1564 */
1565 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1566 return -ECHILD;
1567
1568 *seqp = seq;
1569 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1570 status = d_revalidate(dentry, nd->flags);
1571 if (unlikely(status <= 0)) {
1572 if (status != -ECHILD)
1573 need_reval = 0;
1574 goto unlazy;
1575 }
1576 }
1577 /*
1578 * Note: do negative dentry check after revalidation in
1579 * case that drops it.
1580 */
1581 if (negative)
1582 return -ENOENT;
1583 path->mnt = mnt;
1584 path->dentry = dentry;
1585 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1586 return 0;
1587 unlazy:
1588 if (unlazy_walk(nd, dentry, seq))
1589 return -ECHILD;
1590 } else {
1591 dentry = __d_lookup(parent, &nd->last);
1592 }
1593
1594 if (unlikely(!dentry))
1595 goto need_lookup;
1596
1597 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1598 status = d_revalidate(dentry, nd->flags);
1599 if (unlikely(status <= 0)) {
1600 if (status < 0) {
1601 dput(dentry);
1602 return status;
1603 }
1604 d_invalidate(dentry);
1605 dput(dentry);
1606 goto need_lookup;
1607 }
1608
1609 if (unlikely(d_is_negative(dentry))) {
1610 dput(dentry);
1611 return -ENOENT;
1612 }
1613 path->mnt = mnt;
1614 path->dentry = dentry;
1615 err = follow_managed(path, nd);
1616 if (likely(!err))
1617 *inode = d_backing_inode(path->dentry);
1618 return err;
1619
1620 need_lookup:
1621 return 1;
1622 }
1623
1624 /* Fast lookup failed, do it the slow way */
1625 static int lookup_slow(struct nameidata *nd, struct path *path)
1626 {
1627 struct dentry *dentry, *parent;
1628
1629 parent = nd->path.dentry;
1630 BUG_ON(nd->inode != parent->d_inode);
1631
1632 inode_lock(parent->d_inode);
1633 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1634 inode_unlock(parent->d_inode);
1635 if (IS_ERR(dentry))
1636 return PTR_ERR(dentry);
1637 path->mnt = nd->path.mnt;
1638 path->dentry = dentry;
1639 return follow_managed(path, nd);
1640 }
1641
1642 static inline int may_lookup(struct nameidata *nd)
1643 {
1644 if (nd->flags & LOOKUP_RCU) {
1645 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1646 if (err != -ECHILD)
1647 return err;
1648 if (unlazy_walk(nd, NULL, 0))
1649 return -ECHILD;
1650 }
1651 return inode_permission(nd->inode, MAY_EXEC);
1652 }
1653
1654 static inline int handle_dots(struct nameidata *nd, int type)
1655 {
1656 if (type == LAST_DOTDOT) {
1657 if (!nd->root.mnt)
1658 set_root(nd);
1659 if (nd->flags & LOOKUP_RCU) {
1660 return follow_dotdot_rcu(nd);
1661 } else
1662 return follow_dotdot(nd);
1663 }
1664 return 0;
1665 }
1666
1667 static int pick_link(struct nameidata *nd, struct path *link,
1668 struct inode *inode, unsigned seq)
1669 {
1670 int error;
1671 struct saved *last;
1672 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1673 path_to_nameidata(link, nd);
1674 return -ELOOP;
1675 }
1676 if (!(nd->flags & LOOKUP_RCU)) {
1677 if (link->mnt == nd->path.mnt)
1678 mntget(link->mnt);
1679 }
1680 error = nd_alloc_stack(nd);
1681 if (unlikely(error)) {
1682 if (error == -ECHILD) {
1683 if (unlikely(unlazy_link(nd, link, seq)))
1684 return -ECHILD;
1685 error = nd_alloc_stack(nd);
1686 }
1687 if (error) {
1688 path_put(link);
1689 return error;
1690 }
1691 }
1692
1693 last = nd->stack + nd->depth++;
1694 last->link = *link;
1695 clear_delayed_call(&last->done);
1696 nd->link_inode = inode;
1697 last->seq = seq;
1698 return 1;
1699 }
1700
1701 /*
1702 * Do we need to follow links? We _really_ want to be able
1703 * to do this check without having to look at inode->i_op,
1704 * so we keep a cache of "no, this doesn't need follow_link"
1705 * for the common case.
1706 */
1707 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1708 int follow,
1709 struct inode *inode, unsigned seq)
1710 {
1711 if (likely(!d_is_symlink(link->dentry)))
1712 return 0;
1713 if (!follow)
1714 return 0;
1715 return pick_link(nd, link, inode, seq);
1716 }
1717
1718 enum {WALK_GET = 1, WALK_PUT = 2};
1719
1720 static int walk_component(struct nameidata *nd, int flags)
1721 {
1722 struct path path;
1723 struct inode *inode;
1724 unsigned seq;
1725 int err;
1726 /*
1727 * "." and ".." are special - ".." especially so because it has
1728 * to be able to know about the current root directory and
1729 * parent relationships.
1730 */
1731 if (unlikely(nd->last_type != LAST_NORM)) {
1732 err = handle_dots(nd, nd->last_type);
1733 if (flags & WALK_PUT)
1734 put_link(nd);
1735 return err;
1736 }
1737 err = lookup_fast(nd, &path, &inode, &seq);
1738 if (unlikely(err)) {
1739 if (err < 0)
1740 return err;
1741
1742 err = lookup_slow(nd, &path);
1743 if (err < 0)
1744 return err;
1745
1746 inode = d_backing_inode(path.dentry);
1747 seq = 0; /* we are already out of RCU mode */
1748 err = -ENOENT;
1749 if (d_is_negative(path.dentry))
1750 goto out_path_put;
1751 }
1752
1753 if (flags & WALK_PUT)
1754 put_link(nd);
1755 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1756 if (unlikely(err))
1757 return err;
1758 path_to_nameidata(&path, nd);
1759 nd->inode = inode;
1760 nd->seq = seq;
1761 return 0;
1762
1763 out_path_put:
1764 path_to_nameidata(&path, nd);
1765 return err;
1766 }
1767
1768 /*
1769 * We can do the critical dentry name comparison and hashing
1770 * operations one word at a time, but we are limited to:
1771 *
1772 * - Architectures with fast unaligned word accesses. We could
1773 * do a "get_unaligned()" if this helps and is sufficiently
1774 * fast.
1775 *
1776 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1777 * do not trap on the (extremely unlikely) case of a page
1778 * crossing operation.
1779 *
1780 * - Furthermore, we need an efficient 64-bit compile for the
1781 * 64-bit case in order to generate the "number of bytes in
1782 * the final mask". Again, that could be replaced with a
1783 * efficient population count instruction or similar.
1784 */
1785 #ifdef CONFIG_DCACHE_WORD_ACCESS
1786
1787 #include <asm/word-at-a-time.h>
1788
1789 #ifdef CONFIG_64BIT
1790
1791 static inline unsigned int fold_hash(unsigned long hash)
1792 {
1793 return hash_64(hash, 32);
1794 }
1795
1796 #else /* 32-bit case */
1797
1798 #define fold_hash(x) (x)
1799
1800 #endif
1801
1802 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1803 {
1804 unsigned long a, mask;
1805 unsigned long hash = 0;
1806
1807 for (;;) {
1808 a = load_unaligned_zeropad(name);
1809 if (len < sizeof(unsigned long))
1810 break;
1811 hash += a;
1812 hash *= 9;
1813 name += sizeof(unsigned long);
1814 len -= sizeof(unsigned long);
1815 if (!len)
1816 goto done;
1817 }
1818 mask = bytemask_from_count(len);
1819 hash += mask & a;
1820 done:
1821 return fold_hash(hash);
1822 }
1823 EXPORT_SYMBOL(full_name_hash);
1824
1825 /*
1826 * Calculate the length and hash of the path component, and
1827 * return the "hash_len" as the result.
1828 */
1829 static inline u64 hash_name(const char *name)
1830 {
1831 unsigned long a, b, adata, bdata, mask, hash, len;
1832 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1833
1834 hash = a = 0;
1835 len = -sizeof(unsigned long);
1836 do {
1837 hash = (hash + a) * 9;
1838 len += sizeof(unsigned long);
1839 a = load_unaligned_zeropad(name+len);
1840 b = a ^ REPEAT_BYTE('/');
1841 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1842
1843 adata = prep_zero_mask(a, adata, &constants);
1844 bdata = prep_zero_mask(b, bdata, &constants);
1845
1846 mask = create_zero_mask(adata | bdata);
1847
1848 hash += a & zero_bytemask(mask);
1849 len += find_zero(mask);
1850 return hashlen_create(fold_hash(hash), len);
1851 }
1852
1853 #else
1854
1855 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1856 {
1857 unsigned long hash = init_name_hash();
1858 while (len--)
1859 hash = partial_name_hash(*name++, hash);
1860 return end_name_hash(hash);
1861 }
1862 EXPORT_SYMBOL(full_name_hash);
1863
1864 /*
1865 * We know there's a real path component here of at least
1866 * one character.
1867 */
1868 static inline u64 hash_name(const char *name)
1869 {
1870 unsigned long hash = init_name_hash();
1871 unsigned long len = 0, c;
1872
1873 c = (unsigned char)*name;
1874 do {
1875 len++;
1876 hash = partial_name_hash(c, hash);
1877 c = (unsigned char)name[len];
1878 } while (c && c != '/');
1879 return hashlen_create(end_name_hash(hash), len);
1880 }
1881
1882 #endif
1883
1884 /*
1885 * Name resolution.
1886 * This is the basic name resolution function, turning a pathname into
1887 * the final dentry. We expect 'base' to be positive and a directory.
1888 *
1889 * Returns 0 and nd will have valid dentry and mnt on success.
1890 * Returns error and drops reference to input namei data on failure.
1891 */
1892 static int link_path_walk(const char *name, struct nameidata *nd)
1893 {
1894 int err;
1895
1896 while (*name=='/')
1897 name++;
1898 if (!*name)
1899 return 0;
1900
1901 /* At this point we know we have a real path component. */
1902 for(;;) {
1903 u64 hash_len;
1904 int type;
1905
1906 err = may_lookup(nd);
1907 if (err)
1908 return err;
1909
1910 hash_len = hash_name(name);
1911
1912 type = LAST_NORM;
1913 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1914 case 2:
1915 if (name[1] == '.') {
1916 type = LAST_DOTDOT;
1917 nd->flags |= LOOKUP_JUMPED;
1918 }
1919 break;
1920 case 1:
1921 type = LAST_DOT;
1922 }
1923 if (likely(type == LAST_NORM)) {
1924 struct dentry *parent = nd->path.dentry;
1925 nd->flags &= ~LOOKUP_JUMPED;
1926 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1927 struct qstr this = { { .hash_len = hash_len }, .name = name };
1928 err = parent->d_op->d_hash(parent, &this);
1929 if (err < 0)
1930 return err;
1931 hash_len = this.hash_len;
1932 name = this.name;
1933 }
1934 }
1935
1936 nd->last.hash_len = hash_len;
1937 nd->last.name = name;
1938 nd->last_type = type;
1939
1940 name += hashlen_len(hash_len);
1941 if (!*name)
1942 goto OK;
1943 /*
1944 * If it wasn't NUL, we know it was '/'. Skip that
1945 * slash, and continue until no more slashes.
1946 */
1947 do {
1948 name++;
1949 } while (unlikely(*name == '/'));
1950 if (unlikely(!*name)) {
1951 OK:
1952 /* pathname body, done */
1953 if (!nd->depth)
1954 return 0;
1955 name = nd->stack[nd->depth - 1].name;
1956 /* trailing symlink, done */
1957 if (!name)
1958 return 0;
1959 /* last component of nested symlink */
1960 err = walk_component(nd, WALK_GET | WALK_PUT);
1961 } else {
1962 err = walk_component(nd, WALK_GET);
1963 }
1964 if (err < 0)
1965 return err;
1966
1967 if (err) {
1968 const char *s = get_link(nd);
1969
1970 if (IS_ERR(s))
1971 return PTR_ERR(s);
1972 err = 0;
1973 if (unlikely(!s)) {
1974 /* jumped */
1975 put_link(nd);
1976 } else {
1977 nd->stack[nd->depth - 1].name = name;
1978 name = s;
1979 continue;
1980 }
1981 }
1982 if (unlikely(!d_can_lookup(nd->path.dentry))) {
1983 if (nd->flags & LOOKUP_RCU) {
1984 if (unlazy_walk(nd, NULL, 0))
1985 return -ECHILD;
1986 }
1987 return -ENOTDIR;
1988 }
1989 }
1990 }
1991
1992 static const char *path_init(struct nameidata *nd, unsigned flags)
1993 {
1994 int retval = 0;
1995 const char *s = nd->name->name;
1996
1997 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1998 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1999 nd->depth = 0;
2000 if (flags & LOOKUP_ROOT) {
2001 struct dentry *root = nd->root.dentry;
2002 struct inode *inode = root->d_inode;
2003 if (*s) {
2004 if (!d_can_lookup(root))
2005 return ERR_PTR(-ENOTDIR);
2006 retval = inode_permission(inode, MAY_EXEC);
2007 if (retval)
2008 return ERR_PTR(retval);
2009 }
2010 nd->path = nd->root;
2011 nd->inode = inode;
2012 if (flags & LOOKUP_RCU) {
2013 rcu_read_lock();
2014 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2015 nd->root_seq = nd->seq;
2016 nd->m_seq = read_seqbegin(&mount_lock);
2017 } else {
2018 path_get(&nd->path);
2019 }
2020 return s;
2021 }
2022
2023 nd->root.mnt = NULL;
2024 nd->path.mnt = NULL;
2025 nd->path.dentry = NULL;
2026
2027 nd->m_seq = read_seqbegin(&mount_lock);
2028 if (*s == '/') {
2029 if (flags & LOOKUP_RCU)
2030 rcu_read_lock();
2031 set_root(nd);
2032 if (likely(!nd_jump_root(nd)))
2033 return s;
2034 nd->root.mnt = NULL;
2035 rcu_read_unlock();
2036 return ERR_PTR(-ECHILD);
2037 } else if (nd->dfd == AT_FDCWD) {
2038 if (flags & LOOKUP_RCU) {
2039 struct fs_struct *fs = current->fs;
2040 unsigned seq;
2041
2042 rcu_read_lock();
2043
2044 do {
2045 seq = read_seqcount_begin(&fs->seq);
2046 nd->path = fs->pwd;
2047 nd->inode = nd->path.dentry->d_inode;
2048 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2049 } while (read_seqcount_retry(&fs->seq, seq));
2050 } else {
2051 get_fs_pwd(current->fs, &nd->path);
2052 nd->inode = nd->path.dentry->d_inode;
2053 }
2054 return s;
2055 } else {
2056 /* Caller must check execute permissions on the starting path component */
2057 struct fd f = fdget_raw(nd->dfd);
2058 struct dentry *dentry;
2059
2060 if (!f.file)
2061 return ERR_PTR(-EBADF);
2062
2063 dentry = f.file->f_path.dentry;
2064
2065 if (*s) {
2066 if (!d_can_lookup(dentry)) {
2067 fdput(f);
2068 return ERR_PTR(-ENOTDIR);
2069 }
2070 }
2071
2072 nd->path = f.file->f_path;
2073 if (flags & LOOKUP_RCU) {
2074 rcu_read_lock();
2075 nd->inode = nd->path.dentry->d_inode;
2076 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2077 } else {
2078 path_get(&nd->path);
2079 nd->inode = nd->path.dentry->d_inode;
2080 }
2081 fdput(f);
2082 return s;
2083 }
2084 }
2085
2086 static const char *trailing_symlink(struct nameidata *nd)
2087 {
2088 const char *s;
2089 int error = may_follow_link(nd);
2090 if (unlikely(error))
2091 return ERR_PTR(error);
2092 nd->flags |= LOOKUP_PARENT;
2093 nd->stack[0].name = NULL;
2094 s = get_link(nd);
2095 return s ? s : "";
2096 }
2097
2098 static inline int lookup_last(struct nameidata *nd)
2099 {
2100 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2101 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2102
2103 nd->flags &= ~LOOKUP_PARENT;
2104 return walk_component(nd,
2105 nd->flags & LOOKUP_FOLLOW
2106 ? nd->depth
2107 ? WALK_PUT | WALK_GET
2108 : WALK_GET
2109 : 0);
2110 }
2111
2112 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2113 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2114 {
2115 const char *s = path_init(nd, flags);
2116 int err;
2117
2118 if (IS_ERR(s))
2119 return PTR_ERR(s);
2120 while (!(err = link_path_walk(s, nd))
2121 && ((err = lookup_last(nd)) > 0)) {
2122 s = trailing_symlink(nd);
2123 if (IS_ERR(s)) {
2124 err = PTR_ERR(s);
2125 break;
2126 }
2127 }
2128 if (!err)
2129 err = complete_walk(nd);
2130
2131 if (!err && nd->flags & LOOKUP_DIRECTORY)
2132 if (!d_can_lookup(nd->path.dentry))
2133 err = -ENOTDIR;
2134 if (!err) {
2135 *path = nd->path;
2136 nd->path.mnt = NULL;
2137 nd->path.dentry = NULL;
2138 }
2139 terminate_walk(nd);
2140 return err;
2141 }
2142
2143 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2144 struct path *path, struct path *root)
2145 {
2146 int retval;
2147 struct nameidata nd;
2148 if (IS_ERR(name))
2149 return PTR_ERR(name);
2150 if (unlikely(root)) {
2151 nd.root = *root;
2152 flags |= LOOKUP_ROOT;
2153 }
2154 set_nameidata(&nd, dfd, name);
2155 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2156 if (unlikely(retval == -ECHILD))
2157 retval = path_lookupat(&nd, flags, path);
2158 if (unlikely(retval == -ESTALE))
2159 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2160
2161 if (likely(!retval))
2162 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2163 restore_nameidata();
2164 putname(name);
2165 return retval;
2166 }
2167
2168 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2169 static int path_parentat(struct nameidata *nd, unsigned flags,
2170 struct path *parent)
2171 {
2172 const char *s = path_init(nd, flags);
2173 int err;
2174 if (IS_ERR(s))
2175 return PTR_ERR(s);
2176 err = link_path_walk(s, nd);
2177 if (!err)
2178 err = complete_walk(nd);
2179 if (!err) {
2180 *parent = nd->path;
2181 nd->path.mnt = NULL;
2182 nd->path.dentry = NULL;
2183 }
2184 terminate_walk(nd);
2185 return err;
2186 }
2187
2188 static struct filename *filename_parentat(int dfd, struct filename *name,
2189 unsigned int flags, struct path *parent,
2190 struct qstr *last, int *type)
2191 {
2192 int retval;
2193 struct nameidata nd;
2194
2195 if (IS_ERR(name))
2196 return name;
2197 set_nameidata(&nd, dfd, name);
2198 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2199 if (unlikely(retval == -ECHILD))
2200 retval = path_parentat(&nd, flags, parent);
2201 if (unlikely(retval == -ESTALE))
2202 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2203 if (likely(!retval)) {
2204 *last = nd.last;
2205 *type = nd.last_type;
2206 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2207 } else {
2208 putname(name);
2209 name = ERR_PTR(retval);
2210 }
2211 restore_nameidata();
2212 return name;
2213 }
2214
2215 /* does lookup, returns the object with parent locked */
2216 struct dentry *kern_path_locked(const char *name, struct path *path)
2217 {
2218 struct filename *filename;
2219 struct dentry *d;
2220 struct qstr last;
2221 int type;
2222
2223 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2224 &last, &type);
2225 if (IS_ERR(filename))
2226 return ERR_CAST(filename);
2227 if (unlikely(type != LAST_NORM)) {
2228 path_put(path);
2229 putname(filename);
2230 return ERR_PTR(-EINVAL);
2231 }
2232 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2233 d = __lookup_hash(&last, path->dentry, 0);
2234 if (IS_ERR(d)) {
2235 inode_unlock(path->dentry->d_inode);
2236 path_put(path);
2237 }
2238 putname(filename);
2239 return d;
2240 }
2241
2242 int kern_path(const char *name, unsigned int flags, struct path *path)
2243 {
2244 return filename_lookup(AT_FDCWD, getname_kernel(name),
2245 flags, path, NULL);
2246 }
2247 EXPORT_SYMBOL(kern_path);
2248
2249 /**
2250 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2251 * @dentry: pointer to dentry of the base directory
2252 * @mnt: pointer to vfs mount of the base directory
2253 * @name: pointer to file name
2254 * @flags: lookup flags
2255 * @path: pointer to struct path to fill
2256 */
2257 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2258 const char *name, unsigned int flags,
2259 struct path *path)
2260 {
2261 struct path root = {.mnt = mnt, .dentry = dentry};
2262 /* the first argument of filename_lookup() is ignored with root */
2263 return filename_lookup(AT_FDCWD, getname_kernel(name),
2264 flags , path, &root);
2265 }
2266 EXPORT_SYMBOL(vfs_path_lookup);
2267
2268 /**
2269 * lookup_one_len - filesystem helper to lookup single pathname component
2270 * @name: pathname component to lookup
2271 * @base: base directory to lookup from
2272 * @len: maximum length @len should be interpreted to
2273 *
2274 * Note that this routine is purely a helper for filesystem usage and should
2275 * not be called by generic code.
2276 *
2277 * The caller must hold base->i_mutex.
2278 */
2279 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2280 {
2281 struct qstr this;
2282 unsigned int c;
2283 int err;
2284
2285 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2286
2287 this.name = name;
2288 this.len = len;
2289 this.hash = full_name_hash(name, len);
2290 if (!len)
2291 return ERR_PTR(-EACCES);
2292
2293 if (unlikely(name[0] == '.')) {
2294 if (len < 2 || (len == 2 && name[1] == '.'))
2295 return ERR_PTR(-EACCES);
2296 }
2297
2298 while (len--) {
2299 c = *(const unsigned char *)name++;
2300 if (c == '/' || c == '\0')
2301 return ERR_PTR(-EACCES);
2302 }
2303 /*
2304 * See if the low-level filesystem might want
2305 * to use its own hash..
2306 */
2307 if (base->d_flags & DCACHE_OP_HASH) {
2308 int err = base->d_op->d_hash(base, &this);
2309 if (err < 0)
2310 return ERR_PTR(err);
2311 }
2312
2313 err = inode_permission(base->d_inode, MAY_EXEC);
2314 if (err)
2315 return ERR_PTR(err);
2316
2317 return __lookup_hash(&this, base, 0);
2318 }
2319 EXPORT_SYMBOL(lookup_one_len);
2320
2321 /**
2322 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2323 * @name: pathname component to lookup
2324 * @base: base directory to lookup from
2325 * @len: maximum length @len should be interpreted to
2326 *
2327 * Note that this routine is purely a helper for filesystem usage and should
2328 * not be called by generic code.
2329 *
2330 * Unlike lookup_one_len, it should be called without the parent
2331 * i_mutex held, and will take the i_mutex itself if necessary.
2332 */
2333 struct dentry *lookup_one_len_unlocked(const char *name,
2334 struct dentry *base, int len)
2335 {
2336 struct qstr this;
2337 unsigned int c;
2338 int err;
2339 struct dentry *ret;
2340
2341 this.name = name;
2342 this.len = len;
2343 this.hash = full_name_hash(name, len);
2344 if (!len)
2345 return ERR_PTR(-EACCES);
2346
2347 if (unlikely(name[0] == '.')) {
2348 if (len < 2 || (len == 2 && name[1] == '.'))
2349 return ERR_PTR(-EACCES);
2350 }
2351
2352 while (len--) {
2353 c = *(const unsigned char *)name++;
2354 if (c == '/' || c == '\0')
2355 return ERR_PTR(-EACCES);
2356 }
2357 /*
2358 * See if the low-level filesystem might want
2359 * to use its own hash..
2360 */
2361 if (base->d_flags & DCACHE_OP_HASH) {
2362 int err = base->d_op->d_hash(base, &this);
2363 if (err < 0)
2364 return ERR_PTR(err);
2365 }
2366
2367 err = inode_permission(base->d_inode, MAY_EXEC);
2368 if (err)
2369 return ERR_PTR(err);
2370
2371 /*
2372 * __d_lookup() is used to try to get a quick answer and avoid the
2373 * mutex. A false-negative does no harm.
2374 */
2375 ret = __d_lookup(base, &this);
2376 if (ret && unlikely(ret->d_flags & DCACHE_OP_REVALIDATE)) {
2377 dput(ret);
2378 ret = NULL;
2379 }
2380 if (ret)
2381 return ret;
2382
2383 inode_lock(base->d_inode);
2384 ret = __lookup_hash(&this, base, 0);
2385 inode_unlock(base->d_inode);
2386 return ret;
2387 }
2388 EXPORT_SYMBOL(lookup_one_len_unlocked);
2389
2390 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2391 struct path *path, int *empty)
2392 {
2393 return filename_lookup(dfd, getname_flags(name, flags, empty),
2394 flags, path, NULL);
2395 }
2396 EXPORT_SYMBOL(user_path_at_empty);
2397
2398 /*
2399 * NB: most callers don't do anything directly with the reference to the
2400 * to struct filename, but the nd->last pointer points into the name string
2401 * allocated by getname. So we must hold the reference to it until all
2402 * path-walking is complete.
2403 */
2404 static inline struct filename *
2405 user_path_parent(int dfd, const char __user *path,
2406 struct path *parent,
2407 struct qstr *last,
2408 int *type,
2409 unsigned int flags)
2410 {
2411 /* only LOOKUP_REVAL is allowed in extra flags */
2412 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2413 parent, last, type);
2414 }
2415
2416 /**
2417 * mountpoint_last - look up last component for umount
2418 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2419 * @path: pointer to container for result
2420 *
2421 * This is a special lookup_last function just for umount. In this case, we
2422 * need to resolve the path without doing any revalidation.
2423 *
2424 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2425 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2426 * in almost all cases, this lookup will be served out of the dcache. The only
2427 * cases where it won't are if nd->last refers to a symlink or the path is
2428 * bogus and it doesn't exist.
2429 *
2430 * Returns:
2431 * -error: if there was an error during lookup. This includes -ENOENT if the
2432 * lookup found a negative dentry. The nd->path reference will also be
2433 * put in this case.
2434 *
2435 * 0: if we successfully resolved nd->path and found it to not to be a
2436 * symlink that needs to be followed. "path" will also be populated.
2437 * The nd->path reference will also be put.
2438 *
2439 * 1: if we successfully resolved nd->last and found it to be a symlink
2440 * that needs to be followed. "path" will be populated with the path
2441 * to the link, and nd->path will *not* be put.
2442 */
2443 static int
2444 mountpoint_last(struct nameidata *nd, struct path *path)
2445 {
2446 int error = 0;
2447 struct dentry *dentry;
2448 struct dentry *dir = nd->path.dentry;
2449
2450 /* If we're in rcuwalk, drop out of it to handle last component */
2451 if (nd->flags & LOOKUP_RCU) {
2452 if (unlazy_walk(nd, NULL, 0))
2453 return -ECHILD;
2454 }
2455
2456 nd->flags &= ~LOOKUP_PARENT;
2457
2458 if (unlikely(nd->last_type != LAST_NORM)) {
2459 error = handle_dots(nd, nd->last_type);
2460 if (error)
2461 return error;
2462 dentry = dget(nd->path.dentry);
2463 goto done;
2464 }
2465
2466 inode_lock(dir->d_inode);
2467 dentry = d_lookup(dir, &nd->last);
2468 if (!dentry) {
2469 /*
2470 * No cached dentry. Mounted dentries are pinned in the cache,
2471 * so that means that this dentry is probably a symlink or the
2472 * path doesn't actually point to a mounted dentry.
2473 */
2474 dentry = d_alloc(dir, &nd->last);
2475 if (!dentry) {
2476 inode_unlock(dir->d_inode);
2477 return -ENOMEM;
2478 }
2479 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2480 if (IS_ERR(dentry)) {
2481 inode_unlock(dir->d_inode);
2482 return PTR_ERR(dentry);
2483 }
2484 }
2485 inode_unlock(dir->d_inode);
2486
2487 done:
2488 if (d_is_negative(dentry)) {
2489 dput(dentry);
2490 return -ENOENT;
2491 }
2492 if (nd->depth)
2493 put_link(nd);
2494 path->dentry = dentry;
2495 path->mnt = nd->path.mnt;
2496 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2497 d_backing_inode(dentry), 0);
2498 if (unlikely(error))
2499 return error;
2500 mntget(path->mnt);
2501 follow_mount(path);
2502 return 0;
2503 }
2504
2505 /**
2506 * path_mountpoint - look up a path to be umounted
2507 * @nd: lookup context
2508 * @flags: lookup flags
2509 * @path: pointer to container for result
2510 *
2511 * Look up the given name, but don't attempt to revalidate the last component.
2512 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2513 */
2514 static int
2515 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2516 {
2517 const char *s = path_init(nd, flags);
2518 int err;
2519 if (IS_ERR(s))
2520 return PTR_ERR(s);
2521 while (!(err = link_path_walk(s, nd)) &&
2522 (err = mountpoint_last(nd, path)) > 0) {
2523 s = trailing_symlink(nd);
2524 if (IS_ERR(s)) {
2525 err = PTR_ERR(s);
2526 break;
2527 }
2528 }
2529 terminate_walk(nd);
2530 return err;
2531 }
2532
2533 static int
2534 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2535 unsigned int flags)
2536 {
2537 struct nameidata nd;
2538 int error;
2539 if (IS_ERR(name))
2540 return PTR_ERR(name);
2541 set_nameidata(&nd, dfd, name);
2542 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2543 if (unlikely(error == -ECHILD))
2544 error = path_mountpoint(&nd, flags, path);
2545 if (unlikely(error == -ESTALE))
2546 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2547 if (likely(!error))
2548 audit_inode(name, path->dentry, 0);
2549 restore_nameidata();
2550 putname(name);
2551 return error;
2552 }
2553
2554 /**
2555 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2556 * @dfd: directory file descriptor
2557 * @name: pathname from userland
2558 * @flags: lookup flags
2559 * @path: pointer to container to hold result
2560 *
2561 * A umount is a special case for path walking. We're not actually interested
2562 * in the inode in this situation, and ESTALE errors can be a problem. We
2563 * simply want track down the dentry and vfsmount attached at the mountpoint
2564 * and avoid revalidating the last component.
2565 *
2566 * Returns 0 and populates "path" on success.
2567 */
2568 int
2569 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2570 struct path *path)
2571 {
2572 return filename_mountpoint(dfd, getname(name), path, flags);
2573 }
2574
2575 int
2576 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2577 unsigned int flags)
2578 {
2579 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2580 }
2581 EXPORT_SYMBOL(kern_path_mountpoint);
2582
2583 int __check_sticky(struct inode *dir, struct inode *inode)
2584 {
2585 kuid_t fsuid = current_fsuid();
2586
2587 if (uid_eq(inode->i_uid, fsuid))
2588 return 0;
2589 if (uid_eq(dir->i_uid, fsuid))
2590 return 0;
2591 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2592 }
2593 EXPORT_SYMBOL(__check_sticky);
2594
2595 /*
2596 * Check whether we can remove a link victim from directory dir, check
2597 * whether the type of victim is right.
2598 * 1. We can't do it if dir is read-only (done in permission())
2599 * 2. We should have write and exec permissions on dir
2600 * 3. We can't remove anything from append-only dir
2601 * 4. We can't do anything with immutable dir (done in permission())
2602 * 5. If the sticky bit on dir is set we should either
2603 * a. be owner of dir, or
2604 * b. be owner of victim, or
2605 * c. have CAP_FOWNER capability
2606 * 6. If the victim is append-only or immutable we can't do antyhing with
2607 * links pointing to it.
2608 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2609 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2610 * 9. We can't remove a root or mountpoint.
2611 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2612 * nfs_async_unlink().
2613 */
2614 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2615 {
2616 struct inode *inode = d_backing_inode(victim);
2617 int error;
2618
2619 if (d_is_negative(victim))
2620 return -ENOENT;
2621 BUG_ON(!inode);
2622
2623 BUG_ON(victim->d_parent->d_inode != dir);
2624 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2625
2626 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2627 if (error)
2628 return error;
2629 if (IS_APPEND(dir))
2630 return -EPERM;
2631
2632 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2633 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2634 return -EPERM;
2635 if (isdir) {
2636 if (!d_is_dir(victim))
2637 return -ENOTDIR;
2638 if (IS_ROOT(victim))
2639 return -EBUSY;
2640 } else if (d_is_dir(victim))
2641 return -EISDIR;
2642 if (IS_DEADDIR(dir))
2643 return -ENOENT;
2644 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2645 return -EBUSY;
2646 return 0;
2647 }
2648
2649 /* Check whether we can create an object with dentry child in directory
2650 * dir.
2651 * 1. We can't do it if child already exists (open has special treatment for
2652 * this case, but since we are inlined it's OK)
2653 * 2. We can't do it if dir is read-only (done in permission())
2654 * 3. We should have write and exec permissions on dir
2655 * 4. We can't do it if dir is immutable (done in permission())
2656 */
2657 static inline int may_create(struct inode *dir, struct dentry *child)
2658 {
2659 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2660 if (child->d_inode)
2661 return -EEXIST;
2662 if (IS_DEADDIR(dir))
2663 return -ENOENT;
2664 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2665 }
2666
2667 /*
2668 * p1 and p2 should be directories on the same fs.
2669 */
2670 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2671 {
2672 struct dentry *p;
2673
2674 if (p1 == p2) {
2675 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2676 return NULL;
2677 }
2678
2679 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2680
2681 p = d_ancestor(p2, p1);
2682 if (p) {
2683 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2684 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2685 return p;
2686 }
2687
2688 p = d_ancestor(p1, p2);
2689 if (p) {
2690 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2691 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2692 return p;
2693 }
2694
2695 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2696 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2697 return NULL;
2698 }
2699 EXPORT_SYMBOL(lock_rename);
2700
2701 void unlock_rename(struct dentry *p1, struct dentry *p2)
2702 {
2703 inode_unlock(p1->d_inode);
2704 if (p1 != p2) {
2705 inode_unlock(p2->d_inode);
2706 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2707 }
2708 }
2709 EXPORT_SYMBOL(unlock_rename);
2710
2711 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2712 bool want_excl)
2713 {
2714 int error = may_create(dir, dentry);
2715 if (error)
2716 return error;
2717
2718 if (!dir->i_op->create)
2719 return -EACCES; /* shouldn't it be ENOSYS? */
2720 mode &= S_IALLUGO;
2721 mode |= S_IFREG;
2722 error = security_inode_create(dir, dentry, mode);
2723 if (error)
2724 return error;
2725 error = dir->i_op->create(dir, dentry, mode, want_excl);
2726 if (!error)
2727 fsnotify_create(dir, dentry);
2728 return error;
2729 }
2730 EXPORT_SYMBOL(vfs_create);
2731
2732 static int may_open(struct path *path, int acc_mode, int flag)
2733 {
2734 struct dentry *dentry = path->dentry;
2735 struct inode *inode = dentry->d_inode;
2736 int error;
2737
2738 if (!inode)
2739 return -ENOENT;
2740
2741 switch (inode->i_mode & S_IFMT) {
2742 case S_IFLNK:
2743 return -ELOOP;
2744 case S_IFDIR:
2745 if (acc_mode & MAY_WRITE)
2746 return -EISDIR;
2747 break;
2748 case S_IFBLK:
2749 case S_IFCHR:
2750 if (path->mnt->mnt_flags & MNT_NODEV)
2751 return -EACCES;
2752 /*FALLTHRU*/
2753 case S_IFIFO:
2754 case S_IFSOCK:
2755 flag &= ~O_TRUNC;
2756 break;
2757 }
2758
2759 error = inode_permission(inode, MAY_OPEN | acc_mode);
2760 if (error)
2761 return error;
2762
2763 /*
2764 * An append-only file must be opened in append mode for writing.
2765 */
2766 if (IS_APPEND(inode)) {
2767 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2768 return -EPERM;
2769 if (flag & O_TRUNC)
2770 return -EPERM;
2771 }
2772
2773 /* O_NOATIME can only be set by the owner or superuser */
2774 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2775 return -EPERM;
2776
2777 return 0;
2778 }
2779
2780 static int handle_truncate(struct file *filp)
2781 {
2782 struct path *path = &filp->f_path;
2783 struct inode *inode = path->dentry->d_inode;
2784 int error = get_write_access(inode);
2785 if (error)
2786 return error;
2787 /*
2788 * Refuse to truncate files with mandatory locks held on them.
2789 */
2790 error = locks_verify_locked(filp);
2791 if (!error)
2792 error = security_path_truncate(path);
2793 if (!error) {
2794 error = do_truncate(path->dentry, 0,
2795 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2796 filp);
2797 }
2798 put_write_access(inode);
2799 return error;
2800 }
2801
2802 static inline int open_to_namei_flags(int flag)
2803 {
2804 if ((flag & O_ACCMODE) == 3)
2805 flag--;
2806 return flag;
2807 }
2808
2809 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2810 {
2811 int error = security_path_mknod(dir, dentry, mode, 0);
2812 if (error)
2813 return error;
2814
2815 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2816 if (error)
2817 return error;
2818
2819 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2820 }
2821
2822 /*
2823 * Attempt to atomically look up, create and open a file from a negative
2824 * dentry.
2825 *
2826 * Returns 0 if successful. The file will have been created and attached to
2827 * @file by the filesystem calling finish_open().
2828 *
2829 * Returns 1 if the file was looked up only or didn't need creating. The
2830 * caller will need to perform the open themselves. @path will have been
2831 * updated to point to the new dentry. This may be negative.
2832 *
2833 * Returns an error code otherwise.
2834 */
2835 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2836 struct path *path, struct file *file,
2837 const struct open_flags *op,
2838 bool got_write, bool need_lookup,
2839 int *opened)
2840 {
2841 struct inode *dir = nd->path.dentry->d_inode;
2842 unsigned open_flag = open_to_namei_flags(op->open_flag);
2843 umode_t mode;
2844 int error;
2845 int acc_mode;
2846 int create_error = 0;
2847 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2848 bool excl;
2849
2850 BUG_ON(dentry->d_inode);
2851
2852 /* Don't create child dentry for a dead directory. */
2853 if (unlikely(IS_DEADDIR(dir))) {
2854 error = -ENOENT;
2855 goto out;
2856 }
2857
2858 mode = op->mode;
2859 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2860 mode &= ~current_umask();
2861
2862 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2863 if (excl)
2864 open_flag &= ~O_TRUNC;
2865
2866 /*
2867 * Checking write permission is tricky, bacuse we don't know if we are
2868 * going to actually need it: O_CREAT opens should work as long as the
2869 * file exists. But checking existence breaks atomicity. The trick is
2870 * to check access and if not granted clear O_CREAT from the flags.
2871 *
2872 * Another problem is returing the "right" error value (e.g. for an
2873 * O_EXCL open we want to return EEXIST not EROFS).
2874 */
2875 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2876 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2877 if (!(open_flag & O_CREAT)) {
2878 /*
2879 * No O_CREATE -> atomicity not a requirement -> fall
2880 * back to lookup + open
2881 */
2882 goto no_open;
2883 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2884 /* Fall back and fail with the right error */
2885 create_error = -EROFS;
2886 goto no_open;
2887 } else {
2888 /* No side effects, safe to clear O_CREAT */
2889 create_error = -EROFS;
2890 open_flag &= ~O_CREAT;
2891 }
2892 }
2893
2894 if (open_flag & O_CREAT) {
2895 error = may_o_create(&nd->path, dentry, mode);
2896 if (error) {
2897 create_error = error;
2898 if (open_flag & O_EXCL)
2899 goto no_open;
2900 open_flag &= ~O_CREAT;
2901 }
2902 }
2903
2904 if (nd->flags & LOOKUP_DIRECTORY)
2905 open_flag |= O_DIRECTORY;
2906
2907 file->f_path.dentry = DENTRY_NOT_SET;
2908 file->f_path.mnt = nd->path.mnt;
2909 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2910 opened);
2911 if (error < 0) {
2912 if (create_error && error == -ENOENT)
2913 error = create_error;
2914 goto out;
2915 }
2916
2917 if (error) { /* returned 1, that is */
2918 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2919 error = -EIO;
2920 goto out;
2921 }
2922 if (file->f_path.dentry) {
2923 dput(dentry);
2924 dentry = file->f_path.dentry;
2925 }
2926 if (*opened & FILE_CREATED)
2927 fsnotify_create(dir, dentry);
2928 if (!dentry->d_inode) {
2929 WARN_ON(*opened & FILE_CREATED);
2930 if (create_error) {
2931 error = create_error;
2932 goto out;
2933 }
2934 } else {
2935 if (excl && !(*opened & FILE_CREATED)) {
2936 error = -EEXIST;
2937 goto out;
2938 }
2939 }
2940 goto looked_up;
2941 }
2942
2943 /*
2944 * We didn't have the inode before the open, so check open permission
2945 * here.
2946 */
2947 acc_mode = op->acc_mode;
2948 if (*opened & FILE_CREATED) {
2949 WARN_ON(!(open_flag & O_CREAT));
2950 fsnotify_create(dir, dentry);
2951 acc_mode = 0;
2952 }
2953 error = may_open(&file->f_path, acc_mode, open_flag);
2954 if (error)
2955 fput(file);
2956
2957 out:
2958 dput(dentry);
2959 return error;
2960
2961 no_open:
2962 if (need_lookup) {
2963 dentry = lookup_real(dir, dentry, nd->flags);
2964 if (IS_ERR(dentry))
2965 return PTR_ERR(dentry);
2966
2967 if (create_error) {
2968 int open_flag = op->open_flag;
2969
2970 error = create_error;
2971 if ((open_flag & O_EXCL)) {
2972 if (!dentry->d_inode)
2973 goto out;
2974 } else if (!dentry->d_inode) {
2975 goto out;
2976 } else if ((open_flag & O_TRUNC) &&
2977 d_is_reg(dentry)) {
2978 goto out;
2979 }
2980 /* will fail later, go on to get the right error */
2981 }
2982 }
2983 looked_up:
2984 path->dentry = dentry;
2985 path->mnt = nd->path.mnt;
2986 return 1;
2987 }
2988
2989 /*
2990 * Look up and maybe create and open the last component.
2991 *
2992 * Must be called with i_mutex held on parent.
2993 *
2994 * Returns 0 if the file was successfully atomically created (if necessary) and
2995 * opened. In this case the file will be returned attached to @file.
2996 *
2997 * Returns 1 if the file was not completely opened at this time, though lookups
2998 * and creations will have been performed and the dentry returned in @path will
2999 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3000 * specified then a negative dentry may be returned.
3001 *
3002 * An error code is returned otherwise.
3003 *
3004 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3005 * cleared otherwise prior to returning.
3006 */
3007 static int lookup_open(struct nameidata *nd, struct path *path,
3008 struct file *file,
3009 const struct open_flags *op,
3010 bool got_write, int *opened)
3011 {
3012 struct dentry *dir = nd->path.dentry;
3013 struct inode *dir_inode = dir->d_inode;
3014 struct dentry *dentry;
3015 int error;
3016 bool need_lookup;
3017
3018 *opened &= ~FILE_CREATED;
3019 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
3020 if (IS_ERR(dentry))
3021 return PTR_ERR(dentry);
3022
3023 /* Cached positive dentry: will open in f_op->open */
3024 if (!need_lookup && dentry->d_inode)
3025 goto out_no_open;
3026
3027 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
3028 return atomic_open(nd, dentry, path, file, op, got_write,
3029 need_lookup, opened);
3030 }
3031
3032 if (need_lookup) {
3033 BUG_ON(dentry->d_inode);
3034
3035 dentry = lookup_real(dir_inode, dentry, nd->flags);
3036 if (IS_ERR(dentry))
3037 return PTR_ERR(dentry);
3038 }
3039
3040 /* Negative dentry, just create the file */
3041 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
3042 umode_t mode = op->mode;
3043 if (!IS_POSIXACL(dir->d_inode))
3044 mode &= ~current_umask();
3045 /*
3046 * This write is needed to ensure that a
3047 * rw->ro transition does not occur between
3048 * the time when the file is created and when
3049 * a permanent write count is taken through
3050 * the 'struct file' in finish_open().
3051 */
3052 if (!got_write) {
3053 error = -EROFS;
3054 goto out_dput;
3055 }
3056 *opened |= FILE_CREATED;
3057 error = security_path_mknod(&nd->path, dentry, mode, 0);
3058 if (error)
3059 goto out_dput;
3060 error = vfs_create(dir->d_inode, dentry, mode,
3061 nd->flags & LOOKUP_EXCL);
3062 if (error)
3063 goto out_dput;
3064 }
3065 out_no_open:
3066 path->dentry = dentry;
3067 path->mnt = nd->path.mnt;
3068 return 1;
3069
3070 out_dput:
3071 dput(dentry);
3072 return error;
3073 }
3074
3075 /*
3076 * Handle the last step of open()
3077 */
3078 static int do_last(struct nameidata *nd,
3079 struct file *file, const struct open_flags *op,
3080 int *opened)
3081 {
3082 struct dentry *dir = nd->path.dentry;
3083 int open_flag = op->open_flag;
3084 bool will_truncate = (open_flag & O_TRUNC) != 0;
3085 bool got_write = false;
3086 int acc_mode = op->acc_mode;
3087 unsigned seq;
3088 struct inode *inode;
3089 struct path save_parent = { .dentry = NULL, .mnt = NULL };
3090 struct path path;
3091 bool retried = false;
3092 int error;
3093
3094 nd->flags &= ~LOOKUP_PARENT;
3095 nd->flags |= op->intent;
3096
3097 if (nd->last_type != LAST_NORM) {
3098 error = handle_dots(nd, nd->last_type);
3099 if (unlikely(error))
3100 return error;
3101 goto finish_open;
3102 }
3103
3104 if (!(open_flag & O_CREAT)) {
3105 if (nd->last.name[nd->last.len])
3106 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3107 /* we _can_ be in RCU mode here */
3108 error = lookup_fast(nd, &path, &inode, &seq);
3109 if (likely(!error))
3110 goto finish_lookup;
3111
3112 if (error < 0)
3113 return error;
3114
3115 BUG_ON(nd->inode != dir->d_inode);
3116 } else {
3117 /* create side of things */
3118 /*
3119 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3120 * has been cleared when we got to the last component we are
3121 * about to look up
3122 */
3123 error = complete_walk(nd);
3124 if (error)
3125 return error;
3126
3127 audit_inode(nd->name, dir, LOOKUP_PARENT);
3128 /* trailing slashes? */
3129 if (unlikely(nd->last.name[nd->last.len]))
3130 return -EISDIR;
3131 }
3132
3133 retry_lookup:
3134 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3135 error = mnt_want_write(nd->path.mnt);
3136 if (!error)
3137 got_write = true;
3138 /*
3139 * do _not_ fail yet - we might not need that or fail with
3140 * a different error; let lookup_open() decide; we'll be
3141 * dropping this one anyway.
3142 */
3143 }
3144 inode_lock(dir->d_inode);
3145 error = lookup_open(nd, &path, file, op, got_write, opened);
3146 inode_unlock(dir->d_inode);
3147
3148 if (error <= 0) {
3149 if (error)
3150 goto out;
3151
3152 if ((*opened & FILE_CREATED) ||
3153 !S_ISREG(file_inode(file)->i_mode))
3154 will_truncate = false;
3155
3156 audit_inode(nd->name, file->f_path.dentry, 0);
3157 goto opened;
3158 }
3159
3160 if (*opened & FILE_CREATED) {
3161 /* Don't check for write permission, don't truncate */
3162 open_flag &= ~O_TRUNC;
3163 will_truncate = false;
3164 acc_mode = 0;
3165 path_to_nameidata(&path, nd);
3166 goto finish_open_created;
3167 }
3168
3169 /*
3170 * create/update audit record if it already exists.
3171 */
3172 if (d_is_positive(path.dentry))
3173 audit_inode(nd->name, path.dentry, 0);
3174
3175 /*
3176 * If atomic_open() acquired write access it is dropped now due to
3177 * possible mount and symlink following (this might be optimized away if
3178 * necessary...)
3179 */
3180 if (got_write) {
3181 mnt_drop_write(nd->path.mnt);
3182 got_write = false;
3183 }
3184
3185 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3186 path_to_nameidata(&path, nd);
3187 return -EEXIST;
3188 }
3189
3190 error = follow_managed(&path, nd);
3191 if (unlikely(error < 0))
3192 return error;
3193
3194 BUG_ON(nd->flags & LOOKUP_RCU);
3195 inode = d_backing_inode(path.dentry);
3196 seq = 0; /* out of RCU mode, so the value doesn't matter */
3197 if (unlikely(d_is_negative(path.dentry))) {
3198 path_to_nameidata(&path, nd);
3199 return -ENOENT;
3200 }
3201 finish_lookup:
3202 if (nd->depth)
3203 put_link(nd);
3204 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3205 inode, seq);
3206 if (unlikely(error))
3207 return error;
3208
3209 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3210 path_to_nameidata(&path, nd);
3211 return -ELOOP;
3212 }
3213
3214 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3215 path_to_nameidata(&path, nd);
3216 } else {
3217 save_parent.dentry = nd->path.dentry;
3218 save_parent.mnt = mntget(path.mnt);
3219 nd->path.dentry = path.dentry;
3220
3221 }
3222 nd->inode = inode;
3223 nd->seq = seq;
3224 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3225 finish_open:
3226 error = complete_walk(nd);
3227 if (error) {
3228 path_put(&save_parent);
3229 return error;
3230 }
3231 audit_inode(nd->name, nd->path.dentry, 0);
3232 error = -EISDIR;
3233 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3234 goto out;
3235 error = -ENOTDIR;
3236 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3237 goto out;
3238 if (!d_is_reg(nd->path.dentry))
3239 will_truncate = false;
3240
3241 if (will_truncate) {
3242 error = mnt_want_write(nd->path.mnt);
3243 if (error)
3244 goto out;
3245 got_write = true;
3246 }
3247 finish_open_created:
3248 if (likely(!(open_flag & O_PATH))) {
3249 error = may_open(&nd->path, acc_mode, open_flag);
3250 if (error)
3251 goto out;
3252 }
3253 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3254 error = vfs_open(&nd->path, file, current_cred());
3255 if (!error) {
3256 *opened |= FILE_OPENED;
3257 } else {
3258 if (error == -EOPENSTALE)
3259 goto stale_open;
3260 goto out;
3261 }
3262 opened:
3263 error = open_check_o_direct(file);
3264 if (error)
3265 goto exit_fput;
3266 error = ima_file_check(file, op->acc_mode, *opened);
3267 if (error)
3268 goto exit_fput;
3269
3270 if (will_truncate) {
3271 error = handle_truncate(file);
3272 if (error)
3273 goto exit_fput;
3274 }
3275 out:
3276 if (got_write)
3277 mnt_drop_write(nd->path.mnt);
3278 path_put(&save_parent);
3279 return error;
3280
3281 exit_fput:
3282 fput(file);
3283 goto out;
3284
3285 stale_open:
3286 /* If no saved parent or already retried then can't retry */
3287 if (!save_parent.dentry || retried)
3288 goto out;
3289
3290 BUG_ON(save_parent.dentry != dir);
3291 path_put(&nd->path);
3292 nd->path = save_parent;
3293 nd->inode = dir->d_inode;
3294 save_parent.mnt = NULL;
3295 save_parent.dentry = NULL;
3296 if (got_write) {
3297 mnt_drop_write(nd->path.mnt);
3298 got_write = false;
3299 }
3300 retried = true;
3301 goto retry_lookup;
3302 }
3303
3304 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3305 const struct open_flags *op,
3306 struct file *file, int *opened)
3307 {
3308 static const struct qstr name = QSTR_INIT("/", 1);
3309 struct dentry *child;
3310 struct inode *dir;
3311 struct path path;
3312 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3313 if (unlikely(error))
3314 return error;
3315 error = mnt_want_write(path.mnt);
3316 if (unlikely(error))
3317 goto out;
3318 dir = path.dentry->d_inode;
3319 /* we want directory to be writable */
3320 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3321 if (error)
3322 goto out2;
3323 if (!dir->i_op->tmpfile) {
3324 error = -EOPNOTSUPP;
3325 goto out2;
3326 }
3327 child = d_alloc(path.dentry, &name);
3328 if (unlikely(!child)) {
3329 error = -ENOMEM;
3330 goto out2;
3331 }
3332 dput(path.dentry);
3333 path.dentry = child;
3334 error = dir->i_op->tmpfile(dir, child, op->mode);
3335 if (error)
3336 goto out2;
3337 audit_inode(nd->name, child, 0);
3338 /* Don't check for other permissions, the inode was just created */
3339 error = may_open(&path, 0, op->open_flag);
3340 if (error)
3341 goto out2;
3342 file->f_path.mnt = path.mnt;
3343 error = finish_open(file, child, NULL, opened);
3344 if (error)
3345 goto out2;
3346 error = open_check_o_direct(file);
3347 if (error) {
3348 fput(file);
3349 } else if (!(op->open_flag & O_EXCL)) {
3350 struct inode *inode = file_inode(file);
3351 spin_lock(&inode->i_lock);
3352 inode->i_state |= I_LINKABLE;
3353 spin_unlock(&inode->i_lock);
3354 }
3355 out2:
3356 mnt_drop_write(path.mnt);
3357 out:
3358 path_put(&path);
3359 return error;
3360 }
3361
3362 static struct file *path_openat(struct nameidata *nd,
3363 const struct open_flags *op, unsigned flags)
3364 {
3365 const char *s;
3366 struct file *file;
3367 int opened = 0;
3368 int error;
3369
3370 file = get_empty_filp();
3371 if (IS_ERR(file))
3372 return file;
3373
3374 file->f_flags = op->open_flag;
3375
3376 if (unlikely(file->f_flags & __O_TMPFILE)) {
3377 error = do_tmpfile(nd, flags, op, file, &opened);
3378 goto out2;
3379 }
3380
3381 s = path_init(nd, flags);
3382 if (IS_ERR(s)) {
3383 put_filp(file);
3384 return ERR_CAST(s);
3385 }
3386 while (!(error = link_path_walk(s, nd)) &&
3387 (error = do_last(nd, file, op, &opened)) > 0) {
3388 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3389 s = trailing_symlink(nd);
3390 if (IS_ERR(s)) {
3391 error = PTR_ERR(s);
3392 break;
3393 }
3394 }
3395 terminate_walk(nd);
3396 out2:
3397 if (!(opened & FILE_OPENED)) {
3398 BUG_ON(!error);
3399 put_filp(file);
3400 }
3401 if (unlikely(error)) {
3402 if (error == -EOPENSTALE) {
3403 if (flags & LOOKUP_RCU)
3404 error = -ECHILD;
3405 else
3406 error = -ESTALE;
3407 }
3408 file = ERR_PTR(error);
3409 }
3410 return file;
3411 }
3412
3413 struct file *do_filp_open(int dfd, struct filename *pathname,
3414 const struct open_flags *op)
3415 {
3416 struct nameidata nd;
3417 int flags = op->lookup_flags;
3418 struct file *filp;
3419
3420 set_nameidata(&nd, dfd, pathname);
3421 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3422 if (unlikely(filp == ERR_PTR(-ECHILD)))
3423 filp = path_openat(&nd, op, flags);
3424 if (unlikely(filp == ERR_PTR(-ESTALE)))
3425 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3426 restore_nameidata();
3427 return filp;
3428 }
3429
3430 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3431 const char *name, const struct open_flags *op)
3432 {
3433 struct nameidata nd;
3434 struct file *file;
3435 struct filename *filename;
3436 int flags = op->lookup_flags | LOOKUP_ROOT;
3437
3438 nd.root.mnt = mnt;
3439 nd.root.dentry = dentry;
3440
3441 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3442 return ERR_PTR(-ELOOP);
3443
3444 filename = getname_kernel(name);
3445 if (IS_ERR(filename))
3446 return ERR_CAST(filename);
3447
3448 set_nameidata(&nd, -1, filename);
3449 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3450 if (unlikely(file == ERR_PTR(-ECHILD)))
3451 file = path_openat(&nd, op, flags);
3452 if (unlikely(file == ERR_PTR(-ESTALE)))
3453 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3454 restore_nameidata();
3455 putname(filename);
3456 return file;
3457 }
3458
3459 static struct dentry *filename_create(int dfd, struct filename *name,
3460 struct path *path, unsigned int lookup_flags)
3461 {
3462 struct dentry *dentry = ERR_PTR(-EEXIST);
3463 struct qstr last;
3464 int type;
3465 int err2;
3466 int error;
3467 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3468
3469 /*
3470 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3471 * other flags passed in are ignored!
3472 */
3473 lookup_flags &= LOOKUP_REVAL;
3474
3475 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3476 if (IS_ERR(name))
3477 return ERR_CAST(name);
3478
3479 /*
3480 * Yucky last component or no last component at all?
3481 * (foo/., foo/.., /////)
3482 */
3483 if (unlikely(type != LAST_NORM))
3484 goto out;
3485
3486 /* don't fail immediately if it's r/o, at least try to report other errors */
3487 err2 = mnt_want_write(path->mnt);
3488 /*
3489 * Do the final lookup.
3490 */
3491 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3492 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3493 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3494 if (IS_ERR(dentry))
3495 goto unlock;
3496
3497 error = -EEXIST;
3498 if (d_is_positive(dentry))
3499 goto fail;
3500
3501 /*
3502 * Special case - lookup gave negative, but... we had foo/bar/
3503 * From the vfs_mknod() POV we just have a negative dentry -
3504 * all is fine. Let's be bastards - you had / on the end, you've
3505 * been asking for (non-existent) directory. -ENOENT for you.
3506 */
3507 if (unlikely(!is_dir && last.name[last.len])) {
3508 error = -ENOENT;
3509 goto fail;
3510 }
3511 if (unlikely(err2)) {
3512 error = err2;
3513 goto fail;
3514 }
3515 putname(name);
3516 return dentry;
3517 fail:
3518 dput(dentry);
3519 dentry = ERR_PTR(error);
3520 unlock:
3521 inode_unlock(path->dentry->d_inode);
3522 if (!err2)
3523 mnt_drop_write(path->mnt);
3524 out:
3525 path_put(path);
3526 putname(name);
3527 return dentry;
3528 }
3529
3530 struct dentry *kern_path_create(int dfd, const char *pathname,
3531 struct path *path, unsigned int lookup_flags)
3532 {
3533 return filename_create(dfd, getname_kernel(pathname),
3534 path, lookup_flags);
3535 }
3536 EXPORT_SYMBOL(kern_path_create);
3537
3538 void done_path_create(struct path *path, struct dentry *dentry)
3539 {
3540 dput(dentry);
3541 inode_unlock(path->dentry->d_inode);
3542 mnt_drop_write(path->mnt);
3543 path_put(path);
3544 }
3545 EXPORT_SYMBOL(done_path_create);
3546
3547 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3548 struct path *path, unsigned int lookup_flags)
3549 {
3550 return filename_create(dfd, getname(pathname), path, lookup_flags);
3551 }
3552 EXPORT_SYMBOL(user_path_create);
3553
3554 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3555 {
3556 int error = may_create(dir, dentry);
3557
3558 if (error)
3559 return error;
3560
3561 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3562 return -EPERM;
3563
3564 if (!dir->i_op->mknod)
3565 return -EPERM;
3566
3567 error = devcgroup_inode_mknod(mode, dev);
3568 if (error)
3569 return error;
3570
3571 error = security_inode_mknod(dir, dentry, mode, dev);
3572 if (error)
3573 return error;
3574
3575 error = dir->i_op->mknod(dir, dentry, mode, dev);
3576 if (!error)
3577 fsnotify_create(dir, dentry);
3578 return error;
3579 }
3580 EXPORT_SYMBOL(vfs_mknod);
3581
3582 static int may_mknod(umode_t mode)
3583 {
3584 switch (mode & S_IFMT) {
3585 case S_IFREG:
3586 case S_IFCHR:
3587 case S_IFBLK:
3588 case S_IFIFO:
3589 case S_IFSOCK:
3590 case 0: /* zero mode translates to S_IFREG */
3591 return 0;
3592 case S_IFDIR:
3593 return -EPERM;
3594 default:
3595 return -EINVAL;
3596 }
3597 }
3598
3599 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3600 unsigned, dev)
3601 {
3602 struct dentry *dentry;
3603 struct path path;
3604 int error;
3605 unsigned int lookup_flags = 0;
3606
3607 error = may_mknod(mode);
3608 if (error)
3609 return error;
3610 retry:
3611 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3612 if (IS_ERR(dentry))
3613 return PTR_ERR(dentry);
3614
3615 if (!IS_POSIXACL(path.dentry->d_inode))
3616 mode &= ~current_umask();
3617 error = security_path_mknod(&path, dentry, mode, dev);
3618 if (error)
3619 goto out;
3620 switch (mode & S_IFMT) {
3621 case 0: case S_IFREG:
3622 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3623 break;
3624 case S_IFCHR: case S_IFBLK:
3625 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3626 new_decode_dev(dev));
3627 break;
3628 case S_IFIFO: case S_IFSOCK:
3629 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3630 break;
3631 }
3632 out:
3633 done_path_create(&path, dentry);
3634 if (retry_estale(error, lookup_flags)) {
3635 lookup_flags |= LOOKUP_REVAL;
3636 goto retry;
3637 }
3638 return error;
3639 }
3640
3641 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3642 {
3643 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3644 }
3645
3646 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3647 {
3648 int error = may_create(dir, dentry);
3649 unsigned max_links = dir->i_sb->s_max_links;
3650
3651 if (error)
3652 return error;
3653
3654 if (!dir->i_op->mkdir)
3655 return -EPERM;
3656
3657 mode &= (S_IRWXUGO|S_ISVTX);
3658 error = security_inode_mkdir(dir, dentry, mode);
3659 if (error)
3660 return error;
3661
3662 if (max_links && dir->i_nlink >= max_links)
3663 return -EMLINK;
3664
3665 error = dir->i_op->mkdir(dir, dentry, mode);
3666 if (!error)
3667 fsnotify_mkdir(dir, dentry);
3668 return error;
3669 }
3670 EXPORT_SYMBOL(vfs_mkdir);
3671
3672 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3673 {
3674 struct dentry *dentry;
3675 struct path path;
3676 int error;
3677 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3678
3679 retry:
3680 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3681 if (IS_ERR(dentry))
3682 return PTR_ERR(dentry);
3683
3684 if (!IS_POSIXACL(path.dentry->d_inode))
3685 mode &= ~current_umask();
3686 error = security_path_mkdir(&path, dentry, mode);
3687 if (!error)
3688 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3689 done_path_create(&path, dentry);
3690 if (retry_estale(error, lookup_flags)) {
3691 lookup_flags |= LOOKUP_REVAL;
3692 goto retry;
3693 }
3694 return error;
3695 }
3696
3697 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3698 {
3699 return sys_mkdirat(AT_FDCWD, pathname, mode);
3700 }
3701
3702 /*
3703 * The dentry_unhash() helper will try to drop the dentry early: we
3704 * should have a usage count of 1 if we're the only user of this
3705 * dentry, and if that is true (possibly after pruning the dcache),
3706 * then we drop the dentry now.
3707 *
3708 * A low-level filesystem can, if it choses, legally
3709 * do a
3710 *
3711 * if (!d_unhashed(dentry))
3712 * return -EBUSY;
3713 *
3714 * if it cannot handle the case of removing a directory
3715 * that is still in use by something else..
3716 */
3717 void dentry_unhash(struct dentry *dentry)
3718 {
3719 shrink_dcache_parent(dentry);
3720 spin_lock(&dentry->d_lock);
3721 if (dentry->d_lockref.count == 1)
3722 __d_drop(dentry);
3723 spin_unlock(&dentry->d_lock);
3724 }
3725 EXPORT_SYMBOL(dentry_unhash);
3726
3727 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3728 {
3729 int error = may_delete(dir, dentry, 1);
3730
3731 if (error)
3732 return error;
3733
3734 if (!dir->i_op->rmdir)
3735 return -EPERM;
3736
3737 dget(dentry);
3738 inode_lock(dentry->d_inode);
3739
3740 error = -EBUSY;
3741 if (is_local_mountpoint(dentry))
3742 goto out;
3743
3744 error = security_inode_rmdir(dir, dentry);
3745 if (error)
3746 goto out;
3747
3748 shrink_dcache_parent(dentry);
3749 error = dir->i_op->rmdir(dir, dentry);
3750 if (error)
3751 goto out;
3752
3753 dentry->d_inode->i_flags |= S_DEAD;
3754 dont_mount(dentry);
3755 detach_mounts(dentry);
3756
3757 out:
3758 inode_unlock(dentry->d_inode);
3759 dput(dentry);
3760 if (!error)
3761 d_delete(dentry);
3762 return error;
3763 }
3764 EXPORT_SYMBOL(vfs_rmdir);
3765
3766 static long do_rmdir(int dfd, const char __user *pathname)
3767 {
3768 int error = 0;
3769 struct filename *name;
3770 struct dentry *dentry;
3771 struct path path;
3772 struct qstr last;
3773 int type;
3774 unsigned int lookup_flags = 0;
3775 retry:
3776 name = user_path_parent(dfd, pathname,
3777 &path, &last, &type, lookup_flags);
3778 if (IS_ERR(name))
3779 return PTR_ERR(name);
3780
3781 switch (type) {
3782 case LAST_DOTDOT:
3783 error = -ENOTEMPTY;
3784 goto exit1;
3785 case LAST_DOT:
3786 error = -EINVAL;
3787 goto exit1;
3788 case LAST_ROOT:
3789 error = -EBUSY;
3790 goto exit1;
3791 }
3792
3793 error = mnt_want_write(path.mnt);
3794 if (error)
3795 goto exit1;
3796
3797 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3798 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3799 error = PTR_ERR(dentry);
3800 if (IS_ERR(dentry))
3801 goto exit2;
3802 if (!dentry->d_inode) {
3803 error = -ENOENT;
3804 goto exit3;
3805 }
3806 error = security_path_rmdir(&path, dentry);
3807 if (error)
3808 goto exit3;
3809 error = vfs_rmdir(path.dentry->d_inode, dentry);
3810 exit3:
3811 dput(dentry);
3812 exit2:
3813 inode_unlock(path.dentry->d_inode);
3814 mnt_drop_write(path.mnt);
3815 exit1:
3816 path_put(&path);
3817 putname(name);
3818 if (retry_estale(error, lookup_flags)) {
3819 lookup_flags |= LOOKUP_REVAL;
3820 goto retry;
3821 }
3822 return error;
3823 }
3824
3825 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3826 {
3827 return do_rmdir(AT_FDCWD, pathname);
3828 }
3829
3830 /**
3831 * vfs_unlink - unlink a filesystem object
3832 * @dir: parent directory
3833 * @dentry: victim
3834 * @delegated_inode: returns victim inode, if the inode is delegated.
3835 *
3836 * The caller must hold dir->i_mutex.
3837 *
3838 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3839 * return a reference to the inode in delegated_inode. The caller
3840 * should then break the delegation on that inode and retry. Because
3841 * breaking a delegation may take a long time, the caller should drop
3842 * dir->i_mutex before doing so.
3843 *
3844 * Alternatively, a caller may pass NULL for delegated_inode. This may
3845 * be appropriate for callers that expect the underlying filesystem not
3846 * to be NFS exported.
3847 */
3848 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3849 {
3850 struct inode *target = dentry->d_inode;
3851 int error = may_delete(dir, dentry, 0);
3852
3853 if (error)
3854 return error;
3855
3856 if (!dir->i_op->unlink)
3857 return -EPERM;
3858
3859 inode_lock(target);
3860 if (is_local_mountpoint(dentry))
3861 error = -EBUSY;
3862 else {
3863 error = security_inode_unlink(dir, dentry);
3864 if (!error) {
3865 error = try_break_deleg(target, delegated_inode);
3866 if (error)
3867 goto out;
3868 error = dir->i_op->unlink(dir, dentry);
3869 if (!error) {
3870 dont_mount(dentry);
3871 detach_mounts(dentry);
3872 }
3873 }
3874 }
3875 out:
3876 inode_unlock(target);
3877
3878 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3879 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3880 fsnotify_link_count(target);
3881 d_delete(dentry);
3882 }
3883
3884 return error;
3885 }
3886 EXPORT_SYMBOL(vfs_unlink);
3887
3888 /*
3889 * Make sure that the actual truncation of the file will occur outside its
3890 * directory's i_mutex. Truncate can take a long time if there is a lot of
3891 * writeout happening, and we don't want to prevent access to the directory
3892 * while waiting on the I/O.
3893 */
3894 static long do_unlinkat(int dfd, const char __user *pathname)
3895 {
3896 int error;
3897 struct filename *name;
3898 struct dentry *dentry;
3899 struct path path;
3900 struct qstr last;
3901 int type;
3902 struct inode *inode = NULL;
3903 struct inode *delegated_inode = NULL;
3904 unsigned int lookup_flags = 0;
3905 retry:
3906 name = user_path_parent(dfd, pathname,
3907 &path, &last, &type, lookup_flags);
3908 if (IS_ERR(name))
3909 return PTR_ERR(name);
3910
3911 error = -EISDIR;
3912 if (type != LAST_NORM)
3913 goto exit1;
3914
3915 error = mnt_want_write(path.mnt);
3916 if (error)
3917 goto exit1;
3918 retry_deleg:
3919 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3920 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3921 error = PTR_ERR(dentry);
3922 if (!IS_ERR(dentry)) {
3923 /* Why not before? Because we want correct error value */
3924 if (last.name[last.len])
3925 goto slashes;
3926 inode = dentry->d_inode;
3927 if (d_is_negative(dentry))
3928 goto slashes;
3929 ihold(inode);
3930 error = security_path_unlink(&path, dentry);
3931 if (error)
3932 goto exit2;
3933 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3934 exit2:
3935 dput(dentry);
3936 }
3937 inode_unlock(path.dentry->d_inode);
3938 if (inode)
3939 iput(inode); /* truncate the inode here */
3940 inode = NULL;
3941 if (delegated_inode) {
3942 error = break_deleg_wait(&delegated_inode);
3943 if (!error)
3944 goto retry_deleg;
3945 }
3946 mnt_drop_write(path.mnt);
3947 exit1:
3948 path_put(&path);
3949 putname(name);
3950 if (retry_estale(error, lookup_flags)) {
3951 lookup_flags |= LOOKUP_REVAL;
3952 inode = NULL;
3953 goto retry;
3954 }
3955 return error;
3956
3957 slashes:
3958 if (d_is_negative(dentry))
3959 error = -ENOENT;
3960 else if (d_is_dir(dentry))
3961 error = -EISDIR;
3962 else
3963 error = -ENOTDIR;
3964 goto exit2;
3965 }
3966
3967 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3968 {
3969 if ((flag & ~AT_REMOVEDIR) != 0)
3970 return -EINVAL;
3971
3972 if (flag & AT_REMOVEDIR)
3973 return do_rmdir(dfd, pathname);
3974
3975 return do_unlinkat(dfd, pathname);
3976 }
3977
3978 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3979 {
3980 return do_unlinkat(AT_FDCWD, pathname);
3981 }
3982
3983 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3984 {
3985 int error = may_create(dir, dentry);
3986
3987 if (error)
3988 return error;
3989
3990 if (!dir->i_op->symlink)
3991 return -EPERM;
3992
3993 error = security_inode_symlink(dir, dentry, oldname);
3994 if (error)
3995 return error;
3996
3997 error = dir->i_op->symlink(dir, dentry, oldname);
3998 if (!error)
3999 fsnotify_create(dir, dentry);
4000 return error;
4001 }
4002 EXPORT_SYMBOL(vfs_symlink);
4003
4004 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4005 int, newdfd, const char __user *, newname)
4006 {
4007 int error;
4008 struct filename *from;
4009 struct dentry *dentry;
4010 struct path path;
4011 unsigned int lookup_flags = 0;
4012
4013 from = getname(oldname);
4014 if (IS_ERR(from))
4015 return PTR_ERR(from);
4016 retry:
4017 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4018 error = PTR_ERR(dentry);
4019 if (IS_ERR(dentry))
4020 goto out_putname;
4021
4022 error = security_path_symlink(&path, dentry, from->name);
4023 if (!error)
4024 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4025 done_path_create(&path, dentry);
4026 if (retry_estale(error, lookup_flags)) {
4027 lookup_flags |= LOOKUP_REVAL;
4028 goto retry;
4029 }
4030 out_putname:
4031 putname(from);
4032 return error;
4033 }
4034
4035 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4036 {
4037 return sys_symlinkat(oldname, AT_FDCWD, newname);
4038 }
4039
4040 /**
4041 * vfs_link - create a new link
4042 * @old_dentry: object to be linked
4043 * @dir: new parent
4044 * @new_dentry: where to create the new link
4045 * @delegated_inode: returns inode needing a delegation break
4046 *
4047 * The caller must hold dir->i_mutex
4048 *
4049 * If vfs_link discovers a delegation on the to-be-linked file in need
4050 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4051 * inode in delegated_inode. The caller should then break the delegation
4052 * and retry. Because breaking a delegation may take a long time, the
4053 * caller should drop the i_mutex before doing so.
4054 *
4055 * Alternatively, a caller may pass NULL for delegated_inode. This may
4056 * be appropriate for callers that expect the underlying filesystem not
4057 * to be NFS exported.
4058 */
4059 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4060 {
4061 struct inode *inode = old_dentry->d_inode;
4062 unsigned max_links = dir->i_sb->s_max_links;
4063 int error;
4064
4065 if (!inode)
4066 return -ENOENT;
4067
4068 error = may_create(dir, new_dentry);
4069 if (error)
4070 return error;
4071
4072 if (dir->i_sb != inode->i_sb)
4073 return -EXDEV;
4074
4075 /*
4076 * A link to an append-only or immutable file cannot be created.
4077 */
4078 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4079 return -EPERM;
4080 if (!dir->i_op->link)
4081 return -EPERM;
4082 if (S_ISDIR(inode->i_mode))
4083 return -EPERM;
4084
4085 error = security_inode_link(old_dentry, dir, new_dentry);
4086 if (error)
4087 return error;
4088
4089 inode_lock(inode);
4090 /* Make sure we don't allow creating hardlink to an unlinked file */
4091 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4092 error = -ENOENT;
4093 else if (max_links && inode->i_nlink >= max_links)
4094 error = -EMLINK;
4095 else {
4096 error = try_break_deleg(inode, delegated_inode);
4097 if (!error)
4098 error = dir->i_op->link(old_dentry, dir, new_dentry);
4099 }
4100
4101 if (!error && (inode->i_state & I_LINKABLE)) {
4102 spin_lock(&inode->i_lock);
4103 inode->i_state &= ~I_LINKABLE;
4104 spin_unlock(&inode->i_lock);
4105 }
4106 inode_unlock(inode);
4107 if (!error)
4108 fsnotify_link(dir, inode, new_dentry);
4109 return error;
4110 }
4111 EXPORT_SYMBOL(vfs_link);
4112
4113 /*
4114 * Hardlinks are often used in delicate situations. We avoid
4115 * security-related surprises by not following symlinks on the
4116 * newname. --KAB
4117 *
4118 * We don't follow them on the oldname either to be compatible
4119 * with linux 2.0, and to avoid hard-linking to directories
4120 * and other special files. --ADM
4121 */
4122 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4123 int, newdfd, const char __user *, newname, int, flags)
4124 {
4125 struct dentry *new_dentry;
4126 struct path old_path, new_path;
4127 struct inode *delegated_inode = NULL;
4128 int how = 0;
4129 int error;
4130
4131 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4132 return -EINVAL;
4133 /*
4134 * To use null names we require CAP_DAC_READ_SEARCH
4135 * This ensures that not everyone will be able to create
4136 * handlink using the passed filedescriptor.
4137 */
4138 if (flags & AT_EMPTY_PATH) {
4139 if (!capable(CAP_DAC_READ_SEARCH))
4140 return -ENOENT;
4141 how = LOOKUP_EMPTY;
4142 }
4143
4144 if (flags & AT_SYMLINK_FOLLOW)
4145 how |= LOOKUP_FOLLOW;
4146 retry:
4147 error = user_path_at(olddfd, oldname, how, &old_path);
4148 if (error)
4149 return error;
4150
4151 new_dentry = user_path_create(newdfd, newname, &new_path,
4152 (how & LOOKUP_REVAL));
4153 error = PTR_ERR(new_dentry);
4154 if (IS_ERR(new_dentry))
4155 goto out;
4156
4157 error = -EXDEV;
4158 if (old_path.mnt != new_path.mnt)
4159 goto out_dput;
4160 error = may_linkat(&old_path);
4161 if (unlikely(error))
4162 goto out_dput;
4163 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4164 if (error)
4165 goto out_dput;
4166 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4167 out_dput:
4168 done_path_create(&new_path, new_dentry);
4169 if (delegated_inode) {
4170 error = break_deleg_wait(&delegated_inode);
4171 if (!error) {
4172 path_put(&old_path);
4173 goto retry;
4174 }
4175 }
4176 if (retry_estale(error, how)) {
4177 path_put(&old_path);
4178 how |= LOOKUP_REVAL;
4179 goto retry;
4180 }
4181 out:
4182 path_put(&old_path);
4183
4184 return error;
4185 }
4186
4187 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4188 {
4189 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4190 }
4191
4192 /**
4193 * vfs_rename - rename a filesystem object
4194 * @old_dir: parent of source
4195 * @old_dentry: source
4196 * @new_dir: parent of destination
4197 * @new_dentry: destination
4198 * @delegated_inode: returns an inode needing a delegation break
4199 * @flags: rename flags
4200 *
4201 * The caller must hold multiple mutexes--see lock_rename()).
4202 *
4203 * If vfs_rename discovers a delegation in need of breaking at either
4204 * the source or destination, it will return -EWOULDBLOCK and return a
4205 * reference to the inode in delegated_inode. The caller should then
4206 * break the delegation and retry. Because breaking a delegation may
4207 * take a long time, the caller should drop all locks before doing
4208 * so.
4209 *
4210 * Alternatively, a caller may pass NULL for delegated_inode. This may
4211 * be appropriate for callers that expect the underlying filesystem not
4212 * to be NFS exported.
4213 *
4214 * The worst of all namespace operations - renaming directory. "Perverted"
4215 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4216 * Problems:
4217 * a) we can get into loop creation.
4218 * b) race potential - two innocent renames can create a loop together.
4219 * That's where 4.4 screws up. Current fix: serialization on
4220 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4221 * story.
4222 * c) we have to lock _four_ objects - parents and victim (if it exists),
4223 * and source (if it is not a directory).
4224 * And that - after we got ->i_mutex on parents (until then we don't know
4225 * whether the target exists). Solution: try to be smart with locking
4226 * order for inodes. We rely on the fact that tree topology may change
4227 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4228 * move will be locked. Thus we can rank directories by the tree
4229 * (ancestors first) and rank all non-directories after them.
4230 * That works since everybody except rename does "lock parent, lookup,
4231 * lock child" and rename is under ->s_vfs_rename_mutex.
4232 * HOWEVER, it relies on the assumption that any object with ->lookup()
4233 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4234 * we'd better make sure that there's no link(2) for them.
4235 * d) conversion from fhandle to dentry may come in the wrong moment - when
4236 * we are removing the target. Solution: we will have to grab ->i_mutex
4237 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4238 * ->i_mutex on parents, which works but leads to some truly excessive
4239 * locking].
4240 */
4241 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4242 struct inode *new_dir, struct dentry *new_dentry,
4243 struct inode **delegated_inode, unsigned int flags)
4244 {
4245 int error;
4246 bool is_dir = d_is_dir(old_dentry);
4247 const unsigned char *old_name;
4248 struct inode *source = old_dentry->d_inode;
4249 struct inode *target = new_dentry->d_inode;
4250 bool new_is_dir = false;
4251 unsigned max_links = new_dir->i_sb->s_max_links;
4252
4253 if (source == target)
4254 return 0;
4255
4256 error = may_delete(old_dir, old_dentry, is_dir);
4257 if (error)
4258 return error;
4259
4260 if (!target) {
4261 error = may_create(new_dir, new_dentry);
4262 } else {
4263 new_is_dir = d_is_dir(new_dentry);
4264
4265 if (!(flags & RENAME_EXCHANGE))
4266 error = may_delete(new_dir, new_dentry, is_dir);
4267 else
4268 error = may_delete(new_dir, new_dentry, new_is_dir);
4269 }
4270 if (error)
4271 return error;
4272
4273 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4274 return -EPERM;
4275
4276 if (flags && !old_dir->i_op->rename2)
4277 return -EINVAL;
4278
4279 /*
4280 * If we are going to change the parent - check write permissions,
4281 * we'll need to flip '..'.
4282 */
4283 if (new_dir != old_dir) {
4284 if (is_dir) {
4285 error = inode_permission(source, MAY_WRITE);
4286 if (error)
4287 return error;
4288 }
4289 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4290 error = inode_permission(target, MAY_WRITE);
4291 if (error)
4292 return error;
4293 }
4294 }
4295
4296 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4297 flags);
4298 if (error)
4299 return error;
4300
4301 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4302 dget(new_dentry);
4303 if (!is_dir || (flags & RENAME_EXCHANGE))
4304 lock_two_nondirectories(source, target);
4305 else if (target)
4306 inode_lock(target);
4307
4308 error = -EBUSY;
4309 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4310 goto out;
4311
4312 if (max_links && new_dir != old_dir) {
4313 error = -EMLINK;
4314 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4315 goto out;
4316 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4317 old_dir->i_nlink >= max_links)
4318 goto out;
4319 }
4320 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4321 shrink_dcache_parent(new_dentry);
4322 if (!is_dir) {
4323 error = try_break_deleg(source, delegated_inode);
4324 if (error)
4325 goto out;
4326 }
4327 if (target && !new_is_dir) {
4328 error = try_break_deleg(target, delegated_inode);
4329 if (error)
4330 goto out;
4331 }
4332 if (!old_dir->i_op->rename2) {
4333 error = old_dir->i_op->rename(old_dir, old_dentry,
4334 new_dir, new_dentry);
4335 } else {
4336 WARN_ON(old_dir->i_op->rename != NULL);
4337 error = old_dir->i_op->rename2(old_dir, old_dentry,
4338 new_dir, new_dentry, flags);
4339 }
4340 if (error)
4341 goto out;
4342
4343 if (!(flags & RENAME_EXCHANGE) && target) {
4344 if (is_dir)
4345 target->i_flags |= S_DEAD;
4346 dont_mount(new_dentry);
4347 detach_mounts(new_dentry);
4348 }
4349 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4350 if (!(flags & RENAME_EXCHANGE))
4351 d_move(old_dentry, new_dentry);
4352 else
4353 d_exchange(old_dentry, new_dentry);
4354 }
4355 out:
4356 if (!is_dir || (flags & RENAME_EXCHANGE))
4357 unlock_two_nondirectories(source, target);
4358 else if (target)
4359 inode_unlock(target);
4360 dput(new_dentry);
4361 if (!error) {
4362 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4363 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4364 if (flags & RENAME_EXCHANGE) {
4365 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4366 new_is_dir, NULL, new_dentry);
4367 }
4368 }
4369 fsnotify_oldname_free(old_name);
4370
4371 return error;
4372 }
4373 EXPORT_SYMBOL(vfs_rename);
4374
4375 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4376 int, newdfd, const char __user *, newname, unsigned int, flags)
4377 {
4378 struct dentry *old_dentry, *new_dentry;
4379 struct dentry *trap;
4380 struct path old_path, new_path;
4381 struct qstr old_last, new_last;
4382 int old_type, new_type;
4383 struct inode *delegated_inode = NULL;
4384 struct filename *from;
4385 struct filename *to;
4386 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4387 bool should_retry = false;
4388 int error;
4389
4390 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4391 return -EINVAL;
4392
4393 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4394 (flags & RENAME_EXCHANGE))
4395 return -EINVAL;
4396
4397 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4398 return -EPERM;
4399
4400 if (flags & RENAME_EXCHANGE)
4401 target_flags = 0;
4402
4403 retry:
4404 from = user_path_parent(olddfd, oldname,
4405 &old_path, &old_last, &old_type, lookup_flags);
4406 if (IS_ERR(from)) {
4407 error = PTR_ERR(from);
4408 goto exit;
4409 }
4410
4411 to = user_path_parent(newdfd, newname,
4412 &new_path, &new_last, &new_type, lookup_flags);
4413 if (IS_ERR(to)) {
4414 error = PTR_ERR(to);
4415 goto exit1;
4416 }
4417
4418 error = -EXDEV;
4419 if (old_path.mnt != new_path.mnt)
4420 goto exit2;
4421
4422 error = -EBUSY;
4423 if (old_type != LAST_NORM)
4424 goto exit2;
4425
4426 if (flags & RENAME_NOREPLACE)
4427 error = -EEXIST;
4428 if (new_type != LAST_NORM)
4429 goto exit2;
4430
4431 error = mnt_want_write(old_path.mnt);
4432 if (error)
4433 goto exit2;
4434
4435 retry_deleg:
4436 trap = lock_rename(new_path.dentry, old_path.dentry);
4437
4438 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4439 error = PTR_ERR(old_dentry);
4440 if (IS_ERR(old_dentry))
4441 goto exit3;
4442 /* source must exist */
4443 error = -ENOENT;
4444 if (d_is_negative(old_dentry))
4445 goto exit4;
4446 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4447 error = PTR_ERR(new_dentry);
4448 if (IS_ERR(new_dentry))
4449 goto exit4;
4450 error = -EEXIST;
4451 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4452 goto exit5;
4453 if (flags & RENAME_EXCHANGE) {
4454 error = -ENOENT;
4455 if (d_is_negative(new_dentry))
4456 goto exit5;
4457
4458 if (!d_is_dir(new_dentry)) {
4459 error = -ENOTDIR;
4460 if (new_last.name[new_last.len])
4461 goto exit5;
4462 }
4463 }
4464 /* unless the source is a directory trailing slashes give -ENOTDIR */
4465 if (!d_is_dir(old_dentry)) {
4466 error = -ENOTDIR;
4467 if (old_last.name[old_last.len])
4468 goto exit5;
4469 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4470 goto exit5;
4471 }
4472 /* source should not be ancestor of target */
4473 error = -EINVAL;
4474 if (old_dentry == trap)
4475 goto exit5;
4476 /* target should not be an ancestor of source */
4477 if (!(flags & RENAME_EXCHANGE))
4478 error = -ENOTEMPTY;
4479 if (new_dentry == trap)
4480 goto exit5;
4481
4482 error = security_path_rename(&old_path, old_dentry,
4483 &new_path, new_dentry, flags);
4484 if (error)
4485 goto exit5;
4486 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4487 new_path.dentry->d_inode, new_dentry,
4488 &delegated_inode, flags);
4489 exit5:
4490 dput(new_dentry);
4491 exit4:
4492 dput(old_dentry);
4493 exit3:
4494 unlock_rename(new_path.dentry, old_path.dentry);
4495 if (delegated_inode) {
4496 error = break_deleg_wait(&delegated_inode);
4497 if (!error)
4498 goto retry_deleg;
4499 }
4500 mnt_drop_write(old_path.mnt);
4501 exit2:
4502 if (retry_estale(error, lookup_flags))
4503 should_retry = true;
4504 path_put(&new_path);
4505 putname(to);
4506 exit1:
4507 path_put(&old_path);
4508 putname(from);
4509 if (should_retry) {
4510 should_retry = false;
4511 lookup_flags |= LOOKUP_REVAL;
4512 goto retry;
4513 }
4514 exit:
4515 return error;
4516 }
4517
4518 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4519 int, newdfd, const char __user *, newname)
4520 {
4521 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4522 }
4523
4524 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4525 {
4526 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4527 }
4528
4529 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4530 {
4531 int error = may_create(dir, dentry);
4532 if (error)
4533 return error;
4534
4535 if (!dir->i_op->mknod)
4536 return -EPERM;
4537
4538 return dir->i_op->mknod(dir, dentry,
4539 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4540 }
4541 EXPORT_SYMBOL(vfs_whiteout);
4542
4543 int readlink_copy(char __user *buffer, int buflen, const char *link)
4544 {
4545 int len = PTR_ERR(link);
4546 if (IS_ERR(link))
4547 goto out;
4548
4549 len = strlen(link);
4550 if (len > (unsigned) buflen)
4551 len = buflen;
4552 if (copy_to_user(buffer, link, len))
4553 len = -EFAULT;
4554 out:
4555 return len;
4556 }
4557 EXPORT_SYMBOL(readlink_copy);
4558
4559 /*
4560 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4561 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4562 * for any given inode is up to filesystem.
4563 */
4564 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4565 {
4566 DEFINE_DELAYED_CALL(done);
4567 struct inode *inode = d_inode(dentry);
4568 const char *link = inode->i_link;
4569 int res;
4570
4571 if (!link) {
4572 link = inode->i_op->get_link(dentry, inode, &done);
4573 if (IS_ERR(link))
4574 return PTR_ERR(link);
4575 }
4576 res = readlink_copy(buffer, buflen, link);
4577 do_delayed_call(&done);
4578 return res;
4579 }
4580 EXPORT_SYMBOL(generic_readlink);
4581
4582 /* get the link contents into pagecache */
4583 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4584 struct delayed_call *callback)
4585 {
4586 char *kaddr;
4587 struct page *page;
4588 struct address_space *mapping = inode->i_mapping;
4589
4590 if (!dentry) {
4591 page = find_get_page(mapping, 0);
4592 if (!page)
4593 return ERR_PTR(-ECHILD);
4594 if (!PageUptodate(page)) {
4595 put_page(page);
4596 return ERR_PTR(-ECHILD);
4597 }
4598 } else {
4599 page = read_mapping_page(mapping, 0, NULL);
4600 if (IS_ERR(page))
4601 return (char*)page;
4602 }
4603 set_delayed_call(callback, page_put_link, page);
4604 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4605 kaddr = page_address(page);
4606 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4607 return kaddr;
4608 }
4609
4610 EXPORT_SYMBOL(page_get_link);
4611
4612 void page_put_link(void *arg)
4613 {
4614 put_page(arg);
4615 }
4616 EXPORT_SYMBOL(page_put_link);
4617
4618 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4619 {
4620 DEFINE_DELAYED_CALL(done);
4621 int res = readlink_copy(buffer, buflen,
4622 page_get_link(dentry, d_inode(dentry),
4623 &done));
4624 do_delayed_call(&done);
4625 return res;
4626 }
4627 EXPORT_SYMBOL(page_readlink);
4628
4629 /*
4630 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4631 */
4632 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4633 {
4634 struct address_space *mapping = inode->i_mapping;
4635 struct page *page;
4636 void *fsdata;
4637 int err;
4638 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4639 if (nofs)
4640 flags |= AOP_FLAG_NOFS;
4641
4642 retry:
4643 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4644 flags, &page, &fsdata);
4645 if (err)
4646 goto fail;
4647
4648 memcpy(page_address(page), symname, len-1);
4649
4650 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4651 page, fsdata);
4652 if (err < 0)
4653 goto fail;
4654 if (err < len-1)
4655 goto retry;
4656
4657 mark_inode_dirty(inode);
4658 return 0;
4659 fail:
4660 return err;
4661 }
4662 EXPORT_SYMBOL(__page_symlink);
4663
4664 int page_symlink(struct inode *inode, const char *symname, int len)
4665 {
4666 return __page_symlink(inode, symname, len,
4667 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4668 }
4669 EXPORT_SYMBOL(page_symlink);
4670
4671 const struct inode_operations page_symlink_inode_operations = {
4672 .readlink = generic_readlink,
4673 .get_link = page_get_link,
4674 };
4675 EXPORT_SYMBOL(page_symlink_inode_operations);