]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/namei.c
don't pass nameidata to ->create()
[mirror_ubuntu-zesty-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 static char *getname_flags(const char __user *filename, int flags, int *empty)
121 {
122 char *result = __getname(), *err;
123 int len;
124
125 if (unlikely(!result))
126 return ERR_PTR(-ENOMEM);
127
128 len = strncpy_from_user(result, filename, PATH_MAX);
129 err = ERR_PTR(len);
130 if (unlikely(len < 0))
131 goto error;
132
133 /* The empty path is special. */
134 if (unlikely(!len)) {
135 if (empty)
136 *empty = 1;
137 err = ERR_PTR(-ENOENT);
138 if (!(flags & LOOKUP_EMPTY))
139 goto error;
140 }
141
142 err = ERR_PTR(-ENAMETOOLONG);
143 if (likely(len < PATH_MAX)) {
144 audit_getname(result);
145 return result;
146 }
147
148 error:
149 __putname(result);
150 return err;
151 }
152
153 char *getname(const char __user * filename)
154 {
155 return getname_flags(filename, 0, NULL);
156 }
157
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168
169 static int check_acl(struct inode *inode, int mask)
170 {
171 #ifdef CONFIG_FS_POSIX_ACL
172 struct posix_acl *acl;
173
174 if (mask & MAY_NOT_BLOCK) {
175 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
176 if (!acl)
177 return -EAGAIN;
178 /* no ->get_acl() calls in RCU mode... */
179 if (acl == ACL_NOT_CACHED)
180 return -ECHILD;
181 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
182 }
183
184 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
185
186 /*
187 * A filesystem can force a ACL callback by just never filling the
188 * ACL cache. But normally you'd fill the cache either at inode
189 * instantiation time, or on the first ->get_acl call.
190 *
191 * If the filesystem doesn't have a get_acl() function at all, we'll
192 * just create the negative cache entry.
193 */
194 if (acl == ACL_NOT_CACHED) {
195 if (inode->i_op->get_acl) {
196 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
197 if (IS_ERR(acl))
198 return PTR_ERR(acl);
199 } else {
200 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
201 return -EAGAIN;
202 }
203 }
204
205 if (acl) {
206 int error = posix_acl_permission(inode, acl, mask);
207 posix_acl_release(acl);
208 return error;
209 }
210 #endif
211
212 return -EAGAIN;
213 }
214
215 /*
216 * This does the basic permission checking
217 */
218 static int acl_permission_check(struct inode *inode, int mask)
219 {
220 unsigned int mode = inode->i_mode;
221
222 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
223 mode >>= 6;
224 else {
225 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
226 int error = check_acl(inode, mask);
227 if (error != -EAGAIN)
228 return error;
229 }
230
231 if (in_group_p(inode->i_gid))
232 mode >>= 3;
233 }
234
235 /*
236 * If the DACs are ok we don't need any capability check.
237 */
238 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
239 return 0;
240 return -EACCES;
241 }
242
243 /**
244 * generic_permission - check for access rights on a Posix-like filesystem
245 * @inode: inode to check access rights for
246 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
247 *
248 * Used to check for read/write/execute permissions on a file.
249 * We use "fsuid" for this, letting us set arbitrary permissions
250 * for filesystem access without changing the "normal" uids which
251 * are used for other things.
252 *
253 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
254 * request cannot be satisfied (eg. requires blocking or too much complexity).
255 * It would then be called again in ref-walk mode.
256 */
257 int generic_permission(struct inode *inode, int mask)
258 {
259 int ret;
260
261 /*
262 * Do the basic permission checks.
263 */
264 ret = acl_permission_check(inode, mask);
265 if (ret != -EACCES)
266 return ret;
267
268 if (S_ISDIR(inode->i_mode)) {
269 /* DACs are overridable for directories */
270 if (inode_capable(inode, CAP_DAC_OVERRIDE))
271 return 0;
272 if (!(mask & MAY_WRITE))
273 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
274 return 0;
275 return -EACCES;
276 }
277 /*
278 * Read/write DACs are always overridable.
279 * Executable DACs are overridable when there is
280 * at least one exec bit set.
281 */
282 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
283 if (inode_capable(inode, CAP_DAC_OVERRIDE))
284 return 0;
285
286 /*
287 * Searching includes executable on directories, else just read.
288 */
289 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
290 if (mask == MAY_READ)
291 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
292 return 0;
293
294 return -EACCES;
295 }
296
297 /*
298 * We _really_ want to just do "generic_permission()" without
299 * even looking at the inode->i_op values. So we keep a cache
300 * flag in inode->i_opflags, that says "this has not special
301 * permission function, use the fast case".
302 */
303 static inline int do_inode_permission(struct inode *inode, int mask)
304 {
305 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
306 if (likely(inode->i_op->permission))
307 return inode->i_op->permission(inode, mask);
308
309 /* This gets set once for the inode lifetime */
310 spin_lock(&inode->i_lock);
311 inode->i_opflags |= IOP_FASTPERM;
312 spin_unlock(&inode->i_lock);
313 }
314 return generic_permission(inode, mask);
315 }
316
317 /**
318 * inode_permission - check for access rights to a given inode
319 * @inode: inode to check permission on
320 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
321 *
322 * Used to check for read/write/execute permissions on an inode.
323 * We use "fsuid" for this, letting us set arbitrary permissions
324 * for filesystem access without changing the "normal" uids which
325 * are used for other things.
326 *
327 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
328 */
329 int inode_permission(struct inode *inode, int mask)
330 {
331 int retval;
332
333 if (unlikely(mask & MAY_WRITE)) {
334 umode_t mode = inode->i_mode;
335
336 /*
337 * Nobody gets write access to a read-only fs.
338 */
339 if (IS_RDONLY(inode) &&
340 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
341 return -EROFS;
342
343 /*
344 * Nobody gets write access to an immutable file.
345 */
346 if (IS_IMMUTABLE(inode))
347 return -EACCES;
348 }
349
350 retval = do_inode_permission(inode, mask);
351 if (retval)
352 return retval;
353
354 retval = devcgroup_inode_permission(inode, mask);
355 if (retval)
356 return retval;
357
358 return security_inode_permission(inode, mask);
359 }
360
361 /**
362 * path_get - get a reference to a path
363 * @path: path to get the reference to
364 *
365 * Given a path increment the reference count to the dentry and the vfsmount.
366 */
367 void path_get(struct path *path)
368 {
369 mntget(path->mnt);
370 dget(path->dentry);
371 }
372 EXPORT_SYMBOL(path_get);
373
374 /**
375 * path_put - put a reference to a path
376 * @path: path to put the reference to
377 *
378 * Given a path decrement the reference count to the dentry and the vfsmount.
379 */
380 void path_put(struct path *path)
381 {
382 dput(path->dentry);
383 mntput(path->mnt);
384 }
385 EXPORT_SYMBOL(path_put);
386
387 /*
388 * Path walking has 2 modes, rcu-walk and ref-walk (see
389 * Documentation/filesystems/path-lookup.txt). In situations when we can't
390 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
391 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
392 * mode. Refcounts are grabbed at the last known good point before rcu-walk
393 * got stuck, so ref-walk may continue from there. If this is not successful
394 * (eg. a seqcount has changed), then failure is returned and it's up to caller
395 * to restart the path walk from the beginning in ref-walk mode.
396 */
397
398 /**
399 * unlazy_walk - try to switch to ref-walk mode.
400 * @nd: nameidata pathwalk data
401 * @dentry: child of nd->path.dentry or NULL
402 * Returns: 0 on success, -ECHILD on failure
403 *
404 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
405 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
406 * @nd or NULL. Must be called from rcu-walk context.
407 */
408 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
409 {
410 struct fs_struct *fs = current->fs;
411 struct dentry *parent = nd->path.dentry;
412 int want_root = 0;
413
414 BUG_ON(!(nd->flags & LOOKUP_RCU));
415 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
416 want_root = 1;
417 spin_lock(&fs->lock);
418 if (nd->root.mnt != fs->root.mnt ||
419 nd->root.dentry != fs->root.dentry)
420 goto err_root;
421 }
422 spin_lock(&parent->d_lock);
423 if (!dentry) {
424 if (!__d_rcu_to_refcount(parent, nd->seq))
425 goto err_parent;
426 BUG_ON(nd->inode != parent->d_inode);
427 } else {
428 if (dentry->d_parent != parent)
429 goto err_parent;
430 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
431 if (!__d_rcu_to_refcount(dentry, nd->seq))
432 goto err_child;
433 /*
434 * If the sequence check on the child dentry passed, then
435 * the child has not been removed from its parent. This
436 * means the parent dentry must be valid and able to take
437 * a reference at this point.
438 */
439 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
440 BUG_ON(!parent->d_count);
441 parent->d_count++;
442 spin_unlock(&dentry->d_lock);
443 }
444 spin_unlock(&parent->d_lock);
445 if (want_root) {
446 path_get(&nd->root);
447 spin_unlock(&fs->lock);
448 }
449 mntget(nd->path.mnt);
450
451 rcu_read_unlock();
452 br_read_unlock(&vfsmount_lock);
453 nd->flags &= ~LOOKUP_RCU;
454 return 0;
455
456 err_child:
457 spin_unlock(&dentry->d_lock);
458 err_parent:
459 spin_unlock(&parent->d_lock);
460 err_root:
461 if (want_root)
462 spin_unlock(&fs->lock);
463 return -ECHILD;
464 }
465
466 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
467 {
468 return dentry->d_op->d_revalidate(dentry, flags);
469 }
470
471 /**
472 * complete_walk - successful completion of path walk
473 * @nd: pointer nameidata
474 *
475 * If we had been in RCU mode, drop out of it and legitimize nd->path.
476 * Revalidate the final result, unless we'd already done that during
477 * the path walk or the filesystem doesn't ask for it. Return 0 on
478 * success, -error on failure. In case of failure caller does not
479 * need to drop nd->path.
480 */
481 static int complete_walk(struct nameidata *nd)
482 {
483 struct dentry *dentry = nd->path.dentry;
484 int status;
485
486 if (nd->flags & LOOKUP_RCU) {
487 nd->flags &= ~LOOKUP_RCU;
488 if (!(nd->flags & LOOKUP_ROOT))
489 nd->root.mnt = NULL;
490 spin_lock(&dentry->d_lock);
491 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
492 spin_unlock(&dentry->d_lock);
493 rcu_read_unlock();
494 br_read_unlock(&vfsmount_lock);
495 return -ECHILD;
496 }
497 BUG_ON(nd->inode != dentry->d_inode);
498 spin_unlock(&dentry->d_lock);
499 mntget(nd->path.mnt);
500 rcu_read_unlock();
501 br_read_unlock(&vfsmount_lock);
502 }
503
504 if (likely(!(nd->flags & LOOKUP_JUMPED)))
505 return 0;
506
507 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
508 return 0;
509
510 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
511 return 0;
512
513 /* Note: we do not d_invalidate() */
514 status = d_revalidate(dentry, nd->flags);
515 if (status > 0)
516 return 0;
517
518 if (!status)
519 status = -ESTALE;
520
521 path_put(&nd->path);
522 return status;
523 }
524
525 static __always_inline void set_root(struct nameidata *nd)
526 {
527 if (!nd->root.mnt)
528 get_fs_root(current->fs, &nd->root);
529 }
530
531 static int link_path_walk(const char *, struct nameidata *);
532
533 static __always_inline void set_root_rcu(struct nameidata *nd)
534 {
535 if (!nd->root.mnt) {
536 struct fs_struct *fs = current->fs;
537 unsigned seq;
538
539 do {
540 seq = read_seqcount_begin(&fs->seq);
541 nd->root = fs->root;
542 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
543 } while (read_seqcount_retry(&fs->seq, seq));
544 }
545 }
546
547 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
548 {
549 int ret;
550
551 if (IS_ERR(link))
552 goto fail;
553
554 if (*link == '/') {
555 set_root(nd);
556 path_put(&nd->path);
557 nd->path = nd->root;
558 path_get(&nd->root);
559 nd->flags |= LOOKUP_JUMPED;
560 }
561 nd->inode = nd->path.dentry->d_inode;
562
563 ret = link_path_walk(link, nd);
564 return ret;
565 fail:
566 path_put(&nd->path);
567 return PTR_ERR(link);
568 }
569
570 static void path_put_conditional(struct path *path, struct nameidata *nd)
571 {
572 dput(path->dentry);
573 if (path->mnt != nd->path.mnt)
574 mntput(path->mnt);
575 }
576
577 static inline void path_to_nameidata(const struct path *path,
578 struct nameidata *nd)
579 {
580 if (!(nd->flags & LOOKUP_RCU)) {
581 dput(nd->path.dentry);
582 if (nd->path.mnt != path->mnt)
583 mntput(nd->path.mnt);
584 }
585 nd->path.mnt = path->mnt;
586 nd->path.dentry = path->dentry;
587 }
588
589 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
590 {
591 struct inode *inode = link->dentry->d_inode;
592 if (inode->i_op->put_link)
593 inode->i_op->put_link(link->dentry, nd, cookie);
594 path_put(link);
595 }
596
597 static __always_inline int
598 follow_link(struct path *link, struct nameidata *nd, void **p)
599 {
600 struct dentry *dentry = link->dentry;
601 int error;
602 char *s;
603
604 BUG_ON(nd->flags & LOOKUP_RCU);
605
606 if (link->mnt == nd->path.mnt)
607 mntget(link->mnt);
608
609 error = -ELOOP;
610 if (unlikely(current->total_link_count >= 40))
611 goto out_put_nd_path;
612
613 cond_resched();
614 current->total_link_count++;
615
616 touch_atime(link);
617 nd_set_link(nd, NULL);
618
619 error = security_inode_follow_link(link->dentry, nd);
620 if (error)
621 goto out_put_nd_path;
622
623 nd->last_type = LAST_BIND;
624 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
625 error = PTR_ERR(*p);
626 if (IS_ERR(*p))
627 goto out_put_link;
628
629 error = 0;
630 s = nd_get_link(nd);
631 if (s) {
632 error = __vfs_follow_link(nd, s);
633 } else if (nd->last_type == LAST_BIND) {
634 nd->flags |= LOOKUP_JUMPED;
635 nd->inode = nd->path.dentry->d_inode;
636 if (nd->inode->i_op->follow_link) {
637 /* stepped on a _really_ weird one */
638 path_put(&nd->path);
639 error = -ELOOP;
640 }
641 }
642 if (unlikely(error))
643 put_link(nd, link, *p);
644
645 return error;
646
647 out_put_nd_path:
648 path_put(&nd->path);
649 out_put_link:
650 path_put(link);
651 return error;
652 }
653
654 static int follow_up_rcu(struct path *path)
655 {
656 struct mount *mnt = real_mount(path->mnt);
657 struct mount *parent;
658 struct dentry *mountpoint;
659
660 parent = mnt->mnt_parent;
661 if (&parent->mnt == path->mnt)
662 return 0;
663 mountpoint = mnt->mnt_mountpoint;
664 path->dentry = mountpoint;
665 path->mnt = &parent->mnt;
666 return 1;
667 }
668
669 int follow_up(struct path *path)
670 {
671 struct mount *mnt = real_mount(path->mnt);
672 struct mount *parent;
673 struct dentry *mountpoint;
674
675 br_read_lock(&vfsmount_lock);
676 parent = mnt->mnt_parent;
677 if (&parent->mnt == path->mnt) {
678 br_read_unlock(&vfsmount_lock);
679 return 0;
680 }
681 mntget(&parent->mnt);
682 mountpoint = dget(mnt->mnt_mountpoint);
683 br_read_unlock(&vfsmount_lock);
684 dput(path->dentry);
685 path->dentry = mountpoint;
686 mntput(path->mnt);
687 path->mnt = &parent->mnt;
688 return 1;
689 }
690
691 /*
692 * Perform an automount
693 * - return -EISDIR to tell follow_managed() to stop and return the path we
694 * were called with.
695 */
696 static int follow_automount(struct path *path, unsigned flags,
697 bool *need_mntput)
698 {
699 struct vfsmount *mnt;
700 int err;
701
702 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
703 return -EREMOTE;
704
705 /* We don't want to mount if someone's just doing a stat -
706 * unless they're stat'ing a directory and appended a '/' to
707 * the name.
708 *
709 * We do, however, want to mount if someone wants to open or
710 * create a file of any type under the mountpoint, wants to
711 * traverse through the mountpoint or wants to open the
712 * mounted directory. Also, autofs may mark negative dentries
713 * as being automount points. These will need the attentions
714 * of the daemon to instantiate them before they can be used.
715 */
716 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
717 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
718 path->dentry->d_inode)
719 return -EISDIR;
720
721 current->total_link_count++;
722 if (current->total_link_count >= 40)
723 return -ELOOP;
724
725 mnt = path->dentry->d_op->d_automount(path);
726 if (IS_ERR(mnt)) {
727 /*
728 * The filesystem is allowed to return -EISDIR here to indicate
729 * it doesn't want to automount. For instance, autofs would do
730 * this so that its userspace daemon can mount on this dentry.
731 *
732 * However, we can only permit this if it's a terminal point in
733 * the path being looked up; if it wasn't then the remainder of
734 * the path is inaccessible and we should say so.
735 */
736 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
737 return -EREMOTE;
738 return PTR_ERR(mnt);
739 }
740
741 if (!mnt) /* mount collision */
742 return 0;
743
744 if (!*need_mntput) {
745 /* lock_mount() may release path->mnt on error */
746 mntget(path->mnt);
747 *need_mntput = true;
748 }
749 err = finish_automount(mnt, path);
750
751 switch (err) {
752 case -EBUSY:
753 /* Someone else made a mount here whilst we were busy */
754 return 0;
755 case 0:
756 path_put(path);
757 path->mnt = mnt;
758 path->dentry = dget(mnt->mnt_root);
759 return 0;
760 default:
761 return err;
762 }
763
764 }
765
766 /*
767 * Handle a dentry that is managed in some way.
768 * - Flagged for transit management (autofs)
769 * - Flagged as mountpoint
770 * - Flagged as automount point
771 *
772 * This may only be called in refwalk mode.
773 *
774 * Serialization is taken care of in namespace.c
775 */
776 static int follow_managed(struct path *path, unsigned flags)
777 {
778 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
779 unsigned managed;
780 bool need_mntput = false;
781 int ret = 0;
782
783 /* Given that we're not holding a lock here, we retain the value in a
784 * local variable for each dentry as we look at it so that we don't see
785 * the components of that value change under us */
786 while (managed = ACCESS_ONCE(path->dentry->d_flags),
787 managed &= DCACHE_MANAGED_DENTRY,
788 unlikely(managed != 0)) {
789 /* Allow the filesystem to manage the transit without i_mutex
790 * being held. */
791 if (managed & DCACHE_MANAGE_TRANSIT) {
792 BUG_ON(!path->dentry->d_op);
793 BUG_ON(!path->dentry->d_op->d_manage);
794 ret = path->dentry->d_op->d_manage(path->dentry, false);
795 if (ret < 0)
796 break;
797 }
798
799 /* Transit to a mounted filesystem. */
800 if (managed & DCACHE_MOUNTED) {
801 struct vfsmount *mounted = lookup_mnt(path);
802 if (mounted) {
803 dput(path->dentry);
804 if (need_mntput)
805 mntput(path->mnt);
806 path->mnt = mounted;
807 path->dentry = dget(mounted->mnt_root);
808 need_mntput = true;
809 continue;
810 }
811
812 /* Something is mounted on this dentry in another
813 * namespace and/or whatever was mounted there in this
814 * namespace got unmounted before we managed to get the
815 * vfsmount_lock */
816 }
817
818 /* Handle an automount point */
819 if (managed & DCACHE_NEED_AUTOMOUNT) {
820 ret = follow_automount(path, flags, &need_mntput);
821 if (ret < 0)
822 break;
823 continue;
824 }
825
826 /* We didn't change the current path point */
827 break;
828 }
829
830 if (need_mntput && path->mnt == mnt)
831 mntput(path->mnt);
832 if (ret == -EISDIR)
833 ret = 0;
834 return ret < 0 ? ret : need_mntput;
835 }
836
837 int follow_down_one(struct path *path)
838 {
839 struct vfsmount *mounted;
840
841 mounted = lookup_mnt(path);
842 if (mounted) {
843 dput(path->dentry);
844 mntput(path->mnt);
845 path->mnt = mounted;
846 path->dentry = dget(mounted->mnt_root);
847 return 1;
848 }
849 return 0;
850 }
851
852 static inline bool managed_dentry_might_block(struct dentry *dentry)
853 {
854 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
855 dentry->d_op->d_manage(dentry, true) < 0);
856 }
857
858 /*
859 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
860 * we meet a managed dentry that would need blocking.
861 */
862 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
863 struct inode **inode)
864 {
865 for (;;) {
866 struct mount *mounted;
867 /*
868 * Don't forget we might have a non-mountpoint managed dentry
869 * that wants to block transit.
870 */
871 if (unlikely(managed_dentry_might_block(path->dentry)))
872 return false;
873
874 if (!d_mountpoint(path->dentry))
875 break;
876
877 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
878 if (!mounted)
879 break;
880 path->mnt = &mounted->mnt;
881 path->dentry = mounted->mnt.mnt_root;
882 nd->flags |= LOOKUP_JUMPED;
883 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
884 /*
885 * Update the inode too. We don't need to re-check the
886 * dentry sequence number here after this d_inode read,
887 * because a mount-point is always pinned.
888 */
889 *inode = path->dentry->d_inode;
890 }
891 return true;
892 }
893
894 static void follow_mount_rcu(struct nameidata *nd)
895 {
896 while (d_mountpoint(nd->path.dentry)) {
897 struct mount *mounted;
898 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
899 if (!mounted)
900 break;
901 nd->path.mnt = &mounted->mnt;
902 nd->path.dentry = mounted->mnt.mnt_root;
903 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
904 }
905 }
906
907 static int follow_dotdot_rcu(struct nameidata *nd)
908 {
909 set_root_rcu(nd);
910
911 while (1) {
912 if (nd->path.dentry == nd->root.dentry &&
913 nd->path.mnt == nd->root.mnt) {
914 break;
915 }
916 if (nd->path.dentry != nd->path.mnt->mnt_root) {
917 struct dentry *old = nd->path.dentry;
918 struct dentry *parent = old->d_parent;
919 unsigned seq;
920
921 seq = read_seqcount_begin(&parent->d_seq);
922 if (read_seqcount_retry(&old->d_seq, nd->seq))
923 goto failed;
924 nd->path.dentry = parent;
925 nd->seq = seq;
926 break;
927 }
928 if (!follow_up_rcu(&nd->path))
929 break;
930 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
931 }
932 follow_mount_rcu(nd);
933 nd->inode = nd->path.dentry->d_inode;
934 return 0;
935
936 failed:
937 nd->flags &= ~LOOKUP_RCU;
938 if (!(nd->flags & LOOKUP_ROOT))
939 nd->root.mnt = NULL;
940 rcu_read_unlock();
941 br_read_unlock(&vfsmount_lock);
942 return -ECHILD;
943 }
944
945 /*
946 * Follow down to the covering mount currently visible to userspace. At each
947 * point, the filesystem owning that dentry may be queried as to whether the
948 * caller is permitted to proceed or not.
949 */
950 int follow_down(struct path *path)
951 {
952 unsigned managed;
953 int ret;
954
955 while (managed = ACCESS_ONCE(path->dentry->d_flags),
956 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
957 /* Allow the filesystem to manage the transit without i_mutex
958 * being held.
959 *
960 * We indicate to the filesystem if someone is trying to mount
961 * something here. This gives autofs the chance to deny anyone
962 * other than its daemon the right to mount on its
963 * superstructure.
964 *
965 * The filesystem may sleep at this point.
966 */
967 if (managed & DCACHE_MANAGE_TRANSIT) {
968 BUG_ON(!path->dentry->d_op);
969 BUG_ON(!path->dentry->d_op->d_manage);
970 ret = path->dentry->d_op->d_manage(
971 path->dentry, false);
972 if (ret < 0)
973 return ret == -EISDIR ? 0 : ret;
974 }
975
976 /* Transit to a mounted filesystem. */
977 if (managed & DCACHE_MOUNTED) {
978 struct vfsmount *mounted = lookup_mnt(path);
979 if (!mounted)
980 break;
981 dput(path->dentry);
982 mntput(path->mnt);
983 path->mnt = mounted;
984 path->dentry = dget(mounted->mnt_root);
985 continue;
986 }
987
988 /* Don't handle automount points here */
989 break;
990 }
991 return 0;
992 }
993
994 /*
995 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
996 */
997 static void follow_mount(struct path *path)
998 {
999 while (d_mountpoint(path->dentry)) {
1000 struct vfsmount *mounted = lookup_mnt(path);
1001 if (!mounted)
1002 break;
1003 dput(path->dentry);
1004 mntput(path->mnt);
1005 path->mnt = mounted;
1006 path->dentry = dget(mounted->mnt_root);
1007 }
1008 }
1009
1010 static void follow_dotdot(struct nameidata *nd)
1011 {
1012 set_root(nd);
1013
1014 while(1) {
1015 struct dentry *old = nd->path.dentry;
1016
1017 if (nd->path.dentry == nd->root.dentry &&
1018 nd->path.mnt == nd->root.mnt) {
1019 break;
1020 }
1021 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1022 /* rare case of legitimate dget_parent()... */
1023 nd->path.dentry = dget_parent(nd->path.dentry);
1024 dput(old);
1025 break;
1026 }
1027 if (!follow_up(&nd->path))
1028 break;
1029 }
1030 follow_mount(&nd->path);
1031 nd->inode = nd->path.dentry->d_inode;
1032 }
1033
1034 /*
1035 * This looks up the name in dcache, possibly revalidates the old dentry and
1036 * allocates a new one if not found or not valid. In the need_lookup argument
1037 * returns whether i_op->lookup is necessary.
1038 *
1039 * dir->d_inode->i_mutex must be held
1040 */
1041 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1042 unsigned int flags, bool *need_lookup)
1043 {
1044 struct dentry *dentry;
1045 int error;
1046
1047 *need_lookup = false;
1048 dentry = d_lookup(dir, name);
1049 if (dentry) {
1050 if (d_need_lookup(dentry)) {
1051 *need_lookup = true;
1052 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1053 error = d_revalidate(dentry, flags);
1054 if (unlikely(error <= 0)) {
1055 if (error < 0) {
1056 dput(dentry);
1057 return ERR_PTR(error);
1058 } else if (!d_invalidate(dentry)) {
1059 dput(dentry);
1060 dentry = NULL;
1061 }
1062 }
1063 }
1064 }
1065
1066 if (!dentry) {
1067 dentry = d_alloc(dir, name);
1068 if (unlikely(!dentry))
1069 return ERR_PTR(-ENOMEM);
1070
1071 *need_lookup = true;
1072 }
1073 return dentry;
1074 }
1075
1076 /*
1077 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1078 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1079 *
1080 * dir->d_inode->i_mutex must be held
1081 */
1082 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1083 unsigned int flags)
1084 {
1085 struct dentry *old;
1086
1087 /* Don't create child dentry for a dead directory. */
1088 if (unlikely(IS_DEADDIR(dir))) {
1089 dput(dentry);
1090 return ERR_PTR(-ENOENT);
1091 }
1092
1093 old = dir->i_op->lookup(dir, dentry, flags);
1094 if (unlikely(old)) {
1095 dput(dentry);
1096 dentry = old;
1097 }
1098 return dentry;
1099 }
1100
1101 static struct dentry *__lookup_hash(struct qstr *name,
1102 struct dentry *base, unsigned int flags)
1103 {
1104 bool need_lookup;
1105 struct dentry *dentry;
1106
1107 dentry = lookup_dcache(name, base, flags, &need_lookup);
1108 if (!need_lookup)
1109 return dentry;
1110
1111 return lookup_real(base->d_inode, dentry, flags);
1112 }
1113
1114 /*
1115 * It's more convoluted than I'd like it to be, but... it's still fairly
1116 * small and for now I'd prefer to have fast path as straight as possible.
1117 * It _is_ time-critical.
1118 */
1119 static int lookup_fast(struct nameidata *nd, struct qstr *name,
1120 struct path *path, struct inode **inode)
1121 {
1122 struct vfsmount *mnt = nd->path.mnt;
1123 struct dentry *dentry, *parent = nd->path.dentry;
1124 int need_reval = 1;
1125 int status = 1;
1126 int err;
1127
1128 /*
1129 * Rename seqlock is not required here because in the off chance
1130 * of a false negative due to a concurrent rename, we're going to
1131 * do the non-racy lookup, below.
1132 */
1133 if (nd->flags & LOOKUP_RCU) {
1134 unsigned seq;
1135 dentry = __d_lookup_rcu(parent, name, &seq, nd->inode);
1136 if (!dentry)
1137 goto unlazy;
1138
1139 /*
1140 * This sequence count validates that the inode matches
1141 * the dentry name information from lookup.
1142 */
1143 *inode = dentry->d_inode;
1144 if (read_seqcount_retry(&dentry->d_seq, seq))
1145 return -ECHILD;
1146
1147 /*
1148 * This sequence count validates that the parent had no
1149 * changes while we did the lookup of the dentry above.
1150 *
1151 * The memory barrier in read_seqcount_begin of child is
1152 * enough, we can use __read_seqcount_retry here.
1153 */
1154 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1155 return -ECHILD;
1156 nd->seq = seq;
1157
1158 if (unlikely(d_need_lookup(dentry)))
1159 goto unlazy;
1160 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1161 status = d_revalidate(dentry, nd->flags);
1162 if (unlikely(status <= 0)) {
1163 if (status != -ECHILD)
1164 need_reval = 0;
1165 goto unlazy;
1166 }
1167 }
1168 path->mnt = mnt;
1169 path->dentry = dentry;
1170 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1171 goto unlazy;
1172 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1173 goto unlazy;
1174 return 0;
1175 unlazy:
1176 if (unlazy_walk(nd, dentry))
1177 return -ECHILD;
1178 } else {
1179 dentry = __d_lookup(parent, name);
1180 }
1181
1182 if (unlikely(!dentry))
1183 goto need_lookup;
1184
1185 if (unlikely(d_need_lookup(dentry))) {
1186 dput(dentry);
1187 goto need_lookup;
1188 }
1189
1190 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1191 status = d_revalidate(dentry, nd->flags);
1192 if (unlikely(status <= 0)) {
1193 if (status < 0) {
1194 dput(dentry);
1195 return status;
1196 }
1197 if (!d_invalidate(dentry)) {
1198 dput(dentry);
1199 goto need_lookup;
1200 }
1201 }
1202
1203 path->mnt = mnt;
1204 path->dentry = dentry;
1205 err = follow_managed(path, nd->flags);
1206 if (unlikely(err < 0)) {
1207 path_put_conditional(path, nd);
1208 return err;
1209 }
1210 if (err)
1211 nd->flags |= LOOKUP_JUMPED;
1212 *inode = path->dentry->d_inode;
1213 return 0;
1214
1215 need_lookup:
1216 return 1;
1217 }
1218
1219 /* Fast lookup failed, do it the slow way */
1220 static int lookup_slow(struct nameidata *nd, struct qstr *name,
1221 struct path *path)
1222 {
1223 struct dentry *dentry, *parent;
1224 int err;
1225
1226 parent = nd->path.dentry;
1227 BUG_ON(nd->inode != parent->d_inode);
1228
1229 mutex_lock(&parent->d_inode->i_mutex);
1230 dentry = __lookup_hash(name, parent, nd->flags);
1231 mutex_unlock(&parent->d_inode->i_mutex);
1232 if (IS_ERR(dentry))
1233 return PTR_ERR(dentry);
1234 path->mnt = nd->path.mnt;
1235 path->dentry = dentry;
1236 err = follow_managed(path, nd->flags);
1237 if (unlikely(err < 0)) {
1238 path_put_conditional(path, nd);
1239 return err;
1240 }
1241 if (err)
1242 nd->flags |= LOOKUP_JUMPED;
1243 return 0;
1244 }
1245
1246 static inline int may_lookup(struct nameidata *nd)
1247 {
1248 if (nd->flags & LOOKUP_RCU) {
1249 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1250 if (err != -ECHILD)
1251 return err;
1252 if (unlazy_walk(nd, NULL))
1253 return -ECHILD;
1254 }
1255 return inode_permission(nd->inode, MAY_EXEC);
1256 }
1257
1258 static inline int handle_dots(struct nameidata *nd, int type)
1259 {
1260 if (type == LAST_DOTDOT) {
1261 if (nd->flags & LOOKUP_RCU) {
1262 if (follow_dotdot_rcu(nd))
1263 return -ECHILD;
1264 } else
1265 follow_dotdot(nd);
1266 }
1267 return 0;
1268 }
1269
1270 static void terminate_walk(struct nameidata *nd)
1271 {
1272 if (!(nd->flags & LOOKUP_RCU)) {
1273 path_put(&nd->path);
1274 } else {
1275 nd->flags &= ~LOOKUP_RCU;
1276 if (!(nd->flags & LOOKUP_ROOT))
1277 nd->root.mnt = NULL;
1278 rcu_read_unlock();
1279 br_read_unlock(&vfsmount_lock);
1280 }
1281 }
1282
1283 /*
1284 * Do we need to follow links? We _really_ want to be able
1285 * to do this check without having to look at inode->i_op,
1286 * so we keep a cache of "no, this doesn't need follow_link"
1287 * for the common case.
1288 */
1289 static inline int should_follow_link(struct inode *inode, int follow)
1290 {
1291 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1292 if (likely(inode->i_op->follow_link))
1293 return follow;
1294
1295 /* This gets set once for the inode lifetime */
1296 spin_lock(&inode->i_lock);
1297 inode->i_opflags |= IOP_NOFOLLOW;
1298 spin_unlock(&inode->i_lock);
1299 }
1300 return 0;
1301 }
1302
1303 static inline int walk_component(struct nameidata *nd, struct path *path,
1304 struct qstr *name, int type, int follow)
1305 {
1306 struct inode *inode;
1307 int err;
1308 /*
1309 * "." and ".." are special - ".." especially so because it has
1310 * to be able to know about the current root directory and
1311 * parent relationships.
1312 */
1313 if (unlikely(type != LAST_NORM))
1314 return handle_dots(nd, type);
1315 err = lookup_fast(nd, name, path, &inode);
1316 if (unlikely(err)) {
1317 if (err < 0)
1318 goto out_err;
1319
1320 err = lookup_slow(nd, name, path);
1321 if (err < 0)
1322 goto out_err;
1323
1324 inode = path->dentry->d_inode;
1325 }
1326 err = -ENOENT;
1327 if (!inode)
1328 goto out_path_put;
1329
1330 if (should_follow_link(inode, follow)) {
1331 if (nd->flags & LOOKUP_RCU) {
1332 if (unlikely(unlazy_walk(nd, path->dentry))) {
1333 err = -ECHILD;
1334 goto out_err;
1335 }
1336 }
1337 BUG_ON(inode != path->dentry->d_inode);
1338 return 1;
1339 }
1340 path_to_nameidata(path, nd);
1341 nd->inode = inode;
1342 return 0;
1343
1344 out_path_put:
1345 path_to_nameidata(path, nd);
1346 out_err:
1347 terminate_walk(nd);
1348 return err;
1349 }
1350
1351 /*
1352 * This limits recursive symlink follows to 8, while
1353 * limiting consecutive symlinks to 40.
1354 *
1355 * Without that kind of total limit, nasty chains of consecutive
1356 * symlinks can cause almost arbitrarily long lookups.
1357 */
1358 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1359 {
1360 int res;
1361
1362 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1363 path_put_conditional(path, nd);
1364 path_put(&nd->path);
1365 return -ELOOP;
1366 }
1367 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1368
1369 nd->depth++;
1370 current->link_count++;
1371
1372 do {
1373 struct path link = *path;
1374 void *cookie;
1375
1376 res = follow_link(&link, nd, &cookie);
1377 if (res)
1378 break;
1379 res = walk_component(nd, path, &nd->last,
1380 nd->last_type, LOOKUP_FOLLOW);
1381 put_link(nd, &link, cookie);
1382 } while (res > 0);
1383
1384 current->link_count--;
1385 nd->depth--;
1386 return res;
1387 }
1388
1389 /*
1390 * We really don't want to look at inode->i_op->lookup
1391 * when we don't have to. So we keep a cache bit in
1392 * the inode ->i_opflags field that says "yes, we can
1393 * do lookup on this inode".
1394 */
1395 static inline int can_lookup(struct inode *inode)
1396 {
1397 if (likely(inode->i_opflags & IOP_LOOKUP))
1398 return 1;
1399 if (likely(!inode->i_op->lookup))
1400 return 0;
1401
1402 /* We do this once for the lifetime of the inode */
1403 spin_lock(&inode->i_lock);
1404 inode->i_opflags |= IOP_LOOKUP;
1405 spin_unlock(&inode->i_lock);
1406 return 1;
1407 }
1408
1409 /*
1410 * We can do the critical dentry name comparison and hashing
1411 * operations one word at a time, but we are limited to:
1412 *
1413 * - Architectures with fast unaligned word accesses. We could
1414 * do a "get_unaligned()" if this helps and is sufficiently
1415 * fast.
1416 *
1417 * - Little-endian machines (so that we can generate the mask
1418 * of low bytes efficiently). Again, we *could* do a byte
1419 * swapping load on big-endian architectures if that is not
1420 * expensive enough to make the optimization worthless.
1421 *
1422 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1423 * do not trap on the (extremely unlikely) case of a page
1424 * crossing operation.
1425 *
1426 * - Furthermore, we need an efficient 64-bit compile for the
1427 * 64-bit case in order to generate the "number of bytes in
1428 * the final mask". Again, that could be replaced with a
1429 * efficient population count instruction or similar.
1430 */
1431 #ifdef CONFIG_DCACHE_WORD_ACCESS
1432
1433 #include <asm/word-at-a-time.h>
1434
1435 #ifdef CONFIG_64BIT
1436
1437 static inline unsigned int fold_hash(unsigned long hash)
1438 {
1439 hash += hash >> (8*sizeof(int));
1440 return hash;
1441 }
1442
1443 #else /* 32-bit case */
1444
1445 #define fold_hash(x) (x)
1446
1447 #endif
1448
1449 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1450 {
1451 unsigned long a, mask;
1452 unsigned long hash = 0;
1453
1454 for (;;) {
1455 a = load_unaligned_zeropad(name);
1456 if (len < sizeof(unsigned long))
1457 break;
1458 hash += a;
1459 hash *= 9;
1460 name += sizeof(unsigned long);
1461 len -= sizeof(unsigned long);
1462 if (!len)
1463 goto done;
1464 }
1465 mask = ~(~0ul << len*8);
1466 hash += mask & a;
1467 done:
1468 return fold_hash(hash);
1469 }
1470 EXPORT_SYMBOL(full_name_hash);
1471
1472 /*
1473 * Calculate the length and hash of the path component, and
1474 * return the length of the component;
1475 */
1476 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1477 {
1478 unsigned long a, b, adata, bdata, mask, hash, len;
1479 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1480
1481 hash = a = 0;
1482 len = -sizeof(unsigned long);
1483 do {
1484 hash = (hash + a) * 9;
1485 len += sizeof(unsigned long);
1486 a = load_unaligned_zeropad(name+len);
1487 b = a ^ REPEAT_BYTE('/');
1488 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1489
1490 adata = prep_zero_mask(a, adata, &constants);
1491 bdata = prep_zero_mask(b, bdata, &constants);
1492
1493 mask = create_zero_mask(adata | bdata);
1494
1495 hash += a & zero_bytemask(mask);
1496 *hashp = fold_hash(hash);
1497
1498 return len + find_zero(mask);
1499 }
1500
1501 #else
1502
1503 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1504 {
1505 unsigned long hash = init_name_hash();
1506 while (len--)
1507 hash = partial_name_hash(*name++, hash);
1508 return end_name_hash(hash);
1509 }
1510 EXPORT_SYMBOL(full_name_hash);
1511
1512 /*
1513 * We know there's a real path component here of at least
1514 * one character.
1515 */
1516 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1517 {
1518 unsigned long hash = init_name_hash();
1519 unsigned long len = 0, c;
1520
1521 c = (unsigned char)*name;
1522 do {
1523 len++;
1524 hash = partial_name_hash(c, hash);
1525 c = (unsigned char)name[len];
1526 } while (c && c != '/');
1527 *hashp = end_name_hash(hash);
1528 return len;
1529 }
1530
1531 #endif
1532
1533 /*
1534 * Name resolution.
1535 * This is the basic name resolution function, turning a pathname into
1536 * the final dentry. We expect 'base' to be positive and a directory.
1537 *
1538 * Returns 0 and nd will have valid dentry and mnt on success.
1539 * Returns error and drops reference to input namei data on failure.
1540 */
1541 static int link_path_walk(const char *name, struct nameidata *nd)
1542 {
1543 struct path next;
1544 int err;
1545
1546 while (*name=='/')
1547 name++;
1548 if (!*name)
1549 return 0;
1550
1551 /* At this point we know we have a real path component. */
1552 for(;;) {
1553 struct qstr this;
1554 long len;
1555 int type;
1556
1557 err = may_lookup(nd);
1558 if (err)
1559 break;
1560
1561 len = hash_name(name, &this.hash);
1562 this.name = name;
1563 this.len = len;
1564
1565 type = LAST_NORM;
1566 if (name[0] == '.') switch (len) {
1567 case 2:
1568 if (name[1] == '.') {
1569 type = LAST_DOTDOT;
1570 nd->flags |= LOOKUP_JUMPED;
1571 }
1572 break;
1573 case 1:
1574 type = LAST_DOT;
1575 }
1576 if (likely(type == LAST_NORM)) {
1577 struct dentry *parent = nd->path.dentry;
1578 nd->flags &= ~LOOKUP_JUMPED;
1579 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1580 err = parent->d_op->d_hash(parent, nd->inode,
1581 &this);
1582 if (err < 0)
1583 break;
1584 }
1585 }
1586
1587 if (!name[len])
1588 goto last_component;
1589 /*
1590 * If it wasn't NUL, we know it was '/'. Skip that
1591 * slash, and continue until no more slashes.
1592 */
1593 do {
1594 len++;
1595 } while (unlikely(name[len] == '/'));
1596 if (!name[len])
1597 goto last_component;
1598 name += len;
1599
1600 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1601 if (err < 0)
1602 return err;
1603
1604 if (err) {
1605 err = nested_symlink(&next, nd);
1606 if (err)
1607 return err;
1608 }
1609 if (can_lookup(nd->inode))
1610 continue;
1611 err = -ENOTDIR;
1612 break;
1613 /* here ends the main loop */
1614
1615 last_component:
1616 nd->last = this;
1617 nd->last_type = type;
1618 return 0;
1619 }
1620 terminate_walk(nd);
1621 return err;
1622 }
1623
1624 static int path_init(int dfd, const char *name, unsigned int flags,
1625 struct nameidata *nd, struct file **fp)
1626 {
1627 int retval = 0;
1628 int fput_needed;
1629 struct file *file;
1630
1631 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1632 nd->flags = flags | LOOKUP_JUMPED;
1633 nd->depth = 0;
1634 if (flags & LOOKUP_ROOT) {
1635 struct inode *inode = nd->root.dentry->d_inode;
1636 if (*name) {
1637 if (!inode->i_op->lookup)
1638 return -ENOTDIR;
1639 retval = inode_permission(inode, MAY_EXEC);
1640 if (retval)
1641 return retval;
1642 }
1643 nd->path = nd->root;
1644 nd->inode = inode;
1645 if (flags & LOOKUP_RCU) {
1646 br_read_lock(&vfsmount_lock);
1647 rcu_read_lock();
1648 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1649 } else {
1650 path_get(&nd->path);
1651 }
1652 return 0;
1653 }
1654
1655 nd->root.mnt = NULL;
1656
1657 if (*name=='/') {
1658 if (flags & LOOKUP_RCU) {
1659 br_read_lock(&vfsmount_lock);
1660 rcu_read_lock();
1661 set_root_rcu(nd);
1662 } else {
1663 set_root(nd);
1664 path_get(&nd->root);
1665 }
1666 nd->path = nd->root;
1667 } else if (dfd == AT_FDCWD) {
1668 if (flags & LOOKUP_RCU) {
1669 struct fs_struct *fs = current->fs;
1670 unsigned seq;
1671
1672 br_read_lock(&vfsmount_lock);
1673 rcu_read_lock();
1674
1675 do {
1676 seq = read_seqcount_begin(&fs->seq);
1677 nd->path = fs->pwd;
1678 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1679 } while (read_seqcount_retry(&fs->seq, seq));
1680 } else {
1681 get_fs_pwd(current->fs, &nd->path);
1682 }
1683 } else {
1684 struct dentry *dentry;
1685
1686 file = fget_raw_light(dfd, &fput_needed);
1687 retval = -EBADF;
1688 if (!file)
1689 goto out_fail;
1690
1691 dentry = file->f_path.dentry;
1692
1693 if (*name) {
1694 retval = -ENOTDIR;
1695 if (!S_ISDIR(dentry->d_inode->i_mode))
1696 goto fput_fail;
1697
1698 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1699 if (retval)
1700 goto fput_fail;
1701 }
1702
1703 nd->path = file->f_path;
1704 if (flags & LOOKUP_RCU) {
1705 if (fput_needed)
1706 *fp = file;
1707 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1708 br_read_lock(&vfsmount_lock);
1709 rcu_read_lock();
1710 } else {
1711 path_get(&file->f_path);
1712 fput_light(file, fput_needed);
1713 }
1714 }
1715
1716 nd->inode = nd->path.dentry->d_inode;
1717 return 0;
1718
1719 fput_fail:
1720 fput_light(file, fput_needed);
1721 out_fail:
1722 return retval;
1723 }
1724
1725 static inline int lookup_last(struct nameidata *nd, struct path *path)
1726 {
1727 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1728 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1729
1730 nd->flags &= ~LOOKUP_PARENT;
1731 return walk_component(nd, path, &nd->last, nd->last_type,
1732 nd->flags & LOOKUP_FOLLOW);
1733 }
1734
1735 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1736 static int path_lookupat(int dfd, const char *name,
1737 unsigned int flags, struct nameidata *nd)
1738 {
1739 struct file *base = NULL;
1740 struct path path;
1741 int err;
1742
1743 /*
1744 * Path walking is largely split up into 2 different synchronisation
1745 * schemes, rcu-walk and ref-walk (explained in
1746 * Documentation/filesystems/path-lookup.txt). These share much of the
1747 * path walk code, but some things particularly setup, cleanup, and
1748 * following mounts are sufficiently divergent that functions are
1749 * duplicated. Typically there is a function foo(), and its RCU
1750 * analogue, foo_rcu().
1751 *
1752 * -ECHILD is the error number of choice (just to avoid clashes) that
1753 * is returned if some aspect of an rcu-walk fails. Such an error must
1754 * be handled by restarting a traditional ref-walk (which will always
1755 * be able to complete).
1756 */
1757 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1758
1759 if (unlikely(err))
1760 return err;
1761
1762 current->total_link_count = 0;
1763 err = link_path_walk(name, nd);
1764
1765 if (!err && !(flags & LOOKUP_PARENT)) {
1766 err = lookup_last(nd, &path);
1767 while (err > 0) {
1768 void *cookie;
1769 struct path link = path;
1770 nd->flags |= LOOKUP_PARENT;
1771 err = follow_link(&link, nd, &cookie);
1772 if (err)
1773 break;
1774 err = lookup_last(nd, &path);
1775 put_link(nd, &link, cookie);
1776 }
1777 }
1778
1779 if (!err)
1780 err = complete_walk(nd);
1781
1782 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1783 if (!nd->inode->i_op->lookup) {
1784 path_put(&nd->path);
1785 err = -ENOTDIR;
1786 }
1787 }
1788
1789 if (base)
1790 fput(base);
1791
1792 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1793 path_put(&nd->root);
1794 nd->root.mnt = NULL;
1795 }
1796 return err;
1797 }
1798
1799 static int do_path_lookup(int dfd, const char *name,
1800 unsigned int flags, struct nameidata *nd)
1801 {
1802 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1803 if (unlikely(retval == -ECHILD))
1804 retval = path_lookupat(dfd, name, flags, nd);
1805 if (unlikely(retval == -ESTALE))
1806 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1807
1808 if (likely(!retval)) {
1809 if (unlikely(!audit_dummy_context())) {
1810 if (nd->path.dentry && nd->inode)
1811 audit_inode(name, nd->path.dentry);
1812 }
1813 }
1814 return retval;
1815 }
1816
1817 int kern_path_parent(const char *name, struct nameidata *nd)
1818 {
1819 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1820 }
1821
1822 int kern_path(const char *name, unsigned int flags, struct path *path)
1823 {
1824 struct nameidata nd;
1825 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1826 if (!res)
1827 *path = nd.path;
1828 return res;
1829 }
1830
1831 /**
1832 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1833 * @dentry: pointer to dentry of the base directory
1834 * @mnt: pointer to vfs mount of the base directory
1835 * @name: pointer to file name
1836 * @flags: lookup flags
1837 * @path: pointer to struct path to fill
1838 */
1839 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1840 const char *name, unsigned int flags,
1841 struct path *path)
1842 {
1843 struct nameidata nd;
1844 int err;
1845 nd.root.dentry = dentry;
1846 nd.root.mnt = mnt;
1847 BUG_ON(flags & LOOKUP_PARENT);
1848 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1849 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1850 if (!err)
1851 *path = nd.path;
1852 return err;
1853 }
1854
1855 /*
1856 * Restricted form of lookup. Doesn't follow links, single-component only,
1857 * needs parent already locked. Doesn't follow mounts.
1858 * SMP-safe.
1859 */
1860 static struct dentry *lookup_hash(struct nameidata *nd)
1861 {
1862 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
1863 }
1864
1865 /**
1866 * lookup_one_len - filesystem helper to lookup single pathname component
1867 * @name: pathname component to lookup
1868 * @base: base directory to lookup from
1869 * @len: maximum length @len should be interpreted to
1870 *
1871 * Note that this routine is purely a helper for filesystem usage and should
1872 * not be called by generic code. Also note that by using this function the
1873 * nameidata argument is passed to the filesystem methods and a filesystem
1874 * using this helper needs to be prepared for that.
1875 */
1876 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1877 {
1878 struct qstr this;
1879 unsigned int c;
1880 int err;
1881
1882 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1883
1884 this.name = name;
1885 this.len = len;
1886 this.hash = full_name_hash(name, len);
1887 if (!len)
1888 return ERR_PTR(-EACCES);
1889
1890 while (len--) {
1891 c = *(const unsigned char *)name++;
1892 if (c == '/' || c == '\0')
1893 return ERR_PTR(-EACCES);
1894 }
1895 /*
1896 * See if the low-level filesystem might want
1897 * to use its own hash..
1898 */
1899 if (base->d_flags & DCACHE_OP_HASH) {
1900 int err = base->d_op->d_hash(base, base->d_inode, &this);
1901 if (err < 0)
1902 return ERR_PTR(err);
1903 }
1904
1905 err = inode_permission(base->d_inode, MAY_EXEC);
1906 if (err)
1907 return ERR_PTR(err);
1908
1909 return __lookup_hash(&this, base, 0);
1910 }
1911
1912 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1913 struct path *path, int *empty)
1914 {
1915 struct nameidata nd;
1916 char *tmp = getname_flags(name, flags, empty);
1917 int err = PTR_ERR(tmp);
1918 if (!IS_ERR(tmp)) {
1919
1920 BUG_ON(flags & LOOKUP_PARENT);
1921
1922 err = do_path_lookup(dfd, tmp, flags, &nd);
1923 putname(tmp);
1924 if (!err)
1925 *path = nd.path;
1926 }
1927 return err;
1928 }
1929
1930 int user_path_at(int dfd, const char __user *name, unsigned flags,
1931 struct path *path)
1932 {
1933 return user_path_at_empty(dfd, name, flags, path, NULL);
1934 }
1935
1936 static int user_path_parent(int dfd, const char __user *path,
1937 struct nameidata *nd, char **name)
1938 {
1939 char *s = getname(path);
1940 int error;
1941
1942 if (IS_ERR(s))
1943 return PTR_ERR(s);
1944
1945 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1946 if (error)
1947 putname(s);
1948 else
1949 *name = s;
1950
1951 return error;
1952 }
1953
1954 /*
1955 * It's inline, so penalty for filesystems that don't use sticky bit is
1956 * minimal.
1957 */
1958 static inline int check_sticky(struct inode *dir, struct inode *inode)
1959 {
1960 kuid_t fsuid = current_fsuid();
1961
1962 if (!(dir->i_mode & S_ISVTX))
1963 return 0;
1964 if (uid_eq(inode->i_uid, fsuid))
1965 return 0;
1966 if (uid_eq(dir->i_uid, fsuid))
1967 return 0;
1968 return !inode_capable(inode, CAP_FOWNER);
1969 }
1970
1971 /*
1972 * Check whether we can remove a link victim from directory dir, check
1973 * whether the type of victim is right.
1974 * 1. We can't do it if dir is read-only (done in permission())
1975 * 2. We should have write and exec permissions on dir
1976 * 3. We can't remove anything from append-only dir
1977 * 4. We can't do anything with immutable dir (done in permission())
1978 * 5. If the sticky bit on dir is set we should either
1979 * a. be owner of dir, or
1980 * b. be owner of victim, or
1981 * c. have CAP_FOWNER capability
1982 * 6. If the victim is append-only or immutable we can't do antyhing with
1983 * links pointing to it.
1984 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1985 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1986 * 9. We can't remove a root or mountpoint.
1987 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1988 * nfs_async_unlink().
1989 */
1990 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1991 {
1992 int error;
1993
1994 if (!victim->d_inode)
1995 return -ENOENT;
1996
1997 BUG_ON(victim->d_parent->d_inode != dir);
1998 audit_inode_child(victim, dir);
1999
2000 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2001 if (error)
2002 return error;
2003 if (IS_APPEND(dir))
2004 return -EPERM;
2005 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2006 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2007 return -EPERM;
2008 if (isdir) {
2009 if (!S_ISDIR(victim->d_inode->i_mode))
2010 return -ENOTDIR;
2011 if (IS_ROOT(victim))
2012 return -EBUSY;
2013 } else if (S_ISDIR(victim->d_inode->i_mode))
2014 return -EISDIR;
2015 if (IS_DEADDIR(dir))
2016 return -ENOENT;
2017 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2018 return -EBUSY;
2019 return 0;
2020 }
2021
2022 /* Check whether we can create an object with dentry child in directory
2023 * dir.
2024 * 1. We can't do it if child already exists (open has special treatment for
2025 * this case, but since we are inlined it's OK)
2026 * 2. We can't do it if dir is read-only (done in permission())
2027 * 3. We should have write and exec permissions on dir
2028 * 4. We can't do it if dir is immutable (done in permission())
2029 */
2030 static inline int may_create(struct inode *dir, struct dentry *child)
2031 {
2032 if (child->d_inode)
2033 return -EEXIST;
2034 if (IS_DEADDIR(dir))
2035 return -ENOENT;
2036 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2037 }
2038
2039 /*
2040 * p1 and p2 should be directories on the same fs.
2041 */
2042 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2043 {
2044 struct dentry *p;
2045
2046 if (p1 == p2) {
2047 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2048 return NULL;
2049 }
2050
2051 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2052
2053 p = d_ancestor(p2, p1);
2054 if (p) {
2055 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2056 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2057 return p;
2058 }
2059
2060 p = d_ancestor(p1, p2);
2061 if (p) {
2062 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2063 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2064 return p;
2065 }
2066
2067 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2068 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2069 return NULL;
2070 }
2071
2072 void unlock_rename(struct dentry *p1, struct dentry *p2)
2073 {
2074 mutex_unlock(&p1->d_inode->i_mutex);
2075 if (p1 != p2) {
2076 mutex_unlock(&p2->d_inode->i_mutex);
2077 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2078 }
2079 }
2080
2081 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2082 struct nameidata *nd)
2083 {
2084 int error = may_create(dir, dentry);
2085 if (error)
2086 return error;
2087
2088 if (!dir->i_op->create)
2089 return -EACCES; /* shouldn't it be ENOSYS? */
2090 mode &= S_IALLUGO;
2091 mode |= S_IFREG;
2092 error = security_inode_create(dir, dentry, mode);
2093 if (error)
2094 return error;
2095 error = dir->i_op->create(dir, dentry, mode, !nd || (nd->flags & LOOKUP_EXCL));
2096 if (!error)
2097 fsnotify_create(dir, dentry);
2098 return error;
2099 }
2100
2101 static int may_open(struct path *path, int acc_mode, int flag)
2102 {
2103 struct dentry *dentry = path->dentry;
2104 struct inode *inode = dentry->d_inode;
2105 int error;
2106
2107 /* O_PATH? */
2108 if (!acc_mode)
2109 return 0;
2110
2111 if (!inode)
2112 return -ENOENT;
2113
2114 switch (inode->i_mode & S_IFMT) {
2115 case S_IFLNK:
2116 return -ELOOP;
2117 case S_IFDIR:
2118 if (acc_mode & MAY_WRITE)
2119 return -EISDIR;
2120 break;
2121 case S_IFBLK:
2122 case S_IFCHR:
2123 if (path->mnt->mnt_flags & MNT_NODEV)
2124 return -EACCES;
2125 /*FALLTHRU*/
2126 case S_IFIFO:
2127 case S_IFSOCK:
2128 flag &= ~O_TRUNC;
2129 break;
2130 }
2131
2132 error = inode_permission(inode, acc_mode);
2133 if (error)
2134 return error;
2135
2136 /*
2137 * An append-only file must be opened in append mode for writing.
2138 */
2139 if (IS_APPEND(inode)) {
2140 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2141 return -EPERM;
2142 if (flag & O_TRUNC)
2143 return -EPERM;
2144 }
2145
2146 /* O_NOATIME can only be set by the owner or superuser */
2147 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2148 return -EPERM;
2149
2150 return 0;
2151 }
2152
2153 static int handle_truncate(struct file *filp)
2154 {
2155 struct path *path = &filp->f_path;
2156 struct inode *inode = path->dentry->d_inode;
2157 int error = get_write_access(inode);
2158 if (error)
2159 return error;
2160 /*
2161 * Refuse to truncate files with mandatory locks held on them.
2162 */
2163 error = locks_verify_locked(inode);
2164 if (!error)
2165 error = security_path_truncate(path);
2166 if (!error) {
2167 error = do_truncate(path->dentry, 0,
2168 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2169 filp);
2170 }
2171 put_write_access(inode);
2172 return error;
2173 }
2174
2175 static inline int open_to_namei_flags(int flag)
2176 {
2177 if ((flag & O_ACCMODE) == 3)
2178 flag--;
2179 return flag;
2180 }
2181
2182 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2183 {
2184 int error = security_path_mknod(dir, dentry, mode, 0);
2185 if (error)
2186 return error;
2187
2188 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2189 if (error)
2190 return error;
2191
2192 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2193 }
2194
2195 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2196 struct path *path, struct file *file,
2197 const struct open_flags *op,
2198 bool *want_write, bool need_lookup,
2199 int *opened)
2200 {
2201 struct inode *dir = nd->path.dentry->d_inode;
2202 unsigned open_flag = open_to_namei_flags(op->open_flag);
2203 umode_t mode;
2204 int error;
2205 int acc_mode;
2206 int create_error = 0;
2207 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2208
2209 BUG_ON(dentry->d_inode);
2210
2211 /* Don't create child dentry for a dead directory. */
2212 if (unlikely(IS_DEADDIR(dir))) {
2213 error = -ENOENT;
2214 goto out;
2215 }
2216
2217 mode = op->mode & S_IALLUGO;
2218 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2219 mode &= ~current_umask();
2220
2221 if (open_flag & O_EXCL) {
2222 open_flag &= ~O_TRUNC;
2223 *opened |= FILE_CREATED;
2224 }
2225
2226 /*
2227 * Checking write permission is tricky, bacuse we don't know if we are
2228 * going to actually need it: O_CREAT opens should work as long as the
2229 * file exists. But checking existence breaks atomicity. The trick is
2230 * to check access and if not granted clear O_CREAT from the flags.
2231 *
2232 * Another problem is returing the "right" error value (e.g. for an
2233 * O_EXCL open we want to return EEXIST not EROFS).
2234 */
2235 if ((open_flag & (O_CREAT | O_TRUNC)) ||
2236 (open_flag & O_ACCMODE) != O_RDONLY) {
2237 error = mnt_want_write(nd->path.mnt);
2238 if (!error) {
2239 *want_write = true;
2240 } else if (!(open_flag & O_CREAT)) {
2241 /*
2242 * No O_CREATE -> atomicity not a requirement -> fall
2243 * back to lookup + open
2244 */
2245 goto no_open;
2246 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2247 /* Fall back and fail with the right error */
2248 create_error = error;
2249 goto no_open;
2250 } else {
2251 /* No side effects, safe to clear O_CREAT */
2252 create_error = error;
2253 open_flag &= ~O_CREAT;
2254 }
2255 }
2256
2257 if (open_flag & O_CREAT) {
2258 error = may_o_create(&nd->path, dentry, op->mode);
2259 if (error) {
2260 create_error = error;
2261 if (open_flag & O_EXCL)
2262 goto no_open;
2263 open_flag &= ~O_CREAT;
2264 }
2265 }
2266
2267 if (nd->flags & LOOKUP_DIRECTORY)
2268 open_flag |= O_DIRECTORY;
2269
2270 file->f_path.dentry = DENTRY_NOT_SET;
2271 file->f_path.mnt = nd->path.mnt;
2272 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2273 opened);
2274 if (error < 0) {
2275 if (create_error && error == -ENOENT)
2276 error = create_error;
2277 goto out;
2278 }
2279
2280 acc_mode = op->acc_mode;
2281 if (*opened & FILE_CREATED) {
2282 fsnotify_create(dir, dentry);
2283 acc_mode = MAY_OPEN;
2284 }
2285
2286 if (error) { /* returned 1, that is */
2287 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2288 error = -EIO;
2289 goto out;
2290 }
2291 if (file->f_path.dentry) {
2292 dput(dentry);
2293 dentry = file->f_path.dentry;
2294 }
2295 goto looked_up;
2296 }
2297
2298 /*
2299 * We didn't have the inode before the open, so check open permission
2300 * here.
2301 */
2302 error = may_open(&file->f_path, acc_mode, open_flag);
2303 if (error)
2304 fput(file);
2305
2306 out:
2307 dput(dentry);
2308 return error;
2309
2310 no_open:
2311 if (need_lookup) {
2312 dentry = lookup_real(dir, dentry, nd->flags);
2313 if (IS_ERR(dentry))
2314 return PTR_ERR(dentry);
2315
2316 if (create_error) {
2317 int open_flag = op->open_flag;
2318
2319 error = create_error;
2320 if ((open_flag & O_EXCL)) {
2321 if (!dentry->d_inode)
2322 goto out;
2323 } else if (!dentry->d_inode) {
2324 goto out;
2325 } else if ((open_flag & O_TRUNC) &&
2326 S_ISREG(dentry->d_inode->i_mode)) {
2327 goto out;
2328 }
2329 /* will fail later, go on to get the right error */
2330 }
2331 }
2332 looked_up:
2333 path->dentry = dentry;
2334 path->mnt = nd->path.mnt;
2335 return 1;
2336 }
2337
2338 /*
2339 * Lookup, maybe create and open the last component
2340 *
2341 * Must be called with i_mutex held on parent.
2342 *
2343 * Returns open file or NULL on success, error otherwise. NULL means no open
2344 * was performed, only lookup.
2345 */
2346 static int lookup_open(struct nameidata *nd, struct path *path,
2347 struct file *file,
2348 const struct open_flags *op,
2349 bool *want_write, int *opened)
2350 {
2351 struct dentry *dir = nd->path.dentry;
2352 struct inode *dir_inode = dir->d_inode;
2353 struct dentry *dentry;
2354 int error;
2355 bool need_lookup;
2356
2357 *opened &= ~FILE_CREATED;
2358 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2359 if (IS_ERR(dentry))
2360 return PTR_ERR(dentry);
2361
2362 /* Cached positive dentry: will open in f_op->open */
2363 if (!need_lookup && dentry->d_inode)
2364 goto out_no_open;
2365
2366 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2367 return atomic_open(nd, dentry, path, file, op, want_write,
2368 need_lookup, opened);
2369 }
2370
2371 if (need_lookup) {
2372 BUG_ON(dentry->d_inode);
2373
2374 dentry = lookup_real(dir_inode, dentry, nd->flags);
2375 if (IS_ERR(dentry))
2376 return PTR_ERR(dentry);
2377 }
2378
2379 /* Negative dentry, just create the file */
2380 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2381 umode_t mode = op->mode;
2382 if (!IS_POSIXACL(dir->d_inode))
2383 mode &= ~current_umask();
2384 /*
2385 * This write is needed to ensure that a
2386 * rw->ro transition does not occur between
2387 * the time when the file is created and when
2388 * a permanent write count is taken through
2389 * the 'struct file' in finish_open().
2390 */
2391 error = mnt_want_write(nd->path.mnt);
2392 if (error)
2393 goto out_dput;
2394 *want_write = true;
2395 *opened |= FILE_CREATED;
2396 error = security_path_mknod(&nd->path, dentry, mode, 0);
2397 if (error)
2398 goto out_dput;
2399 error = vfs_create(dir->d_inode, dentry, mode, nd);
2400 if (error)
2401 goto out_dput;
2402 }
2403 out_no_open:
2404 path->dentry = dentry;
2405 path->mnt = nd->path.mnt;
2406 return 1;
2407
2408 out_dput:
2409 dput(dentry);
2410 return error;
2411 }
2412
2413 /*
2414 * Handle the last step of open()
2415 */
2416 static int do_last(struct nameidata *nd, struct path *path,
2417 struct file *file, const struct open_flags *op,
2418 int *opened, const char *pathname)
2419 {
2420 struct dentry *dir = nd->path.dentry;
2421 int open_flag = op->open_flag;
2422 bool will_truncate = (open_flag & O_TRUNC) != 0;
2423 bool want_write = false;
2424 int acc_mode = op->acc_mode;
2425 struct inode *inode;
2426 bool symlink_ok = false;
2427 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2428 bool retried = false;
2429 int error;
2430
2431 nd->flags &= ~LOOKUP_PARENT;
2432 nd->flags |= op->intent;
2433
2434 switch (nd->last_type) {
2435 case LAST_DOTDOT:
2436 case LAST_DOT:
2437 error = handle_dots(nd, nd->last_type);
2438 if (error)
2439 return error;
2440 /* fallthrough */
2441 case LAST_ROOT:
2442 error = complete_walk(nd);
2443 if (error)
2444 return error;
2445 audit_inode(pathname, nd->path.dentry);
2446 if (open_flag & O_CREAT) {
2447 error = -EISDIR;
2448 goto out;
2449 }
2450 goto finish_open;
2451 case LAST_BIND:
2452 error = complete_walk(nd);
2453 if (error)
2454 return error;
2455 audit_inode(pathname, dir);
2456 goto finish_open;
2457 }
2458
2459 if (!(open_flag & O_CREAT)) {
2460 if (nd->last.name[nd->last.len])
2461 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2462 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2463 symlink_ok = true;
2464 /* we _can_ be in RCU mode here */
2465 error = lookup_fast(nd, &nd->last, path, &inode);
2466 if (likely(!error))
2467 goto finish_lookup;
2468
2469 if (error < 0)
2470 goto out;
2471
2472 BUG_ON(nd->inode != dir->d_inode);
2473 } else {
2474 /* create side of things */
2475 /*
2476 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2477 * has been cleared when we got to the last component we are
2478 * about to look up
2479 */
2480 error = complete_walk(nd);
2481 if (error)
2482 return error;
2483
2484 audit_inode(pathname, dir);
2485 error = -EISDIR;
2486 /* trailing slashes? */
2487 if (nd->last.name[nd->last.len])
2488 goto out;
2489 }
2490
2491 retry_lookup:
2492 mutex_lock(&dir->d_inode->i_mutex);
2493 error = lookup_open(nd, path, file, op, &want_write, opened);
2494 mutex_unlock(&dir->d_inode->i_mutex);
2495
2496 if (error <= 0) {
2497 if (error)
2498 goto out;
2499
2500 if ((*opened & FILE_CREATED) ||
2501 !S_ISREG(file->f_path.dentry->d_inode->i_mode))
2502 will_truncate = false;
2503
2504 audit_inode(pathname, file->f_path.dentry);
2505 goto opened;
2506 }
2507
2508 if (*opened & FILE_CREATED) {
2509 /* Don't check for write permission, don't truncate */
2510 open_flag &= ~O_TRUNC;
2511 will_truncate = false;
2512 acc_mode = MAY_OPEN;
2513 path_to_nameidata(path, nd);
2514 goto finish_open_created;
2515 }
2516
2517 /*
2518 * It already exists.
2519 */
2520 audit_inode(pathname, path->dentry);
2521
2522 /*
2523 * If atomic_open() acquired write access it is dropped now due to
2524 * possible mount and symlink following (this might be optimized away if
2525 * necessary...)
2526 */
2527 if (want_write) {
2528 mnt_drop_write(nd->path.mnt);
2529 want_write = false;
2530 }
2531
2532 error = -EEXIST;
2533 if (open_flag & O_EXCL)
2534 goto exit_dput;
2535
2536 error = follow_managed(path, nd->flags);
2537 if (error < 0)
2538 goto exit_dput;
2539
2540 if (error)
2541 nd->flags |= LOOKUP_JUMPED;
2542
2543 BUG_ON(nd->flags & LOOKUP_RCU);
2544 inode = path->dentry->d_inode;
2545 finish_lookup:
2546 /* we _can_ be in RCU mode here */
2547 error = -ENOENT;
2548 if (!inode) {
2549 path_to_nameidata(path, nd);
2550 goto out;
2551 }
2552
2553 if (should_follow_link(inode, !symlink_ok)) {
2554 if (nd->flags & LOOKUP_RCU) {
2555 if (unlikely(unlazy_walk(nd, path->dentry))) {
2556 error = -ECHILD;
2557 goto out;
2558 }
2559 }
2560 BUG_ON(inode != path->dentry->d_inode);
2561 return 1;
2562 }
2563
2564 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2565 path_to_nameidata(path, nd);
2566 } else {
2567 save_parent.dentry = nd->path.dentry;
2568 save_parent.mnt = mntget(path->mnt);
2569 nd->path.dentry = path->dentry;
2570
2571 }
2572 nd->inode = inode;
2573 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2574 error = complete_walk(nd);
2575 if (error) {
2576 path_put(&save_parent);
2577 return error;
2578 }
2579 error = -EISDIR;
2580 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2581 goto out;
2582 error = -ENOTDIR;
2583 if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup)
2584 goto out;
2585 audit_inode(pathname, nd->path.dentry);
2586 finish_open:
2587 if (!S_ISREG(nd->inode->i_mode))
2588 will_truncate = false;
2589
2590 if (will_truncate) {
2591 error = mnt_want_write(nd->path.mnt);
2592 if (error)
2593 goto out;
2594 want_write = true;
2595 }
2596 finish_open_created:
2597 error = may_open(&nd->path, acc_mode, open_flag);
2598 if (error)
2599 goto out;
2600 file->f_path.mnt = nd->path.mnt;
2601 error = finish_open(file, nd->path.dentry, NULL, opened);
2602 if (error) {
2603 if (error == -EOPENSTALE)
2604 goto stale_open;
2605 goto out;
2606 }
2607 opened:
2608 error = open_check_o_direct(file);
2609 if (error)
2610 goto exit_fput;
2611 error = ima_file_check(file, op->acc_mode);
2612 if (error)
2613 goto exit_fput;
2614
2615 if (will_truncate) {
2616 error = handle_truncate(file);
2617 if (error)
2618 goto exit_fput;
2619 }
2620 out:
2621 if (want_write)
2622 mnt_drop_write(nd->path.mnt);
2623 path_put(&save_parent);
2624 terminate_walk(nd);
2625 return error;
2626
2627 exit_dput:
2628 path_put_conditional(path, nd);
2629 goto out;
2630 exit_fput:
2631 fput(file);
2632 goto out;
2633
2634 stale_open:
2635 /* If no saved parent or already retried then can't retry */
2636 if (!save_parent.dentry || retried)
2637 goto out;
2638
2639 BUG_ON(save_parent.dentry != dir);
2640 path_put(&nd->path);
2641 nd->path = save_parent;
2642 nd->inode = dir->d_inode;
2643 save_parent.mnt = NULL;
2644 save_parent.dentry = NULL;
2645 if (want_write) {
2646 mnt_drop_write(nd->path.mnt);
2647 want_write = false;
2648 }
2649 retried = true;
2650 goto retry_lookup;
2651 }
2652
2653 static struct file *path_openat(int dfd, const char *pathname,
2654 struct nameidata *nd, const struct open_flags *op, int flags)
2655 {
2656 struct file *base = NULL;
2657 struct file *file;
2658 struct path path;
2659 int opened = 0;
2660 int error;
2661
2662 file = get_empty_filp();
2663 if (!file)
2664 return ERR_PTR(-ENFILE);
2665
2666 file->f_flags = op->open_flag;
2667
2668 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2669 if (unlikely(error))
2670 goto out;
2671
2672 current->total_link_count = 0;
2673 error = link_path_walk(pathname, nd);
2674 if (unlikely(error))
2675 goto out;
2676
2677 error = do_last(nd, &path, file, op, &opened, pathname);
2678 while (unlikely(error > 0)) { /* trailing symlink */
2679 struct path link = path;
2680 void *cookie;
2681 if (!(nd->flags & LOOKUP_FOLLOW)) {
2682 path_put_conditional(&path, nd);
2683 path_put(&nd->path);
2684 error = -ELOOP;
2685 break;
2686 }
2687 nd->flags |= LOOKUP_PARENT;
2688 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2689 error = follow_link(&link, nd, &cookie);
2690 if (unlikely(error))
2691 break;
2692 error = do_last(nd, &path, file, op, &opened, pathname);
2693 put_link(nd, &link, cookie);
2694 }
2695 out:
2696 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2697 path_put(&nd->root);
2698 if (base)
2699 fput(base);
2700 if (!(opened & FILE_OPENED)) {
2701 BUG_ON(!error);
2702 put_filp(file);
2703 }
2704 if (unlikely(error)) {
2705 if (error == -EOPENSTALE) {
2706 if (flags & LOOKUP_RCU)
2707 error = -ECHILD;
2708 else
2709 error = -ESTALE;
2710 }
2711 file = ERR_PTR(error);
2712 }
2713 return file;
2714 }
2715
2716 struct file *do_filp_open(int dfd, const char *pathname,
2717 const struct open_flags *op, int flags)
2718 {
2719 struct nameidata nd;
2720 struct file *filp;
2721
2722 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2723 if (unlikely(filp == ERR_PTR(-ECHILD)))
2724 filp = path_openat(dfd, pathname, &nd, op, flags);
2725 if (unlikely(filp == ERR_PTR(-ESTALE)))
2726 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2727 return filp;
2728 }
2729
2730 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2731 const char *name, const struct open_flags *op, int flags)
2732 {
2733 struct nameidata nd;
2734 struct file *file;
2735
2736 nd.root.mnt = mnt;
2737 nd.root.dentry = dentry;
2738
2739 flags |= LOOKUP_ROOT;
2740
2741 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2742 return ERR_PTR(-ELOOP);
2743
2744 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2745 if (unlikely(file == ERR_PTR(-ECHILD)))
2746 file = path_openat(-1, name, &nd, op, flags);
2747 if (unlikely(file == ERR_PTR(-ESTALE)))
2748 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2749 return file;
2750 }
2751
2752 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2753 {
2754 struct dentry *dentry = ERR_PTR(-EEXIST);
2755 struct nameidata nd;
2756 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2757 if (error)
2758 return ERR_PTR(error);
2759
2760 /*
2761 * Yucky last component or no last component at all?
2762 * (foo/., foo/.., /////)
2763 */
2764 if (nd.last_type != LAST_NORM)
2765 goto out;
2766 nd.flags &= ~LOOKUP_PARENT;
2767 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2768
2769 /*
2770 * Do the final lookup.
2771 */
2772 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2773 dentry = lookup_hash(&nd);
2774 if (IS_ERR(dentry))
2775 goto fail;
2776
2777 if (dentry->d_inode)
2778 goto eexist;
2779 /*
2780 * Special case - lookup gave negative, but... we had foo/bar/
2781 * From the vfs_mknod() POV we just have a negative dentry -
2782 * all is fine. Let's be bastards - you had / on the end, you've
2783 * been asking for (non-existent) directory. -ENOENT for you.
2784 */
2785 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2786 dput(dentry);
2787 dentry = ERR_PTR(-ENOENT);
2788 goto fail;
2789 }
2790 *path = nd.path;
2791 return dentry;
2792 eexist:
2793 dput(dentry);
2794 dentry = ERR_PTR(-EEXIST);
2795 fail:
2796 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2797 out:
2798 path_put(&nd.path);
2799 return dentry;
2800 }
2801 EXPORT_SYMBOL(kern_path_create);
2802
2803 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2804 {
2805 char *tmp = getname(pathname);
2806 struct dentry *res;
2807 if (IS_ERR(tmp))
2808 return ERR_CAST(tmp);
2809 res = kern_path_create(dfd, tmp, path, is_dir);
2810 putname(tmp);
2811 return res;
2812 }
2813 EXPORT_SYMBOL(user_path_create);
2814
2815 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2816 {
2817 int error = may_create(dir, dentry);
2818
2819 if (error)
2820 return error;
2821
2822 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2823 return -EPERM;
2824
2825 if (!dir->i_op->mknod)
2826 return -EPERM;
2827
2828 error = devcgroup_inode_mknod(mode, dev);
2829 if (error)
2830 return error;
2831
2832 error = security_inode_mknod(dir, dentry, mode, dev);
2833 if (error)
2834 return error;
2835
2836 error = dir->i_op->mknod(dir, dentry, mode, dev);
2837 if (!error)
2838 fsnotify_create(dir, dentry);
2839 return error;
2840 }
2841
2842 static int may_mknod(umode_t mode)
2843 {
2844 switch (mode & S_IFMT) {
2845 case S_IFREG:
2846 case S_IFCHR:
2847 case S_IFBLK:
2848 case S_IFIFO:
2849 case S_IFSOCK:
2850 case 0: /* zero mode translates to S_IFREG */
2851 return 0;
2852 case S_IFDIR:
2853 return -EPERM;
2854 default:
2855 return -EINVAL;
2856 }
2857 }
2858
2859 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2860 unsigned, dev)
2861 {
2862 struct dentry *dentry;
2863 struct path path;
2864 int error;
2865
2866 if (S_ISDIR(mode))
2867 return -EPERM;
2868
2869 dentry = user_path_create(dfd, filename, &path, 0);
2870 if (IS_ERR(dentry))
2871 return PTR_ERR(dentry);
2872
2873 if (!IS_POSIXACL(path.dentry->d_inode))
2874 mode &= ~current_umask();
2875 error = may_mknod(mode);
2876 if (error)
2877 goto out_dput;
2878 error = mnt_want_write(path.mnt);
2879 if (error)
2880 goto out_dput;
2881 error = security_path_mknod(&path, dentry, mode, dev);
2882 if (error)
2883 goto out_drop_write;
2884 switch (mode & S_IFMT) {
2885 case 0: case S_IFREG:
2886 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2887 break;
2888 case S_IFCHR: case S_IFBLK:
2889 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2890 new_decode_dev(dev));
2891 break;
2892 case S_IFIFO: case S_IFSOCK:
2893 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2894 break;
2895 }
2896 out_drop_write:
2897 mnt_drop_write(path.mnt);
2898 out_dput:
2899 dput(dentry);
2900 mutex_unlock(&path.dentry->d_inode->i_mutex);
2901 path_put(&path);
2902
2903 return error;
2904 }
2905
2906 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
2907 {
2908 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2909 }
2910
2911 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2912 {
2913 int error = may_create(dir, dentry);
2914 unsigned max_links = dir->i_sb->s_max_links;
2915
2916 if (error)
2917 return error;
2918
2919 if (!dir->i_op->mkdir)
2920 return -EPERM;
2921
2922 mode &= (S_IRWXUGO|S_ISVTX);
2923 error = security_inode_mkdir(dir, dentry, mode);
2924 if (error)
2925 return error;
2926
2927 if (max_links && dir->i_nlink >= max_links)
2928 return -EMLINK;
2929
2930 error = dir->i_op->mkdir(dir, dentry, mode);
2931 if (!error)
2932 fsnotify_mkdir(dir, dentry);
2933 return error;
2934 }
2935
2936 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
2937 {
2938 struct dentry *dentry;
2939 struct path path;
2940 int error;
2941
2942 dentry = user_path_create(dfd, pathname, &path, 1);
2943 if (IS_ERR(dentry))
2944 return PTR_ERR(dentry);
2945
2946 if (!IS_POSIXACL(path.dentry->d_inode))
2947 mode &= ~current_umask();
2948 error = mnt_want_write(path.mnt);
2949 if (error)
2950 goto out_dput;
2951 error = security_path_mkdir(&path, dentry, mode);
2952 if (error)
2953 goto out_drop_write;
2954 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2955 out_drop_write:
2956 mnt_drop_write(path.mnt);
2957 out_dput:
2958 dput(dentry);
2959 mutex_unlock(&path.dentry->d_inode->i_mutex);
2960 path_put(&path);
2961 return error;
2962 }
2963
2964 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
2965 {
2966 return sys_mkdirat(AT_FDCWD, pathname, mode);
2967 }
2968
2969 /*
2970 * The dentry_unhash() helper will try to drop the dentry early: we
2971 * should have a usage count of 1 if we're the only user of this
2972 * dentry, and if that is true (possibly after pruning the dcache),
2973 * then we drop the dentry now.
2974 *
2975 * A low-level filesystem can, if it choses, legally
2976 * do a
2977 *
2978 * if (!d_unhashed(dentry))
2979 * return -EBUSY;
2980 *
2981 * if it cannot handle the case of removing a directory
2982 * that is still in use by something else..
2983 */
2984 void dentry_unhash(struct dentry *dentry)
2985 {
2986 shrink_dcache_parent(dentry);
2987 spin_lock(&dentry->d_lock);
2988 if (dentry->d_count == 1)
2989 __d_drop(dentry);
2990 spin_unlock(&dentry->d_lock);
2991 }
2992
2993 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2994 {
2995 int error = may_delete(dir, dentry, 1);
2996
2997 if (error)
2998 return error;
2999
3000 if (!dir->i_op->rmdir)
3001 return -EPERM;
3002
3003 dget(dentry);
3004 mutex_lock(&dentry->d_inode->i_mutex);
3005
3006 error = -EBUSY;
3007 if (d_mountpoint(dentry))
3008 goto out;
3009
3010 error = security_inode_rmdir(dir, dentry);
3011 if (error)
3012 goto out;
3013
3014 shrink_dcache_parent(dentry);
3015 error = dir->i_op->rmdir(dir, dentry);
3016 if (error)
3017 goto out;
3018
3019 dentry->d_inode->i_flags |= S_DEAD;
3020 dont_mount(dentry);
3021
3022 out:
3023 mutex_unlock(&dentry->d_inode->i_mutex);
3024 dput(dentry);
3025 if (!error)
3026 d_delete(dentry);
3027 return error;
3028 }
3029
3030 static long do_rmdir(int dfd, const char __user *pathname)
3031 {
3032 int error = 0;
3033 char * name;
3034 struct dentry *dentry;
3035 struct nameidata nd;
3036
3037 error = user_path_parent(dfd, pathname, &nd, &name);
3038 if (error)
3039 return error;
3040
3041 switch(nd.last_type) {
3042 case LAST_DOTDOT:
3043 error = -ENOTEMPTY;
3044 goto exit1;
3045 case LAST_DOT:
3046 error = -EINVAL;
3047 goto exit1;
3048 case LAST_ROOT:
3049 error = -EBUSY;
3050 goto exit1;
3051 }
3052
3053 nd.flags &= ~LOOKUP_PARENT;
3054
3055 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3056 dentry = lookup_hash(&nd);
3057 error = PTR_ERR(dentry);
3058 if (IS_ERR(dentry))
3059 goto exit2;
3060 if (!dentry->d_inode) {
3061 error = -ENOENT;
3062 goto exit3;
3063 }
3064 error = mnt_want_write(nd.path.mnt);
3065 if (error)
3066 goto exit3;
3067 error = security_path_rmdir(&nd.path, dentry);
3068 if (error)
3069 goto exit4;
3070 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3071 exit4:
3072 mnt_drop_write(nd.path.mnt);
3073 exit3:
3074 dput(dentry);
3075 exit2:
3076 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3077 exit1:
3078 path_put(&nd.path);
3079 putname(name);
3080 return error;
3081 }
3082
3083 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3084 {
3085 return do_rmdir(AT_FDCWD, pathname);
3086 }
3087
3088 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3089 {
3090 int error = may_delete(dir, dentry, 0);
3091
3092 if (error)
3093 return error;
3094
3095 if (!dir->i_op->unlink)
3096 return -EPERM;
3097
3098 mutex_lock(&dentry->d_inode->i_mutex);
3099 if (d_mountpoint(dentry))
3100 error = -EBUSY;
3101 else {
3102 error = security_inode_unlink(dir, dentry);
3103 if (!error) {
3104 error = dir->i_op->unlink(dir, dentry);
3105 if (!error)
3106 dont_mount(dentry);
3107 }
3108 }
3109 mutex_unlock(&dentry->d_inode->i_mutex);
3110
3111 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3112 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3113 fsnotify_link_count(dentry->d_inode);
3114 d_delete(dentry);
3115 }
3116
3117 return error;
3118 }
3119
3120 /*
3121 * Make sure that the actual truncation of the file will occur outside its
3122 * directory's i_mutex. Truncate can take a long time if there is a lot of
3123 * writeout happening, and we don't want to prevent access to the directory
3124 * while waiting on the I/O.
3125 */
3126 static long do_unlinkat(int dfd, const char __user *pathname)
3127 {
3128 int error;
3129 char *name;
3130 struct dentry *dentry;
3131 struct nameidata nd;
3132 struct inode *inode = NULL;
3133
3134 error = user_path_parent(dfd, pathname, &nd, &name);
3135 if (error)
3136 return error;
3137
3138 error = -EISDIR;
3139 if (nd.last_type != LAST_NORM)
3140 goto exit1;
3141
3142 nd.flags &= ~LOOKUP_PARENT;
3143
3144 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3145 dentry = lookup_hash(&nd);
3146 error = PTR_ERR(dentry);
3147 if (!IS_ERR(dentry)) {
3148 /* Why not before? Because we want correct error value */
3149 if (nd.last.name[nd.last.len])
3150 goto slashes;
3151 inode = dentry->d_inode;
3152 if (!inode)
3153 goto slashes;
3154 ihold(inode);
3155 error = mnt_want_write(nd.path.mnt);
3156 if (error)
3157 goto exit2;
3158 error = security_path_unlink(&nd.path, dentry);
3159 if (error)
3160 goto exit3;
3161 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3162 exit3:
3163 mnt_drop_write(nd.path.mnt);
3164 exit2:
3165 dput(dentry);
3166 }
3167 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3168 if (inode)
3169 iput(inode); /* truncate the inode here */
3170 exit1:
3171 path_put(&nd.path);
3172 putname(name);
3173 return error;
3174
3175 slashes:
3176 error = !dentry->d_inode ? -ENOENT :
3177 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3178 goto exit2;
3179 }
3180
3181 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3182 {
3183 if ((flag & ~AT_REMOVEDIR) != 0)
3184 return -EINVAL;
3185
3186 if (flag & AT_REMOVEDIR)
3187 return do_rmdir(dfd, pathname);
3188
3189 return do_unlinkat(dfd, pathname);
3190 }
3191
3192 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3193 {
3194 return do_unlinkat(AT_FDCWD, pathname);
3195 }
3196
3197 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3198 {
3199 int error = may_create(dir, dentry);
3200
3201 if (error)
3202 return error;
3203
3204 if (!dir->i_op->symlink)
3205 return -EPERM;
3206
3207 error = security_inode_symlink(dir, dentry, oldname);
3208 if (error)
3209 return error;
3210
3211 error = dir->i_op->symlink(dir, dentry, oldname);
3212 if (!error)
3213 fsnotify_create(dir, dentry);
3214 return error;
3215 }
3216
3217 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3218 int, newdfd, const char __user *, newname)
3219 {
3220 int error;
3221 char *from;
3222 struct dentry *dentry;
3223 struct path path;
3224
3225 from = getname(oldname);
3226 if (IS_ERR(from))
3227 return PTR_ERR(from);
3228
3229 dentry = user_path_create(newdfd, newname, &path, 0);
3230 error = PTR_ERR(dentry);
3231 if (IS_ERR(dentry))
3232 goto out_putname;
3233
3234 error = mnt_want_write(path.mnt);
3235 if (error)
3236 goto out_dput;
3237 error = security_path_symlink(&path, dentry, from);
3238 if (error)
3239 goto out_drop_write;
3240 error = vfs_symlink(path.dentry->d_inode, dentry, from);
3241 out_drop_write:
3242 mnt_drop_write(path.mnt);
3243 out_dput:
3244 dput(dentry);
3245 mutex_unlock(&path.dentry->d_inode->i_mutex);
3246 path_put(&path);
3247 out_putname:
3248 putname(from);
3249 return error;
3250 }
3251
3252 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3253 {
3254 return sys_symlinkat(oldname, AT_FDCWD, newname);
3255 }
3256
3257 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3258 {
3259 struct inode *inode = old_dentry->d_inode;
3260 unsigned max_links = dir->i_sb->s_max_links;
3261 int error;
3262
3263 if (!inode)
3264 return -ENOENT;
3265
3266 error = may_create(dir, new_dentry);
3267 if (error)
3268 return error;
3269
3270 if (dir->i_sb != inode->i_sb)
3271 return -EXDEV;
3272
3273 /*
3274 * A link to an append-only or immutable file cannot be created.
3275 */
3276 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3277 return -EPERM;
3278 if (!dir->i_op->link)
3279 return -EPERM;
3280 if (S_ISDIR(inode->i_mode))
3281 return -EPERM;
3282
3283 error = security_inode_link(old_dentry, dir, new_dentry);
3284 if (error)
3285 return error;
3286
3287 mutex_lock(&inode->i_mutex);
3288 /* Make sure we don't allow creating hardlink to an unlinked file */
3289 if (inode->i_nlink == 0)
3290 error = -ENOENT;
3291 else if (max_links && inode->i_nlink >= max_links)
3292 error = -EMLINK;
3293 else
3294 error = dir->i_op->link(old_dentry, dir, new_dentry);
3295 mutex_unlock(&inode->i_mutex);
3296 if (!error)
3297 fsnotify_link(dir, inode, new_dentry);
3298 return error;
3299 }
3300
3301 /*
3302 * Hardlinks are often used in delicate situations. We avoid
3303 * security-related surprises by not following symlinks on the
3304 * newname. --KAB
3305 *
3306 * We don't follow them on the oldname either to be compatible
3307 * with linux 2.0, and to avoid hard-linking to directories
3308 * and other special files. --ADM
3309 */
3310 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3311 int, newdfd, const char __user *, newname, int, flags)
3312 {
3313 struct dentry *new_dentry;
3314 struct path old_path, new_path;
3315 int how = 0;
3316 int error;
3317
3318 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3319 return -EINVAL;
3320 /*
3321 * To use null names we require CAP_DAC_READ_SEARCH
3322 * This ensures that not everyone will be able to create
3323 * handlink using the passed filedescriptor.
3324 */
3325 if (flags & AT_EMPTY_PATH) {
3326 if (!capable(CAP_DAC_READ_SEARCH))
3327 return -ENOENT;
3328 how = LOOKUP_EMPTY;
3329 }
3330
3331 if (flags & AT_SYMLINK_FOLLOW)
3332 how |= LOOKUP_FOLLOW;
3333
3334 error = user_path_at(olddfd, oldname, how, &old_path);
3335 if (error)
3336 return error;
3337
3338 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3339 error = PTR_ERR(new_dentry);
3340 if (IS_ERR(new_dentry))
3341 goto out;
3342
3343 error = -EXDEV;
3344 if (old_path.mnt != new_path.mnt)
3345 goto out_dput;
3346 error = mnt_want_write(new_path.mnt);
3347 if (error)
3348 goto out_dput;
3349 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3350 if (error)
3351 goto out_drop_write;
3352 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3353 out_drop_write:
3354 mnt_drop_write(new_path.mnt);
3355 out_dput:
3356 dput(new_dentry);
3357 mutex_unlock(&new_path.dentry->d_inode->i_mutex);
3358 path_put(&new_path);
3359 out:
3360 path_put(&old_path);
3361
3362 return error;
3363 }
3364
3365 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3366 {
3367 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3368 }
3369
3370 /*
3371 * The worst of all namespace operations - renaming directory. "Perverted"
3372 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3373 * Problems:
3374 * a) we can get into loop creation. Check is done in is_subdir().
3375 * b) race potential - two innocent renames can create a loop together.
3376 * That's where 4.4 screws up. Current fix: serialization on
3377 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3378 * story.
3379 * c) we have to lock _three_ objects - parents and victim (if it exists).
3380 * And that - after we got ->i_mutex on parents (until then we don't know
3381 * whether the target exists). Solution: try to be smart with locking
3382 * order for inodes. We rely on the fact that tree topology may change
3383 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3384 * move will be locked. Thus we can rank directories by the tree
3385 * (ancestors first) and rank all non-directories after them.
3386 * That works since everybody except rename does "lock parent, lookup,
3387 * lock child" and rename is under ->s_vfs_rename_mutex.
3388 * HOWEVER, it relies on the assumption that any object with ->lookup()
3389 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3390 * we'd better make sure that there's no link(2) for them.
3391 * d) conversion from fhandle to dentry may come in the wrong moment - when
3392 * we are removing the target. Solution: we will have to grab ->i_mutex
3393 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3394 * ->i_mutex on parents, which works but leads to some truly excessive
3395 * locking].
3396 */
3397 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3398 struct inode *new_dir, struct dentry *new_dentry)
3399 {
3400 int error = 0;
3401 struct inode *target = new_dentry->d_inode;
3402 unsigned max_links = new_dir->i_sb->s_max_links;
3403
3404 /*
3405 * If we are going to change the parent - check write permissions,
3406 * we'll need to flip '..'.
3407 */
3408 if (new_dir != old_dir) {
3409 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3410 if (error)
3411 return error;
3412 }
3413
3414 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3415 if (error)
3416 return error;
3417
3418 dget(new_dentry);
3419 if (target)
3420 mutex_lock(&target->i_mutex);
3421
3422 error = -EBUSY;
3423 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3424 goto out;
3425
3426 error = -EMLINK;
3427 if (max_links && !target && new_dir != old_dir &&
3428 new_dir->i_nlink >= max_links)
3429 goto out;
3430
3431 if (target)
3432 shrink_dcache_parent(new_dentry);
3433 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3434 if (error)
3435 goto out;
3436
3437 if (target) {
3438 target->i_flags |= S_DEAD;
3439 dont_mount(new_dentry);
3440 }
3441 out:
3442 if (target)
3443 mutex_unlock(&target->i_mutex);
3444 dput(new_dentry);
3445 if (!error)
3446 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3447 d_move(old_dentry,new_dentry);
3448 return error;
3449 }
3450
3451 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3452 struct inode *new_dir, struct dentry *new_dentry)
3453 {
3454 struct inode *target = new_dentry->d_inode;
3455 int error;
3456
3457 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3458 if (error)
3459 return error;
3460
3461 dget(new_dentry);
3462 if (target)
3463 mutex_lock(&target->i_mutex);
3464
3465 error = -EBUSY;
3466 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3467 goto out;
3468
3469 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3470 if (error)
3471 goto out;
3472
3473 if (target)
3474 dont_mount(new_dentry);
3475 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3476 d_move(old_dentry, new_dentry);
3477 out:
3478 if (target)
3479 mutex_unlock(&target->i_mutex);
3480 dput(new_dentry);
3481 return error;
3482 }
3483
3484 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3485 struct inode *new_dir, struct dentry *new_dentry)
3486 {
3487 int error;
3488 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3489 const unsigned char *old_name;
3490
3491 if (old_dentry->d_inode == new_dentry->d_inode)
3492 return 0;
3493
3494 error = may_delete(old_dir, old_dentry, is_dir);
3495 if (error)
3496 return error;
3497
3498 if (!new_dentry->d_inode)
3499 error = may_create(new_dir, new_dentry);
3500 else
3501 error = may_delete(new_dir, new_dentry, is_dir);
3502 if (error)
3503 return error;
3504
3505 if (!old_dir->i_op->rename)
3506 return -EPERM;
3507
3508 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3509
3510 if (is_dir)
3511 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3512 else
3513 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3514 if (!error)
3515 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3516 new_dentry->d_inode, old_dentry);
3517 fsnotify_oldname_free(old_name);
3518
3519 return error;
3520 }
3521
3522 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3523 int, newdfd, const char __user *, newname)
3524 {
3525 struct dentry *old_dir, *new_dir;
3526 struct dentry *old_dentry, *new_dentry;
3527 struct dentry *trap;
3528 struct nameidata oldnd, newnd;
3529 char *from;
3530 char *to;
3531 int error;
3532
3533 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3534 if (error)
3535 goto exit;
3536
3537 error = user_path_parent(newdfd, newname, &newnd, &to);
3538 if (error)
3539 goto exit1;
3540
3541 error = -EXDEV;
3542 if (oldnd.path.mnt != newnd.path.mnt)
3543 goto exit2;
3544
3545 old_dir = oldnd.path.dentry;
3546 error = -EBUSY;
3547 if (oldnd.last_type != LAST_NORM)
3548 goto exit2;
3549
3550 new_dir = newnd.path.dentry;
3551 if (newnd.last_type != LAST_NORM)
3552 goto exit2;
3553
3554 oldnd.flags &= ~LOOKUP_PARENT;
3555 newnd.flags &= ~LOOKUP_PARENT;
3556 newnd.flags |= LOOKUP_RENAME_TARGET;
3557
3558 trap = lock_rename(new_dir, old_dir);
3559
3560 old_dentry = lookup_hash(&oldnd);
3561 error = PTR_ERR(old_dentry);
3562 if (IS_ERR(old_dentry))
3563 goto exit3;
3564 /* source must exist */
3565 error = -ENOENT;
3566 if (!old_dentry->d_inode)
3567 goto exit4;
3568 /* unless the source is a directory trailing slashes give -ENOTDIR */
3569 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3570 error = -ENOTDIR;
3571 if (oldnd.last.name[oldnd.last.len])
3572 goto exit4;
3573 if (newnd.last.name[newnd.last.len])
3574 goto exit4;
3575 }
3576 /* source should not be ancestor of target */
3577 error = -EINVAL;
3578 if (old_dentry == trap)
3579 goto exit4;
3580 new_dentry = lookup_hash(&newnd);
3581 error = PTR_ERR(new_dentry);
3582 if (IS_ERR(new_dentry))
3583 goto exit4;
3584 /* target should not be an ancestor of source */
3585 error = -ENOTEMPTY;
3586 if (new_dentry == trap)
3587 goto exit5;
3588
3589 error = mnt_want_write(oldnd.path.mnt);
3590 if (error)
3591 goto exit5;
3592 error = security_path_rename(&oldnd.path, old_dentry,
3593 &newnd.path, new_dentry);
3594 if (error)
3595 goto exit6;
3596 error = vfs_rename(old_dir->d_inode, old_dentry,
3597 new_dir->d_inode, new_dentry);
3598 exit6:
3599 mnt_drop_write(oldnd.path.mnt);
3600 exit5:
3601 dput(new_dentry);
3602 exit4:
3603 dput(old_dentry);
3604 exit3:
3605 unlock_rename(new_dir, old_dir);
3606 exit2:
3607 path_put(&newnd.path);
3608 putname(to);
3609 exit1:
3610 path_put(&oldnd.path);
3611 putname(from);
3612 exit:
3613 return error;
3614 }
3615
3616 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3617 {
3618 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3619 }
3620
3621 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3622 {
3623 int len;
3624
3625 len = PTR_ERR(link);
3626 if (IS_ERR(link))
3627 goto out;
3628
3629 len = strlen(link);
3630 if (len > (unsigned) buflen)
3631 len = buflen;
3632 if (copy_to_user(buffer, link, len))
3633 len = -EFAULT;
3634 out:
3635 return len;
3636 }
3637
3638 /*
3639 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3640 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3641 * using) it for any given inode is up to filesystem.
3642 */
3643 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3644 {
3645 struct nameidata nd;
3646 void *cookie;
3647 int res;
3648
3649 nd.depth = 0;
3650 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3651 if (IS_ERR(cookie))
3652 return PTR_ERR(cookie);
3653
3654 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3655 if (dentry->d_inode->i_op->put_link)
3656 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3657 return res;
3658 }
3659
3660 int vfs_follow_link(struct nameidata *nd, const char *link)
3661 {
3662 return __vfs_follow_link(nd, link);
3663 }
3664
3665 /* get the link contents into pagecache */
3666 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3667 {
3668 char *kaddr;
3669 struct page *page;
3670 struct address_space *mapping = dentry->d_inode->i_mapping;
3671 page = read_mapping_page(mapping, 0, NULL);
3672 if (IS_ERR(page))
3673 return (char*)page;
3674 *ppage = page;
3675 kaddr = kmap(page);
3676 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3677 return kaddr;
3678 }
3679
3680 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3681 {
3682 struct page *page = NULL;
3683 char *s = page_getlink(dentry, &page);
3684 int res = vfs_readlink(dentry,buffer,buflen,s);
3685 if (page) {
3686 kunmap(page);
3687 page_cache_release(page);
3688 }
3689 return res;
3690 }
3691
3692 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3693 {
3694 struct page *page = NULL;
3695 nd_set_link(nd, page_getlink(dentry, &page));
3696 return page;
3697 }
3698
3699 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3700 {
3701 struct page *page = cookie;
3702
3703 if (page) {
3704 kunmap(page);
3705 page_cache_release(page);
3706 }
3707 }
3708
3709 /*
3710 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3711 */
3712 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3713 {
3714 struct address_space *mapping = inode->i_mapping;
3715 struct page *page;
3716 void *fsdata;
3717 int err;
3718 char *kaddr;
3719 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3720 if (nofs)
3721 flags |= AOP_FLAG_NOFS;
3722
3723 retry:
3724 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3725 flags, &page, &fsdata);
3726 if (err)
3727 goto fail;
3728
3729 kaddr = kmap_atomic(page);
3730 memcpy(kaddr, symname, len-1);
3731 kunmap_atomic(kaddr);
3732
3733 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3734 page, fsdata);
3735 if (err < 0)
3736 goto fail;
3737 if (err < len-1)
3738 goto retry;
3739
3740 mark_inode_dirty(inode);
3741 return 0;
3742 fail:
3743 return err;
3744 }
3745
3746 int page_symlink(struct inode *inode, const char *symname, int len)
3747 {
3748 return __page_symlink(inode, symname, len,
3749 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3750 }
3751
3752 const struct inode_operations page_symlink_inode_operations = {
3753 .readlink = generic_readlink,
3754 .follow_link = page_follow_link_light,
3755 .put_link = page_put_link,
3756 };
3757
3758 EXPORT_SYMBOL(user_path_at);
3759 EXPORT_SYMBOL(follow_down_one);
3760 EXPORT_SYMBOL(follow_down);
3761 EXPORT_SYMBOL(follow_up);
3762 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3763 EXPORT_SYMBOL(getname);
3764 EXPORT_SYMBOL(lock_rename);
3765 EXPORT_SYMBOL(lookup_one_len);
3766 EXPORT_SYMBOL(page_follow_link_light);
3767 EXPORT_SYMBOL(page_put_link);
3768 EXPORT_SYMBOL(page_readlink);
3769 EXPORT_SYMBOL(__page_symlink);
3770 EXPORT_SYMBOL(page_symlink);
3771 EXPORT_SYMBOL(page_symlink_inode_operations);
3772 EXPORT_SYMBOL(kern_path);
3773 EXPORT_SYMBOL(vfs_path_lookup);
3774 EXPORT_SYMBOL(inode_permission);
3775 EXPORT_SYMBOL(unlock_rename);
3776 EXPORT_SYMBOL(vfs_create);
3777 EXPORT_SYMBOL(vfs_follow_link);
3778 EXPORT_SYMBOL(vfs_link);
3779 EXPORT_SYMBOL(vfs_mkdir);
3780 EXPORT_SYMBOL(vfs_mknod);
3781 EXPORT_SYMBOL(generic_permission);
3782 EXPORT_SYMBOL(vfs_readlink);
3783 EXPORT_SYMBOL(vfs_rename);
3784 EXPORT_SYMBOL(vfs_rmdir);
3785 EXPORT_SYMBOL(vfs_symlink);
3786 EXPORT_SYMBOL(vfs_unlink);
3787 EXPORT_SYMBOL(dentry_unhash);
3788 EXPORT_SYMBOL(generic_readlink);