]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/namei.c
Merge branch 'getname2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-bionic-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result, *err;
128 int len;
129 long max;
130 char *kname;
131
132 result = audit_reusename(filename);
133 if (result)
134 return result;
135
136 result = __getname();
137 if (unlikely(!result))
138 return ERR_PTR(-ENOMEM);
139 result->refcnt = 1;
140
141 /*
142 * First, try to embed the struct filename inside the names_cache
143 * allocation
144 */
145 kname = (char *)result + sizeof(*result);
146 result->name = kname;
147 result->separate = false;
148 max = EMBEDDED_NAME_MAX;
149
150 recopy:
151 len = strncpy_from_user(kname, filename, max);
152 if (unlikely(len < 0)) {
153 err = ERR_PTR(len);
154 goto error;
155 }
156
157 /*
158 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
159 * separate struct filename so we can dedicate the entire
160 * names_cache allocation for the pathname, and re-do the copy from
161 * userland.
162 */
163 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
164 kname = (char *)result;
165
166 result = kzalloc(sizeof(*result), GFP_KERNEL);
167 if (!result) {
168 err = ERR_PTR(-ENOMEM);
169 result = (struct filename *)kname;
170 goto error;
171 }
172 result->name = kname;
173 result->separate = true;
174 result->refcnt = 1;
175 max = PATH_MAX;
176 goto recopy;
177 }
178
179 /* The empty path is special. */
180 if (unlikely(!len)) {
181 if (empty)
182 *empty = 1;
183 err = ERR_PTR(-ENOENT);
184 if (!(flags & LOOKUP_EMPTY))
185 goto error;
186 }
187
188 err = ERR_PTR(-ENAMETOOLONG);
189 if (unlikely(len >= PATH_MAX))
190 goto error;
191
192 result->uptr = filename;
193 result->aname = NULL;
194 audit_getname(result);
195 return result;
196
197 error:
198 putname(result);
199 return err;
200 }
201
202 struct filename *
203 getname(const char __user * filename)
204 {
205 return getname_flags(filename, 0, NULL);
206 }
207
208 struct filename *
209 getname_kernel(const char * filename)
210 {
211 struct filename *result;
212 int len = strlen(filename) + 1;
213
214 result = __getname();
215 if (unlikely(!result))
216 return ERR_PTR(-ENOMEM);
217
218 if (len <= EMBEDDED_NAME_MAX) {
219 result->name = (char *)(result) + sizeof(*result);
220 result->separate = false;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 tmp->separate = true;
231 result = tmp;
232 } else {
233 __putname(result);
234 return ERR_PTR(-ENAMETOOLONG);
235 }
236 memcpy((char *)result->name, filename, len);
237 result->uptr = NULL;
238 result->aname = NULL;
239 result->refcnt = 1;
240 audit_getname(result);
241
242 return result;
243 }
244
245 void putname(struct filename *name)
246 {
247 BUG_ON(name->refcnt <= 0);
248
249 if (--name->refcnt > 0)
250 return;
251
252 if (name->separate) {
253 __putname(name->name);
254 kfree(name);
255 } else
256 __putname(name);
257 }
258
259 static int check_acl(struct inode *inode, int mask)
260 {
261 #ifdef CONFIG_FS_POSIX_ACL
262 struct posix_acl *acl;
263
264 if (mask & MAY_NOT_BLOCK) {
265 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
266 if (!acl)
267 return -EAGAIN;
268 /* no ->get_acl() calls in RCU mode... */
269 if (acl == ACL_NOT_CACHED)
270 return -ECHILD;
271 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
272 }
273
274 acl = get_acl(inode, ACL_TYPE_ACCESS);
275 if (IS_ERR(acl))
276 return PTR_ERR(acl);
277 if (acl) {
278 int error = posix_acl_permission(inode, acl, mask);
279 posix_acl_release(acl);
280 return error;
281 }
282 #endif
283
284 return -EAGAIN;
285 }
286
287 /*
288 * This does the basic permission checking
289 */
290 static int acl_permission_check(struct inode *inode, int mask)
291 {
292 unsigned int mode = inode->i_mode;
293
294 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
295 mode >>= 6;
296 else {
297 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
298 int error = check_acl(inode, mask);
299 if (error != -EAGAIN)
300 return error;
301 }
302
303 if (in_group_p(inode->i_gid))
304 mode >>= 3;
305 }
306
307 /*
308 * If the DACs are ok we don't need any capability check.
309 */
310 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
311 return 0;
312 return -EACCES;
313 }
314
315 /**
316 * generic_permission - check for access rights on a Posix-like filesystem
317 * @inode: inode to check access rights for
318 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
319 *
320 * Used to check for read/write/execute permissions on a file.
321 * We use "fsuid" for this, letting us set arbitrary permissions
322 * for filesystem access without changing the "normal" uids which
323 * are used for other things.
324 *
325 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
326 * request cannot be satisfied (eg. requires blocking or too much complexity).
327 * It would then be called again in ref-walk mode.
328 */
329 int generic_permission(struct inode *inode, int mask)
330 {
331 int ret;
332
333 /*
334 * Do the basic permission checks.
335 */
336 ret = acl_permission_check(inode, mask);
337 if (ret != -EACCES)
338 return ret;
339
340 if (S_ISDIR(inode->i_mode)) {
341 /* DACs are overridable for directories */
342 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
343 return 0;
344 if (!(mask & MAY_WRITE))
345 if (capable_wrt_inode_uidgid(inode,
346 CAP_DAC_READ_SEARCH))
347 return 0;
348 return -EACCES;
349 }
350 /*
351 * Read/write DACs are always overridable.
352 * Executable DACs are overridable when there is
353 * at least one exec bit set.
354 */
355 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
356 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
357 return 0;
358
359 /*
360 * Searching includes executable on directories, else just read.
361 */
362 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
363 if (mask == MAY_READ)
364 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
365 return 0;
366
367 return -EACCES;
368 }
369 EXPORT_SYMBOL(generic_permission);
370
371 /*
372 * We _really_ want to just do "generic_permission()" without
373 * even looking at the inode->i_op values. So we keep a cache
374 * flag in inode->i_opflags, that says "this has not special
375 * permission function, use the fast case".
376 */
377 static inline int do_inode_permission(struct inode *inode, int mask)
378 {
379 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
380 if (likely(inode->i_op->permission))
381 return inode->i_op->permission(inode, mask);
382
383 /* This gets set once for the inode lifetime */
384 spin_lock(&inode->i_lock);
385 inode->i_opflags |= IOP_FASTPERM;
386 spin_unlock(&inode->i_lock);
387 }
388 return generic_permission(inode, mask);
389 }
390
391 /**
392 * __inode_permission - Check for access rights to a given inode
393 * @inode: Inode to check permission on
394 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
395 *
396 * Check for read/write/execute permissions on an inode.
397 *
398 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
399 *
400 * This does not check for a read-only file system. You probably want
401 * inode_permission().
402 */
403 int __inode_permission(struct inode *inode, int mask)
404 {
405 int retval;
406
407 if (unlikely(mask & MAY_WRITE)) {
408 /*
409 * Nobody gets write access to an immutable file.
410 */
411 if (IS_IMMUTABLE(inode))
412 return -EACCES;
413 }
414
415 retval = do_inode_permission(inode, mask);
416 if (retval)
417 return retval;
418
419 retval = devcgroup_inode_permission(inode, mask);
420 if (retval)
421 return retval;
422
423 return security_inode_permission(inode, mask);
424 }
425 EXPORT_SYMBOL(__inode_permission);
426
427 /**
428 * sb_permission - Check superblock-level permissions
429 * @sb: Superblock of inode to check permission on
430 * @inode: Inode to check permission on
431 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
432 *
433 * Separate out file-system wide checks from inode-specific permission checks.
434 */
435 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
436 {
437 if (unlikely(mask & MAY_WRITE)) {
438 umode_t mode = inode->i_mode;
439
440 /* Nobody gets write access to a read-only fs. */
441 if ((sb->s_flags & MS_RDONLY) &&
442 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
443 return -EROFS;
444 }
445 return 0;
446 }
447
448 /**
449 * inode_permission - Check for access rights to a given inode
450 * @inode: Inode to check permission on
451 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
452 *
453 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
454 * this, letting us set arbitrary permissions for filesystem access without
455 * changing the "normal" UIDs which are used for other things.
456 *
457 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
458 */
459 int inode_permission(struct inode *inode, int mask)
460 {
461 int retval;
462
463 retval = sb_permission(inode->i_sb, inode, mask);
464 if (retval)
465 return retval;
466 return __inode_permission(inode, mask);
467 }
468 EXPORT_SYMBOL(inode_permission);
469
470 /**
471 * path_get - get a reference to a path
472 * @path: path to get the reference to
473 *
474 * Given a path increment the reference count to the dentry and the vfsmount.
475 */
476 void path_get(const struct path *path)
477 {
478 mntget(path->mnt);
479 dget(path->dentry);
480 }
481 EXPORT_SYMBOL(path_get);
482
483 /**
484 * path_put - put a reference to a path
485 * @path: path to put the reference to
486 *
487 * Given a path decrement the reference count to the dentry and the vfsmount.
488 */
489 void path_put(const struct path *path)
490 {
491 dput(path->dentry);
492 mntput(path->mnt);
493 }
494 EXPORT_SYMBOL(path_put);
495
496 struct nameidata {
497 struct path path;
498 struct qstr last;
499 struct path root;
500 struct inode *inode; /* path.dentry.d_inode */
501 unsigned int flags;
502 unsigned seq, m_seq;
503 int last_type;
504 unsigned depth;
505 struct file *base;
506 char *saved_names[MAX_NESTED_LINKS + 1];
507 };
508
509 /*
510 * Path walking has 2 modes, rcu-walk and ref-walk (see
511 * Documentation/filesystems/path-lookup.txt). In situations when we can't
512 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
513 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
514 * mode. Refcounts are grabbed at the last known good point before rcu-walk
515 * got stuck, so ref-walk may continue from there. If this is not successful
516 * (eg. a seqcount has changed), then failure is returned and it's up to caller
517 * to restart the path walk from the beginning in ref-walk mode.
518 */
519
520 /**
521 * unlazy_walk - try to switch to ref-walk mode.
522 * @nd: nameidata pathwalk data
523 * @dentry: child of nd->path.dentry or NULL
524 * Returns: 0 on success, -ECHILD on failure
525 *
526 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
527 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
528 * @nd or NULL. Must be called from rcu-walk context.
529 */
530 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
531 {
532 struct fs_struct *fs = current->fs;
533 struct dentry *parent = nd->path.dentry;
534
535 BUG_ON(!(nd->flags & LOOKUP_RCU));
536
537 /*
538 * After legitimizing the bastards, terminate_walk()
539 * will do the right thing for non-RCU mode, and all our
540 * subsequent exit cases should rcu_read_unlock()
541 * before returning. Do vfsmount first; if dentry
542 * can't be legitimized, just set nd->path.dentry to NULL
543 * and rely on dput(NULL) being a no-op.
544 */
545 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
546 return -ECHILD;
547 nd->flags &= ~LOOKUP_RCU;
548
549 if (!lockref_get_not_dead(&parent->d_lockref)) {
550 nd->path.dentry = NULL;
551 goto out;
552 }
553
554 /*
555 * For a negative lookup, the lookup sequence point is the parents
556 * sequence point, and it only needs to revalidate the parent dentry.
557 *
558 * For a positive lookup, we need to move both the parent and the
559 * dentry from the RCU domain to be properly refcounted. And the
560 * sequence number in the dentry validates *both* dentry counters,
561 * since we checked the sequence number of the parent after we got
562 * the child sequence number. So we know the parent must still
563 * be valid if the child sequence number is still valid.
564 */
565 if (!dentry) {
566 if (read_seqcount_retry(&parent->d_seq, nd->seq))
567 goto out;
568 BUG_ON(nd->inode != parent->d_inode);
569 } else {
570 if (!lockref_get_not_dead(&dentry->d_lockref))
571 goto out;
572 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
573 goto drop_dentry;
574 }
575
576 /*
577 * Sequence counts matched. Now make sure that the root is
578 * still valid and get it if required.
579 */
580 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
581 spin_lock(&fs->lock);
582 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
583 goto unlock_and_drop_dentry;
584 path_get(&nd->root);
585 spin_unlock(&fs->lock);
586 }
587
588 rcu_read_unlock();
589 return 0;
590
591 unlock_and_drop_dentry:
592 spin_unlock(&fs->lock);
593 drop_dentry:
594 rcu_read_unlock();
595 dput(dentry);
596 goto drop_root_mnt;
597 out:
598 rcu_read_unlock();
599 drop_root_mnt:
600 if (!(nd->flags & LOOKUP_ROOT))
601 nd->root.mnt = NULL;
602 return -ECHILD;
603 }
604
605 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
606 {
607 return dentry->d_op->d_revalidate(dentry, flags);
608 }
609
610 /**
611 * complete_walk - successful completion of path walk
612 * @nd: pointer nameidata
613 *
614 * If we had been in RCU mode, drop out of it and legitimize nd->path.
615 * Revalidate the final result, unless we'd already done that during
616 * the path walk or the filesystem doesn't ask for it. Return 0 on
617 * success, -error on failure. In case of failure caller does not
618 * need to drop nd->path.
619 */
620 static int complete_walk(struct nameidata *nd)
621 {
622 struct dentry *dentry = nd->path.dentry;
623 int status;
624
625 if (nd->flags & LOOKUP_RCU) {
626 nd->flags &= ~LOOKUP_RCU;
627 if (!(nd->flags & LOOKUP_ROOT))
628 nd->root.mnt = NULL;
629
630 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
631 rcu_read_unlock();
632 return -ECHILD;
633 }
634 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
635 rcu_read_unlock();
636 mntput(nd->path.mnt);
637 return -ECHILD;
638 }
639 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
640 rcu_read_unlock();
641 dput(dentry);
642 mntput(nd->path.mnt);
643 return -ECHILD;
644 }
645 rcu_read_unlock();
646 }
647
648 if (likely(!(nd->flags & LOOKUP_JUMPED)))
649 return 0;
650
651 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
652 return 0;
653
654 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
655 if (status > 0)
656 return 0;
657
658 if (!status)
659 status = -ESTALE;
660
661 path_put(&nd->path);
662 return status;
663 }
664
665 static __always_inline void set_root(struct nameidata *nd)
666 {
667 get_fs_root(current->fs, &nd->root);
668 }
669
670 static int link_path_walk(const char *, struct nameidata *);
671
672 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
673 {
674 struct fs_struct *fs = current->fs;
675 unsigned seq, res;
676
677 do {
678 seq = read_seqcount_begin(&fs->seq);
679 nd->root = fs->root;
680 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
681 } while (read_seqcount_retry(&fs->seq, seq));
682 return res;
683 }
684
685 static void path_put_conditional(struct path *path, struct nameidata *nd)
686 {
687 dput(path->dentry);
688 if (path->mnt != nd->path.mnt)
689 mntput(path->mnt);
690 }
691
692 static inline void path_to_nameidata(const struct path *path,
693 struct nameidata *nd)
694 {
695 if (!(nd->flags & LOOKUP_RCU)) {
696 dput(nd->path.dentry);
697 if (nd->path.mnt != path->mnt)
698 mntput(nd->path.mnt);
699 }
700 nd->path.mnt = path->mnt;
701 nd->path.dentry = path->dentry;
702 }
703
704 /*
705 * Helper to directly jump to a known parsed path from ->follow_link,
706 * caller must have taken a reference to path beforehand.
707 */
708 void nd_jump_link(struct nameidata *nd, struct path *path)
709 {
710 path_put(&nd->path);
711
712 nd->path = *path;
713 nd->inode = nd->path.dentry->d_inode;
714 nd->flags |= LOOKUP_JUMPED;
715 }
716
717 void nd_set_link(struct nameidata *nd, char *path)
718 {
719 nd->saved_names[nd->depth] = path;
720 }
721 EXPORT_SYMBOL(nd_set_link);
722
723 char *nd_get_link(struct nameidata *nd)
724 {
725 return nd->saved_names[nd->depth];
726 }
727 EXPORT_SYMBOL(nd_get_link);
728
729 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
730 {
731 struct inode *inode = link->dentry->d_inode;
732 if (inode->i_op->put_link)
733 inode->i_op->put_link(link->dentry, nd, cookie);
734 path_put(link);
735 }
736
737 int sysctl_protected_symlinks __read_mostly = 0;
738 int sysctl_protected_hardlinks __read_mostly = 0;
739
740 /**
741 * may_follow_link - Check symlink following for unsafe situations
742 * @link: The path of the symlink
743 * @nd: nameidata pathwalk data
744 *
745 * In the case of the sysctl_protected_symlinks sysctl being enabled,
746 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
747 * in a sticky world-writable directory. This is to protect privileged
748 * processes from failing races against path names that may change out
749 * from under them by way of other users creating malicious symlinks.
750 * It will permit symlinks to be followed only when outside a sticky
751 * world-writable directory, or when the uid of the symlink and follower
752 * match, or when the directory owner matches the symlink's owner.
753 *
754 * Returns 0 if following the symlink is allowed, -ve on error.
755 */
756 static inline int may_follow_link(struct path *link, struct nameidata *nd)
757 {
758 const struct inode *inode;
759 const struct inode *parent;
760
761 if (!sysctl_protected_symlinks)
762 return 0;
763
764 /* Allowed if owner and follower match. */
765 inode = link->dentry->d_inode;
766 if (uid_eq(current_cred()->fsuid, inode->i_uid))
767 return 0;
768
769 /* Allowed if parent directory not sticky and world-writable. */
770 parent = nd->path.dentry->d_inode;
771 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
772 return 0;
773
774 /* Allowed if parent directory and link owner match. */
775 if (uid_eq(parent->i_uid, inode->i_uid))
776 return 0;
777
778 audit_log_link_denied("follow_link", link);
779 path_put_conditional(link, nd);
780 path_put(&nd->path);
781 return -EACCES;
782 }
783
784 /**
785 * safe_hardlink_source - Check for safe hardlink conditions
786 * @inode: the source inode to hardlink from
787 *
788 * Return false if at least one of the following conditions:
789 * - inode is not a regular file
790 * - inode is setuid
791 * - inode is setgid and group-exec
792 * - access failure for read and write
793 *
794 * Otherwise returns true.
795 */
796 static bool safe_hardlink_source(struct inode *inode)
797 {
798 umode_t mode = inode->i_mode;
799
800 /* Special files should not get pinned to the filesystem. */
801 if (!S_ISREG(mode))
802 return false;
803
804 /* Setuid files should not get pinned to the filesystem. */
805 if (mode & S_ISUID)
806 return false;
807
808 /* Executable setgid files should not get pinned to the filesystem. */
809 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
810 return false;
811
812 /* Hardlinking to unreadable or unwritable sources is dangerous. */
813 if (inode_permission(inode, MAY_READ | MAY_WRITE))
814 return false;
815
816 return true;
817 }
818
819 /**
820 * may_linkat - Check permissions for creating a hardlink
821 * @link: the source to hardlink from
822 *
823 * Block hardlink when all of:
824 * - sysctl_protected_hardlinks enabled
825 * - fsuid does not match inode
826 * - hardlink source is unsafe (see safe_hardlink_source() above)
827 * - not CAP_FOWNER
828 *
829 * Returns 0 if successful, -ve on error.
830 */
831 static int may_linkat(struct path *link)
832 {
833 const struct cred *cred;
834 struct inode *inode;
835
836 if (!sysctl_protected_hardlinks)
837 return 0;
838
839 cred = current_cred();
840 inode = link->dentry->d_inode;
841
842 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
843 * otherwise, it must be a safe source.
844 */
845 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
846 capable(CAP_FOWNER))
847 return 0;
848
849 audit_log_link_denied("linkat", link);
850 return -EPERM;
851 }
852
853 static __always_inline int
854 follow_link(struct path *link, struct nameidata *nd, void **p)
855 {
856 struct dentry *dentry = link->dentry;
857 int error;
858 char *s;
859
860 BUG_ON(nd->flags & LOOKUP_RCU);
861
862 if (link->mnt == nd->path.mnt)
863 mntget(link->mnt);
864
865 error = -ELOOP;
866 if (unlikely(current->total_link_count >= 40))
867 goto out_put_nd_path;
868
869 cond_resched();
870 current->total_link_count++;
871
872 touch_atime(link);
873 nd_set_link(nd, NULL);
874
875 error = security_inode_follow_link(link->dentry, nd);
876 if (error)
877 goto out_put_nd_path;
878
879 nd->last_type = LAST_BIND;
880 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
881 error = PTR_ERR(*p);
882 if (IS_ERR(*p))
883 goto out_put_nd_path;
884
885 error = 0;
886 s = nd_get_link(nd);
887 if (s) {
888 if (unlikely(IS_ERR(s))) {
889 path_put(&nd->path);
890 put_link(nd, link, *p);
891 return PTR_ERR(s);
892 }
893 if (*s == '/') {
894 if (!nd->root.mnt)
895 set_root(nd);
896 path_put(&nd->path);
897 nd->path = nd->root;
898 path_get(&nd->root);
899 nd->flags |= LOOKUP_JUMPED;
900 }
901 nd->inode = nd->path.dentry->d_inode;
902 error = link_path_walk(s, nd);
903 if (unlikely(error))
904 put_link(nd, link, *p);
905 }
906
907 return error;
908
909 out_put_nd_path:
910 *p = NULL;
911 path_put(&nd->path);
912 path_put(link);
913 return error;
914 }
915
916 static int follow_up_rcu(struct path *path)
917 {
918 struct mount *mnt = real_mount(path->mnt);
919 struct mount *parent;
920 struct dentry *mountpoint;
921
922 parent = mnt->mnt_parent;
923 if (&parent->mnt == path->mnt)
924 return 0;
925 mountpoint = mnt->mnt_mountpoint;
926 path->dentry = mountpoint;
927 path->mnt = &parent->mnt;
928 return 1;
929 }
930
931 /*
932 * follow_up - Find the mountpoint of path's vfsmount
933 *
934 * Given a path, find the mountpoint of its source file system.
935 * Replace @path with the path of the mountpoint in the parent mount.
936 * Up is towards /.
937 *
938 * Return 1 if we went up a level and 0 if we were already at the
939 * root.
940 */
941 int follow_up(struct path *path)
942 {
943 struct mount *mnt = real_mount(path->mnt);
944 struct mount *parent;
945 struct dentry *mountpoint;
946
947 read_seqlock_excl(&mount_lock);
948 parent = mnt->mnt_parent;
949 if (parent == mnt) {
950 read_sequnlock_excl(&mount_lock);
951 return 0;
952 }
953 mntget(&parent->mnt);
954 mountpoint = dget(mnt->mnt_mountpoint);
955 read_sequnlock_excl(&mount_lock);
956 dput(path->dentry);
957 path->dentry = mountpoint;
958 mntput(path->mnt);
959 path->mnt = &parent->mnt;
960 return 1;
961 }
962 EXPORT_SYMBOL(follow_up);
963
964 /*
965 * Perform an automount
966 * - return -EISDIR to tell follow_managed() to stop and return the path we
967 * were called with.
968 */
969 static int follow_automount(struct path *path, unsigned flags,
970 bool *need_mntput)
971 {
972 struct vfsmount *mnt;
973 int err;
974
975 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
976 return -EREMOTE;
977
978 /* We don't want to mount if someone's just doing a stat -
979 * unless they're stat'ing a directory and appended a '/' to
980 * the name.
981 *
982 * We do, however, want to mount if someone wants to open or
983 * create a file of any type under the mountpoint, wants to
984 * traverse through the mountpoint or wants to open the
985 * mounted directory. Also, autofs may mark negative dentries
986 * as being automount points. These will need the attentions
987 * of the daemon to instantiate them before they can be used.
988 */
989 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
990 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
991 path->dentry->d_inode)
992 return -EISDIR;
993
994 current->total_link_count++;
995 if (current->total_link_count >= 40)
996 return -ELOOP;
997
998 mnt = path->dentry->d_op->d_automount(path);
999 if (IS_ERR(mnt)) {
1000 /*
1001 * The filesystem is allowed to return -EISDIR here to indicate
1002 * it doesn't want to automount. For instance, autofs would do
1003 * this so that its userspace daemon can mount on this dentry.
1004 *
1005 * However, we can only permit this if it's a terminal point in
1006 * the path being looked up; if it wasn't then the remainder of
1007 * the path is inaccessible and we should say so.
1008 */
1009 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
1010 return -EREMOTE;
1011 return PTR_ERR(mnt);
1012 }
1013
1014 if (!mnt) /* mount collision */
1015 return 0;
1016
1017 if (!*need_mntput) {
1018 /* lock_mount() may release path->mnt on error */
1019 mntget(path->mnt);
1020 *need_mntput = true;
1021 }
1022 err = finish_automount(mnt, path);
1023
1024 switch (err) {
1025 case -EBUSY:
1026 /* Someone else made a mount here whilst we were busy */
1027 return 0;
1028 case 0:
1029 path_put(path);
1030 path->mnt = mnt;
1031 path->dentry = dget(mnt->mnt_root);
1032 return 0;
1033 default:
1034 return err;
1035 }
1036
1037 }
1038
1039 /*
1040 * Handle a dentry that is managed in some way.
1041 * - Flagged for transit management (autofs)
1042 * - Flagged as mountpoint
1043 * - Flagged as automount point
1044 *
1045 * This may only be called in refwalk mode.
1046 *
1047 * Serialization is taken care of in namespace.c
1048 */
1049 static int follow_managed(struct path *path, unsigned flags)
1050 {
1051 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1052 unsigned managed;
1053 bool need_mntput = false;
1054 int ret = 0;
1055
1056 /* Given that we're not holding a lock here, we retain the value in a
1057 * local variable for each dentry as we look at it so that we don't see
1058 * the components of that value change under us */
1059 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1060 managed &= DCACHE_MANAGED_DENTRY,
1061 unlikely(managed != 0)) {
1062 /* Allow the filesystem to manage the transit without i_mutex
1063 * being held. */
1064 if (managed & DCACHE_MANAGE_TRANSIT) {
1065 BUG_ON(!path->dentry->d_op);
1066 BUG_ON(!path->dentry->d_op->d_manage);
1067 ret = path->dentry->d_op->d_manage(path->dentry, false);
1068 if (ret < 0)
1069 break;
1070 }
1071
1072 /* Transit to a mounted filesystem. */
1073 if (managed & DCACHE_MOUNTED) {
1074 struct vfsmount *mounted = lookup_mnt(path);
1075 if (mounted) {
1076 dput(path->dentry);
1077 if (need_mntput)
1078 mntput(path->mnt);
1079 path->mnt = mounted;
1080 path->dentry = dget(mounted->mnt_root);
1081 need_mntput = true;
1082 continue;
1083 }
1084
1085 /* Something is mounted on this dentry in another
1086 * namespace and/or whatever was mounted there in this
1087 * namespace got unmounted before lookup_mnt() could
1088 * get it */
1089 }
1090
1091 /* Handle an automount point */
1092 if (managed & DCACHE_NEED_AUTOMOUNT) {
1093 ret = follow_automount(path, flags, &need_mntput);
1094 if (ret < 0)
1095 break;
1096 continue;
1097 }
1098
1099 /* We didn't change the current path point */
1100 break;
1101 }
1102
1103 if (need_mntput && path->mnt == mnt)
1104 mntput(path->mnt);
1105 if (ret == -EISDIR)
1106 ret = 0;
1107 return ret < 0 ? ret : need_mntput;
1108 }
1109
1110 int follow_down_one(struct path *path)
1111 {
1112 struct vfsmount *mounted;
1113
1114 mounted = lookup_mnt(path);
1115 if (mounted) {
1116 dput(path->dentry);
1117 mntput(path->mnt);
1118 path->mnt = mounted;
1119 path->dentry = dget(mounted->mnt_root);
1120 return 1;
1121 }
1122 return 0;
1123 }
1124 EXPORT_SYMBOL(follow_down_one);
1125
1126 static inline int managed_dentry_rcu(struct dentry *dentry)
1127 {
1128 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1129 dentry->d_op->d_manage(dentry, true) : 0;
1130 }
1131
1132 /*
1133 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1134 * we meet a managed dentry that would need blocking.
1135 */
1136 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1137 struct inode **inode)
1138 {
1139 for (;;) {
1140 struct mount *mounted;
1141 /*
1142 * Don't forget we might have a non-mountpoint managed dentry
1143 * that wants to block transit.
1144 */
1145 switch (managed_dentry_rcu(path->dentry)) {
1146 case -ECHILD:
1147 default:
1148 return false;
1149 case -EISDIR:
1150 return true;
1151 case 0:
1152 break;
1153 }
1154
1155 if (!d_mountpoint(path->dentry))
1156 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1157
1158 mounted = __lookup_mnt(path->mnt, path->dentry);
1159 if (!mounted)
1160 break;
1161 path->mnt = &mounted->mnt;
1162 path->dentry = mounted->mnt.mnt_root;
1163 nd->flags |= LOOKUP_JUMPED;
1164 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1165 /*
1166 * Update the inode too. We don't need to re-check the
1167 * dentry sequence number here after this d_inode read,
1168 * because a mount-point is always pinned.
1169 */
1170 *inode = path->dentry->d_inode;
1171 }
1172 return !read_seqretry(&mount_lock, nd->m_seq) &&
1173 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1174 }
1175
1176 static int follow_dotdot_rcu(struct nameidata *nd)
1177 {
1178 struct inode *inode = nd->inode;
1179 if (!nd->root.mnt)
1180 set_root_rcu(nd);
1181
1182 while (1) {
1183 if (nd->path.dentry == nd->root.dentry &&
1184 nd->path.mnt == nd->root.mnt) {
1185 break;
1186 }
1187 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1188 struct dentry *old = nd->path.dentry;
1189 struct dentry *parent = old->d_parent;
1190 unsigned seq;
1191
1192 inode = parent->d_inode;
1193 seq = read_seqcount_begin(&parent->d_seq);
1194 if (read_seqcount_retry(&old->d_seq, nd->seq))
1195 goto failed;
1196 nd->path.dentry = parent;
1197 nd->seq = seq;
1198 break;
1199 }
1200 if (!follow_up_rcu(&nd->path))
1201 break;
1202 inode = nd->path.dentry->d_inode;
1203 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1204 }
1205 while (d_mountpoint(nd->path.dentry)) {
1206 struct mount *mounted;
1207 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1208 if (!mounted)
1209 break;
1210 nd->path.mnt = &mounted->mnt;
1211 nd->path.dentry = mounted->mnt.mnt_root;
1212 inode = nd->path.dentry->d_inode;
1213 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1214 if (read_seqretry(&mount_lock, nd->m_seq))
1215 goto failed;
1216 }
1217 nd->inode = inode;
1218 return 0;
1219
1220 failed:
1221 nd->flags &= ~LOOKUP_RCU;
1222 if (!(nd->flags & LOOKUP_ROOT))
1223 nd->root.mnt = NULL;
1224 rcu_read_unlock();
1225 return -ECHILD;
1226 }
1227
1228 /*
1229 * Follow down to the covering mount currently visible to userspace. At each
1230 * point, the filesystem owning that dentry may be queried as to whether the
1231 * caller is permitted to proceed or not.
1232 */
1233 int follow_down(struct path *path)
1234 {
1235 unsigned managed;
1236 int ret;
1237
1238 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1239 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1240 /* Allow the filesystem to manage the transit without i_mutex
1241 * being held.
1242 *
1243 * We indicate to the filesystem if someone is trying to mount
1244 * something here. This gives autofs the chance to deny anyone
1245 * other than its daemon the right to mount on its
1246 * superstructure.
1247 *
1248 * The filesystem may sleep at this point.
1249 */
1250 if (managed & DCACHE_MANAGE_TRANSIT) {
1251 BUG_ON(!path->dentry->d_op);
1252 BUG_ON(!path->dentry->d_op->d_manage);
1253 ret = path->dentry->d_op->d_manage(
1254 path->dentry, false);
1255 if (ret < 0)
1256 return ret == -EISDIR ? 0 : ret;
1257 }
1258
1259 /* Transit to a mounted filesystem. */
1260 if (managed & DCACHE_MOUNTED) {
1261 struct vfsmount *mounted = lookup_mnt(path);
1262 if (!mounted)
1263 break;
1264 dput(path->dentry);
1265 mntput(path->mnt);
1266 path->mnt = mounted;
1267 path->dentry = dget(mounted->mnt_root);
1268 continue;
1269 }
1270
1271 /* Don't handle automount points here */
1272 break;
1273 }
1274 return 0;
1275 }
1276 EXPORT_SYMBOL(follow_down);
1277
1278 /*
1279 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1280 */
1281 static void follow_mount(struct path *path)
1282 {
1283 while (d_mountpoint(path->dentry)) {
1284 struct vfsmount *mounted = lookup_mnt(path);
1285 if (!mounted)
1286 break;
1287 dput(path->dentry);
1288 mntput(path->mnt);
1289 path->mnt = mounted;
1290 path->dentry = dget(mounted->mnt_root);
1291 }
1292 }
1293
1294 static void follow_dotdot(struct nameidata *nd)
1295 {
1296 if (!nd->root.mnt)
1297 set_root(nd);
1298
1299 while(1) {
1300 struct dentry *old = nd->path.dentry;
1301
1302 if (nd->path.dentry == nd->root.dentry &&
1303 nd->path.mnt == nd->root.mnt) {
1304 break;
1305 }
1306 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1307 /* rare case of legitimate dget_parent()... */
1308 nd->path.dentry = dget_parent(nd->path.dentry);
1309 dput(old);
1310 break;
1311 }
1312 if (!follow_up(&nd->path))
1313 break;
1314 }
1315 follow_mount(&nd->path);
1316 nd->inode = nd->path.dentry->d_inode;
1317 }
1318
1319 /*
1320 * This looks up the name in dcache, possibly revalidates the old dentry and
1321 * allocates a new one if not found or not valid. In the need_lookup argument
1322 * returns whether i_op->lookup is necessary.
1323 *
1324 * dir->d_inode->i_mutex must be held
1325 */
1326 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1327 unsigned int flags, bool *need_lookup)
1328 {
1329 struct dentry *dentry;
1330 int error;
1331
1332 *need_lookup = false;
1333 dentry = d_lookup(dir, name);
1334 if (dentry) {
1335 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1336 error = d_revalidate(dentry, flags);
1337 if (unlikely(error <= 0)) {
1338 if (error < 0) {
1339 dput(dentry);
1340 return ERR_PTR(error);
1341 } else {
1342 d_invalidate(dentry);
1343 dput(dentry);
1344 dentry = NULL;
1345 }
1346 }
1347 }
1348 }
1349
1350 if (!dentry) {
1351 dentry = d_alloc(dir, name);
1352 if (unlikely(!dentry))
1353 return ERR_PTR(-ENOMEM);
1354
1355 *need_lookup = true;
1356 }
1357 return dentry;
1358 }
1359
1360 /*
1361 * Call i_op->lookup on the dentry. The dentry must be negative and
1362 * unhashed.
1363 *
1364 * dir->d_inode->i_mutex must be held
1365 */
1366 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1367 unsigned int flags)
1368 {
1369 struct dentry *old;
1370
1371 /* Don't create child dentry for a dead directory. */
1372 if (unlikely(IS_DEADDIR(dir))) {
1373 dput(dentry);
1374 return ERR_PTR(-ENOENT);
1375 }
1376
1377 old = dir->i_op->lookup(dir, dentry, flags);
1378 if (unlikely(old)) {
1379 dput(dentry);
1380 dentry = old;
1381 }
1382 return dentry;
1383 }
1384
1385 static struct dentry *__lookup_hash(struct qstr *name,
1386 struct dentry *base, unsigned int flags)
1387 {
1388 bool need_lookup;
1389 struct dentry *dentry;
1390
1391 dentry = lookup_dcache(name, base, flags, &need_lookup);
1392 if (!need_lookup)
1393 return dentry;
1394
1395 return lookup_real(base->d_inode, dentry, flags);
1396 }
1397
1398 /*
1399 * It's more convoluted than I'd like it to be, but... it's still fairly
1400 * small and for now I'd prefer to have fast path as straight as possible.
1401 * It _is_ time-critical.
1402 */
1403 static int lookup_fast(struct nameidata *nd,
1404 struct path *path, struct inode **inode)
1405 {
1406 struct vfsmount *mnt = nd->path.mnt;
1407 struct dentry *dentry, *parent = nd->path.dentry;
1408 int need_reval = 1;
1409 int status = 1;
1410 int err;
1411
1412 /*
1413 * Rename seqlock is not required here because in the off chance
1414 * of a false negative due to a concurrent rename, we're going to
1415 * do the non-racy lookup, below.
1416 */
1417 if (nd->flags & LOOKUP_RCU) {
1418 unsigned seq;
1419 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1420 if (!dentry)
1421 goto unlazy;
1422
1423 /*
1424 * This sequence count validates that the inode matches
1425 * the dentry name information from lookup.
1426 */
1427 *inode = dentry->d_inode;
1428 if (read_seqcount_retry(&dentry->d_seq, seq))
1429 return -ECHILD;
1430
1431 /*
1432 * This sequence count validates that the parent had no
1433 * changes while we did the lookup of the dentry above.
1434 *
1435 * The memory barrier in read_seqcount_begin of child is
1436 * enough, we can use __read_seqcount_retry here.
1437 */
1438 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1439 return -ECHILD;
1440 nd->seq = seq;
1441
1442 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1443 status = d_revalidate(dentry, nd->flags);
1444 if (unlikely(status <= 0)) {
1445 if (status != -ECHILD)
1446 need_reval = 0;
1447 goto unlazy;
1448 }
1449 }
1450 path->mnt = mnt;
1451 path->dentry = dentry;
1452 if (likely(__follow_mount_rcu(nd, path, inode)))
1453 return 0;
1454 unlazy:
1455 if (unlazy_walk(nd, dentry))
1456 return -ECHILD;
1457 } else {
1458 dentry = __d_lookup(parent, &nd->last);
1459 }
1460
1461 if (unlikely(!dentry))
1462 goto need_lookup;
1463
1464 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1465 status = d_revalidate(dentry, nd->flags);
1466 if (unlikely(status <= 0)) {
1467 if (status < 0) {
1468 dput(dentry);
1469 return status;
1470 }
1471 d_invalidate(dentry);
1472 dput(dentry);
1473 goto need_lookup;
1474 }
1475
1476 path->mnt = mnt;
1477 path->dentry = dentry;
1478 err = follow_managed(path, nd->flags);
1479 if (unlikely(err < 0)) {
1480 path_put_conditional(path, nd);
1481 return err;
1482 }
1483 if (err)
1484 nd->flags |= LOOKUP_JUMPED;
1485 *inode = path->dentry->d_inode;
1486 return 0;
1487
1488 need_lookup:
1489 return 1;
1490 }
1491
1492 /* Fast lookup failed, do it the slow way */
1493 static int lookup_slow(struct nameidata *nd, struct path *path)
1494 {
1495 struct dentry *dentry, *parent;
1496 int err;
1497
1498 parent = nd->path.dentry;
1499 BUG_ON(nd->inode != parent->d_inode);
1500
1501 mutex_lock(&parent->d_inode->i_mutex);
1502 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1503 mutex_unlock(&parent->d_inode->i_mutex);
1504 if (IS_ERR(dentry))
1505 return PTR_ERR(dentry);
1506 path->mnt = nd->path.mnt;
1507 path->dentry = dentry;
1508 err = follow_managed(path, nd->flags);
1509 if (unlikely(err < 0)) {
1510 path_put_conditional(path, nd);
1511 return err;
1512 }
1513 if (err)
1514 nd->flags |= LOOKUP_JUMPED;
1515 return 0;
1516 }
1517
1518 static inline int may_lookup(struct nameidata *nd)
1519 {
1520 if (nd->flags & LOOKUP_RCU) {
1521 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1522 if (err != -ECHILD)
1523 return err;
1524 if (unlazy_walk(nd, NULL))
1525 return -ECHILD;
1526 }
1527 return inode_permission(nd->inode, MAY_EXEC);
1528 }
1529
1530 static inline int handle_dots(struct nameidata *nd, int type)
1531 {
1532 if (type == LAST_DOTDOT) {
1533 if (nd->flags & LOOKUP_RCU) {
1534 if (follow_dotdot_rcu(nd))
1535 return -ECHILD;
1536 } else
1537 follow_dotdot(nd);
1538 }
1539 return 0;
1540 }
1541
1542 static void terminate_walk(struct nameidata *nd)
1543 {
1544 if (!(nd->flags & LOOKUP_RCU)) {
1545 path_put(&nd->path);
1546 } else {
1547 nd->flags &= ~LOOKUP_RCU;
1548 if (!(nd->flags & LOOKUP_ROOT))
1549 nd->root.mnt = NULL;
1550 rcu_read_unlock();
1551 }
1552 }
1553
1554 /*
1555 * Do we need to follow links? We _really_ want to be able
1556 * to do this check without having to look at inode->i_op,
1557 * so we keep a cache of "no, this doesn't need follow_link"
1558 * for the common case.
1559 */
1560 static inline int should_follow_link(struct dentry *dentry, int follow)
1561 {
1562 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1563 }
1564
1565 static inline int walk_component(struct nameidata *nd, struct path *path,
1566 int follow)
1567 {
1568 struct inode *inode;
1569 int err;
1570 /*
1571 * "." and ".." are special - ".." especially so because it has
1572 * to be able to know about the current root directory and
1573 * parent relationships.
1574 */
1575 if (unlikely(nd->last_type != LAST_NORM))
1576 return handle_dots(nd, nd->last_type);
1577 err = lookup_fast(nd, path, &inode);
1578 if (unlikely(err)) {
1579 if (err < 0)
1580 goto out_err;
1581
1582 err = lookup_slow(nd, path);
1583 if (err < 0)
1584 goto out_err;
1585
1586 inode = path->dentry->d_inode;
1587 }
1588 err = -ENOENT;
1589 if (!inode || d_is_negative(path->dentry))
1590 goto out_path_put;
1591
1592 if (should_follow_link(path->dentry, follow)) {
1593 if (nd->flags & LOOKUP_RCU) {
1594 if (unlikely(unlazy_walk(nd, path->dentry))) {
1595 err = -ECHILD;
1596 goto out_err;
1597 }
1598 }
1599 BUG_ON(inode != path->dentry->d_inode);
1600 return 1;
1601 }
1602 path_to_nameidata(path, nd);
1603 nd->inode = inode;
1604 return 0;
1605
1606 out_path_put:
1607 path_to_nameidata(path, nd);
1608 out_err:
1609 terminate_walk(nd);
1610 return err;
1611 }
1612
1613 /*
1614 * This limits recursive symlink follows to 8, while
1615 * limiting consecutive symlinks to 40.
1616 *
1617 * Without that kind of total limit, nasty chains of consecutive
1618 * symlinks can cause almost arbitrarily long lookups.
1619 */
1620 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1621 {
1622 int res;
1623
1624 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1625 path_put_conditional(path, nd);
1626 path_put(&nd->path);
1627 return -ELOOP;
1628 }
1629 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1630
1631 nd->depth++;
1632 current->link_count++;
1633
1634 do {
1635 struct path link = *path;
1636 void *cookie;
1637
1638 res = follow_link(&link, nd, &cookie);
1639 if (res)
1640 break;
1641 res = walk_component(nd, path, LOOKUP_FOLLOW);
1642 put_link(nd, &link, cookie);
1643 } while (res > 0);
1644
1645 current->link_count--;
1646 nd->depth--;
1647 return res;
1648 }
1649
1650 /*
1651 * We can do the critical dentry name comparison and hashing
1652 * operations one word at a time, but we are limited to:
1653 *
1654 * - Architectures with fast unaligned word accesses. We could
1655 * do a "get_unaligned()" if this helps and is sufficiently
1656 * fast.
1657 *
1658 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1659 * do not trap on the (extremely unlikely) case of a page
1660 * crossing operation.
1661 *
1662 * - Furthermore, we need an efficient 64-bit compile for the
1663 * 64-bit case in order to generate the "number of bytes in
1664 * the final mask". Again, that could be replaced with a
1665 * efficient population count instruction or similar.
1666 */
1667 #ifdef CONFIG_DCACHE_WORD_ACCESS
1668
1669 #include <asm/word-at-a-time.h>
1670
1671 #ifdef CONFIG_64BIT
1672
1673 static inline unsigned int fold_hash(unsigned long hash)
1674 {
1675 return hash_64(hash, 32);
1676 }
1677
1678 #else /* 32-bit case */
1679
1680 #define fold_hash(x) (x)
1681
1682 #endif
1683
1684 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1685 {
1686 unsigned long a, mask;
1687 unsigned long hash = 0;
1688
1689 for (;;) {
1690 a = load_unaligned_zeropad(name);
1691 if (len < sizeof(unsigned long))
1692 break;
1693 hash += a;
1694 hash *= 9;
1695 name += sizeof(unsigned long);
1696 len -= sizeof(unsigned long);
1697 if (!len)
1698 goto done;
1699 }
1700 mask = bytemask_from_count(len);
1701 hash += mask & a;
1702 done:
1703 return fold_hash(hash);
1704 }
1705 EXPORT_SYMBOL(full_name_hash);
1706
1707 /*
1708 * Calculate the length and hash of the path component, and
1709 * return the "hash_len" as the result.
1710 */
1711 static inline u64 hash_name(const char *name)
1712 {
1713 unsigned long a, b, adata, bdata, mask, hash, len;
1714 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1715
1716 hash = a = 0;
1717 len = -sizeof(unsigned long);
1718 do {
1719 hash = (hash + a) * 9;
1720 len += sizeof(unsigned long);
1721 a = load_unaligned_zeropad(name+len);
1722 b = a ^ REPEAT_BYTE('/');
1723 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1724
1725 adata = prep_zero_mask(a, adata, &constants);
1726 bdata = prep_zero_mask(b, bdata, &constants);
1727
1728 mask = create_zero_mask(adata | bdata);
1729
1730 hash += a & zero_bytemask(mask);
1731 len += find_zero(mask);
1732 return hashlen_create(fold_hash(hash), len);
1733 }
1734
1735 #else
1736
1737 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1738 {
1739 unsigned long hash = init_name_hash();
1740 while (len--)
1741 hash = partial_name_hash(*name++, hash);
1742 return end_name_hash(hash);
1743 }
1744 EXPORT_SYMBOL(full_name_hash);
1745
1746 /*
1747 * We know there's a real path component here of at least
1748 * one character.
1749 */
1750 static inline u64 hash_name(const char *name)
1751 {
1752 unsigned long hash = init_name_hash();
1753 unsigned long len = 0, c;
1754
1755 c = (unsigned char)*name;
1756 do {
1757 len++;
1758 hash = partial_name_hash(c, hash);
1759 c = (unsigned char)name[len];
1760 } while (c && c != '/');
1761 return hashlen_create(end_name_hash(hash), len);
1762 }
1763
1764 #endif
1765
1766 /*
1767 * Name resolution.
1768 * This is the basic name resolution function, turning a pathname into
1769 * the final dentry. We expect 'base' to be positive and a directory.
1770 *
1771 * Returns 0 and nd will have valid dentry and mnt on success.
1772 * Returns error and drops reference to input namei data on failure.
1773 */
1774 static int link_path_walk(const char *name, struct nameidata *nd)
1775 {
1776 struct path next;
1777 int err;
1778
1779 while (*name=='/')
1780 name++;
1781 if (!*name)
1782 return 0;
1783
1784 /* At this point we know we have a real path component. */
1785 for(;;) {
1786 u64 hash_len;
1787 int type;
1788
1789 err = may_lookup(nd);
1790 if (err)
1791 break;
1792
1793 hash_len = hash_name(name);
1794
1795 type = LAST_NORM;
1796 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1797 case 2:
1798 if (name[1] == '.') {
1799 type = LAST_DOTDOT;
1800 nd->flags |= LOOKUP_JUMPED;
1801 }
1802 break;
1803 case 1:
1804 type = LAST_DOT;
1805 }
1806 if (likely(type == LAST_NORM)) {
1807 struct dentry *parent = nd->path.dentry;
1808 nd->flags &= ~LOOKUP_JUMPED;
1809 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1810 struct qstr this = { { .hash_len = hash_len }, .name = name };
1811 err = parent->d_op->d_hash(parent, &this);
1812 if (err < 0)
1813 break;
1814 hash_len = this.hash_len;
1815 name = this.name;
1816 }
1817 }
1818
1819 nd->last.hash_len = hash_len;
1820 nd->last.name = name;
1821 nd->last_type = type;
1822
1823 name += hashlen_len(hash_len);
1824 if (!*name)
1825 return 0;
1826 /*
1827 * If it wasn't NUL, we know it was '/'. Skip that
1828 * slash, and continue until no more slashes.
1829 */
1830 do {
1831 name++;
1832 } while (unlikely(*name == '/'));
1833 if (!*name)
1834 return 0;
1835
1836 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1837 if (err < 0)
1838 return err;
1839
1840 if (err) {
1841 err = nested_symlink(&next, nd);
1842 if (err)
1843 return err;
1844 }
1845 if (!d_can_lookup(nd->path.dentry)) {
1846 err = -ENOTDIR;
1847 break;
1848 }
1849 }
1850 terminate_walk(nd);
1851 return err;
1852 }
1853
1854 static int path_init(int dfd, const char *name, unsigned int flags,
1855 struct nameidata *nd)
1856 {
1857 int retval = 0;
1858
1859 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1860 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1861 nd->depth = 0;
1862 nd->base = NULL;
1863 if (flags & LOOKUP_ROOT) {
1864 struct dentry *root = nd->root.dentry;
1865 struct inode *inode = root->d_inode;
1866 if (*name) {
1867 if (!d_can_lookup(root))
1868 return -ENOTDIR;
1869 retval = inode_permission(inode, MAY_EXEC);
1870 if (retval)
1871 return retval;
1872 }
1873 nd->path = nd->root;
1874 nd->inode = inode;
1875 if (flags & LOOKUP_RCU) {
1876 rcu_read_lock();
1877 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1878 nd->m_seq = read_seqbegin(&mount_lock);
1879 } else {
1880 path_get(&nd->path);
1881 }
1882 goto done;
1883 }
1884
1885 nd->root.mnt = NULL;
1886
1887 nd->m_seq = read_seqbegin(&mount_lock);
1888 if (*name=='/') {
1889 if (flags & LOOKUP_RCU) {
1890 rcu_read_lock();
1891 nd->seq = set_root_rcu(nd);
1892 } else {
1893 set_root(nd);
1894 path_get(&nd->root);
1895 }
1896 nd->path = nd->root;
1897 } else if (dfd == AT_FDCWD) {
1898 if (flags & LOOKUP_RCU) {
1899 struct fs_struct *fs = current->fs;
1900 unsigned seq;
1901
1902 rcu_read_lock();
1903
1904 do {
1905 seq = read_seqcount_begin(&fs->seq);
1906 nd->path = fs->pwd;
1907 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1908 } while (read_seqcount_retry(&fs->seq, seq));
1909 } else {
1910 get_fs_pwd(current->fs, &nd->path);
1911 }
1912 } else {
1913 /* Caller must check execute permissions on the starting path component */
1914 struct fd f = fdget_raw(dfd);
1915 struct dentry *dentry;
1916
1917 if (!f.file)
1918 return -EBADF;
1919
1920 dentry = f.file->f_path.dentry;
1921
1922 if (*name) {
1923 if (!d_can_lookup(dentry)) {
1924 fdput(f);
1925 return -ENOTDIR;
1926 }
1927 }
1928
1929 nd->path = f.file->f_path;
1930 if (flags & LOOKUP_RCU) {
1931 if (f.flags & FDPUT_FPUT)
1932 nd->base = f.file;
1933 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1934 rcu_read_lock();
1935 } else {
1936 path_get(&nd->path);
1937 fdput(f);
1938 }
1939 }
1940
1941 nd->inode = nd->path.dentry->d_inode;
1942 if (!(flags & LOOKUP_RCU))
1943 goto done;
1944 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1945 goto done;
1946 if (!(nd->flags & LOOKUP_ROOT))
1947 nd->root.mnt = NULL;
1948 rcu_read_unlock();
1949 return -ECHILD;
1950 done:
1951 current->total_link_count = 0;
1952 return link_path_walk(name, nd);
1953 }
1954
1955 static void path_cleanup(struct nameidata *nd)
1956 {
1957 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1958 path_put(&nd->root);
1959 nd->root.mnt = NULL;
1960 }
1961 if (unlikely(nd->base))
1962 fput(nd->base);
1963 }
1964
1965 static inline int lookup_last(struct nameidata *nd, struct path *path)
1966 {
1967 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1968 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1969
1970 nd->flags &= ~LOOKUP_PARENT;
1971 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1972 }
1973
1974 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1975 static int path_lookupat(int dfd, const char *name,
1976 unsigned int flags, struct nameidata *nd)
1977 {
1978 struct path path;
1979 int err;
1980
1981 /*
1982 * Path walking is largely split up into 2 different synchronisation
1983 * schemes, rcu-walk and ref-walk (explained in
1984 * Documentation/filesystems/path-lookup.txt). These share much of the
1985 * path walk code, but some things particularly setup, cleanup, and
1986 * following mounts are sufficiently divergent that functions are
1987 * duplicated. Typically there is a function foo(), and its RCU
1988 * analogue, foo_rcu().
1989 *
1990 * -ECHILD is the error number of choice (just to avoid clashes) that
1991 * is returned if some aspect of an rcu-walk fails. Such an error must
1992 * be handled by restarting a traditional ref-walk (which will always
1993 * be able to complete).
1994 */
1995 err = path_init(dfd, name, flags, nd);
1996 if (!err && !(flags & LOOKUP_PARENT)) {
1997 err = lookup_last(nd, &path);
1998 while (err > 0) {
1999 void *cookie;
2000 struct path link = path;
2001 err = may_follow_link(&link, nd);
2002 if (unlikely(err))
2003 break;
2004 nd->flags |= LOOKUP_PARENT;
2005 err = follow_link(&link, nd, &cookie);
2006 if (err)
2007 break;
2008 err = lookup_last(nd, &path);
2009 put_link(nd, &link, cookie);
2010 }
2011 }
2012
2013 if (!err)
2014 err = complete_walk(nd);
2015
2016 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2017 if (!d_can_lookup(nd->path.dentry)) {
2018 path_put(&nd->path);
2019 err = -ENOTDIR;
2020 }
2021 }
2022
2023 path_cleanup(nd);
2024 return err;
2025 }
2026
2027 static int filename_lookup(int dfd, struct filename *name,
2028 unsigned int flags, struct nameidata *nd)
2029 {
2030 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2031 if (unlikely(retval == -ECHILD))
2032 retval = path_lookupat(dfd, name->name, flags, nd);
2033 if (unlikely(retval == -ESTALE))
2034 retval = path_lookupat(dfd, name->name,
2035 flags | LOOKUP_REVAL, nd);
2036
2037 if (likely(!retval))
2038 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2039 return retval;
2040 }
2041
2042 static int do_path_lookup(int dfd, const char *name,
2043 unsigned int flags, struct nameidata *nd)
2044 {
2045 struct filename *filename = getname_kernel(name);
2046 int retval = PTR_ERR(filename);
2047
2048 if (!IS_ERR(filename)) {
2049 retval = filename_lookup(dfd, filename, flags, nd);
2050 putname(filename);
2051 }
2052 return retval;
2053 }
2054
2055 /* does lookup, returns the object with parent locked */
2056 struct dentry *kern_path_locked(const char *name, struct path *path)
2057 {
2058 struct filename *filename = getname_kernel(name);
2059 struct nameidata nd;
2060 struct dentry *d;
2061 int err;
2062
2063 if (IS_ERR(filename))
2064 return ERR_CAST(filename);
2065
2066 err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd);
2067 if (err) {
2068 d = ERR_PTR(err);
2069 goto out;
2070 }
2071 if (nd.last_type != LAST_NORM) {
2072 path_put(&nd.path);
2073 d = ERR_PTR(-EINVAL);
2074 goto out;
2075 }
2076 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2077 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2078 if (IS_ERR(d)) {
2079 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2080 path_put(&nd.path);
2081 goto out;
2082 }
2083 *path = nd.path;
2084 out:
2085 putname(filename);
2086 return d;
2087 }
2088
2089 int kern_path(const char *name, unsigned int flags, struct path *path)
2090 {
2091 struct nameidata nd;
2092 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2093 if (!res)
2094 *path = nd.path;
2095 return res;
2096 }
2097 EXPORT_SYMBOL(kern_path);
2098
2099 /**
2100 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2101 * @dentry: pointer to dentry of the base directory
2102 * @mnt: pointer to vfs mount of the base directory
2103 * @name: pointer to file name
2104 * @flags: lookup flags
2105 * @path: pointer to struct path to fill
2106 */
2107 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2108 const char *name, unsigned int flags,
2109 struct path *path)
2110 {
2111 struct nameidata nd;
2112 int err;
2113 nd.root.dentry = dentry;
2114 nd.root.mnt = mnt;
2115 BUG_ON(flags & LOOKUP_PARENT);
2116 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2117 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2118 if (!err)
2119 *path = nd.path;
2120 return err;
2121 }
2122 EXPORT_SYMBOL(vfs_path_lookup);
2123
2124 /*
2125 * Restricted form of lookup. Doesn't follow links, single-component only,
2126 * needs parent already locked. Doesn't follow mounts.
2127 * SMP-safe.
2128 */
2129 static struct dentry *lookup_hash(struct nameidata *nd)
2130 {
2131 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2132 }
2133
2134 /**
2135 * lookup_one_len - filesystem helper to lookup single pathname component
2136 * @name: pathname component to lookup
2137 * @base: base directory to lookup from
2138 * @len: maximum length @len should be interpreted to
2139 *
2140 * Note that this routine is purely a helper for filesystem usage and should
2141 * not be called by generic code. Also note that by using this function the
2142 * nameidata argument is passed to the filesystem methods and a filesystem
2143 * using this helper needs to be prepared for that.
2144 */
2145 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2146 {
2147 struct qstr this;
2148 unsigned int c;
2149 int err;
2150
2151 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2152
2153 this.name = name;
2154 this.len = len;
2155 this.hash = full_name_hash(name, len);
2156 if (!len)
2157 return ERR_PTR(-EACCES);
2158
2159 if (unlikely(name[0] == '.')) {
2160 if (len < 2 || (len == 2 && name[1] == '.'))
2161 return ERR_PTR(-EACCES);
2162 }
2163
2164 while (len--) {
2165 c = *(const unsigned char *)name++;
2166 if (c == '/' || c == '\0')
2167 return ERR_PTR(-EACCES);
2168 }
2169 /*
2170 * See if the low-level filesystem might want
2171 * to use its own hash..
2172 */
2173 if (base->d_flags & DCACHE_OP_HASH) {
2174 int err = base->d_op->d_hash(base, &this);
2175 if (err < 0)
2176 return ERR_PTR(err);
2177 }
2178
2179 err = inode_permission(base->d_inode, MAY_EXEC);
2180 if (err)
2181 return ERR_PTR(err);
2182
2183 return __lookup_hash(&this, base, 0);
2184 }
2185 EXPORT_SYMBOL(lookup_one_len);
2186
2187 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2188 struct path *path, int *empty)
2189 {
2190 struct nameidata nd;
2191 struct filename *tmp = getname_flags(name, flags, empty);
2192 int err = PTR_ERR(tmp);
2193 if (!IS_ERR(tmp)) {
2194
2195 BUG_ON(flags & LOOKUP_PARENT);
2196
2197 err = filename_lookup(dfd, tmp, flags, &nd);
2198 putname(tmp);
2199 if (!err)
2200 *path = nd.path;
2201 }
2202 return err;
2203 }
2204
2205 int user_path_at(int dfd, const char __user *name, unsigned flags,
2206 struct path *path)
2207 {
2208 return user_path_at_empty(dfd, name, flags, path, NULL);
2209 }
2210 EXPORT_SYMBOL(user_path_at);
2211
2212 /*
2213 * NB: most callers don't do anything directly with the reference to the
2214 * to struct filename, but the nd->last pointer points into the name string
2215 * allocated by getname. So we must hold the reference to it until all
2216 * path-walking is complete.
2217 */
2218 static struct filename *
2219 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2220 unsigned int flags)
2221 {
2222 struct filename *s = getname(path);
2223 int error;
2224
2225 /* only LOOKUP_REVAL is allowed in extra flags */
2226 flags &= LOOKUP_REVAL;
2227
2228 if (IS_ERR(s))
2229 return s;
2230
2231 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2232 if (error) {
2233 putname(s);
2234 return ERR_PTR(error);
2235 }
2236
2237 return s;
2238 }
2239
2240 /**
2241 * mountpoint_last - look up last component for umount
2242 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2243 * @path: pointer to container for result
2244 *
2245 * This is a special lookup_last function just for umount. In this case, we
2246 * need to resolve the path without doing any revalidation.
2247 *
2248 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2249 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2250 * in almost all cases, this lookup will be served out of the dcache. The only
2251 * cases where it won't are if nd->last refers to a symlink or the path is
2252 * bogus and it doesn't exist.
2253 *
2254 * Returns:
2255 * -error: if there was an error during lookup. This includes -ENOENT if the
2256 * lookup found a negative dentry. The nd->path reference will also be
2257 * put in this case.
2258 *
2259 * 0: if we successfully resolved nd->path and found it to not to be a
2260 * symlink that needs to be followed. "path" will also be populated.
2261 * The nd->path reference will also be put.
2262 *
2263 * 1: if we successfully resolved nd->last and found it to be a symlink
2264 * that needs to be followed. "path" will be populated with the path
2265 * to the link, and nd->path will *not* be put.
2266 */
2267 static int
2268 mountpoint_last(struct nameidata *nd, struct path *path)
2269 {
2270 int error = 0;
2271 struct dentry *dentry;
2272 struct dentry *dir = nd->path.dentry;
2273
2274 /* If we're in rcuwalk, drop out of it to handle last component */
2275 if (nd->flags & LOOKUP_RCU) {
2276 if (unlazy_walk(nd, NULL)) {
2277 error = -ECHILD;
2278 goto out;
2279 }
2280 }
2281
2282 nd->flags &= ~LOOKUP_PARENT;
2283
2284 if (unlikely(nd->last_type != LAST_NORM)) {
2285 error = handle_dots(nd, nd->last_type);
2286 if (error)
2287 goto out;
2288 dentry = dget(nd->path.dentry);
2289 goto done;
2290 }
2291
2292 mutex_lock(&dir->d_inode->i_mutex);
2293 dentry = d_lookup(dir, &nd->last);
2294 if (!dentry) {
2295 /*
2296 * No cached dentry. Mounted dentries are pinned in the cache,
2297 * so that means that this dentry is probably a symlink or the
2298 * path doesn't actually point to a mounted dentry.
2299 */
2300 dentry = d_alloc(dir, &nd->last);
2301 if (!dentry) {
2302 error = -ENOMEM;
2303 mutex_unlock(&dir->d_inode->i_mutex);
2304 goto out;
2305 }
2306 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2307 error = PTR_ERR(dentry);
2308 if (IS_ERR(dentry)) {
2309 mutex_unlock(&dir->d_inode->i_mutex);
2310 goto out;
2311 }
2312 }
2313 mutex_unlock(&dir->d_inode->i_mutex);
2314
2315 done:
2316 if (!dentry->d_inode || d_is_negative(dentry)) {
2317 error = -ENOENT;
2318 dput(dentry);
2319 goto out;
2320 }
2321 path->dentry = dentry;
2322 path->mnt = nd->path.mnt;
2323 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2324 return 1;
2325 mntget(path->mnt);
2326 follow_mount(path);
2327 error = 0;
2328 out:
2329 terminate_walk(nd);
2330 return error;
2331 }
2332
2333 /**
2334 * path_mountpoint - look up a path to be umounted
2335 * @dfd: directory file descriptor to start walk from
2336 * @name: full pathname to walk
2337 * @path: pointer to container for result
2338 * @flags: lookup flags
2339 *
2340 * Look up the given name, but don't attempt to revalidate the last component.
2341 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2342 */
2343 static int
2344 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2345 {
2346 struct nameidata nd;
2347 int err;
2348
2349 err = path_init(dfd, name, flags, &nd);
2350 if (unlikely(err))
2351 goto out;
2352
2353 err = mountpoint_last(&nd, path);
2354 while (err > 0) {
2355 void *cookie;
2356 struct path link = *path;
2357 err = may_follow_link(&link, &nd);
2358 if (unlikely(err))
2359 break;
2360 nd.flags |= LOOKUP_PARENT;
2361 err = follow_link(&link, &nd, &cookie);
2362 if (err)
2363 break;
2364 err = mountpoint_last(&nd, path);
2365 put_link(&nd, &link, cookie);
2366 }
2367 out:
2368 path_cleanup(&nd);
2369 return err;
2370 }
2371
2372 static int
2373 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2374 unsigned int flags)
2375 {
2376 int error;
2377 if (IS_ERR(s))
2378 return PTR_ERR(s);
2379 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2380 if (unlikely(error == -ECHILD))
2381 error = path_mountpoint(dfd, s->name, path, flags);
2382 if (unlikely(error == -ESTALE))
2383 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2384 if (likely(!error))
2385 audit_inode(s, path->dentry, 0);
2386 putname(s);
2387 return error;
2388 }
2389
2390 /**
2391 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2392 * @dfd: directory file descriptor
2393 * @name: pathname from userland
2394 * @flags: lookup flags
2395 * @path: pointer to container to hold result
2396 *
2397 * A umount is a special case for path walking. We're not actually interested
2398 * in the inode in this situation, and ESTALE errors can be a problem. We
2399 * simply want track down the dentry and vfsmount attached at the mountpoint
2400 * and avoid revalidating the last component.
2401 *
2402 * Returns 0 and populates "path" on success.
2403 */
2404 int
2405 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2406 struct path *path)
2407 {
2408 return filename_mountpoint(dfd, getname(name), path, flags);
2409 }
2410
2411 int
2412 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2413 unsigned int flags)
2414 {
2415 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2416 }
2417 EXPORT_SYMBOL(kern_path_mountpoint);
2418
2419 int __check_sticky(struct inode *dir, struct inode *inode)
2420 {
2421 kuid_t fsuid = current_fsuid();
2422
2423 if (uid_eq(inode->i_uid, fsuid))
2424 return 0;
2425 if (uid_eq(dir->i_uid, fsuid))
2426 return 0;
2427 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2428 }
2429 EXPORT_SYMBOL(__check_sticky);
2430
2431 /*
2432 * Check whether we can remove a link victim from directory dir, check
2433 * whether the type of victim is right.
2434 * 1. We can't do it if dir is read-only (done in permission())
2435 * 2. We should have write and exec permissions on dir
2436 * 3. We can't remove anything from append-only dir
2437 * 4. We can't do anything with immutable dir (done in permission())
2438 * 5. If the sticky bit on dir is set we should either
2439 * a. be owner of dir, or
2440 * b. be owner of victim, or
2441 * c. have CAP_FOWNER capability
2442 * 6. If the victim is append-only or immutable we can't do antyhing with
2443 * links pointing to it.
2444 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2445 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2446 * 9. We can't remove a root or mountpoint.
2447 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2448 * nfs_async_unlink().
2449 */
2450 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2451 {
2452 struct inode *inode = victim->d_inode;
2453 int error;
2454
2455 if (d_is_negative(victim))
2456 return -ENOENT;
2457 BUG_ON(!inode);
2458
2459 BUG_ON(victim->d_parent->d_inode != dir);
2460 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2461
2462 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2463 if (error)
2464 return error;
2465 if (IS_APPEND(dir))
2466 return -EPERM;
2467
2468 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2469 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2470 return -EPERM;
2471 if (isdir) {
2472 if (!d_is_dir(victim))
2473 return -ENOTDIR;
2474 if (IS_ROOT(victim))
2475 return -EBUSY;
2476 } else if (d_is_dir(victim))
2477 return -EISDIR;
2478 if (IS_DEADDIR(dir))
2479 return -ENOENT;
2480 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2481 return -EBUSY;
2482 return 0;
2483 }
2484
2485 /* Check whether we can create an object with dentry child in directory
2486 * dir.
2487 * 1. We can't do it if child already exists (open has special treatment for
2488 * this case, but since we are inlined it's OK)
2489 * 2. We can't do it if dir is read-only (done in permission())
2490 * 3. We should have write and exec permissions on dir
2491 * 4. We can't do it if dir is immutable (done in permission())
2492 */
2493 static inline int may_create(struct inode *dir, struct dentry *child)
2494 {
2495 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2496 if (child->d_inode)
2497 return -EEXIST;
2498 if (IS_DEADDIR(dir))
2499 return -ENOENT;
2500 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2501 }
2502
2503 /*
2504 * p1 and p2 should be directories on the same fs.
2505 */
2506 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2507 {
2508 struct dentry *p;
2509
2510 if (p1 == p2) {
2511 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2512 return NULL;
2513 }
2514
2515 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2516
2517 p = d_ancestor(p2, p1);
2518 if (p) {
2519 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2520 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2521 return p;
2522 }
2523
2524 p = d_ancestor(p1, p2);
2525 if (p) {
2526 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2527 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2528 return p;
2529 }
2530
2531 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2532 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2533 return NULL;
2534 }
2535 EXPORT_SYMBOL(lock_rename);
2536
2537 void unlock_rename(struct dentry *p1, struct dentry *p2)
2538 {
2539 mutex_unlock(&p1->d_inode->i_mutex);
2540 if (p1 != p2) {
2541 mutex_unlock(&p2->d_inode->i_mutex);
2542 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2543 }
2544 }
2545 EXPORT_SYMBOL(unlock_rename);
2546
2547 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2548 bool want_excl)
2549 {
2550 int error = may_create(dir, dentry);
2551 if (error)
2552 return error;
2553
2554 if (!dir->i_op->create)
2555 return -EACCES; /* shouldn't it be ENOSYS? */
2556 mode &= S_IALLUGO;
2557 mode |= S_IFREG;
2558 error = security_inode_create(dir, dentry, mode);
2559 if (error)
2560 return error;
2561 error = dir->i_op->create(dir, dentry, mode, want_excl);
2562 if (!error)
2563 fsnotify_create(dir, dentry);
2564 return error;
2565 }
2566 EXPORT_SYMBOL(vfs_create);
2567
2568 static int may_open(struct path *path, int acc_mode, int flag)
2569 {
2570 struct dentry *dentry = path->dentry;
2571 struct inode *inode = dentry->d_inode;
2572 int error;
2573
2574 /* O_PATH? */
2575 if (!acc_mode)
2576 return 0;
2577
2578 if (!inode)
2579 return -ENOENT;
2580
2581 switch (inode->i_mode & S_IFMT) {
2582 case S_IFLNK:
2583 return -ELOOP;
2584 case S_IFDIR:
2585 if (acc_mode & MAY_WRITE)
2586 return -EISDIR;
2587 break;
2588 case S_IFBLK:
2589 case S_IFCHR:
2590 if (path->mnt->mnt_flags & MNT_NODEV)
2591 return -EACCES;
2592 /*FALLTHRU*/
2593 case S_IFIFO:
2594 case S_IFSOCK:
2595 flag &= ~O_TRUNC;
2596 break;
2597 }
2598
2599 error = inode_permission(inode, acc_mode);
2600 if (error)
2601 return error;
2602
2603 /*
2604 * An append-only file must be opened in append mode for writing.
2605 */
2606 if (IS_APPEND(inode)) {
2607 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2608 return -EPERM;
2609 if (flag & O_TRUNC)
2610 return -EPERM;
2611 }
2612
2613 /* O_NOATIME can only be set by the owner or superuser */
2614 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2615 return -EPERM;
2616
2617 return 0;
2618 }
2619
2620 static int handle_truncate(struct file *filp)
2621 {
2622 struct path *path = &filp->f_path;
2623 struct inode *inode = path->dentry->d_inode;
2624 int error = get_write_access(inode);
2625 if (error)
2626 return error;
2627 /*
2628 * Refuse to truncate files with mandatory locks held on them.
2629 */
2630 error = locks_verify_locked(filp);
2631 if (!error)
2632 error = security_path_truncate(path);
2633 if (!error) {
2634 error = do_truncate(path->dentry, 0,
2635 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2636 filp);
2637 }
2638 put_write_access(inode);
2639 return error;
2640 }
2641
2642 static inline int open_to_namei_flags(int flag)
2643 {
2644 if ((flag & O_ACCMODE) == 3)
2645 flag--;
2646 return flag;
2647 }
2648
2649 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2650 {
2651 int error = security_path_mknod(dir, dentry, mode, 0);
2652 if (error)
2653 return error;
2654
2655 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2656 if (error)
2657 return error;
2658
2659 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2660 }
2661
2662 /*
2663 * Attempt to atomically look up, create and open a file from a negative
2664 * dentry.
2665 *
2666 * Returns 0 if successful. The file will have been created and attached to
2667 * @file by the filesystem calling finish_open().
2668 *
2669 * Returns 1 if the file was looked up only or didn't need creating. The
2670 * caller will need to perform the open themselves. @path will have been
2671 * updated to point to the new dentry. This may be negative.
2672 *
2673 * Returns an error code otherwise.
2674 */
2675 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2676 struct path *path, struct file *file,
2677 const struct open_flags *op,
2678 bool got_write, bool need_lookup,
2679 int *opened)
2680 {
2681 struct inode *dir = nd->path.dentry->d_inode;
2682 unsigned open_flag = open_to_namei_flags(op->open_flag);
2683 umode_t mode;
2684 int error;
2685 int acc_mode;
2686 int create_error = 0;
2687 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2688 bool excl;
2689
2690 BUG_ON(dentry->d_inode);
2691
2692 /* Don't create child dentry for a dead directory. */
2693 if (unlikely(IS_DEADDIR(dir))) {
2694 error = -ENOENT;
2695 goto out;
2696 }
2697
2698 mode = op->mode;
2699 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2700 mode &= ~current_umask();
2701
2702 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2703 if (excl)
2704 open_flag &= ~O_TRUNC;
2705
2706 /*
2707 * Checking write permission is tricky, bacuse we don't know if we are
2708 * going to actually need it: O_CREAT opens should work as long as the
2709 * file exists. But checking existence breaks atomicity. The trick is
2710 * to check access and if not granted clear O_CREAT from the flags.
2711 *
2712 * Another problem is returing the "right" error value (e.g. for an
2713 * O_EXCL open we want to return EEXIST not EROFS).
2714 */
2715 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2716 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2717 if (!(open_flag & O_CREAT)) {
2718 /*
2719 * No O_CREATE -> atomicity not a requirement -> fall
2720 * back to lookup + open
2721 */
2722 goto no_open;
2723 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2724 /* Fall back and fail with the right error */
2725 create_error = -EROFS;
2726 goto no_open;
2727 } else {
2728 /* No side effects, safe to clear O_CREAT */
2729 create_error = -EROFS;
2730 open_flag &= ~O_CREAT;
2731 }
2732 }
2733
2734 if (open_flag & O_CREAT) {
2735 error = may_o_create(&nd->path, dentry, mode);
2736 if (error) {
2737 create_error = error;
2738 if (open_flag & O_EXCL)
2739 goto no_open;
2740 open_flag &= ~O_CREAT;
2741 }
2742 }
2743
2744 if (nd->flags & LOOKUP_DIRECTORY)
2745 open_flag |= O_DIRECTORY;
2746
2747 file->f_path.dentry = DENTRY_NOT_SET;
2748 file->f_path.mnt = nd->path.mnt;
2749 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2750 opened);
2751 if (error < 0) {
2752 if (create_error && error == -ENOENT)
2753 error = create_error;
2754 goto out;
2755 }
2756
2757 if (error) { /* returned 1, that is */
2758 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2759 error = -EIO;
2760 goto out;
2761 }
2762 if (file->f_path.dentry) {
2763 dput(dentry);
2764 dentry = file->f_path.dentry;
2765 }
2766 if (*opened & FILE_CREATED)
2767 fsnotify_create(dir, dentry);
2768 if (!dentry->d_inode) {
2769 WARN_ON(*opened & FILE_CREATED);
2770 if (create_error) {
2771 error = create_error;
2772 goto out;
2773 }
2774 } else {
2775 if (excl && !(*opened & FILE_CREATED)) {
2776 error = -EEXIST;
2777 goto out;
2778 }
2779 }
2780 goto looked_up;
2781 }
2782
2783 /*
2784 * We didn't have the inode before the open, so check open permission
2785 * here.
2786 */
2787 acc_mode = op->acc_mode;
2788 if (*opened & FILE_CREATED) {
2789 WARN_ON(!(open_flag & O_CREAT));
2790 fsnotify_create(dir, dentry);
2791 acc_mode = MAY_OPEN;
2792 }
2793 error = may_open(&file->f_path, acc_mode, open_flag);
2794 if (error)
2795 fput(file);
2796
2797 out:
2798 dput(dentry);
2799 return error;
2800
2801 no_open:
2802 if (need_lookup) {
2803 dentry = lookup_real(dir, dentry, nd->flags);
2804 if (IS_ERR(dentry))
2805 return PTR_ERR(dentry);
2806
2807 if (create_error) {
2808 int open_flag = op->open_flag;
2809
2810 error = create_error;
2811 if ((open_flag & O_EXCL)) {
2812 if (!dentry->d_inode)
2813 goto out;
2814 } else if (!dentry->d_inode) {
2815 goto out;
2816 } else if ((open_flag & O_TRUNC) &&
2817 S_ISREG(dentry->d_inode->i_mode)) {
2818 goto out;
2819 }
2820 /* will fail later, go on to get the right error */
2821 }
2822 }
2823 looked_up:
2824 path->dentry = dentry;
2825 path->mnt = nd->path.mnt;
2826 return 1;
2827 }
2828
2829 /*
2830 * Look up and maybe create and open the last component.
2831 *
2832 * Must be called with i_mutex held on parent.
2833 *
2834 * Returns 0 if the file was successfully atomically created (if necessary) and
2835 * opened. In this case the file will be returned attached to @file.
2836 *
2837 * Returns 1 if the file was not completely opened at this time, though lookups
2838 * and creations will have been performed and the dentry returned in @path will
2839 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2840 * specified then a negative dentry may be returned.
2841 *
2842 * An error code is returned otherwise.
2843 *
2844 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2845 * cleared otherwise prior to returning.
2846 */
2847 static int lookup_open(struct nameidata *nd, struct path *path,
2848 struct file *file,
2849 const struct open_flags *op,
2850 bool got_write, int *opened)
2851 {
2852 struct dentry *dir = nd->path.dentry;
2853 struct inode *dir_inode = dir->d_inode;
2854 struct dentry *dentry;
2855 int error;
2856 bool need_lookup;
2857
2858 *opened &= ~FILE_CREATED;
2859 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2860 if (IS_ERR(dentry))
2861 return PTR_ERR(dentry);
2862
2863 /* Cached positive dentry: will open in f_op->open */
2864 if (!need_lookup && dentry->d_inode)
2865 goto out_no_open;
2866
2867 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2868 return atomic_open(nd, dentry, path, file, op, got_write,
2869 need_lookup, opened);
2870 }
2871
2872 if (need_lookup) {
2873 BUG_ON(dentry->d_inode);
2874
2875 dentry = lookup_real(dir_inode, dentry, nd->flags);
2876 if (IS_ERR(dentry))
2877 return PTR_ERR(dentry);
2878 }
2879
2880 /* Negative dentry, just create the file */
2881 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2882 umode_t mode = op->mode;
2883 if (!IS_POSIXACL(dir->d_inode))
2884 mode &= ~current_umask();
2885 /*
2886 * This write is needed to ensure that a
2887 * rw->ro transition does not occur between
2888 * the time when the file is created and when
2889 * a permanent write count is taken through
2890 * the 'struct file' in finish_open().
2891 */
2892 if (!got_write) {
2893 error = -EROFS;
2894 goto out_dput;
2895 }
2896 *opened |= FILE_CREATED;
2897 error = security_path_mknod(&nd->path, dentry, mode, 0);
2898 if (error)
2899 goto out_dput;
2900 error = vfs_create(dir->d_inode, dentry, mode,
2901 nd->flags & LOOKUP_EXCL);
2902 if (error)
2903 goto out_dput;
2904 }
2905 out_no_open:
2906 path->dentry = dentry;
2907 path->mnt = nd->path.mnt;
2908 return 1;
2909
2910 out_dput:
2911 dput(dentry);
2912 return error;
2913 }
2914
2915 /*
2916 * Handle the last step of open()
2917 */
2918 static int do_last(struct nameidata *nd, struct path *path,
2919 struct file *file, const struct open_flags *op,
2920 int *opened, struct filename *name)
2921 {
2922 struct dentry *dir = nd->path.dentry;
2923 int open_flag = op->open_flag;
2924 bool will_truncate = (open_flag & O_TRUNC) != 0;
2925 bool got_write = false;
2926 int acc_mode = op->acc_mode;
2927 struct inode *inode;
2928 bool symlink_ok = false;
2929 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2930 bool retried = false;
2931 int error;
2932
2933 nd->flags &= ~LOOKUP_PARENT;
2934 nd->flags |= op->intent;
2935
2936 if (nd->last_type != LAST_NORM) {
2937 error = handle_dots(nd, nd->last_type);
2938 if (error)
2939 return error;
2940 goto finish_open;
2941 }
2942
2943 if (!(open_flag & O_CREAT)) {
2944 if (nd->last.name[nd->last.len])
2945 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2946 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2947 symlink_ok = true;
2948 /* we _can_ be in RCU mode here */
2949 error = lookup_fast(nd, path, &inode);
2950 if (likely(!error))
2951 goto finish_lookup;
2952
2953 if (error < 0)
2954 goto out;
2955
2956 BUG_ON(nd->inode != dir->d_inode);
2957 } else {
2958 /* create side of things */
2959 /*
2960 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2961 * has been cleared when we got to the last component we are
2962 * about to look up
2963 */
2964 error = complete_walk(nd);
2965 if (error)
2966 return error;
2967
2968 audit_inode(name, dir, LOOKUP_PARENT);
2969 error = -EISDIR;
2970 /* trailing slashes? */
2971 if (nd->last.name[nd->last.len])
2972 goto out;
2973 }
2974
2975 retry_lookup:
2976 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2977 error = mnt_want_write(nd->path.mnt);
2978 if (!error)
2979 got_write = true;
2980 /*
2981 * do _not_ fail yet - we might not need that or fail with
2982 * a different error; let lookup_open() decide; we'll be
2983 * dropping this one anyway.
2984 */
2985 }
2986 mutex_lock(&dir->d_inode->i_mutex);
2987 error = lookup_open(nd, path, file, op, got_write, opened);
2988 mutex_unlock(&dir->d_inode->i_mutex);
2989
2990 if (error <= 0) {
2991 if (error)
2992 goto out;
2993
2994 if ((*opened & FILE_CREATED) ||
2995 !S_ISREG(file_inode(file)->i_mode))
2996 will_truncate = false;
2997
2998 audit_inode(name, file->f_path.dentry, 0);
2999 goto opened;
3000 }
3001
3002 if (*opened & FILE_CREATED) {
3003 /* Don't check for write permission, don't truncate */
3004 open_flag &= ~O_TRUNC;
3005 will_truncate = false;
3006 acc_mode = MAY_OPEN;
3007 path_to_nameidata(path, nd);
3008 goto finish_open_created;
3009 }
3010
3011 /*
3012 * create/update audit record if it already exists.
3013 */
3014 if (d_is_positive(path->dentry))
3015 audit_inode(name, path->dentry, 0);
3016
3017 /*
3018 * If atomic_open() acquired write access it is dropped now due to
3019 * possible mount and symlink following (this might be optimized away if
3020 * necessary...)
3021 */
3022 if (got_write) {
3023 mnt_drop_write(nd->path.mnt);
3024 got_write = false;
3025 }
3026
3027 error = -EEXIST;
3028 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3029 goto exit_dput;
3030
3031 error = follow_managed(path, nd->flags);
3032 if (error < 0)
3033 goto exit_dput;
3034
3035 if (error)
3036 nd->flags |= LOOKUP_JUMPED;
3037
3038 BUG_ON(nd->flags & LOOKUP_RCU);
3039 inode = path->dentry->d_inode;
3040 finish_lookup:
3041 /* we _can_ be in RCU mode here */
3042 error = -ENOENT;
3043 if (!inode || d_is_negative(path->dentry)) {
3044 path_to_nameidata(path, nd);
3045 goto out;
3046 }
3047
3048 if (should_follow_link(path->dentry, !symlink_ok)) {
3049 if (nd->flags & LOOKUP_RCU) {
3050 if (unlikely(unlazy_walk(nd, path->dentry))) {
3051 error = -ECHILD;
3052 goto out;
3053 }
3054 }
3055 BUG_ON(inode != path->dentry->d_inode);
3056 return 1;
3057 }
3058
3059 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3060 path_to_nameidata(path, nd);
3061 } else {
3062 save_parent.dentry = nd->path.dentry;
3063 save_parent.mnt = mntget(path->mnt);
3064 nd->path.dentry = path->dentry;
3065
3066 }
3067 nd->inode = inode;
3068 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3069 finish_open:
3070 error = complete_walk(nd);
3071 if (error) {
3072 path_put(&save_parent);
3073 return error;
3074 }
3075 audit_inode(name, nd->path.dentry, 0);
3076 error = -EISDIR;
3077 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3078 goto out;
3079 error = -ENOTDIR;
3080 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3081 goto out;
3082 if (!S_ISREG(nd->inode->i_mode))
3083 will_truncate = false;
3084
3085 if (will_truncate) {
3086 error = mnt_want_write(nd->path.mnt);
3087 if (error)
3088 goto out;
3089 got_write = true;
3090 }
3091 finish_open_created:
3092 error = may_open(&nd->path, acc_mode, open_flag);
3093 if (error)
3094 goto out;
3095
3096 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3097 error = vfs_open(&nd->path, file, current_cred());
3098 if (!error) {
3099 *opened |= FILE_OPENED;
3100 } else {
3101 if (error == -EOPENSTALE)
3102 goto stale_open;
3103 goto out;
3104 }
3105 opened:
3106 error = open_check_o_direct(file);
3107 if (error)
3108 goto exit_fput;
3109 error = ima_file_check(file, op->acc_mode, *opened);
3110 if (error)
3111 goto exit_fput;
3112
3113 if (will_truncate) {
3114 error = handle_truncate(file);
3115 if (error)
3116 goto exit_fput;
3117 }
3118 out:
3119 if (got_write)
3120 mnt_drop_write(nd->path.mnt);
3121 path_put(&save_parent);
3122 terminate_walk(nd);
3123 return error;
3124
3125 exit_dput:
3126 path_put_conditional(path, nd);
3127 goto out;
3128 exit_fput:
3129 fput(file);
3130 goto out;
3131
3132 stale_open:
3133 /* If no saved parent or already retried then can't retry */
3134 if (!save_parent.dentry || retried)
3135 goto out;
3136
3137 BUG_ON(save_parent.dentry != dir);
3138 path_put(&nd->path);
3139 nd->path = save_parent;
3140 nd->inode = dir->d_inode;
3141 save_parent.mnt = NULL;
3142 save_parent.dentry = NULL;
3143 if (got_write) {
3144 mnt_drop_write(nd->path.mnt);
3145 got_write = false;
3146 }
3147 retried = true;
3148 goto retry_lookup;
3149 }
3150
3151 static int do_tmpfile(int dfd, struct filename *pathname,
3152 struct nameidata *nd, int flags,
3153 const struct open_flags *op,
3154 struct file *file, int *opened)
3155 {
3156 static const struct qstr name = QSTR_INIT("/", 1);
3157 struct dentry *dentry, *child;
3158 struct inode *dir;
3159 int error = path_lookupat(dfd, pathname->name,
3160 flags | LOOKUP_DIRECTORY, nd);
3161 if (unlikely(error))
3162 return error;
3163 error = mnt_want_write(nd->path.mnt);
3164 if (unlikely(error))
3165 goto out;
3166 /* we want directory to be writable */
3167 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3168 if (error)
3169 goto out2;
3170 dentry = nd->path.dentry;
3171 dir = dentry->d_inode;
3172 if (!dir->i_op->tmpfile) {
3173 error = -EOPNOTSUPP;
3174 goto out2;
3175 }
3176 child = d_alloc(dentry, &name);
3177 if (unlikely(!child)) {
3178 error = -ENOMEM;
3179 goto out2;
3180 }
3181 nd->flags &= ~LOOKUP_DIRECTORY;
3182 nd->flags |= op->intent;
3183 dput(nd->path.dentry);
3184 nd->path.dentry = child;
3185 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3186 if (error)
3187 goto out2;
3188 audit_inode(pathname, nd->path.dentry, 0);
3189 /* Don't check for other permissions, the inode was just created */
3190 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3191 if (error)
3192 goto out2;
3193 file->f_path.mnt = nd->path.mnt;
3194 error = finish_open(file, nd->path.dentry, NULL, opened);
3195 if (error)
3196 goto out2;
3197 error = open_check_o_direct(file);
3198 if (error) {
3199 fput(file);
3200 } else if (!(op->open_flag & O_EXCL)) {
3201 struct inode *inode = file_inode(file);
3202 spin_lock(&inode->i_lock);
3203 inode->i_state |= I_LINKABLE;
3204 spin_unlock(&inode->i_lock);
3205 }
3206 out2:
3207 mnt_drop_write(nd->path.mnt);
3208 out:
3209 path_put(&nd->path);
3210 return error;
3211 }
3212
3213 static struct file *path_openat(int dfd, struct filename *pathname,
3214 struct nameidata *nd, const struct open_flags *op, int flags)
3215 {
3216 struct file *file;
3217 struct path path;
3218 int opened = 0;
3219 int error;
3220
3221 file = get_empty_filp();
3222 if (IS_ERR(file))
3223 return file;
3224
3225 file->f_flags = op->open_flag;
3226
3227 if (unlikely(file->f_flags & __O_TMPFILE)) {
3228 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3229 goto out;
3230 }
3231
3232 error = path_init(dfd, pathname->name, flags, nd);
3233 if (unlikely(error))
3234 goto out;
3235
3236 error = do_last(nd, &path, file, op, &opened, pathname);
3237 while (unlikely(error > 0)) { /* trailing symlink */
3238 struct path link = path;
3239 void *cookie;
3240 if (!(nd->flags & LOOKUP_FOLLOW)) {
3241 path_put_conditional(&path, nd);
3242 path_put(&nd->path);
3243 error = -ELOOP;
3244 break;
3245 }
3246 error = may_follow_link(&link, nd);
3247 if (unlikely(error))
3248 break;
3249 nd->flags |= LOOKUP_PARENT;
3250 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3251 error = follow_link(&link, nd, &cookie);
3252 if (unlikely(error))
3253 break;
3254 error = do_last(nd, &path, file, op, &opened, pathname);
3255 put_link(nd, &link, cookie);
3256 }
3257 out:
3258 path_cleanup(nd);
3259 if (!(opened & FILE_OPENED)) {
3260 BUG_ON(!error);
3261 put_filp(file);
3262 }
3263 if (unlikely(error)) {
3264 if (error == -EOPENSTALE) {
3265 if (flags & LOOKUP_RCU)
3266 error = -ECHILD;
3267 else
3268 error = -ESTALE;
3269 }
3270 file = ERR_PTR(error);
3271 }
3272 return file;
3273 }
3274
3275 struct file *do_filp_open(int dfd, struct filename *pathname,
3276 const struct open_flags *op)
3277 {
3278 struct nameidata nd;
3279 int flags = op->lookup_flags;
3280 struct file *filp;
3281
3282 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3283 if (unlikely(filp == ERR_PTR(-ECHILD)))
3284 filp = path_openat(dfd, pathname, &nd, op, flags);
3285 if (unlikely(filp == ERR_PTR(-ESTALE)))
3286 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3287 return filp;
3288 }
3289
3290 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3291 const char *name, const struct open_flags *op)
3292 {
3293 struct nameidata nd;
3294 struct file *file;
3295 struct filename *filename;
3296 int flags = op->lookup_flags | LOOKUP_ROOT;
3297
3298 nd.root.mnt = mnt;
3299 nd.root.dentry = dentry;
3300
3301 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3302 return ERR_PTR(-ELOOP);
3303
3304 filename = getname_kernel(name);
3305 if (unlikely(IS_ERR(filename)))
3306 return ERR_CAST(filename);
3307
3308 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3309 if (unlikely(file == ERR_PTR(-ECHILD)))
3310 file = path_openat(-1, filename, &nd, op, flags);
3311 if (unlikely(file == ERR_PTR(-ESTALE)))
3312 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3313 putname(filename);
3314 return file;
3315 }
3316
3317 static struct dentry *filename_create(int dfd, struct filename *name,
3318 struct path *path, unsigned int lookup_flags)
3319 {
3320 struct dentry *dentry = ERR_PTR(-EEXIST);
3321 struct nameidata nd;
3322 int err2;
3323 int error;
3324 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3325
3326 /*
3327 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3328 * other flags passed in are ignored!
3329 */
3330 lookup_flags &= LOOKUP_REVAL;
3331
3332 error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd);
3333 if (error)
3334 return ERR_PTR(error);
3335
3336 /*
3337 * Yucky last component or no last component at all?
3338 * (foo/., foo/.., /////)
3339 */
3340 if (nd.last_type != LAST_NORM)
3341 goto out;
3342 nd.flags &= ~LOOKUP_PARENT;
3343 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3344
3345 /* don't fail immediately if it's r/o, at least try to report other errors */
3346 err2 = mnt_want_write(nd.path.mnt);
3347 /*
3348 * Do the final lookup.
3349 */
3350 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3351 dentry = lookup_hash(&nd);
3352 if (IS_ERR(dentry))
3353 goto unlock;
3354
3355 error = -EEXIST;
3356 if (d_is_positive(dentry))
3357 goto fail;
3358
3359 /*
3360 * Special case - lookup gave negative, but... we had foo/bar/
3361 * From the vfs_mknod() POV we just have a negative dentry -
3362 * all is fine. Let's be bastards - you had / on the end, you've
3363 * been asking for (non-existent) directory. -ENOENT for you.
3364 */
3365 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3366 error = -ENOENT;
3367 goto fail;
3368 }
3369 if (unlikely(err2)) {
3370 error = err2;
3371 goto fail;
3372 }
3373 *path = nd.path;
3374 return dentry;
3375 fail:
3376 dput(dentry);
3377 dentry = ERR_PTR(error);
3378 unlock:
3379 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3380 if (!err2)
3381 mnt_drop_write(nd.path.mnt);
3382 out:
3383 path_put(&nd.path);
3384 return dentry;
3385 }
3386
3387 struct dentry *kern_path_create(int dfd, const char *pathname,
3388 struct path *path, unsigned int lookup_flags)
3389 {
3390 struct filename *filename = getname_kernel(pathname);
3391 struct dentry *res;
3392
3393 if (IS_ERR(filename))
3394 return ERR_CAST(filename);
3395 res = filename_create(dfd, filename, path, lookup_flags);
3396 putname(filename);
3397 return res;
3398 }
3399 EXPORT_SYMBOL(kern_path_create);
3400
3401 void done_path_create(struct path *path, struct dentry *dentry)
3402 {
3403 dput(dentry);
3404 mutex_unlock(&path->dentry->d_inode->i_mutex);
3405 mnt_drop_write(path->mnt);
3406 path_put(path);
3407 }
3408 EXPORT_SYMBOL(done_path_create);
3409
3410 struct dentry *user_path_create(int dfd, const char __user *pathname,
3411 struct path *path, unsigned int lookup_flags)
3412 {
3413 struct filename *tmp = getname(pathname);
3414 struct dentry *res;
3415 if (IS_ERR(tmp))
3416 return ERR_CAST(tmp);
3417 res = filename_create(dfd, tmp, path, lookup_flags);
3418 putname(tmp);
3419 return res;
3420 }
3421 EXPORT_SYMBOL(user_path_create);
3422
3423 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3424 {
3425 int error = may_create(dir, dentry);
3426
3427 if (error)
3428 return error;
3429
3430 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3431 return -EPERM;
3432
3433 if (!dir->i_op->mknod)
3434 return -EPERM;
3435
3436 error = devcgroup_inode_mknod(mode, dev);
3437 if (error)
3438 return error;
3439
3440 error = security_inode_mknod(dir, dentry, mode, dev);
3441 if (error)
3442 return error;
3443
3444 error = dir->i_op->mknod(dir, dentry, mode, dev);
3445 if (!error)
3446 fsnotify_create(dir, dentry);
3447 return error;
3448 }
3449 EXPORT_SYMBOL(vfs_mknod);
3450
3451 static int may_mknod(umode_t mode)
3452 {
3453 switch (mode & S_IFMT) {
3454 case S_IFREG:
3455 case S_IFCHR:
3456 case S_IFBLK:
3457 case S_IFIFO:
3458 case S_IFSOCK:
3459 case 0: /* zero mode translates to S_IFREG */
3460 return 0;
3461 case S_IFDIR:
3462 return -EPERM;
3463 default:
3464 return -EINVAL;
3465 }
3466 }
3467
3468 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3469 unsigned, dev)
3470 {
3471 struct dentry *dentry;
3472 struct path path;
3473 int error;
3474 unsigned int lookup_flags = 0;
3475
3476 error = may_mknod(mode);
3477 if (error)
3478 return error;
3479 retry:
3480 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3481 if (IS_ERR(dentry))
3482 return PTR_ERR(dentry);
3483
3484 if (!IS_POSIXACL(path.dentry->d_inode))
3485 mode &= ~current_umask();
3486 error = security_path_mknod(&path, dentry, mode, dev);
3487 if (error)
3488 goto out;
3489 switch (mode & S_IFMT) {
3490 case 0: case S_IFREG:
3491 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3492 break;
3493 case S_IFCHR: case S_IFBLK:
3494 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3495 new_decode_dev(dev));
3496 break;
3497 case S_IFIFO: case S_IFSOCK:
3498 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3499 break;
3500 }
3501 out:
3502 done_path_create(&path, dentry);
3503 if (retry_estale(error, lookup_flags)) {
3504 lookup_flags |= LOOKUP_REVAL;
3505 goto retry;
3506 }
3507 return error;
3508 }
3509
3510 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3511 {
3512 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3513 }
3514
3515 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3516 {
3517 int error = may_create(dir, dentry);
3518 unsigned max_links = dir->i_sb->s_max_links;
3519
3520 if (error)
3521 return error;
3522
3523 if (!dir->i_op->mkdir)
3524 return -EPERM;
3525
3526 mode &= (S_IRWXUGO|S_ISVTX);
3527 error = security_inode_mkdir(dir, dentry, mode);
3528 if (error)
3529 return error;
3530
3531 if (max_links && dir->i_nlink >= max_links)
3532 return -EMLINK;
3533
3534 error = dir->i_op->mkdir(dir, dentry, mode);
3535 if (!error)
3536 fsnotify_mkdir(dir, dentry);
3537 return error;
3538 }
3539 EXPORT_SYMBOL(vfs_mkdir);
3540
3541 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3542 {
3543 struct dentry *dentry;
3544 struct path path;
3545 int error;
3546 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3547
3548 retry:
3549 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3550 if (IS_ERR(dentry))
3551 return PTR_ERR(dentry);
3552
3553 if (!IS_POSIXACL(path.dentry->d_inode))
3554 mode &= ~current_umask();
3555 error = security_path_mkdir(&path, dentry, mode);
3556 if (!error)
3557 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3558 done_path_create(&path, dentry);
3559 if (retry_estale(error, lookup_flags)) {
3560 lookup_flags |= LOOKUP_REVAL;
3561 goto retry;
3562 }
3563 return error;
3564 }
3565
3566 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3567 {
3568 return sys_mkdirat(AT_FDCWD, pathname, mode);
3569 }
3570
3571 /*
3572 * The dentry_unhash() helper will try to drop the dentry early: we
3573 * should have a usage count of 1 if we're the only user of this
3574 * dentry, and if that is true (possibly after pruning the dcache),
3575 * then we drop the dentry now.
3576 *
3577 * A low-level filesystem can, if it choses, legally
3578 * do a
3579 *
3580 * if (!d_unhashed(dentry))
3581 * return -EBUSY;
3582 *
3583 * if it cannot handle the case of removing a directory
3584 * that is still in use by something else..
3585 */
3586 void dentry_unhash(struct dentry *dentry)
3587 {
3588 shrink_dcache_parent(dentry);
3589 spin_lock(&dentry->d_lock);
3590 if (dentry->d_lockref.count == 1)
3591 __d_drop(dentry);
3592 spin_unlock(&dentry->d_lock);
3593 }
3594 EXPORT_SYMBOL(dentry_unhash);
3595
3596 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3597 {
3598 int error = may_delete(dir, dentry, 1);
3599
3600 if (error)
3601 return error;
3602
3603 if (!dir->i_op->rmdir)
3604 return -EPERM;
3605
3606 dget(dentry);
3607 mutex_lock(&dentry->d_inode->i_mutex);
3608
3609 error = -EBUSY;
3610 if (is_local_mountpoint(dentry))
3611 goto out;
3612
3613 error = security_inode_rmdir(dir, dentry);
3614 if (error)
3615 goto out;
3616
3617 shrink_dcache_parent(dentry);
3618 error = dir->i_op->rmdir(dir, dentry);
3619 if (error)
3620 goto out;
3621
3622 dentry->d_inode->i_flags |= S_DEAD;
3623 dont_mount(dentry);
3624 detach_mounts(dentry);
3625
3626 out:
3627 mutex_unlock(&dentry->d_inode->i_mutex);
3628 dput(dentry);
3629 if (!error)
3630 d_delete(dentry);
3631 return error;
3632 }
3633 EXPORT_SYMBOL(vfs_rmdir);
3634
3635 static long do_rmdir(int dfd, const char __user *pathname)
3636 {
3637 int error = 0;
3638 struct filename *name;
3639 struct dentry *dentry;
3640 struct nameidata nd;
3641 unsigned int lookup_flags = 0;
3642 retry:
3643 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3644 if (IS_ERR(name))
3645 return PTR_ERR(name);
3646
3647 switch(nd.last_type) {
3648 case LAST_DOTDOT:
3649 error = -ENOTEMPTY;
3650 goto exit1;
3651 case LAST_DOT:
3652 error = -EINVAL;
3653 goto exit1;
3654 case LAST_ROOT:
3655 error = -EBUSY;
3656 goto exit1;
3657 }
3658
3659 nd.flags &= ~LOOKUP_PARENT;
3660 error = mnt_want_write(nd.path.mnt);
3661 if (error)
3662 goto exit1;
3663
3664 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3665 dentry = lookup_hash(&nd);
3666 error = PTR_ERR(dentry);
3667 if (IS_ERR(dentry))
3668 goto exit2;
3669 if (!dentry->d_inode) {
3670 error = -ENOENT;
3671 goto exit3;
3672 }
3673 error = security_path_rmdir(&nd.path, dentry);
3674 if (error)
3675 goto exit3;
3676 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3677 exit3:
3678 dput(dentry);
3679 exit2:
3680 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3681 mnt_drop_write(nd.path.mnt);
3682 exit1:
3683 path_put(&nd.path);
3684 putname(name);
3685 if (retry_estale(error, lookup_flags)) {
3686 lookup_flags |= LOOKUP_REVAL;
3687 goto retry;
3688 }
3689 return error;
3690 }
3691
3692 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3693 {
3694 return do_rmdir(AT_FDCWD, pathname);
3695 }
3696
3697 /**
3698 * vfs_unlink - unlink a filesystem object
3699 * @dir: parent directory
3700 * @dentry: victim
3701 * @delegated_inode: returns victim inode, if the inode is delegated.
3702 *
3703 * The caller must hold dir->i_mutex.
3704 *
3705 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3706 * return a reference to the inode in delegated_inode. The caller
3707 * should then break the delegation on that inode and retry. Because
3708 * breaking a delegation may take a long time, the caller should drop
3709 * dir->i_mutex before doing so.
3710 *
3711 * Alternatively, a caller may pass NULL for delegated_inode. This may
3712 * be appropriate for callers that expect the underlying filesystem not
3713 * to be NFS exported.
3714 */
3715 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3716 {
3717 struct inode *target = dentry->d_inode;
3718 int error = may_delete(dir, dentry, 0);
3719
3720 if (error)
3721 return error;
3722
3723 if (!dir->i_op->unlink)
3724 return -EPERM;
3725
3726 mutex_lock(&target->i_mutex);
3727 if (is_local_mountpoint(dentry))
3728 error = -EBUSY;
3729 else {
3730 error = security_inode_unlink(dir, dentry);
3731 if (!error) {
3732 error = try_break_deleg(target, delegated_inode);
3733 if (error)
3734 goto out;
3735 error = dir->i_op->unlink(dir, dentry);
3736 if (!error) {
3737 dont_mount(dentry);
3738 detach_mounts(dentry);
3739 }
3740 }
3741 }
3742 out:
3743 mutex_unlock(&target->i_mutex);
3744
3745 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3746 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3747 fsnotify_link_count(target);
3748 d_delete(dentry);
3749 }
3750
3751 return error;
3752 }
3753 EXPORT_SYMBOL(vfs_unlink);
3754
3755 /*
3756 * Make sure that the actual truncation of the file will occur outside its
3757 * directory's i_mutex. Truncate can take a long time if there is a lot of
3758 * writeout happening, and we don't want to prevent access to the directory
3759 * while waiting on the I/O.
3760 */
3761 static long do_unlinkat(int dfd, const char __user *pathname)
3762 {
3763 int error;
3764 struct filename *name;
3765 struct dentry *dentry;
3766 struct nameidata nd;
3767 struct inode *inode = NULL;
3768 struct inode *delegated_inode = NULL;
3769 unsigned int lookup_flags = 0;
3770 retry:
3771 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3772 if (IS_ERR(name))
3773 return PTR_ERR(name);
3774
3775 error = -EISDIR;
3776 if (nd.last_type != LAST_NORM)
3777 goto exit1;
3778
3779 nd.flags &= ~LOOKUP_PARENT;
3780 error = mnt_want_write(nd.path.mnt);
3781 if (error)
3782 goto exit1;
3783 retry_deleg:
3784 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3785 dentry = lookup_hash(&nd);
3786 error = PTR_ERR(dentry);
3787 if (!IS_ERR(dentry)) {
3788 /* Why not before? Because we want correct error value */
3789 if (nd.last.name[nd.last.len])
3790 goto slashes;
3791 inode = dentry->d_inode;
3792 if (d_is_negative(dentry))
3793 goto slashes;
3794 ihold(inode);
3795 error = security_path_unlink(&nd.path, dentry);
3796 if (error)
3797 goto exit2;
3798 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3799 exit2:
3800 dput(dentry);
3801 }
3802 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3803 if (inode)
3804 iput(inode); /* truncate the inode here */
3805 inode = NULL;
3806 if (delegated_inode) {
3807 error = break_deleg_wait(&delegated_inode);
3808 if (!error)
3809 goto retry_deleg;
3810 }
3811 mnt_drop_write(nd.path.mnt);
3812 exit1:
3813 path_put(&nd.path);
3814 putname(name);
3815 if (retry_estale(error, lookup_flags)) {
3816 lookup_flags |= LOOKUP_REVAL;
3817 inode = NULL;
3818 goto retry;
3819 }
3820 return error;
3821
3822 slashes:
3823 if (d_is_negative(dentry))
3824 error = -ENOENT;
3825 else if (d_is_dir(dentry))
3826 error = -EISDIR;
3827 else
3828 error = -ENOTDIR;
3829 goto exit2;
3830 }
3831
3832 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3833 {
3834 if ((flag & ~AT_REMOVEDIR) != 0)
3835 return -EINVAL;
3836
3837 if (flag & AT_REMOVEDIR)
3838 return do_rmdir(dfd, pathname);
3839
3840 return do_unlinkat(dfd, pathname);
3841 }
3842
3843 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3844 {
3845 return do_unlinkat(AT_FDCWD, pathname);
3846 }
3847
3848 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3849 {
3850 int error = may_create(dir, dentry);
3851
3852 if (error)
3853 return error;
3854
3855 if (!dir->i_op->symlink)
3856 return -EPERM;
3857
3858 error = security_inode_symlink(dir, dentry, oldname);
3859 if (error)
3860 return error;
3861
3862 error = dir->i_op->symlink(dir, dentry, oldname);
3863 if (!error)
3864 fsnotify_create(dir, dentry);
3865 return error;
3866 }
3867 EXPORT_SYMBOL(vfs_symlink);
3868
3869 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3870 int, newdfd, const char __user *, newname)
3871 {
3872 int error;
3873 struct filename *from;
3874 struct dentry *dentry;
3875 struct path path;
3876 unsigned int lookup_flags = 0;
3877
3878 from = getname(oldname);
3879 if (IS_ERR(from))
3880 return PTR_ERR(from);
3881 retry:
3882 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3883 error = PTR_ERR(dentry);
3884 if (IS_ERR(dentry))
3885 goto out_putname;
3886
3887 error = security_path_symlink(&path, dentry, from->name);
3888 if (!error)
3889 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3890 done_path_create(&path, dentry);
3891 if (retry_estale(error, lookup_flags)) {
3892 lookup_flags |= LOOKUP_REVAL;
3893 goto retry;
3894 }
3895 out_putname:
3896 putname(from);
3897 return error;
3898 }
3899
3900 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3901 {
3902 return sys_symlinkat(oldname, AT_FDCWD, newname);
3903 }
3904
3905 /**
3906 * vfs_link - create a new link
3907 * @old_dentry: object to be linked
3908 * @dir: new parent
3909 * @new_dentry: where to create the new link
3910 * @delegated_inode: returns inode needing a delegation break
3911 *
3912 * The caller must hold dir->i_mutex
3913 *
3914 * If vfs_link discovers a delegation on the to-be-linked file in need
3915 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3916 * inode in delegated_inode. The caller should then break the delegation
3917 * and retry. Because breaking a delegation may take a long time, the
3918 * caller should drop the i_mutex before doing so.
3919 *
3920 * Alternatively, a caller may pass NULL for delegated_inode. This may
3921 * be appropriate for callers that expect the underlying filesystem not
3922 * to be NFS exported.
3923 */
3924 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3925 {
3926 struct inode *inode = old_dentry->d_inode;
3927 unsigned max_links = dir->i_sb->s_max_links;
3928 int error;
3929
3930 if (!inode)
3931 return -ENOENT;
3932
3933 error = may_create(dir, new_dentry);
3934 if (error)
3935 return error;
3936
3937 if (dir->i_sb != inode->i_sb)
3938 return -EXDEV;
3939
3940 /*
3941 * A link to an append-only or immutable file cannot be created.
3942 */
3943 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3944 return -EPERM;
3945 if (!dir->i_op->link)
3946 return -EPERM;
3947 if (S_ISDIR(inode->i_mode))
3948 return -EPERM;
3949
3950 error = security_inode_link(old_dentry, dir, new_dentry);
3951 if (error)
3952 return error;
3953
3954 mutex_lock(&inode->i_mutex);
3955 /* Make sure we don't allow creating hardlink to an unlinked file */
3956 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3957 error = -ENOENT;
3958 else if (max_links && inode->i_nlink >= max_links)
3959 error = -EMLINK;
3960 else {
3961 error = try_break_deleg(inode, delegated_inode);
3962 if (!error)
3963 error = dir->i_op->link(old_dentry, dir, new_dentry);
3964 }
3965
3966 if (!error && (inode->i_state & I_LINKABLE)) {
3967 spin_lock(&inode->i_lock);
3968 inode->i_state &= ~I_LINKABLE;
3969 spin_unlock(&inode->i_lock);
3970 }
3971 mutex_unlock(&inode->i_mutex);
3972 if (!error)
3973 fsnotify_link(dir, inode, new_dentry);
3974 return error;
3975 }
3976 EXPORT_SYMBOL(vfs_link);
3977
3978 /*
3979 * Hardlinks are often used in delicate situations. We avoid
3980 * security-related surprises by not following symlinks on the
3981 * newname. --KAB
3982 *
3983 * We don't follow them on the oldname either to be compatible
3984 * with linux 2.0, and to avoid hard-linking to directories
3985 * and other special files. --ADM
3986 */
3987 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3988 int, newdfd, const char __user *, newname, int, flags)
3989 {
3990 struct dentry *new_dentry;
3991 struct path old_path, new_path;
3992 struct inode *delegated_inode = NULL;
3993 int how = 0;
3994 int error;
3995
3996 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3997 return -EINVAL;
3998 /*
3999 * To use null names we require CAP_DAC_READ_SEARCH
4000 * This ensures that not everyone will be able to create
4001 * handlink using the passed filedescriptor.
4002 */
4003 if (flags & AT_EMPTY_PATH) {
4004 if (!capable(CAP_DAC_READ_SEARCH))
4005 return -ENOENT;
4006 how = LOOKUP_EMPTY;
4007 }
4008
4009 if (flags & AT_SYMLINK_FOLLOW)
4010 how |= LOOKUP_FOLLOW;
4011 retry:
4012 error = user_path_at(olddfd, oldname, how, &old_path);
4013 if (error)
4014 return error;
4015
4016 new_dentry = user_path_create(newdfd, newname, &new_path,
4017 (how & LOOKUP_REVAL));
4018 error = PTR_ERR(new_dentry);
4019 if (IS_ERR(new_dentry))
4020 goto out;
4021
4022 error = -EXDEV;
4023 if (old_path.mnt != new_path.mnt)
4024 goto out_dput;
4025 error = may_linkat(&old_path);
4026 if (unlikely(error))
4027 goto out_dput;
4028 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4029 if (error)
4030 goto out_dput;
4031 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4032 out_dput:
4033 done_path_create(&new_path, new_dentry);
4034 if (delegated_inode) {
4035 error = break_deleg_wait(&delegated_inode);
4036 if (!error) {
4037 path_put(&old_path);
4038 goto retry;
4039 }
4040 }
4041 if (retry_estale(error, how)) {
4042 path_put(&old_path);
4043 how |= LOOKUP_REVAL;
4044 goto retry;
4045 }
4046 out:
4047 path_put(&old_path);
4048
4049 return error;
4050 }
4051
4052 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4053 {
4054 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4055 }
4056
4057 /**
4058 * vfs_rename - rename a filesystem object
4059 * @old_dir: parent of source
4060 * @old_dentry: source
4061 * @new_dir: parent of destination
4062 * @new_dentry: destination
4063 * @delegated_inode: returns an inode needing a delegation break
4064 * @flags: rename flags
4065 *
4066 * The caller must hold multiple mutexes--see lock_rename()).
4067 *
4068 * If vfs_rename discovers a delegation in need of breaking at either
4069 * the source or destination, it will return -EWOULDBLOCK and return a
4070 * reference to the inode in delegated_inode. The caller should then
4071 * break the delegation and retry. Because breaking a delegation may
4072 * take a long time, the caller should drop all locks before doing
4073 * so.
4074 *
4075 * Alternatively, a caller may pass NULL for delegated_inode. This may
4076 * be appropriate for callers that expect the underlying filesystem not
4077 * to be NFS exported.
4078 *
4079 * The worst of all namespace operations - renaming directory. "Perverted"
4080 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4081 * Problems:
4082 * a) we can get into loop creation.
4083 * b) race potential - two innocent renames can create a loop together.
4084 * That's where 4.4 screws up. Current fix: serialization on
4085 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4086 * story.
4087 * c) we have to lock _four_ objects - parents and victim (if it exists),
4088 * and source (if it is not a directory).
4089 * And that - after we got ->i_mutex on parents (until then we don't know
4090 * whether the target exists). Solution: try to be smart with locking
4091 * order for inodes. We rely on the fact that tree topology may change
4092 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4093 * move will be locked. Thus we can rank directories by the tree
4094 * (ancestors first) and rank all non-directories after them.
4095 * That works since everybody except rename does "lock parent, lookup,
4096 * lock child" and rename is under ->s_vfs_rename_mutex.
4097 * HOWEVER, it relies on the assumption that any object with ->lookup()
4098 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4099 * we'd better make sure that there's no link(2) for them.
4100 * d) conversion from fhandle to dentry may come in the wrong moment - when
4101 * we are removing the target. Solution: we will have to grab ->i_mutex
4102 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4103 * ->i_mutex on parents, which works but leads to some truly excessive
4104 * locking].
4105 */
4106 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4107 struct inode *new_dir, struct dentry *new_dentry,
4108 struct inode **delegated_inode, unsigned int flags)
4109 {
4110 int error;
4111 bool is_dir = d_is_dir(old_dentry);
4112 const unsigned char *old_name;
4113 struct inode *source = old_dentry->d_inode;
4114 struct inode *target = new_dentry->d_inode;
4115 bool new_is_dir = false;
4116 unsigned max_links = new_dir->i_sb->s_max_links;
4117
4118 if (source == target)
4119 return 0;
4120
4121 error = may_delete(old_dir, old_dentry, is_dir);
4122 if (error)
4123 return error;
4124
4125 if (!target) {
4126 error = may_create(new_dir, new_dentry);
4127 } else {
4128 new_is_dir = d_is_dir(new_dentry);
4129
4130 if (!(flags & RENAME_EXCHANGE))
4131 error = may_delete(new_dir, new_dentry, is_dir);
4132 else
4133 error = may_delete(new_dir, new_dentry, new_is_dir);
4134 }
4135 if (error)
4136 return error;
4137
4138 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4139 return -EPERM;
4140
4141 if (flags && !old_dir->i_op->rename2)
4142 return -EINVAL;
4143
4144 /*
4145 * If we are going to change the parent - check write permissions,
4146 * we'll need to flip '..'.
4147 */
4148 if (new_dir != old_dir) {
4149 if (is_dir) {
4150 error = inode_permission(source, MAY_WRITE);
4151 if (error)
4152 return error;
4153 }
4154 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4155 error = inode_permission(target, MAY_WRITE);
4156 if (error)
4157 return error;
4158 }
4159 }
4160
4161 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4162 flags);
4163 if (error)
4164 return error;
4165
4166 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4167 dget(new_dentry);
4168 if (!is_dir || (flags & RENAME_EXCHANGE))
4169 lock_two_nondirectories(source, target);
4170 else if (target)
4171 mutex_lock(&target->i_mutex);
4172
4173 error = -EBUSY;
4174 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4175 goto out;
4176
4177 if (max_links && new_dir != old_dir) {
4178 error = -EMLINK;
4179 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4180 goto out;
4181 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4182 old_dir->i_nlink >= max_links)
4183 goto out;
4184 }
4185 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4186 shrink_dcache_parent(new_dentry);
4187 if (!is_dir) {
4188 error = try_break_deleg(source, delegated_inode);
4189 if (error)
4190 goto out;
4191 }
4192 if (target && !new_is_dir) {
4193 error = try_break_deleg(target, delegated_inode);
4194 if (error)
4195 goto out;
4196 }
4197 if (!old_dir->i_op->rename2) {
4198 error = old_dir->i_op->rename(old_dir, old_dentry,
4199 new_dir, new_dentry);
4200 } else {
4201 WARN_ON(old_dir->i_op->rename != NULL);
4202 error = old_dir->i_op->rename2(old_dir, old_dentry,
4203 new_dir, new_dentry, flags);
4204 }
4205 if (error)
4206 goto out;
4207
4208 if (!(flags & RENAME_EXCHANGE) && target) {
4209 if (is_dir)
4210 target->i_flags |= S_DEAD;
4211 dont_mount(new_dentry);
4212 detach_mounts(new_dentry);
4213 }
4214 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4215 if (!(flags & RENAME_EXCHANGE))
4216 d_move(old_dentry, new_dentry);
4217 else
4218 d_exchange(old_dentry, new_dentry);
4219 }
4220 out:
4221 if (!is_dir || (flags & RENAME_EXCHANGE))
4222 unlock_two_nondirectories(source, target);
4223 else if (target)
4224 mutex_unlock(&target->i_mutex);
4225 dput(new_dentry);
4226 if (!error) {
4227 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4228 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4229 if (flags & RENAME_EXCHANGE) {
4230 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4231 new_is_dir, NULL, new_dentry);
4232 }
4233 }
4234 fsnotify_oldname_free(old_name);
4235
4236 return error;
4237 }
4238 EXPORT_SYMBOL(vfs_rename);
4239
4240 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4241 int, newdfd, const char __user *, newname, unsigned int, flags)
4242 {
4243 struct dentry *old_dir, *new_dir;
4244 struct dentry *old_dentry, *new_dentry;
4245 struct dentry *trap;
4246 struct nameidata oldnd, newnd;
4247 struct inode *delegated_inode = NULL;
4248 struct filename *from;
4249 struct filename *to;
4250 unsigned int lookup_flags = 0;
4251 bool should_retry = false;
4252 int error;
4253
4254 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4255 return -EINVAL;
4256
4257 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4258 (flags & RENAME_EXCHANGE))
4259 return -EINVAL;
4260
4261 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4262 return -EPERM;
4263
4264 retry:
4265 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4266 if (IS_ERR(from)) {
4267 error = PTR_ERR(from);
4268 goto exit;
4269 }
4270
4271 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4272 if (IS_ERR(to)) {
4273 error = PTR_ERR(to);
4274 goto exit1;
4275 }
4276
4277 error = -EXDEV;
4278 if (oldnd.path.mnt != newnd.path.mnt)
4279 goto exit2;
4280
4281 old_dir = oldnd.path.dentry;
4282 error = -EBUSY;
4283 if (oldnd.last_type != LAST_NORM)
4284 goto exit2;
4285
4286 new_dir = newnd.path.dentry;
4287 if (flags & RENAME_NOREPLACE)
4288 error = -EEXIST;
4289 if (newnd.last_type != LAST_NORM)
4290 goto exit2;
4291
4292 error = mnt_want_write(oldnd.path.mnt);
4293 if (error)
4294 goto exit2;
4295
4296 oldnd.flags &= ~LOOKUP_PARENT;
4297 newnd.flags &= ~LOOKUP_PARENT;
4298 if (!(flags & RENAME_EXCHANGE))
4299 newnd.flags |= LOOKUP_RENAME_TARGET;
4300
4301 retry_deleg:
4302 trap = lock_rename(new_dir, old_dir);
4303
4304 old_dentry = lookup_hash(&oldnd);
4305 error = PTR_ERR(old_dentry);
4306 if (IS_ERR(old_dentry))
4307 goto exit3;
4308 /* source must exist */
4309 error = -ENOENT;
4310 if (d_is_negative(old_dentry))
4311 goto exit4;
4312 new_dentry = lookup_hash(&newnd);
4313 error = PTR_ERR(new_dentry);
4314 if (IS_ERR(new_dentry))
4315 goto exit4;
4316 error = -EEXIST;
4317 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4318 goto exit5;
4319 if (flags & RENAME_EXCHANGE) {
4320 error = -ENOENT;
4321 if (d_is_negative(new_dentry))
4322 goto exit5;
4323
4324 if (!d_is_dir(new_dentry)) {
4325 error = -ENOTDIR;
4326 if (newnd.last.name[newnd.last.len])
4327 goto exit5;
4328 }
4329 }
4330 /* unless the source is a directory trailing slashes give -ENOTDIR */
4331 if (!d_is_dir(old_dentry)) {
4332 error = -ENOTDIR;
4333 if (oldnd.last.name[oldnd.last.len])
4334 goto exit5;
4335 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4336 goto exit5;
4337 }
4338 /* source should not be ancestor of target */
4339 error = -EINVAL;
4340 if (old_dentry == trap)
4341 goto exit5;
4342 /* target should not be an ancestor of source */
4343 if (!(flags & RENAME_EXCHANGE))
4344 error = -ENOTEMPTY;
4345 if (new_dentry == trap)
4346 goto exit5;
4347
4348 error = security_path_rename(&oldnd.path, old_dentry,
4349 &newnd.path, new_dentry, flags);
4350 if (error)
4351 goto exit5;
4352 error = vfs_rename(old_dir->d_inode, old_dentry,
4353 new_dir->d_inode, new_dentry,
4354 &delegated_inode, flags);
4355 exit5:
4356 dput(new_dentry);
4357 exit4:
4358 dput(old_dentry);
4359 exit3:
4360 unlock_rename(new_dir, old_dir);
4361 if (delegated_inode) {
4362 error = break_deleg_wait(&delegated_inode);
4363 if (!error)
4364 goto retry_deleg;
4365 }
4366 mnt_drop_write(oldnd.path.mnt);
4367 exit2:
4368 if (retry_estale(error, lookup_flags))
4369 should_retry = true;
4370 path_put(&newnd.path);
4371 putname(to);
4372 exit1:
4373 path_put(&oldnd.path);
4374 putname(from);
4375 if (should_retry) {
4376 should_retry = false;
4377 lookup_flags |= LOOKUP_REVAL;
4378 goto retry;
4379 }
4380 exit:
4381 return error;
4382 }
4383
4384 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4385 int, newdfd, const char __user *, newname)
4386 {
4387 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4388 }
4389
4390 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4391 {
4392 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4393 }
4394
4395 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4396 {
4397 int error = may_create(dir, dentry);
4398 if (error)
4399 return error;
4400
4401 if (!dir->i_op->mknod)
4402 return -EPERM;
4403
4404 return dir->i_op->mknod(dir, dentry,
4405 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4406 }
4407 EXPORT_SYMBOL(vfs_whiteout);
4408
4409 int readlink_copy(char __user *buffer, int buflen, const char *link)
4410 {
4411 int len = PTR_ERR(link);
4412 if (IS_ERR(link))
4413 goto out;
4414
4415 len = strlen(link);
4416 if (len > (unsigned) buflen)
4417 len = buflen;
4418 if (copy_to_user(buffer, link, len))
4419 len = -EFAULT;
4420 out:
4421 return len;
4422 }
4423 EXPORT_SYMBOL(readlink_copy);
4424
4425 /*
4426 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4427 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4428 * using) it for any given inode is up to filesystem.
4429 */
4430 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4431 {
4432 struct nameidata nd;
4433 void *cookie;
4434 int res;
4435
4436 nd.depth = 0;
4437 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4438 if (IS_ERR(cookie))
4439 return PTR_ERR(cookie);
4440
4441 res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4442 if (dentry->d_inode->i_op->put_link)
4443 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4444 return res;
4445 }
4446 EXPORT_SYMBOL(generic_readlink);
4447
4448 /* get the link contents into pagecache */
4449 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4450 {
4451 char *kaddr;
4452 struct page *page;
4453 struct address_space *mapping = dentry->d_inode->i_mapping;
4454 page = read_mapping_page(mapping, 0, NULL);
4455 if (IS_ERR(page))
4456 return (char*)page;
4457 *ppage = page;
4458 kaddr = kmap(page);
4459 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4460 return kaddr;
4461 }
4462
4463 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4464 {
4465 struct page *page = NULL;
4466 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4467 if (page) {
4468 kunmap(page);
4469 page_cache_release(page);
4470 }
4471 return res;
4472 }
4473 EXPORT_SYMBOL(page_readlink);
4474
4475 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4476 {
4477 struct page *page = NULL;
4478 nd_set_link(nd, page_getlink(dentry, &page));
4479 return page;
4480 }
4481 EXPORT_SYMBOL(page_follow_link_light);
4482
4483 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4484 {
4485 struct page *page = cookie;
4486
4487 if (page) {
4488 kunmap(page);
4489 page_cache_release(page);
4490 }
4491 }
4492 EXPORT_SYMBOL(page_put_link);
4493
4494 /*
4495 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4496 */
4497 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4498 {
4499 struct address_space *mapping = inode->i_mapping;
4500 struct page *page;
4501 void *fsdata;
4502 int err;
4503 char *kaddr;
4504 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4505 if (nofs)
4506 flags |= AOP_FLAG_NOFS;
4507
4508 retry:
4509 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4510 flags, &page, &fsdata);
4511 if (err)
4512 goto fail;
4513
4514 kaddr = kmap_atomic(page);
4515 memcpy(kaddr, symname, len-1);
4516 kunmap_atomic(kaddr);
4517
4518 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4519 page, fsdata);
4520 if (err < 0)
4521 goto fail;
4522 if (err < len-1)
4523 goto retry;
4524
4525 mark_inode_dirty(inode);
4526 return 0;
4527 fail:
4528 return err;
4529 }
4530 EXPORT_SYMBOL(__page_symlink);
4531
4532 int page_symlink(struct inode *inode, const char *symname, int len)
4533 {
4534 return __page_symlink(inode, symname, len,
4535 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4536 }
4537 EXPORT_SYMBOL(page_symlink);
4538
4539 const struct inode_operations page_symlink_inode_operations = {
4540 .readlink = generic_readlink,
4541 .follow_link = page_follow_link_light,
4542 .put_link = page_put_link,
4543 };
4544 EXPORT_SYMBOL(page_symlink_inode_operations);