]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/namei.c
Merge tag 'riscv-for-linus-5.10-mw1' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /* [Feb-1997 T. Schoebel-Theuer]
47 * Fundamental changes in the pathname lookup mechanisms (namei)
48 * were necessary because of omirr. The reason is that omirr needs
49 * to know the _real_ pathname, not the user-supplied one, in case
50 * of symlinks (and also when transname replacements occur).
51 *
52 * The new code replaces the old recursive symlink resolution with
53 * an iterative one (in case of non-nested symlink chains). It does
54 * this with calls to <fs>_follow_link().
55 * As a side effect, dir_namei(), _namei() and follow_link() are now
56 * replaced with a single function lookup_dentry() that can handle all
57 * the special cases of the former code.
58 *
59 * With the new dcache, the pathname is stored at each inode, at least as
60 * long as the refcount of the inode is positive. As a side effect, the
61 * size of the dcache depends on the inode cache and thus is dynamic.
62 *
63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64 * resolution to correspond with current state of the code.
65 *
66 * Note that the symlink resolution is not *completely* iterative.
67 * There is still a significant amount of tail- and mid- recursion in
68 * the algorithm. Also, note that <fs>_readlink() is not used in
69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70 * may return different results than <fs>_follow_link(). Many virtual
71 * filesystems (including /proc) exhibit this behavior.
72 */
73
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76 * and the name already exists in form of a symlink, try to create the new
77 * name indicated by the symlink. The old code always complained that the
78 * name already exists, due to not following the symlink even if its target
79 * is nonexistent. The new semantics affects also mknod() and link() when
80 * the name is a symlink pointing to a non-existent name.
81 *
82 * I don't know which semantics is the right one, since I have no access
83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85 * "old" one. Personally, I think the new semantics is much more logical.
86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87 * file does succeed in both HP-UX and SunOs, but not in Solaris
88 * and in the old Linux semantics.
89 */
90
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92 * semantics. See the comments in "open_namei" and "do_link" below.
93 *
94 * [10-Sep-98 Alan Modra] Another symlink change.
95 */
96
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98 * inside the path - always follow.
99 * in the last component in creation/removal/renaming - never follow.
100 * if LOOKUP_FOLLOW passed - follow.
101 * if the pathname has trailing slashes - follow.
102 * otherwise - don't follow.
103 * (applied in that order).
104 *
105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107 * During the 2.4 we need to fix the userland stuff depending on it -
108 * hopefully we will be able to get rid of that wart in 2.5. So far only
109 * XEmacs seems to be relying on it...
110 */
111 /*
112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
114 * any extra contention...
115 */
116
117 /* In order to reduce some races, while at the same time doing additional
118 * checking and hopefully speeding things up, we copy filenames to the
119 * kernel data space before using them..
120 *
121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122 * PATH_MAX includes the nul terminator --RR.
123 */
124
125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
126
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 struct filename *result;
131 char *kname;
132 int len;
133
134 result = audit_reusename(filename);
135 if (result)
136 return result;
137
138 result = __getname();
139 if (unlikely(!result))
140 return ERR_PTR(-ENOMEM);
141
142 /*
143 * First, try to embed the struct filename inside the names_cache
144 * allocation
145 */
146 kname = (char *)result->iname;
147 result->name = kname;
148
149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 if (unlikely(len < 0)) {
151 __putname(result);
152 return ERR_PTR(len);
153 }
154
155 /*
156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 * separate struct filename so we can dedicate the entire
158 * names_cache allocation for the pathname, and re-do the copy from
159 * userland.
160 */
161 if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 const size_t size = offsetof(struct filename, iname[1]);
163 kname = (char *)result;
164
165 /*
166 * size is chosen that way we to guarantee that
167 * result->iname[0] is within the same object and that
168 * kname can't be equal to result->iname, no matter what.
169 */
170 result = kzalloc(size, GFP_KERNEL);
171 if (unlikely(!result)) {
172 __putname(kname);
173 return ERR_PTR(-ENOMEM);
174 }
175 result->name = kname;
176 len = strncpy_from_user(kname, filename, PATH_MAX);
177 if (unlikely(len < 0)) {
178 __putname(kname);
179 kfree(result);
180 return ERR_PTR(len);
181 }
182 if (unlikely(len == PATH_MAX)) {
183 __putname(kname);
184 kfree(result);
185 return ERR_PTR(-ENAMETOOLONG);
186 }
187 }
188
189 result->refcnt = 1;
190 /* The empty path is special. */
191 if (unlikely(!len)) {
192 if (empty)
193 *empty = 1;
194 if (!(flags & LOOKUP_EMPTY)) {
195 putname(result);
196 return ERR_PTR(-ENOENT);
197 }
198 }
199
200 result->uptr = filename;
201 result->aname = NULL;
202 audit_getname(result);
203 return result;
204 }
205
206 struct filename *
207 getname(const char __user * filename)
208 {
209 return getname_flags(filename, 0, NULL);
210 }
211
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 struct filename *result;
216 int len = strlen(filename) + 1;
217
218 result = __getname();
219 if (unlikely(!result))
220 return ERR_PTR(-ENOMEM);
221
222 if (len <= EMBEDDED_NAME_MAX) {
223 result->name = (char *)result->iname;
224 } else if (len <= PATH_MAX) {
225 const size_t size = offsetof(struct filename, iname[1]);
226 struct filename *tmp;
227
228 tmp = kmalloc(size, GFP_KERNEL);
229 if (unlikely(!tmp)) {
230 __putname(result);
231 return ERR_PTR(-ENOMEM);
232 }
233 tmp->name = (char *)result;
234 result = tmp;
235 } else {
236 __putname(result);
237 return ERR_PTR(-ENAMETOOLONG);
238 }
239 memcpy((char *)result->name, filename, len);
240 result->uptr = NULL;
241 result->aname = NULL;
242 result->refcnt = 1;
243 audit_getname(result);
244
245 return result;
246 }
247
248 void putname(struct filename *name)
249 {
250 BUG_ON(name->refcnt <= 0);
251
252 if (--name->refcnt > 0)
253 return;
254
255 if (name->name != name->iname) {
256 __putname(name->name);
257 kfree(name);
258 } else
259 __putname(name);
260 }
261
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265 struct posix_acl *acl;
266
267 if (mask & MAY_NOT_BLOCK) {
268 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 if (!acl)
270 return -EAGAIN;
271 /* no ->get_acl() calls in RCU mode... */
272 if (is_uncached_acl(acl))
273 return -ECHILD;
274 return posix_acl_permission(inode, acl, mask);
275 }
276
277 acl = get_acl(inode, ACL_TYPE_ACCESS);
278 if (IS_ERR(acl))
279 return PTR_ERR(acl);
280 if (acl) {
281 int error = posix_acl_permission(inode, acl, mask);
282 posix_acl_release(acl);
283 return error;
284 }
285 #endif
286
287 return -EAGAIN;
288 }
289
290 /*
291 * This does the basic UNIX permission checking.
292 *
293 * Note that the POSIX ACL check cares about the MAY_NOT_BLOCK bit,
294 * for RCU walking.
295 */
296 static int acl_permission_check(struct inode *inode, int mask)
297 {
298 unsigned int mode = inode->i_mode;
299
300 /* Are we the owner? If so, ACL's don't matter */
301 if (likely(uid_eq(current_fsuid(), inode->i_uid))) {
302 mask &= 7;
303 mode >>= 6;
304 return (mask & ~mode) ? -EACCES : 0;
305 }
306
307 /* Do we have ACL's? */
308 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
309 int error = check_acl(inode, mask);
310 if (error != -EAGAIN)
311 return error;
312 }
313
314 /* Only RWX matters for group/other mode bits */
315 mask &= 7;
316
317 /*
318 * Are the group permissions different from
319 * the other permissions in the bits we care
320 * about? Need to check group ownership if so.
321 */
322 if (mask & (mode ^ (mode >> 3))) {
323 if (in_group_p(inode->i_gid))
324 mode >>= 3;
325 }
326
327 /* Bits in 'mode' clear that we require? */
328 return (mask & ~mode) ? -EACCES : 0;
329 }
330
331 /**
332 * generic_permission - check for access rights on a Posix-like filesystem
333 * @inode: inode to check access rights for
334 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
335 * %MAY_NOT_BLOCK ...)
336 *
337 * Used to check for read/write/execute permissions on a file.
338 * We use "fsuid" for this, letting us set arbitrary permissions
339 * for filesystem access without changing the "normal" uids which
340 * are used for other things.
341 *
342 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
343 * request cannot be satisfied (eg. requires blocking or too much complexity).
344 * It would then be called again in ref-walk mode.
345 */
346 int generic_permission(struct inode *inode, int mask)
347 {
348 int ret;
349
350 /*
351 * Do the basic permission checks.
352 */
353 ret = acl_permission_check(inode, mask);
354 if (ret != -EACCES)
355 return ret;
356
357 if (S_ISDIR(inode->i_mode)) {
358 /* DACs are overridable for directories */
359 if (!(mask & MAY_WRITE))
360 if (capable_wrt_inode_uidgid(inode,
361 CAP_DAC_READ_SEARCH))
362 return 0;
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
364 return 0;
365 return -EACCES;
366 }
367
368 /*
369 * Searching includes executable on directories, else just read.
370 */
371 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
372 if (mask == MAY_READ)
373 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
374 return 0;
375 /*
376 * Read/write DACs are always overridable.
377 * Executable DACs are overridable when there is
378 * at least one exec bit set.
379 */
380 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
381 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
382 return 0;
383
384 return -EACCES;
385 }
386 EXPORT_SYMBOL(generic_permission);
387
388 /*
389 * We _really_ want to just do "generic_permission()" without
390 * even looking at the inode->i_op values. So we keep a cache
391 * flag in inode->i_opflags, that says "this has not special
392 * permission function, use the fast case".
393 */
394 static inline int do_inode_permission(struct inode *inode, int mask)
395 {
396 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
397 if (likely(inode->i_op->permission))
398 return inode->i_op->permission(inode, mask);
399
400 /* This gets set once for the inode lifetime */
401 spin_lock(&inode->i_lock);
402 inode->i_opflags |= IOP_FASTPERM;
403 spin_unlock(&inode->i_lock);
404 }
405 return generic_permission(inode, mask);
406 }
407
408 /**
409 * sb_permission - Check superblock-level permissions
410 * @sb: Superblock of inode to check permission on
411 * @inode: Inode to check permission on
412 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
413 *
414 * Separate out file-system wide checks from inode-specific permission checks.
415 */
416 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
417 {
418 if (unlikely(mask & MAY_WRITE)) {
419 umode_t mode = inode->i_mode;
420
421 /* Nobody gets write access to a read-only fs. */
422 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
423 return -EROFS;
424 }
425 return 0;
426 }
427
428 /**
429 * inode_permission - Check for access rights to a given inode
430 * @inode: Inode to check permission on
431 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
432 *
433 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
434 * this, letting us set arbitrary permissions for filesystem access without
435 * changing the "normal" UIDs which are used for other things.
436 *
437 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
438 */
439 int inode_permission(struct inode *inode, int mask)
440 {
441 int retval;
442
443 retval = sb_permission(inode->i_sb, inode, mask);
444 if (retval)
445 return retval;
446
447 if (unlikely(mask & MAY_WRITE)) {
448 /*
449 * Nobody gets write access to an immutable file.
450 */
451 if (IS_IMMUTABLE(inode))
452 return -EPERM;
453
454 /*
455 * Updating mtime will likely cause i_uid and i_gid to be
456 * written back improperly if their true value is unknown
457 * to the vfs.
458 */
459 if (HAS_UNMAPPED_ID(inode))
460 return -EACCES;
461 }
462
463 retval = do_inode_permission(inode, mask);
464 if (retval)
465 return retval;
466
467 retval = devcgroup_inode_permission(inode, mask);
468 if (retval)
469 return retval;
470
471 return security_inode_permission(inode, mask);
472 }
473 EXPORT_SYMBOL(inode_permission);
474
475 /**
476 * path_get - get a reference to a path
477 * @path: path to get the reference to
478 *
479 * Given a path increment the reference count to the dentry and the vfsmount.
480 */
481 void path_get(const struct path *path)
482 {
483 mntget(path->mnt);
484 dget(path->dentry);
485 }
486 EXPORT_SYMBOL(path_get);
487
488 /**
489 * path_put - put a reference to a path
490 * @path: path to put the reference to
491 *
492 * Given a path decrement the reference count to the dentry and the vfsmount.
493 */
494 void path_put(const struct path *path)
495 {
496 dput(path->dentry);
497 mntput(path->mnt);
498 }
499 EXPORT_SYMBOL(path_put);
500
501 #define EMBEDDED_LEVELS 2
502 struct nameidata {
503 struct path path;
504 struct qstr last;
505 struct path root;
506 struct inode *inode; /* path.dentry.d_inode */
507 unsigned int flags;
508 unsigned seq, m_seq, r_seq;
509 int last_type;
510 unsigned depth;
511 int total_link_count;
512 struct saved {
513 struct path link;
514 struct delayed_call done;
515 const char *name;
516 unsigned seq;
517 } *stack, internal[EMBEDDED_LEVELS];
518 struct filename *name;
519 struct nameidata *saved;
520 unsigned root_seq;
521 int dfd;
522 kuid_t dir_uid;
523 umode_t dir_mode;
524 } __randomize_layout;
525
526 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
527 {
528 struct nameidata *old = current->nameidata;
529 p->stack = p->internal;
530 p->dfd = dfd;
531 p->name = name;
532 p->total_link_count = old ? old->total_link_count : 0;
533 p->saved = old;
534 current->nameidata = p;
535 }
536
537 static void restore_nameidata(void)
538 {
539 struct nameidata *now = current->nameidata, *old = now->saved;
540
541 current->nameidata = old;
542 if (old)
543 old->total_link_count = now->total_link_count;
544 if (now->stack != now->internal)
545 kfree(now->stack);
546 }
547
548 static bool nd_alloc_stack(struct nameidata *nd)
549 {
550 struct saved *p;
551
552 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
553 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
554 if (unlikely(!p))
555 return false;
556 memcpy(p, nd->internal, sizeof(nd->internal));
557 nd->stack = p;
558 return true;
559 }
560
561 /**
562 * path_connected - Verify that a dentry is below mnt.mnt_root
563 *
564 * Rename can sometimes move a file or directory outside of a bind
565 * mount, path_connected allows those cases to be detected.
566 */
567 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
568 {
569 struct super_block *sb = mnt->mnt_sb;
570
571 /* Bind mounts can have disconnected paths */
572 if (mnt->mnt_root == sb->s_root)
573 return true;
574
575 return is_subdir(dentry, mnt->mnt_root);
576 }
577
578 static void drop_links(struct nameidata *nd)
579 {
580 int i = nd->depth;
581 while (i--) {
582 struct saved *last = nd->stack + i;
583 do_delayed_call(&last->done);
584 clear_delayed_call(&last->done);
585 }
586 }
587
588 static void terminate_walk(struct nameidata *nd)
589 {
590 drop_links(nd);
591 if (!(nd->flags & LOOKUP_RCU)) {
592 int i;
593 path_put(&nd->path);
594 for (i = 0; i < nd->depth; i++)
595 path_put(&nd->stack[i].link);
596 if (nd->flags & LOOKUP_ROOT_GRABBED) {
597 path_put(&nd->root);
598 nd->flags &= ~LOOKUP_ROOT_GRABBED;
599 }
600 } else {
601 nd->flags &= ~LOOKUP_RCU;
602 rcu_read_unlock();
603 }
604 nd->depth = 0;
605 }
606
607 /* path_put is needed afterwards regardless of success or failure */
608 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
609 {
610 int res = __legitimize_mnt(path->mnt, mseq);
611 if (unlikely(res)) {
612 if (res > 0)
613 path->mnt = NULL;
614 path->dentry = NULL;
615 return false;
616 }
617 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
618 path->dentry = NULL;
619 return false;
620 }
621 return !read_seqcount_retry(&path->dentry->d_seq, seq);
622 }
623
624 static inline bool legitimize_path(struct nameidata *nd,
625 struct path *path, unsigned seq)
626 {
627 return __legitimize_path(path, seq, nd->m_seq);
628 }
629
630 static bool legitimize_links(struct nameidata *nd)
631 {
632 int i;
633 for (i = 0; i < nd->depth; i++) {
634 struct saved *last = nd->stack + i;
635 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
636 drop_links(nd);
637 nd->depth = i + 1;
638 return false;
639 }
640 }
641 return true;
642 }
643
644 static bool legitimize_root(struct nameidata *nd)
645 {
646 /*
647 * For scoped-lookups (where nd->root has been zeroed), we need to
648 * restart the whole lookup from scratch -- because set_root() is wrong
649 * for these lookups (nd->dfd is the root, not the filesystem root).
650 */
651 if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
652 return false;
653 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
654 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
655 return true;
656 nd->flags |= LOOKUP_ROOT_GRABBED;
657 return legitimize_path(nd, &nd->root, nd->root_seq);
658 }
659
660 /*
661 * Path walking has 2 modes, rcu-walk and ref-walk (see
662 * Documentation/filesystems/path-lookup.txt). In situations when we can't
663 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
664 * normal reference counts on dentries and vfsmounts to transition to ref-walk
665 * mode. Refcounts are grabbed at the last known good point before rcu-walk
666 * got stuck, so ref-walk may continue from there. If this is not successful
667 * (eg. a seqcount has changed), then failure is returned and it's up to caller
668 * to restart the path walk from the beginning in ref-walk mode.
669 */
670
671 /**
672 * unlazy_walk - try to switch to ref-walk mode.
673 * @nd: nameidata pathwalk data
674 * Returns: 0 on success, -ECHILD on failure
675 *
676 * unlazy_walk attempts to legitimize the current nd->path and nd->root
677 * for ref-walk mode.
678 * Must be called from rcu-walk context.
679 * Nothing should touch nameidata between unlazy_walk() failure and
680 * terminate_walk().
681 */
682 static int unlazy_walk(struct nameidata *nd)
683 {
684 struct dentry *parent = nd->path.dentry;
685
686 BUG_ON(!(nd->flags & LOOKUP_RCU));
687
688 nd->flags &= ~LOOKUP_RCU;
689 if (unlikely(!legitimize_links(nd)))
690 goto out1;
691 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
692 goto out;
693 if (unlikely(!legitimize_root(nd)))
694 goto out;
695 rcu_read_unlock();
696 BUG_ON(nd->inode != parent->d_inode);
697 return 0;
698
699 out1:
700 nd->path.mnt = NULL;
701 nd->path.dentry = NULL;
702 out:
703 rcu_read_unlock();
704 return -ECHILD;
705 }
706
707 /**
708 * unlazy_child - try to switch to ref-walk mode.
709 * @nd: nameidata pathwalk data
710 * @dentry: child of nd->path.dentry
711 * @seq: seq number to check dentry against
712 * Returns: 0 on success, -ECHILD on failure
713 *
714 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
715 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
716 * @nd. Must be called from rcu-walk context.
717 * Nothing should touch nameidata between unlazy_child() failure and
718 * terminate_walk().
719 */
720 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
721 {
722 BUG_ON(!(nd->flags & LOOKUP_RCU));
723
724 nd->flags &= ~LOOKUP_RCU;
725 if (unlikely(!legitimize_links(nd)))
726 goto out2;
727 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
728 goto out2;
729 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
730 goto out1;
731
732 /*
733 * We need to move both the parent and the dentry from the RCU domain
734 * to be properly refcounted. And the sequence number in the dentry
735 * validates *both* dentry counters, since we checked the sequence
736 * number of the parent after we got the child sequence number. So we
737 * know the parent must still be valid if the child sequence number is
738 */
739 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
740 goto out;
741 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
742 goto out_dput;
743 /*
744 * Sequence counts matched. Now make sure that the root is
745 * still valid and get it if required.
746 */
747 if (unlikely(!legitimize_root(nd)))
748 goto out_dput;
749 rcu_read_unlock();
750 return 0;
751
752 out2:
753 nd->path.mnt = NULL;
754 out1:
755 nd->path.dentry = NULL;
756 out:
757 rcu_read_unlock();
758 return -ECHILD;
759 out_dput:
760 rcu_read_unlock();
761 dput(dentry);
762 return -ECHILD;
763 }
764
765 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
766 {
767 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
768 return dentry->d_op->d_revalidate(dentry, flags);
769 else
770 return 1;
771 }
772
773 /**
774 * complete_walk - successful completion of path walk
775 * @nd: pointer nameidata
776 *
777 * If we had been in RCU mode, drop out of it and legitimize nd->path.
778 * Revalidate the final result, unless we'd already done that during
779 * the path walk or the filesystem doesn't ask for it. Return 0 on
780 * success, -error on failure. In case of failure caller does not
781 * need to drop nd->path.
782 */
783 static int complete_walk(struct nameidata *nd)
784 {
785 struct dentry *dentry = nd->path.dentry;
786 int status;
787
788 if (nd->flags & LOOKUP_RCU) {
789 /*
790 * We don't want to zero nd->root for scoped-lookups or
791 * externally-managed nd->root.
792 */
793 if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED)))
794 nd->root.mnt = NULL;
795 if (unlikely(unlazy_walk(nd)))
796 return -ECHILD;
797 }
798
799 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
800 /*
801 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
802 * ever step outside the root during lookup" and should already
803 * be guaranteed by the rest of namei, we want to avoid a namei
804 * BUG resulting in userspace being given a path that was not
805 * scoped within the root at some point during the lookup.
806 *
807 * So, do a final sanity-check to make sure that in the
808 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
809 * we won't silently return an fd completely outside of the
810 * requested root to userspace.
811 *
812 * Userspace could move the path outside the root after this
813 * check, but as discussed elsewhere this is not a concern (the
814 * resolved file was inside the root at some point).
815 */
816 if (!path_is_under(&nd->path, &nd->root))
817 return -EXDEV;
818 }
819
820 if (likely(!(nd->flags & LOOKUP_JUMPED)))
821 return 0;
822
823 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
824 return 0;
825
826 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
827 if (status > 0)
828 return 0;
829
830 if (!status)
831 status = -ESTALE;
832
833 return status;
834 }
835
836 static int set_root(struct nameidata *nd)
837 {
838 struct fs_struct *fs = current->fs;
839
840 /*
841 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
842 * still have to ensure it doesn't happen because it will cause a breakout
843 * from the dirfd.
844 */
845 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
846 return -ENOTRECOVERABLE;
847
848 if (nd->flags & LOOKUP_RCU) {
849 unsigned seq;
850
851 do {
852 seq = read_seqcount_begin(&fs->seq);
853 nd->root = fs->root;
854 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
855 } while (read_seqcount_retry(&fs->seq, seq));
856 } else {
857 get_fs_root(fs, &nd->root);
858 nd->flags |= LOOKUP_ROOT_GRABBED;
859 }
860 return 0;
861 }
862
863 static int nd_jump_root(struct nameidata *nd)
864 {
865 if (unlikely(nd->flags & LOOKUP_BENEATH))
866 return -EXDEV;
867 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
868 /* Absolute path arguments to path_init() are allowed. */
869 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
870 return -EXDEV;
871 }
872 if (!nd->root.mnt) {
873 int error = set_root(nd);
874 if (error)
875 return error;
876 }
877 if (nd->flags & LOOKUP_RCU) {
878 struct dentry *d;
879 nd->path = nd->root;
880 d = nd->path.dentry;
881 nd->inode = d->d_inode;
882 nd->seq = nd->root_seq;
883 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
884 return -ECHILD;
885 } else {
886 path_put(&nd->path);
887 nd->path = nd->root;
888 path_get(&nd->path);
889 nd->inode = nd->path.dentry->d_inode;
890 }
891 nd->flags |= LOOKUP_JUMPED;
892 return 0;
893 }
894
895 /*
896 * Helper to directly jump to a known parsed path from ->get_link,
897 * caller must have taken a reference to path beforehand.
898 */
899 int nd_jump_link(struct path *path)
900 {
901 int error = -ELOOP;
902 struct nameidata *nd = current->nameidata;
903
904 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
905 goto err;
906
907 error = -EXDEV;
908 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
909 if (nd->path.mnt != path->mnt)
910 goto err;
911 }
912 /* Not currently safe for scoped-lookups. */
913 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
914 goto err;
915
916 path_put(&nd->path);
917 nd->path = *path;
918 nd->inode = nd->path.dentry->d_inode;
919 nd->flags |= LOOKUP_JUMPED;
920 return 0;
921
922 err:
923 path_put(path);
924 return error;
925 }
926
927 static inline void put_link(struct nameidata *nd)
928 {
929 struct saved *last = nd->stack + --nd->depth;
930 do_delayed_call(&last->done);
931 if (!(nd->flags & LOOKUP_RCU))
932 path_put(&last->link);
933 }
934
935 int sysctl_protected_symlinks __read_mostly = 0;
936 int sysctl_protected_hardlinks __read_mostly = 0;
937 int sysctl_protected_fifos __read_mostly;
938 int sysctl_protected_regular __read_mostly;
939
940 /**
941 * may_follow_link - Check symlink following for unsafe situations
942 * @nd: nameidata pathwalk data
943 *
944 * In the case of the sysctl_protected_symlinks sysctl being enabled,
945 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
946 * in a sticky world-writable directory. This is to protect privileged
947 * processes from failing races against path names that may change out
948 * from under them by way of other users creating malicious symlinks.
949 * It will permit symlinks to be followed only when outside a sticky
950 * world-writable directory, or when the uid of the symlink and follower
951 * match, or when the directory owner matches the symlink's owner.
952 *
953 * Returns 0 if following the symlink is allowed, -ve on error.
954 */
955 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
956 {
957 if (!sysctl_protected_symlinks)
958 return 0;
959
960 /* Allowed if owner and follower match. */
961 if (uid_eq(current_cred()->fsuid, inode->i_uid))
962 return 0;
963
964 /* Allowed if parent directory not sticky and world-writable. */
965 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
966 return 0;
967
968 /* Allowed if parent directory and link owner match. */
969 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, inode->i_uid))
970 return 0;
971
972 if (nd->flags & LOOKUP_RCU)
973 return -ECHILD;
974
975 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
976 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
977 return -EACCES;
978 }
979
980 /**
981 * safe_hardlink_source - Check for safe hardlink conditions
982 * @inode: the source inode to hardlink from
983 *
984 * Return false if at least one of the following conditions:
985 * - inode is not a regular file
986 * - inode is setuid
987 * - inode is setgid and group-exec
988 * - access failure for read and write
989 *
990 * Otherwise returns true.
991 */
992 static bool safe_hardlink_source(struct inode *inode)
993 {
994 umode_t mode = inode->i_mode;
995
996 /* Special files should not get pinned to the filesystem. */
997 if (!S_ISREG(mode))
998 return false;
999
1000 /* Setuid files should not get pinned to the filesystem. */
1001 if (mode & S_ISUID)
1002 return false;
1003
1004 /* Executable setgid files should not get pinned to the filesystem. */
1005 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1006 return false;
1007
1008 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1009 if (inode_permission(inode, MAY_READ | MAY_WRITE))
1010 return false;
1011
1012 return true;
1013 }
1014
1015 /**
1016 * may_linkat - Check permissions for creating a hardlink
1017 * @link: the source to hardlink from
1018 *
1019 * Block hardlink when all of:
1020 * - sysctl_protected_hardlinks enabled
1021 * - fsuid does not match inode
1022 * - hardlink source is unsafe (see safe_hardlink_source() above)
1023 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1024 *
1025 * Returns 0 if successful, -ve on error.
1026 */
1027 int may_linkat(struct path *link)
1028 {
1029 struct inode *inode = link->dentry->d_inode;
1030
1031 /* Inode writeback is not safe when the uid or gid are invalid. */
1032 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
1033 return -EOVERFLOW;
1034
1035 if (!sysctl_protected_hardlinks)
1036 return 0;
1037
1038 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1039 * otherwise, it must be a safe source.
1040 */
1041 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1042 return 0;
1043
1044 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1045 return -EPERM;
1046 }
1047
1048 /**
1049 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1050 * should be allowed, or not, on files that already
1051 * exist.
1052 * @dir_mode: mode bits of directory
1053 * @dir_uid: owner of directory
1054 * @inode: the inode of the file to open
1055 *
1056 * Block an O_CREAT open of a FIFO (or a regular file) when:
1057 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1058 * - the file already exists
1059 * - we are in a sticky directory
1060 * - we don't own the file
1061 * - the owner of the directory doesn't own the file
1062 * - the directory is world writable
1063 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1064 * the directory doesn't have to be world writable: being group writable will
1065 * be enough.
1066 *
1067 * Returns 0 if the open is allowed, -ve on error.
1068 */
1069 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1070 struct inode * const inode)
1071 {
1072 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1073 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1074 likely(!(dir_mode & S_ISVTX)) ||
1075 uid_eq(inode->i_uid, dir_uid) ||
1076 uid_eq(current_fsuid(), inode->i_uid))
1077 return 0;
1078
1079 if (likely(dir_mode & 0002) ||
1080 (dir_mode & 0020 &&
1081 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1082 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1083 const char *operation = S_ISFIFO(inode->i_mode) ?
1084 "sticky_create_fifo" :
1085 "sticky_create_regular";
1086 audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1087 return -EACCES;
1088 }
1089 return 0;
1090 }
1091
1092 /*
1093 * follow_up - Find the mountpoint of path's vfsmount
1094 *
1095 * Given a path, find the mountpoint of its source file system.
1096 * Replace @path with the path of the mountpoint in the parent mount.
1097 * Up is towards /.
1098 *
1099 * Return 1 if we went up a level and 0 if we were already at the
1100 * root.
1101 */
1102 int follow_up(struct path *path)
1103 {
1104 struct mount *mnt = real_mount(path->mnt);
1105 struct mount *parent;
1106 struct dentry *mountpoint;
1107
1108 read_seqlock_excl(&mount_lock);
1109 parent = mnt->mnt_parent;
1110 if (parent == mnt) {
1111 read_sequnlock_excl(&mount_lock);
1112 return 0;
1113 }
1114 mntget(&parent->mnt);
1115 mountpoint = dget(mnt->mnt_mountpoint);
1116 read_sequnlock_excl(&mount_lock);
1117 dput(path->dentry);
1118 path->dentry = mountpoint;
1119 mntput(path->mnt);
1120 path->mnt = &parent->mnt;
1121 return 1;
1122 }
1123 EXPORT_SYMBOL(follow_up);
1124
1125 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1126 struct path *path, unsigned *seqp)
1127 {
1128 while (mnt_has_parent(m)) {
1129 struct dentry *mountpoint = m->mnt_mountpoint;
1130
1131 m = m->mnt_parent;
1132 if (unlikely(root->dentry == mountpoint &&
1133 root->mnt == &m->mnt))
1134 break;
1135 if (mountpoint != m->mnt.mnt_root) {
1136 path->mnt = &m->mnt;
1137 path->dentry = mountpoint;
1138 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1139 return true;
1140 }
1141 }
1142 return false;
1143 }
1144
1145 static bool choose_mountpoint(struct mount *m, const struct path *root,
1146 struct path *path)
1147 {
1148 bool found;
1149
1150 rcu_read_lock();
1151 while (1) {
1152 unsigned seq, mseq = read_seqbegin(&mount_lock);
1153
1154 found = choose_mountpoint_rcu(m, root, path, &seq);
1155 if (unlikely(!found)) {
1156 if (!read_seqretry(&mount_lock, mseq))
1157 break;
1158 } else {
1159 if (likely(__legitimize_path(path, seq, mseq)))
1160 break;
1161 rcu_read_unlock();
1162 path_put(path);
1163 rcu_read_lock();
1164 }
1165 }
1166 rcu_read_unlock();
1167 return found;
1168 }
1169
1170 /*
1171 * Perform an automount
1172 * - return -EISDIR to tell follow_managed() to stop and return the path we
1173 * were called with.
1174 */
1175 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1176 {
1177 struct dentry *dentry = path->dentry;
1178
1179 /* We don't want to mount if someone's just doing a stat -
1180 * unless they're stat'ing a directory and appended a '/' to
1181 * the name.
1182 *
1183 * We do, however, want to mount if someone wants to open or
1184 * create a file of any type under the mountpoint, wants to
1185 * traverse through the mountpoint or wants to open the
1186 * mounted directory. Also, autofs may mark negative dentries
1187 * as being automount points. These will need the attentions
1188 * of the daemon to instantiate them before they can be used.
1189 */
1190 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1191 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1192 dentry->d_inode)
1193 return -EISDIR;
1194
1195 if (count && (*count)++ >= MAXSYMLINKS)
1196 return -ELOOP;
1197
1198 return finish_automount(dentry->d_op->d_automount(path), path);
1199 }
1200
1201 /*
1202 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1203 * dentries are pinned but not locked here, so negative dentry can go
1204 * positive right under us. Use of smp_load_acquire() provides a barrier
1205 * sufficient for ->d_inode and ->d_flags consistency.
1206 */
1207 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1208 int *count, unsigned lookup_flags)
1209 {
1210 struct vfsmount *mnt = path->mnt;
1211 bool need_mntput = false;
1212 int ret = 0;
1213
1214 while (flags & DCACHE_MANAGED_DENTRY) {
1215 /* Allow the filesystem to manage the transit without i_mutex
1216 * being held. */
1217 if (flags & DCACHE_MANAGE_TRANSIT) {
1218 ret = path->dentry->d_op->d_manage(path, false);
1219 flags = smp_load_acquire(&path->dentry->d_flags);
1220 if (ret < 0)
1221 break;
1222 }
1223
1224 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1225 struct vfsmount *mounted = lookup_mnt(path);
1226 if (mounted) { // ... in our namespace
1227 dput(path->dentry);
1228 if (need_mntput)
1229 mntput(path->mnt);
1230 path->mnt = mounted;
1231 path->dentry = dget(mounted->mnt_root);
1232 // here we know it's positive
1233 flags = path->dentry->d_flags;
1234 need_mntput = true;
1235 continue;
1236 }
1237 }
1238
1239 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1240 break;
1241
1242 // uncovered automount point
1243 ret = follow_automount(path, count, lookup_flags);
1244 flags = smp_load_acquire(&path->dentry->d_flags);
1245 if (ret < 0)
1246 break;
1247 }
1248
1249 if (ret == -EISDIR)
1250 ret = 0;
1251 // possible if you race with several mount --move
1252 if (need_mntput && path->mnt == mnt)
1253 mntput(path->mnt);
1254 if (!ret && unlikely(d_flags_negative(flags)))
1255 ret = -ENOENT;
1256 *jumped = need_mntput;
1257 return ret;
1258 }
1259
1260 static inline int traverse_mounts(struct path *path, bool *jumped,
1261 int *count, unsigned lookup_flags)
1262 {
1263 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1264
1265 /* fastpath */
1266 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1267 *jumped = false;
1268 if (unlikely(d_flags_negative(flags)))
1269 return -ENOENT;
1270 return 0;
1271 }
1272 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1273 }
1274
1275 int follow_down_one(struct path *path)
1276 {
1277 struct vfsmount *mounted;
1278
1279 mounted = lookup_mnt(path);
1280 if (mounted) {
1281 dput(path->dentry);
1282 mntput(path->mnt);
1283 path->mnt = mounted;
1284 path->dentry = dget(mounted->mnt_root);
1285 return 1;
1286 }
1287 return 0;
1288 }
1289 EXPORT_SYMBOL(follow_down_one);
1290
1291 /*
1292 * Follow down to the covering mount currently visible to userspace. At each
1293 * point, the filesystem owning that dentry may be queried as to whether the
1294 * caller is permitted to proceed or not.
1295 */
1296 int follow_down(struct path *path)
1297 {
1298 struct vfsmount *mnt = path->mnt;
1299 bool jumped;
1300 int ret = traverse_mounts(path, &jumped, NULL, 0);
1301
1302 if (path->mnt != mnt)
1303 mntput(mnt);
1304 return ret;
1305 }
1306 EXPORT_SYMBOL(follow_down);
1307
1308 /*
1309 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1310 * we meet a managed dentry that would need blocking.
1311 */
1312 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1313 struct inode **inode, unsigned *seqp)
1314 {
1315 struct dentry *dentry = path->dentry;
1316 unsigned int flags = dentry->d_flags;
1317
1318 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1319 return true;
1320
1321 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1322 return false;
1323
1324 for (;;) {
1325 /*
1326 * Don't forget we might have a non-mountpoint managed dentry
1327 * that wants to block transit.
1328 */
1329 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1330 int res = dentry->d_op->d_manage(path, true);
1331 if (res)
1332 return res == -EISDIR;
1333 flags = dentry->d_flags;
1334 }
1335
1336 if (flags & DCACHE_MOUNTED) {
1337 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1338 if (mounted) {
1339 path->mnt = &mounted->mnt;
1340 dentry = path->dentry = mounted->mnt.mnt_root;
1341 nd->flags |= LOOKUP_JUMPED;
1342 *seqp = read_seqcount_begin(&dentry->d_seq);
1343 *inode = dentry->d_inode;
1344 /*
1345 * We don't need to re-check ->d_seq after this
1346 * ->d_inode read - there will be an RCU delay
1347 * between mount hash removal and ->mnt_root
1348 * becoming unpinned.
1349 */
1350 flags = dentry->d_flags;
1351 continue;
1352 }
1353 if (read_seqretry(&mount_lock, nd->m_seq))
1354 return false;
1355 }
1356 return !(flags & DCACHE_NEED_AUTOMOUNT);
1357 }
1358 }
1359
1360 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1361 struct path *path, struct inode **inode,
1362 unsigned int *seqp)
1363 {
1364 bool jumped;
1365 int ret;
1366
1367 path->mnt = nd->path.mnt;
1368 path->dentry = dentry;
1369 if (nd->flags & LOOKUP_RCU) {
1370 unsigned int seq = *seqp;
1371 if (unlikely(!*inode))
1372 return -ENOENT;
1373 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1374 return 0;
1375 if (unlazy_child(nd, dentry, seq))
1376 return -ECHILD;
1377 // *path might've been clobbered by __follow_mount_rcu()
1378 path->mnt = nd->path.mnt;
1379 path->dentry = dentry;
1380 }
1381 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1382 if (jumped) {
1383 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1384 ret = -EXDEV;
1385 else
1386 nd->flags |= LOOKUP_JUMPED;
1387 }
1388 if (unlikely(ret)) {
1389 dput(path->dentry);
1390 if (path->mnt != nd->path.mnt)
1391 mntput(path->mnt);
1392 } else {
1393 *inode = d_backing_inode(path->dentry);
1394 *seqp = 0; /* out of RCU mode, so the value doesn't matter */
1395 }
1396 return ret;
1397 }
1398
1399 /*
1400 * This looks up the name in dcache and possibly revalidates the found dentry.
1401 * NULL is returned if the dentry does not exist in the cache.
1402 */
1403 static struct dentry *lookup_dcache(const struct qstr *name,
1404 struct dentry *dir,
1405 unsigned int flags)
1406 {
1407 struct dentry *dentry = d_lookup(dir, name);
1408 if (dentry) {
1409 int error = d_revalidate(dentry, flags);
1410 if (unlikely(error <= 0)) {
1411 if (!error)
1412 d_invalidate(dentry);
1413 dput(dentry);
1414 return ERR_PTR(error);
1415 }
1416 }
1417 return dentry;
1418 }
1419
1420 /*
1421 * Parent directory has inode locked exclusive. This is one
1422 * and only case when ->lookup() gets called on non in-lookup
1423 * dentries - as the matter of fact, this only gets called
1424 * when directory is guaranteed to have no in-lookup children
1425 * at all.
1426 */
1427 static struct dentry *__lookup_hash(const struct qstr *name,
1428 struct dentry *base, unsigned int flags)
1429 {
1430 struct dentry *dentry = lookup_dcache(name, base, flags);
1431 struct dentry *old;
1432 struct inode *dir = base->d_inode;
1433
1434 if (dentry)
1435 return dentry;
1436
1437 /* Don't create child dentry for a dead directory. */
1438 if (unlikely(IS_DEADDIR(dir)))
1439 return ERR_PTR(-ENOENT);
1440
1441 dentry = d_alloc(base, name);
1442 if (unlikely(!dentry))
1443 return ERR_PTR(-ENOMEM);
1444
1445 old = dir->i_op->lookup(dir, dentry, flags);
1446 if (unlikely(old)) {
1447 dput(dentry);
1448 dentry = old;
1449 }
1450 return dentry;
1451 }
1452
1453 static struct dentry *lookup_fast(struct nameidata *nd,
1454 struct inode **inode,
1455 unsigned *seqp)
1456 {
1457 struct dentry *dentry, *parent = nd->path.dentry;
1458 int status = 1;
1459
1460 /*
1461 * Rename seqlock is not required here because in the off chance
1462 * of a false negative due to a concurrent rename, the caller is
1463 * going to fall back to non-racy lookup.
1464 */
1465 if (nd->flags & LOOKUP_RCU) {
1466 unsigned seq;
1467 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1468 if (unlikely(!dentry)) {
1469 if (unlazy_walk(nd))
1470 return ERR_PTR(-ECHILD);
1471 return NULL;
1472 }
1473
1474 /*
1475 * This sequence count validates that the inode matches
1476 * the dentry name information from lookup.
1477 */
1478 *inode = d_backing_inode(dentry);
1479 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1480 return ERR_PTR(-ECHILD);
1481
1482 /*
1483 * This sequence count validates that the parent had no
1484 * changes while we did the lookup of the dentry above.
1485 *
1486 * The memory barrier in read_seqcount_begin of child is
1487 * enough, we can use __read_seqcount_retry here.
1488 */
1489 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1490 return ERR_PTR(-ECHILD);
1491
1492 *seqp = seq;
1493 status = d_revalidate(dentry, nd->flags);
1494 if (likely(status > 0))
1495 return dentry;
1496 if (unlazy_child(nd, dentry, seq))
1497 return ERR_PTR(-ECHILD);
1498 if (unlikely(status == -ECHILD))
1499 /* we'd been told to redo it in non-rcu mode */
1500 status = d_revalidate(dentry, nd->flags);
1501 } else {
1502 dentry = __d_lookup(parent, &nd->last);
1503 if (unlikely(!dentry))
1504 return NULL;
1505 status = d_revalidate(dentry, nd->flags);
1506 }
1507 if (unlikely(status <= 0)) {
1508 if (!status)
1509 d_invalidate(dentry);
1510 dput(dentry);
1511 return ERR_PTR(status);
1512 }
1513 return dentry;
1514 }
1515
1516 /* Fast lookup failed, do it the slow way */
1517 static struct dentry *__lookup_slow(const struct qstr *name,
1518 struct dentry *dir,
1519 unsigned int flags)
1520 {
1521 struct dentry *dentry, *old;
1522 struct inode *inode = dir->d_inode;
1523 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1524
1525 /* Don't go there if it's already dead */
1526 if (unlikely(IS_DEADDIR(inode)))
1527 return ERR_PTR(-ENOENT);
1528 again:
1529 dentry = d_alloc_parallel(dir, name, &wq);
1530 if (IS_ERR(dentry))
1531 return dentry;
1532 if (unlikely(!d_in_lookup(dentry))) {
1533 int error = d_revalidate(dentry, flags);
1534 if (unlikely(error <= 0)) {
1535 if (!error) {
1536 d_invalidate(dentry);
1537 dput(dentry);
1538 goto again;
1539 }
1540 dput(dentry);
1541 dentry = ERR_PTR(error);
1542 }
1543 } else {
1544 old = inode->i_op->lookup(inode, dentry, flags);
1545 d_lookup_done(dentry);
1546 if (unlikely(old)) {
1547 dput(dentry);
1548 dentry = old;
1549 }
1550 }
1551 return dentry;
1552 }
1553
1554 static struct dentry *lookup_slow(const struct qstr *name,
1555 struct dentry *dir,
1556 unsigned int flags)
1557 {
1558 struct inode *inode = dir->d_inode;
1559 struct dentry *res;
1560 inode_lock_shared(inode);
1561 res = __lookup_slow(name, dir, flags);
1562 inode_unlock_shared(inode);
1563 return res;
1564 }
1565
1566 static inline int may_lookup(struct nameidata *nd)
1567 {
1568 if (nd->flags & LOOKUP_RCU) {
1569 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1570 if (err != -ECHILD)
1571 return err;
1572 if (unlazy_walk(nd))
1573 return -ECHILD;
1574 }
1575 return inode_permission(nd->inode, MAY_EXEC);
1576 }
1577
1578 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1579 {
1580 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1581 return -ELOOP;
1582
1583 if (likely(nd->depth != EMBEDDED_LEVELS))
1584 return 0;
1585 if (likely(nd->stack != nd->internal))
1586 return 0;
1587 if (likely(nd_alloc_stack(nd)))
1588 return 0;
1589
1590 if (nd->flags & LOOKUP_RCU) {
1591 // we need to grab link before we do unlazy. And we can't skip
1592 // unlazy even if we fail to grab the link - cleanup needs it
1593 bool grabbed_link = legitimize_path(nd, link, seq);
1594
1595 if (unlazy_walk(nd) != 0 || !grabbed_link)
1596 return -ECHILD;
1597
1598 if (nd_alloc_stack(nd))
1599 return 0;
1600 }
1601 return -ENOMEM;
1602 }
1603
1604 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1605
1606 static const char *pick_link(struct nameidata *nd, struct path *link,
1607 struct inode *inode, unsigned seq, int flags)
1608 {
1609 struct saved *last;
1610 const char *res;
1611 int error = reserve_stack(nd, link, seq);
1612
1613 if (unlikely(error)) {
1614 if (!(nd->flags & LOOKUP_RCU))
1615 path_put(link);
1616 return ERR_PTR(error);
1617 }
1618 last = nd->stack + nd->depth++;
1619 last->link = *link;
1620 clear_delayed_call(&last->done);
1621 last->seq = seq;
1622
1623 if (flags & WALK_TRAILING) {
1624 error = may_follow_link(nd, inode);
1625 if (unlikely(error))
1626 return ERR_PTR(error);
1627 }
1628
1629 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS))
1630 return ERR_PTR(-ELOOP);
1631
1632 if (!(nd->flags & LOOKUP_RCU)) {
1633 touch_atime(&last->link);
1634 cond_resched();
1635 } else if (atime_needs_update(&last->link, inode)) {
1636 if (unlikely(unlazy_walk(nd)))
1637 return ERR_PTR(-ECHILD);
1638 touch_atime(&last->link);
1639 }
1640
1641 error = security_inode_follow_link(link->dentry, inode,
1642 nd->flags & LOOKUP_RCU);
1643 if (unlikely(error))
1644 return ERR_PTR(error);
1645
1646 res = READ_ONCE(inode->i_link);
1647 if (!res) {
1648 const char * (*get)(struct dentry *, struct inode *,
1649 struct delayed_call *);
1650 get = inode->i_op->get_link;
1651 if (nd->flags & LOOKUP_RCU) {
1652 res = get(NULL, inode, &last->done);
1653 if (res == ERR_PTR(-ECHILD)) {
1654 if (unlikely(unlazy_walk(nd)))
1655 return ERR_PTR(-ECHILD);
1656 res = get(link->dentry, inode, &last->done);
1657 }
1658 } else {
1659 res = get(link->dentry, inode, &last->done);
1660 }
1661 if (!res)
1662 goto all_done;
1663 if (IS_ERR(res))
1664 return res;
1665 }
1666 if (*res == '/') {
1667 error = nd_jump_root(nd);
1668 if (unlikely(error))
1669 return ERR_PTR(error);
1670 while (unlikely(*++res == '/'))
1671 ;
1672 }
1673 if (*res)
1674 return res;
1675 all_done: // pure jump
1676 put_link(nd);
1677 return NULL;
1678 }
1679
1680 /*
1681 * Do we need to follow links? We _really_ want to be able
1682 * to do this check without having to look at inode->i_op,
1683 * so we keep a cache of "no, this doesn't need follow_link"
1684 * for the common case.
1685 */
1686 static const char *step_into(struct nameidata *nd, int flags,
1687 struct dentry *dentry, struct inode *inode, unsigned seq)
1688 {
1689 struct path path;
1690 int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1691
1692 if (err < 0)
1693 return ERR_PTR(err);
1694 if (likely(!d_is_symlink(path.dentry)) ||
1695 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1696 (flags & WALK_NOFOLLOW)) {
1697 /* not a symlink or should not follow */
1698 if (!(nd->flags & LOOKUP_RCU)) {
1699 dput(nd->path.dentry);
1700 if (nd->path.mnt != path.mnt)
1701 mntput(nd->path.mnt);
1702 }
1703 nd->path = path;
1704 nd->inode = inode;
1705 nd->seq = seq;
1706 return NULL;
1707 }
1708 if (nd->flags & LOOKUP_RCU) {
1709 /* make sure that d_is_symlink above matches inode */
1710 if (read_seqcount_retry(&path.dentry->d_seq, seq))
1711 return ERR_PTR(-ECHILD);
1712 } else {
1713 if (path.mnt == nd->path.mnt)
1714 mntget(path.mnt);
1715 }
1716 return pick_link(nd, &path, inode, seq, flags);
1717 }
1718
1719 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1720 struct inode **inodep,
1721 unsigned *seqp)
1722 {
1723 struct dentry *parent, *old;
1724
1725 if (path_equal(&nd->path, &nd->root))
1726 goto in_root;
1727 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1728 struct path path;
1729 unsigned seq;
1730 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1731 &nd->root, &path, &seq))
1732 goto in_root;
1733 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1734 return ERR_PTR(-ECHILD);
1735 nd->path = path;
1736 nd->inode = path.dentry->d_inode;
1737 nd->seq = seq;
1738 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1739 return ERR_PTR(-ECHILD);
1740 /* we know that mountpoint was pinned */
1741 }
1742 old = nd->path.dentry;
1743 parent = old->d_parent;
1744 *inodep = parent->d_inode;
1745 *seqp = read_seqcount_begin(&parent->d_seq);
1746 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1747 return ERR_PTR(-ECHILD);
1748 if (unlikely(!path_connected(nd->path.mnt, parent)))
1749 return ERR_PTR(-ECHILD);
1750 return parent;
1751 in_root:
1752 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1753 return ERR_PTR(-ECHILD);
1754 if (unlikely(nd->flags & LOOKUP_BENEATH))
1755 return ERR_PTR(-ECHILD);
1756 return NULL;
1757 }
1758
1759 static struct dentry *follow_dotdot(struct nameidata *nd,
1760 struct inode **inodep,
1761 unsigned *seqp)
1762 {
1763 struct dentry *parent;
1764
1765 if (path_equal(&nd->path, &nd->root))
1766 goto in_root;
1767 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1768 struct path path;
1769
1770 if (!choose_mountpoint(real_mount(nd->path.mnt),
1771 &nd->root, &path))
1772 goto in_root;
1773 path_put(&nd->path);
1774 nd->path = path;
1775 nd->inode = path.dentry->d_inode;
1776 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1777 return ERR_PTR(-EXDEV);
1778 }
1779 /* rare case of legitimate dget_parent()... */
1780 parent = dget_parent(nd->path.dentry);
1781 if (unlikely(!path_connected(nd->path.mnt, parent))) {
1782 dput(parent);
1783 return ERR_PTR(-ENOENT);
1784 }
1785 *seqp = 0;
1786 *inodep = parent->d_inode;
1787 return parent;
1788
1789 in_root:
1790 if (unlikely(nd->flags & LOOKUP_BENEATH))
1791 return ERR_PTR(-EXDEV);
1792 dget(nd->path.dentry);
1793 return NULL;
1794 }
1795
1796 static const char *handle_dots(struct nameidata *nd, int type)
1797 {
1798 if (type == LAST_DOTDOT) {
1799 const char *error = NULL;
1800 struct dentry *parent;
1801 struct inode *inode;
1802 unsigned seq;
1803
1804 if (!nd->root.mnt) {
1805 error = ERR_PTR(set_root(nd));
1806 if (error)
1807 return error;
1808 }
1809 if (nd->flags & LOOKUP_RCU)
1810 parent = follow_dotdot_rcu(nd, &inode, &seq);
1811 else
1812 parent = follow_dotdot(nd, &inode, &seq);
1813 if (IS_ERR(parent))
1814 return ERR_CAST(parent);
1815 if (unlikely(!parent))
1816 error = step_into(nd, WALK_NOFOLLOW,
1817 nd->path.dentry, nd->inode, nd->seq);
1818 else
1819 error = step_into(nd, WALK_NOFOLLOW,
1820 parent, inode, seq);
1821 if (unlikely(error))
1822 return error;
1823
1824 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1825 /*
1826 * If there was a racing rename or mount along our
1827 * path, then we can't be sure that ".." hasn't jumped
1828 * above nd->root (and so userspace should retry or use
1829 * some fallback).
1830 */
1831 smp_rmb();
1832 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1833 return ERR_PTR(-EAGAIN);
1834 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1835 return ERR_PTR(-EAGAIN);
1836 }
1837 }
1838 return NULL;
1839 }
1840
1841 static const char *walk_component(struct nameidata *nd, int flags)
1842 {
1843 struct dentry *dentry;
1844 struct inode *inode;
1845 unsigned seq;
1846 /*
1847 * "." and ".." are special - ".." especially so because it has
1848 * to be able to know about the current root directory and
1849 * parent relationships.
1850 */
1851 if (unlikely(nd->last_type != LAST_NORM)) {
1852 if (!(flags & WALK_MORE) && nd->depth)
1853 put_link(nd);
1854 return handle_dots(nd, nd->last_type);
1855 }
1856 dentry = lookup_fast(nd, &inode, &seq);
1857 if (IS_ERR(dentry))
1858 return ERR_CAST(dentry);
1859 if (unlikely(!dentry)) {
1860 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1861 if (IS_ERR(dentry))
1862 return ERR_CAST(dentry);
1863 }
1864 if (!(flags & WALK_MORE) && nd->depth)
1865 put_link(nd);
1866 return step_into(nd, flags, dentry, inode, seq);
1867 }
1868
1869 /*
1870 * We can do the critical dentry name comparison and hashing
1871 * operations one word at a time, but we are limited to:
1872 *
1873 * - Architectures with fast unaligned word accesses. We could
1874 * do a "get_unaligned()" if this helps and is sufficiently
1875 * fast.
1876 *
1877 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1878 * do not trap on the (extremely unlikely) case of a page
1879 * crossing operation.
1880 *
1881 * - Furthermore, we need an efficient 64-bit compile for the
1882 * 64-bit case in order to generate the "number of bytes in
1883 * the final mask". Again, that could be replaced with a
1884 * efficient population count instruction or similar.
1885 */
1886 #ifdef CONFIG_DCACHE_WORD_ACCESS
1887
1888 #include <asm/word-at-a-time.h>
1889
1890 #ifdef HASH_MIX
1891
1892 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1893
1894 #elif defined(CONFIG_64BIT)
1895 /*
1896 * Register pressure in the mixing function is an issue, particularly
1897 * on 32-bit x86, but almost any function requires one state value and
1898 * one temporary. Instead, use a function designed for two state values
1899 * and no temporaries.
1900 *
1901 * This function cannot create a collision in only two iterations, so
1902 * we have two iterations to achieve avalanche. In those two iterations,
1903 * we have six layers of mixing, which is enough to spread one bit's
1904 * influence out to 2^6 = 64 state bits.
1905 *
1906 * Rotate constants are scored by considering either 64 one-bit input
1907 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1908 * probability of that delta causing a change to each of the 128 output
1909 * bits, using a sample of random initial states.
1910 *
1911 * The Shannon entropy of the computed probabilities is then summed
1912 * to produce a score. Ideally, any input change has a 50% chance of
1913 * toggling any given output bit.
1914 *
1915 * Mixing scores (in bits) for (12,45):
1916 * Input delta: 1-bit 2-bit
1917 * 1 round: 713.3 42542.6
1918 * 2 rounds: 2753.7 140389.8
1919 * 3 rounds: 5954.1 233458.2
1920 * 4 rounds: 7862.6 256672.2
1921 * Perfect: 8192 258048
1922 * (64*128) (64*63/2 * 128)
1923 */
1924 #define HASH_MIX(x, y, a) \
1925 ( x ^= (a), \
1926 y ^= x, x = rol64(x,12),\
1927 x += y, y = rol64(y,45),\
1928 y *= 9 )
1929
1930 /*
1931 * Fold two longs into one 32-bit hash value. This must be fast, but
1932 * latency isn't quite as critical, as there is a fair bit of additional
1933 * work done before the hash value is used.
1934 */
1935 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1936 {
1937 y ^= x * GOLDEN_RATIO_64;
1938 y *= GOLDEN_RATIO_64;
1939 return y >> 32;
1940 }
1941
1942 #else /* 32-bit case */
1943
1944 /*
1945 * Mixing scores (in bits) for (7,20):
1946 * Input delta: 1-bit 2-bit
1947 * 1 round: 330.3 9201.6
1948 * 2 rounds: 1246.4 25475.4
1949 * 3 rounds: 1907.1 31295.1
1950 * 4 rounds: 2042.3 31718.6
1951 * Perfect: 2048 31744
1952 * (32*64) (32*31/2 * 64)
1953 */
1954 #define HASH_MIX(x, y, a) \
1955 ( x ^= (a), \
1956 y ^= x, x = rol32(x, 7),\
1957 x += y, y = rol32(y,20),\
1958 y *= 9 )
1959
1960 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1961 {
1962 /* Use arch-optimized multiply if one exists */
1963 return __hash_32(y ^ __hash_32(x));
1964 }
1965
1966 #endif
1967
1968 /*
1969 * Return the hash of a string of known length. This is carfully
1970 * designed to match hash_name(), which is the more critical function.
1971 * In particular, we must end by hashing a final word containing 0..7
1972 * payload bytes, to match the way that hash_name() iterates until it
1973 * finds the delimiter after the name.
1974 */
1975 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1976 {
1977 unsigned long a, x = 0, y = (unsigned long)salt;
1978
1979 for (;;) {
1980 if (!len)
1981 goto done;
1982 a = load_unaligned_zeropad(name);
1983 if (len < sizeof(unsigned long))
1984 break;
1985 HASH_MIX(x, y, a);
1986 name += sizeof(unsigned long);
1987 len -= sizeof(unsigned long);
1988 }
1989 x ^= a & bytemask_from_count(len);
1990 done:
1991 return fold_hash(x, y);
1992 }
1993 EXPORT_SYMBOL(full_name_hash);
1994
1995 /* Return the "hash_len" (hash and length) of a null-terminated string */
1996 u64 hashlen_string(const void *salt, const char *name)
1997 {
1998 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1999 unsigned long adata, mask, len;
2000 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2001
2002 len = 0;
2003 goto inside;
2004
2005 do {
2006 HASH_MIX(x, y, a);
2007 len += sizeof(unsigned long);
2008 inside:
2009 a = load_unaligned_zeropad(name+len);
2010 } while (!has_zero(a, &adata, &constants));
2011
2012 adata = prep_zero_mask(a, adata, &constants);
2013 mask = create_zero_mask(adata);
2014 x ^= a & zero_bytemask(mask);
2015
2016 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2017 }
2018 EXPORT_SYMBOL(hashlen_string);
2019
2020 /*
2021 * Calculate the length and hash of the path component, and
2022 * return the "hash_len" as the result.
2023 */
2024 static inline u64 hash_name(const void *salt, const char *name)
2025 {
2026 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2027 unsigned long adata, bdata, mask, len;
2028 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2029
2030 len = 0;
2031 goto inside;
2032
2033 do {
2034 HASH_MIX(x, y, a);
2035 len += sizeof(unsigned long);
2036 inside:
2037 a = load_unaligned_zeropad(name+len);
2038 b = a ^ REPEAT_BYTE('/');
2039 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2040
2041 adata = prep_zero_mask(a, adata, &constants);
2042 bdata = prep_zero_mask(b, bdata, &constants);
2043 mask = create_zero_mask(adata | bdata);
2044 x ^= a & zero_bytemask(mask);
2045
2046 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2047 }
2048
2049 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2050
2051 /* Return the hash of a string of known length */
2052 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2053 {
2054 unsigned long hash = init_name_hash(salt);
2055 while (len--)
2056 hash = partial_name_hash((unsigned char)*name++, hash);
2057 return end_name_hash(hash);
2058 }
2059 EXPORT_SYMBOL(full_name_hash);
2060
2061 /* Return the "hash_len" (hash and length) of a null-terminated string */
2062 u64 hashlen_string(const void *salt, const char *name)
2063 {
2064 unsigned long hash = init_name_hash(salt);
2065 unsigned long len = 0, c;
2066
2067 c = (unsigned char)*name;
2068 while (c) {
2069 len++;
2070 hash = partial_name_hash(c, hash);
2071 c = (unsigned char)name[len];
2072 }
2073 return hashlen_create(end_name_hash(hash), len);
2074 }
2075 EXPORT_SYMBOL(hashlen_string);
2076
2077 /*
2078 * We know there's a real path component here of at least
2079 * one character.
2080 */
2081 static inline u64 hash_name(const void *salt, const char *name)
2082 {
2083 unsigned long hash = init_name_hash(salt);
2084 unsigned long len = 0, c;
2085
2086 c = (unsigned char)*name;
2087 do {
2088 len++;
2089 hash = partial_name_hash(c, hash);
2090 c = (unsigned char)name[len];
2091 } while (c && c != '/');
2092 return hashlen_create(end_name_hash(hash), len);
2093 }
2094
2095 #endif
2096
2097 /*
2098 * Name resolution.
2099 * This is the basic name resolution function, turning a pathname into
2100 * the final dentry. We expect 'base' to be positive and a directory.
2101 *
2102 * Returns 0 and nd will have valid dentry and mnt on success.
2103 * Returns error and drops reference to input namei data on failure.
2104 */
2105 static int link_path_walk(const char *name, struct nameidata *nd)
2106 {
2107 int depth = 0; // depth <= nd->depth
2108 int err;
2109
2110 nd->last_type = LAST_ROOT;
2111 nd->flags |= LOOKUP_PARENT;
2112 if (IS_ERR(name))
2113 return PTR_ERR(name);
2114 while (*name=='/')
2115 name++;
2116 if (!*name)
2117 return 0;
2118
2119 /* At this point we know we have a real path component. */
2120 for(;;) {
2121 const char *link;
2122 u64 hash_len;
2123 int type;
2124
2125 err = may_lookup(nd);
2126 if (err)
2127 return err;
2128
2129 hash_len = hash_name(nd->path.dentry, name);
2130
2131 type = LAST_NORM;
2132 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2133 case 2:
2134 if (name[1] == '.') {
2135 type = LAST_DOTDOT;
2136 nd->flags |= LOOKUP_JUMPED;
2137 }
2138 break;
2139 case 1:
2140 type = LAST_DOT;
2141 }
2142 if (likely(type == LAST_NORM)) {
2143 struct dentry *parent = nd->path.dentry;
2144 nd->flags &= ~LOOKUP_JUMPED;
2145 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2146 struct qstr this = { { .hash_len = hash_len }, .name = name };
2147 err = parent->d_op->d_hash(parent, &this);
2148 if (err < 0)
2149 return err;
2150 hash_len = this.hash_len;
2151 name = this.name;
2152 }
2153 }
2154
2155 nd->last.hash_len = hash_len;
2156 nd->last.name = name;
2157 nd->last_type = type;
2158
2159 name += hashlen_len(hash_len);
2160 if (!*name)
2161 goto OK;
2162 /*
2163 * If it wasn't NUL, we know it was '/'. Skip that
2164 * slash, and continue until no more slashes.
2165 */
2166 do {
2167 name++;
2168 } while (unlikely(*name == '/'));
2169 if (unlikely(!*name)) {
2170 OK:
2171 /* pathname or trailing symlink, done */
2172 if (!depth) {
2173 nd->dir_uid = nd->inode->i_uid;
2174 nd->dir_mode = nd->inode->i_mode;
2175 nd->flags &= ~LOOKUP_PARENT;
2176 return 0;
2177 }
2178 /* last component of nested symlink */
2179 name = nd->stack[--depth].name;
2180 link = walk_component(nd, 0);
2181 } else {
2182 /* not the last component */
2183 link = walk_component(nd, WALK_MORE);
2184 }
2185 if (unlikely(link)) {
2186 if (IS_ERR(link))
2187 return PTR_ERR(link);
2188 /* a symlink to follow */
2189 nd->stack[depth++].name = name;
2190 name = link;
2191 continue;
2192 }
2193 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2194 if (nd->flags & LOOKUP_RCU) {
2195 if (unlazy_walk(nd))
2196 return -ECHILD;
2197 }
2198 return -ENOTDIR;
2199 }
2200 }
2201 }
2202
2203 /* must be paired with terminate_walk() */
2204 static const char *path_init(struct nameidata *nd, unsigned flags)
2205 {
2206 int error;
2207 const char *s = nd->name->name;
2208
2209 if (!*s)
2210 flags &= ~LOOKUP_RCU;
2211 if (flags & LOOKUP_RCU)
2212 rcu_read_lock();
2213
2214 nd->flags = flags | LOOKUP_JUMPED;
2215 nd->depth = 0;
2216
2217 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2218 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2219 smp_rmb();
2220
2221 if (flags & LOOKUP_ROOT) {
2222 struct dentry *root = nd->root.dentry;
2223 struct inode *inode = root->d_inode;
2224 if (*s && unlikely(!d_can_lookup(root)))
2225 return ERR_PTR(-ENOTDIR);
2226 nd->path = nd->root;
2227 nd->inode = inode;
2228 if (flags & LOOKUP_RCU) {
2229 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2230 nd->root_seq = nd->seq;
2231 } else {
2232 path_get(&nd->path);
2233 }
2234 return s;
2235 }
2236
2237 nd->root.mnt = NULL;
2238 nd->path.mnt = NULL;
2239 nd->path.dentry = NULL;
2240
2241 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2242 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2243 error = nd_jump_root(nd);
2244 if (unlikely(error))
2245 return ERR_PTR(error);
2246 return s;
2247 }
2248
2249 /* Relative pathname -- get the starting-point it is relative to. */
2250 if (nd->dfd == AT_FDCWD) {
2251 if (flags & LOOKUP_RCU) {
2252 struct fs_struct *fs = current->fs;
2253 unsigned seq;
2254
2255 do {
2256 seq = read_seqcount_begin(&fs->seq);
2257 nd->path = fs->pwd;
2258 nd->inode = nd->path.dentry->d_inode;
2259 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2260 } while (read_seqcount_retry(&fs->seq, seq));
2261 } else {
2262 get_fs_pwd(current->fs, &nd->path);
2263 nd->inode = nd->path.dentry->d_inode;
2264 }
2265 } else {
2266 /* Caller must check execute permissions on the starting path component */
2267 struct fd f = fdget_raw(nd->dfd);
2268 struct dentry *dentry;
2269
2270 if (!f.file)
2271 return ERR_PTR(-EBADF);
2272
2273 dentry = f.file->f_path.dentry;
2274
2275 if (*s && unlikely(!d_can_lookup(dentry))) {
2276 fdput(f);
2277 return ERR_PTR(-ENOTDIR);
2278 }
2279
2280 nd->path = f.file->f_path;
2281 if (flags & LOOKUP_RCU) {
2282 nd->inode = nd->path.dentry->d_inode;
2283 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2284 } else {
2285 path_get(&nd->path);
2286 nd->inode = nd->path.dentry->d_inode;
2287 }
2288 fdput(f);
2289 }
2290
2291 /* For scoped-lookups we need to set the root to the dirfd as well. */
2292 if (flags & LOOKUP_IS_SCOPED) {
2293 nd->root = nd->path;
2294 if (flags & LOOKUP_RCU) {
2295 nd->root_seq = nd->seq;
2296 } else {
2297 path_get(&nd->root);
2298 nd->flags |= LOOKUP_ROOT_GRABBED;
2299 }
2300 }
2301 return s;
2302 }
2303
2304 static inline const char *lookup_last(struct nameidata *nd)
2305 {
2306 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2307 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2308
2309 return walk_component(nd, WALK_TRAILING);
2310 }
2311
2312 static int handle_lookup_down(struct nameidata *nd)
2313 {
2314 if (!(nd->flags & LOOKUP_RCU))
2315 dget(nd->path.dentry);
2316 return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2317 nd->path.dentry, nd->inode, nd->seq));
2318 }
2319
2320 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2321 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2322 {
2323 const char *s = path_init(nd, flags);
2324 int err;
2325
2326 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2327 err = handle_lookup_down(nd);
2328 if (unlikely(err < 0))
2329 s = ERR_PTR(err);
2330 }
2331
2332 while (!(err = link_path_walk(s, nd)) &&
2333 (s = lookup_last(nd)) != NULL)
2334 ;
2335 if (!err)
2336 err = complete_walk(nd);
2337
2338 if (!err && nd->flags & LOOKUP_DIRECTORY)
2339 if (!d_can_lookup(nd->path.dentry))
2340 err = -ENOTDIR;
2341 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2342 err = handle_lookup_down(nd);
2343 nd->flags &= ~LOOKUP_JUMPED; // no d_weak_revalidate(), please...
2344 }
2345 if (!err) {
2346 *path = nd->path;
2347 nd->path.mnt = NULL;
2348 nd->path.dentry = NULL;
2349 }
2350 terminate_walk(nd);
2351 return err;
2352 }
2353
2354 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2355 struct path *path, struct path *root)
2356 {
2357 int retval;
2358 struct nameidata nd;
2359 if (IS_ERR(name))
2360 return PTR_ERR(name);
2361 if (unlikely(root)) {
2362 nd.root = *root;
2363 flags |= LOOKUP_ROOT;
2364 }
2365 set_nameidata(&nd, dfd, name);
2366 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2367 if (unlikely(retval == -ECHILD))
2368 retval = path_lookupat(&nd, flags, path);
2369 if (unlikely(retval == -ESTALE))
2370 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2371
2372 if (likely(!retval))
2373 audit_inode(name, path->dentry,
2374 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2375 restore_nameidata();
2376 putname(name);
2377 return retval;
2378 }
2379
2380 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2381 static int path_parentat(struct nameidata *nd, unsigned flags,
2382 struct path *parent)
2383 {
2384 const char *s = path_init(nd, flags);
2385 int err = link_path_walk(s, nd);
2386 if (!err)
2387 err = complete_walk(nd);
2388 if (!err) {
2389 *parent = nd->path;
2390 nd->path.mnt = NULL;
2391 nd->path.dentry = NULL;
2392 }
2393 terminate_walk(nd);
2394 return err;
2395 }
2396
2397 static struct filename *filename_parentat(int dfd, struct filename *name,
2398 unsigned int flags, struct path *parent,
2399 struct qstr *last, int *type)
2400 {
2401 int retval;
2402 struct nameidata nd;
2403
2404 if (IS_ERR(name))
2405 return name;
2406 set_nameidata(&nd, dfd, name);
2407 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2408 if (unlikely(retval == -ECHILD))
2409 retval = path_parentat(&nd, flags, parent);
2410 if (unlikely(retval == -ESTALE))
2411 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2412 if (likely(!retval)) {
2413 *last = nd.last;
2414 *type = nd.last_type;
2415 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2416 } else {
2417 putname(name);
2418 name = ERR_PTR(retval);
2419 }
2420 restore_nameidata();
2421 return name;
2422 }
2423
2424 /* does lookup, returns the object with parent locked */
2425 struct dentry *kern_path_locked(const char *name, struct path *path)
2426 {
2427 struct filename *filename;
2428 struct dentry *d;
2429 struct qstr last;
2430 int type;
2431
2432 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2433 &last, &type);
2434 if (IS_ERR(filename))
2435 return ERR_CAST(filename);
2436 if (unlikely(type != LAST_NORM)) {
2437 path_put(path);
2438 putname(filename);
2439 return ERR_PTR(-EINVAL);
2440 }
2441 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2442 d = __lookup_hash(&last, path->dentry, 0);
2443 if (IS_ERR(d)) {
2444 inode_unlock(path->dentry->d_inode);
2445 path_put(path);
2446 }
2447 putname(filename);
2448 return d;
2449 }
2450
2451 int kern_path(const char *name, unsigned int flags, struct path *path)
2452 {
2453 return filename_lookup(AT_FDCWD, getname_kernel(name),
2454 flags, path, NULL);
2455 }
2456 EXPORT_SYMBOL(kern_path);
2457
2458 /**
2459 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2460 * @dentry: pointer to dentry of the base directory
2461 * @mnt: pointer to vfs mount of the base directory
2462 * @name: pointer to file name
2463 * @flags: lookup flags
2464 * @path: pointer to struct path to fill
2465 */
2466 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2467 const char *name, unsigned int flags,
2468 struct path *path)
2469 {
2470 struct path root = {.mnt = mnt, .dentry = dentry};
2471 /* the first argument of filename_lookup() is ignored with root */
2472 return filename_lookup(AT_FDCWD, getname_kernel(name),
2473 flags , path, &root);
2474 }
2475 EXPORT_SYMBOL(vfs_path_lookup);
2476
2477 static int lookup_one_len_common(const char *name, struct dentry *base,
2478 int len, struct qstr *this)
2479 {
2480 this->name = name;
2481 this->len = len;
2482 this->hash = full_name_hash(base, name, len);
2483 if (!len)
2484 return -EACCES;
2485
2486 if (unlikely(name[0] == '.')) {
2487 if (len < 2 || (len == 2 && name[1] == '.'))
2488 return -EACCES;
2489 }
2490
2491 while (len--) {
2492 unsigned int c = *(const unsigned char *)name++;
2493 if (c == '/' || c == '\0')
2494 return -EACCES;
2495 }
2496 /*
2497 * See if the low-level filesystem might want
2498 * to use its own hash..
2499 */
2500 if (base->d_flags & DCACHE_OP_HASH) {
2501 int err = base->d_op->d_hash(base, this);
2502 if (err < 0)
2503 return err;
2504 }
2505
2506 return inode_permission(base->d_inode, MAY_EXEC);
2507 }
2508
2509 /**
2510 * try_lookup_one_len - filesystem helper to lookup single pathname component
2511 * @name: pathname component to lookup
2512 * @base: base directory to lookup from
2513 * @len: maximum length @len should be interpreted to
2514 *
2515 * Look up a dentry by name in the dcache, returning NULL if it does not
2516 * currently exist. The function does not try to create a dentry.
2517 *
2518 * Note that this routine is purely a helper for filesystem usage and should
2519 * not be called by generic code.
2520 *
2521 * The caller must hold base->i_mutex.
2522 */
2523 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2524 {
2525 struct qstr this;
2526 int err;
2527
2528 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2529
2530 err = lookup_one_len_common(name, base, len, &this);
2531 if (err)
2532 return ERR_PTR(err);
2533
2534 return lookup_dcache(&this, base, 0);
2535 }
2536 EXPORT_SYMBOL(try_lookup_one_len);
2537
2538 /**
2539 * lookup_one_len - filesystem helper to lookup single pathname component
2540 * @name: pathname component to lookup
2541 * @base: base directory to lookup from
2542 * @len: maximum length @len should be interpreted to
2543 *
2544 * Note that this routine is purely a helper for filesystem usage and should
2545 * not be called by generic code.
2546 *
2547 * The caller must hold base->i_mutex.
2548 */
2549 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2550 {
2551 struct dentry *dentry;
2552 struct qstr this;
2553 int err;
2554
2555 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2556
2557 err = lookup_one_len_common(name, base, len, &this);
2558 if (err)
2559 return ERR_PTR(err);
2560
2561 dentry = lookup_dcache(&this, base, 0);
2562 return dentry ? dentry : __lookup_slow(&this, base, 0);
2563 }
2564 EXPORT_SYMBOL(lookup_one_len);
2565
2566 /**
2567 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2568 * @name: pathname component to lookup
2569 * @base: base directory to lookup from
2570 * @len: maximum length @len should be interpreted to
2571 *
2572 * Note that this routine is purely a helper for filesystem usage and should
2573 * not be called by generic code.
2574 *
2575 * Unlike lookup_one_len, it should be called without the parent
2576 * i_mutex held, and will take the i_mutex itself if necessary.
2577 */
2578 struct dentry *lookup_one_len_unlocked(const char *name,
2579 struct dentry *base, int len)
2580 {
2581 struct qstr this;
2582 int err;
2583 struct dentry *ret;
2584
2585 err = lookup_one_len_common(name, base, len, &this);
2586 if (err)
2587 return ERR_PTR(err);
2588
2589 ret = lookup_dcache(&this, base, 0);
2590 if (!ret)
2591 ret = lookup_slow(&this, base, 0);
2592 return ret;
2593 }
2594 EXPORT_SYMBOL(lookup_one_len_unlocked);
2595
2596 /*
2597 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2598 * on negatives. Returns known positive or ERR_PTR(); that's what
2599 * most of the users want. Note that pinned negative with unlocked parent
2600 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2601 * need to be very careful; pinned positives have ->d_inode stable, so
2602 * this one avoids such problems.
2603 */
2604 struct dentry *lookup_positive_unlocked(const char *name,
2605 struct dentry *base, int len)
2606 {
2607 struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2608 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2609 dput(ret);
2610 ret = ERR_PTR(-ENOENT);
2611 }
2612 return ret;
2613 }
2614 EXPORT_SYMBOL(lookup_positive_unlocked);
2615
2616 #ifdef CONFIG_UNIX98_PTYS
2617 int path_pts(struct path *path)
2618 {
2619 /* Find something mounted on "pts" in the same directory as
2620 * the input path.
2621 */
2622 struct dentry *parent = dget_parent(path->dentry);
2623 struct dentry *child;
2624 struct qstr this = QSTR_INIT("pts", 3);
2625
2626 if (unlikely(!path_connected(path->mnt, parent))) {
2627 dput(parent);
2628 return -ENOENT;
2629 }
2630 dput(path->dentry);
2631 path->dentry = parent;
2632 child = d_hash_and_lookup(parent, &this);
2633 if (!child)
2634 return -ENOENT;
2635
2636 path->dentry = child;
2637 dput(parent);
2638 follow_down(path);
2639 return 0;
2640 }
2641 #endif
2642
2643 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2644 struct path *path, int *empty)
2645 {
2646 return filename_lookup(dfd, getname_flags(name, flags, empty),
2647 flags, path, NULL);
2648 }
2649 EXPORT_SYMBOL(user_path_at_empty);
2650
2651 int __check_sticky(struct inode *dir, struct inode *inode)
2652 {
2653 kuid_t fsuid = current_fsuid();
2654
2655 if (uid_eq(inode->i_uid, fsuid))
2656 return 0;
2657 if (uid_eq(dir->i_uid, fsuid))
2658 return 0;
2659 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2660 }
2661 EXPORT_SYMBOL(__check_sticky);
2662
2663 /*
2664 * Check whether we can remove a link victim from directory dir, check
2665 * whether the type of victim is right.
2666 * 1. We can't do it if dir is read-only (done in permission())
2667 * 2. We should have write and exec permissions on dir
2668 * 3. We can't remove anything from append-only dir
2669 * 4. We can't do anything with immutable dir (done in permission())
2670 * 5. If the sticky bit on dir is set we should either
2671 * a. be owner of dir, or
2672 * b. be owner of victim, or
2673 * c. have CAP_FOWNER capability
2674 * 6. If the victim is append-only or immutable we can't do antyhing with
2675 * links pointing to it.
2676 * 7. If the victim has an unknown uid or gid we can't change the inode.
2677 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2678 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2679 * 10. We can't remove a root or mountpoint.
2680 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2681 * nfs_async_unlink().
2682 */
2683 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2684 {
2685 struct inode *inode = d_backing_inode(victim);
2686 int error;
2687
2688 if (d_is_negative(victim))
2689 return -ENOENT;
2690 BUG_ON(!inode);
2691
2692 BUG_ON(victim->d_parent->d_inode != dir);
2693
2694 /* Inode writeback is not safe when the uid or gid are invalid. */
2695 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2696 return -EOVERFLOW;
2697
2698 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2699
2700 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2701 if (error)
2702 return error;
2703 if (IS_APPEND(dir))
2704 return -EPERM;
2705
2706 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2707 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2708 return -EPERM;
2709 if (isdir) {
2710 if (!d_is_dir(victim))
2711 return -ENOTDIR;
2712 if (IS_ROOT(victim))
2713 return -EBUSY;
2714 } else if (d_is_dir(victim))
2715 return -EISDIR;
2716 if (IS_DEADDIR(dir))
2717 return -ENOENT;
2718 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2719 return -EBUSY;
2720 return 0;
2721 }
2722
2723 /* Check whether we can create an object with dentry child in directory
2724 * dir.
2725 * 1. We can't do it if child already exists (open has special treatment for
2726 * this case, but since we are inlined it's OK)
2727 * 2. We can't do it if dir is read-only (done in permission())
2728 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2729 * 4. We should have write and exec permissions on dir
2730 * 5. We can't do it if dir is immutable (done in permission())
2731 */
2732 static inline int may_create(struct inode *dir, struct dentry *child)
2733 {
2734 struct user_namespace *s_user_ns;
2735 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2736 if (child->d_inode)
2737 return -EEXIST;
2738 if (IS_DEADDIR(dir))
2739 return -ENOENT;
2740 s_user_ns = dir->i_sb->s_user_ns;
2741 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2742 !kgid_has_mapping(s_user_ns, current_fsgid()))
2743 return -EOVERFLOW;
2744 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2745 }
2746
2747 /*
2748 * p1 and p2 should be directories on the same fs.
2749 */
2750 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2751 {
2752 struct dentry *p;
2753
2754 if (p1 == p2) {
2755 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2756 return NULL;
2757 }
2758
2759 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2760
2761 p = d_ancestor(p2, p1);
2762 if (p) {
2763 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2764 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2765 return p;
2766 }
2767
2768 p = d_ancestor(p1, p2);
2769 if (p) {
2770 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2771 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2772 return p;
2773 }
2774
2775 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2776 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2777 return NULL;
2778 }
2779 EXPORT_SYMBOL(lock_rename);
2780
2781 void unlock_rename(struct dentry *p1, struct dentry *p2)
2782 {
2783 inode_unlock(p1->d_inode);
2784 if (p1 != p2) {
2785 inode_unlock(p2->d_inode);
2786 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2787 }
2788 }
2789 EXPORT_SYMBOL(unlock_rename);
2790
2791 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2792 bool want_excl)
2793 {
2794 int error = may_create(dir, dentry);
2795 if (error)
2796 return error;
2797
2798 if (!dir->i_op->create)
2799 return -EACCES; /* shouldn't it be ENOSYS? */
2800 mode &= S_IALLUGO;
2801 mode |= S_IFREG;
2802 error = security_inode_create(dir, dentry, mode);
2803 if (error)
2804 return error;
2805 error = dir->i_op->create(dir, dentry, mode, want_excl);
2806 if (!error)
2807 fsnotify_create(dir, dentry);
2808 return error;
2809 }
2810 EXPORT_SYMBOL(vfs_create);
2811
2812 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2813 int (*f)(struct dentry *, umode_t, void *),
2814 void *arg)
2815 {
2816 struct inode *dir = dentry->d_parent->d_inode;
2817 int error = may_create(dir, dentry);
2818 if (error)
2819 return error;
2820
2821 mode &= S_IALLUGO;
2822 mode |= S_IFREG;
2823 error = security_inode_create(dir, dentry, mode);
2824 if (error)
2825 return error;
2826 error = f(dentry, mode, arg);
2827 if (!error)
2828 fsnotify_create(dir, dentry);
2829 return error;
2830 }
2831 EXPORT_SYMBOL(vfs_mkobj);
2832
2833 bool may_open_dev(const struct path *path)
2834 {
2835 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2836 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2837 }
2838
2839 static int may_open(const struct path *path, int acc_mode, int flag)
2840 {
2841 struct dentry *dentry = path->dentry;
2842 struct inode *inode = dentry->d_inode;
2843 int error;
2844
2845 if (!inode)
2846 return -ENOENT;
2847
2848 switch (inode->i_mode & S_IFMT) {
2849 case S_IFLNK:
2850 return -ELOOP;
2851 case S_IFDIR:
2852 if (acc_mode & MAY_WRITE)
2853 return -EISDIR;
2854 if (acc_mode & MAY_EXEC)
2855 return -EACCES;
2856 break;
2857 case S_IFBLK:
2858 case S_IFCHR:
2859 if (!may_open_dev(path))
2860 return -EACCES;
2861 fallthrough;
2862 case S_IFIFO:
2863 case S_IFSOCK:
2864 if (acc_mode & MAY_EXEC)
2865 return -EACCES;
2866 flag &= ~O_TRUNC;
2867 break;
2868 case S_IFREG:
2869 if ((acc_mode & MAY_EXEC) && path_noexec(path))
2870 return -EACCES;
2871 break;
2872 }
2873
2874 error = inode_permission(inode, MAY_OPEN | acc_mode);
2875 if (error)
2876 return error;
2877
2878 /*
2879 * An append-only file must be opened in append mode for writing.
2880 */
2881 if (IS_APPEND(inode)) {
2882 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2883 return -EPERM;
2884 if (flag & O_TRUNC)
2885 return -EPERM;
2886 }
2887
2888 /* O_NOATIME can only be set by the owner or superuser */
2889 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2890 return -EPERM;
2891
2892 return 0;
2893 }
2894
2895 static int handle_truncate(struct file *filp)
2896 {
2897 const struct path *path = &filp->f_path;
2898 struct inode *inode = path->dentry->d_inode;
2899 int error = get_write_access(inode);
2900 if (error)
2901 return error;
2902 /*
2903 * Refuse to truncate files with mandatory locks held on them.
2904 */
2905 error = locks_verify_locked(filp);
2906 if (!error)
2907 error = security_path_truncate(path);
2908 if (!error) {
2909 error = do_truncate(path->dentry, 0,
2910 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2911 filp);
2912 }
2913 put_write_access(inode);
2914 return error;
2915 }
2916
2917 static inline int open_to_namei_flags(int flag)
2918 {
2919 if ((flag & O_ACCMODE) == 3)
2920 flag--;
2921 return flag;
2922 }
2923
2924 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2925 {
2926 struct user_namespace *s_user_ns;
2927 int error = security_path_mknod(dir, dentry, mode, 0);
2928 if (error)
2929 return error;
2930
2931 s_user_ns = dir->dentry->d_sb->s_user_ns;
2932 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2933 !kgid_has_mapping(s_user_ns, current_fsgid()))
2934 return -EOVERFLOW;
2935
2936 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2937 if (error)
2938 return error;
2939
2940 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2941 }
2942
2943 /*
2944 * Attempt to atomically look up, create and open a file from a negative
2945 * dentry.
2946 *
2947 * Returns 0 if successful. The file will have been created and attached to
2948 * @file by the filesystem calling finish_open().
2949 *
2950 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
2951 * be set. The caller will need to perform the open themselves. @path will
2952 * have been updated to point to the new dentry. This may be negative.
2953 *
2954 * Returns an error code otherwise.
2955 */
2956 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
2957 struct file *file,
2958 int open_flag, umode_t mode)
2959 {
2960 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2961 struct inode *dir = nd->path.dentry->d_inode;
2962 int error;
2963
2964 if (nd->flags & LOOKUP_DIRECTORY)
2965 open_flag |= O_DIRECTORY;
2966
2967 file->f_path.dentry = DENTRY_NOT_SET;
2968 file->f_path.mnt = nd->path.mnt;
2969 error = dir->i_op->atomic_open(dir, dentry, file,
2970 open_to_namei_flags(open_flag), mode);
2971 d_lookup_done(dentry);
2972 if (!error) {
2973 if (file->f_mode & FMODE_OPENED) {
2974 if (unlikely(dentry != file->f_path.dentry)) {
2975 dput(dentry);
2976 dentry = dget(file->f_path.dentry);
2977 }
2978 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2979 error = -EIO;
2980 } else {
2981 if (file->f_path.dentry) {
2982 dput(dentry);
2983 dentry = file->f_path.dentry;
2984 }
2985 if (unlikely(d_is_negative(dentry)))
2986 error = -ENOENT;
2987 }
2988 }
2989 if (error) {
2990 dput(dentry);
2991 dentry = ERR_PTR(error);
2992 }
2993 return dentry;
2994 }
2995
2996 /*
2997 * Look up and maybe create and open the last component.
2998 *
2999 * Must be called with parent locked (exclusive in O_CREAT case).
3000 *
3001 * Returns 0 on success, that is, if
3002 * the file was successfully atomically created (if necessary) and opened, or
3003 * the file was not completely opened at this time, though lookups and
3004 * creations were performed.
3005 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3006 * In the latter case dentry returned in @path might be negative if O_CREAT
3007 * hadn't been specified.
3008 *
3009 * An error code is returned on failure.
3010 */
3011 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3012 const struct open_flags *op,
3013 bool got_write)
3014 {
3015 struct dentry *dir = nd->path.dentry;
3016 struct inode *dir_inode = dir->d_inode;
3017 int open_flag = op->open_flag;
3018 struct dentry *dentry;
3019 int error, create_error = 0;
3020 umode_t mode = op->mode;
3021 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3022
3023 if (unlikely(IS_DEADDIR(dir_inode)))
3024 return ERR_PTR(-ENOENT);
3025
3026 file->f_mode &= ~FMODE_CREATED;
3027 dentry = d_lookup(dir, &nd->last);
3028 for (;;) {
3029 if (!dentry) {
3030 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3031 if (IS_ERR(dentry))
3032 return dentry;
3033 }
3034 if (d_in_lookup(dentry))
3035 break;
3036
3037 error = d_revalidate(dentry, nd->flags);
3038 if (likely(error > 0))
3039 break;
3040 if (error)
3041 goto out_dput;
3042 d_invalidate(dentry);
3043 dput(dentry);
3044 dentry = NULL;
3045 }
3046 if (dentry->d_inode) {
3047 /* Cached positive dentry: will open in f_op->open */
3048 return dentry;
3049 }
3050
3051 /*
3052 * Checking write permission is tricky, bacuse we don't know if we are
3053 * going to actually need it: O_CREAT opens should work as long as the
3054 * file exists. But checking existence breaks atomicity. The trick is
3055 * to check access and if not granted clear O_CREAT from the flags.
3056 *
3057 * Another problem is returing the "right" error value (e.g. for an
3058 * O_EXCL open we want to return EEXIST not EROFS).
3059 */
3060 if (unlikely(!got_write))
3061 open_flag &= ~O_TRUNC;
3062 if (open_flag & O_CREAT) {
3063 if (open_flag & O_EXCL)
3064 open_flag &= ~O_TRUNC;
3065 if (!IS_POSIXACL(dir->d_inode))
3066 mode &= ~current_umask();
3067 if (likely(got_write))
3068 create_error = may_o_create(&nd->path, dentry, mode);
3069 else
3070 create_error = -EROFS;
3071 }
3072 if (create_error)
3073 open_flag &= ~O_CREAT;
3074 if (dir_inode->i_op->atomic_open) {
3075 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3076 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3077 dentry = ERR_PTR(create_error);
3078 return dentry;
3079 }
3080
3081 if (d_in_lookup(dentry)) {
3082 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3083 nd->flags);
3084 d_lookup_done(dentry);
3085 if (unlikely(res)) {
3086 if (IS_ERR(res)) {
3087 error = PTR_ERR(res);
3088 goto out_dput;
3089 }
3090 dput(dentry);
3091 dentry = res;
3092 }
3093 }
3094
3095 /* Negative dentry, just create the file */
3096 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3097 file->f_mode |= FMODE_CREATED;
3098 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3099 if (!dir_inode->i_op->create) {
3100 error = -EACCES;
3101 goto out_dput;
3102 }
3103 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3104 open_flag & O_EXCL);
3105 if (error)
3106 goto out_dput;
3107 }
3108 if (unlikely(create_error) && !dentry->d_inode) {
3109 error = create_error;
3110 goto out_dput;
3111 }
3112 return dentry;
3113
3114 out_dput:
3115 dput(dentry);
3116 return ERR_PTR(error);
3117 }
3118
3119 static const char *open_last_lookups(struct nameidata *nd,
3120 struct file *file, const struct open_flags *op)
3121 {
3122 struct dentry *dir = nd->path.dentry;
3123 int open_flag = op->open_flag;
3124 bool got_write = false;
3125 unsigned seq;
3126 struct inode *inode;
3127 struct dentry *dentry;
3128 const char *res;
3129 int error;
3130
3131 nd->flags |= op->intent;
3132
3133 if (nd->last_type != LAST_NORM) {
3134 if (nd->depth)
3135 put_link(nd);
3136 return handle_dots(nd, nd->last_type);
3137 }
3138
3139 if (!(open_flag & O_CREAT)) {
3140 if (nd->last.name[nd->last.len])
3141 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3142 /* we _can_ be in RCU mode here */
3143 dentry = lookup_fast(nd, &inode, &seq);
3144 if (IS_ERR(dentry))
3145 return ERR_CAST(dentry);
3146 if (likely(dentry))
3147 goto finish_lookup;
3148
3149 BUG_ON(nd->flags & LOOKUP_RCU);
3150 } else {
3151 /* create side of things */
3152 if (nd->flags & LOOKUP_RCU) {
3153 error = unlazy_walk(nd);
3154 if (unlikely(error))
3155 return ERR_PTR(error);
3156 }
3157 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3158 /* trailing slashes? */
3159 if (unlikely(nd->last.name[nd->last.len]))
3160 return ERR_PTR(-EISDIR);
3161 }
3162
3163 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3164 error = mnt_want_write(nd->path.mnt);
3165 if (!error)
3166 got_write = true;
3167 /*
3168 * do _not_ fail yet - we might not need that or fail with
3169 * a different error; let lookup_open() decide; we'll be
3170 * dropping this one anyway.
3171 */
3172 }
3173 if (open_flag & O_CREAT)
3174 inode_lock(dir->d_inode);
3175 else
3176 inode_lock_shared(dir->d_inode);
3177 dentry = lookup_open(nd, file, op, got_write);
3178 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3179 fsnotify_create(dir->d_inode, dentry);
3180 if (open_flag & O_CREAT)
3181 inode_unlock(dir->d_inode);
3182 else
3183 inode_unlock_shared(dir->d_inode);
3184
3185 if (got_write)
3186 mnt_drop_write(nd->path.mnt);
3187
3188 if (IS_ERR(dentry))
3189 return ERR_CAST(dentry);
3190
3191 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3192 dput(nd->path.dentry);
3193 nd->path.dentry = dentry;
3194 return NULL;
3195 }
3196
3197 finish_lookup:
3198 if (nd->depth)
3199 put_link(nd);
3200 res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3201 if (unlikely(res))
3202 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3203 return res;
3204 }
3205
3206 /*
3207 * Handle the last step of open()
3208 */
3209 static int do_open(struct nameidata *nd,
3210 struct file *file, const struct open_flags *op)
3211 {
3212 int open_flag = op->open_flag;
3213 bool do_truncate;
3214 int acc_mode;
3215 int error;
3216
3217 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3218 error = complete_walk(nd);
3219 if (error)
3220 return error;
3221 }
3222 if (!(file->f_mode & FMODE_CREATED))
3223 audit_inode(nd->name, nd->path.dentry, 0);
3224 if (open_flag & O_CREAT) {
3225 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3226 return -EEXIST;
3227 if (d_is_dir(nd->path.dentry))
3228 return -EISDIR;
3229 error = may_create_in_sticky(nd->dir_mode, nd->dir_uid,
3230 d_backing_inode(nd->path.dentry));
3231 if (unlikely(error))
3232 return error;
3233 }
3234 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3235 return -ENOTDIR;
3236
3237 do_truncate = false;
3238 acc_mode = op->acc_mode;
3239 if (file->f_mode & FMODE_CREATED) {
3240 /* Don't check for write permission, don't truncate */
3241 open_flag &= ~O_TRUNC;
3242 acc_mode = 0;
3243 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3244 error = mnt_want_write(nd->path.mnt);
3245 if (error)
3246 return error;
3247 do_truncate = true;
3248 }
3249 error = may_open(&nd->path, acc_mode, open_flag);
3250 if (!error && !(file->f_mode & FMODE_OPENED))
3251 error = vfs_open(&nd->path, file);
3252 if (!error)
3253 error = ima_file_check(file, op->acc_mode);
3254 if (!error && do_truncate)
3255 error = handle_truncate(file);
3256 if (unlikely(error > 0)) {
3257 WARN_ON(1);
3258 error = -EINVAL;
3259 }
3260 if (do_truncate)
3261 mnt_drop_write(nd->path.mnt);
3262 return error;
3263 }
3264
3265 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3266 {
3267 struct dentry *child = NULL;
3268 struct inode *dir = dentry->d_inode;
3269 struct inode *inode;
3270 int error;
3271
3272 /* we want directory to be writable */
3273 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3274 if (error)
3275 goto out_err;
3276 error = -EOPNOTSUPP;
3277 if (!dir->i_op->tmpfile)
3278 goto out_err;
3279 error = -ENOMEM;
3280 child = d_alloc(dentry, &slash_name);
3281 if (unlikely(!child))
3282 goto out_err;
3283 error = dir->i_op->tmpfile(dir, child, mode);
3284 if (error)
3285 goto out_err;
3286 error = -ENOENT;
3287 inode = child->d_inode;
3288 if (unlikely(!inode))
3289 goto out_err;
3290 if (!(open_flag & O_EXCL)) {
3291 spin_lock(&inode->i_lock);
3292 inode->i_state |= I_LINKABLE;
3293 spin_unlock(&inode->i_lock);
3294 }
3295 ima_post_create_tmpfile(inode);
3296 return child;
3297
3298 out_err:
3299 dput(child);
3300 return ERR_PTR(error);
3301 }
3302 EXPORT_SYMBOL(vfs_tmpfile);
3303
3304 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3305 const struct open_flags *op,
3306 struct file *file)
3307 {
3308 struct dentry *child;
3309 struct path path;
3310 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3311 if (unlikely(error))
3312 return error;
3313 error = mnt_want_write(path.mnt);
3314 if (unlikely(error))
3315 goto out;
3316 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3317 error = PTR_ERR(child);
3318 if (IS_ERR(child))
3319 goto out2;
3320 dput(path.dentry);
3321 path.dentry = child;
3322 audit_inode(nd->name, child, 0);
3323 /* Don't check for other permissions, the inode was just created */
3324 error = may_open(&path, 0, op->open_flag);
3325 if (error)
3326 goto out2;
3327 file->f_path.mnt = path.mnt;
3328 error = finish_open(file, child, NULL);
3329 out2:
3330 mnt_drop_write(path.mnt);
3331 out:
3332 path_put(&path);
3333 return error;
3334 }
3335
3336 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3337 {
3338 struct path path;
3339 int error = path_lookupat(nd, flags, &path);
3340 if (!error) {
3341 audit_inode(nd->name, path.dentry, 0);
3342 error = vfs_open(&path, file);
3343 path_put(&path);
3344 }
3345 return error;
3346 }
3347
3348 static struct file *path_openat(struct nameidata *nd,
3349 const struct open_flags *op, unsigned flags)
3350 {
3351 struct file *file;
3352 int error;
3353
3354 file = alloc_empty_file(op->open_flag, current_cred());
3355 if (IS_ERR(file))
3356 return file;
3357
3358 if (unlikely(file->f_flags & __O_TMPFILE)) {
3359 error = do_tmpfile(nd, flags, op, file);
3360 } else if (unlikely(file->f_flags & O_PATH)) {
3361 error = do_o_path(nd, flags, file);
3362 } else {
3363 const char *s = path_init(nd, flags);
3364 while (!(error = link_path_walk(s, nd)) &&
3365 (s = open_last_lookups(nd, file, op)) != NULL)
3366 ;
3367 if (!error)
3368 error = do_open(nd, file, op);
3369 terminate_walk(nd);
3370 }
3371 if (likely(!error)) {
3372 if (likely(file->f_mode & FMODE_OPENED))
3373 return file;
3374 WARN_ON(1);
3375 error = -EINVAL;
3376 }
3377 fput(file);
3378 if (error == -EOPENSTALE) {
3379 if (flags & LOOKUP_RCU)
3380 error = -ECHILD;
3381 else
3382 error = -ESTALE;
3383 }
3384 return ERR_PTR(error);
3385 }
3386
3387 struct file *do_filp_open(int dfd, struct filename *pathname,
3388 const struct open_flags *op)
3389 {
3390 struct nameidata nd;
3391 int flags = op->lookup_flags;
3392 struct file *filp;
3393
3394 set_nameidata(&nd, dfd, pathname);
3395 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3396 if (unlikely(filp == ERR_PTR(-ECHILD)))
3397 filp = path_openat(&nd, op, flags);
3398 if (unlikely(filp == ERR_PTR(-ESTALE)))
3399 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3400 restore_nameidata();
3401 return filp;
3402 }
3403
3404 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3405 const char *name, const struct open_flags *op)
3406 {
3407 struct nameidata nd;
3408 struct file *file;
3409 struct filename *filename;
3410 int flags = op->lookup_flags | LOOKUP_ROOT;
3411
3412 nd.root.mnt = mnt;
3413 nd.root.dentry = dentry;
3414
3415 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3416 return ERR_PTR(-ELOOP);
3417
3418 filename = getname_kernel(name);
3419 if (IS_ERR(filename))
3420 return ERR_CAST(filename);
3421
3422 set_nameidata(&nd, -1, filename);
3423 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3424 if (unlikely(file == ERR_PTR(-ECHILD)))
3425 file = path_openat(&nd, op, flags);
3426 if (unlikely(file == ERR_PTR(-ESTALE)))
3427 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3428 restore_nameidata();
3429 putname(filename);
3430 return file;
3431 }
3432
3433 static struct dentry *filename_create(int dfd, struct filename *name,
3434 struct path *path, unsigned int lookup_flags)
3435 {
3436 struct dentry *dentry = ERR_PTR(-EEXIST);
3437 struct qstr last;
3438 int type;
3439 int err2;
3440 int error;
3441 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3442
3443 /*
3444 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3445 * other flags passed in are ignored!
3446 */
3447 lookup_flags &= LOOKUP_REVAL;
3448
3449 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3450 if (IS_ERR(name))
3451 return ERR_CAST(name);
3452
3453 /*
3454 * Yucky last component or no last component at all?
3455 * (foo/., foo/.., /////)
3456 */
3457 if (unlikely(type != LAST_NORM))
3458 goto out;
3459
3460 /* don't fail immediately if it's r/o, at least try to report other errors */
3461 err2 = mnt_want_write(path->mnt);
3462 /*
3463 * Do the final lookup.
3464 */
3465 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3466 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3467 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3468 if (IS_ERR(dentry))
3469 goto unlock;
3470
3471 error = -EEXIST;
3472 if (d_is_positive(dentry))
3473 goto fail;
3474
3475 /*
3476 * Special case - lookup gave negative, but... we had foo/bar/
3477 * From the vfs_mknod() POV we just have a negative dentry -
3478 * all is fine. Let's be bastards - you had / on the end, you've
3479 * been asking for (non-existent) directory. -ENOENT for you.
3480 */
3481 if (unlikely(!is_dir && last.name[last.len])) {
3482 error = -ENOENT;
3483 goto fail;
3484 }
3485 if (unlikely(err2)) {
3486 error = err2;
3487 goto fail;
3488 }
3489 putname(name);
3490 return dentry;
3491 fail:
3492 dput(dentry);
3493 dentry = ERR_PTR(error);
3494 unlock:
3495 inode_unlock(path->dentry->d_inode);
3496 if (!err2)
3497 mnt_drop_write(path->mnt);
3498 out:
3499 path_put(path);
3500 putname(name);
3501 return dentry;
3502 }
3503
3504 struct dentry *kern_path_create(int dfd, const char *pathname,
3505 struct path *path, unsigned int lookup_flags)
3506 {
3507 return filename_create(dfd, getname_kernel(pathname),
3508 path, lookup_flags);
3509 }
3510 EXPORT_SYMBOL(kern_path_create);
3511
3512 void done_path_create(struct path *path, struct dentry *dentry)
3513 {
3514 dput(dentry);
3515 inode_unlock(path->dentry->d_inode);
3516 mnt_drop_write(path->mnt);
3517 path_put(path);
3518 }
3519 EXPORT_SYMBOL(done_path_create);
3520
3521 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3522 struct path *path, unsigned int lookup_flags)
3523 {
3524 return filename_create(dfd, getname(pathname), path, lookup_flags);
3525 }
3526 EXPORT_SYMBOL(user_path_create);
3527
3528 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3529 {
3530 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3531 int error = may_create(dir, dentry);
3532
3533 if (error)
3534 return error;
3535
3536 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3537 !capable(CAP_MKNOD))
3538 return -EPERM;
3539
3540 if (!dir->i_op->mknod)
3541 return -EPERM;
3542
3543 error = devcgroup_inode_mknod(mode, dev);
3544 if (error)
3545 return error;
3546
3547 error = security_inode_mknod(dir, dentry, mode, dev);
3548 if (error)
3549 return error;
3550
3551 error = dir->i_op->mknod(dir, dentry, mode, dev);
3552 if (!error)
3553 fsnotify_create(dir, dentry);
3554 return error;
3555 }
3556 EXPORT_SYMBOL(vfs_mknod);
3557
3558 static int may_mknod(umode_t mode)
3559 {
3560 switch (mode & S_IFMT) {
3561 case S_IFREG:
3562 case S_IFCHR:
3563 case S_IFBLK:
3564 case S_IFIFO:
3565 case S_IFSOCK:
3566 case 0: /* zero mode translates to S_IFREG */
3567 return 0;
3568 case S_IFDIR:
3569 return -EPERM;
3570 default:
3571 return -EINVAL;
3572 }
3573 }
3574
3575 static long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3576 unsigned int dev)
3577 {
3578 struct dentry *dentry;
3579 struct path path;
3580 int error;
3581 unsigned int lookup_flags = 0;
3582
3583 error = may_mknod(mode);
3584 if (error)
3585 return error;
3586 retry:
3587 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3588 if (IS_ERR(dentry))
3589 return PTR_ERR(dentry);
3590
3591 if (!IS_POSIXACL(path.dentry->d_inode))
3592 mode &= ~current_umask();
3593 error = security_path_mknod(&path, dentry, mode, dev);
3594 if (error)
3595 goto out;
3596 switch (mode & S_IFMT) {
3597 case 0: case S_IFREG:
3598 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3599 if (!error)
3600 ima_post_path_mknod(dentry);
3601 break;
3602 case S_IFCHR: case S_IFBLK:
3603 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3604 new_decode_dev(dev));
3605 break;
3606 case S_IFIFO: case S_IFSOCK:
3607 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3608 break;
3609 }
3610 out:
3611 done_path_create(&path, dentry);
3612 if (retry_estale(error, lookup_flags)) {
3613 lookup_flags |= LOOKUP_REVAL;
3614 goto retry;
3615 }
3616 return error;
3617 }
3618
3619 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3620 unsigned int, dev)
3621 {
3622 return do_mknodat(dfd, filename, mode, dev);
3623 }
3624
3625 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3626 {
3627 return do_mknodat(AT_FDCWD, filename, mode, dev);
3628 }
3629
3630 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3631 {
3632 int error = may_create(dir, dentry);
3633 unsigned max_links = dir->i_sb->s_max_links;
3634
3635 if (error)
3636 return error;
3637
3638 if (!dir->i_op->mkdir)
3639 return -EPERM;
3640
3641 mode &= (S_IRWXUGO|S_ISVTX);
3642 error = security_inode_mkdir(dir, dentry, mode);
3643 if (error)
3644 return error;
3645
3646 if (max_links && dir->i_nlink >= max_links)
3647 return -EMLINK;
3648
3649 error = dir->i_op->mkdir(dir, dentry, mode);
3650 if (!error)
3651 fsnotify_mkdir(dir, dentry);
3652 return error;
3653 }
3654 EXPORT_SYMBOL(vfs_mkdir);
3655
3656 static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3657 {
3658 struct dentry *dentry;
3659 struct path path;
3660 int error;
3661 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3662
3663 retry:
3664 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3665 if (IS_ERR(dentry))
3666 return PTR_ERR(dentry);
3667
3668 if (!IS_POSIXACL(path.dentry->d_inode))
3669 mode &= ~current_umask();
3670 error = security_path_mkdir(&path, dentry, mode);
3671 if (!error)
3672 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3673 done_path_create(&path, dentry);
3674 if (retry_estale(error, lookup_flags)) {
3675 lookup_flags |= LOOKUP_REVAL;
3676 goto retry;
3677 }
3678 return error;
3679 }
3680
3681 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3682 {
3683 return do_mkdirat(dfd, pathname, mode);
3684 }
3685
3686 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3687 {
3688 return do_mkdirat(AT_FDCWD, pathname, mode);
3689 }
3690
3691 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3692 {
3693 int error = may_delete(dir, dentry, 1);
3694
3695 if (error)
3696 return error;
3697
3698 if (!dir->i_op->rmdir)
3699 return -EPERM;
3700
3701 dget(dentry);
3702 inode_lock(dentry->d_inode);
3703
3704 error = -EBUSY;
3705 if (is_local_mountpoint(dentry))
3706 goto out;
3707
3708 error = security_inode_rmdir(dir, dentry);
3709 if (error)
3710 goto out;
3711
3712 error = dir->i_op->rmdir(dir, dentry);
3713 if (error)
3714 goto out;
3715
3716 shrink_dcache_parent(dentry);
3717 dentry->d_inode->i_flags |= S_DEAD;
3718 dont_mount(dentry);
3719 detach_mounts(dentry);
3720 fsnotify_rmdir(dir, dentry);
3721
3722 out:
3723 inode_unlock(dentry->d_inode);
3724 dput(dentry);
3725 if (!error)
3726 d_delete(dentry);
3727 return error;
3728 }
3729 EXPORT_SYMBOL(vfs_rmdir);
3730
3731 long do_rmdir(int dfd, struct filename *name)
3732 {
3733 int error = 0;
3734 struct dentry *dentry;
3735 struct path path;
3736 struct qstr last;
3737 int type;
3738 unsigned int lookup_flags = 0;
3739 retry:
3740 name = filename_parentat(dfd, name, lookup_flags,
3741 &path, &last, &type);
3742 if (IS_ERR(name))
3743 return PTR_ERR(name);
3744
3745 switch (type) {
3746 case LAST_DOTDOT:
3747 error = -ENOTEMPTY;
3748 goto exit1;
3749 case LAST_DOT:
3750 error = -EINVAL;
3751 goto exit1;
3752 case LAST_ROOT:
3753 error = -EBUSY;
3754 goto exit1;
3755 }
3756
3757 error = mnt_want_write(path.mnt);
3758 if (error)
3759 goto exit1;
3760
3761 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3762 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3763 error = PTR_ERR(dentry);
3764 if (IS_ERR(dentry))
3765 goto exit2;
3766 if (!dentry->d_inode) {
3767 error = -ENOENT;
3768 goto exit3;
3769 }
3770 error = security_path_rmdir(&path, dentry);
3771 if (error)
3772 goto exit3;
3773 error = vfs_rmdir(path.dentry->d_inode, dentry);
3774 exit3:
3775 dput(dentry);
3776 exit2:
3777 inode_unlock(path.dentry->d_inode);
3778 mnt_drop_write(path.mnt);
3779 exit1:
3780 path_put(&path);
3781 if (retry_estale(error, lookup_flags)) {
3782 lookup_flags |= LOOKUP_REVAL;
3783 goto retry;
3784 }
3785 putname(name);
3786 return error;
3787 }
3788
3789 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3790 {
3791 return do_rmdir(AT_FDCWD, getname(pathname));
3792 }
3793
3794 /**
3795 * vfs_unlink - unlink a filesystem object
3796 * @dir: parent directory
3797 * @dentry: victim
3798 * @delegated_inode: returns victim inode, if the inode is delegated.
3799 *
3800 * The caller must hold dir->i_mutex.
3801 *
3802 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3803 * return a reference to the inode in delegated_inode. The caller
3804 * should then break the delegation on that inode and retry. Because
3805 * breaking a delegation may take a long time, the caller should drop
3806 * dir->i_mutex before doing so.
3807 *
3808 * Alternatively, a caller may pass NULL for delegated_inode. This may
3809 * be appropriate for callers that expect the underlying filesystem not
3810 * to be NFS exported.
3811 */
3812 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3813 {
3814 struct inode *target = dentry->d_inode;
3815 int error = may_delete(dir, dentry, 0);
3816
3817 if (error)
3818 return error;
3819
3820 if (!dir->i_op->unlink)
3821 return -EPERM;
3822
3823 inode_lock(target);
3824 if (is_local_mountpoint(dentry))
3825 error = -EBUSY;
3826 else {
3827 error = security_inode_unlink(dir, dentry);
3828 if (!error) {
3829 error = try_break_deleg(target, delegated_inode);
3830 if (error)
3831 goto out;
3832 error = dir->i_op->unlink(dir, dentry);
3833 if (!error) {
3834 dont_mount(dentry);
3835 detach_mounts(dentry);
3836 fsnotify_unlink(dir, dentry);
3837 }
3838 }
3839 }
3840 out:
3841 inode_unlock(target);
3842
3843 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3844 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3845 fsnotify_link_count(target);
3846 d_delete(dentry);
3847 }
3848
3849 return error;
3850 }
3851 EXPORT_SYMBOL(vfs_unlink);
3852
3853 /*
3854 * Make sure that the actual truncation of the file will occur outside its
3855 * directory's i_mutex. Truncate can take a long time if there is a lot of
3856 * writeout happening, and we don't want to prevent access to the directory
3857 * while waiting on the I/O.
3858 */
3859 long do_unlinkat(int dfd, struct filename *name)
3860 {
3861 int error;
3862 struct dentry *dentry;
3863 struct path path;
3864 struct qstr last;
3865 int type;
3866 struct inode *inode = NULL;
3867 struct inode *delegated_inode = NULL;
3868 unsigned int lookup_flags = 0;
3869 retry:
3870 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
3871 if (IS_ERR(name))
3872 return PTR_ERR(name);
3873
3874 error = -EISDIR;
3875 if (type != LAST_NORM)
3876 goto exit1;
3877
3878 error = mnt_want_write(path.mnt);
3879 if (error)
3880 goto exit1;
3881 retry_deleg:
3882 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3883 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3884 error = PTR_ERR(dentry);
3885 if (!IS_ERR(dentry)) {
3886 /* Why not before? Because we want correct error value */
3887 if (last.name[last.len])
3888 goto slashes;
3889 inode = dentry->d_inode;
3890 if (d_is_negative(dentry))
3891 goto slashes;
3892 ihold(inode);
3893 error = security_path_unlink(&path, dentry);
3894 if (error)
3895 goto exit2;
3896 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3897 exit2:
3898 dput(dentry);
3899 }
3900 inode_unlock(path.dentry->d_inode);
3901 if (inode)
3902 iput(inode); /* truncate the inode here */
3903 inode = NULL;
3904 if (delegated_inode) {
3905 error = break_deleg_wait(&delegated_inode);
3906 if (!error)
3907 goto retry_deleg;
3908 }
3909 mnt_drop_write(path.mnt);
3910 exit1:
3911 path_put(&path);
3912 if (retry_estale(error, lookup_flags)) {
3913 lookup_flags |= LOOKUP_REVAL;
3914 inode = NULL;
3915 goto retry;
3916 }
3917 putname(name);
3918 return error;
3919
3920 slashes:
3921 if (d_is_negative(dentry))
3922 error = -ENOENT;
3923 else if (d_is_dir(dentry))
3924 error = -EISDIR;
3925 else
3926 error = -ENOTDIR;
3927 goto exit2;
3928 }
3929
3930 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3931 {
3932 if ((flag & ~AT_REMOVEDIR) != 0)
3933 return -EINVAL;
3934
3935 if (flag & AT_REMOVEDIR)
3936 return do_rmdir(dfd, getname(pathname));
3937 return do_unlinkat(dfd, getname(pathname));
3938 }
3939
3940 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3941 {
3942 return do_unlinkat(AT_FDCWD, getname(pathname));
3943 }
3944
3945 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3946 {
3947 int error = may_create(dir, dentry);
3948
3949 if (error)
3950 return error;
3951
3952 if (!dir->i_op->symlink)
3953 return -EPERM;
3954
3955 error = security_inode_symlink(dir, dentry, oldname);
3956 if (error)
3957 return error;
3958
3959 error = dir->i_op->symlink(dir, dentry, oldname);
3960 if (!error)
3961 fsnotify_create(dir, dentry);
3962 return error;
3963 }
3964 EXPORT_SYMBOL(vfs_symlink);
3965
3966 static long do_symlinkat(const char __user *oldname, int newdfd,
3967 const char __user *newname)
3968 {
3969 int error;
3970 struct filename *from;
3971 struct dentry *dentry;
3972 struct path path;
3973 unsigned int lookup_flags = 0;
3974
3975 from = getname(oldname);
3976 if (IS_ERR(from))
3977 return PTR_ERR(from);
3978 retry:
3979 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3980 error = PTR_ERR(dentry);
3981 if (IS_ERR(dentry))
3982 goto out_putname;
3983
3984 error = security_path_symlink(&path, dentry, from->name);
3985 if (!error)
3986 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3987 done_path_create(&path, dentry);
3988 if (retry_estale(error, lookup_flags)) {
3989 lookup_flags |= LOOKUP_REVAL;
3990 goto retry;
3991 }
3992 out_putname:
3993 putname(from);
3994 return error;
3995 }
3996
3997 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3998 int, newdfd, const char __user *, newname)
3999 {
4000 return do_symlinkat(oldname, newdfd, newname);
4001 }
4002
4003 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4004 {
4005 return do_symlinkat(oldname, AT_FDCWD, newname);
4006 }
4007
4008 /**
4009 * vfs_link - create a new link
4010 * @old_dentry: object to be linked
4011 * @dir: new parent
4012 * @new_dentry: where to create the new link
4013 * @delegated_inode: returns inode needing a delegation break
4014 *
4015 * The caller must hold dir->i_mutex
4016 *
4017 * If vfs_link discovers a delegation on the to-be-linked file in need
4018 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4019 * inode in delegated_inode. The caller should then break the delegation
4020 * and retry. Because breaking a delegation may take a long time, the
4021 * caller should drop the i_mutex before doing so.
4022 *
4023 * Alternatively, a caller may pass NULL for delegated_inode. This may
4024 * be appropriate for callers that expect the underlying filesystem not
4025 * to be NFS exported.
4026 */
4027 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4028 {
4029 struct inode *inode = old_dentry->d_inode;
4030 unsigned max_links = dir->i_sb->s_max_links;
4031 int error;
4032
4033 if (!inode)
4034 return -ENOENT;
4035
4036 error = may_create(dir, new_dentry);
4037 if (error)
4038 return error;
4039
4040 if (dir->i_sb != inode->i_sb)
4041 return -EXDEV;
4042
4043 /*
4044 * A link to an append-only or immutable file cannot be created.
4045 */
4046 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4047 return -EPERM;
4048 /*
4049 * Updating the link count will likely cause i_uid and i_gid to
4050 * be writen back improperly if their true value is unknown to
4051 * the vfs.
4052 */
4053 if (HAS_UNMAPPED_ID(inode))
4054 return -EPERM;
4055 if (!dir->i_op->link)
4056 return -EPERM;
4057 if (S_ISDIR(inode->i_mode))
4058 return -EPERM;
4059
4060 error = security_inode_link(old_dentry, dir, new_dentry);
4061 if (error)
4062 return error;
4063
4064 inode_lock(inode);
4065 /* Make sure we don't allow creating hardlink to an unlinked file */
4066 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4067 error = -ENOENT;
4068 else if (max_links && inode->i_nlink >= max_links)
4069 error = -EMLINK;
4070 else {
4071 error = try_break_deleg(inode, delegated_inode);
4072 if (!error)
4073 error = dir->i_op->link(old_dentry, dir, new_dentry);
4074 }
4075
4076 if (!error && (inode->i_state & I_LINKABLE)) {
4077 spin_lock(&inode->i_lock);
4078 inode->i_state &= ~I_LINKABLE;
4079 spin_unlock(&inode->i_lock);
4080 }
4081 inode_unlock(inode);
4082 if (!error)
4083 fsnotify_link(dir, inode, new_dentry);
4084 return error;
4085 }
4086 EXPORT_SYMBOL(vfs_link);
4087
4088 /*
4089 * Hardlinks are often used in delicate situations. We avoid
4090 * security-related surprises by not following symlinks on the
4091 * newname. --KAB
4092 *
4093 * We don't follow them on the oldname either to be compatible
4094 * with linux 2.0, and to avoid hard-linking to directories
4095 * and other special files. --ADM
4096 */
4097 static int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4098 const char __user *newname, int flags)
4099 {
4100 struct dentry *new_dentry;
4101 struct path old_path, new_path;
4102 struct inode *delegated_inode = NULL;
4103 int how = 0;
4104 int error;
4105
4106 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4107 return -EINVAL;
4108 /*
4109 * To use null names we require CAP_DAC_READ_SEARCH
4110 * This ensures that not everyone will be able to create
4111 * handlink using the passed filedescriptor.
4112 */
4113 if (flags & AT_EMPTY_PATH) {
4114 if (!capable(CAP_DAC_READ_SEARCH))
4115 return -ENOENT;
4116 how = LOOKUP_EMPTY;
4117 }
4118
4119 if (flags & AT_SYMLINK_FOLLOW)
4120 how |= LOOKUP_FOLLOW;
4121 retry:
4122 error = user_path_at(olddfd, oldname, how, &old_path);
4123 if (error)
4124 return error;
4125
4126 new_dentry = user_path_create(newdfd, newname, &new_path,
4127 (how & LOOKUP_REVAL));
4128 error = PTR_ERR(new_dentry);
4129 if (IS_ERR(new_dentry))
4130 goto out;
4131
4132 error = -EXDEV;
4133 if (old_path.mnt != new_path.mnt)
4134 goto out_dput;
4135 error = may_linkat(&old_path);
4136 if (unlikely(error))
4137 goto out_dput;
4138 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4139 if (error)
4140 goto out_dput;
4141 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4142 out_dput:
4143 done_path_create(&new_path, new_dentry);
4144 if (delegated_inode) {
4145 error = break_deleg_wait(&delegated_inode);
4146 if (!error) {
4147 path_put(&old_path);
4148 goto retry;
4149 }
4150 }
4151 if (retry_estale(error, how)) {
4152 path_put(&old_path);
4153 how |= LOOKUP_REVAL;
4154 goto retry;
4155 }
4156 out:
4157 path_put(&old_path);
4158
4159 return error;
4160 }
4161
4162 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4163 int, newdfd, const char __user *, newname, int, flags)
4164 {
4165 return do_linkat(olddfd, oldname, newdfd, newname, flags);
4166 }
4167
4168 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4169 {
4170 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4171 }
4172
4173 /**
4174 * vfs_rename - rename a filesystem object
4175 * @old_dir: parent of source
4176 * @old_dentry: source
4177 * @new_dir: parent of destination
4178 * @new_dentry: destination
4179 * @delegated_inode: returns an inode needing a delegation break
4180 * @flags: rename flags
4181 *
4182 * The caller must hold multiple mutexes--see lock_rename()).
4183 *
4184 * If vfs_rename discovers a delegation in need of breaking at either
4185 * the source or destination, it will return -EWOULDBLOCK and return a
4186 * reference to the inode in delegated_inode. The caller should then
4187 * break the delegation and retry. Because breaking a delegation may
4188 * take a long time, the caller should drop all locks before doing
4189 * so.
4190 *
4191 * Alternatively, a caller may pass NULL for delegated_inode. This may
4192 * be appropriate for callers that expect the underlying filesystem not
4193 * to be NFS exported.
4194 *
4195 * The worst of all namespace operations - renaming directory. "Perverted"
4196 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4197 * Problems:
4198 *
4199 * a) we can get into loop creation.
4200 * b) race potential - two innocent renames can create a loop together.
4201 * That's where 4.4 screws up. Current fix: serialization on
4202 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4203 * story.
4204 * c) we have to lock _four_ objects - parents and victim (if it exists),
4205 * and source (if it is not a directory).
4206 * And that - after we got ->i_mutex on parents (until then we don't know
4207 * whether the target exists). Solution: try to be smart with locking
4208 * order for inodes. We rely on the fact that tree topology may change
4209 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4210 * move will be locked. Thus we can rank directories by the tree
4211 * (ancestors first) and rank all non-directories after them.
4212 * That works since everybody except rename does "lock parent, lookup,
4213 * lock child" and rename is under ->s_vfs_rename_mutex.
4214 * HOWEVER, it relies on the assumption that any object with ->lookup()
4215 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4216 * we'd better make sure that there's no link(2) for them.
4217 * d) conversion from fhandle to dentry may come in the wrong moment - when
4218 * we are removing the target. Solution: we will have to grab ->i_mutex
4219 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4220 * ->i_mutex on parents, which works but leads to some truly excessive
4221 * locking].
4222 */
4223 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4224 struct inode *new_dir, struct dentry *new_dentry,
4225 struct inode **delegated_inode, unsigned int flags)
4226 {
4227 int error;
4228 bool is_dir = d_is_dir(old_dentry);
4229 struct inode *source = old_dentry->d_inode;
4230 struct inode *target = new_dentry->d_inode;
4231 bool new_is_dir = false;
4232 unsigned max_links = new_dir->i_sb->s_max_links;
4233 struct name_snapshot old_name;
4234
4235 if (source == target)
4236 return 0;
4237
4238 error = may_delete(old_dir, old_dentry, is_dir);
4239 if (error)
4240 return error;
4241
4242 if (!target) {
4243 error = may_create(new_dir, new_dentry);
4244 } else {
4245 new_is_dir = d_is_dir(new_dentry);
4246
4247 if (!(flags & RENAME_EXCHANGE))
4248 error = may_delete(new_dir, new_dentry, is_dir);
4249 else
4250 error = may_delete(new_dir, new_dentry, new_is_dir);
4251 }
4252 if (error)
4253 return error;
4254
4255 if (!old_dir->i_op->rename)
4256 return -EPERM;
4257
4258 /*
4259 * If we are going to change the parent - check write permissions,
4260 * we'll need to flip '..'.
4261 */
4262 if (new_dir != old_dir) {
4263 if (is_dir) {
4264 error = inode_permission(source, MAY_WRITE);
4265 if (error)
4266 return error;
4267 }
4268 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4269 error = inode_permission(target, MAY_WRITE);
4270 if (error)
4271 return error;
4272 }
4273 }
4274
4275 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4276 flags);
4277 if (error)
4278 return error;
4279
4280 take_dentry_name_snapshot(&old_name, old_dentry);
4281 dget(new_dentry);
4282 if (!is_dir || (flags & RENAME_EXCHANGE))
4283 lock_two_nondirectories(source, target);
4284 else if (target)
4285 inode_lock(target);
4286
4287 error = -EBUSY;
4288 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4289 goto out;
4290
4291 if (max_links && new_dir != old_dir) {
4292 error = -EMLINK;
4293 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4294 goto out;
4295 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4296 old_dir->i_nlink >= max_links)
4297 goto out;
4298 }
4299 if (!is_dir) {
4300 error = try_break_deleg(source, delegated_inode);
4301 if (error)
4302 goto out;
4303 }
4304 if (target && !new_is_dir) {
4305 error = try_break_deleg(target, delegated_inode);
4306 if (error)
4307 goto out;
4308 }
4309 error = old_dir->i_op->rename(old_dir, old_dentry,
4310 new_dir, new_dentry, flags);
4311 if (error)
4312 goto out;
4313
4314 if (!(flags & RENAME_EXCHANGE) && target) {
4315 if (is_dir) {
4316 shrink_dcache_parent(new_dentry);
4317 target->i_flags |= S_DEAD;
4318 }
4319 dont_mount(new_dentry);
4320 detach_mounts(new_dentry);
4321 }
4322 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4323 if (!(flags & RENAME_EXCHANGE))
4324 d_move(old_dentry, new_dentry);
4325 else
4326 d_exchange(old_dentry, new_dentry);
4327 }
4328 out:
4329 if (!is_dir || (flags & RENAME_EXCHANGE))
4330 unlock_two_nondirectories(source, target);
4331 else if (target)
4332 inode_unlock(target);
4333 dput(new_dentry);
4334 if (!error) {
4335 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4336 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4337 if (flags & RENAME_EXCHANGE) {
4338 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4339 new_is_dir, NULL, new_dentry);
4340 }
4341 }
4342 release_dentry_name_snapshot(&old_name);
4343
4344 return error;
4345 }
4346 EXPORT_SYMBOL(vfs_rename);
4347
4348 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4349 const char __user *newname, unsigned int flags)
4350 {
4351 struct dentry *old_dentry, *new_dentry;
4352 struct dentry *trap;
4353 struct path old_path, new_path;
4354 struct qstr old_last, new_last;
4355 int old_type, new_type;
4356 struct inode *delegated_inode = NULL;
4357 struct filename *from;
4358 struct filename *to;
4359 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4360 bool should_retry = false;
4361 int error;
4362
4363 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4364 return -EINVAL;
4365
4366 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4367 (flags & RENAME_EXCHANGE))
4368 return -EINVAL;
4369
4370 if (flags & RENAME_EXCHANGE)
4371 target_flags = 0;
4372
4373 retry:
4374 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4375 &old_path, &old_last, &old_type);
4376 if (IS_ERR(from)) {
4377 error = PTR_ERR(from);
4378 goto exit;
4379 }
4380
4381 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4382 &new_path, &new_last, &new_type);
4383 if (IS_ERR(to)) {
4384 error = PTR_ERR(to);
4385 goto exit1;
4386 }
4387
4388 error = -EXDEV;
4389 if (old_path.mnt != new_path.mnt)
4390 goto exit2;
4391
4392 error = -EBUSY;
4393 if (old_type != LAST_NORM)
4394 goto exit2;
4395
4396 if (flags & RENAME_NOREPLACE)
4397 error = -EEXIST;
4398 if (new_type != LAST_NORM)
4399 goto exit2;
4400
4401 error = mnt_want_write(old_path.mnt);
4402 if (error)
4403 goto exit2;
4404
4405 retry_deleg:
4406 trap = lock_rename(new_path.dentry, old_path.dentry);
4407
4408 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4409 error = PTR_ERR(old_dentry);
4410 if (IS_ERR(old_dentry))
4411 goto exit3;
4412 /* source must exist */
4413 error = -ENOENT;
4414 if (d_is_negative(old_dentry))
4415 goto exit4;
4416 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4417 error = PTR_ERR(new_dentry);
4418 if (IS_ERR(new_dentry))
4419 goto exit4;
4420 error = -EEXIST;
4421 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4422 goto exit5;
4423 if (flags & RENAME_EXCHANGE) {
4424 error = -ENOENT;
4425 if (d_is_negative(new_dentry))
4426 goto exit5;
4427
4428 if (!d_is_dir(new_dentry)) {
4429 error = -ENOTDIR;
4430 if (new_last.name[new_last.len])
4431 goto exit5;
4432 }
4433 }
4434 /* unless the source is a directory trailing slashes give -ENOTDIR */
4435 if (!d_is_dir(old_dentry)) {
4436 error = -ENOTDIR;
4437 if (old_last.name[old_last.len])
4438 goto exit5;
4439 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4440 goto exit5;
4441 }
4442 /* source should not be ancestor of target */
4443 error = -EINVAL;
4444 if (old_dentry == trap)
4445 goto exit5;
4446 /* target should not be an ancestor of source */
4447 if (!(flags & RENAME_EXCHANGE))
4448 error = -ENOTEMPTY;
4449 if (new_dentry == trap)
4450 goto exit5;
4451
4452 error = security_path_rename(&old_path, old_dentry,
4453 &new_path, new_dentry, flags);
4454 if (error)
4455 goto exit5;
4456 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4457 new_path.dentry->d_inode, new_dentry,
4458 &delegated_inode, flags);
4459 exit5:
4460 dput(new_dentry);
4461 exit4:
4462 dput(old_dentry);
4463 exit3:
4464 unlock_rename(new_path.dentry, old_path.dentry);
4465 if (delegated_inode) {
4466 error = break_deleg_wait(&delegated_inode);
4467 if (!error)
4468 goto retry_deleg;
4469 }
4470 mnt_drop_write(old_path.mnt);
4471 exit2:
4472 if (retry_estale(error, lookup_flags))
4473 should_retry = true;
4474 path_put(&new_path);
4475 putname(to);
4476 exit1:
4477 path_put(&old_path);
4478 putname(from);
4479 if (should_retry) {
4480 should_retry = false;
4481 lookup_flags |= LOOKUP_REVAL;
4482 goto retry;
4483 }
4484 exit:
4485 return error;
4486 }
4487
4488 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4489 int, newdfd, const char __user *, newname, unsigned int, flags)
4490 {
4491 return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4492 }
4493
4494 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4495 int, newdfd, const char __user *, newname)
4496 {
4497 return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4498 }
4499
4500 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4501 {
4502 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4503 }
4504
4505 int readlink_copy(char __user *buffer, int buflen, const char *link)
4506 {
4507 int len = PTR_ERR(link);
4508 if (IS_ERR(link))
4509 goto out;
4510
4511 len = strlen(link);
4512 if (len > (unsigned) buflen)
4513 len = buflen;
4514 if (copy_to_user(buffer, link, len))
4515 len = -EFAULT;
4516 out:
4517 return len;
4518 }
4519
4520 /**
4521 * vfs_readlink - copy symlink body into userspace buffer
4522 * @dentry: dentry on which to get symbolic link
4523 * @buffer: user memory pointer
4524 * @buflen: size of buffer
4525 *
4526 * Does not touch atime. That's up to the caller if necessary
4527 *
4528 * Does not call security hook.
4529 */
4530 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4531 {
4532 struct inode *inode = d_inode(dentry);
4533 DEFINE_DELAYED_CALL(done);
4534 const char *link;
4535 int res;
4536
4537 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4538 if (unlikely(inode->i_op->readlink))
4539 return inode->i_op->readlink(dentry, buffer, buflen);
4540
4541 if (!d_is_symlink(dentry))
4542 return -EINVAL;
4543
4544 spin_lock(&inode->i_lock);
4545 inode->i_opflags |= IOP_DEFAULT_READLINK;
4546 spin_unlock(&inode->i_lock);
4547 }
4548
4549 link = READ_ONCE(inode->i_link);
4550 if (!link) {
4551 link = inode->i_op->get_link(dentry, inode, &done);
4552 if (IS_ERR(link))
4553 return PTR_ERR(link);
4554 }
4555 res = readlink_copy(buffer, buflen, link);
4556 do_delayed_call(&done);
4557 return res;
4558 }
4559 EXPORT_SYMBOL(vfs_readlink);
4560
4561 /**
4562 * vfs_get_link - get symlink body
4563 * @dentry: dentry on which to get symbolic link
4564 * @done: caller needs to free returned data with this
4565 *
4566 * Calls security hook and i_op->get_link() on the supplied inode.
4567 *
4568 * It does not touch atime. That's up to the caller if necessary.
4569 *
4570 * Does not work on "special" symlinks like /proc/$$/fd/N
4571 */
4572 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4573 {
4574 const char *res = ERR_PTR(-EINVAL);
4575 struct inode *inode = d_inode(dentry);
4576
4577 if (d_is_symlink(dentry)) {
4578 res = ERR_PTR(security_inode_readlink(dentry));
4579 if (!res)
4580 res = inode->i_op->get_link(dentry, inode, done);
4581 }
4582 return res;
4583 }
4584 EXPORT_SYMBOL(vfs_get_link);
4585
4586 /* get the link contents into pagecache */
4587 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4588 struct delayed_call *callback)
4589 {
4590 char *kaddr;
4591 struct page *page;
4592 struct address_space *mapping = inode->i_mapping;
4593
4594 if (!dentry) {
4595 page = find_get_page(mapping, 0);
4596 if (!page)
4597 return ERR_PTR(-ECHILD);
4598 if (!PageUptodate(page)) {
4599 put_page(page);
4600 return ERR_PTR(-ECHILD);
4601 }
4602 } else {
4603 page = read_mapping_page(mapping, 0, NULL);
4604 if (IS_ERR(page))
4605 return (char*)page;
4606 }
4607 set_delayed_call(callback, page_put_link, page);
4608 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4609 kaddr = page_address(page);
4610 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4611 return kaddr;
4612 }
4613
4614 EXPORT_SYMBOL(page_get_link);
4615
4616 void page_put_link(void *arg)
4617 {
4618 put_page(arg);
4619 }
4620 EXPORT_SYMBOL(page_put_link);
4621
4622 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4623 {
4624 DEFINE_DELAYED_CALL(done);
4625 int res = readlink_copy(buffer, buflen,
4626 page_get_link(dentry, d_inode(dentry),
4627 &done));
4628 do_delayed_call(&done);
4629 return res;
4630 }
4631 EXPORT_SYMBOL(page_readlink);
4632
4633 /*
4634 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4635 */
4636 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4637 {
4638 struct address_space *mapping = inode->i_mapping;
4639 struct page *page;
4640 void *fsdata;
4641 int err;
4642 unsigned int flags = 0;
4643 if (nofs)
4644 flags |= AOP_FLAG_NOFS;
4645
4646 retry:
4647 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4648 flags, &page, &fsdata);
4649 if (err)
4650 goto fail;
4651
4652 memcpy(page_address(page), symname, len-1);
4653
4654 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4655 page, fsdata);
4656 if (err < 0)
4657 goto fail;
4658 if (err < len-1)
4659 goto retry;
4660
4661 mark_inode_dirty(inode);
4662 return 0;
4663 fail:
4664 return err;
4665 }
4666 EXPORT_SYMBOL(__page_symlink);
4667
4668 int page_symlink(struct inode *inode, const char *symname, int len)
4669 {
4670 return __page_symlink(inode, symname, len,
4671 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4672 }
4673 EXPORT_SYMBOL(page_symlink);
4674
4675 const struct inode_operations page_symlink_inode_operations = {
4676 .get_link = page_get_link,
4677 };
4678 EXPORT_SYMBOL(page_symlink_inode_operations);