]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namei.c
vfs: now it can be done - make mnt_parent point to struct mount
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
37
38 #include "internal.h"
39 #include "mount.h"
40
41 /* [Feb-1997 T. Schoebel-Theuer]
42 * Fundamental changes in the pathname lookup mechanisms (namei)
43 * were necessary because of omirr. The reason is that omirr needs
44 * to know the _real_ pathname, not the user-supplied one, in case
45 * of symlinks (and also when transname replacements occur).
46 *
47 * The new code replaces the old recursive symlink resolution with
48 * an iterative one (in case of non-nested symlink chains). It does
49 * this with calls to <fs>_follow_link().
50 * As a side effect, dir_namei(), _namei() and follow_link() are now
51 * replaced with a single function lookup_dentry() that can handle all
52 * the special cases of the former code.
53 *
54 * With the new dcache, the pathname is stored at each inode, at least as
55 * long as the refcount of the inode is positive. As a side effect, the
56 * size of the dcache depends on the inode cache and thus is dynamic.
57 *
58 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
59 * resolution to correspond with current state of the code.
60 *
61 * Note that the symlink resolution is not *completely* iterative.
62 * There is still a significant amount of tail- and mid- recursion in
63 * the algorithm. Also, note that <fs>_readlink() is not used in
64 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
65 * may return different results than <fs>_follow_link(). Many virtual
66 * filesystems (including /proc) exhibit this behavior.
67 */
68
69 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
70 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
71 * and the name already exists in form of a symlink, try to create the new
72 * name indicated by the symlink. The old code always complained that the
73 * name already exists, due to not following the symlink even if its target
74 * is nonexistent. The new semantics affects also mknod() and link() when
75 * the name is a symlink pointing to a non-existent name.
76 *
77 * I don't know which semantics is the right one, since I have no access
78 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
79 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
80 * "old" one. Personally, I think the new semantics is much more logical.
81 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
82 * file does succeed in both HP-UX and SunOs, but not in Solaris
83 * and in the old Linux semantics.
84 */
85
86 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
87 * semantics. See the comments in "open_namei" and "do_link" below.
88 *
89 * [10-Sep-98 Alan Modra] Another symlink change.
90 */
91
92 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
93 * inside the path - always follow.
94 * in the last component in creation/removal/renaming - never follow.
95 * if LOOKUP_FOLLOW passed - follow.
96 * if the pathname has trailing slashes - follow.
97 * otherwise - don't follow.
98 * (applied in that order).
99 *
100 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
101 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
102 * During the 2.4 we need to fix the userland stuff depending on it -
103 * hopefully we will be able to get rid of that wart in 2.5. So far only
104 * XEmacs seems to be relying on it...
105 */
106 /*
107 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
108 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
109 * any extra contention...
110 */
111
112 /* In order to reduce some races, while at the same time doing additional
113 * checking and hopefully speeding things up, we copy filenames to the
114 * kernel data space before using them..
115 *
116 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
117 * PATH_MAX includes the nul terminator --RR.
118 */
119 static int do_getname(const char __user *filename, char *page)
120 {
121 int retval;
122 unsigned long len = PATH_MAX;
123
124 if (!segment_eq(get_fs(), KERNEL_DS)) {
125 if ((unsigned long) filename >= TASK_SIZE)
126 return -EFAULT;
127 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
128 len = TASK_SIZE - (unsigned long) filename;
129 }
130
131 retval = strncpy_from_user(page, filename, len);
132 if (retval > 0) {
133 if (retval < len)
134 return 0;
135 return -ENAMETOOLONG;
136 } else if (!retval)
137 retval = -ENOENT;
138 return retval;
139 }
140
141 static char *getname_flags(const char __user *filename, int flags, int *empty)
142 {
143 char *tmp, *result;
144
145 result = ERR_PTR(-ENOMEM);
146 tmp = __getname();
147 if (tmp) {
148 int retval = do_getname(filename, tmp);
149
150 result = tmp;
151 if (retval < 0) {
152 if (retval == -ENOENT && empty)
153 *empty = 1;
154 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
155 __putname(tmp);
156 result = ERR_PTR(retval);
157 }
158 }
159 }
160 audit_getname(result);
161 return result;
162 }
163
164 char *getname(const char __user * filename)
165 {
166 return getname_flags(filename, 0, 0);
167 }
168
169 #ifdef CONFIG_AUDITSYSCALL
170 void putname(const char *name)
171 {
172 if (unlikely(!audit_dummy_context()))
173 audit_putname(name);
174 else
175 __putname(name);
176 }
177 EXPORT_SYMBOL(putname);
178 #endif
179
180 static int check_acl(struct inode *inode, int mask)
181 {
182 #ifdef CONFIG_FS_POSIX_ACL
183 struct posix_acl *acl;
184
185 if (mask & MAY_NOT_BLOCK) {
186 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
187 if (!acl)
188 return -EAGAIN;
189 /* no ->get_acl() calls in RCU mode... */
190 if (acl == ACL_NOT_CACHED)
191 return -ECHILD;
192 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
193 }
194
195 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
196
197 /*
198 * A filesystem can force a ACL callback by just never filling the
199 * ACL cache. But normally you'd fill the cache either at inode
200 * instantiation time, or on the first ->get_acl call.
201 *
202 * If the filesystem doesn't have a get_acl() function at all, we'll
203 * just create the negative cache entry.
204 */
205 if (acl == ACL_NOT_CACHED) {
206 if (inode->i_op->get_acl) {
207 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
208 if (IS_ERR(acl))
209 return PTR_ERR(acl);
210 } else {
211 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
212 return -EAGAIN;
213 }
214 }
215
216 if (acl) {
217 int error = posix_acl_permission(inode, acl, mask);
218 posix_acl_release(acl);
219 return error;
220 }
221 #endif
222
223 return -EAGAIN;
224 }
225
226 /*
227 * This does the basic permission checking
228 */
229 static int acl_permission_check(struct inode *inode, int mask)
230 {
231 unsigned int mode = inode->i_mode;
232
233 if (current_user_ns() != inode_userns(inode))
234 goto other_perms;
235
236 if (likely(current_fsuid() == inode->i_uid))
237 mode >>= 6;
238 else {
239 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
240 int error = check_acl(inode, mask);
241 if (error != -EAGAIN)
242 return error;
243 }
244
245 if (in_group_p(inode->i_gid))
246 mode >>= 3;
247 }
248
249 other_perms:
250 /*
251 * If the DACs are ok we don't need any capability check.
252 */
253 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
254 return 0;
255 return -EACCES;
256 }
257
258 /**
259 * generic_permission - check for access rights on a Posix-like filesystem
260 * @inode: inode to check access rights for
261 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
262 *
263 * Used to check for read/write/execute permissions on a file.
264 * We use "fsuid" for this, letting us set arbitrary permissions
265 * for filesystem access without changing the "normal" uids which
266 * are used for other things.
267 *
268 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
269 * request cannot be satisfied (eg. requires blocking or too much complexity).
270 * It would then be called again in ref-walk mode.
271 */
272 int generic_permission(struct inode *inode, int mask)
273 {
274 int ret;
275
276 /*
277 * Do the basic permission checks.
278 */
279 ret = acl_permission_check(inode, mask);
280 if (ret != -EACCES)
281 return ret;
282
283 if (S_ISDIR(inode->i_mode)) {
284 /* DACs are overridable for directories */
285 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
286 return 0;
287 if (!(mask & MAY_WRITE))
288 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
289 return 0;
290 return -EACCES;
291 }
292 /*
293 * Read/write DACs are always overridable.
294 * Executable DACs are overridable when there is
295 * at least one exec bit set.
296 */
297 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
298 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
299 return 0;
300
301 /*
302 * Searching includes executable on directories, else just read.
303 */
304 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
305 if (mask == MAY_READ)
306 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
307 return 0;
308
309 return -EACCES;
310 }
311
312 /*
313 * We _really_ want to just do "generic_permission()" without
314 * even looking at the inode->i_op values. So we keep a cache
315 * flag in inode->i_opflags, that says "this has not special
316 * permission function, use the fast case".
317 */
318 static inline int do_inode_permission(struct inode *inode, int mask)
319 {
320 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
321 if (likely(inode->i_op->permission))
322 return inode->i_op->permission(inode, mask);
323
324 /* This gets set once for the inode lifetime */
325 spin_lock(&inode->i_lock);
326 inode->i_opflags |= IOP_FASTPERM;
327 spin_unlock(&inode->i_lock);
328 }
329 return generic_permission(inode, mask);
330 }
331
332 /**
333 * inode_permission - check for access rights to a given inode
334 * @inode: inode to check permission on
335 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
336 *
337 * Used to check for read/write/execute permissions on an inode.
338 * We use "fsuid" for this, letting us set arbitrary permissions
339 * for filesystem access without changing the "normal" uids which
340 * are used for other things.
341 *
342 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
343 */
344 int inode_permission(struct inode *inode, int mask)
345 {
346 int retval;
347
348 if (unlikely(mask & MAY_WRITE)) {
349 umode_t mode = inode->i_mode;
350
351 /*
352 * Nobody gets write access to a read-only fs.
353 */
354 if (IS_RDONLY(inode) &&
355 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
356 return -EROFS;
357
358 /*
359 * Nobody gets write access to an immutable file.
360 */
361 if (IS_IMMUTABLE(inode))
362 return -EACCES;
363 }
364
365 retval = do_inode_permission(inode, mask);
366 if (retval)
367 return retval;
368
369 retval = devcgroup_inode_permission(inode, mask);
370 if (retval)
371 return retval;
372
373 return security_inode_permission(inode, mask);
374 }
375
376 /**
377 * path_get - get a reference to a path
378 * @path: path to get the reference to
379 *
380 * Given a path increment the reference count to the dentry and the vfsmount.
381 */
382 void path_get(struct path *path)
383 {
384 mntget(path->mnt);
385 dget(path->dentry);
386 }
387 EXPORT_SYMBOL(path_get);
388
389 /**
390 * path_put - put a reference to a path
391 * @path: path to put the reference to
392 *
393 * Given a path decrement the reference count to the dentry and the vfsmount.
394 */
395 void path_put(struct path *path)
396 {
397 dput(path->dentry);
398 mntput(path->mnt);
399 }
400 EXPORT_SYMBOL(path_put);
401
402 /*
403 * Path walking has 2 modes, rcu-walk and ref-walk (see
404 * Documentation/filesystems/path-lookup.txt). In situations when we can't
405 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
406 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
407 * mode. Refcounts are grabbed at the last known good point before rcu-walk
408 * got stuck, so ref-walk may continue from there. If this is not successful
409 * (eg. a seqcount has changed), then failure is returned and it's up to caller
410 * to restart the path walk from the beginning in ref-walk mode.
411 */
412
413 /**
414 * unlazy_walk - try to switch to ref-walk mode.
415 * @nd: nameidata pathwalk data
416 * @dentry: child of nd->path.dentry or NULL
417 * Returns: 0 on success, -ECHILD on failure
418 *
419 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
420 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
421 * @nd or NULL. Must be called from rcu-walk context.
422 */
423 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
424 {
425 struct fs_struct *fs = current->fs;
426 struct dentry *parent = nd->path.dentry;
427 int want_root = 0;
428
429 BUG_ON(!(nd->flags & LOOKUP_RCU));
430 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
431 want_root = 1;
432 spin_lock(&fs->lock);
433 if (nd->root.mnt != fs->root.mnt ||
434 nd->root.dentry != fs->root.dentry)
435 goto err_root;
436 }
437 spin_lock(&parent->d_lock);
438 if (!dentry) {
439 if (!__d_rcu_to_refcount(parent, nd->seq))
440 goto err_parent;
441 BUG_ON(nd->inode != parent->d_inode);
442 } else {
443 if (dentry->d_parent != parent)
444 goto err_parent;
445 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
446 if (!__d_rcu_to_refcount(dentry, nd->seq))
447 goto err_child;
448 /*
449 * If the sequence check on the child dentry passed, then
450 * the child has not been removed from its parent. This
451 * means the parent dentry must be valid and able to take
452 * a reference at this point.
453 */
454 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
455 BUG_ON(!parent->d_count);
456 parent->d_count++;
457 spin_unlock(&dentry->d_lock);
458 }
459 spin_unlock(&parent->d_lock);
460 if (want_root) {
461 path_get(&nd->root);
462 spin_unlock(&fs->lock);
463 }
464 mntget(nd->path.mnt);
465
466 rcu_read_unlock();
467 br_read_unlock(vfsmount_lock);
468 nd->flags &= ~LOOKUP_RCU;
469 return 0;
470
471 err_child:
472 spin_unlock(&dentry->d_lock);
473 err_parent:
474 spin_unlock(&parent->d_lock);
475 err_root:
476 if (want_root)
477 spin_unlock(&fs->lock);
478 return -ECHILD;
479 }
480
481 /**
482 * release_open_intent - free up open intent resources
483 * @nd: pointer to nameidata
484 */
485 void release_open_intent(struct nameidata *nd)
486 {
487 struct file *file = nd->intent.open.file;
488
489 if (file && !IS_ERR(file)) {
490 if (file->f_path.dentry == NULL)
491 put_filp(file);
492 else
493 fput(file);
494 }
495 }
496
497 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
498 {
499 return dentry->d_op->d_revalidate(dentry, nd);
500 }
501
502 /**
503 * complete_walk - successful completion of path walk
504 * @nd: pointer nameidata
505 *
506 * If we had been in RCU mode, drop out of it and legitimize nd->path.
507 * Revalidate the final result, unless we'd already done that during
508 * the path walk or the filesystem doesn't ask for it. Return 0 on
509 * success, -error on failure. In case of failure caller does not
510 * need to drop nd->path.
511 */
512 static int complete_walk(struct nameidata *nd)
513 {
514 struct dentry *dentry = nd->path.dentry;
515 int status;
516
517 if (nd->flags & LOOKUP_RCU) {
518 nd->flags &= ~LOOKUP_RCU;
519 if (!(nd->flags & LOOKUP_ROOT))
520 nd->root.mnt = NULL;
521 spin_lock(&dentry->d_lock);
522 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
523 spin_unlock(&dentry->d_lock);
524 rcu_read_unlock();
525 br_read_unlock(vfsmount_lock);
526 return -ECHILD;
527 }
528 BUG_ON(nd->inode != dentry->d_inode);
529 spin_unlock(&dentry->d_lock);
530 mntget(nd->path.mnt);
531 rcu_read_unlock();
532 br_read_unlock(vfsmount_lock);
533 }
534
535 if (likely(!(nd->flags & LOOKUP_JUMPED)))
536 return 0;
537
538 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
539 return 0;
540
541 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
542 return 0;
543
544 /* Note: we do not d_invalidate() */
545 status = d_revalidate(dentry, nd);
546 if (status > 0)
547 return 0;
548
549 if (!status)
550 status = -ESTALE;
551
552 path_put(&nd->path);
553 return status;
554 }
555
556 static __always_inline void set_root(struct nameidata *nd)
557 {
558 if (!nd->root.mnt)
559 get_fs_root(current->fs, &nd->root);
560 }
561
562 static int link_path_walk(const char *, struct nameidata *);
563
564 static __always_inline void set_root_rcu(struct nameidata *nd)
565 {
566 if (!nd->root.mnt) {
567 struct fs_struct *fs = current->fs;
568 unsigned seq;
569
570 do {
571 seq = read_seqcount_begin(&fs->seq);
572 nd->root = fs->root;
573 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
574 } while (read_seqcount_retry(&fs->seq, seq));
575 }
576 }
577
578 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
579 {
580 int ret;
581
582 if (IS_ERR(link))
583 goto fail;
584
585 if (*link == '/') {
586 set_root(nd);
587 path_put(&nd->path);
588 nd->path = nd->root;
589 path_get(&nd->root);
590 nd->flags |= LOOKUP_JUMPED;
591 }
592 nd->inode = nd->path.dentry->d_inode;
593
594 ret = link_path_walk(link, nd);
595 return ret;
596 fail:
597 path_put(&nd->path);
598 return PTR_ERR(link);
599 }
600
601 static void path_put_conditional(struct path *path, struct nameidata *nd)
602 {
603 dput(path->dentry);
604 if (path->mnt != nd->path.mnt)
605 mntput(path->mnt);
606 }
607
608 static inline void path_to_nameidata(const struct path *path,
609 struct nameidata *nd)
610 {
611 if (!(nd->flags & LOOKUP_RCU)) {
612 dput(nd->path.dentry);
613 if (nd->path.mnt != path->mnt)
614 mntput(nd->path.mnt);
615 }
616 nd->path.mnt = path->mnt;
617 nd->path.dentry = path->dentry;
618 }
619
620 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
621 {
622 struct inode *inode = link->dentry->d_inode;
623 if (!IS_ERR(cookie) && inode->i_op->put_link)
624 inode->i_op->put_link(link->dentry, nd, cookie);
625 path_put(link);
626 }
627
628 static __always_inline int
629 follow_link(struct path *link, struct nameidata *nd, void **p)
630 {
631 int error;
632 struct dentry *dentry = link->dentry;
633
634 BUG_ON(nd->flags & LOOKUP_RCU);
635
636 if (link->mnt == nd->path.mnt)
637 mntget(link->mnt);
638
639 if (unlikely(current->total_link_count >= 40)) {
640 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
641 path_put(&nd->path);
642 return -ELOOP;
643 }
644 cond_resched();
645 current->total_link_count++;
646
647 touch_atime(link->mnt, dentry);
648 nd_set_link(nd, NULL);
649
650 error = security_inode_follow_link(link->dentry, nd);
651 if (error) {
652 *p = ERR_PTR(error); /* no ->put_link(), please */
653 path_put(&nd->path);
654 return error;
655 }
656
657 nd->last_type = LAST_BIND;
658 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
659 error = PTR_ERR(*p);
660 if (!IS_ERR(*p)) {
661 char *s = nd_get_link(nd);
662 error = 0;
663 if (s)
664 error = __vfs_follow_link(nd, s);
665 else if (nd->last_type == LAST_BIND) {
666 nd->flags |= LOOKUP_JUMPED;
667 nd->inode = nd->path.dentry->d_inode;
668 if (nd->inode->i_op->follow_link) {
669 /* stepped on a _really_ weird one */
670 path_put(&nd->path);
671 error = -ELOOP;
672 }
673 }
674 }
675 return error;
676 }
677
678 static int follow_up_rcu(struct path *path)
679 {
680 struct mount *mnt = real_mount(path->mnt);
681 struct mount *parent;
682 struct dentry *mountpoint;
683
684 parent = mnt->mnt_parent;
685 if (&parent->mnt == path->mnt)
686 return 0;
687 mountpoint = mnt->mnt.mnt_mountpoint;
688 path->dentry = mountpoint;
689 path->mnt = &parent->mnt;
690 return 1;
691 }
692
693 int follow_up(struct path *path)
694 {
695 struct mount *mnt = real_mount(path->mnt);
696 struct mount *parent;
697 struct dentry *mountpoint;
698
699 br_read_lock(vfsmount_lock);
700 parent = mnt->mnt_parent;
701 if (&parent->mnt == path->mnt) {
702 br_read_unlock(vfsmount_lock);
703 return 0;
704 }
705 mntget(&parent->mnt);
706 mountpoint = dget(mnt->mnt.mnt_mountpoint);
707 br_read_unlock(vfsmount_lock);
708 dput(path->dentry);
709 path->dentry = mountpoint;
710 mntput(path->mnt);
711 path->mnt = &parent->mnt;
712 return 1;
713 }
714
715 /*
716 * Perform an automount
717 * - return -EISDIR to tell follow_managed() to stop and return the path we
718 * were called with.
719 */
720 static int follow_automount(struct path *path, unsigned flags,
721 bool *need_mntput)
722 {
723 struct vfsmount *mnt;
724 int err;
725
726 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
727 return -EREMOTE;
728
729 /* We don't want to mount if someone's just doing a stat -
730 * unless they're stat'ing a directory and appended a '/' to
731 * the name.
732 *
733 * We do, however, want to mount if someone wants to open or
734 * create a file of any type under the mountpoint, wants to
735 * traverse through the mountpoint or wants to open the
736 * mounted directory. Also, autofs may mark negative dentries
737 * as being automount points. These will need the attentions
738 * of the daemon to instantiate them before they can be used.
739 */
740 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
741 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
742 path->dentry->d_inode)
743 return -EISDIR;
744
745 current->total_link_count++;
746 if (current->total_link_count >= 40)
747 return -ELOOP;
748
749 mnt = path->dentry->d_op->d_automount(path);
750 if (IS_ERR(mnt)) {
751 /*
752 * The filesystem is allowed to return -EISDIR here to indicate
753 * it doesn't want to automount. For instance, autofs would do
754 * this so that its userspace daemon can mount on this dentry.
755 *
756 * However, we can only permit this if it's a terminal point in
757 * the path being looked up; if it wasn't then the remainder of
758 * the path is inaccessible and we should say so.
759 */
760 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
761 return -EREMOTE;
762 return PTR_ERR(mnt);
763 }
764
765 if (!mnt) /* mount collision */
766 return 0;
767
768 if (!*need_mntput) {
769 /* lock_mount() may release path->mnt on error */
770 mntget(path->mnt);
771 *need_mntput = true;
772 }
773 err = finish_automount(mnt, path);
774
775 switch (err) {
776 case -EBUSY:
777 /* Someone else made a mount here whilst we were busy */
778 return 0;
779 case 0:
780 path_put(path);
781 path->mnt = mnt;
782 path->dentry = dget(mnt->mnt_root);
783 return 0;
784 default:
785 return err;
786 }
787
788 }
789
790 /*
791 * Handle a dentry that is managed in some way.
792 * - Flagged for transit management (autofs)
793 * - Flagged as mountpoint
794 * - Flagged as automount point
795 *
796 * This may only be called in refwalk mode.
797 *
798 * Serialization is taken care of in namespace.c
799 */
800 static int follow_managed(struct path *path, unsigned flags)
801 {
802 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
803 unsigned managed;
804 bool need_mntput = false;
805 int ret = 0;
806
807 /* Given that we're not holding a lock here, we retain the value in a
808 * local variable for each dentry as we look at it so that we don't see
809 * the components of that value change under us */
810 while (managed = ACCESS_ONCE(path->dentry->d_flags),
811 managed &= DCACHE_MANAGED_DENTRY,
812 unlikely(managed != 0)) {
813 /* Allow the filesystem to manage the transit without i_mutex
814 * being held. */
815 if (managed & DCACHE_MANAGE_TRANSIT) {
816 BUG_ON(!path->dentry->d_op);
817 BUG_ON(!path->dentry->d_op->d_manage);
818 ret = path->dentry->d_op->d_manage(path->dentry, false);
819 if (ret < 0)
820 break;
821 }
822
823 /* Transit to a mounted filesystem. */
824 if (managed & DCACHE_MOUNTED) {
825 struct vfsmount *mounted = lookup_mnt(path);
826 if (mounted) {
827 dput(path->dentry);
828 if (need_mntput)
829 mntput(path->mnt);
830 path->mnt = mounted;
831 path->dentry = dget(mounted->mnt_root);
832 need_mntput = true;
833 continue;
834 }
835
836 /* Something is mounted on this dentry in another
837 * namespace and/or whatever was mounted there in this
838 * namespace got unmounted before we managed to get the
839 * vfsmount_lock */
840 }
841
842 /* Handle an automount point */
843 if (managed & DCACHE_NEED_AUTOMOUNT) {
844 ret = follow_automount(path, flags, &need_mntput);
845 if (ret < 0)
846 break;
847 continue;
848 }
849
850 /* We didn't change the current path point */
851 break;
852 }
853
854 if (need_mntput && path->mnt == mnt)
855 mntput(path->mnt);
856 if (ret == -EISDIR)
857 ret = 0;
858 return ret < 0 ? ret : need_mntput;
859 }
860
861 int follow_down_one(struct path *path)
862 {
863 struct vfsmount *mounted;
864
865 mounted = lookup_mnt(path);
866 if (mounted) {
867 dput(path->dentry);
868 mntput(path->mnt);
869 path->mnt = mounted;
870 path->dentry = dget(mounted->mnt_root);
871 return 1;
872 }
873 return 0;
874 }
875
876 static inline bool managed_dentry_might_block(struct dentry *dentry)
877 {
878 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
879 dentry->d_op->d_manage(dentry, true) < 0);
880 }
881
882 /*
883 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
884 * we meet a managed dentry that would need blocking.
885 */
886 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
887 struct inode **inode)
888 {
889 for (;;) {
890 struct mount *mounted;
891 /*
892 * Don't forget we might have a non-mountpoint managed dentry
893 * that wants to block transit.
894 */
895 if (unlikely(managed_dentry_might_block(path->dentry)))
896 return false;
897
898 if (!d_mountpoint(path->dentry))
899 break;
900
901 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
902 if (!mounted)
903 break;
904 path->mnt = &mounted->mnt;
905 path->dentry = mounted->mnt.mnt_root;
906 nd->flags |= LOOKUP_JUMPED;
907 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
908 /*
909 * Update the inode too. We don't need to re-check the
910 * dentry sequence number here after this d_inode read,
911 * because a mount-point is always pinned.
912 */
913 *inode = path->dentry->d_inode;
914 }
915 return true;
916 }
917
918 static void follow_mount_rcu(struct nameidata *nd)
919 {
920 while (d_mountpoint(nd->path.dentry)) {
921 struct mount *mounted;
922 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
923 if (!mounted)
924 break;
925 nd->path.mnt = &mounted->mnt;
926 nd->path.dentry = mounted->mnt.mnt_root;
927 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
928 }
929 }
930
931 static int follow_dotdot_rcu(struct nameidata *nd)
932 {
933 set_root_rcu(nd);
934
935 while (1) {
936 if (nd->path.dentry == nd->root.dentry &&
937 nd->path.mnt == nd->root.mnt) {
938 break;
939 }
940 if (nd->path.dentry != nd->path.mnt->mnt_root) {
941 struct dentry *old = nd->path.dentry;
942 struct dentry *parent = old->d_parent;
943 unsigned seq;
944
945 seq = read_seqcount_begin(&parent->d_seq);
946 if (read_seqcount_retry(&old->d_seq, nd->seq))
947 goto failed;
948 nd->path.dentry = parent;
949 nd->seq = seq;
950 break;
951 }
952 if (!follow_up_rcu(&nd->path))
953 break;
954 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
955 }
956 follow_mount_rcu(nd);
957 nd->inode = nd->path.dentry->d_inode;
958 return 0;
959
960 failed:
961 nd->flags &= ~LOOKUP_RCU;
962 if (!(nd->flags & LOOKUP_ROOT))
963 nd->root.mnt = NULL;
964 rcu_read_unlock();
965 br_read_unlock(vfsmount_lock);
966 return -ECHILD;
967 }
968
969 /*
970 * Follow down to the covering mount currently visible to userspace. At each
971 * point, the filesystem owning that dentry may be queried as to whether the
972 * caller is permitted to proceed or not.
973 */
974 int follow_down(struct path *path)
975 {
976 unsigned managed;
977 int ret;
978
979 while (managed = ACCESS_ONCE(path->dentry->d_flags),
980 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
981 /* Allow the filesystem to manage the transit without i_mutex
982 * being held.
983 *
984 * We indicate to the filesystem if someone is trying to mount
985 * something here. This gives autofs the chance to deny anyone
986 * other than its daemon the right to mount on its
987 * superstructure.
988 *
989 * The filesystem may sleep at this point.
990 */
991 if (managed & DCACHE_MANAGE_TRANSIT) {
992 BUG_ON(!path->dentry->d_op);
993 BUG_ON(!path->dentry->d_op->d_manage);
994 ret = path->dentry->d_op->d_manage(
995 path->dentry, false);
996 if (ret < 0)
997 return ret == -EISDIR ? 0 : ret;
998 }
999
1000 /* Transit to a mounted filesystem. */
1001 if (managed & DCACHE_MOUNTED) {
1002 struct vfsmount *mounted = lookup_mnt(path);
1003 if (!mounted)
1004 break;
1005 dput(path->dentry);
1006 mntput(path->mnt);
1007 path->mnt = mounted;
1008 path->dentry = dget(mounted->mnt_root);
1009 continue;
1010 }
1011
1012 /* Don't handle automount points here */
1013 break;
1014 }
1015 return 0;
1016 }
1017
1018 /*
1019 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1020 */
1021 static void follow_mount(struct path *path)
1022 {
1023 while (d_mountpoint(path->dentry)) {
1024 struct vfsmount *mounted = lookup_mnt(path);
1025 if (!mounted)
1026 break;
1027 dput(path->dentry);
1028 mntput(path->mnt);
1029 path->mnt = mounted;
1030 path->dentry = dget(mounted->mnt_root);
1031 }
1032 }
1033
1034 static void follow_dotdot(struct nameidata *nd)
1035 {
1036 set_root(nd);
1037
1038 while(1) {
1039 struct dentry *old = nd->path.dentry;
1040
1041 if (nd->path.dentry == nd->root.dentry &&
1042 nd->path.mnt == nd->root.mnt) {
1043 break;
1044 }
1045 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1046 /* rare case of legitimate dget_parent()... */
1047 nd->path.dentry = dget_parent(nd->path.dentry);
1048 dput(old);
1049 break;
1050 }
1051 if (!follow_up(&nd->path))
1052 break;
1053 }
1054 follow_mount(&nd->path);
1055 nd->inode = nd->path.dentry->d_inode;
1056 }
1057
1058 /*
1059 * Allocate a dentry with name and parent, and perform a parent
1060 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1061 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1062 * have verified that no child exists while under i_mutex.
1063 */
1064 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1065 struct qstr *name, struct nameidata *nd)
1066 {
1067 struct inode *inode = parent->d_inode;
1068 struct dentry *dentry;
1069 struct dentry *old;
1070
1071 /* Don't create child dentry for a dead directory. */
1072 if (unlikely(IS_DEADDIR(inode)))
1073 return ERR_PTR(-ENOENT);
1074
1075 dentry = d_alloc(parent, name);
1076 if (unlikely(!dentry))
1077 return ERR_PTR(-ENOMEM);
1078
1079 old = inode->i_op->lookup(inode, dentry, nd);
1080 if (unlikely(old)) {
1081 dput(dentry);
1082 dentry = old;
1083 }
1084 return dentry;
1085 }
1086
1087 /*
1088 * We already have a dentry, but require a lookup to be performed on the parent
1089 * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error.
1090 * parent->d_inode->i_mutex must be held. d_lookup must have verified that no
1091 * child exists while under i_mutex.
1092 */
1093 static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry,
1094 struct nameidata *nd)
1095 {
1096 struct inode *inode = parent->d_inode;
1097 struct dentry *old;
1098
1099 /* Don't create child dentry for a dead directory. */
1100 if (unlikely(IS_DEADDIR(inode)))
1101 return ERR_PTR(-ENOENT);
1102
1103 old = inode->i_op->lookup(inode, dentry, nd);
1104 if (unlikely(old)) {
1105 dput(dentry);
1106 dentry = old;
1107 }
1108 return dentry;
1109 }
1110
1111 /*
1112 * It's more convoluted than I'd like it to be, but... it's still fairly
1113 * small and for now I'd prefer to have fast path as straight as possible.
1114 * It _is_ time-critical.
1115 */
1116 static int do_lookup(struct nameidata *nd, struct qstr *name,
1117 struct path *path, struct inode **inode)
1118 {
1119 struct vfsmount *mnt = nd->path.mnt;
1120 struct dentry *dentry, *parent = nd->path.dentry;
1121 int need_reval = 1;
1122 int status = 1;
1123 int err;
1124
1125 /*
1126 * Rename seqlock is not required here because in the off chance
1127 * of a false negative due to a concurrent rename, we're going to
1128 * do the non-racy lookup, below.
1129 */
1130 if (nd->flags & LOOKUP_RCU) {
1131 unsigned seq;
1132 *inode = nd->inode;
1133 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1134 if (!dentry)
1135 goto unlazy;
1136
1137 /* Memory barrier in read_seqcount_begin of child is enough */
1138 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1139 return -ECHILD;
1140 nd->seq = seq;
1141
1142 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1143 status = d_revalidate(dentry, nd);
1144 if (unlikely(status <= 0)) {
1145 if (status != -ECHILD)
1146 need_reval = 0;
1147 goto unlazy;
1148 }
1149 }
1150 if (unlikely(d_need_lookup(dentry)))
1151 goto unlazy;
1152 path->mnt = mnt;
1153 path->dentry = dentry;
1154 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1155 goto unlazy;
1156 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1157 goto unlazy;
1158 return 0;
1159 unlazy:
1160 if (unlazy_walk(nd, dentry))
1161 return -ECHILD;
1162 } else {
1163 dentry = __d_lookup(parent, name);
1164 }
1165
1166 if (dentry && unlikely(d_need_lookup(dentry))) {
1167 dput(dentry);
1168 dentry = NULL;
1169 }
1170 retry:
1171 if (unlikely(!dentry)) {
1172 struct inode *dir = parent->d_inode;
1173 BUG_ON(nd->inode != dir);
1174
1175 mutex_lock(&dir->i_mutex);
1176 dentry = d_lookup(parent, name);
1177 if (likely(!dentry)) {
1178 dentry = d_alloc_and_lookup(parent, name, nd);
1179 if (IS_ERR(dentry)) {
1180 mutex_unlock(&dir->i_mutex);
1181 return PTR_ERR(dentry);
1182 }
1183 /* known good */
1184 need_reval = 0;
1185 status = 1;
1186 } else if (unlikely(d_need_lookup(dentry))) {
1187 dentry = d_inode_lookup(parent, dentry, nd);
1188 if (IS_ERR(dentry)) {
1189 mutex_unlock(&dir->i_mutex);
1190 return PTR_ERR(dentry);
1191 }
1192 /* known good */
1193 need_reval = 0;
1194 status = 1;
1195 }
1196 mutex_unlock(&dir->i_mutex);
1197 }
1198 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1199 status = d_revalidate(dentry, nd);
1200 if (unlikely(status <= 0)) {
1201 if (status < 0) {
1202 dput(dentry);
1203 return status;
1204 }
1205 if (!d_invalidate(dentry)) {
1206 dput(dentry);
1207 dentry = NULL;
1208 need_reval = 1;
1209 goto retry;
1210 }
1211 }
1212
1213 path->mnt = mnt;
1214 path->dentry = dentry;
1215 err = follow_managed(path, nd->flags);
1216 if (unlikely(err < 0)) {
1217 path_put_conditional(path, nd);
1218 return err;
1219 }
1220 if (err)
1221 nd->flags |= LOOKUP_JUMPED;
1222 *inode = path->dentry->d_inode;
1223 return 0;
1224 }
1225
1226 static inline int may_lookup(struct nameidata *nd)
1227 {
1228 if (nd->flags & LOOKUP_RCU) {
1229 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1230 if (err != -ECHILD)
1231 return err;
1232 if (unlazy_walk(nd, NULL))
1233 return -ECHILD;
1234 }
1235 return inode_permission(nd->inode, MAY_EXEC);
1236 }
1237
1238 static inline int handle_dots(struct nameidata *nd, int type)
1239 {
1240 if (type == LAST_DOTDOT) {
1241 if (nd->flags & LOOKUP_RCU) {
1242 if (follow_dotdot_rcu(nd))
1243 return -ECHILD;
1244 } else
1245 follow_dotdot(nd);
1246 }
1247 return 0;
1248 }
1249
1250 static void terminate_walk(struct nameidata *nd)
1251 {
1252 if (!(nd->flags & LOOKUP_RCU)) {
1253 path_put(&nd->path);
1254 } else {
1255 nd->flags &= ~LOOKUP_RCU;
1256 if (!(nd->flags & LOOKUP_ROOT))
1257 nd->root.mnt = NULL;
1258 rcu_read_unlock();
1259 br_read_unlock(vfsmount_lock);
1260 }
1261 }
1262
1263 /*
1264 * Do we need to follow links? We _really_ want to be able
1265 * to do this check without having to look at inode->i_op,
1266 * so we keep a cache of "no, this doesn't need follow_link"
1267 * for the common case.
1268 */
1269 static inline int should_follow_link(struct inode *inode, int follow)
1270 {
1271 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1272 if (likely(inode->i_op->follow_link))
1273 return follow;
1274
1275 /* This gets set once for the inode lifetime */
1276 spin_lock(&inode->i_lock);
1277 inode->i_opflags |= IOP_NOFOLLOW;
1278 spin_unlock(&inode->i_lock);
1279 }
1280 return 0;
1281 }
1282
1283 static inline int walk_component(struct nameidata *nd, struct path *path,
1284 struct qstr *name, int type, int follow)
1285 {
1286 struct inode *inode;
1287 int err;
1288 /*
1289 * "." and ".." are special - ".." especially so because it has
1290 * to be able to know about the current root directory and
1291 * parent relationships.
1292 */
1293 if (unlikely(type != LAST_NORM))
1294 return handle_dots(nd, type);
1295 err = do_lookup(nd, name, path, &inode);
1296 if (unlikely(err)) {
1297 terminate_walk(nd);
1298 return err;
1299 }
1300 if (!inode) {
1301 path_to_nameidata(path, nd);
1302 terminate_walk(nd);
1303 return -ENOENT;
1304 }
1305 if (should_follow_link(inode, follow)) {
1306 if (nd->flags & LOOKUP_RCU) {
1307 if (unlikely(unlazy_walk(nd, path->dentry))) {
1308 terminate_walk(nd);
1309 return -ECHILD;
1310 }
1311 }
1312 BUG_ON(inode != path->dentry->d_inode);
1313 return 1;
1314 }
1315 path_to_nameidata(path, nd);
1316 nd->inode = inode;
1317 return 0;
1318 }
1319
1320 /*
1321 * This limits recursive symlink follows to 8, while
1322 * limiting consecutive symlinks to 40.
1323 *
1324 * Without that kind of total limit, nasty chains of consecutive
1325 * symlinks can cause almost arbitrarily long lookups.
1326 */
1327 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1328 {
1329 int res;
1330
1331 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1332 path_put_conditional(path, nd);
1333 path_put(&nd->path);
1334 return -ELOOP;
1335 }
1336 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1337
1338 nd->depth++;
1339 current->link_count++;
1340
1341 do {
1342 struct path link = *path;
1343 void *cookie;
1344
1345 res = follow_link(&link, nd, &cookie);
1346 if (!res)
1347 res = walk_component(nd, path, &nd->last,
1348 nd->last_type, LOOKUP_FOLLOW);
1349 put_link(nd, &link, cookie);
1350 } while (res > 0);
1351
1352 current->link_count--;
1353 nd->depth--;
1354 return res;
1355 }
1356
1357 /*
1358 * We really don't want to look at inode->i_op->lookup
1359 * when we don't have to. So we keep a cache bit in
1360 * the inode ->i_opflags field that says "yes, we can
1361 * do lookup on this inode".
1362 */
1363 static inline int can_lookup(struct inode *inode)
1364 {
1365 if (likely(inode->i_opflags & IOP_LOOKUP))
1366 return 1;
1367 if (likely(!inode->i_op->lookup))
1368 return 0;
1369
1370 /* We do this once for the lifetime of the inode */
1371 spin_lock(&inode->i_lock);
1372 inode->i_opflags |= IOP_LOOKUP;
1373 spin_unlock(&inode->i_lock);
1374 return 1;
1375 }
1376
1377 /*
1378 * Name resolution.
1379 * This is the basic name resolution function, turning a pathname into
1380 * the final dentry. We expect 'base' to be positive and a directory.
1381 *
1382 * Returns 0 and nd will have valid dentry and mnt on success.
1383 * Returns error and drops reference to input namei data on failure.
1384 */
1385 static int link_path_walk(const char *name, struct nameidata *nd)
1386 {
1387 struct path next;
1388 int err;
1389
1390 while (*name=='/')
1391 name++;
1392 if (!*name)
1393 return 0;
1394
1395 /* At this point we know we have a real path component. */
1396 for(;;) {
1397 unsigned long hash;
1398 struct qstr this;
1399 unsigned int c;
1400 int type;
1401
1402 err = may_lookup(nd);
1403 if (err)
1404 break;
1405
1406 this.name = name;
1407 c = *(const unsigned char *)name;
1408
1409 hash = init_name_hash();
1410 do {
1411 name++;
1412 hash = partial_name_hash(c, hash);
1413 c = *(const unsigned char *)name;
1414 } while (c && (c != '/'));
1415 this.len = name - (const char *) this.name;
1416 this.hash = end_name_hash(hash);
1417
1418 type = LAST_NORM;
1419 if (this.name[0] == '.') switch (this.len) {
1420 case 2:
1421 if (this.name[1] == '.') {
1422 type = LAST_DOTDOT;
1423 nd->flags |= LOOKUP_JUMPED;
1424 }
1425 break;
1426 case 1:
1427 type = LAST_DOT;
1428 }
1429 if (likely(type == LAST_NORM)) {
1430 struct dentry *parent = nd->path.dentry;
1431 nd->flags &= ~LOOKUP_JUMPED;
1432 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1433 err = parent->d_op->d_hash(parent, nd->inode,
1434 &this);
1435 if (err < 0)
1436 break;
1437 }
1438 }
1439
1440 /* remove trailing slashes? */
1441 if (!c)
1442 goto last_component;
1443 while (*++name == '/');
1444 if (!*name)
1445 goto last_component;
1446
1447 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1448 if (err < 0)
1449 return err;
1450
1451 if (err) {
1452 err = nested_symlink(&next, nd);
1453 if (err)
1454 return err;
1455 }
1456 if (can_lookup(nd->inode))
1457 continue;
1458 err = -ENOTDIR;
1459 break;
1460 /* here ends the main loop */
1461
1462 last_component:
1463 nd->last = this;
1464 nd->last_type = type;
1465 return 0;
1466 }
1467 terminate_walk(nd);
1468 return err;
1469 }
1470
1471 static int path_init(int dfd, const char *name, unsigned int flags,
1472 struct nameidata *nd, struct file **fp)
1473 {
1474 int retval = 0;
1475 int fput_needed;
1476 struct file *file;
1477
1478 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1479 nd->flags = flags | LOOKUP_JUMPED;
1480 nd->depth = 0;
1481 if (flags & LOOKUP_ROOT) {
1482 struct inode *inode = nd->root.dentry->d_inode;
1483 if (*name) {
1484 if (!inode->i_op->lookup)
1485 return -ENOTDIR;
1486 retval = inode_permission(inode, MAY_EXEC);
1487 if (retval)
1488 return retval;
1489 }
1490 nd->path = nd->root;
1491 nd->inode = inode;
1492 if (flags & LOOKUP_RCU) {
1493 br_read_lock(vfsmount_lock);
1494 rcu_read_lock();
1495 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1496 } else {
1497 path_get(&nd->path);
1498 }
1499 return 0;
1500 }
1501
1502 nd->root.mnt = NULL;
1503
1504 if (*name=='/') {
1505 if (flags & LOOKUP_RCU) {
1506 br_read_lock(vfsmount_lock);
1507 rcu_read_lock();
1508 set_root_rcu(nd);
1509 } else {
1510 set_root(nd);
1511 path_get(&nd->root);
1512 }
1513 nd->path = nd->root;
1514 } else if (dfd == AT_FDCWD) {
1515 if (flags & LOOKUP_RCU) {
1516 struct fs_struct *fs = current->fs;
1517 unsigned seq;
1518
1519 br_read_lock(vfsmount_lock);
1520 rcu_read_lock();
1521
1522 do {
1523 seq = read_seqcount_begin(&fs->seq);
1524 nd->path = fs->pwd;
1525 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1526 } while (read_seqcount_retry(&fs->seq, seq));
1527 } else {
1528 get_fs_pwd(current->fs, &nd->path);
1529 }
1530 } else {
1531 struct dentry *dentry;
1532
1533 file = fget_raw_light(dfd, &fput_needed);
1534 retval = -EBADF;
1535 if (!file)
1536 goto out_fail;
1537
1538 dentry = file->f_path.dentry;
1539
1540 if (*name) {
1541 retval = -ENOTDIR;
1542 if (!S_ISDIR(dentry->d_inode->i_mode))
1543 goto fput_fail;
1544
1545 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1546 if (retval)
1547 goto fput_fail;
1548 }
1549
1550 nd->path = file->f_path;
1551 if (flags & LOOKUP_RCU) {
1552 if (fput_needed)
1553 *fp = file;
1554 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1555 br_read_lock(vfsmount_lock);
1556 rcu_read_lock();
1557 } else {
1558 path_get(&file->f_path);
1559 fput_light(file, fput_needed);
1560 }
1561 }
1562
1563 nd->inode = nd->path.dentry->d_inode;
1564 return 0;
1565
1566 fput_fail:
1567 fput_light(file, fput_needed);
1568 out_fail:
1569 return retval;
1570 }
1571
1572 static inline int lookup_last(struct nameidata *nd, struct path *path)
1573 {
1574 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1575 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1576
1577 nd->flags &= ~LOOKUP_PARENT;
1578 return walk_component(nd, path, &nd->last, nd->last_type,
1579 nd->flags & LOOKUP_FOLLOW);
1580 }
1581
1582 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1583 static int path_lookupat(int dfd, const char *name,
1584 unsigned int flags, struct nameidata *nd)
1585 {
1586 struct file *base = NULL;
1587 struct path path;
1588 int err;
1589
1590 /*
1591 * Path walking is largely split up into 2 different synchronisation
1592 * schemes, rcu-walk and ref-walk (explained in
1593 * Documentation/filesystems/path-lookup.txt). These share much of the
1594 * path walk code, but some things particularly setup, cleanup, and
1595 * following mounts are sufficiently divergent that functions are
1596 * duplicated. Typically there is a function foo(), and its RCU
1597 * analogue, foo_rcu().
1598 *
1599 * -ECHILD is the error number of choice (just to avoid clashes) that
1600 * is returned if some aspect of an rcu-walk fails. Such an error must
1601 * be handled by restarting a traditional ref-walk (which will always
1602 * be able to complete).
1603 */
1604 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1605
1606 if (unlikely(err))
1607 return err;
1608
1609 current->total_link_count = 0;
1610 err = link_path_walk(name, nd);
1611
1612 if (!err && !(flags & LOOKUP_PARENT)) {
1613 err = lookup_last(nd, &path);
1614 while (err > 0) {
1615 void *cookie;
1616 struct path link = path;
1617 nd->flags |= LOOKUP_PARENT;
1618 err = follow_link(&link, nd, &cookie);
1619 if (!err)
1620 err = lookup_last(nd, &path);
1621 put_link(nd, &link, cookie);
1622 }
1623 }
1624
1625 if (!err)
1626 err = complete_walk(nd);
1627
1628 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1629 if (!nd->inode->i_op->lookup) {
1630 path_put(&nd->path);
1631 err = -ENOTDIR;
1632 }
1633 }
1634
1635 if (base)
1636 fput(base);
1637
1638 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1639 path_put(&nd->root);
1640 nd->root.mnt = NULL;
1641 }
1642 return err;
1643 }
1644
1645 static int do_path_lookup(int dfd, const char *name,
1646 unsigned int flags, struct nameidata *nd)
1647 {
1648 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1649 if (unlikely(retval == -ECHILD))
1650 retval = path_lookupat(dfd, name, flags, nd);
1651 if (unlikely(retval == -ESTALE))
1652 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1653
1654 if (likely(!retval)) {
1655 if (unlikely(!audit_dummy_context())) {
1656 if (nd->path.dentry && nd->inode)
1657 audit_inode(name, nd->path.dentry);
1658 }
1659 }
1660 return retval;
1661 }
1662
1663 int kern_path_parent(const char *name, struct nameidata *nd)
1664 {
1665 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1666 }
1667
1668 int kern_path(const char *name, unsigned int flags, struct path *path)
1669 {
1670 struct nameidata nd;
1671 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1672 if (!res)
1673 *path = nd.path;
1674 return res;
1675 }
1676
1677 /**
1678 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1679 * @dentry: pointer to dentry of the base directory
1680 * @mnt: pointer to vfs mount of the base directory
1681 * @name: pointer to file name
1682 * @flags: lookup flags
1683 * @path: pointer to struct path to fill
1684 */
1685 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1686 const char *name, unsigned int flags,
1687 struct path *path)
1688 {
1689 struct nameidata nd;
1690 int err;
1691 nd.root.dentry = dentry;
1692 nd.root.mnt = mnt;
1693 BUG_ON(flags & LOOKUP_PARENT);
1694 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1695 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1696 if (!err)
1697 *path = nd.path;
1698 return err;
1699 }
1700
1701 static struct dentry *__lookup_hash(struct qstr *name,
1702 struct dentry *base, struct nameidata *nd)
1703 {
1704 struct inode *inode = base->d_inode;
1705 struct dentry *dentry;
1706 int err;
1707
1708 err = inode_permission(inode, MAY_EXEC);
1709 if (err)
1710 return ERR_PTR(err);
1711
1712 /*
1713 * Don't bother with __d_lookup: callers are for creat as
1714 * well as unlink, so a lot of the time it would cost
1715 * a double lookup.
1716 */
1717 dentry = d_lookup(base, name);
1718
1719 if (dentry && d_need_lookup(dentry)) {
1720 /*
1721 * __lookup_hash is called with the parent dir's i_mutex already
1722 * held, so we are good to go here.
1723 */
1724 dentry = d_inode_lookup(base, dentry, nd);
1725 if (IS_ERR(dentry))
1726 return dentry;
1727 }
1728
1729 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1730 int status = d_revalidate(dentry, nd);
1731 if (unlikely(status <= 0)) {
1732 /*
1733 * The dentry failed validation.
1734 * If d_revalidate returned 0 attempt to invalidate
1735 * the dentry otherwise d_revalidate is asking us
1736 * to return a fail status.
1737 */
1738 if (status < 0) {
1739 dput(dentry);
1740 return ERR_PTR(status);
1741 } else if (!d_invalidate(dentry)) {
1742 dput(dentry);
1743 dentry = NULL;
1744 }
1745 }
1746 }
1747
1748 if (!dentry)
1749 dentry = d_alloc_and_lookup(base, name, nd);
1750
1751 return dentry;
1752 }
1753
1754 /*
1755 * Restricted form of lookup. Doesn't follow links, single-component only,
1756 * needs parent already locked. Doesn't follow mounts.
1757 * SMP-safe.
1758 */
1759 static struct dentry *lookup_hash(struct nameidata *nd)
1760 {
1761 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1762 }
1763
1764 /**
1765 * lookup_one_len - filesystem helper to lookup single pathname component
1766 * @name: pathname component to lookup
1767 * @base: base directory to lookup from
1768 * @len: maximum length @len should be interpreted to
1769 *
1770 * Note that this routine is purely a helper for filesystem usage and should
1771 * not be called by generic code. Also note that by using this function the
1772 * nameidata argument is passed to the filesystem methods and a filesystem
1773 * using this helper needs to be prepared for that.
1774 */
1775 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1776 {
1777 struct qstr this;
1778 unsigned long hash;
1779 unsigned int c;
1780
1781 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1782
1783 this.name = name;
1784 this.len = len;
1785 if (!len)
1786 return ERR_PTR(-EACCES);
1787
1788 hash = init_name_hash();
1789 while (len--) {
1790 c = *(const unsigned char *)name++;
1791 if (c == '/' || c == '\0')
1792 return ERR_PTR(-EACCES);
1793 hash = partial_name_hash(c, hash);
1794 }
1795 this.hash = end_name_hash(hash);
1796 /*
1797 * See if the low-level filesystem might want
1798 * to use its own hash..
1799 */
1800 if (base->d_flags & DCACHE_OP_HASH) {
1801 int err = base->d_op->d_hash(base, base->d_inode, &this);
1802 if (err < 0)
1803 return ERR_PTR(err);
1804 }
1805
1806 return __lookup_hash(&this, base, NULL);
1807 }
1808
1809 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1810 struct path *path, int *empty)
1811 {
1812 struct nameidata nd;
1813 char *tmp = getname_flags(name, flags, empty);
1814 int err = PTR_ERR(tmp);
1815 if (!IS_ERR(tmp)) {
1816
1817 BUG_ON(flags & LOOKUP_PARENT);
1818
1819 err = do_path_lookup(dfd, tmp, flags, &nd);
1820 putname(tmp);
1821 if (!err)
1822 *path = nd.path;
1823 }
1824 return err;
1825 }
1826
1827 int user_path_at(int dfd, const char __user *name, unsigned flags,
1828 struct path *path)
1829 {
1830 return user_path_at_empty(dfd, name, flags, path, 0);
1831 }
1832
1833 static int user_path_parent(int dfd, const char __user *path,
1834 struct nameidata *nd, char **name)
1835 {
1836 char *s = getname(path);
1837 int error;
1838
1839 if (IS_ERR(s))
1840 return PTR_ERR(s);
1841
1842 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1843 if (error)
1844 putname(s);
1845 else
1846 *name = s;
1847
1848 return error;
1849 }
1850
1851 /*
1852 * It's inline, so penalty for filesystems that don't use sticky bit is
1853 * minimal.
1854 */
1855 static inline int check_sticky(struct inode *dir, struct inode *inode)
1856 {
1857 uid_t fsuid = current_fsuid();
1858
1859 if (!(dir->i_mode & S_ISVTX))
1860 return 0;
1861 if (current_user_ns() != inode_userns(inode))
1862 goto other_userns;
1863 if (inode->i_uid == fsuid)
1864 return 0;
1865 if (dir->i_uid == fsuid)
1866 return 0;
1867
1868 other_userns:
1869 return !ns_capable(inode_userns(inode), CAP_FOWNER);
1870 }
1871
1872 /*
1873 * Check whether we can remove a link victim from directory dir, check
1874 * whether the type of victim is right.
1875 * 1. We can't do it if dir is read-only (done in permission())
1876 * 2. We should have write and exec permissions on dir
1877 * 3. We can't remove anything from append-only dir
1878 * 4. We can't do anything with immutable dir (done in permission())
1879 * 5. If the sticky bit on dir is set we should either
1880 * a. be owner of dir, or
1881 * b. be owner of victim, or
1882 * c. have CAP_FOWNER capability
1883 * 6. If the victim is append-only or immutable we can't do antyhing with
1884 * links pointing to it.
1885 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1886 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1887 * 9. We can't remove a root or mountpoint.
1888 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1889 * nfs_async_unlink().
1890 */
1891 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1892 {
1893 int error;
1894
1895 if (!victim->d_inode)
1896 return -ENOENT;
1897
1898 BUG_ON(victim->d_parent->d_inode != dir);
1899 audit_inode_child(victim, dir);
1900
1901 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1902 if (error)
1903 return error;
1904 if (IS_APPEND(dir))
1905 return -EPERM;
1906 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1907 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1908 return -EPERM;
1909 if (isdir) {
1910 if (!S_ISDIR(victim->d_inode->i_mode))
1911 return -ENOTDIR;
1912 if (IS_ROOT(victim))
1913 return -EBUSY;
1914 } else if (S_ISDIR(victim->d_inode->i_mode))
1915 return -EISDIR;
1916 if (IS_DEADDIR(dir))
1917 return -ENOENT;
1918 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1919 return -EBUSY;
1920 return 0;
1921 }
1922
1923 /* Check whether we can create an object with dentry child in directory
1924 * dir.
1925 * 1. We can't do it if child already exists (open has special treatment for
1926 * this case, but since we are inlined it's OK)
1927 * 2. We can't do it if dir is read-only (done in permission())
1928 * 3. We should have write and exec permissions on dir
1929 * 4. We can't do it if dir is immutable (done in permission())
1930 */
1931 static inline int may_create(struct inode *dir, struct dentry *child)
1932 {
1933 if (child->d_inode)
1934 return -EEXIST;
1935 if (IS_DEADDIR(dir))
1936 return -ENOENT;
1937 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1938 }
1939
1940 /*
1941 * p1 and p2 should be directories on the same fs.
1942 */
1943 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1944 {
1945 struct dentry *p;
1946
1947 if (p1 == p2) {
1948 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1949 return NULL;
1950 }
1951
1952 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1953
1954 p = d_ancestor(p2, p1);
1955 if (p) {
1956 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1957 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1958 return p;
1959 }
1960
1961 p = d_ancestor(p1, p2);
1962 if (p) {
1963 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1964 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1965 return p;
1966 }
1967
1968 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1969 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1970 return NULL;
1971 }
1972
1973 void unlock_rename(struct dentry *p1, struct dentry *p2)
1974 {
1975 mutex_unlock(&p1->d_inode->i_mutex);
1976 if (p1 != p2) {
1977 mutex_unlock(&p2->d_inode->i_mutex);
1978 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1979 }
1980 }
1981
1982 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1983 struct nameidata *nd)
1984 {
1985 int error = may_create(dir, dentry);
1986
1987 if (error)
1988 return error;
1989
1990 if (!dir->i_op->create)
1991 return -EACCES; /* shouldn't it be ENOSYS? */
1992 mode &= S_IALLUGO;
1993 mode |= S_IFREG;
1994 error = security_inode_create(dir, dentry, mode);
1995 if (error)
1996 return error;
1997 error = dir->i_op->create(dir, dentry, mode, nd);
1998 if (!error)
1999 fsnotify_create(dir, dentry);
2000 return error;
2001 }
2002
2003 static int may_open(struct path *path, int acc_mode, int flag)
2004 {
2005 struct dentry *dentry = path->dentry;
2006 struct inode *inode = dentry->d_inode;
2007 int error;
2008
2009 /* O_PATH? */
2010 if (!acc_mode)
2011 return 0;
2012
2013 if (!inode)
2014 return -ENOENT;
2015
2016 switch (inode->i_mode & S_IFMT) {
2017 case S_IFLNK:
2018 return -ELOOP;
2019 case S_IFDIR:
2020 if (acc_mode & MAY_WRITE)
2021 return -EISDIR;
2022 break;
2023 case S_IFBLK:
2024 case S_IFCHR:
2025 if (path->mnt->mnt_flags & MNT_NODEV)
2026 return -EACCES;
2027 /*FALLTHRU*/
2028 case S_IFIFO:
2029 case S_IFSOCK:
2030 flag &= ~O_TRUNC;
2031 break;
2032 }
2033
2034 error = inode_permission(inode, acc_mode);
2035 if (error)
2036 return error;
2037
2038 /*
2039 * An append-only file must be opened in append mode for writing.
2040 */
2041 if (IS_APPEND(inode)) {
2042 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2043 return -EPERM;
2044 if (flag & O_TRUNC)
2045 return -EPERM;
2046 }
2047
2048 /* O_NOATIME can only be set by the owner or superuser */
2049 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2050 return -EPERM;
2051
2052 return 0;
2053 }
2054
2055 static int handle_truncate(struct file *filp)
2056 {
2057 struct path *path = &filp->f_path;
2058 struct inode *inode = path->dentry->d_inode;
2059 int error = get_write_access(inode);
2060 if (error)
2061 return error;
2062 /*
2063 * Refuse to truncate files with mandatory locks held on them.
2064 */
2065 error = locks_verify_locked(inode);
2066 if (!error)
2067 error = security_path_truncate(path);
2068 if (!error) {
2069 error = do_truncate(path->dentry, 0,
2070 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2071 filp);
2072 }
2073 put_write_access(inode);
2074 return error;
2075 }
2076
2077 static inline int open_to_namei_flags(int flag)
2078 {
2079 if ((flag & O_ACCMODE) == 3)
2080 flag--;
2081 return flag;
2082 }
2083
2084 /*
2085 * Handle the last step of open()
2086 */
2087 static struct file *do_last(struct nameidata *nd, struct path *path,
2088 const struct open_flags *op, const char *pathname)
2089 {
2090 struct dentry *dir = nd->path.dentry;
2091 struct dentry *dentry;
2092 int open_flag = op->open_flag;
2093 int will_truncate = open_flag & O_TRUNC;
2094 int want_write = 0;
2095 int acc_mode = op->acc_mode;
2096 struct file *filp;
2097 int error;
2098
2099 nd->flags &= ~LOOKUP_PARENT;
2100 nd->flags |= op->intent;
2101
2102 switch (nd->last_type) {
2103 case LAST_DOTDOT:
2104 case LAST_DOT:
2105 error = handle_dots(nd, nd->last_type);
2106 if (error)
2107 return ERR_PTR(error);
2108 /* fallthrough */
2109 case LAST_ROOT:
2110 error = complete_walk(nd);
2111 if (error)
2112 return ERR_PTR(error);
2113 audit_inode(pathname, nd->path.dentry);
2114 if (open_flag & O_CREAT) {
2115 error = -EISDIR;
2116 goto exit;
2117 }
2118 goto ok;
2119 case LAST_BIND:
2120 error = complete_walk(nd);
2121 if (error)
2122 return ERR_PTR(error);
2123 audit_inode(pathname, dir);
2124 goto ok;
2125 }
2126
2127 if (!(open_flag & O_CREAT)) {
2128 int symlink_ok = 0;
2129 if (nd->last.name[nd->last.len])
2130 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2131 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2132 symlink_ok = 1;
2133 /* we _can_ be in RCU mode here */
2134 error = walk_component(nd, path, &nd->last, LAST_NORM,
2135 !symlink_ok);
2136 if (error < 0)
2137 return ERR_PTR(error);
2138 if (error) /* symlink */
2139 return NULL;
2140 /* sayonara */
2141 error = complete_walk(nd);
2142 if (error)
2143 return ERR_PTR(-ECHILD);
2144
2145 error = -ENOTDIR;
2146 if (nd->flags & LOOKUP_DIRECTORY) {
2147 if (!nd->inode->i_op->lookup)
2148 goto exit;
2149 }
2150 audit_inode(pathname, nd->path.dentry);
2151 goto ok;
2152 }
2153
2154 /* create side of things */
2155 /*
2156 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been
2157 * cleared when we got to the last component we are about to look up
2158 */
2159 error = complete_walk(nd);
2160 if (error)
2161 return ERR_PTR(error);
2162
2163 audit_inode(pathname, dir);
2164 error = -EISDIR;
2165 /* trailing slashes? */
2166 if (nd->last.name[nd->last.len])
2167 goto exit;
2168
2169 mutex_lock(&dir->d_inode->i_mutex);
2170
2171 dentry = lookup_hash(nd);
2172 error = PTR_ERR(dentry);
2173 if (IS_ERR(dentry)) {
2174 mutex_unlock(&dir->d_inode->i_mutex);
2175 goto exit;
2176 }
2177
2178 path->dentry = dentry;
2179 path->mnt = nd->path.mnt;
2180
2181 /* Negative dentry, just create the file */
2182 if (!dentry->d_inode) {
2183 int mode = op->mode;
2184 if (!IS_POSIXACL(dir->d_inode))
2185 mode &= ~current_umask();
2186 /*
2187 * This write is needed to ensure that a
2188 * rw->ro transition does not occur between
2189 * the time when the file is created and when
2190 * a permanent write count is taken through
2191 * the 'struct file' in nameidata_to_filp().
2192 */
2193 error = mnt_want_write(nd->path.mnt);
2194 if (error)
2195 goto exit_mutex_unlock;
2196 want_write = 1;
2197 /* Don't check for write permission, don't truncate */
2198 open_flag &= ~O_TRUNC;
2199 will_truncate = 0;
2200 acc_mode = MAY_OPEN;
2201 error = security_path_mknod(&nd->path, dentry, mode, 0);
2202 if (error)
2203 goto exit_mutex_unlock;
2204 error = vfs_create(dir->d_inode, dentry, mode, nd);
2205 if (error)
2206 goto exit_mutex_unlock;
2207 mutex_unlock(&dir->d_inode->i_mutex);
2208 dput(nd->path.dentry);
2209 nd->path.dentry = dentry;
2210 goto common;
2211 }
2212
2213 /*
2214 * It already exists.
2215 */
2216 mutex_unlock(&dir->d_inode->i_mutex);
2217 audit_inode(pathname, path->dentry);
2218
2219 error = -EEXIST;
2220 if (open_flag & O_EXCL)
2221 goto exit_dput;
2222
2223 error = follow_managed(path, nd->flags);
2224 if (error < 0)
2225 goto exit_dput;
2226
2227 if (error)
2228 nd->flags |= LOOKUP_JUMPED;
2229
2230 error = -ENOENT;
2231 if (!path->dentry->d_inode)
2232 goto exit_dput;
2233
2234 if (path->dentry->d_inode->i_op->follow_link)
2235 return NULL;
2236
2237 path_to_nameidata(path, nd);
2238 nd->inode = path->dentry->d_inode;
2239 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2240 error = complete_walk(nd);
2241 if (error)
2242 goto exit;
2243 error = -EISDIR;
2244 if (S_ISDIR(nd->inode->i_mode))
2245 goto exit;
2246 ok:
2247 if (!S_ISREG(nd->inode->i_mode))
2248 will_truncate = 0;
2249
2250 if (will_truncate) {
2251 error = mnt_want_write(nd->path.mnt);
2252 if (error)
2253 goto exit;
2254 want_write = 1;
2255 }
2256 common:
2257 error = may_open(&nd->path, acc_mode, open_flag);
2258 if (error)
2259 goto exit;
2260 filp = nameidata_to_filp(nd);
2261 if (!IS_ERR(filp)) {
2262 error = ima_file_check(filp, op->acc_mode);
2263 if (error) {
2264 fput(filp);
2265 filp = ERR_PTR(error);
2266 }
2267 }
2268 if (!IS_ERR(filp)) {
2269 if (will_truncate) {
2270 error = handle_truncate(filp);
2271 if (error) {
2272 fput(filp);
2273 filp = ERR_PTR(error);
2274 }
2275 }
2276 }
2277 out:
2278 if (want_write)
2279 mnt_drop_write(nd->path.mnt);
2280 path_put(&nd->path);
2281 return filp;
2282
2283 exit_mutex_unlock:
2284 mutex_unlock(&dir->d_inode->i_mutex);
2285 exit_dput:
2286 path_put_conditional(path, nd);
2287 exit:
2288 filp = ERR_PTR(error);
2289 goto out;
2290 }
2291
2292 static struct file *path_openat(int dfd, const char *pathname,
2293 struct nameidata *nd, const struct open_flags *op, int flags)
2294 {
2295 struct file *base = NULL;
2296 struct file *filp;
2297 struct path path;
2298 int error;
2299
2300 filp = get_empty_filp();
2301 if (!filp)
2302 return ERR_PTR(-ENFILE);
2303
2304 filp->f_flags = op->open_flag;
2305 nd->intent.open.file = filp;
2306 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2307 nd->intent.open.create_mode = op->mode;
2308
2309 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2310 if (unlikely(error))
2311 goto out_filp;
2312
2313 current->total_link_count = 0;
2314 error = link_path_walk(pathname, nd);
2315 if (unlikely(error))
2316 goto out_filp;
2317
2318 filp = do_last(nd, &path, op, pathname);
2319 while (unlikely(!filp)) { /* trailing symlink */
2320 struct path link = path;
2321 void *cookie;
2322 if (!(nd->flags & LOOKUP_FOLLOW)) {
2323 path_put_conditional(&path, nd);
2324 path_put(&nd->path);
2325 filp = ERR_PTR(-ELOOP);
2326 break;
2327 }
2328 nd->flags |= LOOKUP_PARENT;
2329 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2330 error = follow_link(&link, nd, &cookie);
2331 if (unlikely(error))
2332 filp = ERR_PTR(error);
2333 else
2334 filp = do_last(nd, &path, op, pathname);
2335 put_link(nd, &link, cookie);
2336 }
2337 out:
2338 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2339 path_put(&nd->root);
2340 if (base)
2341 fput(base);
2342 release_open_intent(nd);
2343 return filp;
2344
2345 out_filp:
2346 filp = ERR_PTR(error);
2347 goto out;
2348 }
2349
2350 struct file *do_filp_open(int dfd, const char *pathname,
2351 const struct open_flags *op, int flags)
2352 {
2353 struct nameidata nd;
2354 struct file *filp;
2355
2356 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2357 if (unlikely(filp == ERR_PTR(-ECHILD)))
2358 filp = path_openat(dfd, pathname, &nd, op, flags);
2359 if (unlikely(filp == ERR_PTR(-ESTALE)))
2360 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2361 return filp;
2362 }
2363
2364 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2365 const char *name, const struct open_flags *op, int flags)
2366 {
2367 struct nameidata nd;
2368 struct file *file;
2369
2370 nd.root.mnt = mnt;
2371 nd.root.dentry = dentry;
2372
2373 flags |= LOOKUP_ROOT;
2374
2375 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2376 return ERR_PTR(-ELOOP);
2377
2378 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2379 if (unlikely(file == ERR_PTR(-ECHILD)))
2380 file = path_openat(-1, name, &nd, op, flags);
2381 if (unlikely(file == ERR_PTR(-ESTALE)))
2382 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2383 return file;
2384 }
2385
2386 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2387 {
2388 struct dentry *dentry = ERR_PTR(-EEXIST);
2389 struct nameidata nd;
2390 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2391 if (error)
2392 return ERR_PTR(error);
2393
2394 /*
2395 * Yucky last component or no last component at all?
2396 * (foo/., foo/.., /////)
2397 */
2398 if (nd.last_type != LAST_NORM)
2399 goto out;
2400 nd.flags &= ~LOOKUP_PARENT;
2401 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2402 nd.intent.open.flags = O_EXCL;
2403
2404 /*
2405 * Do the final lookup.
2406 */
2407 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2408 dentry = lookup_hash(&nd);
2409 if (IS_ERR(dentry))
2410 goto fail;
2411
2412 if (dentry->d_inode)
2413 goto eexist;
2414 /*
2415 * Special case - lookup gave negative, but... we had foo/bar/
2416 * From the vfs_mknod() POV we just have a negative dentry -
2417 * all is fine. Let's be bastards - you had / on the end, you've
2418 * been asking for (non-existent) directory. -ENOENT for you.
2419 */
2420 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2421 dput(dentry);
2422 dentry = ERR_PTR(-ENOENT);
2423 goto fail;
2424 }
2425 *path = nd.path;
2426 return dentry;
2427 eexist:
2428 dput(dentry);
2429 dentry = ERR_PTR(-EEXIST);
2430 fail:
2431 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2432 out:
2433 path_put(&nd.path);
2434 return dentry;
2435 }
2436 EXPORT_SYMBOL(kern_path_create);
2437
2438 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2439 {
2440 char *tmp = getname(pathname);
2441 struct dentry *res;
2442 if (IS_ERR(tmp))
2443 return ERR_CAST(tmp);
2444 res = kern_path_create(dfd, tmp, path, is_dir);
2445 putname(tmp);
2446 return res;
2447 }
2448 EXPORT_SYMBOL(user_path_create);
2449
2450 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2451 {
2452 int error = may_create(dir, dentry);
2453
2454 if (error)
2455 return error;
2456
2457 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2458 !ns_capable(inode_userns(dir), CAP_MKNOD))
2459 return -EPERM;
2460
2461 if (!dir->i_op->mknod)
2462 return -EPERM;
2463
2464 error = devcgroup_inode_mknod(mode, dev);
2465 if (error)
2466 return error;
2467
2468 error = security_inode_mknod(dir, dentry, mode, dev);
2469 if (error)
2470 return error;
2471
2472 error = dir->i_op->mknod(dir, dentry, mode, dev);
2473 if (!error)
2474 fsnotify_create(dir, dentry);
2475 return error;
2476 }
2477
2478 static int may_mknod(mode_t mode)
2479 {
2480 switch (mode & S_IFMT) {
2481 case S_IFREG:
2482 case S_IFCHR:
2483 case S_IFBLK:
2484 case S_IFIFO:
2485 case S_IFSOCK:
2486 case 0: /* zero mode translates to S_IFREG */
2487 return 0;
2488 case S_IFDIR:
2489 return -EPERM;
2490 default:
2491 return -EINVAL;
2492 }
2493 }
2494
2495 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2496 unsigned, dev)
2497 {
2498 struct dentry *dentry;
2499 struct path path;
2500 int error;
2501
2502 if (S_ISDIR(mode))
2503 return -EPERM;
2504
2505 dentry = user_path_create(dfd, filename, &path, 0);
2506 if (IS_ERR(dentry))
2507 return PTR_ERR(dentry);
2508
2509 if (!IS_POSIXACL(path.dentry->d_inode))
2510 mode &= ~current_umask();
2511 error = may_mknod(mode);
2512 if (error)
2513 goto out_dput;
2514 error = mnt_want_write(path.mnt);
2515 if (error)
2516 goto out_dput;
2517 error = security_path_mknod(&path, dentry, mode, dev);
2518 if (error)
2519 goto out_drop_write;
2520 switch (mode & S_IFMT) {
2521 case 0: case S_IFREG:
2522 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2523 break;
2524 case S_IFCHR: case S_IFBLK:
2525 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2526 new_decode_dev(dev));
2527 break;
2528 case S_IFIFO: case S_IFSOCK:
2529 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2530 break;
2531 }
2532 out_drop_write:
2533 mnt_drop_write(path.mnt);
2534 out_dput:
2535 dput(dentry);
2536 mutex_unlock(&path.dentry->d_inode->i_mutex);
2537 path_put(&path);
2538
2539 return error;
2540 }
2541
2542 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2543 {
2544 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2545 }
2546
2547 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2548 {
2549 int error = may_create(dir, dentry);
2550
2551 if (error)
2552 return error;
2553
2554 if (!dir->i_op->mkdir)
2555 return -EPERM;
2556
2557 mode &= (S_IRWXUGO|S_ISVTX);
2558 error = security_inode_mkdir(dir, dentry, mode);
2559 if (error)
2560 return error;
2561
2562 error = dir->i_op->mkdir(dir, dentry, mode);
2563 if (!error)
2564 fsnotify_mkdir(dir, dentry);
2565 return error;
2566 }
2567
2568 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2569 {
2570 struct dentry *dentry;
2571 struct path path;
2572 int error;
2573
2574 dentry = user_path_create(dfd, pathname, &path, 1);
2575 if (IS_ERR(dentry))
2576 return PTR_ERR(dentry);
2577
2578 if (!IS_POSIXACL(path.dentry->d_inode))
2579 mode &= ~current_umask();
2580 error = mnt_want_write(path.mnt);
2581 if (error)
2582 goto out_dput;
2583 error = security_path_mkdir(&path, dentry, mode);
2584 if (error)
2585 goto out_drop_write;
2586 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2587 out_drop_write:
2588 mnt_drop_write(path.mnt);
2589 out_dput:
2590 dput(dentry);
2591 mutex_unlock(&path.dentry->d_inode->i_mutex);
2592 path_put(&path);
2593 return error;
2594 }
2595
2596 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2597 {
2598 return sys_mkdirat(AT_FDCWD, pathname, mode);
2599 }
2600
2601 /*
2602 * The dentry_unhash() helper will try to drop the dentry early: we
2603 * should have a usage count of 2 if we're the only user of this
2604 * dentry, and if that is true (possibly after pruning the dcache),
2605 * then we drop the dentry now.
2606 *
2607 * A low-level filesystem can, if it choses, legally
2608 * do a
2609 *
2610 * if (!d_unhashed(dentry))
2611 * return -EBUSY;
2612 *
2613 * if it cannot handle the case of removing a directory
2614 * that is still in use by something else..
2615 */
2616 void dentry_unhash(struct dentry *dentry)
2617 {
2618 shrink_dcache_parent(dentry);
2619 spin_lock(&dentry->d_lock);
2620 if (dentry->d_count == 1)
2621 __d_drop(dentry);
2622 spin_unlock(&dentry->d_lock);
2623 }
2624
2625 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2626 {
2627 int error = may_delete(dir, dentry, 1);
2628
2629 if (error)
2630 return error;
2631
2632 if (!dir->i_op->rmdir)
2633 return -EPERM;
2634
2635 dget(dentry);
2636 mutex_lock(&dentry->d_inode->i_mutex);
2637
2638 error = -EBUSY;
2639 if (d_mountpoint(dentry))
2640 goto out;
2641
2642 error = security_inode_rmdir(dir, dentry);
2643 if (error)
2644 goto out;
2645
2646 shrink_dcache_parent(dentry);
2647 error = dir->i_op->rmdir(dir, dentry);
2648 if (error)
2649 goto out;
2650
2651 dentry->d_inode->i_flags |= S_DEAD;
2652 dont_mount(dentry);
2653
2654 out:
2655 mutex_unlock(&dentry->d_inode->i_mutex);
2656 dput(dentry);
2657 if (!error)
2658 d_delete(dentry);
2659 return error;
2660 }
2661
2662 static long do_rmdir(int dfd, const char __user *pathname)
2663 {
2664 int error = 0;
2665 char * name;
2666 struct dentry *dentry;
2667 struct nameidata nd;
2668
2669 error = user_path_parent(dfd, pathname, &nd, &name);
2670 if (error)
2671 return error;
2672
2673 switch(nd.last_type) {
2674 case LAST_DOTDOT:
2675 error = -ENOTEMPTY;
2676 goto exit1;
2677 case LAST_DOT:
2678 error = -EINVAL;
2679 goto exit1;
2680 case LAST_ROOT:
2681 error = -EBUSY;
2682 goto exit1;
2683 }
2684
2685 nd.flags &= ~LOOKUP_PARENT;
2686
2687 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2688 dentry = lookup_hash(&nd);
2689 error = PTR_ERR(dentry);
2690 if (IS_ERR(dentry))
2691 goto exit2;
2692 if (!dentry->d_inode) {
2693 error = -ENOENT;
2694 goto exit3;
2695 }
2696 error = mnt_want_write(nd.path.mnt);
2697 if (error)
2698 goto exit3;
2699 error = security_path_rmdir(&nd.path, dentry);
2700 if (error)
2701 goto exit4;
2702 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2703 exit4:
2704 mnt_drop_write(nd.path.mnt);
2705 exit3:
2706 dput(dentry);
2707 exit2:
2708 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2709 exit1:
2710 path_put(&nd.path);
2711 putname(name);
2712 return error;
2713 }
2714
2715 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2716 {
2717 return do_rmdir(AT_FDCWD, pathname);
2718 }
2719
2720 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2721 {
2722 int error = may_delete(dir, dentry, 0);
2723
2724 if (error)
2725 return error;
2726
2727 if (!dir->i_op->unlink)
2728 return -EPERM;
2729
2730 mutex_lock(&dentry->d_inode->i_mutex);
2731 if (d_mountpoint(dentry))
2732 error = -EBUSY;
2733 else {
2734 error = security_inode_unlink(dir, dentry);
2735 if (!error) {
2736 error = dir->i_op->unlink(dir, dentry);
2737 if (!error)
2738 dont_mount(dentry);
2739 }
2740 }
2741 mutex_unlock(&dentry->d_inode->i_mutex);
2742
2743 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2744 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2745 fsnotify_link_count(dentry->d_inode);
2746 d_delete(dentry);
2747 }
2748
2749 return error;
2750 }
2751
2752 /*
2753 * Make sure that the actual truncation of the file will occur outside its
2754 * directory's i_mutex. Truncate can take a long time if there is a lot of
2755 * writeout happening, and we don't want to prevent access to the directory
2756 * while waiting on the I/O.
2757 */
2758 static long do_unlinkat(int dfd, const char __user *pathname)
2759 {
2760 int error;
2761 char *name;
2762 struct dentry *dentry;
2763 struct nameidata nd;
2764 struct inode *inode = NULL;
2765
2766 error = user_path_parent(dfd, pathname, &nd, &name);
2767 if (error)
2768 return error;
2769
2770 error = -EISDIR;
2771 if (nd.last_type != LAST_NORM)
2772 goto exit1;
2773
2774 nd.flags &= ~LOOKUP_PARENT;
2775
2776 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2777 dentry = lookup_hash(&nd);
2778 error = PTR_ERR(dentry);
2779 if (!IS_ERR(dentry)) {
2780 /* Why not before? Because we want correct error value */
2781 if (nd.last.name[nd.last.len])
2782 goto slashes;
2783 inode = dentry->d_inode;
2784 if (!inode)
2785 goto slashes;
2786 ihold(inode);
2787 error = mnt_want_write(nd.path.mnt);
2788 if (error)
2789 goto exit2;
2790 error = security_path_unlink(&nd.path, dentry);
2791 if (error)
2792 goto exit3;
2793 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2794 exit3:
2795 mnt_drop_write(nd.path.mnt);
2796 exit2:
2797 dput(dentry);
2798 }
2799 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2800 if (inode)
2801 iput(inode); /* truncate the inode here */
2802 exit1:
2803 path_put(&nd.path);
2804 putname(name);
2805 return error;
2806
2807 slashes:
2808 error = !dentry->d_inode ? -ENOENT :
2809 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2810 goto exit2;
2811 }
2812
2813 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2814 {
2815 if ((flag & ~AT_REMOVEDIR) != 0)
2816 return -EINVAL;
2817
2818 if (flag & AT_REMOVEDIR)
2819 return do_rmdir(dfd, pathname);
2820
2821 return do_unlinkat(dfd, pathname);
2822 }
2823
2824 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2825 {
2826 return do_unlinkat(AT_FDCWD, pathname);
2827 }
2828
2829 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2830 {
2831 int error = may_create(dir, dentry);
2832
2833 if (error)
2834 return error;
2835
2836 if (!dir->i_op->symlink)
2837 return -EPERM;
2838
2839 error = security_inode_symlink(dir, dentry, oldname);
2840 if (error)
2841 return error;
2842
2843 error = dir->i_op->symlink(dir, dentry, oldname);
2844 if (!error)
2845 fsnotify_create(dir, dentry);
2846 return error;
2847 }
2848
2849 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2850 int, newdfd, const char __user *, newname)
2851 {
2852 int error;
2853 char *from;
2854 struct dentry *dentry;
2855 struct path path;
2856
2857 from = getname(oldname);
2858 if (IS_ERR(from))
2859 return PTR_ERR(from);
2860
2861 dentry = user_path_create(newdfd, newname, &path, 0);
2862 error = PTR_ERR(dentry);
2863 if (IS_ERR(dentry))
2864 goto out_putname;
2865
2866 error = mnt_want_write(path.mnt);
2867 if (error)
2868 goto out_dput;
2869 error = security_path_symlink(&path, dentry, from);
2870 if (error)
2871 goto out_drop_write;
2872 error = vfs_symlink(path.dentry->d_inode, dentry, from);
2873 out_drop_write:
2874 mnt_drop_write(path.mnt);
2875 out_dput:
2876 dput(dentry);
2877 mutex_unlock(&path.dentry->d_inode->i_mutex);
2878 path_put(&path);
2879 out_putname:
2880 putname(from);
2881 return error;
2882 }
2883
2884 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2885 {
2886 return sys_symlinkat(oldname, AT_FDCWD, newname);
2887 }
2888
2889 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2890 {
2891 struct inode *inode = old_dentry->d_inode;
2892 int error;
2893
2894 if (!inode)
2895 return -ENOENT;
2896
2897 error = may_create(dir, new_dentry);
2898 if (error)
2899 return error;
2900
2901 if (dir->i_sb != inode->i_sb)
2902 return -EXDEV;
2903
2904 /*
2905 * A link to an append-only or immutable file cannot be created.
2906 */
2907 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2908 return -EPERM;
2909 if (!dir->i_op->link)
2910 return -EPERM;
2911 if (S_ISDIR(inode->i_mode))
2912 return -EPERM;
2913
2914 error = security_inode_link(old_dentry, dir, new_dentry);
2915 if (error)
2916 return error;
2917
2918 mutex_lock(&inode->i_mutex);
2919 /* Make sure we don't allow creating hardlink to an unlinked file */
2920 if (inode->i_nlink == 0)
2921 error = -ENOENT;
2922 else
2923 error = dir->i_op->link(old_dentry, dir, new_dentry);
2924 mutex_unlock(&inode->i_mutex);
2925 if (!error)
2926 fsnotify_link(dir, inode, new_dentry);
2927 return error;
2928 }
2929
2930 /*
2931 * Hardlinks are often used in delicate situations. We avoid
2932 * security-related surprises by not following symlinks on the
2933 * newname. --KAB
2934 *
2935 * We don't follow them on the oldname either to be compatible
2936 * with linux 2.0, and to avoid hard-linking to directories
2937 * and other special files. --ADM
2938 */
2939 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2940 int, newdfd, const char __user *, newname, int, flags)
2941 {
2942 struct dentry *new_dentry;
2943 struct path old_path, new_path;
2944 int how = 0;
2945 int error;
2946
2947 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2948 return -EINVAL;
2949 /*
2950 * To use null names we require CAP_DAC_READ_SEARCH
2951 * This ensures that not everyone will be able to create
2952 * handlink using the passed filedescriptor.
2953 */
2954 if (flags & AT_EMPTY_PATH) {
2955 if (!capable(CAP_DAC_READ_SEARCH))
2956 return -ENOENT;
2957 how = LOOKUP_EMPTY;
2958 }
2959
2960 if (flags & AT_SYMLINK_FOLLOW)
2961 how |= LOOKUP_FOLLOW;
2962
2963 error = user_path_at(olddfd, oldname, how, &old_path);
2964 if (error)
2965 return error;
2966
2967 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
2968 error = PTR_ERR(new_dentry);
2969 if (IS_ERR(new_dentry))
2970 goto out;
2971
2972 error = -EXDEV;
2973 if (old_path.mnt != new_path.mnt)
2974 goto out_dput;
2975 error = mnt_want_write(new_path.mnt);
2976 if (error)
2977 goto out_dput;
2978 error = security_path_link(old_path.dentry, &new_path, new_dentry);
2979 if (error)
2980 goto out_drop_write;
2981 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
2982 out_drop_write:
2983 mnt_drop_write(new_path.mnt);
2984 out_dput:
2985 dput(new_dentry);
2986 mutex_unlock(&new_path.dentry->d_inode->i_mutex);
2987 path_put(&new_path);
2988 out:
2989 path_put(&old_path);
2990
2991 return error;
2992 }
2993
2994 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2995 {
2996 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2997 }
2998
2999 /*
3000 * The worst of all namespace operations - renaming directory. "Perverted"
3001 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3002 * Problems:
3003 * a) we can get into loop creation. Check is done in is_subdir().
3004 * b) race potential - two innocent renames can create a loop together.
3005 * That's where 4.4 screws up. Current fix: serialization on
3006 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3007 * story.
3008 * c) we have to lock _three_ objects - parents and victim (if it exists).
3009 * And that - after we got ->i_mutex on parents (until then we don't know
3010 * whether the target exists). Solution: try to be smart with locking
3011 * order for inodes. We rely on the fact that tree topology may change
3012 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3013 * move will be locked. Thus we can rank directories by the tree
3014 * (ancestors first) and rank all non-directories after them.
3015 * That works since everybody except rename does "lock parent, lookup,
3016 * lock child" and rename is under ->s_vfs_rename_mutex.
3017 * HOWEVER, it relies on the assumption that any object with ->lookup()
3018 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3019 * we'd better make sure that there's no link(2) for them.
3020 * d) conversion from fhandle to dentry may come in the wrong moment - when
3021 * we are removing the target. Solution: we will have to grab ->i_mutex
3022 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3023 * ->i_mutex on parents, which works but leads to some truly excessive
3024 * locking].
3025 */
3026 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3027 struct inode *new_dir, struct dentry *new_dentry)
3028 {
3029 int error = 0;
3030 struct inode *target = new_dentry->d_inode;
3031
3032 /*
3033 * If we are going to change the parent - check write permissions,
3034 * we'll need to flip '..'.
3035 */
3036 if (new_dir != old_dir) {
3037 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3038 if (error)
3039 return error;
3040 }
3041
3042 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3043 if (error)
3044 return error;
3045
3046 dget(new_dentry);
3047 if (target)
3048 mutex_lock(&target->i_mutex);
3049
3050 error = -EBUSY;
3051 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3052 goto out;
3053
3054 if (target)
3055 shrink_dcache_parent(new_dentry);
3056 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3057 if (error)
3058 goto out;
3059
3060 if (target) {
3061 target->i_flags |= S_DEAD;
3062 dont_mount(new_dentry);
3063 }
3064 out:
3065 if (target)
3066 mutex_unlock(&target->i_mutex);
3067 dput(new_dentry);
3068 if (!error)
3069 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3070 d_move(old_dentry,new_dentry);
3071 return error;
3072 }
3073
3074 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3075 struct inode *new_dir, struct dentry *new_dentry)
3076 {
3077 struct inode *target = new_dentry->d_inode;
3078 int error;
3079
3080 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3081 if (error)
3082 return error;
3083
3084 dget(new_dentry);
3085 if (target)
3086 mutex_lock(&target->i_mutex);
3087
3088 error = -EBUSY;
3089 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3090 goto out;
3091
3092 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3093 if (error)
3094 goto out;
3095
3096 if (target)
3097 dont_mount(new_dentry);
3098 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3099 d_move(old_dentry, new_dentry);
3100 out:
3101 if (target)
3102 mutex_unlock(&target->i_mutex);
3103 dput(new_dentry);
3104 return error;
3105 }
3106
3107 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3108 struct inode *new_dir, struct dentry *new_dentry)
3109 {
3110 int error;
3111 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3112 const unsigned char *old_name;
3113
3114 if (old_dentry->d_inode == new_dentry->d_inode)
3115 return 0;
3116
3117 error = may_delete(old_dir, old_dentry, is_dir);
3118 if (error)
3119 return error;
3120
3121 if (!new_dentry->d_inode)
3122 error = may_create(new_dir, new_dentry);
3123 else
3124 error = may_delete(new_dir, new_dentry, is_dir);
3125 if (error)
3126 return error;
3127
3128 if (!old_dir->i_op->rename)
3129 return -EPERM;
3130
3131 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3132
3133 if (is_dir)
3134 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3135 else
3136 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3137 if (!error)
3138 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3139 new_dentry->d_inode, old_dentry);
3140 fsnotify_oldname_free(old_name);
3141
3142 return error;
3143 }
3144
3145 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3146 int, newdfd, const char __user *, newname)
3147 {
3148 struct dentry *old_dir, *new_dir;
3149 struct dentry *old_dentry, *new_dentry;
3150 struct dentry *trap;
3151 struct nameidata oldnd, newnd;
3152 char *from;
3153 char *to;
3154 int error;
3155
3156 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3157 if (error)
3158 goto exit;
3159
3160 error = user_path_parent(newdfd, newname, &newnd, &to);
3161 if (error)
3162 goto exit1;
3163
3164 error = -EXDEV;
3165 if (oldnd.path.mnt != newnd.path.mnt)
3166 goto exit2;
3167
3168 old_dir = oldnd.path.dentry;
3169 error = -EBUSY;
3170 if (oldnd.last_type != LAST_NORM)
3171 goto exit2;
3172
3173 new_dir = newnd.path.dentry;
3174 if (newnd.last_type != LAST_NORM)
3175 goto exit2;
3176
3177 oldnd.flags &= ~LOOKUP_PARENT;
3178 newnd.flags &= ~LOOKUP_PARENT;
3179 newnd.flags |= LOOKUP_RENAME_TARGET;
3180
3181 trap = lock_rename(new_dir, old_dir);
3182
3183 old_dentry = lookup_hash(&oldnd);
3184 error = PTR_ERR(old_dentry);
3185 if (IS_ERR(old_dentry))
3186 goto exit3;
3187 /* source must exist */
3188 error = -ENOENT;
3189 if (!old_dentry->d_inode)
3190 goto exit4;
3191 /* unless the source is a directory trailing slashes give -ENOTDIR */
3192 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3193 error = -ENOTDIR;
3194 if (oldnd.last.name[oldnd.last.len])
3195 goto exit4;
3196 if (newnd.last.name[newnd.last.len])
3197 goto exit4;
3198 }
3199 /* source should not be ancestor of target */
3200 error = -EINVAL;
3201 if (old_dentry == trap)
3202 goto exit4;
3203 new_dentry = lookup_hash(&newnd);
3204 error = PTR_ERR(new_dentry);
3205 if (IS_ERR(new_dentry))
3206 goto exit4;
3207 /* target should not be an ancestor of source */
3208 error = -ENOTEMPTY;
3209 if (new_dentry == trap)
3210 goto exit5;
3211
3212 error = mnt_want_write(oldnd.path.mnt);
3213 if (error)
3214 goto exit5;
3215 error = security_path_rename(&oldnd.path, old_dentry,
3216 &newnd.path, new_dentry);
3217 if (error)
3218 goto exit6;
3219 error = vfs_rename(old_dir->d_inode, old_dentry,
3220 new_dir->d_inode, new_dentry);
3221 exit6:
3222 mnt_drop_write(oldnd.path.mnt);
3223 exit5:
3224 dput(new_dentry);
3225 exit4:
3226 dput(old_dentry);
3227 exit3:
3228 unlock_rename(new_dir, old_dir);
3229 exit2:
3230 path_put(&newnd.path);
3231 putname(to);
3232 exit1:
3233 path_put(&oldnd.path);
3234 putname(from);
3235 exit:
3236 return error;
3237 }
3238
3239 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3240 {
3241 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3242 }
3243
3244 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3245 {
3246 int len;
3247
3248 len = PTR_ERR(link);
3249 if (IS_ERR(link))
3250 goto out;
3251
3252 len = strlen(link);
3253 if (len > (unsigned) buflen)
3254 len = buflen;
3255 if (copy_to_user(buffer, link, len))
3256 len = -EFAULT;
3257 out:
3258 return len;
3259 }
3260
3261 /*
3262 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3263 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3264 * using) it for any given inode is up to filesystem.
3265 */
3266 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3267 {
3268 struct nameidata nd;
3269 void *cookie;
3270 int res;
3271
3272 nd.depth = 0;
3273 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3274 if (IS_ERR(cookie))
3275 return PTR_ERR(cookie);
3276
3277 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3278 if (dentry->d_inode->i_op->put_link)
3279 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3280 return res;
3281 }
3282
3283 int vfs_follow_link(struct nameidata *nd, const char *link)
3284 {
3285 return __vfs_follow_link(nd, link);
3286 }
3287
3288 /* get the link contents into pagecache */
3289 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3290 {
3291 char *kaddr;
3292 struct page *page;
3293 struct address_space *mapping = dentry->d_inode->i_mapping;
3294 page = read_mapping_page(mapping, 0, NULL);
3295 if (IS_ERR(page))
3296 return (char*)page;
3297 *ppage = page;
3298 kaddr = kmap(page);
3299 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3300 return kaddr;
3301 }
3302
3303 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3304 {
3305 struct page *page = NULL;
3306 char *s = page_getlink(dentry, &page);
3307 int res = vfs_readlink(dentry,buffer,buflen,s);
3308 if (page) {
3309 kunmap(page);
3310 page_cache_release(page);
3311 }
3312 return res;
3313 }
3314
3315 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3316 {
3317 struct page *page = NULL;
3318 nd_set_link(nd, page_getlink(dentry, &page));
3319 return page;
3320 }
3321
3322 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3323 {
3324 struct page *page = cookie;
3325
3326 if (page) {
3327 kunmap(page);
3328 page_cache_release(page);
3329 }
3330 }
3331
3332 /*
3333 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3334 */
3335 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3336 {
3337 struct address_space *mapping = inode->i_mapping;
3338 struct page *page;
3339 void *fsdata;
3340 int err;
3341 char *kaddr;
3342 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3343 if (nofs)
3344 flags |= AOP_FLAG_NOFS;
3345
3346 retry:
3347 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3348 flags, &page, &fsdata);
3349 if (err)
3350 goto fail;
3351
3352 kaddr = kmap_atomic(page, KM_USER0);
3353 memcpy(kaddr, symname, len-1);
3354 kunmap_atomic(kaddr, KM_USER0);
3355
3356 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3357 page, fsdata);
3358 if (err < 0)
3359 goto fail;
3360 if (err < len-1)
3361 goto retry;
3362
3363 mark_inode_dirty(inode);
3364 return 0;
3365 fail:
3366 return err;
3367 }
3368
3369 int page_symlink(struct inode *inode, const char *symname, int len)
3370 {
3371 return __page_symlink(inode, symname, len,
3372 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3373 }
3374
3375 const struct inode_operations page_symlink_inode_operations = {
3376 .readlink = generic_readlink,
3377 .follow_link = page_follow_link_light,
3378 .put_link = page_put_link,
3379 };
3380
3381 EXPORT_SYMBOL(user_path_at);
3382 EXPORT_SYMBOL(follow_down_one);
3383 EXPORT_SYMBOL(follow_down);
3384 EXPORT_SYMBOL(follow_up);
3385 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3386 EXPORT_SYMBOL(getname);
3387 EXPORT_SYMBOL(lock_rename);
3388 EXPORT_SYMBOL(lookup_one_len);
3389 EXPORT_SYMBOL(page_follow_link_light);
3390 EXPORT_SYMBOL(page_put_link);
3391 EXPORT_SYMBOL(page_readlink);
3392 EXPORT_SYMBOL(__page_symlink);
3393 EXPORT_SYMBOL(page_symlink);
3394 EXPORT_SYMBOL(page_symlink_inode_operations);
3395 EXPORT_SYMBOL(kern_path);
3396 EXPORT_SYMBOL(vfs_path_lookup);
3397 EXPORT_SYMBOL(inode_permission);
3398 EXPORT_SYMBOL(unlock_rename);
3399 EXPORT_SYMBOL(vfs_create);
3400 EXPORT_SYMBOL(vfs_follow_link);
3401 EXPORT_SYMBOL(vfs_link);
3402 EXPORT_SYMBOL(vfs_mkdir);
3403 EXPORT_SYMBOL(vfs_mknod);
3404 EXPORT_SYMBOL(generic_permission);
3405 EXPORT_SYMBOL(vfs_readlink);
3406 EXPORT_SYMBOL(vfs_rename);
3407 EXPORT_SYMBOL(vfs_rmdir);
3408 EXPORT_SYMBOL(vfs_symlink);
3409 EXPORT_SYMBOL(vfs_unlink);
3410 EXPORT_SYMBOL(dentry_unhash);
3411 EXPORT_SYMBOL(generic_readlink);