]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/namei.c
Merge remote-tracking branches 'regmap/topic/lockdep' and 'regmap/topic/seq-delay...
[mirror_ubuntu-bionic-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 struct path path;
498 struct qstr last;
499 struct path root;
500 struct inode *inode; /* path.dentry.d_inode */
501 unsigned int flags;
502 unsigned seq, m_seq;
503 int last_type;
504 unsigned depth;
505 int total_link_count;
506 struct saved {
507 struct path link;
508 void *cookie;
509 const char *name;
510 struct inode *inode;
511 unsigned seq;
512 } *stack, internal[EMBEDDED_LEVELS];
513 struct filename *name;
514 struct nameidata *saved;
515 unsigned root_seq;
516 int dfd;
517 };
518
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521 struct nameidata *old = current->nameidata;
522 p->stack = p->internal;
523 p->dfd = dfd;
524 p->name = name;
525 p->total_link_count = old ? old->total_link_count : 0;
526 p->saved = old;
527 current->nameidata = p;
528 }
529
530 static void restore_nameidata(void)
531 {
532 struct nameidata *now = current->nameidata, *old = now->saved;
533
534 current->nameidata = old;
535 if (old)
536 old->total_link_count = now->total_link_count;
537 if (now->stack != now->internal) {
538 kfree(now->stack);
539 now->stack = now->internal;
540 }
541 }
542
543 static int __nd_alloc_stack(struct nameidata *nd)
544 {
545 struct saved *p;
546
547 if (nd->flags & LOOKUP_RCU) {
548 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
549 GFP_ATOMIC);
550 if (unlikely(!p))
551 return -ECHILD;
552 } else {
553 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
554 GFP_KERNEL);
555 if (unlikely(!p))
556 return -ENOMEM;
557 }
558 memcpy(p, nd->internal, sizeof(nd->internal));
559 nd->stack = p;
560 return 0;
561 }
562
563 static inline int nd_alloc_stack(struct nameidata *nd)
564 {
565 if (likely(nd->depth != EMBEDDED_LEVELS))
566 return 0;
567 if (likely(nd->stack != nd->internal))
568 return 0;
569 return __nd_alloc_stack(nd);
570 }
571
572 static void drop_links(struct nameidata *nd)
573 {
574 int i = nd->depth;
575 while (i--) {
576 struct saved *last = nd->stack + i;
577 struct inode *inode = last->inode;
578 if (last->cookie && inode->i_op->put_link) {
579 inode->i_op->put_link(inode, last->cookie);
580 last->cookie = NULL;
581 }
582 }
583 }
584
585 static void terminate_walk(struct nameidata *nd)
586 {
587 drop_links(nd);
588 if (!(nd->flags & LOOKUP_RCU)) {
589 int i;
590 path_put(&nd->path);
591 for (i = 0; i < nd->depth; i++)
592 path_put(&nd->stack[i].link);
593 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
594 path_put(&nd->root);
595 nd->root.mnt = NULL;
596 }
597 } else {
598 nd->flags &= ~LOOKUP_RCU;
599 if (!(nd->flags & LOOKUP_ROOT))
600 nd->root.mnt = NULL;
601 rcu_read_unlock();
602 }
603 nd->depth = 0;
604 }
605
606 /* path_put is needed afterwards regardless of success or failure */
607 static bool legitimize_path(struct nameidata *nd,
608 struct path *path, unsigned seq)
609 {
610 int res = __legitimize_mnt(path->mnt, nd->m_seq);
611 if (unlikely(res)) {
612 if (res > 0)
613 path->mnt = NULL;
614 path->dentry = NULL;
615 return false;
616 }
617 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
618 path->dentry = NULL;
619 return false;
620 }
621 return !read_seqcount_retry(&path->dentry->d_seq, seq);
622 }
623
624 static bool legitimize_links(struct nameidata *nd)
625 {
626 int i;
627 for (i = 0; i < nd->depth; i++) {
628 struct saved *last = nd->stack + i;
629 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
630 drop_links(nd);
631 nd->depth = i + 1;
632 return false;
633 }
634 }
635 return true;
636 }
637
638 /*
639 * Path walking has 2 modes, rcu-walk and ref-walk (see
640 * Documentation/filesystems/path-lookup.txt). In situations when we can't
641 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
642 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
643 * mode. Refcounts are grabbed at the last known good point before rcu-walk
644 * got stuck, so ref-walk may continue from there. If this is not successful
645 * (eg. a seqcount has changed), then failure is returned and it's up to caller
646 * to restart the path walk from the beginning in ref-walk mode.
647 */
648
649 /**
650 * unlazy_walk - try to switch to ref-walk mode.
651 * @nd: nameidata pathwalk data
652 * @dentry: child of nd->path.dentry or NULL
653 * @seq: seq number to check dentry against
654 * Returns: 0 on success, -ECHILD on failure
655 *
656 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
657 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
658 * @nd or NULL. Must be called from rcu-walk context.
659 * Nothing should touch nameidata between unlazy_walk() failure and
660 * terminate_walk().
661 */
662 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
663 {
664 struct dentry *parent = nd->path.dentry;
665
666 BUG_ON(!(nd->flags & LOOKUP_RCU));
667
668 nd->flags &= ~LOOKUP_RCU;
669 if (unlikely(!legitimize_links(nd)))
670 goto out2;
671 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
672 goto out2;
673 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
674 goto out1;
675
676 /*
677 * For a negative lookup, the lookup sequence point is the parents
678 * sequence point, and it only needs to revalidate the parent dentry.
679 *
680 * For a positive lookup, we need to move both the parent and the
681 * dentry from the RCU domain to be properly refcounted. And the
682 * sequence number in the dentry validates *both* dentry counters,
683 * since we checked the sequence number of the parent after we got
684 * the child sequence number. So we know the parent must still
685 * be valid if the child sequence number is still valid.
686 */
687 if (!dentry) {
688 if (read_seqcount_retry(&parent->d_seq, nd->seq))
689 goto out;
690 BUG_ON(nd->inode != parent->d_inode);
691 } else {
692 if (!lockref_get_not_dead(&dentry->d_lockref))
693 goto out;
694 if (read_seqcount_retry(&dentry->d_seq, seq))
695 goto drop_dentry;
696 }
697
698 /*
699 * Sequence counts matched. Now make sure that the root is
700 * still valid and get it if required.
701 */
702 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
703 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
704 rcu_read_unlock();
705 dput(dentry);
706 return -ECHILD;
707 }
708 }
709
710 rcu_read_unlock();
711 return 0;
712
713 drop_dentry:
714 rcu_read_unlock();
715 dput(dentry);
716 goto drop_root_mnt;
717 out2:
718 nd->path.mnt = NULL;
719 out1:
720 nd->path.dentry = NULL;
721 out:
722 rcu_read_unlock();
723 drop_root_mnt:
724 if (!(nd->flags & LOOKUP_ROOT))
725 nd->root.mnt = NULL;
726 return -ECHILD;
727 }
728
729 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
730 {
731 if (unlikely(!legitimize_path(nd, link, seq))) {
732 drop_links(nd);
733 nd->depth = 0;
734 nd->flags &= ~LOOKUP_RCU;
735 nd->path.mnt = NULL;
736 nd->path.dentry = NULL;
737 if (!(nd->flags & LOOKUP_ROOT))
738 nd->root.mnt = NULL;
739 rcu_read_unlock();
740 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
741 return 0;
742 }
743 path_put(link);
744 return -ECHILD;
745 }
746
747 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
748 {
749 return dentry->d_op->d_revalidate(dentry, flags);
750 }
751
752 /**
753 * complete_walk - successful completion of path walk
754 * @nd: pointer nameidata
755 *
756 * If we had been in RCU mode, drop out of it and legitimize nd->path.
757 * Revalidate the final result, unless we'd already done that during
758 * the path walk or the filesystem doesn't ask for it. Return 0 on
759 * success, -error on failure. In case of failure caller does not
760 * need to drop nd->path.
761 */
762 static int complete_walk(struct nameidata *nd)
763 {
764 struct dentry *dentry = nd->path.dentry;
765 int status;
766
767 if (nd->flags & LOOKUP_RCU) {
768 if (!(nd->flags & LOOKUP_ROOT))
769 nd->root.mnt = NULL;
770 if (unlikely(unlazy_walk(nd, NULL, 0)))
771 return -ECHILD;
772 }
773
774 if (likely(!(nd->flags & LOOKUP_JUMPED)))
775 return 0;
776
777 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
778 return 0;
779
780 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
781 if (status > 0)
782 return 0;
783
784 if (!status)
785 status = -ESTALE;
786
787 return status;
788 }
789
790 static void set_root(struct nameidata *nd)
791 {
792 get_fs_root(current->fs, &nd->root);
793 }
794
795 static void set_root_rcu(struct nameidata *nd)
796 {
797 struct fs_struct *fs = current->fs;
798 unsigned seq;
799
800 do {
801 seq = read_seqcount_begin(&fs->seq);
802 nd->root = fs->root;
803 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
804 } while (read_seqcount_retry(&fs->seq, seq));
805 }
806
807 static void path_put_conditional(struct path *path, struct nameidata *nd)
808 {
809 dput(path->dentry);
810 if (path->mnt != nd->path.mnt)
811 mntput(path->mnt);
812 }
813
814 static inline void path_to_nameidata(const struct path *path,
815 struct nameidata *nd)
816 {
817 if (!(nd->flags & LOOKUP_RCU)) {
818 dput(nd->path.dentry);
819 if (nd->path.mnt != path->mnt)
820 mntput(nd->path.mnt);
821 }
822 nd->path.mnt = path->mnt;
823 nd->path.dentry = path->dentry;
824 }
825
826 /*
827 * Helper to directly jump to a known parsed path from ->follow_link,
828 * caller must have taken a reference to path beforehand.
829 */
830 void nd_jump_link(struct path *path)
831 {
832 struct nameidata *nd = current->nameidata;
833 path_put(&nd->path);
834
835 nd->path = *path;
836 nd->inode = nd->path.dentry->d_inode;
837 nd->flags |= LOOKUP_JUMPED;
838 }
839
840 static inline void put_link(struct nameidata *nd)
841 {
842 struct saved *last = nd->stack + --nd->depth;
843 struct inode *inode = last->inode;
844 if (last->cookie && inode->i_op->put_link)
845 inode->i_op->put_link(inode, last->cookie);
846 if (!(nd->flags & LOOKUP_RCU))
847 path_put(&last->link);
848 }
849
850 int sysctl_protected_symlinks __read_mostly = 0;
851 int sysctl_protected_hardlinks __read_mostly = 0;
852
853 /**
854 * may_follow_link - Check symlink following for unsafe situations
855 * @nd: nameidata pathwalk data
856 *
857 * In the case of the sysctl_protected_symlinks sysctl being enabled,
858 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
859 * in a sticky world-writable directory. This is to protect privileged
860 * processes from failing races against path names that may change out
861 * from under them by way of other users creating malicious symlinks.
862 * It will permit symlinks to be followed only when outside a sticky
863 * world-writable directory, or when the uid of the symlink and follower
864 * match, or when the directory owner matches the symlink's owner.
865 *
866 * Returns 0 if following the symlink is allowed, -ve on error.
867 */
868 static inline int may_follow_link(struct nameidata *nd)
869 {
870 const struct inode *inode;
871 const struct inode *parent;
872
873 if (!sysctl_protected_symlinks)
874 return 0;
875
876 /* Allowed if owner and follower match. */
877 inode = nd->stack[0].inode;
878 if (uid_eq(current_cred()->fsuid, inode->i_uid))
879 return 0;
880
881 /* Allowed if parent directory not sticky and world-writable. */
882 parent = nd->inode;
883 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
884 return 0;
885
886 /* Allowed if parent directory and link owner match. */
887 if (uid_eq(parent->i_uid, inode->i_uid))
888 return 0;
889
890 if (nd->flags & LOOKUP_RCU)
891 return -ECHILD;
892
893 audit_log_link_denied("follow_link", &nd->stack[0].link);
894 return -EACCES;
895 }
896
897 /**
898 * safe_hardlink_source - Check for safe hardlink conditions
899 * @inode: the source inode to hardlink from
900 *
901 * Return false if at least one of the following conditions:
902 * - inode is not a regular file
903 * - inode is setuid
904 * - inode is setgid and group-exec
905 * - access failure for read and write
906 *
907 * Otherwise returns true.
908 */
909 static bool safe_hardlink_source(struct inode *inode)
910 {
911 umode_t mode = inode->i_mode;
912
913 /* Special files should not get pinned to the filesystem. */
914 if (!S_ISREG(mode))
915 return false;
916
917 /* Setuid files should not get pinned to the filesystem. */
918 if (mode & S_ISUID)
919 return false;
920
921 /* Executable setgid files should not get pinned to the filesystem. */
922 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
923 return false;
924
925 /* Hardlinking to unreadable or unwritable sources is dangerous. */
926 if (inode_permission(inode, MAY_READ | MAY_WRITE))
927 return false;
928
929 return true;
930 }
931
932 /**
933 * may_linkat - Check permissions for creating a hardlink
934 * @link: the source to hardlink from
935 *
936 * Block hardlink when all of:
937 * - sysctl_protected_hardlinks enabled
938 * - fsuid does not match inode
939 * - hardlink source is unsafe (see safe_hardlink_source() above)
940 * - not CAP_FOWNER
941 *
942 * Returns 0 if successful, -ve on error.
943 */
944 static int may_linkat(struct path *link)
945 {
946 const struct cred *cred;
947 struct inode *inode;
948
949 if (!sysctl_protected_hardlinks)
950 return 0;
951
952 cred = current_cred();
953 inode = link->dentry->d_inode;
954
955 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
956 * otherwise, it must be a safe source.
957 */
958 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
959 capable(CAP_FOWNER))
960 return 0;
961
962 audit_log_link_denied("linkat", link);
963 return -EPERM;
964 }
965
966 static __always_inline
967 const char *get_link(struct nameidata *nd)
968 {
969 struct saved *last = nd->stack + nd->depth - 1;
970 struct dentry *dentry = last->link.dentry;
971 struct inode *inode = last->inode;
972 int error;
973 const char *res;
974
975 if (!(nd->flags & LOOKUP_RCU)) {
976 touch_atime(&last->link);
977 cond_resched();
978 } else if (atime_needs_update(&last->link, inode)) {
979 if (unlikely(unlazy_walk(nd, NULL, 0)))
980 return ERR_PTR(-ECHILD);
981 touch_atime(&last->link);
982 }
983
984 error = security_inode_follow_link(dentry, inode,
985 nd->flags & LOOKUP_RCU);
986 if (unlikely(error))
987 return ERR_PTR(error);
988
989 nd->last_type = LAST_BIND;
990 res = inode->i_link;
991 if (!res) {
992 if (nd->flags & LOOKUP_RCU) {
993 if (unlikely(unlazy_walk(nd, NULL, 0)))
994 return ERR_PTR(-ECHILD);
995 }
996 res = inode->i_op->follow_link(dentry, &last->cookie);
997 if (IS_ERR_OR_NULL(res)) {
998 last->cookie = NULL;
999 return res;
1000 }
1001 }
1002 if (*res == '/') {
1003 if (nd->flags & LOOKUP_RCU) {
1004 struct dentry *d;
1005 if (!nd->root.mnt)
1006 set_root_rcu(nd);
1007 nd->path = nd->root;
1008 d = nd->path.dentry;
1009 nd->inode = d->d_inode;
1010 nd->seq = nd->root_seq;
1011 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
1012 return ERR_PTR(-ECHILD);
1013 } else {
1014 if (!nd->root.mnt)
1015 set_root(nd);
1016 path_put(&nd->path);
1017 nd->path = nd->root;
1018 path_get(&nd->root);
1019 nd->inode = nd->path.dentry->d_inode;
1020 }
1021 nd->flags |= LOOKUP_JUMPED;
1022 while (unlikely(*++res == '/'))
1023 ;
1024 }
1025 if (!*res)
1026 res = NULL;
1027 return res;
1028 }
1029
1030 /*
1031 * follow_up - Find the mountpoint of path's vfsmount
1032 *
1033 * Given a path, find the mountpoint of its source file system.
1034 * Replace @path with the path of the mountpoint in the parent mount.
1035 * Up is towards /.
1036 *
1037 * Return 1 if we went up a level and 0 if we were already at the
1038 * root.
1039 */
1040 int follow_up(struct path *path)
1041 {
1042 struct mount *mnt = real_mount(path->mnt);
1043 struct mount *parent;
1044 struct dentry *mountpoint;
1045
1046 read_seqlock_excl(&mount_lock);
1047 parent = mnt->mnt_parent;
1048 if (parent == mnt) {
1049 read_sequnlock_excl(&mount_lock);
1050 return 0;
1051 }
1052 mntget(&parent->mnt);
1053 mountpoint = dget(mnt->mnt_mountpoint);
1054 read_sequnlock_excl(&mount_lock);
1055 dput(path->dentry);
1056 path->dentry = mountpoint;
1057 mntput(path->mnt);
1058 path->mnt = &parent->mnt;
1059 return 1;
1060 }
1061 EXPORT_SYMBOL(follow_up);
1062
1063 /*
1064 * Perform an automount
1065 * - return -EISDIR to tell follow_managed() to stop and return the path we
1066 * were called with.
1067 */
1068 static int follow_automount(struct path *path, struct nameidata *nd,
1069 bool *need_mntput)
1070 {
1071 struct vfsmount *mnt;
1072 int err;
1073
1074 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1075 return -EREMOTE;
1076
1077 /* We don't want to mount if someone's just doing a stat -
1078 * unless they're stat'ing a directory and appended a '/' to
1079 * the name.
1080 *
1081 * We do, however, want to mount if someone wants to open or
1082 * create a file of any type under the mountpoint, wants to
1083 * traverse through the mountpoint or wants to open the
1084 * mounted directory. Also, autofs may mark negative dentries
1085 * as being automount points. These will need the attentions
1086 * of the daemon to instantiate them before they can be used.
1087 */
1088 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1089 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1090 path->dentry->d_inode)
1091 return -EISDIR;
1092
1093 nd->total_link_count++;
1094 if (nd->total_link_count >= 40)
1095 return -ELOOP;
1096
1097 mnt = path->dentry->d_op->d_automount(path);
1098 if (IS_ERR(mnt)) {
1099 /*
1100 * The filesystem is allowed to return -EISDIR here to indicate
1101 * it doesn't want to automount. For instance, autofs would do
1102 * this so that its userspace daemon can mount on this dentry.
1103 *
1104 * However, we can only permit this if it's a terminal point in
1105 * the path being looked up; if it wasn't then the remainder of
1106 * the path is inaccessible and we should say so.
1107 */
1108 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1109 return -EREMOTE;
1110 return PTR_ERR(mnt);
1111 }
1112
1113 if (!mnt) /* mount collision */
1114 return 0;
1115
1116 if (!*need_mntput) {
1117 /* lock_mount() may release path->mnt on error */
1118 mntget(path->mnt);
1119 *need_mntput = true;
1120 }
1121 err = finish_automount(mnt, path);
1122
1123 switch (err) {
1124 case -EBUSY:
1125 /* Someone else made a mount here whilst we were busy */
1126 return 0;
1127 case 0:
1128 path_put(path);
1129 path->mnt = mnt;
1130 path->dentry = dget(mnt->mnt_root);
1131 return 0;
1132 default:
1133 return err;
1134 }
1135
1136 }
1137
1138 /*
1139 * Handle a dentry that is managed in some way.
1140 * - Flagged for transit management (autofs)
1141 * - Flagged as mountpoint
1142 * - Flagged as automount point
1143 *
1144 * This may only be called in refwalk mode.
1145 *
1146 * Serialization is taken care of in namespace.c
1147 */
1148 static int follow_managed(struct path *path, struct nameidata *nd)
1149 {
1150 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1151 unsigned managed;
1152 bool need_mntput = false;
1153 int ret = 0;
1154
1155 /* Given that we're not holding a lock here, we retain the value in a
1156 * local variable for each dentry as we look at it so that we don't see
1157 * the components of that value change under us */
1158 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1159 managed &= DCACHE_MANAGED_DENTRY,
1160 unlikely(managed != 0)) {
1161 /* Allow the filesystem to manage the transit without i_mutex
1162 * being held. */
1163 if (managed & DCACHE_MANAGE_TRANSIT) {
1164 BUG_ON(!path->dentry->d_op);
1165 BUG_ON(!path->dentry->d_op->d_manage);
1166 ret = path->dentry->d_op->d_manage(path->dentry, false);
1167 if (ret < 0)
1168 break;
1169 }
1170
1171 /* Transit to a mounted filesystem. */
1172 if (managed & DCACHE_MOUNTED) {
1173 struct vfsmount *mounted = lookup_mnt(path);
1174 if (mounted) {
1175 dput(path->dentry);
1176 if (need_mntput)
1177 mntput(path->mnt);
1178 path->mnt = mounted;
1179 path->dentry = dget(mounted->mnt_root);
1180 need_mntput = true;
1181 continue;
1182 }
1183
1184 /* Something is mounted on this dentry in another
1185 * namespace and/or whatever was mounted there in this
1186 * namespace got unmounted before lookup_mnt() could
1187 * get it */
1188 }
1189
1190 /* Handle an automount point */
1191 if (managed & DCACHE_NEED_AUTOMOUNT) {
1192 ret = follow_automount(path, nd, &need_mntput);
1193 if (ret < 0)
1194 break;
1195 continue;
1196 }
1197
1198 /* We didn't change the current path point */
1199 break;
1200 }
1201
1202 if (need_mntput && path->mnt == mnt)
1203 mntput(path->mnt);
1204 if (ret == -EISDIR)
1205 ret = 0;
1206 if (need_mntput)
1207 nd->flags |= LOOKUP_JUMPED;
1208 if (unlikely(ret < 0))
1209 path_put_conditional(path, nd);
1210 return ret;
1211 }
1212
1213 int follow_down_one(struct path *path)
1214 {
1215 struct vfsmount *mounted;
1216
1217 mounted = lookup_mnt(path);
1218 if (mounted) {
1219 dput(path->dentry);
1220 mntput(path->mnt);
1221 path->mnt = mounted;
1222 path->dentry = dget(mounted->mnt_root);
1223 return 1;
1224 }
1225 return 0;
1226 }
1227 EXPORT_SYMBOL(follow_down_one);
1228
1229 static inline int managed_dentry_rcu(struct dentry *dentry)
1230 {
1231 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1232 dentry->d_op->d_manage(dentry, true) : 0;
1233 }
1234
1235 /*
1236 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1237 * we meet a managed dentry that would need blocking.
1238 */
1239 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1240 struct inode **inode, unsigned *seqp)
1241 {
1242 for (;;) {
1243 struct mount *mounted;
1244 /*
1245 * Don't forget we might have a non-mountpoint managed dentry
1246 * that wants to block transit.
1247 */
1248 switch (managed_dentry_rcu(path->dentry)) {
1249 case -ECHILD:
1250 default:
1251 return false;
1252 case -EISDIR:
1253 return true;
1254 case 0:
1255 break;
1256 }
1257
1258 if (!d_mountpoint(path->dentry))
1259 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1260
1261 mounted = __lookup_mnt(path->mnt, path->dentry);
1262 if (!mounted)
1263 break;
1264 path->mnt = &mounted->mnt;
1265 path->dentry = mounted->mnt.mnt_root;
1266 nd->flags |= LOOKUP_JUMPED;
1267 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1268 /*
1269 * Update the inode too. We don't need to re-check the
1270 * dentry sequence number here after this d_inode read,
1271 * because a mount-point is always pinned.
1272 */
1273 *inode = path->dentry->d_inode;
1274 }
1275 return !read_seqretry(&mount_lock, nd->m_seq) &&
1276 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1277 }
1278
1279 static int follow_dotdot_rcu(struct nameidata *nd)
1280 {
1281 struct inode *inode = nd->inode;
1282 if (!nd->root.mnt)
1283 set_root_rcu(nd);
1284
1285 while (1) {
1286 if (path_equal(&nd->path, &nd->root))
1287 break;
1288 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1289 struct dentry *old = nd->path.dentry;
1290 struct dentry *parent = old->d_parent;
1291 unsigned seq;
1292
1293 inode = parent->d_inode;
1294 seq = read_seqcount_begin(&parent->d_seq);
1295 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1296 return -ECHILD;
1297 nd->path.dentry = parent;
1298 nd->seq = seq;
1299 break;
1300 } else {
1301 struct mount *mnt = real_mount(nd->path.mnt);
1302 struct mount *mparent = mnt->mnt_parent;
1303 struct dentry *mountpoint = mnt->mnt_mountpoint;
1304 struct inode *inode2 = mountpoint->d_inode;
1305 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1306 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1307 return -ECHILD;
1308 if (&mparent->mnt == nd->path.mnt)
1309 break;
1310 /* we know that mountpoint was pinned */
1311 nd->path.dentry = mountpoint;
1312 nd->path.mnt = &mparent->mnt;
1313 inode = inode2;
1314 nd->seq = seq;
1315 }
1316 }
1317 while (unlikely(d_mountpoint(nd->path.dentry))) {
1318 struct mount *mounted;
1319 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1320 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1321 return -ECHILD;
1322 if (!mounted)
1323 break;
1324 nd->path.mnt = &mounted->mnt;
1325 nd->path.dentry = mounted->mnt.mnt_root;
1326 inode = nd->path.dentry->d_inode;
1327 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1328 }
1329 nd->inode = inode;
1330 return 0;
1331 }
1332
1333 /*
1334 * Follow down to the covering mount currently visible to userspace. At each
1335 * point, the filesystem owning that dentry may be queried as to whether the
1336 * caller is permitted to proceed or not.
1337 */
1338 int follow_down(struct path *path)
1339 {
1340 unsigned managed;
1341 int ret;
1342
1343 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1344 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1345 /* Allow the filesystem to manage the transit without i_mutex
1346 * being held.
1347 *
1348 * We indicate to the filesystem if someone is trying to mount
1349 * something here. This gives autofs the chance to deny anyone
1350 * other than its daemon the right to mount on its
1351 * superstructure.
1352 *
1353 * The filesystem may sleep at this point.
1354 */
1355 if (managed & DCACHE_MANAGE_TRANSIT) {
1356 BUG_ON(!path->dentry->d_op);
1357 BUG_ON(!path->dentry->d_op->d_manage);
1358 ret = path->dentry->d_op->d_manage(
1359 path->dentry, false);
1360 if (ret < 0)
1361 return ret == -EISDIR ? 0 : ret;
1362 }
1363
1364 /* Transit to a mounted filesystem. */
1365 if (managed & DCACHE_MOUNTED) {
1366 struct vfsmount *mounted = lookup_mnt(path);
1367 if (!mounted)
1368 break;
1369 dput(path->dentry);
1370 mntput(path->mnt);
1371 path->mnt = mounted;
1372 path->dentry = dget(mounted->mnt_root);
1373 continue;
1374 }
1375
1376 /* Don't handle automount points here */
1377 break;
1378 }
1379 return 0;
1380 }
1381 EXPORT_SYMBOL(follow_down);
1382
1383 /*
1384 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1385 */
1386 static void follow_mount(struct path *path)
1387 {
1388 while (d_mountpoint(path->dentry)) {
1389 struct vfsmount *mounted = lookup_mnt(path);
1390 if (!mounted)
1391 break;
1392 dput(path->dentry);
1393 mntput(path->mnt);
1394 path->mnt = mounted;
1395 path->dentry = dget(mounted->mnt_root);
1396 }
1397 }
1398
1399 static void follow_dotdot(struct nameidata *nd)
1400 {
1401 if (!nd->root.mnt)
1402 set_root(nd);
1403
1404 while(1) {
1405 struct dentry *old = nd->path.dentry;
1406
1407 if (nd->path.dentry == nd->root.dentry &&
1408 nd->path.mnt == nd->root.mnt) {
1409 break;
1410 }
1411 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1412 /* rare case of legitimate dget_parent()... */
1413 nd->path.dentry = dget_parent(nd->path.dentry);
1414 dput(old);
1415 break;
1416 }
1417 if (!follow_up(&nd->path))
1418 break;
1419 }
1420 follow_mount(&nd->path);
1421 nd->inode = nd->path.dentry->d_inode;
1422 }
1423
1424 /*
1425 * This looks up the name in dcache, possibly revalidates the old dentry and
1426 * allocates a new one if not found or not valid. In the need_lookup argument
1427 * returns whether i_op->lookup is necessary.
1428 *
1429 * dir->d_inode->i_mutex must be held
1430 */
1431 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1432 unsigned int flags, bool *need_lookup)
1433 {
1434 struct dentry *dentry;
1435 int error;
1436
1437 *need_lookup = false;
1438 dentry = d_lookup(dir, name);
1439 if (dentry) {
1440 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1441 error = d_revalidate(dentry, flags);
1442 if (unlikely(error <= 0)) {
1443 if (error < 0) {
1444 dput(dentry);
1445 return ERR_PTR(error);
1446 } else {
1447 d_invalidate(dentry);
1448 dput(dentry);
1449 dentry = NULL;
1450 }
1451 }
1452 }
1453 }
1454
1455 if (!dentry) {
1456 dentry = d_alloc(dir, name);
1457 if (unlikely(!dentry))
1458 return ERR_PTR(-ENOMEM);
1459
1460 *need_lookup = true;
1461 }
1462 return dentry;
1463 }
1464
1465 /*
1466 * Call i_op->lookup on the dentry. The dentry must be negative and
1467 * unhashed.
1468 *
1469 * dir->d_inode->i_mutex must be held
1470 */
1471 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1472 unsigned int flags)
1473 {
1474 struct dentry *old;
1475
1476 /* Don't create child dentry for a dead directory. */
1477 if (unlikely(IS_DEADDIR(dir))) {
1478 dput(dentry);
1479 return ERR_PTR(-ENOENT);
1480 }
1481
1482 old = dir->i_op->lookup(dir, dentry, flags);
1483 if (unlikely(old)) {
1484 dput(dentry);
1485 dentry = old;
1486 }
1487 return dentry;
1488 }
1489
1490 static struct dentry *__lookup_hash(struct qstr *name,
1491 struct dentry *base, unsigned int flags)
1492 {
1493 bool need_lookup;
1494 struct dentry *dentry;
1495
1496 dentry = lookup_dcache(name, base, flags, &need_lookup);
1497 if (!need_lookup)
1498 return dentry;
1499
1500 return lookup_real(base->d_inode, dentry, flags);
1501 }
1502
1503 /*
1504 * It's more convoluted than I'd like it to be, but... it's still fairly
1505 * small and for now I'd prefer to have fast path as straight as possible.
1506 * It _is_ time-critical.
1507 */
1508 static int lookup_fast(struct nameidata *nd,
1509 struct path *path, struct inode **inode,
1510 unsigned *seqp)
1511 {
1512 struct vfsmount *mnt = nd->path.mnt;
1513 struct dentry *dentry, *parent = nd->path.dentry;
1514 int need_reval = 1;
1515 int status = 1;
1516 int err;
1517
1518 /*
1519 * Rename seqlock is not required here because in the off chance
1520 * of a false negative due to a concurrent rename, we're going to
1521 * do the non-racy lookup, below.
1522 */
1523 if (nd->flags & LOOKUP_RCU) {
1524 unsigned seq;
1525 bool negative;
1526 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1527 if (!dentry)
1528 goto unlazy;
1529
1530 /*
1531 * This sequence count validates that the inode matches
1532 * the dentry name information from lookup.
1533 */
1534 *inode = d_backing_inode(dentry);
1535 negative = d_is_negative(dentry);
1536 if (read_seqcount_retry(&dentry->d_seq, seq))
1537 return -ECHILD;
1538 if (negative)
1539 return -ENOENT;
1540
1541 /*
1542 * This sequence count validates that the parent had no
1543 * changes while we did the lookup of the dentry above.
1544 *
1545 * The memory barrier in read_seqcount_begin of child is
1546 * enough, we can use __read_seqcount_retry here.
1547 */
1548 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1549 return -ECHILD;
1550
1551 *seqp = seq;
1552 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1553 status = d_revalidate(dentry, nd->flags);
1554 if (unlikely(status <= 0)) {
1555 if (status != -ECHILD)
1556 need_reval = 0;
1557 goto unlazy;
1558 }
1559 }
1560 path->mnt = mnt;
1561 path->dentry = dentry;
1562 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1563 return 0;
1564 unlazy:
1565 if (unlazy_walk(nd, dentry, seq))
1566 return -ECHILD;
1567 } else {
1568 dentry = __d_lookup(parent, &nd->last);
1569 }
1570
1571 if (unlikely(!dentry))
1572 goto need_lookup;
1573
1574 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1575 status = d_revalidate(dentry, nd->flags);
1576 if (unlikely(status <= 0)) {
1577 if (status < 0) {
1578 dput(dentry);
1579 return status;
1580 }
1581 d_invalidate(dentry);
1582 dput(dentry);
1583 goto need_lookup;
1584 }
1585
1586 if (unlikely(d_is_negative(dentry))) {
1587 dput(dentry);
1588 return -ENOENT;
1589 }
1590 path->mnt = mnt;
1591 path->dentry = dentry;
1592 err = follow_managed(path, nd);
1593 if (likely(!err))
1594 *inode = d_backing_inode(path->dentry);
1595 return err;
1596
1597 need_lookup:
1598 return 1;
1599 }
1600
1601 /* Fast lookup failed, do it the slow way */
1602 static int lookup_slow(struct nameidata *nd, struct path *path)
1603 {
1604 struct dentry *dentry, *parent;
1605
1606 parent = nd->path.dentry;
1607 BUG_ON(nd->inode != parent->d_inode);
1608
1609 mutex_lock(&parent->d_inode->i_mutex);
1610 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1611 mutex_unlock(&parent->d_inode->i_mutex);
1612 if (IS_ERR(dentry))
1613 return PTR_ERR(dentry);
1614 path->mnt = nd->path.mnt;
1615 path->dentry = dentry;
1616 return follow_managed(path, nd);
1617 }
1618
1619 static inline int may_lookup(struct nameidata *nd)
1620 {
1621 if (nd->flags & LOOKUP_RCU) {
1622 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1623 if (err != -ECHILD)
1624 return err;
1625 if (unlazy_walk(nd, NULL, 0))
1626 return -ECHILD;
1627 }
1628 return inode_permission(nd->inode, MAY_EXEC);
1629 }
1630
1631 static inline int handle_dots(struct nameidata *nd, int type)
1632 {
1633 if (type == LAST_DOTDOT) {
1634 if (nd->flags & LOOKUP_RCU) {
1635 return follow_dotdot_rcu(nd);
1636 } else
1637 follow_dotdot(nd);
1638 }
1639 return 0;
1640 }
1641
1642 static int pick_link(struct nameidata *nd, struct path *link,
1643 struct inode *inode, unsigned seq)
1644 {
1645 int error;
1646 struct saved *last;
1647 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1648 path_to_nameidata(link, nd);
1649 return -ELOOP;
1650 }
1651 if (!(nd->flags & LOOKUP_RCU)) {
1652 if (link->mnt == nd->path.mnt)
1653 mntget(link->mnt);
1654 }
1655 error = nd_alloc_stack(nd);
1656 if (unlikely(error)) {
1657 if (error == -ECHILD) {
1658 if (unlikely(unlazy_link(nd, link, seq)))
1659 return -ECHILD;
1660 error = nd_alloc_stack(nd);
1661 }
1662 if (error) {
1663 path_put(link);
1664 return error;
1665 }
1666 }
1667
1668 last = nd->stack + nd->depth++;
1669 last->link = *link;
1670 last->cookie = NULL;
1671 last->inode = inode;
1672 last->seq = seq;
1673 return 1;
1674 }
1675
1676 /*
1677 * Do we need to follow links? We _really_ want to be able
1678 * to do this check without having to look at inode->i_op,
1679 * so we keep a cache of "no, this doesn't need follow_link"
1680 * for the common case.
1681 */
1682 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1683 int follow,
1684 struct inode *inode, unsigned seq)
1685 {
1686 if (likely(!d_is_symlink(link->dentry)))
1687 return 0;
1688 if (!follow)
1689 return 0;
1690 return pick_link(nd, link, inode, seq);
1691 }
1692
1693 enum {WALK_GET = 1, WALK_PUT = 2};
1694
1695 static int walk_component(struct nameidata *nd, int flags)
1696 {
1697 struct path path;
1698 struct inode *inode;
1699 unsigned seq;
1700 int err;
1701 /*
1702 * "." and ".." are special - ".." especially so because it has
1703 * to be able to know about the current root directory and
1704 * parent relationships.
1705 */
1706 if (unlikely(nd->last_type != LAST_NORM)) {
1707 err = handle_dots(nd, nd->last_type);
1708 if (flags & WALK_PUT)
1709 put_link(nd);
1710 return err;
1711 }
1712 err = lookup_fast(nd, &path, &inode, &seq);
1713 if (unlikely(err)) {
1714 if (err < 0)
1715 return err;
1716
1717 err = lookup_slow(nd, &path);
1718 if (err < 0)
1719 return err;
1720
1721 inode = d_backing_inode(path.dentry);
1722 seq = 0; /* we are already out of RCU mode */
1723 err = -ENOENT;
1724 if (d_is_negative(path.dentry))
1725 goto out_path_put;
1726 }
1727
1728 if (flags & WALK_PUT)
1729 put_link(nd);
1730 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1731 if (unlikely(err))
1732 return err;
1733 path_to_nameidata(&path, nd);
1734 nd->inode = inode;
1735 nd->seq = seq;
1736 return 0;
1737
1738 out_path_put:
1739 path_to_nameidata(&path, nd);
1740 return err;
1741 }
1742
1743 /*
1744 * We can do the critical dentry name comparison and hashing
1745 * operations one word at a time, but we are limited to:
1746 *
1747 * - Architectures with fast unaligned word accesses. We could
1748 * do a "get_unaligned()" if this helps and is sufficiently
1749 * fast.
1750 *
1751 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1752 * do not trap on the (extremely unlikely) case of a page
1753 * crossing operation.
1754 *
1755 * - Furthermore, we need an efficient 64-bit compile for the
1756 * 64-bit case in order to generate the "number of bytes in
1757 * the final mask". Again, that could be replaced with a
1758 * efficient population count instruction or similar.
1759 */
1760 #ifdef CONFIG_DCACHE_WORD_ACCESS
1761
1762 #include <asm/word-at-a-time.h>
1763
1764 #ifdef CONFIG_64BIT
1765
1766 static inline unsigned int fold_hash(unsigned long hash)
1767 {
1768 return hash_64(hash, 32);
1769 }
1770
1771 #else /* 32-bit case */
1772
1773 #define fold_hash(x) (x)
1774
1775 #endif
1776
1777 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1778 {
1779 unsigned long a, mask;
1780 unsigned long hash = 0;
1781
1782 for (;;) {
1783 a = load_unaligned_zeropad(name);
1784 if (len < sizeof(unsigned long))
1785 break;
1786 hash += a;
1787 hash *= 9;
1788 name += sizeof(unsigned long);
1789 len -= sizeof(unsigned long);
1790 if (!len)
1791 goto done;
1792 }
1793 mask = bytemask_from_count(len);
1794 hash += mask & a;
1795 done:
1796 return fold_hash(hash);
1797 }
1798 EXPORT_SYMBOL(full_name_hash);
1799
1800 /*
1801 * Calculate the length and hash of the path component, and
1802 * return the "hash_len" as the result.
1803 */
1804 static inline u64 hash_name(const char *name)
1805 {
1806 unsigned long a, b, adata, bdata, mask, hash, len;
1807 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1808
1809 hash = a = 0;
1810 len = -sizeof(unsigned long);
1811 do {
1812 hash = (hash + a) * 9;
1813 len += sizeof(unsigned long);
1814 a = load_unaligned_zeropad(name+len);
1815 b = a ^ REPEAT_BYTE('/');
1816 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1817
1818 adata = prep_zero_mask(a, adata, &constants);
1819 bdata = prep_zero_mask(b, bdata, &constants);
1820
1821 mask = create_zero_mask(adata | bdata);
1822
1823 hash += a & zero_bytemask(mask);
1824 len += find_zero(mask);
1825 return hashlen_create(fold_hash(hash), len);
1826 }
1827
1828 #else
1829
1830 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1831 {
1832 unsigned long hash = init_name_hash();
1833 while (len--)
1834 hash = partial_name_hash(*name++, hash);
1835 return end_name_hash(hash);
1836 }
1837 EXPORT_SYMBOL(full_name_hash);
1838
1839 /*
1840 * We know there's a real path component here of at least
1841 * one character.
1842 */
1843 static inline u64 hash_name(const char *name)
1844 {
1845 unsigned long hash = init_name_hash();
1846 unsigned long len = 0, c;
1847
1848 c = (unsigned char)*name;
1849 do {
1850 len++;
1851 hash = partial_name_hash(c, hash);
1852 c = (unsigned char)name[len];
1853 } while (c && c != '/');
1854 return hashlen_create(end_name_hash(hash), len);
1855 }
1856
1857 #endif
1858
1859 /*
1860 * Name resolution.
1861 * This is the basic name resolution function, turning a pathname into
1862 * the final dentry. We expect 'base' to be positive and a directory.
1863 *
1864 * Returns 0 and nd will have valid dentry and mnt on success.
1865 * Returns error and drops reference to input namei data on failure.
1866 */
1867 static int link_path_walk(const char *name, struct nameidata *nd)
1868 {
1869 int err;
1870
1871 while (*name=='/')
1872 name++;
1873 if (!*name)
1874 return 0;
1875
1876 /* At this point we know we have a real path component. */
1877 for(;;) {
1878 u64 hash_len;
1879 int type;
1880
1881 err = may_lookup(nd);
1882 if (err)
1883 return err;
1884
1885 hash_len = hash_name(name);
1886
1887 type = LAST_NORM;
1888 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1889 case 2:
1890 if (name[1] == '.') {
1891 type = LAST_DOTDOT;
1892 nd->flags |= LOOKUP_JUMPED;
1893 }
1894 break;
1895 case 1:
1896 type = LAST_DOT;
1897 }
1898 if (likely(type == LAST_NORM)) {
1899 struct dentry *parent = nd->path.dentry;
1900 nd->flags &= ~LOOKUP_JUMPED;
1901 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1902 struct qstr this = { { .hash_len = hash_len }, .name = name };
1903 err = parent->d_op->d_hash(parent, &this);
1904 if (err < 0)
1905 return err;
1906 hash_len = this.hash_len;
1907 name = this.name;
1908 }
1909 }
1910
1911 nd->last.hash_len = hash_len;
1912 nd->last.name = name;
1913 nd->last_type = type;
1914
1915 name += hashlen_len(hash_len);
1916 if (!*name)
1917 goto OK;
1918 /*
1919 * If it wasn't NUL, we know it was '/'. Skip that
1920 * slash, and continue until no more slashes.
1921 */
1922 do {
1923 name++;
1924 } while (unlikely(*name == '/'));
1925 if (unlikely(!*name)) {
1926 OK:
1927 /* pathname body, done */
1928 if (!nd->depth)
1929 return 0;
1930 name = nd->stack[nd->depth - 1].name;
1931 /* trailing symlink, done */
1932 if (!name)
1933 return 0;
1934 /* last component of nested symlink */
1935 err = walk_component(nd, WALK_GET | WALK_PUT);
1936 } else {
1937 err = walk_component(nd, WALK_GET);
1938 }
1939 if (err < 0)
1940 return err;
1941
1942 if (err) {
1943 const char *s = get_link(nd);
1944
1945 if (unlikely(IS_ERR(s)))
1946 return PTR_ERR(s);
1947 err = 0;
1948 if (unlikely(!s)) {
1949 /* jumped */
1950 put_link(nd);
1951 } else {
1952 nd->stack[nd->depth - 1].name = name;
1953 name = s;
1954 continue;
1955 }
1956 }
1957 if (unlikely(!d_can_lookup(nd->path.dentry))) {
1958 if (nd->flags & LOOKUP_RCU) {
1959 if (unlazy_walk(nd, NULL, 0))
1960 return -ECHILD;
1961 }
1962 return -ENOTDIR;
1963 }
1964 }
1965 }
1966
1967 static const char *path_init(struct nameidata *nd, unsigned flags)
1968 {
1969 int retval = 0;
1970 const char *s = nd->name->name;
1971
1972 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1973 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1974 nd->depth = 0;
1975 nd->total_link_count = 0;
1976 if (flags & LOOKUP_ROOT) {
1977 struct dentry *root = nd->root.dentry;
1978 struct inode *inode = root->d_inode;
1979 if (*s) {
1980 if (!d_can_lookup(root))
1981 return ERR_PTR(-ENOTDIR);
1982 retval = inode_permission(inode, MAY_EXEC);
1983 if (retval)
1984 return ERR_PTR(retval);
1985 }
1986 nd->path = nd->root;
1987 nd->inode = inode;
1988 if (flags & LOOKUP_RCU) {
1989 rcu_read_lock();
1990 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1991 nd->root_seq = nd->seq;
1992 nd->m_seq = read_seqbegin(&mount_lock);
1993 } else {
1994 path_get(&nd->path);
1995 }
1996 return s;
1997 }
1998
1999 nd->root.mnt = NULL;
2000
2001 nd->m_seq = read_seqbegin(&mount_lock);
2002 if (*s == '/') {
2003 if (flags & LOOKUP_RCU) {
2004 rcu_read_lock();
2005 set_root_rcu(nd);
2006 nd->seq = nd->root_seq;
2007 } else {
2008 set_root(nd);
2009 path_get(&nd->root);
2010 }
2011 nd->path = nd->root;
2012 } else if (nd->dfd == AT_FDCWD) {
2013 if (flags & LOOKUP_RCU) {
2014 struct fs_struct *fs = current->fs;
2015 unsigned seq;
2016
2017 rcu_read_lock();
2018
2019 do {
2020 seq = read_seqcount_begin(&fs->seq);
2021 nd->path = fs->pwd;
2022 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2023 } while (read_seqcount_retry(&fs->seq, seq));
2024 } else {
2025 get_fs_pwd(current->fs, &nd->path);
2026 }
2027 } else {
2028 /* Caller must check execute permissions on the starting path component */
2029 struct fd f = fdget_raw(nd->dfd);
2030 struct dentry *dentry;
2031
2032 if (!f.file)
2033 return ERR_PTR(-EBADF);
2034
2035 dentry = f.file->f_path.dentry;
2036
2037 if (*s) {
2038 if (!d_can_lookup(dentry)) {
2039 fdput(f);
2040 return ERR_PTR(-ENOTDIR);
2041 }
2042 }
2043
2044 nd->path = f.file->f_path;
2045 if (flags & LOOKUP_RCU) {
2046 rcu_read_lock();
2047 nd->inode = nd->path.dentry->d_inode;
2048 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2049 } else {
2050 path_get(&nd->path);
2051 nd->inode = nd->path.dentry->d_inode;
2052 }
2053 fdput(f);
2054 return s;
2055 }
2056
2057 nd->inode = nd->path.dentry->d_inode;
2058 if (!(flags & LOOKUP_RCU))
2059 return s;
2060 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
2061 return s;
2062 if (!(nd->flags & LOOKUP_ROOT))
2063 nd->root.mnt = NULL;
2064 rcu_read_unlock();
2065 return ERR_PTR(-ECHILD);
2066 }
2067
2068 static const char *trailing_symlink(struct nameidata *nd)
2069 {
2070 const char *s;
2071 int error = may_follow_link(nd);
2072 if (unlikely(error))
2073 return ERR_PTR(error);
2074 nd->flags |= LOOKUP_PARENT;
2075 nd->stack[0].name = NULL;
2076 s = get_link(nd);
2077 return s ? s : "";
2078 }
2079
2080 static inline int lookup_last(struct nameidata *nd)
2081 {
2082 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2083 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2084
2085 nd->flags &= ~LOOKUP_PARENT;
2086 return walk_component(nd,
2087 nd->flags & LOOKUP_FOLLOW
2088 ? nd->depth
2089 ? WALK_PUT | WALK_GET
2090 : WALK_GET
2091 : 0);
2092 }
2093
2094 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2095 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2096 {
2097 const char *s = path_init(nd, flags);
2098 int err;
2099
2100 if (IS_ERR(s))
2101 return PTR_ERR(s);
2102 while (!(err = link_path_walk(s, nd))
2103 && ((err = lookup_last(nd)) > 0)) {
2104 s = trailing_symlink(nd);
2105 if (IS_ERR(s)) {
2106 err = PTR_ERR(s);
2107 break;
2108 }
2109 }
2110 if (!err)
2111 err = complete_walk(nd);
2112
2113 if (!err && nd->flags & LOOKUP_DIRECTORY)
2114 if (!d_can_lookup(nd->path.dentry))
2115 err = -ENOTDIR;
2116 if (!err) {
2117 *path = nd->path;
2118 nd->path.mnt = NULL;
2119 nd->path.dentry = NULL;
2120 }
2121 terminate_walk(nd);
2122 return err;
2123 }
2124
2125 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2126 struct path *path, struct path *root)
2127 {
2128 int retval;
2129 struct nameidata nd;
2130 if (IS_ERR(name))
2131 return PTR_ERR(name);
2132 if (unlikely(root)) {
2133 nd.root = *root;
2134 flags |= LOOKUP_ROOT;
2135 }
2136 set_nameidata(&nd, dfd, name);
2137 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2138 if (unlikely(retval == -ECHILD))
2139 retval = path_lookupat(&nd, flags, path);
2140 if (unlikely(retval == -ESTALE))
2141 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2142
2143 if (likely(!retval))
2144 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2145 restore_nameidata();
2146 putname(name);
2147 return retval;
2148 }
2149
2150 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2151 static int path_parentat(struct nameidata *nd, unsigned flags,
2152 struct path *parent)
2153 {
2154 const char *s = path_init(nd, flags);
2155 int err;
2156 if (IS_ERR(s))
2157 return PTR_ERR(s);
2158 err = link_path_walk(s, nd);
2159 if (!err)
2160 err = complete_walk(nd);
2161 if (!err) {
2162 *parent = nd->path;
2163 nd->path.mnt = NULL;
2164 nd->path.dentry = NULL;
2165 }
2166 terminate_walk(nd);
2167 return err;
2168 }
2169
2170 static struct filename *filename_parentat(int dfd, struct filename *name,
2171 unsigned int flags, struct path *parent,
2172 struct qstr *last, int *type)
2173 {
2174 int retval;
2175 struct nameidata nd;
2176
2177 if (IS_ERR(name))
2178 return name;
2179 set_nameidata(&nd, dfd, name);
2180 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2181 if (unlikely(retval == -ECHILD))
2182 retval = path_parentat(&nd, flags, parent);
2183 if (unlikely(retval == -ESTALE))
2184 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2185 if (likely(!retval)) {
2186 *last = nd.last;
2187 *type = nd.last_type;
2188 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2189 } else {
2190 putname(name);
2191 name = ERR_PTR(retval);
2192 }
2193 restore_nameidata();
2194 return name;
2195 }
2196
2197 /* does lookup, returns the object with parent locked */
2198 struct dentry *kern_path_locked(const char *name, struct path *path)
2199 {
2200 struct filename *filename;
2201 struct dentry *d;
2202 struct qstr last;
2203 int type;
2204
2205 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2206 &last, &type);
2207 if (IS_ERR(filename))
2208 return ERR_CAST(filename);
2209 if (unlikely(type != LAST_NORM)) {
2210 path_put(path);
2211 putname(filename);
2212 return ERR_PTR(-EINVAL);
2213 }
2214 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2215 d = __lookup_hash(&last, path->dentry, 0);
2216 if (IS_ERR(d)) {
2217 mutex_unlock(&path->dentry->d_inode->i_mutex);
2218 path_put(path);
2219 }
2220 putname(filename);
2221 return d;
2222 }
2223
2224 int kern_path(const char *name, unsigned int flags, struct path *path)
2225 {
2226 return filename_lookup(AT_FDCWD, getname_kernel(name),
2227 flags, path, NULL);
2228 }
2229 EXPORT_SYMBOL(kern_path);
2230
2231 /**
2232 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2233 * @dentry: pointer to dentry of the base directory
2234 * @mnt: pointer to vfs mount of the base directory
2235 * @name: pointer to file name
2236 * @flags: lookup flags
2237 * @path: pointer to struct path to fill
2238 */
2239 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2240 const char *name, unsigned int flags,
2241 struct path *path)
2242 {
2243 struct path root = {.mnt = mnt, .dentry = dentry};
2244 /* the first argument of filename_lookup() is ignored with root */
2245 return filename_lookup(AT_FDCWD, getname_kernel(name),
2246 flags , path, &root);
2247 }
2248 EXPORT_SYMBOL(vfs_path_lookup);
2249
2250 /**
2251 * lookup_one_len - filesystem helper to lookup single pathname component
2252 * @name: pathname component to lookup
2253 * @base: base directory to lookup from
2254 * @len: maximum length @len should be interpreted to
2255 *
2256 * Note that this routine is purely a helper for filesystem usage and should
2257 * not be called by generic code.
2258 */
2259 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2260 {
2261 struct qstr this;
2262 unsigned int c;
2263 int err;
2264
2265 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2266
2267 this.name = name;
2268 this.len = len;
2269 this.hash = full_name_hash(name, len);
2270 if (!len)
2271 return ERR_PTR(-EACCES);
2272
2273 if (unlikely(name[0] == '.')) {
2274 if (len < 2 || (len == 2 && name[1] == '.'))
2275 return ERR_PTR(-EACCES);
2276 }
2277
2278 while (len--) {
2279 c = *(const unsigned char *)name++;
2280 if (c == '/' || c == '\0')
2281 return ERR_PTR(-EACCES);
2282 }
2283 /*
2284 * See if the low-level filesystem might want
2285 * to use its own hash..
2286 */
2287 if (base->d_flags & DCACHE_OP_HASH) {
2288 int err = base->d_op->d_hash(base, &this);
2289 if (err < 0)
2290 return ERR_PTR(err);
2291 }
2292
2293 err = inode_permission(base->d_inode, MAY_EXEC);
2294 if (err)
2295 return ERR_PTR(err);
2296
2297 return __lookup_hash(&this, base, 0);
2298 }
2299 EXPORT_SYMBOL(lookup_one_len);
2300
2301 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2302 struct path *path, int *empty)
2303 {
2304 return filename_lookup(dfd, getname_flags(name, flags, empty),
2305 flags, path, NULL);
2306 }
2307 EXPORT_SYMBOL(user_path_at_empty);
2308
2309 /*
2310 * NB: most callers don't do anything directly with the reference to the
2311 * to struct filename, but the nd->last pointer points into the name string
2312 * allocated by getname. So we must hold the reference to it until all
2313 * path-walking is complete.
2314 */
2315 static inline struct filename *
2316 user_path_parent(int dfd, const char __user *path,
2317 struct path *parent,
2318 struct qstr *last,
2319 int *type,
2320 unsigned int flags)
2321 {
2322 /* only LOOKUP_REVAL is allowed in extra flags */
2323 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2324 parent, last, type);
2325 }
2326
2327 /**
2328 * mountpoint_last - look up last component for umount
2329 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2330 * @path: pointer to container for result
2331 *
2332 * This is a special lookup_last function just for umount. In this case, we
2333 * need to resolve the path without doing any revalidation.
2334 *
2335 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2336 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2337 * in almost all cases, this lookup will be served out of the dcache. The only
2338 * cases where it won't are if nd->last refers to a symlink or the path is
2339 * bogus and it doesn't exist.
2340 *
2341 * Returns:
2342 * -error: if there was an error during lookup. This includes -ENOENT if the
2343 * lookup found a negative dentry. The nd->path reference will also be
2344 * put in this case.
2345 *
2346 * 0: if we successfully resolved nd->path and found it to not to be a
2347 * symlink that needs to be followed. "path" will also be populated.
2348 * The nd->path reference will also be put.
2349 *
2350 * 1: if we successfully resolved nd->last and found it to be a symlink
2351 * that needs to be followed. "path" will be populated with the path
2352 * to the link, and nd->path will *not* be put.
2353 */
2354 static int
2355 mountpoint_last(struct nameidata *nd, struct path *path)
2356 {
2357 int error = 0;
2358 struct dentry *dentry;
2359 struct dentry *dir = nd->path.dentry;
2360
2361 /* If we're in rcuwalk, drop out of it to handle last component */
2362 if (nd->flags & LOOKUP_RCU) {
2363 if (unlazy_walk(nd, NULL, 0))
2364 return -ECHILD;
2365 }
2366
2367 nd->flags &= ~LOOKUP_PARENT;
2368
2369 if (unlikely(nd->last_type != LAST_NORM)) {
2370 error = handle_dots(nd, nd->last_type);
2371 if (error)
2372 return error;
2373 dentry = dget(nd->path.dentry);
2374 goto done;
2375 }
2376
2377 mutex_lock(&dir->d_inode->i_mutex);
2378 dentry = d_lookup(dir, &nd->last);
2379 if (!dentry) {
2380 /*
2381 * No cached dentry. Mounted dentries are pinned in the cache,
2382 * so that means that this dentry is probably a symlink or the
2383 * path doesn't actually point to a mounted dentry.
2384 */
2385 dentry = d_alloc(dir, &nd->last);
2386 if (!dentry) {
2387 mutex_unlock(&dir->d_inode->i_mutex);
2388 return -ENOMEM;
2389 }
2390 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2391 if (IS_ERR(dentry)) {
2392 mutex_unlock(&dir->d_inode->i_mutex);
2393 return PTR_ERR(dentry);
2394 }
2395 }
2396 mutex_unlock(&dir->d_inode->i_mutex);
2397
2398 done:
2399 if (d_is_negative(dentry)) {
2400 dput(dentry);
2401 return -ENOENT;
2402 }
2403 if (nd->depth)
2404 put_link(nd);
2405 path->dentry = dentry;
2406 path->mnt = nd->path.mnt;
2407 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2408 d_backing_inode(dentry), 0);
2409 if (unlikely(error))
2410 return error;
2411 mntget(path->mnt);
2412 follow_mount(path);
2413 return 0;
2414 }
2415
2416 /**
2417 * path_mountpoint - look up a path to be umounted
2418 * @nameidata: lookup context
2419 * @flags: lookup flags
2420 * @path: pointer to container for result
2421 *
2422 * Look up the given name, but don't attempt to revalidate the last component.
2423 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2424 */
2425 static int
2426 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2427 {
2428 const char *s = path_init(nd, flags);
2429 int err;
2430 if (IS_ERR(s))
2431 return PTR_ERR(s);
2432 while (!(err = link_path_walk(s, nd)) &&
2433 (err = mountpoint_last(nd, path)) > 0) {
2434 s = trailing_symlink(nd);
2435 if (IS_ERR(s)) {
2436 err = PTR_ERR(s);
2437 break;
2438 }
2439 }
2440 terminate_walk(nd);
2441 return err;
2442 }
2443
2444 static int
2445 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2446 unsigned int flags)
2447 {
2448 struct nameidata nd;
2449 int error;
2450 if (IS_ERR(name))
2451 return PTR_ERR(name);
2452 set_nameidata(&nd, dfd, name);
2453 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2454 if (unlikely(error == -ECHILD))
2455 error = path_mountpoint(&nd, flags, path);
2456 if (unlikely(error == -ESTALE))
2457 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2458 if (likely(!error))
2459 audit_inode(name, path->dentry, 0);
2460 restore_nameidata();
2461 putname(name);
2462 return error;
2463 }
2464
2465 /**
2466 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2467 * @dfd: directory file descriptor
2468 * @name: pathname from userland
2469 * @flags: lookup flags
2470 * @path: pointer to container to hold result
2471 *
2472 * A umount is a special case for path walking. We're not actually interested
2473 * in the inode in this situation, and ESTALE errors can be a problem. We
2474 * simply want track down the dentry and vfsmount attached at the mountpoint
2475 * and avoid revalidating the last component.
2476 *
2477 * Returns 0 and populates "path" on success.
2478 */
2479 int
2480 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2481 struct path *path)
2482 {
2483 return filename_mountpoint(dfd, getname(name), path, flags);
2484 }
2485
2486 int
2487 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2488 unsigned int flags)
2489 {
2490 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2491 }
2492 EXPORT_SYMBOL(kern_path_mountpoint);
2493
2494 int __check_sticky(struct inode *dir, struct inode *inode)
2495 {
2496 kuid_t fsuid = current_fsuid();
2497
2498 if (uid_eq(inode->i_uid, fsuid))
2499 return 0;
2500 if (uid_eq(dir->i_uid, fsuid))
2501 return 0;
2502 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2503 }
2504 EXPORT_SYMBOL(__check_sticky);
2505
2506 /*
2507 * Check whether we can remove a link victim from directory dir, check
2508 * whether the type of victim is right.
2509 * 1. We can't do it if dir is read-only (done in permission())
2510 * 2. We should have write and exec permissions on dir
2511 * 3. We can't remove anything from append-only dir
2512 * 4. We can't do anything with immutable dir (done in permission())
2513 * 5. If the sticky bit on dir is set we should either
2514 * a. be owner of dir, or
2515 * b. be owner of victim, or
2516 * c. have CAP_FOWNER capability
2517 * 6. If the victim is append-only or immutable we can't do antyhing with
2518 * links pointing to it.
2519 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2520 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2521 * 9. We can't remove a root or mountpoint.
2522 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2523 * nfs_async_unlink().
2524 */
2525 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2526 {
2527 struct inode *inode = d_backing_inode(victim);
2528 int error;
2529
2530 if (d_is_negative(victim))
2531 return -ENOENT;
2532 BUG_ON(!inode);
2533
2534 BUG_ON(victim->d_parent->d_inode != dir);
2535 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2536
2537 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2538 if (error)
2539 return error;
2540 if (IS_APPEND(dir))
2541 return -EPERM;
2542
2543 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2544 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2545 return -EPERM;
2546 if (isdir) {
2547 if (!d_is_dir(victim))
2548 return -ENOTDIR;
2549 if (IS_ROOT(victim))
2550 return -EBUSY;
2551 } else if (d_is_dir(victim))
2552 return -EISDIR;
2553 if (IS_DEADDIR(dir))
2554 return -ENOENT;
2555 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2556 return -EBUSY;
2557 return 0;
2558 }
2559
2560 /* Check whether we can create an object with dentry child in directory
2561 * dir.
2562 * 1. We can't do it if child already exists (open has special treatment for
2563 * this case, but since we are inlined it's OK)
2564 * 2. We can't do it if dir is read-only (done in permission())
2565 * 3. We should have write and exec permissions on dir
2566 * 4. We can't do it if dir is immutable (done in permission())
2567 */
2568 static inline int may_create(struct inode *dir, struct dentry *child)
2569 {
2570 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2571 if (child->d_inode)
2572 return -EEXIST;
2573 if (IS_DEADDIR(dir))
2574 return -ENOENT;
2575 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2576 }
2577
2578 /*
2579 * p1 and p2 should be directories on the same fs.
2580 */
2581 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2582 {
2583 struct dentry *p;
2584
2585 if (p1 == p2) {
2586 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2587 return NULL;
2588 }
2589
2590 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2591
2592 p = d_ancestor(p2, p1);
2593 if (p) {
2594 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2595 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2596 return p;
2597 }
2598
2599 p = d_ancestor(p1, p2);
2600 if (p) {
2601 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2602 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2603 return p;
2604 }
2605
2606 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2607 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2608 return NULL;
2609 }
2610 EXPORT_SYMBOL(lock_rename);
2611
2612 void unlock_rename(struct dentry *p1, struct dentry *p2)
2613 {
2614 mutex_unlock(&p1->d_inode->i_mutex);
2615 if (p1 != p2) {
2616 mutex_unlock(&p2->d_inode->i_mutex);
2617 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2618 }
2619 }
2620 EXPORT_SYMBOL(unlock_rename);
2621
2622 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2623 bool want_excl)
2624 {
2625 int error = may_create(dir, dentry);
2626 if (error)
2627 return error;
2628
2629 if (!dir->i_op->create)
2630 return -EACCES; /* shouldn't it be ENOSYS? */
2631 mode &= S_IALLUGO;
2632 mode |= S_IFREG;
2633 error = security_inode_create(dir, dentry, mode);
2634 if (error)
2635 return error;
2636 error = dir->i_op->create(dir, dentry, mode, want_excl);
2637 if (!error)
2638 fsnotify_create(dir, dentry);
2639 return error;
2640 }
2641 EXPORT_SYMBOL(vfs_create);
2642
2643 static int may_open(struct path *path, int acc_mode, int flag)
2644 {
2645 struct dentry *dentry = path->dentry;
2646 struct inode *inode = dentry->d_inode;
2647 int error;
2648
2649 /* O_PATH? */
2650 if (!acc_mode)
2651 return 0;
2652
2653 if (!inode)
2654 return -ENOENT;
2655
2656 switch (inode->i_mode & S_IFMT) {
2657 case S_IFLNK:
2658 return -ELOOP;
2659 case S_IFDIR:
2660 if (acc_mode & MAY_WRITE)
2661 return -EISDIR;
2662 break;
2663 case S_IFBLK:
2664 case S_IFCHR:
2665 if (path->mnt->mnt_flags & MNT_NODEV)
2666 return -EACCES;
2667 /*FALLTHRU*/
2668 case S_IFIFO:
2669 case S_IFSOCK:
2670 flag &= ~O_TRUNC;
2671 break;
2672 }
2673
2674 error = inode_permission(inode, acc_mode);
2675 if (error)
2676 return error;
2677
2678 /*
2679 * An append-only file must be opened in append mode for writing.
2680 */
2681 if (IS_APPEND(inode)) {
2682 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2683 return -EPERM;
2684 if (flag & O_TRUNC)
2685 return -EPERM;
2686 }
2687
2688 /* O_NOATIME can only be set by the owner or superuser */
2689 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2690 return -EPERM;
2691
2692 return 0;
2693 }
2694
2695 static int handle_truncate(struct file *filp)
2696 {
2697 struct path *path = &filp->f_path;
2698 struct inode *inode = path->dentry->d_inode;
2699 int error = get_write_access(inode);
2700 if (error)
2701 return error;
2702 /*
2703 * Refuse to truncate files with mandatory locks held on them.
2704 */
2705 error = locks_verify_locked(filp);
2706 if (!error)
2707 error = security_path_truncate(path);
2708 if (!error) {
2709 error = do_truncate(path->dentry, 0,
2710 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2711 filp);
2712 }
2713 put_write_access(inode);
2714 return error;
2715 }
2716
2717 static inline int open_to_namei_flags(int flag)
2718 {
2719 if ((flag & O_ACCMODE) == 3)
2720 flag--;
2721 return flag;
2722 }
2723
2724 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2725 {
2726 int error = security_path_mknod(dir, dentry, mode, 0);
2727 if (error)
2728 return error;
2729
2730 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2731 if (error)
2732 return error;
2733
2734 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2735 }
2736
2737 /*
2738 * Attempt to atomically look up, create and open a file from a negative
2739 * dentry.
2740 *
2741 * Returns 0 if successful. The file will have been created and attached to
2742 * @file by the filesystem calling finish_open().
2743 *
2744 * Returns 1 if the file was looked up only or didn't need creating. The
2745 * caller will need to perform the open themselves. @path will have been
2746 * updated to point to the new dentry. This may be negative.
2747 *
2748 * Returns an error code otherwise.
2749 */
2750 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2751 struct path *path, struct file *file,
2752 const struct open_flags *op,
2753 bool got_write, bool need_lookup,
2754 int *opened)
2755 {
2756 struct inode *dir = nd->path.dentry->d_inode;
2757 unsigned open_flag = open_to_namei_flags(op->open_flag);
2758 umode_t mode;
2759 int error;
2760 int acc_mode;
2761 int create_error = 0;
2762 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2763 bool excl;
2764
2765 BUG_ON(dentry->d_inode);
2766
2767 /* Don't create child dentry for a dead directory. */
2768 if (unlikely(IS_DEADDIR(dir))) {
2769 error = -ENOENT;
2770 goto out;
2771 }
2772
2773 mode = op->mode;
2774 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2775 mode &= ~current_umask();
2776
2777 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2778 if (excl)
2779 open_flag &= ~O_TRUNC;
2780
2781 /*
2782 * Checking write permission is tricky, bacuse we don't know if we are
2783 * going to actually need it: O_CREAT opens should work as long as the
2784 * file exists. But checking existence breaks atomicity. The trick is
2785 * to check access and if not granted clear O_CREAT from the flags.
2786 *
2787 * Another problem is returing the "right" error value (e.g. for an
2788 * O_EXCL open we want to return EEXIST not EROFS).
2789 */
2790 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2791 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2792 if (!(open_flag & O_CREAT)) {
2793 /*
2794 * No O_CREATE -> atomicity not a requirement -> fall
2795 * back to lookup + open
2796 */
2797 goto no_open;
2798 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2799 /* Fall back and fail with the right error */
2800 create_error = -EROFS;
2801 goto no_open;
2802 } else {
2803 /* No side effects, safe to clear O_CREAT */
2804 create_error = -EROFS;
2805 open_flag &= ~O_CREAT;
2806 }
2807 }
2808
2809 if (open_flag & O_CREAT) {
2810 error = may_o_create(&nd->path, dentry, mode);
2811 if (error) {
2812 create_error = error;
2813 if (open_flag & O_EXCL)
2814 goto no_open;
2815 open_flag &= ~O_CREAT;
2816 }
2817 }
2818
2819 if (nd->flags & LOOKUP_DIRECTORY)
2820 open_flag |= O_DIRECTORY;
2821
2822 file->f_path.dentry = DENTRY_NOT_SET;
2823 file->f_path.mnt = nd->path.mnt;
2824 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2825 opened);
2826 if (error < 0) {
2827 if (create_error && error == -ENOENT)
2828 error = create_error;
2829 goto out;
2830 }
2831
2832 if (error) { /* returned 1, that is */
2833 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2834 error = -EIO;
2835 goto out;
2836 }
2837 if (file->f_path.dentry) {
2838 dput(dentry);
2839 dentry = file->f_path.dentry;
2840 }
2841 if (*opened & FILE_CREATED)
2842 fsnotify_create(dir, dentry);
2843 if (!dentry->d_inode) {
2844 WARN_ON(*opened & FILE_CREATED);
2845 if (create_error) {
2846 error = create_error;
2847 goto out;
2848 }
2849 } else {
2850 if (excl && !(*opened & FILE_CREATED)) {
2851 error = -EEXIST;
2852 goto out;
2853 }
2854 }
2855 goto looked_up;
2856 }
2857
2858 /*
2859 * We didn't have the inode before the open, so check open permission
2860 * here.
2861 */
2862 acc_mode = op->acc_mode;
2863 if (*opened & FILE_CREATED) {
2864 WARN_ON(!(open_flag & O_CREAT));
2865 fsnotify_create(dir, dentry);
2866 acc_mode = MAY_OPEN;
2867 }
2868 error = may_open(&file->f_path, acc_mode, open_flag);
2869 if (error)
2870 fput(file);
2871
2872 out:
2873 dput(dentry);
2874 return error;
2875
2876 no_open:
2877 if (need_lookup) {
2878 dentry = lookup_real(dir, dentry, nd->flags);
2879 if (IS_ERR(dentry))
2880 return PTR_ERR(dentry);
2881
2882 if (create_error) {
2883 int open_flag = op->open_flag;
2884
2885 error = create_error;
2886 if ((open_flag & O_EXCL)) {
2887 if (!dentry->d_inode)
2888 goto out;
2889 } else if (!dentry->d_inode) {
2890 goto out;
2891 } else if ((open_flag & O_TRUNC) &&
2892 d_is_reg(dentry)) {
2893 goto out;
2894 }
2895 /* will fail later, go on to get the right error */
2896 }
2897 }
2898 looked_up:
2899 path->dentry = dentry;
2900 path->mnt = nd->path.mnt;
2901 return 1;
2902 }
2903
2904 /*
2905 * Look up and maybe create and open the last component.
2906 *
2907 * Must be called with i_mutex held on parent.
2908 *
2909 * Returns 0 if the file was successfully atomically created (if necessary) and
2910 * opened. In this case the file will be returned attached to @file.
2911 *
2912 * Returns 1 if the file was not completely opened at this time, though lookups
2913 * and creations will have been performed and the dentry returned in @path will
2914 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2915 * specified then a negative dentry may be returned.
2916 *
2917 * An error code is returned otherwise.
2918 *
2919 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2920 * cleared otherwise prior to returning.
2921 */
2922 static int lookup_open(struct nameidata *nd, struct path *path,
2923 struct file *file,
2924 const struct open_flags *op,
2925 bool got_write, int *opened)
2926 {
2927 struct dentry *dir = nd->path.dentry;
2928 struct inode *dir_inode = dir->d_inode;
2929 struct dentry *dentry;
2930 int error;
2931 bool need_lookup;
2932
2933 *opened &= ~FILE_CREATED;
2934 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2935 if (IS_ERR(dentry))
2936 return PTR_ERR(dentry);
2937
2938 /* Cached positive dentry: will open in f_op->open */
2939 if (!need_lookup && dentry->d_inode)
2940 goto out_no_open;
2941
2942 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2943 return atomic_open(nd, dentry, path, file, op, got_write,
2944 need_lookup, opened);
2945 }
2946
2947 if (need_lookup) {
2948 BUG_ON(dentry->d_inode);
2949
2950 dentry = lookup_real(dir_inode, dentry, nd->flags);
2951 if (IS_ERR(dentry))
2952 return PTR_ERR(dentry);
2953 }
2954
2955 /* Negative dentry, just create the file */
2956 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2957 umode_t mode = op->mode;
2958 if (!IS_POSIXACL(dir->d_inode))
2959 mode &= ~current_umask();
2960 /*
2961 * This write is needed to ensure that a
2962 * rw->ro transition does not occur between
2963 * the time when the file is created and when
2964 * a permanent write count is taken through
2965 * the 'struct file' in finish_open().
2966 */
2967 if (!got_write) {
2968 error = -EROFS;
2969 goto out_dput;
2970 }
2971 *opened |= FILE_CREATED;
2972 error = security_path_mknod(&nd->path, dentry, mode, 0);
2973 if (error)
2974 goto out_dput;
2975 error = vfs_create(dir->d_inode, dentry, mode,
2976 nd->flags & LOOKUP_EXCL);
2977 if (error)
2978 goto out_dput;
2979 }
2980 out_no_open:
2981 path->dentry = dentry;
2982 path->mnt = nd->path.mnt;
2983 return 1;
2984
2985 out_dput:
2986 dput(dentry);
2987 return error;
2988 }
2989
2990 /*
2991 * Handle the last step of open()
2992 */
2993 static int do_last(struct nameidata *nd,
2994 struct file *file, const struct open_flags *op,
2995 int *opened)
2996 {
2997 struct dentry *dir = nd->path.dentry;
2998 int open_flag = op->open_flag;
2999 bool will_truncate = (open_flag & O_TRUNC) != 0;
3000 bool got_write = false;
3001 int acc_mode = op->acc_mode;
3002 unsigned seq;
3003 struct inode *inode;
3004 struct path save_parent = { .dentry = NULL, .mnt = NULL };
3005 struct path path;
3006 bool retried = false;
3007 int error;
3008
3009 nd->flags &= ~LOOKUP_PARENT;
3010 nd->flags |= op->intent;
3011
3012 if (nd->last_type != LAST_NORM) {
3013 error = handle_dots(nd, nd->last_type);
3014 if (unlikely(error))
3015 return error;
3016 goto finish_open;
3017 }
3018
3019 if (!(open_flag & O_CREAT)) {
3020 if (nd->last.name[nd->last.len])
3021 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3022 /* we _can_ be in RCU mode here */
3023 error = lookup_fast(nd, &path, &inode, &seq);
3024 if (likely(!error))
3025 goto finish_lookup;
3026
3027 if (error < 0)
3028 return error;
3029
3030 BUG_ON(nd->inode != dir->d_inode);
3031 } else {
3032 /* create side of things */
3033 /*
3034 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3035 * has been cleared when we got to the last component we are
3036 * about to look up
3037 */
3038 error = complete_walk(nd);
3039 if (error)
3040 return error;
3041
3042 audit_inode(nd->name, dir, LOOKUP_PARENT);
3043 /* trailing slashes? */
3044 if (unlikely(nd->last.name[nd->last.len]))
3045 return -EISDIR;
3046 }
3047
3048 retry_lookup:
3049 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3050 error = mnt_want_write(nd->path.mnt);
3051 if (!error)
3052 got_write = true;
3053 /*
3054 * do _not_ fail yet - we might not need that or fail with
3055 * a different error; let lookup_open() decide; we'll be
3056 * dropping this one anyway.
3057 */
3058 }
3059 mutex_lock(&dir->d_inode->i_mutex);
3060 error = lookup_open(nd, &path, file, op, got_write, opened);
3061 mutex_unlock(&dir->d_inode->i_mutex);
3062
3063 if (error <= 0) {
3064 if (error)
3065 goto out;
3066
3067 if ((*opened & FILE_CREATED) ||
3068 !S_ISREG(file_inode(file)->i_mode))
3069 will_truncate = false;
3070
3071 audit_inode(nd->name, file->f_path.dentry, 0);
3072 goto opened;
3073 }
3074
3075 if (*opened & FILE_CREATED) {
3076 /* Don't check for write permission, don't truncate */
3077 open_flag &= ~O_TRUNC;
3078 will_truncate = false;
3079 acc_mode = MAY_OPEN;
3080 path_to_nameidata(&path, nd);
3081 goto finish_open_created;
3082 }
3083
3084 /*
3085 * create/update audit record if it already exists.
3086 */
3087 if (d_is_positive(path.dentry))
3088 audit_inode(nd->name, path.dentry, 0);
3089
3090 /*
3091 * If atomic_open() acquired write access it is dropped now due to
3092 * possible mount and symlink following (this might be optimized away if
3093 * necessary...)
3094 */
3095 if (got_write) {
3096 mnt_drop_write(nd->path.mnt);
3097 got_write = false;
3098 }
3099
3100 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3101 path_to_nameidata(&path, nd);
3102 return -EEXIST;
3103 }
3104
3105 error = follow_managed(&path, nd);
3106 if (unlikely(error < 0))
3107 return error;
3108
3109 BUG_ON(nd->flags & LOOKUP_RCU);
3110 inode = d_backing_inode(path.dentry);
3111 seq = 0; /* out of RCU mode, so the value doesn't matter */
3112 if (unlikely(d_is_negative(path.dentry))) {
3113 path_to_nameidata(&path, nd);
3114 return -ENOENT;
3115 }
3116 finish_lookup:
3117 if (nd->depth)
3118 put_link(nd);
3119 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3120 inode, seq);
3121 if (unlikely(error))
3122 return error;
3123
3124 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3125 path_to_nameidata(&path, nd);
3126 return -ELOOP;
3127 }
3128
3129 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3130 path_to_nameidata(&path, nd);
3131 } else {
3132 save_parent.dentry = nd->path.dentry;
3133 save_parent.mnt = mntget(path.mnt);
3134 nd->path.dentry = path.dentry;
3135
3136 }
3137 nd->inode = inode;
3138 nd->seq = seq;
3139 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3140 finish_open:
3141 error = complete_walk(nd);
3142 if (error) {
3143 path_put(&save_parent);
3144 return error;
3145 }
3146 audit_inode(nd->name, nd->path.dentry, 0);
3147 error = -EISDIR;
3148 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3149 goto out;
3150 error = -ENOTDIR;
3151 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3152 goto out;
3153 if (!d_is_reg(nd->path.dentry))
3154 will_truncate = false;
3155
3156 if (will_truncate) {
3157 error = mnt_want_write(nd->path.mnt);
3158 if (error)
3159 goto out;
3160 got_write = true;
3161 }
3162 finish_open_created:
3163 error = may_open(&nd->path, acc_mode, open_flag);
3164 if (error)
3165 goto out;
3166
3167 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3168 error = vfs_open(&nd->path, file, current_cred());
3169 if (!error) {
3170 *opened |= FILE_OPENED;
3171 } else {
3172 if (error == -EOPENSTALE)
3173 goto stale_open;
3174 goto out;
3175 }
3176 opened:
3177 error = open_check_o_direct(file);
3178 if (error)
3179 goto exit_fput;
3180 error = ima_file_check(file, op->acc_mode, *opened);
3181 if (error)
3182 goto exit_fput;
3183
3184 if (will_truncate) {
3185 error = handle_truncate(file);
3186 if (error)
3187 goto exit_fput;
3188 }
3189 out:
3190 if (got_write)
3191 mnt_drop_write(nd->path.mnt);
3192 path_put(&save_parent);
3193 return error;
3194
3195 exit_fput:
3196 fput(file);
3197 goto out;
3198
3199 stale_open:
3200 /* If no saved parent or already retried then can't retry */
3201 if (!save_parent.dentry || retried)
3202 goto out;
3203
3204 BUG_ON(save_parent.dentry != dir);
3205 path_put(&nd->path);
3206 nd->path = save_parent;
3207 nd->inode = dir->d_inode;
3208 save_parent.mnt = NULL;
3209 save_parent.dentry = NULL;
3210 if (got_write) {
3211 mnt_drop_write(nd->path.mnt);
3212 got_write = false;
3213 }
3214 retried = true;
3215 goto retry_lookup;
3216 }
3217
3218 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3219 const struct open_flags *op,
3220 struct file *file, int *opened)
3221 {
3222 static const struct qstr name = QSTR_INIT("/", 1);
3223 struct dentry *child;
3224 struct inode *dir;
3225 struct path path;
3226 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3227 if (unlikely(error))
3228 return error;
3229 error = mnt_want_write(path.mnt);
3230 if (unlikely(error))
3231 goto out;
3232 dir = path.dentry->d_inode;
3233 /* we want directory to be writable */
3234 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3235 if (error)
3236 goto out2;
3237 if (!dir->i_op->tmpfile) {
3238 error = -EOPNOTSUPP;
3239 goto out2;
3240 }
3241 child = d_alloc(path.dentry, &name);
3242 if (unlikely(!child)) {
3243 error = -ENOMEM;
3244 goto out2;
3245 }
3246 dput(path.dentry);
3247 path.dentry = child;
3248 error = dir->i_op->tmpfile(dir, child, op->mode);
3249 if (error)
3250 goto out2;
3251 audit_inode(nd->name, child, 0);
3252 /* Don't check for other permissions, the inode was just created */
3253 error = may_open(&path, MAY_OPEN, op->open_flag);
3254 if (error)
3255 goto out2;
3256 file->f_path.mnt = path.mnt;
3257 error = finish_open(file, child, NULL, opened);
3258 if (error)
3259 goto out2;
3260 error = open_check_o_direct(file);
3261 if (error) {
3262 fput(file);
3263 } else if (!(op->open_flag & O_EXCL)) {
3264 struct inode *inode = file_inode(file);
3265 spin_lock(&inode->i_lock);
3266 inode->i_state |= I_LINKABLE;
3267 spin_unlock(&inode->i_lock);
3268 }
3269 out2:
3270 mnt_drop_write(path.mnt);
3271 out:
3272 path_put(&path);
3273 return error;
3274 }
3275
3276 static struct file *path_openat(struct nameidata *nd,
3277 const struct open_flags *op, unsigned flags)
3278 {
3279 const char *s;
3280 struct file *file;
3281 int opened = 0;
3282 int error;
3283
3284 file = get_empty_filp();
3285 if (IS_ERR(file))
3286 return file;
3287
3288 file->f_flags = op->open_flag;
3289
3290 if (unlikely(file->f_flags & __O_TMPFILE)) {
3291 error = do_tmpfile(nd, flags, op, file, &opened);
3292 goto out2;
3293 }
3294
3295 s = path_init(nd, flags);
3296 if (IS_ERR(s)) {
3297 put_filp(file);
3298 return ERR_CAST(s);
3299 }
3300 while (!(error = link_path_walk(s, nd)) &&
3301 (error = do_last(nd, file, op, &opened)) > 0) {
3302 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3303 s = trailing_symlink(nd);
3304 if (IS_ERR(s)) {
3305 error = PTR_ERR(s);
3306 break;
3307 }
3308 }
3309 terminate_walk(nd);
3310 out2:
3311 if (!(opened & FILE_OPENED)) {
3312 BUG_ON(!error);
3313 put_filp(file);
3314 }
3315 if (unlikely(error)) {
3316 if (error == -EOPENSTALE) {
3317 if (flags & LOOKUP_RCU)
3318 error = -ECHILD;
3319 else
3320 error = -ESTALE;
3321 }
3322 file = ERR_PTR(error);
3323 }
3324 return file;
3325 }
3326
3327 struct file *do_filp_open(int dfd, struct filename *pathname,
3328 const struct open_flags *op)
3329 {
3330 struct nameidata nd;
3331 int flags = op->lookup_flags;
3332 struct file *filp;
3333
3334 set_nameidata(&nd, dfd, pathname);
3335 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3336 if (unlikely(filp == ERR_PTR(-ECHILD)))
3337 filp = path_openat(&nd, op, flags);
3338 if (unlikely(filp == ERR_PTR(-ESTALE)))
3339 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3340 restore_nameidata();
3341 return filp;
3342 }
3343
3344 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3345 const char *name, const struct open_flags *op)
3346 {
3347 struct nameidata nd;
3348 struct file *file;
3349 struct filename *filename;
3350 int flags = op->lookup_flags | LOOKUP_ROOT;
3351
3352 nd.root.mnt = mnt;
3353 nd.root.dentry = dentry;
3354
3355 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3356 return ERR_PTR(-ELOOP);
3357
3358 filename = getname_kernel(name);
3359 if (unlikely(IS_ERR(filename)))
3360 return ERR_CAST(filename);
3361
3362 set_nameidata(&nd, -1, filename);
3363 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3364 if (unlikely(file == ERR_PTR(-ECHILD)))
3365 file = path_openat(&nd, op, flags);
3366 if (unlikely(file == ERR_PTR(-ESTALE)))
3367 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3368 restore_nameidata();
3369 putname(filename);
3370 return file;
3371 }
3372
3373 static struct dentry *filename_create(int dfd, struct filename *name,
3374 struct path *path, unsigned int lookup_flags)
3375 {
3376 struct dentry *dentry = ERR_PTR(-EEXIST);
3377 struct qstr last;
3378 int type;
3379 int err2;
3380 int error;
3381 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3382
3383 /*
3384 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3385 * other flags passed in are ignored!
3386 */
3387 lookup_flags &= LOOKUP_REVAL;
3388
3389 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3390 if (IS_ERR(name))
3391 return ERR_CAST(name);
3392
3393 /*
3394 * Yucky last component or no last component at all?
3395 * (foo/., foo/.., /////)
3396 */
3397 if (unlikely(type != LAST_NORM))
3398 goto out;
3399
3400 /* don't fail immediately if it's r/o, at least try to report other errors */
3401 err2 = mnt_want_write(path->mnt);
3402 /*
3403 * Do the final lookup.
3404 */
3405 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3406 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3407 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3408 if (IS_ERR(dentry))
3409 goto unlock;
3410
3411 error = -EEXIST;
3412 if (d_is_positive(dentry))
3413 goto fail;
3414
3415 /*
3416 * Special case - lookup gave negative, but... we had foo/bar/
3417 * From the vfs_mknod() POV we just have a negative dentry -
3418 * all is fine. Let's be bastards - you had / on the end, you've
3419 * been asking for (non-existent) directory. -ENOENT for you.
3420 */
3421 if (unlikely(!is_dir && last.name[last.len])) {
3422 error = -ENOENT;
3423 goto fail;
3424 }
3425 if (unlikely(err2)) {
3426 error = err2;
3427 goto fail;
3428 }
3429 putname(name);
3430 return dentry;
3431 fail:
3432 dput(dentry);
3433 dentry = ERR_PTR(error);
3434 unlock:
3435 mutex_unlock(&path->dentry->d_inode->i_mutex);
3436 if (!err2)
3437 mnt_drop_write(path->mnt);
3438 out:
3439 path_put(path);
3440 putname(name);
3441 return dentry;
3442 }
3443
3444 struct dentry *kern_path_create(int dfd, const char *pathname,
3445 struct path *path, unsigned int lookup_flags)
3446 {
3447 return filename_create(dfd, getname_kernel(pathname),
3448 path, lookup_flags);
3449 }
3450 EXPORT_SYMBOL(kern_path_create);
3451
3452 void done_path_create(struct path *path, struct dentry *dentry)
3453 {
3454 dput(dentry);
3455 mutex_unlock(&path->dentry->d_inode->i_mutex);
3456 mnt_drop_write(path->mnt);
3457 path_put(path);
3458 }
3459 EXPORT_SYMBOL(done_path_create);
3460
3461 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3462 struct path *path, unsigned int lookup_flags)
3463 {
3464 return filename_create(dfd, getname(pathname), path, lookup_flags);
3465 }
3466 EXPORT_SYMBOL(user_path_create);
3467
3468 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3469 {
3470 int error = may_create(dir, dentry);
3471
3472 if (error)
3473 return error;
3474
3475 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3476 return -EPERM;
3477
3478 if (!dir->i_op->mknod)
3479 return -EPERM;
3480
3481 error = devcgroup_inode_mknod(mode, dev);
3482 if (error)
3483 return error;
3484
3485 error = security_inode_mknod(dir, dentry, mode, dev);
3486 if (error)
3487 return error;
3488
3489 error = dir->i_op->mknod(dir, dentry, mode, dev);
3490 if (!error)
3491 fsnotify_create(dir, dentry);
3492 return error;
3493 }
3494 EXPORT_SYMBOL(vfs_mknod);
3495
3496 static int may_mknod(umode_t mode)
3497 {
3498 switch (mode & S_IFMT) {
3499 case S_IFREG:
3500 case S_IFCHR:
3501 case S_IFBLK:
3502 case S_IFIFO:
3503 case S_IFSOCK:
3504 case 0: /* zero mode translates to S_IFREG */
3505 return 0;
3506 case S_IFDIR:
3507 return -EPERM;
3508 default:
3509 return -EINVAL;
3510 }
3511 }
3512
3513 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3514 unsigned, dev)
3515 {
3516 struct dentry *dentry;
3517 struct path path;
3518 int error;
3519 unsigned int lookup_flags = 0;
3520
3521 error = may_mknod(mode);
3522 if (error)
3523 return error;
3524 retry:
3525 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3526 if (IS_ERR(dentry))
3527 return PTR_ERR(dentry);
3528
3529 if (!IS_POSIXACL(path.dentry->d_inode))
3530 mode &= ~current_umask();
3531 error = security_path_mknod(&path, dentry, mode, dev);
3532 if (error)
3533 goto out;
3534 switch (mode & S_IFMT) {
3535 case 0: case S_IFREG:
3536 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3537 break;
3538 case S_IFCHR: case S_IFBLK:
3539 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3540 new_decode_dev(dev));
3541 break;
3542 case S_IFIFO: case S_IFSOCK:
3543 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3544 break;
3545 }
3546 out:
3547 done_path_create(&path, dentry);
3548 if (retry_estale(error, lookup_flags)) {
3549 lookup_flags |= LOOKUP_REVAL;
3550 goto retry;
3551 }
3552 return error;
3553 }
3554
3555 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3556 {
3557 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3558 }
3559
3560 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3561 {
3562 int error = may_create(dir, dentry);
3563 unsigned max_links = dir->i_sb->s_max_links;
3564
3565 if (error)
3566 return error;
3567
3568 if (!dir->i_op->mkdir)
3569 return -EPERM;
3570
3571 mode &= (S_IRWXUGO|S_ISVTX);
3572 error = security_inode_mkdir(dir, dentry, mode);
3573 if (error)
3574 return error;
3575
3576 if (max_links && dir->i_nlink >= max_links)
3577 return -EMLINK;
3578
3579 error = dir->i_op->mkdir(dir, dentry, mode);
3580 if (!error)
3581 fsnotify_mkdir(dir, dentry);
3582 return error;
3583 }
3584 EXPORT_SYMBOL(vfs_mkdir);
3585
3586 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3587 {
3588 struct dentry *dentry;
3589 struct path path;
3590 int error;
3591 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3592
3593 retry:
3594 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3595 if (IS_ERR(dentry))
3596 return PTR_ERR(dentry);
3597
3598 if (!IS_POSIXACL(path.dentry->d_inode))
3599 mode &= ~current_umask();
3600 error = security_path_mkdir(&path, dentry, mode);
3601 if (!error)
3602 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3603 done_path_create(&path, dentry);
3604 if (retry_estale(error, lookup_flags)) {
3605 lookup_flags |= LOOKUP_REVAL;
3606 goto retry;
3607 }
3608 return error;
3609 }
3610
3611 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3612 {
3613 return sys_mkdirat(AT_FDCWD, pathname, mode);
3614 }
3615
3616 /*
3617 * The dentry_unhash() helper will try to drop the dentry early: we
3618 * should have a usage count of 1 if we're the only user of this
3619 * dentry, and if that is true (possibly after pruning the dcache),
3620 * then we drop the dentry now.
3621 *
3622 * A low-level filesystem can, if it choses, legally
3623 * do a
3624 *
3625 * if (!d_unhashed(dentry))
3626 * return -EBUSY;
3627 *
3628 * if it cannot handle the case of removing a directory
3629 * that is still in use by something else..
3630 */
3631 void dentry_unhash(struct dentry *dentry)
3632 {
3633 shrink_dcache_parent(dentry);
3634 spin_lock(&dentry->d_lock);
3635 if (dentry->d_lockref.count == 1)
3636 __d_drop(dentry);
3637 spin_unlock(&dentry->d_lock);
3638 }
3639 EXPORT_SYMBOL(dentry_unhash);
3640
3641 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3642 {
3643 int error = may_delete(dir, dentry, 1);
3644
3645 if (error)
3646 return error;
3647
3648 if (!dir->i_op->rmdir)
3649 return -EPERM;
3650
3651 dget(dentry);
3652 mutex_lock(&dentry->d_inode->i_mutex);
3653
3654 error = -EBUSY;
3655 if (is_local_mountpoint(dentry))
3656 goto out;
3657
3658 error = security_inode_rmdir(dir, dentry);
3659 if (error)
3660 goto out;
3661
3662 shrink_dcache_parent(dentry);
3663 error = dir->i_op->rmdir(dir, dentry);
3664 if (error)
3665 goto out;
3666
3667 dentry->d_inode->i_flags |= S_DEAD;
3668 dont_mount(dentry);
3669 detach_mounts(dentry);
3670
3671 out:
3672 mutex_unlock(&dentry->d_inode->i_mutex);
3673 dput(dentry);
3674 if (!error)
3675 d_delete(dentry);
3676 return error;
3677 }
3678 EXPORT_SYMBOL(vfs_rmdir);
3679
3680 static long do_rmdir(int dfd, const char __user *pathname)
3681 {
3682 int error = 0;
3683 struct filename *name;
3684 struct dentry *dentry;
3685 struct path path;
3686 struct qstr last;
3687 int type;
3688 unsigned int lookup_flags = 0;
3689 retry:
3690 name = user_path_parent(dfd, pathname,
3691 &path, &last, &type, lookup_flags);
3692 if (IS_ERR(name))
3693 return PTR_ERR(name);
3694
3695 switch (type) {
3696 case LAST_DOTDOT:
3697 error = -ENOTEMPTY;
3698 goto exit1;
3699 case LAST_DOT:
3700 error = -EINVAL;
3701 goto exit1;
3702 case LAST_ROOT:
3703 error = -EBUSY;
3704 goto exit1;
3705 }
3706
3707 error = mnt_want_write(path.mnt);
3708 if (error)
3709 goto exit1;
3710
3711 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3712 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3713 error = PTR_ERR(dentry);
3714 if (IS_ERR(dentry))
3715 goto exit2;
3716 if (!dentry->d_inode) {
3717 error = -ENOENT;
3718 goto exit3;
3719 }
3720 error = security_path_rmdir(&path, dentry);
3721 if (error)
3722 goto exit3;
3723 error = vfs_rmdir(path.dentry->d_inode, dentry);
3724 exit3:
3725 dput(dentry);
3726 exit2:
3727 mutex_unlock(&path.dentry->d_inode->i_mutex);
3728 mnt_drop_write(path.mnt);
3729 exit1:
3730 path_put(&path);
3731 putname(name);
3732 if (retry_estale(error, lookup_flags)) {
3733 lookup_flags |= LOOKUP_REVAL;
3734 goto retry;
3735 }
3736 return error;
3737 }
3738
3739 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3740 {
3741 return do_rmdir(AT_FDCWD, pathname);
3742 }
3743
3744 /**
3745 * vfs_unlink - unlink a filesystem object
3746 * @dir: parent directory
3747 * @dentry: victim
3748 * @delegated_inode: returns victim inode, if the inode is delegated.
3749 *
3750 * The caller must hold dir->i_mutex.
3751 *
3752 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3753 * return a reference to the inode in delegated_inode. The caller
3754 * should then break the delegation on that inode and retry. Because
3755 * breaking a delegation may take a long time, the caller should drop
3756 * dir->i_mutex before doing so.
3757 *
3758 * Alternatively, a caller may pass NULL for delegated_inode. This may
3759 * be appropriate for callers that expect the underlying filesystem not
3760 * to be NFS exported.
3761 */
3762 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3763 {
3764 struct inode *target = dentry->d_inode;
3765 int error = may_delete(dir, dentry, 0);
3766
3767 if (error)
3768 return error;
3769
3770 if (!dir->i_op->unlink)
3771 return -EPERM;
3772
3773 mutex_lock(&target->i_mutex);
3774 if (is_local_mountpoint(dentry))
3775 error = -EBUSY;
3776 else {
3777 error = security_inode_unlink(dir, dentry);
3778 if (!error) {
3779 error = try_break_deleg(target, delegated_inode);
3780 if (error)
3781 goto out;
3782 error = dir->i_op->unlink(dir, dentry);
3783 if (!error) {
3784 dont_mount(dentry);
3785 detach_mounts(dentry);
3786 }
3787 }
3788 }
3789 out:
3790 mutex_unlock(&target->i_mutex);
3791
3792 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3793 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3794 fsnotify_link_count(target);
3795 d_delete(dentry);
3796 }
3797
3798 return error;
3799 }
3800 EXPORT_SYMBOL(vfs_unlink);
3801
3802 /*
3803 * Make sure that the actual truncation of the file will occur outside its
3804 * directory's i_mutex. Truncate can take a long time if there is a lot of
3805 * writeout happening, and we don't want to prevent access to the directory
3806 * while waiting on the I/O.
3807 */
3808 static long do_unlinkat(int dfd, const char __user *pathname)
3809 {
3810 int error;
3811 struct filename *name;
3812 struct dentry *dentry;
3813 struct path path;
3814 struct qstr last;
3815 int type;
3816 struct inode *inode = NULL;
3817 struct inode *delegated_inode = NULL;
3818 unsigned int lookup_flags = 0;
3819 retry:
3820 name = user_path_parent(dfd, pathname,
3821 &path, &last, &type, lookup_flags);
3822 if (IS_ERR(name))
3823 return PTR_ERR(name);
3824
3825 error = -EISDIR;
3826 if (type != LAST_NORM)
3827 goto exit1;
3828
3829 error = mnt_want_write(path.mnt);
3830 if (error)
3831 goto exit1;
3832 retry_deleg:
3833 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3834 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3835 error = PTR_ERR(dentry);
3836 if (!IS_ERR(dentry)) {
3837 /* Why not before? Because we want correct error value */
3838 if (last.name[last.len])
3839 goto slashes;
3840 inode = dentry->d_inode;
3841 if (d_is_negative(dentry))
3842 goto slashes;
3843 ihold(inode);
3844 error = security_path_unlink(&path, dentry);
3845 if (error)
3846 goto exit2;
3847 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3848 exit2:
3849 dput(dentry);
3850 }
3851 mutex_unlock(&path.dentry->d_inode->i_mutex);
3852 if (inode)
3853 iput(inode); /* truncate the inode here */
3854 inode = NULL;
3855 if (delegated_inode) {
3856 error = break_deleg_wait(&delegated_inode);
3857 if (!error)
3858 goto retry_deleg;
3859 }
3860 mnt_drop_write(path.mnt);
3861 exit1:
3862 path_put(&path);
3863 putname(name);
3864 if (retry_estale(error, lookup_flags)) {
3865 lookup_flags |= LOOKUP_REVAL;
3866 inode = NULL;
3867 goto retry;
3868 }
3869 return error;
3870
3871 slashes:
3872 if (d_is_negative(dentry))
3873 error = -ENOENT;
3874 else if (d_is_dir(dentry))
3875 error = -EISDIR;
3876 else
3877 error = -ENOTDIR;
3878 goto exit2;
3879 }
3880
3881 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3882 {
3883 if ((flag & ~AT_REMOVEDIR) != 0)
3884 return -EINVAL;
3885
3886 if (flag & AT_REMOVEDIR)
3887 return do_rmdir(dfd, pathname);
3888
3889 return do_unlinkat(dfd, pathname);
3890 }
3891
3892 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3893 {
3894 return do_unlinkat(AT_FDCWD, pathname);
3895 }
3896
3897 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3898 {
3899 int error = may_create(dir, dentry);
3900
3901 if (error)
3902 return error;
3903
3904 if (!dir->i_op->symlink)
3905 return -EPERM;
3906
3907 error = security_inode_symlink(dir, dentry, oldname);
3908 if (error)
3909 return error;
3910
3911 error = dir->i_op->symlink(dir, dentry, oldname);
3912 if (!error)
3913 fsnotify_create(dir, dentry);
3914 return error;
3915 }
3916 EXPORT_SYMBOL(vfs_symlink);
3917
3918 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3919 int, newdfd, const char __user *, newname)
3920 {
3921 int error;
3922 struct filename *from;
3923 struct dentry *dentry;
3924 struct path path;
3925 unsigned int lookup_flags = 0;
3926
3927 from = getname(oldname);
3928 if (IS_ERR(from))
3929 return PTR_ERR(from);
3930 retry:
3931 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3932 error = PTR_ERR(dentry);
3933 if (IS_ERR(dentry))
3934 goto out_putname;
3935
3936 error = security_path_symlink(&path, dentry, from->name);
3937 if (!error)
3938 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3939 done_path_create(&path, dentry);
3940 if (retry_estale(error, lookup_flags)) {
3941 lookup_flags |= LOOKUP_REVAL;
3942 goto retry;
3943 }
3944 out_putname:
3945 putname(from);
3946 return error;
3947 }
3948
3949 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3950 {
3951 return sys_symlinkat(oldname, AT_FDCWD, newname);
3952 }
3953
3954 /**
3955 * vfs_link - create a new link
3956 * @old_dentry: object to be linked
3957 * @dir: new parent
3958 * @new_dentry: where to create the new link
3959 * @delegated_inode: returns inode needing a delegation break
3960 *
3961 * The caller must hold dir->i_mutex
3962 *
3963 * If vfs_link discovers a delegation on the to-be-linked file in need
3964 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3965 * inode in delegated_inode. The caller should then break the delegation
3966 * and retry. Because breaking a delegation may take a long time, the
3967 * caller should drop the i_mutex before doing so.
3968 *
3969 * Alternatively, a caller may pass NULL for delegated_inode. This may
3970 * be appropriate for callers that expect the underlying filesystem not
3971 * to be NFS exported.
3972 */
3973 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3974 {
3975 struct inode *inode = old_dentry->d_inode;
3976 unsigned max_links = dir->i_sb->s_max_links;
3977 int error;
3978
3979 if (!inode)
3980 return -ENOENT;
3981
3982 error = may_create(dir, new_dentry);
3983 if (error)
3984 return error;
3985
3986 if (dir->i_sb != inode->i_sb)
3987 return -EXDEV;
3988
3989 /*
3990 * A link to an append-only or immutable file cannot be created.
3991 */
3992 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3993 return -EPERM;
3994 if (!dir->i_op->link)
3995 return -EPERM;
3996 if (S_ISDIR(inode->i_mode))
3997 return -EPERM;
3998
3999 error = security_inode_link(old_dentry, dir, new_dentry);
4000 if (error)
4001 return error;
4002
4003 mutex_lock(&inode->i_mutex);
4004 /* Make sure we don't allow creating hardlink to an unlinked file */
4005 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4006 error = -ENOENT;
4007 else if (max_links && inode->i_nlink >= max_links)
4008 error = -EMLINK;
4009 else {
4010 error = try_break_deleg(inode, delegated_inode);
4011 if (!error)
4012 error = dir->i_op->link(old_dentry, dir, new_dentry);
4013 }
4014
4015 if (!error && (inode->i_state & I_LINKABLE)) {
4016 spin_lock(&inode->i_lock);
4017 inode->i_state &= ~I_LINKABLE;
4018 spin_unlock(&inode->i_lock);
4019 }
4020 mutex_unlock(&inode->i_mutex);
4021 if (!error)
4022 fsnotify_link(dir, inode, new_dentry);
4023 return error;
4024 }
4025 EXPORT_SYMBOL(vfs_link);
4026
4027 /*
4028 * Hardlinks are often used in delicate situations. We avoid
4029 * security-related surprises by not following symlinks on the
4030 * newname. --KAB
4031 *
4032 * We don't follow them on the oldname either to be compatible
4033 * with linux 2.0, and to avoid hard-linking to directories
4034 * and other special files. --ADM
4035 */
4036 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4037 int, newdfd, const char __user *, newname, int, flags)
4038 {
4039 struct dentry *new_dentry;
4040 struct path old_path, new_path;
4041 struct inode *delegated_inode = NULL;
4042 int how = 0;
4043 int error;
4044
4045 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4046 return -EINVAL;
4047 /*
4048 * To use null names we require CAP_DAC_READ_SEARCH
4049 * This ensures that not everyone will be able to create
4050 * handlink using the passed filedescriptor.
4051 */
4052 if (flags & AT_EMPTY_PATH) {
4053 if (!capable(CAP_DAC_READ_SEARCH))
4054 return -ENOENT;
4055 how = LOOKUP_EMPTY;
4056 }
4057
4058 if (flags & AT_SYMLINK_FOLLOW)
4059 how |= LOOKUP_FOLLOW;
4060 retry:
4061 error = user_path_at(olddfd, oldname, how, &old_path);
4062 if (error)
4063 return error;
4064
4065 new_dentry = user_path_create(newdfd, newname, &new_path,
4066 (how & LOOKUP_REVAL));
4067 error = PTR_ERR(new_dentry);
4068 if (IS_ERR(new_dentry))
4069 goto out;
4070
4071 error = -EXDEV;
4072 if (old_path.mnt != new_path.mnt)
4073 goto out_dput;
4074 error = may_linkat(&old_path);
4075 if (unlikely(error))
4076 goto out_dput;
4077 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4078 if (error)
4079 goto out_dput;
4080 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4081 out_dput:
4082 done_path_create(&new_path, new_dentry);
4083 if (delegated_inode) {
4084 error = break_deleg_wait(&delegated_inode);
4085 if (!error) {
4086 path_put(&old_path);
4087 goto retry;
4088 }
4089 }
4090 if (retry_estale(error, how)) {
4091 path_put(&old_path);
4092 how |= LOOKUP_REVAL;
4093 goto retry;
4094 }
4095 out:
4096 path_put(&old_path);
4097
4098 return error;
4099 }
4100
4101 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4102 {
4103 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4104 }
4105
4106 /**
4107 * vfs_rename - rename a filesystem object
4108 * @old_dir: parent of source
4109 * @old_dentry: source
4110 * @new_dir: parent of destination
4111 * @new_dentry: destination
4112 * @delegated_inode: returns an inode needing a delegation break
4113 * @flags: rename flags
4114 *
4115 * The caller must hold multiple mutexes--see lock_rename()).
4116 *
4117 * If vfs_rename discovers a delegation in need of breaking at either
4118 * the source or destination, it will return -EWOULDBLOCK and return a
4119 * reference to the inode in delegated_inode. The caller should then
4120 * break the delegation and retry. Because breaking a delegation may
4121 * take a long time, the caller should drop all locks before doing
4122 * so.
4123 *
4124 * Alternatively, a caller may pass NULL for delegated_inode. This may
4125 * be appropriate for callers that expect the underlying filesystem not
4126 * to be NFS exported.
4127 *
4128 * The worst of all namespace operations - renaming directory. "Perverted"
4129 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4130 * Problems:
4131 * a) we can get into loop creation.
4132 * b) race potential - two innocent renames can create a loop together.
4133 * That's where 4.4 screws up. Current fix: serialization on
4134 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4135 * story.
4136 * c) we have to lock _four_ objects - parents and victim (if it exists),
4137 * and source (if it is not a directory).
4138 * And that - after we got ->i_mutex on parents (until then we don't know
4139 * whether the target exists). Solution: try to be smart with locking
4140 * order for inodes. We rely on the fact that tree topology may change
4141 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4142 * move will be locked. Thus we can rank directories by the tree
4143 * (ancestors first) and rank all non-directories after them.
4144 * That works since everybody except rename does "lock parent, lookup,
4145 * lock child" and rename is under ->s_vfs_rename_mutex.
4146 * HOWEVER, it relies on the assumption that any object with ->lookup()
4147 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4148 * we'd better make sure that there's no link(2) for them.
4149 * d) conversion from fhandle to dentry may come in the wrong moment - when
4150 * we are removing the target. Solution: we will have to grab ->i_mutex
4151 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4152 * ->i_mutex on parents, which works but leads to some truly excessive
4153 * locking].
4154 */
4155 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4156 struct inode *new_dir, struct dentry *new_dentry,
4157 struct inode **delegated_inode, unsigned int flags)
4158 {
4159 int error;
4160 bool is_dir = d_is_dir(old_dentry);
4161 const unsigned char *old_name;
4162 struct inode *source = old_dentry->d_inode;
4163 struct inode *target = new_dentry->d_inode;
4164 bool new_is_dir = false;
4165 unsigned max_links = new_dir->i_sb->s_max_links;
4166
4167 if (source == target)
4168 return 0;
4169
4170 error = may_delete(old_dir, old_dentry, is_dir);
4171 if (error)
4172 return error;
4173
4174 if (!target) {
4175 error = may_create(new_dir, new_dentry);
4176 } else {
4177 new_is_dir = d_is_dir(new_dentry);
4178
4179 if (!(flags & RENAME_EXCHANGE))
4180 error = may_delete(new_dir, new_dentry, is_dir);
4181 else
4182 error = may_delete(new_dir, new_dentry, new_is_dir);
4183 }
4184 if (error)
4185 return error;
4186
4187 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4188 return -EPERM;
4189
4190 if (flags && !old_dir->i_op->rename2)
4191 return -EINVAL;
4192
4193 /*
4194 * If we are going to change the parent - check write permissions,
4195 * we'll need to flip '..'.
4196 */
4197 if (new_dir != old_dir) {
4198 if (is_dir) {
4199 error = inode_permission(source, MAY_WRITE);
4200 if (error)
4201 return error;
4202 }
4203 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4204 error = inode_permission(target, MAY_WRITE);
4205 if (error)
4206 return error;
4207 }
4208 }
4209
4210 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4211 flags);
4212 if (error)
4213 return error;
4214
4215 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4216 dget(new_dentry);
4217 if (!is_dir || (flags & RENAME_EXCHANGE))
4218 lock_two_nondirectories(source, target);
4219 else if (target)
4220 mutex_lock(&target->i_mutex);
4221
4222 error = -EBUSY;
4223 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4224 goto out;
4225
4226 if (max_links && new_dir != old_dir) {
4227 error = -EMLINK;
4228 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4229 goto out;
4230 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4231 old_dir->i_nlink >= max_links)
4232 goto out;
4233 }
4234 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4235 shrink_dcache_parent(new_dentry);
4236 if (!is_dir) {
4237 error = try_break_deleg(source, delegated_inode);
4238 if (error)
4239 goto out;
4240 }
4241 if (target && !new_is_dir) {
4242 error = try_break_deleg(target, delegated_inode);
4243 if (error)
4244 goto out;
4245 }
4246 if (!old_dir->i_op->rename2) {
4247 error = old_dir->i_op->rename(old_dir, old_dentry,
4248 new_dir, new_dentry);
4249 } else {
4250 WARN_ON(old_dir->i_op->rename != NULL);
4251 error = old_dir->i_op->rename2(old_dir, old_dentry,
4252 new_dir, new_dentry, flags);
4253 }
4254 if (error)
4255 goto out;
4256
4257 if (!(flags & RENAME_EXCHANGE) && target) {
4258 if (is_dir)
4259 target->i_flags |= S_DEAD;
4260 dont_mount(new_dentry);
4261 detach_mounts(new_dentry);
4262 }
4263 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4264 if (!(flags & RENAME_EXCHANGE))
4265 d_move(old_dentry, new_dentry);
4266 else
4267 d_exchange(old_dentry, new_dentry);
4268 }
4269 out:
4270 if (!is_dir || (flags & RENAME_EXCHANGE))
4271 unlock_two_nondirectories(source, target);
4272 else if (target)
4273 mutex_unlock(&target->i_mutex);
4274 dput(new_dentry);
4275 if (!error) {
4276 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4277 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4278 if (flags & RENAME_EXCHANGE) {
4279 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4280 new_is_dir, NULL, new_dentry);
4281 }
4282 }
4283 fsnotify_oldname_free(old_name);
4284
4285 return error;
4286 }
4287 EXPORT_SYMBOL(vfs_rename);
4288
4289 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4290 int, newdfd, const char __user *, newname, unsigned int, flags)
4291 {
4292 struct dentry *old_dentry, *new_dentry;
4293 struct dentry *trap;
4294 struct path old_path, new_path;
4295 struct qstr old_last, new_last;
4296 int old_type, new_type;
4297 struct inode *delegated_inode = NULL;
4298 struct filename *from;
4299 struct filename *to;
4300 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4301 bool should_retry = false;
4302 int error;
4303
4304 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4305 return -EINVAL;
4306
4307 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4308 (flags & RENAME_EXCHANGE))
4309 return -EINVAL;
4310
4311 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4312 return -EPERM;
4313
4314 if (flags & RENAME_EXCHANGE)
4315 target_flags = 0;
4316
4317 retry:
4318 from = user_path_parent(olddfd, oldname,
4319 &old_path, &old_last, &old_type, lookup_flags);
4320 if (IS_ERR(from)) {
4321 error = PTR_ERR(from);
4322 goto exit;
4323 }
4324
4325 to = user_path_parent(newdfd, newname,
4326 &new_path, &new_last, &new_type, lookup_flags);
4327 if (IS_ERR(to)) {
4328 error = PTR_ERR(to);
4329 goto exit1;
4330 }
4331
4332 error = -EXDEV;
4333 if (old_path.mnt != new_path.mnt)
4334 goto exit2;
4335
4336 error = -EBUSY;
4337 if (old_type != LAST_NORM)
4338 goto exit2;
4339
4340 if (flags & RENAME_NOREPLACE)
4341 error = -EEXIST;
4342 if (new_type != LAST_NORM)
4343 goto exit2;
4344
4345 error = mnt_want_write(old_path.mnt);
4346 if (error)
4347 goto exit2;
4348
4349 retry_deleg:
4350 trap = lock_rename(new_path.dentry, old_path.dentry);
4351
4352 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4353 error = PTR_ERR(old_dentry);
4354 if (IS_ERR(old_dentry))
4355 goto exit3;
4356 /* source must exist */
4357 error = -ENOENT;
4358 if (d_is_negative(old_dentry))
4359 goto exit4;
4360 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4361 error = PTR_ERR(new_dentry);
4362 if (IS_ERR(new_dentry))
4363 goto exit4;
4364 error = -EEXIST;
4365 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4366 goto exit5;
4367 if (flags & RENAME_EXCHANGE) {
4368 error = -ENOENT;
4369 if (d_is_negative(new_dentry))
4370 goto exit5;
4371
4372 if (!d_is_dir(new_dentry)) {
4373 error = -ENOTDIR;
4374 if (new_last.name[new_last.len])
4375 goto exit5;
4376 }
4377 }
4378 /* unless the source is a directory trailing slashes give -ENOTDIR */
4379 if (!d_is_dir(old_dentry)) {
4380 error = -ENOTDIR;
4381 if (old_last.name[old_last.len])
4382 goto exit5;
4383 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4384 goto exit5;
4385 }
4386 /* source should not be ancestor of target */
4387 error = -EINVAL;
4388 if (old_dentry == trap)
4389 goto exit5;
4390 /* target should not be an ancestor of source */
4391 if (!(flags & RENAME_EXCHANGE))
4392 error = -ENOTEMPTY;
4393 if (new_dentry == trap)
4394 goto exit5;
4395
4396 error = security_path_rename(&old_path, old_dentry,
4397 &new_path, new_dentry, flags);
4398 if (error)
4399 goto exit5;
4400 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4401 new_path.dentry->d_inode, new_dentry,
4402 &delegated_inode, flags);
4403 exit5:
4404 dput(new_dentry);
4405 exit4:
4406 dput(old_dentry);
4407 exit3:
4408 unlock_rename(new_path.dentry, old_path.dentry);
4409 if (delegated_inode) {
4410 error = break_deleg_wait(&delegated_inode);
4411 if (!error)
4412 goto retry_deleg;
4413 }
4414 mnt_drop_write(old_path.mnt);
4415 exit2:
4416 if (retry_estale(error, lookup_flags))
4417 should_retry = true;
4418 path_put(&new_path);
4419 putname(to);
4420 exit1:
4421 path_put(&old_path);
4422 putname(from);
4423 if (should_retry) {
4424 should_retry = false;
4425 lookup_flags |= LOOKUP_REVAL;
4426 goto retry;
4427 }
4428 exit:
4429 return error;
4430 }
4431
4432 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4433 int, newdfd, const char __user *, newname)
4434 {
4435 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4436 }
4437
4438 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4439 {
4440 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4441 }
4442
4443 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4444 {
4445 int error = may_create(dir, dentry);
4446 if (error)
4447 return error;
4448
4449 if (!dir->i_op->mknod)
4450 return -EPERM;
4451
4452 return dir->i_op->mknod(dir, dentry,
4453 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4454 }
4455 EXPORT_SYMBOL(vfs_whiteout);
4456
4457 int readlink_copy(char __user *buffer, int buflen, const char *link)
4458 {
4459 int len = PTR_ERR(link);
4460 if (IS_ERR(link))
4461 goto out;
4462
4463 len = strlen(link);
4464 if (len > (unsigned) buflen)
4465 len = buflen;
4466 if (copy_to_user(buffer, link, len))
4467 len = -EFAULT;
4468 out:
4469 return len;
4470 }
4471 EXPORT_SYMBOL(readlink_copy);
4472
4473 /*
4474 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4475 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4476 * using) it for any given inode is up to filesystem.
4477 */
4478 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4479 {
4480 void *cookie;
4481 struct inode *inode = d_inode(dentry);
4482 const char *link = inode->i_link;
4483 int res;
4484
4485 if (!link) {
4486 link = inode->i_op->follow_link(dentry, &cookie);
4487 if (IS_ERR(link))
4488 return PTR_ERR(link);
4489 }
4490 res = readlink_copy(buffer, buflen, link);
4491 if (inode->i_op->put_link)
4492 inode->i_op->put_link(inode, cookie);
4493 return res;
4494 }
4495 EXPORT_SYMBOL(generic_readlink);
4496
4497 /* get the link contents into pagecache */
4498 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4499 {
4500 char *kaddr;
4501 struct page *page;
4502 struct address_space *mapping = dentry->d_inode->i_mapping;
4503 page = read_mapping_page(mapping, 0, NULL);
4504 if (IS_ERR(page))
4505 return (char*)page;
4506 *ppage = page;
4507 kaddr = kmap(page);
4508 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4509 return kaddr;
4510 }
4511
4512 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4513 {
4514 struct page *page = NULL;
4515 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4516 if (page) {
4517 kunmap(page);
4518 page_cache_release(page);
4519 }
4520 return res;
4521 }
4522 EXPORT_SYMBOL(page_readlink);
4523
4524 const char *page_follow_link_light(struct dentry *dentry, void **cookie)
4525 {
4526 struct page *page = NULL;
4527 char *res = page_getlink(dentry, &page);
4528 if (!IS_ERR(res))
4529 *cookie = page;
4530 return res;
4531 }
4532 EXPORT_SYMBOL(page_follow_link_light);
4533
4534 void page_put_link(struct inode *unused, void *cookie)
4535 {
4536 struct page *page = cookie;
4537 kunmap(page);
4538 page_cache_release(page);
4539 }
4540 EXPORT_SYMBOL(page_put_link);
4541
4542 /*
4543 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4544 */
4545 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4546 {
4547 struct address_space *mapping = inode->i_mapping;
4548 struct page *page;
4549 void *fsdata;
4550 int err;
4551 char *kaddr;
4552 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4553 if (nofs)
4554 flags |= AOP_FLAG_NOFS;
4555
4556 retry:
4557 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4558 flags, &page, &fsdata);
4559 if (err)
4560 goto fail;
4561
4562 kaddr = kmap_atomic(page);
4563 memcpy(kaddr, symname, len-1);
4564 kunmap_atomic(kaddr);
4565
4566 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4567 page, fsdata);
4568 if (err < 0)
4569 goto fail;
4570 if (err < len-1)
4571 goto retry;
4572
4573 mark_inode_dirty(inode);
4574 return 0;
4575 fail:
4576 return err;
4577 }
4578 EXPORT_SYMBOL(__page_symlink);
4579
4580 int page_symlink(struct inode *inode, const char *symname, int len)
4581 {
4582 return __page_symlink(inode, symname, len,
4583 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4584 }
4585 EXPORT_SYMBOL(page_symlink);
4586
4587 const struct inode_operations page_symlink_inode_operations = {
4588 .readlink = generic_readlink,
4589 .follow_link = page_follow_link_light,
4590 .put_link = page_put_link,
4591 };
4592 EXPORT_SYMBOL(page_symlink_inode_operations);