]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namei.c
vfs: Merge check_submounts_and_drop and d_invalidate
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121 void final_putname(struct filename *name)
122 {
123 if (name->separate) {
124 __putname(name->name);
125 kfree(name);
126 } else {
127 __putname(name);
128 }
129 }
130
131 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
132
133 static struct filename *
134 getname_flags(const char __user *filename, int flags, int *empty)
135 {
136 struct filename *result, *err;
137 int len;
138 long max;
139 char *kname;
140
141 result = audit_reusename(filename);
142 if (result)
143 return result;
144
145 result = __getname();
146 if (unlikely(!result))
147 return ERR_PTR(-ENOMEM);
148
149 /*
150 * First, try to embed the struct filename inside the names_cache
151 * allocation
152 */
153 kname = (char *)result + sizeof(*result);
154 result->name = kname;
155 result->separate = false;
156 max = EMBEDDED_NAME_MAX;
157
158 recopy:
159 len = strncpy_from_user(kname, filename, max);
160 if (unlikely(len < 0)) {
161 err = ERR_PTR(len);
162 goto error;
163 }
164
165 /*
166 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
167 * separate struct filename so we can dedicate the entire
168 * names_cache allocation for the pathname, and re-do the copy from
169 * userland.
170 */
171 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
172 kname = (char *)result;
173
174 result = kzalloc(sizeof(*result), GFP_KERNEL);
175 if (!result) {
176 err = ERR_PTR(-ENOMEM);
177 result = (struct filename *)kname;
178 goto error;
179 }
180 result->name = kname;
181 result->separate = true;
182 max = PATH_MAX;
183 goto recopy;
184 }
185
186 /* The empty path is special. */
187 if (unlikely(!len)) {
188 if (empty)
189 *empty = 1;
190 err = ERR_PTR(-ENOENT);
191 if (!(flags & LOOKUP_EMPTY))
192 goto error;
193 }
194
195 err = ERR_PTR(-ENAMETOOLONG);
196 if (unlikely(len >= PATH_MAX))
197 goto error;
198
199 result->uptr = filename;
200 result->aname = NULL;
201 audit_getname(result);
202 return result;
203
204 error:
205 final_putname(result);
206 return err;
207 }
208
209 struct filename *
210 getname(const char __user * filename)
211 {
212 return getname_flags(filename, 0, NULL);
213 }
214
215 /*
216 * The "getname_kernel()" interface doesn't do pathnames longer
217 * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user.
218 */
219 struct filename *
220 getname_kernel(const char * filename)
221 {
222 struct filename *result;
223 char *kname;
224 int len;
225
226 len = strlen(filename);
227 if (len >= EMBEDDED_NAME_MAX)
228 return ERR_PTR(-ENAMETOOLONG);
229
230 result = __getname();
231 if (unlikely(!result))
232 return ERR_PTR(-ENOMEM);
233
234 kname = (char *)result + sizeof(*result);
235 result->name = kname;
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->separate = false;
239
240 strlcpy(kname, filename, EMBEDDED_NAME_MAX);
241 return result;
242 }
243
244 #ifdef CONFIG_AUDITSYSCALL
245 void putname(struct filename *name)
246 {
247 if (unlikely(!audit_dummy_context()))
248 return audit_putname(name);
249 final_putname(name);
250 }
251 #endif
252
253 static int check_acl(struct inode *inode, int mask)
254 {
255 #ifdef CONFIG_FS_POSIX_ACL
256 struct posix_acl *acl;
257
258 if (mask & MAY_NOT_BLOCK) {
259 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
260 if (!acl)
261 return -EAGAIN;
262 /* no ->get_acl() calls in RCU mode... */
263 if (acl == ACL_NOT_CACHED)
264 return -ECHILD;
265 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
266 }
267
268 acl = get_acl(inode, ACL_TYPE_ACCESS);
269 if (IS_ERR(acl))
270 return PTR_ERR(acl);
271 if (acl) {
272 int error = posix_acl_permission(inode, acl, mask);
273 posix_acl_release(acl);
274 return error;
275 }
276 #endif
277
278 return -EAGAIN;
279 }
280
281 /*
282 * This does the basic permission checking
283 */
284 static int acl_permission_check(struct inode *inode, int mask)
285 {
286 unsigned int mode = inode->i_mode;
287
288 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
289 mode >>= 6;
290 else {
291 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
292 int error = check_acl(inode, mask);
293 if (error != -EAGAIN)
294 return error;
295 }
296
297 if (in_group_p(inode->i_gid))
298 mode >>= 3;
299 }
300
301 /*
302 * If the DACs are ok we don't need any capability check.
303 */
304 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
305 return 0;
306 return -EACCES;
307 }
308
309 /**
310 * generic_permission - check for access rights on a Posix-like filesystem
311 * @inode: inode to check access rights for
312 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
313 *
314 * Used to check for read/write/execute permissions on a file.
315 * We use "fsuid" for this, letting us set arbitrary permissions
316 * for filesystem access without changing the "normal" uids which
317 * are used for other things.
318 *
319 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
320 * request cannot be satisfied (eg. requires blocking or too much complexity).
321 * It would then be called again in ref-walk mode.
322 */
323 int generic_permission(struct inode *inode, int mask)
324 {
325 int ret;
326
327 /*
328 * Do the basic permission checks.
329 */
330 ret = acl_permission_check(inode, mask);
331 if (ret != -EACCES)
332 return ret;
333
334 if (S_ISDIR(inode->i_mode)) {
335 /* DACs are overridable for directories */
336 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
337 return 0;
338 if (!(mask & MAY_WRITE))
339 if (capable_wrt_inode_uidgid(inode,
340 CAP_DAC_READ_SEARCH))
341 return 0;
342 return -EACCES;
343 }
344 /*
345 * Read/write DACs are always overridable.
346 * Executable DACs are overridable when there is
347 * at least one exec bit set.
348 */
349 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
350 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
351 return 0;
352
353 /*
354 * Searching includes executable on directories, else just read.
355 */
356 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
357 if (mask == MAY_READ)
358 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
359 return 0;
360
361 return -EACCES;
362 }
363 EXPORT_SYMBOL(generic_permission);
364
365 /*
366 * We _really_ want to just do "generic_permission()" without
367 * even looking at the inode->i_op values. So we keep a cache
368 * flag in inode->i_opflags, that says "this has not special
369 * permission function, use the fast case".
370 */
371 static inline int do_inode_permission(struct inode *inode, int mask)
372 {
373 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
374 if (likely(inode->i_op->permission))
375 return inode->i_op->permission(inode, mask);
376
377 /* This gets set once for the inode lifetime */
378 spin_lock(&inode->i_lock);
379 inode->i_opflags |= IOP_FASTPERM;
380 spin_unlock(&inode->i_lock);
381 }
382 return generic_permission(inode, mask);
383 }
384
385 /**
386 * __inode_permission - Check for access rights to a given inode
387 * @inode: Inode to check permission on
388 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
389 *
390 * Check for read/write/execute permissions on an inode.
391 *
392 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
393 *
394 * This does not check for a read-only file system. You probably want
395 * inode_permission().
396 */
397 int __inode_permission(struct inode *inode, int mask)
398 {
399 int retval;
400
401 if (unlikely(mask & MAY_WRITE)) {
402 /*
403 * Nobody gets write access to an immutable file.
404 */
405 if (IS_IMMUTABLE(inode))
406 return -EACCES;
407 }
408
409 retval = do_inode_permission(inode, mask);
410 if (retval)
411 return retval;
412
413 retval = devcgroup_inode_permission(inode, mask);
414 if (retval)
415 return retval;
416
417 return security_inode_permission(inode, mask);
418 }
419
420 /**
421 * sb_permission - Check superblock-level permissions
422 * @sb: Superblock of inode to check permission on
423 * @inode: Inode to check permission on
424 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
425 *
426 * Separate out file-system wide checks from inode-specific permission checks.
427 */
428 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
429 {
430 if (unlikely(mask & MAY_WRITE)) {
431 umode_t mode = inode->i_mode;
432
433 /* Nobody gets write access to a read-only fs. */
434 if ((sb->s_flags & MS_RDONLY) &&
435 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
436 return -EROFS;
437 }
438 return 0;
439 }
440
441 /**
442 * inode_permission - Check for access rights to a given inode
443 * @inode: Inode to check permission on
444 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
445 *
446 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
447 * this, letting us set arbitrary permissions for filesystem access without
448 * changing the "normal" UIDs which are used for other things.
449 *
450 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
451 */
452 int inode_permission(struct inode *inode, int mask)
453 {
454 int retval;
455
456 retval = sb_permission(inode->i_sb, inode, mask);
457 if (retval)
458 return retval;
459 return __inode_permission(inode, mask);
460 }
461 EXPORT_SYMBOL(inode_permission);
462
463 /**
464 * path_get - get a reference to a path
465 * @path: path to get the reference to
466 *
467 * Given a path increment the reference count to the dentry and the vfsmount.
468 */
469 void path_get(const struct path *path)
470 {
471 mntget(path->mnt);
472 dget(path->dentry);
473 }
474 EXPORT_SYMBOL(path_get);
475
476 /**
477 * path_put - put a reference to a path
478 * @path: path to put the reference to
479 *
480 * Given a path decrement the reference count to the dentry and the vfsmount.
481 */
482 void path_put(const struct path *path)
483 {
484 dput(path->dentry);
485 mntput(path->mnt);
486 }
487 EXPORT_SYMBOL(path_put);
488
489 /*
490 * Path walking has 2 modes, rcu-walk and ref-walk (see
491 * Documentation/filesystems/path-lookup.txt). In situations when we can't
492 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
493 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
494 * mode. Refcounts are grabbed at the last known good point before rcu-walk
495 * got stuck, so ref-walk may continue from there. If this is not successful
496 * (eg. a seqcount has changed), then failure is returned and it's up to caller
497 * to restart the path walk from the beginning in ref-walk mode.
498 */
499
500 /**
501 * unlazy_walk - try to switch to ref-walk mode.
502 * @nd: nameidata pathwalk data
503 * @dentry: child of nd->path.dentry or NULL
504 * Returns: 0 on success, -ECHILD on failure
505 *
506 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
507 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
508 * @nd or NULL. Must be called from rcu-walk context.
509 */
510 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
511 {
512 struct fs_struct *fs = current->fs;
513 struct dentry *parent = nd->path.dentry;
514
515 BUG_ON(!(nd->flags & LOOKUP_RCU));
516
517 /*
518 * After legitimizing the bastards, terminate_walk()
519 * will do the right thing for non-RCU mode, and all our
520 * subsequent exit cases should rcu_read_unlock()
521 * before returning. Do vfsmount first; if dentry
522 * can't be legitimized, just set nd->path.dentry to NULL
523 * and rely on dput(NULL) being a no-op.
524 */
525 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
526 return -ECHILD;
527 nd->flags &= ~LOOKUP_RCU;
528
529 if (!lockref_get_not_dead(&parent->d_lockref)) {
530 nd->path.dentry = NULL;
531 goto out;
532 }
533
534 /*
535 * For a negative lookup, the lookup sequence point is the parents
536 * sequence point, and it only needs to revalidate the parent dentry.
537 *
538 * For a positive lookup, we need to move both the parent and the
539 * dentry from the RCU domain to be properly refcounted. And the
540 * sequence number in the dentry validates *both* dentry counters,
541 * since we checked the sequence number of the parent after we got
542 * the child sequence number. So we know the parent must still
543 * be valid if the child sequence number is still valid.
544 */
545 if (!dentry) {
546 if (read_seqcount_retry(&parent->d_seq, nd->seq))
547 goto out;
548 BUG_ON(nd->inode != parent->d_inode);
549 } else {
550 if (!lockref_get_not_dead(&dentry->d_lockref))
551 goto out;
552 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
553 goto drop_dentry;
554 }
555
556 /*
557 * Sequence counts matched. Now make sure that the root is
558 * still valid and get it if required.
559 */
560 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
561 spin_lock(&fs->lock);
562 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
563 goto unlock_and_drop_dentry;
564 path_get(&nd->root);
565 spin_unlock(&fs->lock);
566 }
567
568 rcu_read_unlock();
569 return 0;
570
571 unlock_and_drop_dentry:
572 spin_unlock(&fs->lock);
573 drop_dentry:
574 rcu_read_unlock();
575 dput(dentry);
576 goto drop_root_mnt;
577 out:
578 rcu_read_unlock();
579 drop_root_mnt:
580 if (!(nd->flags & LOOKUP_ROOT))
581 nd->root.mnt = NULL;
582 return -ECHILD;
583 }
584
585 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
586 {
587 return dentry->d_op->d_revalidate(dentry, flags);
588 }
589
590 /**
591 * complete_walk - successful completion of path walk
592 * @nd: pointer nameidata
593 *
594 * If we had been in RCU mode, drop out of it and legitimize nd->path.
595 * Revalidate the final result, unless we'd already done that during
596 * the path walk or the filesystem doesn't ask for it. Return 0 on
597 * success, -error on failure. In case of failure caller does not
598 * need to drop nd->path.
599 */
600 static int complete_walk(struct nameidata *nd)
601 {
602 struct dentry *dentry = nd->path.dentry;
603 int status;
604
605 if (nd->flags & LOOKUP_RCU) {
606 nd->flags &= ~LOOKUP_RCU;
607 if (!(nd->flags & LOOKUP_ROOT))
608 nd->root.mnt = NULL;
609
610 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
611 rcu_read_unlock();
612 return -ECHILD;
613 }
614 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
615 rcu_read_unlock();
616 mntput(nd->path.mnt);
617 return -ECHILD;
618 }
619 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
620 rcu_read_unlock();
621 dput(dentry);
622 mntput(nd->path.mnt);
623 return -ECHILD;
624 }
625 rcu_read_unlock();
626 }
627
628 if (likely(!(nd->flags & LOOKUP_JUMPED)))
629 return 0;
630
631 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
632 return 0;
633
634 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
635 if (status > 0)
636 return 0;
637
638 if (!status)
639 status = -ESTALE;
640
641 path_put(&nd->path);
642 return status;
643 }
644
645 static __always_inline void set_root(struct nameidata *nd)
646 {
647 get_fs_root(current->fs, &nd->root);
648 }
649
650 static int link_path_walk(const char *, struct nameidata *);
651
652 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
653 {
654 struct fs_struct *fs = current->fs;
655 unsigned seq, res;
656
657 do {
658 seq = read_seqcount_begin(&fs->seq);
659 nd->root = fs->root;
660 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
661 } while (read_seqcount_retry(&fs->seq, seq));
662 return res;
663 }
664
665 static void path_put_conditional(struct path *path, struct nameidata *nd)
666 {
667 dput(path->dentry);
668 if (path->mnt != nd->path.mnt)
669 mntput(path->mnt);
670 }
671
672 static inline void path_to_nameidata(const struct path *path,
673 struct nameidata *nd)
674 {
675 if (!(nd->flags & LOOKUP_RCU)) {
676 dput(nd->path.dentry);
677 if (nd->path.mnt != path->mnt)
678 mntput(nd->path.mnt);
679 }
680 nd->path.mnt = path->mnt;
681 nd->path.dentry = path->dentry;
682 }
683
684 /*
685 * Helper to directly jump to a known parsed path from ->follow_link,
686 * caller must have taken a reference to path beforehand.
687 */
688 void nd_jump_link(struct nameidata *nd, struct path *path)
689 {
690 path_put(&nd->path);
691
692 nd->path = *path;
693 nd->inode = nd->path.dentry->d_inode;
694 nd->flags |= LOOKUP_JUMPED;
695 }
696
697 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
698 {
699 struct inode *inode = link->dentry->d_inode;
700 if (inode->i_op->put_link)
701 inode->i_op->put_link(link->dentry, nd, cookie);
702 path_put(link);
703 }
704
705 int sysctl_protected_symlinks __read_mostly = 0;
706 int sysctl_protected_hardlinks __read_mostly = 0;
707
708 /**
709 * may_follow_link - Check symlink following for unsafe situations
710 * @link: The path of the symlink
711 * @nd: nameidata pathwalk data
712 *
713 * In the case of the sysctl_protected_symlinks sysctl being enabled,
714 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
715 * in a sticky world-writable directory. This is to protect privileged
716 * processes from failing races against path names that may change out
717 * from under them by way of other users creating malicious symlinks.
718 * It will permit symlinks to be followed only when outside a sticky
719 * world-writable directory, or when the uid of the symlink and follower
720 * match, or when the directory owner matches the symlink's owner.
721 *
722 * Returns 0 if following the symlink is allowed, -ve on error.
723 */
724 static inline int may_follow_link(struct path *link, struct nameidata *nd)
725 {
726 const struct inode *inode;
727 const struct inode *parent;
728
729 if (!sysctl_protected_symlinks)
730 return 0;
731
732 /* Allowed if owner and follower match. */
733 inode = link->dentry->d_inode;
734 if (uid_eq(current_cred()->fsuid, inode->i_uid))
735 return 0;
736
737 /* Allowed if parent directory not sticky and world-writable. */
738 parent = nd->path.dentry->d_inode;
739 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
740 return 0;
741
742 /* Allowed if parent directory and link owner match. */
743 if (uid_eq(parent->i_uid, inode->i_uid))
744 return 0;
745
746 audit_log_link_denied("follow_link", link);
747 path_put_conditional(link, nd);
748 path_put(&nd->path);
749 return -EACCES;
750 }
751
752 /**
753 * safe_hardlink_source - Check for safe hardlink conditions
754 * @inode: the source inode to hardlink from
755 *
756 * Return false if at least one of the following conditions:
757 * - inode is not a regular file
758 * - inode is setuid
759 * - inode is setgid and group-exec
760 * - access failure for read and write
761 *
762 * Otherwise returns true.
763 */
764 static bool safe_hardlink_source(struct inode *inode)
765 {
766 umode_t mode = inode->i_mode;
767
768 /* Special files should not get pinned to the filesystem. */
769 if (!S_ISREG(mode))
770 return false;
771
772 /* Setuid files should not get pinned to the filesystem. */
773 if (mode & S_ISUID)
774 return false;
775
776 /* Executable setgid files should not get pinned to the filesystem. */
777 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
778 return false;
779
780 /* Hardlinking to unreadable or unwritable sources is dangerous. */
781 if (inode_permission(inode, MAY_READ | MAY_WRITE))
782 return false;
783
784 return true;
785 }
786
787 /**
788 * may_linkat - Check permissions for creating a hardlink
789 * @link: the source to hardlink from
790 *
791 * Block hardlink when all of:
792 * - sysctl_protected_hardlinks enabled
793 * - fsuid does not match inode
794 * - hardlink source is unsafe (see safe_hardlink_source() above)
795 * - not CAP_FOWNER
796 *
797 * Returns 0 if successful, -ve on error.
798 */
799 static int may_linkat(struct path *link)
800 {
801 const struct cred *cred;
802 struct inode *inode;
803
804 if (!sysctl_protected_hardlinks)
805 return 0;
806
807 cred = current_cred();
808 inode = link->dentry->d_inode;
809
810 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
811 * otherwise, it must be a safe source.
812 */
813 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
814 capable(CAP_FOWNER))
815 return 0;
816
817 audit_log_link_denied("linkat", link);
818 return -EPERM;
819 }
820
821 static __always_inline int
822 follow_link(struct path *link, struct nameidata *nd, void **p)
823 {
824 struct dentry *dentry = link->dentry;
825 int error;
826 char *s;
827
828 BUG_ON(nd->flags & LOOKUP_RCU);
829
830 if (link->mnt == nd->path.mnt)
831 mntget(link->mnt);
832
833 error = -ELOOP;
834 if (unlikely(current->total_link_count >= 40))
835 goto out_put_nd_path;
836
837 cond_resched();
838 current->total_link_count++;
839
840 touch_atime(link);
841 nd_set_link(nd, NULL);
842
843 error = security_inode_follow_link(link->dentry, nd);
844 if (error)
845 goto out_put_nd_path;
846
847 nd->last_type = LAST_BIND;
848 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
849 error = PTR_ERR(*p);
850 if (IS_ERR(*p))
851 goto out_put_nd_path;
852
853 error = 0;
854 s = nd_get_link(nd);
855 if (s) {
856 if (unlikely(IS_ERR(s))) {
857 path_put(&nd->path);
858 put_link(nd, link, *p);
859 return PTR_ERR(s);
860 }
861 if (*s == '/') {
862 if (!nd->root.mnt)
863 set_root(nd);
864 path_put(&nd->path);
865 nd->path = nd->root;
866 path_get(&nd->root);
867 nd->flags |= LOOKUP_JUMPED;
868 }
869 nd->inode = nd->path.dentry->d_inode;
870 error = link_path_walk(s, nd);
871 if (unlikely(error))
872 put_link(nd, link, *p);
873 }
874
875 return error;
876
877 out_put_nd_path:
878 *p = NULL;
879 path_put(&nd->path);
880 path_put(link);
881 return error;
882 }
883
884 static int follow_up_rcu(struct path *path)
885 {
886 struct mount *mnt = real_mount(path->mnt);
887 struct mount *parent;
888 struct dentry *mountpoint;
889
890 parent = mnt->mnt_parent;
891 if (&parent->mnt == path->mnt)
892 return 0;
893 mountpoint = mnt->mnt_mountpoint;
894 path->dentry = mountpoint;
895 path->mnt = &parent->mnt;
896 return 1;
897 }
898
899 /*
900 * follow_up - Find the mountpoint of path's vfsmount
901 *
902 * Given a path, find the mountpoint of its source file system.
903 * Replace @path with the path of the mountpoint in the parent mount.
904 * Up is towards /.
905 *
906 * Return 1 if we went up a level and 0 if we were already at the
907 * root.
908 */
909 int follow_up(struct path *path)
910 {
911 struct mount *mnt = real_mount(path->mnt);
912 struct mount *parent;
913 struct dentry *mountpoint;
914
915 read_seqlock_excl(&mount_lock);
916 parent = mnt->mnt_parent;
917 if (parent == mnt) {
918 read_sequnlock_excl(&mount_lock);
919 return 0;
920 }
921 mntget(&parent->mnt);
922 mountpoint = dget(mnt->mnt_mountpoint);
923 read_sequnlock_excl(&mount_lock);
924 dput(path->dentry);
925 path->dentry = mountpoint;
926 mntput(path->mnt);
927 path->mnt = &parent->mnt;
928 return 1;
929 }
930 EXPORT_SYMBOL(follow_up);
931
932 /*
933 * Perform an automount
934 * - return -EISDIR to tell follow_managed() to stop and return the path we
935 * were called with.
936 */
937 static int follow_automount(struct path *path, unsigned flags,
938 bool *need_mntput)
939 {
940 struct vfsmount *mnt;
941 int err;
942
943 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
944 return -EREMOTE;
945
946 /* We don't want to mount if someone's just doing a stat -
947 * unless they're stat'ing a directory and appended a '/' to
948 * the name.
949 *
950 * We do, however, want to mount if someone wants to open or
951 * create a file of any type under the mountpoint, wants to
952 * traverse through the mountpoint or wants to open the
953 * mounted directory. Also, autofs may mark negative dentries
954 * as being automount points. These will need the attentions
955 * of the daemon to instantiate them before they can be used.
956 */
957 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
958 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
959 path->dentry->d_inode)
960 return -EISDIR;
961
962 current->total_link_count++;
963 if (current->total_link_count >= 40)
964 return -ELOOP;
965
966 mnt = path->dentry->d_op->d_automount(path);
967 if (IS_ERR(mnt)) {
968 /*
969 * The filesystem is allowed to return -EISDIR here to indicate
970 * it doesn't want to automount. For instance, autofs would do
971 * this so that its userspace daemon can mount on this dentry.
972 *
973 * However, we can only permit this if it's a terminal point in
974 * the path being looked up; if it wasn't then the remainder of
975 * the path is inaccessible and we should say so.
976 */
977 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
978 return -EREMOTE;
979 return PTR_ERR(mnt);
980 }
981
982 if (!mnt) /* mount collision */
983 return 0;
984
985 if (!*need_mntput) {
986 /* lock_mount() may release path->mnt on error */
987 mntget(path->mnt);
988 *need_mntput = true;
989 }
990 err = finish_automount(mnt, path);
991
992 switch (err) {
993 case -EBUSY:
994 /* Someone else made a mount here whilst we were busy */
995 return 0;
996 case 0:
997 path_put(path);
998 path->mnt = mnt;
999 path->dentry = dget(mnt->mnt_root);
1000 return 0;
1001 default:
1002 return err;
1003 }
1004
1005 }
1006
1007 /*
1008 * Handle a dentry that is managed in some way.
1009 * - Flagged for transit management (autofs)
1010 * - Flagged as mountpoint
1011 * - Flagged as automount point
1012 *
1013 * This may only be called in refwalk mode.
1014 *
1015 * Serialization is taken care of in namespace.c
1016 */
1017 static int follow_managed(struct path *path, unsigned flags)
1018 {
1019 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1020 unsigned managed;
1021 bool need_mntput = false;
1022 int ret = 0;
1023
1024 /* Given that we're not holding a lock here, we retain the value in a
1025 * local variable for each dentry as we look at it so that we don't see
1026 * the components of that value change under us */
1027 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1028 managed &= DCACHE_MANAGED_DENTRY,
1029 unlikely(managed != 0)) {
1030 /* Allow the filesystem to manage the transit without i_mutex
1031 * being held. */
1032 if (managed & DCACHE_MANAGE_TRANSIT) {
1033 BUG_ON(!path->dentry->d_op);
1034 BUG_ON(!path->dentry->d_op->d_manage);
1035 ret = path->dentry->d_op->d_manage(path->dentry, false);
1036 if (ret < 0)
1037 break;
1038 }
1039
1040 /* Transit to a mounted filesystem. */
1041 if (managed & DCACHE_MOUNTED) {
1042 struct vfsmount *mounted = lookup_mnt(path);
1043 if (mounted) {
1044 dput(path->dentry);
1045 if (need_mntput)
1046 mntput(path->mnt);
1047 path->mnt = mounted;
1048 path->dentry = dget(mounted->mnt_root);
1049 need_mntput = true;
1050 continue;
1051 }
1052
1053 /* Something is mounted on this dentry in another
1054 * namespace and/or whatever was mounted there in this
1055 * namespace got unmounted before lookup_mnt() could
1056 * get it */
1057 }
1058
1059 /* Handle an automount point */
1060 if (managed & DCACHE_NEED_AUTOMOUNT) {
1061 ret = follow_automount(path, flags, &need_mntput);
1062 if (ret < 0)
1063 break;
1064 continue;
1065 }
1066
1067 /* We didn't change the current path point */
1068 break;
1069 }
1070
1071 if (need_mntput && path->mnt == mnt)
1072 mntput(path->mnt);
1073 if (ret == -EISDIR)
1074 ret = 0;
1075 return ret < 0 ? ret : need_mntput;
1076 }
1077
1078 int follow_down_one(struct path *path)
1079 {
1080 struct vfsmount *mounted;
1081
1082 mounted = lookup_mnt(path);
1083 if (mounted) {
1084 dput(path->dentry);
1085 mntput(path->mnt);
1086 path->mnt = mounted;
1087 path->dentry = dget(mounted->mnt_root);
1088 return 1;
1089 }
1090 return 0;
1091 }
1092 EXPORT_SYMBOL(follow_down_one);
1093
1094 static inline int managed_dentry_rcu(struct dentry *dentry)
1095 {
1096 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1097 dentry->d_op->d_manage(dentry, true) : 0;
1098 }
1099
1100 /*
1101 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1102 * we meet a managed dentry that would need blocking.
1103 */
1104 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1105 struct inode **inode)
1106 {
1107 for (;;) {
1108 struct mount *mounted;
1109 /*
1110 * Don't forget we might have a non-mountpoint managed dentry
1111 * that wants to block transit.
1112 */
1113 switch (managed_dentry_rcu(path->dentry)) {
1114 case -ECHILD:
1115 default:
1116 return false;
1117 case -EISDIR:
1118 return true;
1119 case 0:
1120 break;
1121 }
1122
1123 if (!d_mountpoint(path->dentry))
1124 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1125
1126 mounted = __lookup_mnt(path->mnt, path->dentry);
1127 if (!mounted)
1128 break;
1129 path->mnt = &mounted->mnt;
1130 path->dentry = mounted->mnt.mnt_root;
1131 nd->flags |= LOOKUP_JUMPED;
1132 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1133 /*
1134 * Update the inode too. We don't need to re-check the
1135 * dentry sequence number here after this d_inode read,
1136 * because a mount-point is always pinned.
1137 */
1138 *inode = path->dentry->d_inode;
1139 }
1140 return !read_seqretry(&mount_lock, nd->m_seq) &&
1141 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1142 }
1143
1144 static int follow_dotdot_rcu(struct nameidata *nd)
1145 {
1146 struct inode *inode = nd->inode;
1147 if (!nd->root.mnt)
1148 set_root_rcu(nd);
1149
1150 while (1) {
1151 if (nd->path.dentry == nd->root.dentry &&
1152 nd->path.mnt == nd->root.mnt) {
1153 break;
1154 }
1155 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1156 struct dentry *old = nd->path.dentry;
1157 struct dentry *parent = old->d_parent;
1158 unsigned seq;
1159
1160 inode = parent->d_inode;
1161 seq = read_seqcount_begin(&parent->d_seq);
1162 if (read_seqcount_retry(&old->d_seq, nd->seq))
1163 goto failed;
1164 nd->path.dentry = parent;
1165 nd->seq = seq;
1166 break;
1167 }
1168 if (!follow_up_rcu(&nd->path))
1169 break;
1170 inode = nd->path.dentry->d_inode;
1171 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1172 }
1173 while (d_mountpoint(nd->path.dentry)) {
1174 struct mount *mounted;
1175 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1176 if (!mounted)
1177 break;
1178 nd->path.mnt = &mounted->mnt;
1179 nd->path.dentry = mounted->mnt.mnt_root;
1180 inode = nd->path.dentry->d_inode;
1181 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1182 if (read_seqretry(&mount_lock, nd->m_seq))
1183 goto failed;
1184 }
1185 nd->inode = inode;
1186 return 0;
1187
1188 failed:
1189 nd->flags &= ~LOOKUP_RCU;
1190 if (!(nd->flags & LOOKUP_ROOT))
1191 nd->root.mnt = NULL;
1192 rcu_read_unlock();
1193 return -ECHILD;
1194 }
1195
1196 /*
1197 * Follow down to the covering mount currently visible to userspace. At each
1198 * point, the filesystem owning that dentry may be queried as to whether the
1199 * caller is permitted to proceed or not.
1200 */
1201 int follow_down(struct path *path)
1202 {
1203 unsigned managed;
1204 int ret;
1205
1206 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1207 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1208 /* Allow the filesystem to manage the transit without i_mutex
1209 * being held.
1210 *
1211 * We indicate to the filesystem if someone is trying to mount
1212 * something here. This gives autofs the chance to deny anyone
1213 * other than its daemon the right to mount on its
1214 * superstructure.
1215 *
1216 * The filesystem may sleep at this point.
1217 */
1218 if (managed & DCACHE_MANAGE_TRANSIT) {
1219 BUG_ON(!path->dentry->d_op);
1220 BUG_ON(!path->dentry->d_op->d_manage);
1221 ret = path->dentry->d_op->d_manage(
1222 path->dentry, false);
1223 if (ret < 0)
1224 return ret == -EISDIR ? 0 : ret;
1225 }
1226
1227 /* Transit to a mounted filesystem. */
1228 if (managed & DCACHE_MOUNTED) {
1229 struct vfsmount *mounted = lookup_mnt(path);
1230 if (!mounted)
1231 break;
1232 dput(path->dentry);
1233 mntput(path->mnt);
1234 path->mnt = mounted;
1235 path->dentry = dget(mounted->mnt_root);
1236 continue;
1237 }
1238
1239 /* Don't handle automount points here */
1240 break;
1241 }
1242 return 0;
1243 }
1244 EXPORT_SYMBOL(follow_down);
1245
1246 /*
1247 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1248 */
1249 static void follow_mount(struct path *path)
1250 {
1251 while (d_mountpoint(path->dentry)) {
1252 struct vfsmount *mounted = lookup_mnt(path);
1253 if (!mounted)
1254 break;
1255 dput(path->dentry);
1256 mntput(path->mnt);
1257 path->mnt = mounted;
1258 path->dentry = dget(mounted->mnt_root);
1259 }
1260 }
1261
1262 static void follow_dotdot(struct nameidata *nd)
1263 {
1264 if (!nd->root.mnt)
1265 set_root(nd);
1266
1267 while(1) {
1268 struct dentry *old = nd->path.dentry;
1269
1270 if (nd->path.dentry == nd->root.dentry &&
1271 nd->path.mnt == nd->root.mnt) {
1272 break;
1273 }
1274 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1275 /* rare case of legitimate dget_parent()... */
1276 nd->path.dentry = dget_parent(nd->path.dentry);
1277 dput(old);
1278 break;
1279 }
1280 if (!follow_up(&nd->path))
1281 break;
1282 }
1283 follow_mount(&nd->path);
1284 nd->inode = nd->path.dentry->d_inode;
1285 }
1286
1287 /*
1288 * This looks up the name in dcache, possibly revalidates the old dentry and
1289 * allocates a new one if not found or not valid. In the need_lookup argument
1290 * returns whether i_op->lookup is necessary.
1291 *
1292 * dir->d_inode->i_mutex must be held
1293 */
1294 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1295 unsigned int flags, bool *need_lookup)
1296 {
1297 struct dentry *dentry;
1298 int error;
1299
1300 *need_lookup = false;
1301 dentry = d_lookup(dir, name);
1302 if (dentry) {
1303 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1304 error = d_revalidate(dentry, flags);
1305 if (unlikely(error <= 0)) {
1306 if (error < 0) {
1307 dput(dentry);
1308 return ERR_PTR(error);
1309 } else if (!d_invalidate(dentry)) {
1310 dput(dentry);
1311 dentry = NULL;
1312 }
1313 }
1314 }
1315 }
1316
1317 if (!dentry) {
1318 dentry = d_alloc(dir, name);
1319 if (unlikely(!dentry))
1320 return ERR_PTR(-ENOMEM);
1321
1322 *need_lookup = true;
1323 }
1324 return dentry;
1325 }
1326
1327 /*
1328 * Call i_op->lookup on the dentry. The dentry must be negative and
1329 * unhashed.
1330 *
1331 * dir->d_inode->i_mutex must be held
1332 */
1333 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1334 unsigned int flags)
1335 {
1336 struct dentry *old;
1337
1338 /* Don't create child dentry for a dead directory. */
1339 if (unlikely(IS_DEADDIR(dir))) {
1340 dput(dentry);
1341 return ERR_PTR(-ENOENT);
1342 }
1343
1344 old = dir->i_op->lookup(dir, dentry, flags);
1345 if (unlikely(old)) {
1346 dput(dentry);
1347 dentry = old;
1348 }
1349 return dentry;
1350 }
1351
1352 static struct dentry *__lookup_hash(struct qstr *name,
1353 struct dentry *base, unsigned int flags)
1354 {
1355 bool need_lookup;
1356 struct dentry *dentry;
1357
1358 dentry = lookup_dcache(name, base, flags, &need_lookup);
1359 if (!need_lookup)
1360 return dentry;
1361
1362 return lookup_real(base->d_inode, dentry, flags);
1363 }
1364
1365 /*
1366 * It's more convoluted than I'd like it to be, but... it's still fairly
1367 * small and for now I'd prefer to have fast path as straight as possible.
1368 * It _is_ time-critical.
1369 */
1370 static int lookup_fast(struct nameidata *nd,
1371 struct path *path, struct inode **inode)
1372 {
1373 struct vfsmount *mnt = nd->path.mnt;
1374 struct dentry *dentry, *parent = nd->path.dentry;
1375 int need_reval = 1;
1376 int status = 1;
1377 int err;
1378
1379 /*
1380 * Rename seqlock is not required here because in the off chance
1381 * of a false negative due to a concurrent rename, we're going to
1382 * do the non-racy lookup, below.
1383 */
1384 if (nd->flags & LOOKUP_RCU) {
1385 unsigned seq;
1386 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1387 if (!dentry)
1388 goto unlazy;
1389
1390 /*
1391 * This sequence count validates that the inode matches
1392 * the dentry name information from lookup.
1393 */
1394 *inode = dentry->d_inode;
1395 if (read_seqcount_retry(&dentry->d_seq, seq))
1396 return -ECHILD;
1397
1398 /*
1399 * This sequence count validates that the parent had no
1400 * changes while we did the lookup of the dentry above.
1401 *
1402 * The memory barrier in read_seqcount_begin of child is
1403 * enough, we can use __read_seqcount_retry here.
1404 */
1405 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1406 return -ECHILD;
1407 nd->seq = seq;
1408
1409 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1410 status = d_revalidate(dentry, nd->flags);
1411 if (unlikely(status <= 0)) {
1412 if (status != -ECHILD)
1413 need_reval = 0;
1414 goto unlazy;
1415 }
1416 }
1417 path->mnt = mnt;
1418 path->dentry = dentry;
1419 if (likely(__follow_mount_rcu(nd, path, inode)))
1420 return 0;
1421 unlazy:
1422 if (unlazy_walk(nd, dentry))
1423 return -ECHILD;
1424 } else {
1425 dentry = __d_lookup(parent, &nd->last);
1426 }
1427
1428 if (unlikely(!dentry))
1429 goto need_lookup;
1430
1431 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1432 status = d_revalidate(dentry, nd->flags);
1433 if (unlikely(status <= 0)) {
1434 if (status < 0) {
1435 dput(dentry);
1436 return status;
1437 }
1438 if (!d_invalidate(dentry)) {
1439 dput(dentry);
1440 goto need_lookup;
1441 }
1442 }
1443
1444 path->mnt = mnt;
1445 path->dentry = dentry;
1446 err = follow_managed(path, nd->flags);
1447 if (unlikely(err < 0)) {
1448 path_put_conditional(path, nd);
1449 return err;
1450 }
1451 if (err)
1452 nd->flags |= LOOKUP_JUMPED;
1453 *inode = path->dentry->d_inode;
1454 return 0;
1455
1456 need_lookup:
1457 return 1;
1458 }
1459
1460 /* Fast lookup failed, do it the slow way */
1461 static int lookup_slow(struct nameidata *nd, struct path *path)
1462 {
1463 struct dentry *dentry, *parent;
1464 int err;
1465
1466 parent = nd->path.dentry;
1467 BUG_ON(nd->inode != parent->d_inode);
1468
1469 mutex_lock(&parent->d_inode->i_mutex);
1470 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1471 mutex_unlock(&parent->d_inode->i_mutex);
1472 if (IS_ERR(dentry))
1473 return PTR_ERR(dentry);
1474 path->mnt = nd->path.mnt;
1475 path->dentry = dentry;
1476 err = follow_managed(path, nd->flags);
1477 if (unlikely(err < 0)) {
1478 path_put_conditional(path, nd);
1479 return err;
1480 }
1481 if (err)
1482 nd->flags |= LOOKUP_JUMPED;
1483 return 0;
1484 }
1485
1486 static inline int may_lookup(struct nameidata *nd)
1487 {
1488 if (nd->flags & LOOKUP_RCU) {
1489 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1490 if (err != -ECHILD)
1491 return err;
1492 if (unlazy_walk(nd, NULL))
1493 return -ECHILD;
1494 }
1495 return inode_permission(nd->inode, MAY_EXEC);
1496 }
1497
1498 static inline int handle_dots(struct nameidata *nd, int type)
1499 {
1500 if (type == LAST_DOTDOT) {
1501 if (nd->flags & LOOKUP_RCU) {
1502 if (follow_dotdot_rcu(nd))
1503 return -ECHILD;
1504 } else
1505 follow_dotdot(nd);
1506 }
1507 return 0;
1508 }
1509
1510 static void terminate_walk(struct nameidata *nd)
1511 {
1512 if (!(nd->flags & LOOKUP_RCU)) {
1513 path_put(&nd->path);
1514 } else {
1515 nd->flags &= ~LOOKUP_RCU;
1516 if (!(nd->flags & LOOKUP_ROOT))
1517 nd->root.mnt = NULL;
1518 rcu_read_unlock();
1519 }
1520 }
1521
1522 /*
1523 * Do we need to follow links? We _really_ want to be able
1524 * to do this check without having to look at inode->i_op,
1525 * so we keep a cache of "no, this doesn't need follow_link"
1526 * for the common case.
1527 */
1528 static inline int should_follow_link(struct dentry *dentry, int follow)
1529 {
1530 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1531 }
1532
1533 static inline int walk_component(struct nameidata *nd, struct path *path,
1534 int follow)
1535 {
1536 struct inode *inode;
1537 int err;
1538 /*
1539 * "." and ".." are special - ".." especially so because it has
1540 * to be able to know about the current root directory and
1541 * parent relationships.
1542 */
1543 if (unlikely(nd->last_type != LAST_NORM))
1544 return handle_dots(nd, nd->last_type);
1545 err = lookup_fast(nd, path, &inode);
1546 if (unlikely(err)) {
1547 if (err < 0)
1548 goto out_err;
1549
1550 err = lookup_slow(nd, path);
1551 if (err < 0)
1552 goto out_err;
1553
1554 inode = path->dentry->d_inode;
1555 }
1556 err = -ENOENT;
1557 if (!inode || d_is_negative(path->dentry))
1558 goto out_path_put;
1559
1560 if (should_follow_link(path->dentry, follow)) {
1561 if (nd->flags & LOOKUP_RCU) {
1562 if (unlikely(unlazy_walk(nd, path->dentry))) {
1563 err = -ECHILD;
1564 goto out_err;
1565 }
1566 }
1567 BUG_ON(inode != path->dentry->d_inode);
1568 return 1;
1569 }
1570 path_to_nameidata(path, nd);
1571 nd->inode = inode;
1572 return 0;
1573
1574 out_path_put:
1575 path_to_nameidata(path, nd);
1576 out_err:
1577 terminate_walk(nd);
1578 return err;
1579 }
1580
1581 /*
1582 * This limits recursive symlink follows to 8, while
1583 * limiting consecutive symlinks to 40.
1584 *
1585 * Without that kind of total limit, nasty chains of consecutive
1586 * symlinks can cause almost arbitrarily long lookups.
1587 */
1588 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1589 {
1590 int res;
1591
1592 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1593 path_put_conditional(path, nd);
1594 path_put(&nd->path);
1595 return -ELOOP;
1596 }
1597 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1598
1599 nd->depth++;
1600 current->link_count++;
1601
1602 do {
1603 struct path link = *path;
1604 void *cookie;
1605
1606 res = follow_link(&link, nd, &cookie);
1607 if (res)
1608 break;
1609 res = walk_component(nd, path, LOOKUP_FOLLOW);
1610 put_link(nd, &link, cookie);
1611 } while (res > 0);
1612
1613 current->link_count--;
1614 nd->depth--;
1615 return res;
1616 }
1617
1618 /*
1619 * We can do the critical dentry name comparison and hashing
1620 * operations one word at a time, but we are limited to:
1621 *
1622 * - Architectures with fast unaligned word accesses. We could
1623 * do a "get_unaligned()" if this helps and is sufficiently
1624 * fast.
1625 *
1626 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1627 * do not trap on the (extremely unlikely) case of a page
1628 * crossing operation.
1629 *
1630 * - Furthermore, we need an efficient 64-bit compile for the
1631 * 64-bit case in order to generate the "number of bytes in
1632 * the final mask". Again, that could be replaced with a
1633 * efficient population count instruction or similar.
1634 */
1635 #ifdef CONFIG_DCACHE_WORD_ACCESS
1636
1637 #include <asm/word-at-a-time.h>
1638
1639 #ifdef CONFIG_64BIT
1640
1641 static inline unsigned int fold_hash(unsigned long hash)
1642 {
1643 return hash_64(hash, 32);
1644 }
1645
1646 #else /* 32-bit case */
1647
1648 #define fold_hash(x) (x)
1649
1650 #endif
1651
1652 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1653 {
1654 unsigned long a, mask;
1655 unsigned long hash = 0;
1656
1657 for (;;) {
1658 a = load_unaligned_zeropad(name);
1659 if (len < sizeof(unsigned long))
1660 break;
1661 hash += a;
1662 hash *= 9;
1663 name += sizeof(unsigned long);
1664 len -= sizeof(unsigned long);
1665 if (!len)
1666 goto done;
1667 }
1668 mask = bytemask_from_count(len);
1669 hash += mask & a;
1670 done:
1671 return fold_hash(hash);
1672 }
1673 EXPORT_SYMBOL(full_name_hash);
1674
1675 /*
1676 * Calculate the length and hash of the path component, and
1677 * return the "hash_len" as the result.
1678 */
1679 static inline u64 hash_name(const char *name)
1680 {
1681 unsigned long a, b, adata, bdata, mask, hash, len;
1682 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1683
1684 hash = a = 0;
1685 len = -sizeof(unsigned long);
1686 do {
1687 hash = (hash + a) * 9;
1688 len += sizeof(unsigned long);
1689 a = load_unaligned_zeropad(name+len);
1690 b = a ^ REPEAT_BYTE('/');
1691 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1692
1693 adata = prep_zero_mask(a, adata, &constants);
1694 bdata = prep_zero_mask(b, bdata, &constants);
1695
1696 mask = create_zero_mask(adata | bdata);
1697
1698 hash += a & zero_bytemask(mask);
1699 len += find_zero(mask);
1700 return hashlen_create(fold_hash(hash), len);
1701 }
1702
1703 #else
1704
1705 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1706 {
1707 unsigned long hash = init_name_hash();
1708 while (len--)
1709 hash = partial_name_hash(*name++, hash);
1710 return end_name_hash(hash);
1711 }
1712 EXPORT_SYMBOL(full_name_hash);
1713
1714 /*
1715 * We know there's a real path component here of at least
1716 * one character.
1717 */
1718 static inline u64 hash_name(const char *name)
1719 {
1720 unsigned long hash = init_name_hash();
1721 unsigned long len = 0, c;
1722
1723 c = (unsigned char)*name;
1724 do {
1725 len++;
1726 hash = partial_name_hash(c, hash);
1727 c = (unsigned char)name[len];
1728 } while (c && c != '/');
1729 return hashlen_create(end_name_hash(hash), len);
1730 }
1731
1732 #endif
1733
1734 /*
1735 * Name resolution.
1736 * This is the basic name resolution function, turning a pathname into
1737 * the final dentry. We expect 'base' to be positive and a directory.
1738 *
1739 * Returns 0 and nd will have valid dentry and mnt on success.
1740 * Returns error and drops reference to input namei data on failure.
1741 */
1742 static int link_path_walk(const char *name, struct nameidata *nd)
1743 {
1744 struct path next;
1745 int err;
1746
1747 while (*name=='/')
1748 name++;
1749 if (!*name)
1750 return 0;
1751
1752 /* At this point we know we have a real path component. */
1753 for(;;) {
1754 u64 hash_len;
1755 int type;
1756
1757 err = may_lookup(nd);
1758 if (err)
1759 break;
1760
1761 hash_len = hash_name(name);
1762
1763 type = LAST_NORM;
1764 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1765 case 2:
1766 if (name[1] == '.') {
1767 type = LAST_DOTDOT;
1768 nd->flags |= LOOKUP_JUMPED;
1769 }
1770 break;
1771 case 1:
1772 type = LAST_DOT;
1773 }
1774 if (likely(type == LAST_NORM)) {
1775 struct dentry *parent = nd->path.dentry;
1776 nd->flags &= ~LOOKUP_JUMPED;
1777 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1778 struct qstr this = { { .hash_len = hash_len }, .name = name };
1779 err = parent->d_op->d_hash(parent, &this);
1780 if (err < 0)
1781 break;
1782 hash_len = this.hash_len;
1783 name = this.name;
1784 }
1785 }
1786
1787 nd->last.hash_len = hash_len;
1788 nd->last.name = name;
1789 nd->last_type = type;
1790
1791 name += hashlen_len(hash_len);
1792 if (!*name)
1793 return 0;
1794 /*
1795 * If it wasn't NUL, we know it was '/'. Skip that
1796 * slash, and continue until no more slashes.
1797 */
1798 do {
1799 name++;
1800 } while (unlikely(*name == '/'));
1801 if (!*name)
1802 return 0;
1803
1804 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1805 if (err < 0)
1806 return err;
1807
1808 if (err) {
1809 err = nested_symlink(&next, nd);
1810 if (err)
1811 return err;
1812 }
1813 if (!d_can_lookup(nd->path.dentry)) {
1814 err = -ENOTDIR;
1815 break;
1816 }
1817 }
1818 terminate_walk(nd);
1819 return err;
1820 }
1821
1822 static int path_init(int dfd, const char *name, unsigned int flags,
1823 struct nameidata *nd, struct file **fp)
1824 {
1825 int retval = 0;
1826
1827 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1828 nd->flags = flags | LOOKUP_JUMPED;
1829 nd->depth = 0;
1830 if (flags & LOOKUP_ROOT) {
1831 struct dentry *root = nd->root.dentry;
1832 struct inode *inode = root->d_inode;
1833 if (*name) {
1834 if (!d_can_lookup(root))
1835 return -ENOTDIR;
1836 retval = inode_permission(inode, MAY_EXEC);
1837 if (retval)
1838 return retval;
1839 }
1840 nd->path = nd->root;
1841 nd->inode = inode;
1842 if (flags & LOOKUP_RCU) {
1843 rcu_read_lock();
1844 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1845 nd->m_seq = read_seqbegin(&mount_lock);
1846 } else {
1847 path_get(&nd->path);
1848 }
1849 return 0;
1850 }
1851
1852 nd->root.mnt = NULL;
1853
1854 nd->m_seq = read_seqbegin(&mount_lock);
1855 if (*name=='/') {
1856 if (flags & LOOKUP_RCU) {
1857 rcu_read_lock();
1858 nd->seq = set_root_rcu(nd);
1859 } else {
1860 set_root(nd);
1861 path_get(&nd->root);
1862 }
1863 nd->path = nd->root;
1864 } else if (dfd == AT_FDCWD) {
1865 if (flags & LOOKUP_RCU) {
1866 struct fs_struct *fs = current->fs;
1867 unsigned seq;
1868
1869 rcu_read_lock();
1870
1871 do {
1872 seq = read_seqcount_begin(&fs->seq);
1873 nd->path = fs->pwd;
1874 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1875 } while (read_seqcount_retry(&fs->seq, seq));
1876 } else {
1877 get_fs_pwd(current->fs, &nd->path);
1878 }
1879 } else {
1880 /* Caller must check execute permissions on the starting path component */
1881 struct fd f = fdget_raw(dfd);
1882 struct dentry *dentry;
1883
1884 if (!f.file)
1885 return -EBADF;
1886
1887 dentry = f.file->f_path.dentry;
1888
1889 if (*name) {
1890 if (!d_can_lookup(dentry)) {
1891 fdput(f);
1892 return -ENOTDIR;
1893 }
1894 }
1895
1896 nd->path = f.file->f_path;
1897 if (flags & LOOKUP_RCU) {
1898 if (f.flags & FDPUT_FPUT)
1899 *fp = f.file;
1900 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1901 rcu_read_lock();
1902 } else {
1903 path_get(&nd->path);
1904 fdput(f);
1905 }
1906 }
1907
1908 nd->inode = nd->path.dentry->d_inode;
1909 if (!(flags & LOOKUP_RCU))
1910 return 0;
1911 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1912 return 0;
1913 if (!(nd->flags & LOOKUP_ROOT))
1914 nd->root.mnt = NULL;
1915 rcu_read_unlock();
1916 return -ECHILD;
1917 }
1918
1919 static inline int lookup_last(struct nameidata *nd, struct path *path)
1920 {
1921 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1922 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1923
1924 nd->flags &= ~LOOKUP_PARENT;
1925 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1926 }
1927
1928 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1929 static int path_lookupat(int dfd, const char *name,
1930 unsigned int flags, struct nameidata *nd)
1931 {
1932 struct file *base = NULL;
1933 struct path path;
1934 int err;
1935
1936 /*
1937 * Path walking is largely split up into 2 different synchronisation
1938 * schemes, rcu-walk and ref-walk (explained in
1939 * Documentation/filesystems/path-lookup.txt). These share much of the
1940 * path walk code, but some things particularly setup, cleanup, and
1941 * following mounts are sufficiently divergent that functions are
1942 * duplicated. Typically there is a function foo(), and its RCU
1943 * analogue, foo_rcu().
1944 *
1945 * -ECHILD is the error number of choice (just to avoid clashes) that
1946 * is returned if some aspect of an rcu-walk fails. Such an error must
1947 * be handled by restarting a traditional ref-walk (which will always
1948 * be able to complete).
1949 */
1950 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1951
1952 if (unlikely(err))
1953 return err;
1954
1955 current->total_link_count = 0;
1956 err = link_path_walk(name, nd);
1957
1958 if (!err && !(flags & LOOKUP_PARENT)) {
1959 err = lookup_last(nd, &path);
1960 while (err > 0) {
1961 void *cookie;
1962 struct path link = path;
1963 err = may_follow_link(&link, nd);
1964 if (unlikely(err))
1965 break;
1966 nd->flags |= LOOKUP_PARENT;
1967 err = follow_link(&link, nd, &cookie);
1968 if (err)
1969 break;
1970 err = lookup_last(nd, &path);
1971 put_link(nd, &link, cookie);
1972 }
1973 }
1974
1975 if (!err)
1976 err = complete_walk(nd);
1977
1978 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1979 if (!d_can_lookup(nd->path.dentry)) {
1980 path_put(&nd->path);
1981 err = -ENOTDIR;
1982 }
1983 }
1984
1985 if (base)
1986 fput(base);
1987
1988 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1989 path_put(&nd->root);
1990 nd->root.mnt = NULL;
1991 }
1992 return err;
1993 }
1994
1995 static int filename_lookup(int dfd, struct filename *name,
1996 unsigned int flags, struct nameidata *nd)
1997 {
1998 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
1999 if (unlikely(retval == -ECHILD))
2000 retval = path_lookupat(dfd, name->name, flags, nd);
2001 if (unlikely(retval == -ESTALE))
2002 retval = path_lookupat(dfd, name->name,
2003 flags | LOOKUP_REVAL, nd);
2004
2005 if (likely(!retval))
2006 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2007 return retval;
2008 }
2009
2010 static int do_path_lookup(int dfd, const char *name,
2011 unsigned int flags, struct nameidata *nd)
2012 {
2013 struct filename filename = { .name = name };
2014
2015 return filename_lookup(dfd, &filename, flags, nd);
2016 }
2017
2018 /* does lookup, returns the object with parent locked */
2019 struct dentry *kern_path_locked(const char *name, struct path *path)
2020 {
2021 struct nameidata nd;
2022 struct dentry *d;
2023 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2024 if (err)
2025 return ERR_PTR(err);
2026 if (nd.last_type != LAST_NORM) {
2027 path_put(&nd.path);
2028 return ERR_PTR(-EINVAL);
2029 }
2030 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2031 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2032 if (IS_ERR(d)) {
2033 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2034 path_put(&nd.path);
2035 return d;
2036 }
2037 *path = nd.path;
2038 return d;
2039 }
2040
2041 int kern_path(const char *name, unsigned int flags, struct path *path)
2042 {
2043 struct nameidata nd;
2044 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2045 if (!res)
2046 *path = nd.path;
2047 return res;
2048 }
2049 EXPORT_SYMBOL(kern_path);
2050
2051 /**
2052 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2053 * @dentry: pointer to dentry of the base directory
2054 * @mnt: pointer to vfs mount of the base directory
2055 * @name: pointer to file name
2056 * @flags: lookup flags
2057 * @path: pointer to struct path to fill
2058 */
2059 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2060 const char *name, unsigned int flags,
2061 struct path *path)
2062 {
2063 struct nameidata nd;
2064 int err;
2065 nd.root.dentry = dentry;
2066 nd.root.mnt = mnt;
2067 BUG_ON(flags & LOOKUP_PARENT);
2068 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2069 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2070 if (!err)
2071 *path = nd.path;
2072 return err;
2073 }
2074 EXPORT_SYMBOL(vfs_path_lookup);
2075
2076 /*
2077 * Restricted form of lookup. Doesn't follow links, single-component only,
2078 * needs parent already locked. Doesn't follow mounts.
2079 * SMP-safe.
2080 */
2081 static struct dentry *lookup_hash(struct nameidata *nd)
2082 {
2083 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2084 }
2085
2086 /**
2087 * lookup_one_len - filesystem helper to lookup single pathname component
2088 * @name: pathname component to lookup
2089 * @base: base directory to lookup from
2090 * @len: maximum length @len should be interpreted to
2091 *
2092 * Note that this routine is purely a helper for filesystem usage and should
2093 * not be called by generic code. Also note that by using this function the
2094 * nameidata argument is passed to the filesystem methods and a filesystem
2095 * using this helper needs to be prepared for that.
2096 */
2097 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2098 {
2099 struct qstr this;
2100 unsigned int c;
2101 int err;
2102
2103 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2104
2105 this.name = name;
2106 this.len = len;
2107 this.hash = full_name_hash(name, len);
2108 if (!len)
2109 return ERR_PTR(-EACCES);
2110
2111 if (unlikely(name[0] == '.')) {
2112 if (len < 2 || (len == 2 && name[1] == '.'))
2113 return ERR_PTR(-EACCES);
2114 }
2115
2116 while (len--) {
2117 c = *(const unsigned char *)name++;
2118 if (c == '/' || c == '\0')
2119 return ERR_PTR(-EACCES);
2120 }
2121 /*
2122 * See if the low-level filesystem might want
2123 * to use its own hash..
2124 */
2125 if (base->d_flags & DCACHE_OP_HASH) {
2126 int err = base->d_op->d_hash(base, &this);
2127 if (err < 0)
2128 return ERR_PTR(err);
2129 }
2130
2131 err = inode_permission(base->d_inode, MAY_EXEC);
2132 if (err)
2133 return ERR_PTR(err);
2134
2135 return __lookup_hash(&this, base, 0);
2136 }
2137 EXPORT_SYMBOL(lookup_one_len);
2138
2139 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2140 struct path *path, int *empty)
2141 {
2142 struct nameidata nd;
2143 struct filename *tmp = getname_flags(name, flags, empty);
2144 int err = PTR_ERR(tmp);
2145 if (!IS_ERR(tmp)) {
2146
2147 BUG_ON(flags & LOOKUP_PARENT);
2148
2149 err = filename_lookup(dfd, tmp, flags, &nd);
2150 putname(tmp);
2151 if (!err)
2152 *path = nd.path;
2153 }
2154 return err;
2155 }
2156
2157 int user_path_at(int dfd, const char __user *name, unsigned flags,
2158 struct path *path)
2159 {
2160 return user_path_at_empty(dfd, name, flags, path, NULL);
2161 }
2162 EXPORT_SYMBOL(user_path_at);
2163
2164 /*
2165 * NB: most callers don't do anything directly with the reference to the
2166 * to struct filename, but the nd->last pointer points into the name string
2167 * allocated by getname. So we must hold the reference to it until all
2168 * path-walking is complete.
2169 */
2170 static struct filename *
2171 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2172 unsigned int flags)
2173 {
2174 struct filename *s = getname(path);
2175 int error;
2176
2177 /* only LOOKUP_REVAL is allowed in extra flags */
2178 flags &= LOOKUP_REVAL;
2179
2180 if (IS_ERR(s))
2181 return s;
2182
2183 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2184 if (error) {
2185 putname(s);
2186 return ERR_PTR(error);
2187 }
2188
2189 return s;
2190 }
2191
2192 /**
2193 * mountpoint_last - look up last component for umount
2194 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2195 * @path: pointer to container for result
2196 *
2197 * This is a special lookup_last function just for umount. In this case, we
2198 * need to resolve the path without doing any revalidation.
2199 *
2200 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2201 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2202 * in almost all cases, this lookup will be served out of the dcache. The only
2203 * cases where it won't are if nd->last refers to a symlink or the path is
2204 * bogus and it doesn't exist.
2205 *
2206 * Returns:
2207 * -error: if there was an error during lookup. This includes -ENOENT if the
2208 * lookup found a negative dentry. The nd->path reference will also be
2209 * put in this case.
2210 *
2211 * 0: if we successfully resolved nd->path and found it to not to be a
2212 * symlink that needs to be followed. "path" will also be populated.
2213 * The nd->path reference will also be put.
2214 *
2215 * 1: if we successfully resolved nd->last and found it to be a symlink
2216 * that needs to be followed. "path" will be populated with the path
2217 * to the link, and nd->path will *not* be put.
2218 */
2219 static int
2220 mountpoint_last(struct nameidata *nd, struct path *path)
2221 {
2222 int error = 0;
2223 struct dentry *dentry;
2224 struct dentry *dir = nd->path.dentry;
2225
2226 /* If we're in rcuwalk, drop out of it to handle last component */
2227 if (nd->flags & LOOKUP_RCU) {
2228 if (unlazy_walk(nd, NULL)) {
2229 error = -ECHILD;
2230 goto out;
2231 }
2232 }
2233
2234 nd->flags &= ~LOOKUP_PARENT;
2235
2236 if (unlikely(nd->last_type != LAST_NORM)) {
2237 error = handle_dots(nd, nd->last_type);
2238 if (error)
2239 goto out;
2240 dentry = dget(nd->path.dentry);
2241 goto done;
2242 }
2243
2244 mutex_lock(&dir->d_inode->i_mutex);
2245 dentry = d_lookup(dir, &nd->last);
2246 if (!dentry) {
2247 /*
2248 * No cached dentry. Mounted dentries are pinned in the cache,
2249 * so that means that this dentry is probably a symlink or the
2250 * path doesn't actually point to a mounted dentry.
2251 */
2252 dentry = d_alloc(dir, &nd->last);
2253 if (!dentry) {
2254 error = -ENOMEM;
2255 mutex_unlock(&dir->d_inode->i_mutex);
2256 goto out;
2257 }
2258 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2259 error = PTR_ERR(dentry);
2260 if (IS_ERR(dentry)) {
2261 mutex_unlock(&dir->d_inode->i_mutex);
2262 goto out;
2263 }
2264 }
2265 mutex_unlock(&dir->d_inode->i_mutex);
2266
2267 done:
2268 if (!dentry->d_inode || d_is_negative(dentry)) {
2269 error = -ENOENT;
2270 dput(dentry);
2271 goto out;
2272 }
2273 path->dentry = dentry;
2274 path->mnt = nd->path.mnt;
2275 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2276 return 1;
2277 mntget(path->mnt);
2278 follow_mount(path);
2279 error = 0;
2280 out:
2281 terminate_walk(nd);
2282 return error;
2283 }
2284
2285 /**
2286 * path_mountpoint - look up a path to be umounted
2287 * @dfd: directory file descriptor to start walk from
2288 * @name: full pathname to walk
2289 * @path: pointer to container for result
2290 * @flags: lookup flags
2291 *
2292 * Look up the given name, but don't attempt to revalidate the last component.
2293 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2294 */
2295 static int
2296 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2297 {
2298 struct file *base = NULL;
2299 struct nameidata nd;
2300 int err;
2301
2302 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2303 if (unlikely(err))
2304 return err;
2305
2306 current->total_link_count = 0;
2307 err = link_path_walk(name, &nd);
2308 if (err)
2309 goto out;
2310
2311 err = mountpoint_last(&nd, path);
2312 while (err > 0) {
2313 void *cookie;
2314 struct path link = *path;
2315 err = may_follow_link(&link, &nd);
2316 if (unlikely(err))
2317 break;
2318 nd.flags |= LOOKUP_PARENT;
2319 err = follow_link(&link, &nd, &cookie);
2320 if (err)
2321 break;
2322 err = mountpoint_last(&nd, path);
2323 put_link(&nd, &link, cookie);
2324 }
2325 out:
2326 if (base)
2327 fput(base);
2328
2329 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2330 path_put(&nd.root);
2331
2332 return err;
2333 }
2334
2335 static int
2336 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2337 unsigned int flags)
2338 {
2339 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2340 if (unlikely(error == -ECHILD))
2341 error = path_mountpoint(dfd, s->name, path, flags);
2342 if (unlikely(error == -ESTALE))
2343 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2344 if (likely(!error))
2345 audit_inode(s, path->dentry, 0);
2346 return error;
2347 }
2348
2349 /**
2350 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2351 * @dfd: directory file descriptor
2352 * @name: pathname from userland
2353 * @flags: lookup flags
2354 * @path: pointer to container to hold result
2355 *
2356 * A umount is a special case for path walking. We're not actually interested
2357 * in the inode in this situation, and ESTALE errors can be a problem. We
2358 * simply want track down the dentry and vfsmount attached at the mountpoint
2359 * and avoid revalidating the last component.
2360 *
2361 * Returns 0 and populates "path" on success.
2362 */
2363 int
2364 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2365 struct path *path)
2366 {
2367 struct filename *s = getname(name);
2368 int error;
2369 if (IS_ERR(s))
2370 return PTR_ERR(s);
2371 error = filename_mountpoint(dfd, s, path, flags);
2372 putname(s);
2373 return error;
2374 }
2375
2376 int
2377 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2378 unsigned int flags)
2379 {
2380 struct filename s = {.name = name};
2381 return filename_mountpoint(dfd, &s, path, flags);
2382 }
2383 EXPORT_SYMBOL(kern_path_mountpoint);
2384
2385 /*
2386 * It's inline, so penalty for filesystems that don't use sticky bit is
2387 * minimal.
2388 */
2389 static inline int check_sticky(struct inode *dir, struct inode *inode)
2390 {
2391 kuid_t fsuid = current_fsuid();
2392
2393 if (!(dir->i_mode & S_ISVTX))
2394 return 0;
2395 if (uid_eq(inode->i_uid, fsuid))
2396 return 0;
2397 if (uid_eq(dir->i_uid, fsuid))
2398 return 0;
2399 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2400 }
2401
2402 /*
2403 * Check whether we can remove a link victim from directory dir, check
2404 * whether the type of victim is right.
2405 * 1. We can't do it if dir is read-only (done in permission())
2406 * 2. We should have write and exec permissions on dir
2407 * 3. We can't remove anything from append-only dir
2408 * 4. We can't do anything with immutable dir (done in permission())
2409 * 5. If the sticky bit on dir is set we should either
2410 * a. be owner of dir, or
2411 * b. be owner of victim, or
2412 * c. have CAP_FOWNER capability
2413 * 6. If the victim is append-only or immutable we can't do antyhing with
2414 * links pointing to it.
2415 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2416 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2417 * 9. We can't remove a root or mountpoint.
2418 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2419 * nfs_async_unlink().
2420 */
2421 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2422 {
2423 struct inode *inode = victim->d_inode;
2424 int error;
2425
2426 if (d_is_negative(victim))
2427 return -ENOENT;
2428 BUG_ON(!inode);
2429
2430 BUG_ON(victim->d_parent->d_inode != dir);
2431 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2432
2433 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2434 if (error)
2435 return error;
2436 if (IS_APPEND(dir))
2437 return -EPERM;
2438
2439 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2440 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2441 return -EPERM;
2442 if (isdir) {
2443 if (!d_is_dir(victim))
2444 return -ENOTDIR;
2445 if (IS_ROOT(victim))
2446 return -EBUSY;
2447 } else if (d_is_dir(victim))
2448 return -EISDIR;
2449 if (IS_DEADDIR(dir))
2450 return -ENOENT;
2451 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2452 return -EBUSY;
2453 return 0;
2454 }
2455
2456 /* Check whether we can create an object with dentry child in directory
2457 * dir.
2458 * 1. We can't do it if child already exists (open has special treatment for
2459 * this case, but since we are inlined it's OK)
2460 * 2. We can't do it if dir is read-only (done in permission())
2461 * 3. We should have write and exec permissions on dir
2462 * 4. We can't do it if dir is immutable (done in permission())
2463 */
2464 static inline int may_create(struct inode *dir, struct dentry *child)
2465 {
2466 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2467 if (child->d_inode)
2468 return -EEXIST;
2469 if (IS_DEADDIR(dir))
2470 return -ENOENT;
2471 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2472 }
2473
2474 /*
2475 * p1 and p2 should be directories on the same fs.
2476 */
2477 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2478 {
2479 struct dentry *p;
2480
2481 if (p1 == p2) {
2482 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2483 return NULL;
2484 }
2485
2486 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2487
2488 p = d_ancestor(p2, p1);
2489 if (p) {
2490 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2491 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2492 return p;
2493 }
2494
2495 p = d_ancestor(p1, p2);
2496 if (p) {
2497 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2498 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2499 return p;
2500 }
2501
2502 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2503 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2504 return NULL;
2505 }
2506 EXPORT_SYMBOL(lock_rename);
2507
2508 void unlock_rename(struct dentry *p1, struct dentry *p2)
2509 {
2510 mutex_unlock(&p1->d_inode->i_mutex);
2511 if (p1 != p2) {
2512 mutex_unlock(&p2->d_inode->i_mutex);
2513 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2514 }
2515 }
2516 EXPORT_SYMBOL(unlock_rename);
2517
2518 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2519 bool want_excl)
2520 {
2521 int error = may_create(dir, dentry);
2522 if (error)
2523 return error;
2524
2525 if (!dir->i_op->create)
2526 return -EACCES; /* shouldn't it be ENOSYS? */
2527 mode &= S_IALLUGO;
2528 mode |= S_IFREG;
2529 error = security_inode_create(dir, dentry, mode);
2530 if (error)
2531 return error;
2532 error = dir->i_op->create(dir, dentry, mode, want_excl);
2533 if (!error)
2534 fsnotify_create(dir, dentry);
2535 return error;
2536 }
2537 EXPORT_SYMBOL(vfs_create);
2538
2539 static int may_open(struct path *path, int acc_mode, int flag)
2540 {
2541 struct dentry *dentry = path->dentry;
2542 struct inode *inode = dentry->d_inode;
2543 int error;
2544
2545 /* O_PATH? */
2546 if (!acc_mode)
2547 return 0;
2548
2549 if (!inode)
2550 return -ENOENT;
2551
2552 switch (inode->i_mode & S_IFMT) {
2553 case S_IFLNK:
2554 return -ELOOP;
2555 case S_IFDIR:
2556 if (acc_mode & MAY_WRITE)
2557 return -EISDIR;
2558 break;
2559 case S_IFBLK:
2560 case S_IFCHR:
2561 if (path->mnt->mnt_flags & MNT_NODEV)
2562 return -EACCES;
2563 /*FALLTHRU*/
2564 case S_IFIFO:
2565 case S_IFSOCK:
2566 flag &= ~O_TRUNC;
2567 break;
2568 }
2569
2570 error = inode_permission(inode, acc_mode);
2571 if (error)
2572 return error;
2573
2574 /*
2575 * An append-only file must be opened in append mode for writing.
2576 */
2577 if (IS_APPEND(inode)) {
2578 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2579 return -EPERM;
2580 if (flag & O_TRUNC)
2581 return -EPERM;
2582 }
2583
2584 /* O_NOATIME can only be set by the owner or superuser */
2585 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2586 return -EPERM;
2587
2588 return 0;
2589 }
2590
2591 static int handle_truncate(struct file *filp)
2592 {
2593 struct path *path = &filp->f_path;
2594 struct inode *inode = path->dentry->d_inode;
2595 int error = get_write_access(inode);
2596 if (error)
2597 return error;
2598 /*
2599 * Refuse to truncate files with mandatory locks held on them.
2600 */
2601 error = locks_verify_locked(filp);
2602 if (!error)
2603 error = security_path_truncate(path);
2604 if (!error) {
2605 error = do_truncate(path->dentry, 0,
2606 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2607 filp);
2608 }
2609 put_write_access(inode);
2610 return error;
2611 }
2612
2613 static inline int open_to_namei_flags(int flag)
2614 {
2615 if ((flag & O_ACCMODE) == 3)
2616 flag--;
2617 return flag;
2618 }
2619
2620 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2621 {
2622 int error = security_path_mknod(dir, dentry, mode, 0);
2623 if (error)
2624 return error;
2625
2626 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2627 if (error)
2628 return error;
2629
2630 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2631 }
2632
2633 /*
2634 * Attempt to atomically look up, create and open a file from a negative
2635 * dentry.
2636 *
2637 * Returns 0 if successful. The file will have been created and attached to
2638 * @file by the filesystem calling finish_open().
2639 *
2640 * Returns 1 if the file was looked up only or didn't need creating. The
2641 * caller will need to perform the open themselves. @path will have been
2642 * updated to point to the new dentry. This may be negative.
2643 *
2644 * Returns an error code otherwise.
2645 */
2646 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2647 struct path *path, struct file *file,
2648 const struct open_flags *op,
2649 bool got_write, bool need_lookup,
2650 int *opened)
2651 {
2652 struct inode *dir = nd->path.dentry->d_inode;
2653 unsigned open_flag = open_to_namei_flags(op->open_flag);
2654 umode_t mode;
2655 int error;
2656 int acc_mode;
2657 int create_error = 0;
2658 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2659 bool excl;
2660
2661 BUG_ON(dentry->d_inode);
2662
2663 /* Don't create child dentry for a dead directory. */
2664 if (unlikely(IS_DEADDIR(dir))) {
2665 error = -ENOENT;
2666 goto out;
2667 }
2668
2669 mode = op->mode;
2670 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2671 mode &= ~current_umask();
2672
2673 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2674 if (excl)
2675 open_flag &= ~O_TRUNC;
2676
2677 /*
2678 * Checking write permission is tricky, bacuse we don't know if we are
2679 * going to actually need it: O_CREAT opens should work as long as the
2680 * file exists. But checking existence breaks atomicity. The trick is
2681 * to check access and if not granted clear O_CREAT from the flags.
2682 *
2683 * Another problem is returing the "right" error value (e.g. for an
2684 * O_EXCL open we want to return EEXIST not EROFS).
2685 */
2686 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2687 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2688 if (!(open_flag & O_CREAT)) {
2689 /*
2690 * No O_CREATE -> atomicity not a requirement -> fall
2691 * back to lookup + open
2692 */
2693 goto no_open;
2694 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2695 /* Fall back and fail with the right error */
2696 create_error = -EROFS;
2697 goto no_open;
2698 } else {
2699 /* No side effects, safe to clear O_CREAT */
2700 create_error = -EROFS;
2701 open_flag &= ~O_CREAT;
2702 }
2703 }
2704
2705 if (open_flag & O_CREAT) {
2706 error = may_o_create(&nd->path, dentry, mode);
2707 if (error) {
2708 create_error = error;
2709 if (open_flag & O_EXCL)
2710 goto no_open;
2711 open_flag &= ~O_CREAT;
2712 }
2713 }
2714
2715 if (nd->flags & LOOKUP_DIRECTORY)
2716 open_flag |= O_DIRECTORY;
2717
2718 file->f_path.dentry = DENTRY_NOT_SET;
2719 file->f_path.mnt = nd->path.mnt;
2720 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2721 opened);
2722 if (error < 0) {
2723 if (create_error && error == -ENOENT)
2724 error = create_error;
2725 goto out;
2726 }
2727
2728 if (error) { /* returned 1, that is */
2729 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2730 error = -EIO;
2731 goto out;
2732 }
2733 if (file->f_path.dentry) {
2734 dput(dentry);
2735 dentry = file->f_path.dentry;
2736 }
2737 if (*opened & FILE_CREATED)
2738 fsnotify_create(dir, dentry);
2739 if (!dentry->d_inode) {
2740 WARN_ON(*opened & FILE_CREATED);
2741 if (create_error) {
2742 error = create_error;
2743 goto out;
2744 }
2745 } else {
2746 if (excl && !(*opened & FILE_CREATED)) {
2747 error = -EEXIST;
2748 goto out;
2749 }
2750 }
2751 goto looked_up;
2752 }
2753
2754 /*
2755 * We didn't have the inode before the open, so check open permission
2756 * here.
2757 */
2758 acc_mode = op->acc_mode;
2759 if (*opened & FILE_CREATED) {
2760 WARN_ON(!(open_flag & O_CREAT));
2761 fsnotify_create(dir, dentry);
2762 acc_mode = MAY_OPEN;
2763 }
2764 error = may_open(&file->f_path, acc_mode, open_flag);
2765 if (error)
2766 fput(file);
2767
2768 out:
2769 dput(dentry);
2770 return error;
2771
2772 no_open:
2773 if (need_lookup) {
2774 dentry = lookup_real(dir, dentry, nd->flags);
2775 if (IS_ERR(dentry))
2776 return PTR_ERR(dentry);
2777
2778 if (create_error) {
2779 int open_flag = op->open_flag;
2780
2781 error = create_error;
2782 if ((open_flag & O_EXCL)) {
2783 if (!dentry->d_inode)
2784 goto out;
2785 } else if (!dentry->d_inode) {
2786 goto out;
2787 } else if ((open_flag & O_TRUNC) &&
2788 S_ISREG(dentry->d_inode->i_mode)) {
2789 goto out;
2790 }
2791 /* will fail later, go on to get the right error */
2792 }
2793 }
2794 looked_up:
2795 path->dentry = dentry;
2796 path->mnt = nd->path.mnt;
2797 return 1;
2798 }
2799
2800 /*
2801 * Look up and maybe create and open the last component.
2802 *
2803 * Must be called with i_mutex held on parent.
2804 *
2805 * Returns 0 if the file was successfully atomically created (if necessary) and
2806 * opened. In this case the file will be returned attached to @file.
2807 *
2808 * Returns 1 if the file was not completely opened at this time, though lookups
2809 * and creations will have been performed and the dentry returned in @path will
2810 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2811 * specified then a negative dentry may be returned.
2812 *
2813 * An error code is returned otherwise.
2814 *
2815 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2816 * cleared otherwise prior to returning.
2817 */
2818 static int lookup_open(struct nameidata *nd, struct path *path,
2819 struct file *file,
2820 const struct open_flags *op,
2821 bool got_write, int *opened)
2822 {
2823 struct dentry *dir = nd->path.dentry;
2824 struct inode *dir_inode = dir->d_inode;
2825 struct dentry *dentry;
2826 int error;
2827 bool need_lookup;
2828
2829 *opened &= ~FILE_CREATED;
2830 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2831 if (IS_ERR(dentry))
2832 return PTR_ERR(dentry);
2833
2834 /* Cached positive dentry: will open in f_op->open */
2835 if (!need_lookup && dentry->d_inode)
2836 goto out_no_open;
2837
2838 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2839 return atomic_open(nd, dentry, path, file, op, got_write,
2840 need_lookup, opened);
2841 }
2842
2843 if (need_lookup) {
2844 BUG_ON(dentry->d_inode);
2845
2846 dentry = lookup_real(dir_inode, dentry, nd->flags);
2847 if (IS_ERR(dentry))
2848 return PTR_ERR(dentry);
2849 }
2850
2851 /* Negative dentry, just create the file */
2852 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2853 umode_t mode = op->mode;
2854 if (!IS_POSIXACL(dir->d_inode))
2855 mode &= ~current_umask();
2856 /*
2857 * This write is needed to ensure that a
2858 * rw->ro transition does not occur between
2859 * the time when the file is created and when
2860 * a permanent write count is taken through
2861 * the 'struct file' in finish_open().
2862 */
2863 if (!got_write) {
2864 error = -EROFS;
2865 goto out_dput;
2866 }
2867 *opened |= FILE_CREATED;
2868 error = security_path_mknod(&nd->path, dentry, mode, 0);
2869 if (error)
2870 goto out_dput;
2871 error = vfs_create(dir->d_inode, dentry, mode,
2872 nd->flags & LOOKUP_EXCL);
2873 if (error)
2874 goto out_dput;
2875 }
2876 out_no_open:
2877 path->dentry = dentry;
2878 path->mnt = nd->path.mnt;
2879 return 1;
2880
2881 out_dput:
2882 dput(dentry);
2883 return error;
2884 }
2885
2886 /*
2887 * Handle the last step of open()
2888 */
2889 static int do_last(struct nameidata *nd, struct path *path,
2890 struct file *file, const struct open_flags *op,
2891 int *opened, struct filename *name)
2892 {
2893 struct dentry *dir = nd->path.dentry;
2894 int open_flag = op->open_flag;
2895 bool will_truncate = (open_flag & O_TRUNC) != 0;
2896 bool got_write = false;
2897 int acc_mode = op->acc_mode;
2898 struct inode *inode;
2899 bool symlink_ok = false;
2900 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2901 bool retried = false;
2902 int error;
2903
2904 nd->flags &= ~LOOKUP_PARENT;
2905 nd->flags |= op->intent;
2906
2907 if (nd->last_type != LAST_NORM) {
2908 error = handle_dots(nd, nd->last_type);
2909 if (error)
2910 return error;
2911 goto finish_open;
2912 }
2913
2914 if (!(open_flag & O_CREAT)) {
2915 if (nd->last.name[nd->last.len])
2916 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2917 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2918 symlink_ok = true;
2919 /* we _can_ be in RCU mode here */
2920 error = lookup_fast(nd, path, &inode);
2921 if (likely(!error))
2922 goto finish_lookup;
2923
2924 if (error < 0)
2925 goto out;
2926
2927 BUG_ON(nd->inode != dir->d_inode);
2928 } else {
2929 /* create side of things */
2930 /*
2931 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2932 * has been cleared when we got to the last component we are
2933 * about to look up
2934 */
2935 error = complete_walk(nd);
2936 if (error)
2937 return error;
2938
2939 audit_inode(name, dir, LOOKUP_PARENT);
2940 error = -EISDIR;
2941 /* trailing slashes? */
2942 if (nd->last.name[nd->last.len])
2943 goto out;
2944 }
2945
2946 retry_lookup:
2947 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2948 error = mnt_want_write(nd->path.mnt);
2949 if (!error)
2950 got_write = true;
2951 /*
2952 * do _not_ fail yet - we might not need that or fail with
2953 * a different error; let lookup_open() decide; we'll be
2954 * dropping this one anyway.
2955 */
2956 }
2957 mutex_lock(&dir->d_inode->i_mutex);
2958 error = lookup_open(nd, path, file, op, got_write, opened);
2959 mutex_unlock(&dir->d_inode->i_mutex);
2960
2961 if (error <= 0) {
2962 if (error)
2963 goto out;
2964
2965 if ((*opened & FILE_CREATED) ||
2966 !S_ISREG(file_inode(file)->i_mode))
2967 will_truncate = false;
2968
2969 audit_inode(name, file->f_path.dentry, 0);
2970 goto opened;
2971 }
2972
2973 if (*opened & FILE_CREATED) {
2974 /* Don't check for write permission, don't truncate */
2975 open_flag &= ~O_TRUNC;
2976 will_truncate = false;
2977 acc_mode = MAY_OPEN;
2978 path_to_nameidata(path, nd);
2979 goto finish_open_created;
2980 }
2981
2982 /*
2983 * create/update audit record if it already exists.
2984 */
2985 if (d_is_positive(path->dentry))
2986 audit_inode(name, path->dentry, 0);
2987
2988 /*
2989 * If atomic_open() acquired write access it is dropped now due to
2990 * possible mount and symlink following (this might be optimized away if
2991 * necessary...)
2992 */
2993 if (got_write) {
2994 mnt_drop_write(nd->path.mnt);
2995 got_write = false;
2996 }
2997
2998 error = -EEXIST;
2999 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3000 goto exit_dput;
3001
3002 error = follow_managed(path, nd->flags);
3003 if (error < 0)
3004 goto exit_dput;
3005
3006 if (error)
3007 nd->flags |= LOOKUP_JUMPED;
3008
3009 BUG_ON(nd->flags & LOOKUP_RCU);
3010 inode = path->dentry->d_inode;
3011 finish_lookup:
3012 /* we _can_ be in RCU mode here */
3013 error = -ENOENT;
3014 if (!inode || d_is_negative(path->dentry)) {
3015 path_to_nameidata(path, nd);
3016 goto out;
3017 }
3018
3019 if (should_follow_link(path->dentry, !symlink_ok)) {
3020 if (nd->flags & LOOKUP_RCU) {
3021 if (unlikely(unlazy_walk(nd, path->dentry))) {
3022 error = -ECHILD;
3023 goto out;
3024 }
3025 }
3026 BUG_ON(inode != path->dentry->d_inode);
3027 return 1;
3028 }
3029
3030 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3031 path_to_nameidata(path, nd);
3032 } else {
3033 save_parent.dentry = nd->path.dentry;
3034 save_parent.mnt = mntget(path->mnt);
3035 nd->path.dentry = path->dentry;
3036
3037 }
3038 nd->inode = inode;
3039 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3040 finish_open:
3041 error = complete_walk(nd);
3042 if (error) {
3043 path_put(&save_parent);
3044 return error;
3045 }
3046 audit_inode(name, nd->path.dentry, 0);
3047 error = -EISDIR;
3048 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3049 goto out;
3050 error = -ENOTDIR;
3051 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3052 goto out;
3053 if (!S_ISREG(nd->inode->i_mode))
3054 will_truncate = false;
3055
3056 if (will_truncate) {
3057 error = mnt_want_write(nd->path.mnt);
3058 if (error)
3059 goto out;
3060 got_write = true;
3061 }
3062 finish_open_created:
3063 error = may_open(&nd->path, acc_mode, open_flag);
3064 if (error)
3065 goto out;
3066 file->f_path.mnt = nd->path.mnt;
3067 error = finish_open(file, nd->path.dentry, NULL, opened);
3068 if (error) {
3069 if (error == -EOPENSTALE)
3070 goto stale_open;
3071 goto out;
3072 }
3073 opened:
3074 error = open_check_o_direct(file);
3075 if (error)
3076 goto exit_fput;
3077 error = ima_file_check(file, op->acc_mode);
3078 if (error)
3079 goto exit_fput;
3080
3081 if (will_truncate) {
3082 error = handle_truncate(file);
3083 if (error)
3084 goto exit_fput;
3085 }
3086 out:
3087 if (got_write)
3088 mnt_drop_write(nd->path.mnt);
3089 path_put(&save_parent);
3090 terminate_walk(nd);
3091 return error;
3092
3093 exit_dput:
3094 path_put_conditional(path, nd);
3095 goto out;
3096 exit_fput:
3097 fput(file);
3098 goto out;
3099
3100 stale_open:
3101 /* If no saved parent or already retried then can't retry */
3102 if (!save_parent.dentry || retried)
3103 goto out;
3104
3105 BUG_ON(save_parent.dentry != dir);
3106 path_put(&nd->path);
3107 nd->path = save_parent;
3108 nd->inode = dir->d_inode;
3109 save_parent.mnt = NULL;
3110 save_parent.dentry = NULL;
3111 if (got_write) {
3112 mnt_drop_write(nd->path.mnt);
3113 got_write = false;
3114 }
3115 retried = true;
3116 goto retry_lookup;
3117 }
3118
3119 static int do_tmpfile(int dfd, struct filename *pathname,
3120 struct nameidata *nd, int flags,
3121 const struct open_flags *op,
3122 struct file *file, int *opened)
3123 {
3124 static const struct qstr name = QSTR_INIT("/", 1);
3125 struct dentry *dentry, *child;
3126 struct inode *dir;
3127 int error = path_lookupat(dfd, pathname->name,
3128 flags | LOOKUP_DIRECTORY, nd);
3129 if (unlikely(error))
3130 return error;
3131 error = mnt_want_write(nd->path.mnt);
3132 if (unlikely(error))
3133 goto out;
3134 /* we want directory to be writable */
3135 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3136 if (error)
3137 goto out2;
3138 dentry = nd->path.dentry;
3139 dir = dentry->d_inode;
3140 if (!dir->i_op->tmpfile) {
3141 error = -EOPNOTSUPP;
3142 goto out2;
3143 }
3144 child = d_alloc(dentry, &name);
3145 if (unlikely(!child)) {
3146 error = -ENOMEM;
3147 goto out2;
3148 }
3149 nd->flags &= ~LOOKUP_DIRECTORY;
3150 nd->flags |= op->intent;
3151 dput(nd->path.dentry);
3152 nd->path.dentry = child;
3153 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3154 if (error)
3155 goto out2;
3156 audit_inode(pathname, nd->path.dentry, 0);
3157 error = may_open(&nd->path, op->acc_mode, op->open_flag);
3158 if (error)
3159 goto out2;
3160 file->f_path.mnt = nd->path.mnt;
3161 error = finish_open(file, nd->path.dentry, NULL, opened);
3162 if (error)
3163 goto out2;
3164 error = open_check_o_direct(file);
3165 if (error) {
3166 fput(file);
3167 } else if (!(op->open_flag & O_EXCL)) {
3168 struct inode *inode = file_inode(file);
3169 spin_lock(&inode->i_lock);
3170 inode->i_state |= I_LINKABLE;
3171 spin_unlock(&inode->i_lock);
3172 }
3173 out2:
3174 mnt_drop_write(nd->path.mnt);
3175 out:
3176 path_put(&nd->path);
3177 return error;
3178 }
3179
3180 static struct file *path_openat(int dfd, struct filename *pathname,
3181 struct nameidata *nd, const struct open_flags *op, int flags)
3182 {
3183 struct file *base = NULL;
3184 struct file *file;
3185 struct path path;
3186 int opened = 0;
3187 int error;
3188
3189 file = get_empty_filp();
3190 if (IS_ERR(file))
3191 return file;
3192
3193 file->f_flags = op->open_flag;
3194
3195 if (unlikely(file->f_flags & __O_TMPFILE)) {
3196 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3197 goto out;
3198 }
3199
3200 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3201 if (unlikely(error))
3202 goto out;
3203
3204 current->total_link_count = 0;
3205 error = link_path_walk(pathname->name, nd);
3206 if (unlikely(error))
3207 goto out;
3208
3209 error = do_last(nd, &path, file, op, &opened, pathname);
3210 while (unlikely(error > 0)) { /* trailing symlink */
3211 struct path link = path;
3212 void *cookie;
3213 if (!(nd->flags & LOOKUP_FOLLOW)) {
3214 path_put_conditional(&path, nd);
3215 path_put(&nd->path);
3216 error = -ELOOP;
3217 break;
3218 }
3219 error = may_follow_link(&link, nd);
3220 if (unlikely(error))
3221 break;
3222 nd->flags |= LOOKUP_PARENT;
3223 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3224 error = follow_link(&link, nd, &cookie);
3225 if (unlikely(error))
3226 break;
3227 error = do_last(nd, &path, file, op, &opened, pathname);
3228 put_link(nd, &link, cookie);
3229 }
3230 out:
3231 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3232 path_put(&nd->root);
3233 if (base)
3234 fput(base);
3235 if (!(opened & FILE_OPENED)) {
3236 BUG_ON(!error);
3237 put_filp(file);
3238 }
3239 if (unlikely(error)) {
3240 if (error == -EOPENSTALE) {
3241 if (flags & LOOKUP_RCU)
3242 error = -ECHILD;
3243 else
3244 error = -ESTALE;
3245 }
3246 file = ERR_PTR(error);
3247 }
3248 return file;
3249 }
3250
3251 struct file *do_filp_open(int dfd, struct filename *pathname,
3252 const struct open_flags *op)
3253 {
3254 struct nameidata nd;
3255 int flags = op->lookup_flags;
3256 struct file *filp;
3257
3258 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3259 if (unlikely(filp == ERR_PTR(-ECHILD)))
3260 filp = path_openat(dfd, pathname, &nd, op, flags);
3261 if (unlikely(filp == ERR_PTR(-ESTALE)))
3262 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3263 return filp;
3264 }
3265
3266 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3267 const char *name, const struct open_flags *op)
3268 {
3269 struct nameidata nd;
3270 struct file *file;
3271 struct filename filename = { .name = name };
3272 int flags = op->lookup_flags | LOOKUP_ROOT;
3273
3274 nd.root.mnt = mnt;
3275 nd.root.dentry = dentry;
3276
3277 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3278 return ERR_PTR(-ELOOP);
3279
3280 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3281 if (unlikely(file == ERR_PTR(-ECHILD)))
3282 file = path_openat(-1, &filename, &nd, op, flags);
3283 if (unlikely(file == ERR_PTR(-ESTALE)))
3284 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3285 return file;
3286 }
3287
3288 struct dentry *kern_path_create(int dfd, const char *pathname,
3289 struct path *path, unsigned int lookup_flags)
3290 {
3291 struct dentry *dentry = ERR_PTR(-EEXIST);
3292 struct nameidata nd;
3293 int err2;
3294 int error;
3295 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3296
3297 /*
3298 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3299 * other flags passed in are ignored!
3300 */
3301 lookup_flags &= LOOKUP_REVAL;
3302
3303 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3304 if (error)
3305 return ERR_PTR(error);
3306
3307 /*
3308 * Yucky last component or no last component at all?
3309 * (foo/., foo/.., /////)
3310 */
3311 if (nd.last_type != LAST_NORM)
3312 goto out;
3313 nd.flags &= ~LOOKUP_PARENT;
3314 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3315
3316 /* don't fail immediately if it's r/o, at least try to report other errors */
3317 err2 = mnt_want_write(nd.path.mnt);
3318 /*
3319 * Do the final lookup.
3320 */
3321 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3322 dentry = lookup_hash(&nd);
3323 if (IS_ERR(dentry))
3324 goto unlock;
3325
3326 error = -EEXIST;
3327 if (d_is_positive(dentry))
3328 goto fail;
3329
3330 /*
3331 * Special case - lookup gave negative, but... we had foo/bar/
3332 * From the vfs_mknod() POV we just have a negative dentry -
3333 * all is fine. Let's be bastards - you had / on the end, you've
3334 * been asking for (non-existent) directory. -ENOENT for you.
3335 */
3336 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3337 error = -ENOENT;
3338 goto fail;
3339 }
3340 if (unlikely(err2)) {
3341 error = err2;
3342 goto fail;
3343 }
3344 *path = nd.path;
3345 return dentry;
3346 fail:
3347 dput(dentry);
3348 dentry = ERR_PTR(error);
3349 unlock:
3350 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3351 if (!err2)
3352 mnt_drop_write(nd.path.mnt);
3353 out:
3354 path_put(&nd.path);
3355 return dentry;
3356 }
3357 EXPORT_SYMBOL(kern_path_create);
3358
3359 void done_path_create(struct path *path, struct dentry *dentry)
3360 {
3361 dput(dentry);
3362 mutex_unlock(&path->dentry->d_inode->i_mutex);
3363 mnt_drop_write(path->mnt);
3364 path_put(path);
3365 }
3366 EXPORT_SYMBOL(done_path_create);
3367
3368 struct dentry *user_path_create(int dfd, const char __user *pathname,
3369 struct path *path, unsigned int lookup_flags)
3370 {
3371 struct filename *tmp = getname(pathname);
3372 struct dentry *res;
3373 if (IS_ERR(tmp))
3374 return ERR_CAST(tmp);
3375 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3376 putname(tmp);
3377 return res;
3378 }
3379 EXPORT_SYMBOL(user_path_create);
3380
3381 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3382 {
3383 int error = may_create(dir, dentry);
3384
3385 if (error)
3386 return error;
3387
3388 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3389 return -EPERM;
3390
3391 if (!dir->i_op->mknod)
3392 return -EPERM;
3393
3394 error = devcgroup_inode_mknod(mode, dev);
3395 if (error)
3396 return error;
3397
3398 error = security_inode_mknod(dir, dentry, mode, dev);
3399 if (error)
3400 return error;
3401
3402 error = dir->i_op->mknod(dir, dentry, mode, dev);
3403 if (!error)
3404 fsnotify_create(dir, dentry);
3405 return error;
3406 }
3407 EXPORT_SYMBOL(vfs_mknod);
3408
3409 static int may_mknod(umode_t mode)
3410 {
3411 switch (mode & S_IFMT) {
3412 case S_IFREG:
3413 case S_IFCHR:
3414 case S_IFBLK:
3415 case S_IFIFO:
3416 case S_IFSOCK:
3417 case 0: /* zero mode translates to S_IFREG */
3418 return 0;
3419 case S_IFDIR:
3420 return -EPERM;
3421 default:
3422 return -EINVAL;
3423 }
3424 }
3425
3426 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3427 unsigned, dev)
3428 {
3429 struct dentry *dentry;
3430 struct path path;
3431 int error;
3432 unsigned int lookup_flags = 0;
3433
3434 error = may_mknod(mode);
3435 if (error)
3436 return error;
3437 retry:
3438 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3439 if (IS_ERR(dentry))
3440 return PTR_ERR(dentry);
3441
3442 if (!IS_POSIXACL(path.dentry->d_inode))
3443 mode &= ~current_umask();
3444 error = security_path_mknod(&path, dentry, mode, dev);
3445 if (error)
3446 goto out;
3447 switch (mode & S_IFMT) {
3448 case 0: case S_IFREG:
3449 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3450 break;
3451 case S_IFCHR: case S_IFBLK:
3452 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3453 new_decode_dev(dev));
3454 break;
3455 case S_IFIFO: case S_IFSOCK:
3456 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3457 break;
3458 }
3459 out:
3460 done_path_create(&path, dentry);
3461 if (retry_estale(error, lookup_flags)) {
3462 lookup_flags |= LOOKUP_REVAL;
3463 goto retry;
3464 }
3465 return error;
3466 }
3467
3468 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3469 {
3470 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3471 }
3472
3473 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3474 {
3475 int error = may_create(dir, dentry);
3476 unsigned max_links = dir->i_sb->s_max_links;
3477
3478 if (error)
3479 return error;
3480
3481 if (!dir->i_op->mkdir)
3482 return -EPERM;
3483
3484 mode &= (S_IRWXUGO|S_ISVTX);
3485 error = security_inode_mkdir(dir, dentry, mode);
3486 if (error)
3487 return error;
3488
3489 if (max_links && dir->i_nlink >= max_links)
3490 return -EMLINK;
3491
3492 error = dir->i_op->mkdir(dir, dentry, mode);
3493 if (!error)
3494 fsnotify_mkdir(dir, dentry);
3495 return error;
3496 }
3497 EXPORT_SYMBOL(vfs_mkdir);
3498
3499 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3500 {
3501 struct dentry *dentry;
3502 struct path path;
3503 int error;
3504 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3505
3506 retry:
3507 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3508 if (IS_ERR(dentry))
3509 return PTR_ERR(dentry);
3510
3511 if (!IS_POSIXACL(path.dentry->d_inode))
3512 mode &= ~current_umask();
3513 error = security_path_mkdir(&path, dentry, mode);
3514 if (!error)
3515 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3516 done_path_create(&path, dentry);
3517 if (retry_estale(error, lookup_flags)) {
3518 lookup_flags |= LOOKUP_REVAL;
3519 goto retry;
3520 }
3521 return error;
3522 }
3523
3524 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3525 {
3526 return sys_mkdirat(AT_FDCWD, pathname, mode);
3527 }
3528
3529 /*
3530 * The dentry_unhash() helper will try to drop the dentry early: we
3531 * should have a usage count of 1 if we're the only user of this
3532 * dentry, and if that is true (possibly after pruning the dcache),
3533 * then we drop the dentry now.
3534 *
3535 * A low-level filesystem can, if it choses, legally
3536 * do a
3537 *
3538 * if (!d_unhashed(dentry))
3539 * return -EBUSY;
3540 *
3541 * if it cannot handle the case of removing a directory
3542 * that is still in use by something else..
3543 */
3544 void dentry_unhash(struct dentry *dentry)
3545 {
3546 shrink_dcache_parent(dentry);
3547 spin_lock(&dentry->d_lock);
3548 if (dentry->d_lockref.count == 1)
3549 __d_drop(dentry);
3550 spin_unlock(&dentry->d_lock);
3551 }
3552 EXPORT_SYMBOL(dentry_unhash);
3553
3554 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3555 {
3556 int error = may_delete(dir, dentry, 1);
3557
3558 if (error)
3559 return error;
3560
3561 if (!dir->i_op->rmdir)
3562 return -EPERM;
3563
3564 dget(dentry);
3565 mutex_lock(&dentry->d_inode->i_mutex);
3566
3567 error = -EBUSY;
3568 if (is_local_mountpoint(dentry))
3569 goto out;
3570
3571 error = security_inode_rmdir(dir, dentry);
3572 if (error)
3573 goto out;
3574
3575 shrink_dcache_parent(dentry);
3576 error = dir->i_op->rmdir(dir, dentry);
3577 if (error)
3578 goto out;
3579
3580 dentry->d_inode->i_flags |= S_DEAD;
3581 dont_mount(dentry);
3582 detach_mounts(dentry);
3583
3584 out:
3585 mutex_unlock(&dentry->d_inode->i_mutex);
3586 dput(dentry);
3587 if (!error)
3588 d_delete(dentry);
3589 return error;
3590 }
3591 EXPORT_SYMBOL(vfs_rmdir);
3592
3593 static long do_rmdir(int dfd, const char __user *pathname)
3594 {
3595 int error = 0;
3596 struct filename *name;
3597 struct dentry *dentry;
3598 struct nameidata nd;
3599 unsigned int lookup_flags = 0;
3600 retry:
3601 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3602 if (IS_ERR(name))
3603 return PTR_ERR(name);
3604
3605 switch(nd.last_type) {
3606 case LAST_DOTDOT:
3607 error = -ENOTEMPTY;
3608 goto exit1;
3609 case LAST_DOT:
3610 error = -EINVAL;
3611 goto exit1;
3612 case LAST_ROOT:
3613 error = -EBUSY;
3614 goto exit1;
3615 }
3616
3617 nd.flags &= ~LOOKUP_PARENT;
3618 error = mnt_want_write(nd.path.mnt);
3619 if (error)
3620 goto exit1;
3621
3622 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3623 dentry = lookup_hash(&nd);
3624 error = PTR_ERR(dentry);
3625 if (IS_ERR(dentry))
3626 goto exit2;
3627 if (!dentry->d_inode) {
3628 error = -ENOENT;
3629 goto exit3;
3630 }
3631 error = security_path_rmdir(&nd.path, dentry);
3632 if (error)
3633 goto exit3;
3634 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3635 exit3:
3636 dput(dentry);
3637 exit2:
3638 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3639 mnt_drop_write(nd.path.mnt);
3640 exit1:
3641 path_put(&nd.path);
3642 putname(name);
3643 if (retry_estale(error, lookup_flags)) {
3644 lookup_flags |= LOOKUP_REVAL;
3645 goto retry;
3646 }
3647 return error;
3648 }
3649
3650 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3651 {
3652 return do_rmdir(AT_FDCWD, pathname);
3653 }
3654
3655 /**
3656 * vfs_unlink - unlink a filesystem object
3657 * @dir: parent directory
3658 * @dentry: victim
3659 * @delegated_inode: returns victim inode, if the inode is delegated.
3660 *
3661 * The caller must hold dir->i_mutex.
3662 *
3663 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3664 * return a reference to the inode in delegated_inode. The caller
3665 * should then break the delegation on that inode and retry. Because
3666 * breaking a delegation may take a long time, the caller should drop
3667 * dir->i_mutex before doing so.
3668 *
3669 * Alternatively, a caller may pass NULL for delegated_inode. This may
3670 * be appropriate for callers that expect the underlying filesystem not
3671 * to be NFS exported.
3672 */
3673 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3674 {
3675 struct inode *target = dentry->d_inode;
3676 int error = may_delete(dir, dentry, 0);
3677
3678 if (error)
3679 return error;
3680
3681 if (!dir->i_op->unlink)
3682 return -EPERM;
3683
3684 mutex_lock(&target->i_mutex);
3685 if (is_local_mountpoint(dentry))
3686 error = -EBUSY;
3687 else {
3688 error = security_inode_unlink(dir, dentry);
3689 if (!error) {
3690 error = try_break_deleg(target, delegated_inode);
3691 if (error)
3692 goto out;
3693 error = dir->i_op->unlink(dir, dentry);
3694 if (!error) {
3695 dont_mount(dentry);
3696 detach_mounts(dentry);
3697 }
3698 }
3699 }
3700 out:
3701 mutex_unlock(&target->i_mutex);
3702
3703 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3704 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3705 fsnotify_link_count(target);
3706 d_delete(dentry);
3707 }
3708
3709 return error;
3710 }
3711 EXPORT_SYMBOL(vfs_unlink);
3712
3713 /*
3714 * Make sure that the actual truncation of the file will occur outside its
3715 * directory's i_mutex. Truncate can take a long time if there is a lot of
3716 * writeout happening, and we don't want to prevent access to the directory
3717 * while waiting on the I/O.
3718 */
3719 static long do_unlinkat(int dfd, const char __user *pathname)
3720 {
3721 int error;
3722 struct filename *name;
3723 struct dentry *dentry;
3724 struct nameidata nd;
3725 struct inode *inode = NULL;
3726 struct inode *delegated_inode = NULL;
3727 unsigned int lookup_flags = 0;
3728 retry:
3729 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3730 if (IS_ERR(name))
3731 return PTR_ERR(name);
3732
3733 error = -EISDIR;
3734 if (nd.last_type != LAST_NORM)
3735 goto exit1;
3736
3737 nd.flags &= ~LOOKUP_PARENT;
3738 error = mnt_want_write(nd.path.mnt);
3739 if (error)
3740 goto exit1;
3741 retry_deleg:
3742 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3743 dentry = lookup_hash(&nd);
3744 error = PTR_ERR(dentry);
3745 if (!IS_ERR(dentry)) {
3746 /* Why not before? Because we want correct error value */
3747 if (nd.last.name[nd.last.len])
3748 goto slashes;
3749 inode = dentry->d_inode;
3750 if (d_is_negative(dentry))
3751 goto slashes;
3752 ihold(inode);
3753 error = security_path_unlink(&nd.path, dentry);
3754 if (error)
3755 goto exit2;
3756 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3757 exit2:
3758 dput(dentry);
3759 }
3760 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3761 if (inode)
3762 iput(inode); /* truncate the inode here */
3763 inode = NULL;
3764 if (delegated_inode) {
3765 error = break_deleg_wait(&delegated_inode);
3766 if (!error)
3767 goto retry_deleg;
3768 }
3769 mnt_drop_write(nd.path.mnt);
3770 exit1:
3771 path_put(&nd.path);
3772 putname(name);
3773 if (retry_estale(error, lookup_flags)) {
3774 lookup_flags |= LOOKUP_REVAL;
3775 inode = NULL;
3776 goto retry;
3777 }
3778 return error;
3779
3780 slashes:
3781 if (d_is_negative(dentry))
3782 error = -ENOENT;
3783 else if (d_is_dir(dentry))
3784 error = -EISDIR;
3785 else
3786 error = -ENOTDIR;
3787 goto exit2;
3788 }
3789
3790 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3791 {
3792 if ((flag & ~AT_REMOVEDIR) != 0)
3793 return -EINVAL;
3794
3795 if (flag & AT_REMOVEDIR)
3796 return do_rmdir(dfd, pathname);
3797
3798 return do_unlinkat(dfd, pathname);
3799 }
3800
3801 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3802 {
3803 return do_unlinkat(AT_FDCWD, pathname);
3804 }
3805
3806 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3807 {
3808 int error = may_create(dir, dentry);
3809
3810 if (error)
3811 return error;
3812
3813 if (!dir->i_op->symlink)
3814 return -EPERM;
3815
3816 error = security_inode_symlink(dir, dentry, oldname);
3817 if (error)
3818 return error;
3819
3820 error = dir->i_op->symlink(dir, dentry, oldname);
3821 if (!error)
3822 fsnotify_create(dir, dentry);
3823 return error;
3824 }
3825 EXPORT_SYMBOL(vfs_symlink);
3826
3827 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3828 int, newdfd, const char __user *, newname)
3829 {
3830 int error;
3831 struct filename *from;
3832 struct dentry *dentry;
3833 struct path path;
3834 unsigned int lookup_flags = 0;
3835
3836 from = getname(oldname);
3837 if (IS_ERR(from))
3838 return PTR_ERR(from);
3839 retry:
3840 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3841 error = PTR_ERR(dentry);
3842 if (IS_ERR(dentry))
3843 goto out_putname;
3844
3845 error = security_path_symlink(&path, dentry, from->name);
3846 if (!error)
3847 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3848 done_path_create(&path, dentry);
3849 if (retry_estale(error, lookup_flags)) {
3850 lookup_flags |= LOOKUP_REVAL;
3851 goto retry;
3852 }
3853 out_putname:
3854 putname(from);
3855 return error;
3856 }
3857
3858 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3859 {
3860 return sys_symlinkat(oldname, AT_FDCWD, newname);
3861 }
3862
3863 /**
3864 * vfs_link - create a new link
3865 * @old_dentry: object to be linked
3866 * @dir: new parent
3867 * @new_dentry: where to create the new link
3868 * @delegated_inode: returns inode needing a delegation break
3869 *
3870 * The caller must hold dir->i_mutex
3871 *
3872 * If vfs_link discovers a delegation on the to-be-linked file in need
3873 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3874 * inode in delegated_inode. The caller should then break the delegation
3875 * and retry. Because breaking a delegation may take a long time, the
3876 * caller should drop the i_mutex before doing so.
3877 *
3878 * Alternatively, a caller may pass NULL for delegated_inode. This may
3879 * be appropriate for callers that expect the underlying filesystem not
3880 * to be NFS exported.
3881 */
3882 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3883 {
3884 struct inode *inode = old_dentry->d_inode;
3885 unsigned max_links = dir->i_sb->s_max_links;
3886 int error;
3887
3888 if (!inode)
3889 return -ENOENT;
3890
3891 error = may_create(dir, new_dentry);
3892 if (error)
3893 return error;
3894
3895 if (dir->i_sb != inode->i_sb)
3896 return -EXDEV;
3897
3898 /*
3899 * A link to an append-only or immutable file cannot be created.
3900 */
3901 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3902 return -EPERM;
3903 if (!dir->i_op->link)
3904 return -EPERM;
3905 if (S_ISDIR(inode->i_mode))
3906 return -EPERM;
3907
3908 error = security_inode_link(old_dentry, dir, new_dentry);
3909 if (error)
3910 return error;
3911
3912 mutex_lock(&inode->i_mutex);
3913 /* Make sure we don't allow creating hardlink to an unlinked file */
3914 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3915 error = -ENOENT;
3916 else if (max_links && inode->i_nlink >= max_links)
3917 error = -EMLINK;
3918 else {
3919 error = try_break_deleg(inode, delegated_inode);
3920 if (!error)
3921 error = dir->i_op->link(old_dentry, dir, new_dentry);
3922 }
3923
3924 if (!error && (inode->i_state & I_LINKABLE)) {
3925 spin_lock(&inode->i_lock);
3926 inode->i_state &= ~I_LINKABLE;
3927 spin_unlock(&inode->i_lock);
3928 }
3929 mutex_unlock(&inode->i_mutex);
3930 if (!error)
3931 fsnotify_link(dir, inode, new_dentry);
3932 return error;
3933 }
3934 EXPORT_SYMBOL(vfs_link);
3935
3936 /*
3937 * Hardlinks are often used in delicate situations. We avoid
3938 * security-related surprises by not following symlinks on the
3939 * newname. --KAB
3940 *
3941 * We don't follow them on the oldname either to be compatible
3942 * with linux 2.0, and to avoid hard-linking to directories
3943 * and other special files. --ADM
3944 */
3945 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3946 int, newdfd, const char __user *, newname, int, flags)
3947 {
3948 struct dentry *new_dentry;
3949 struct path old_path, new_path;
3950 struct inode *delegated_inode = NULL;
3951 int how = 0;
3952 int error;
3953
3954 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3955 return -EINVAL;
3956 /*
3957 * To use null names we require CAP_DAC_READ_SEARCH
3958 * This ensures that not everyone will be able to create
3959 * handlink using the passed filedescriptor.
3960 */
3961 if (flags & AT_EMPTY_PATH) {
3962 if (!capable(CAP_DAC_READ_SEARCH))
3963 return -ENOENT;
3964 how = LOOKUP_EMPTY;
3965 }
3966
3967 if (flags & AT_SYMLINK_FOLLOW)
3968 how |= LOOKUP_FOLLOW;
3969 retry:
3970 error = user_path_at(olddfd, oldname, how, &old_path);
3971 if (error)
3972 return error;
3973
3974 new_dentry = user_path_create(newdfd, newname, &new_path,
3975 (how & LOOKUP_REVAL));
3976 error = PTR_ERR(new_dentry);
3977 if (IS_ERR(new_dentry))
3978 goto out;
3979
3980 error = -EXDEV;
3981 if (old_path.mnt != new_path.mnt)
3982 goto out_dput;
3983 error = may_linkat(&old_path);
3984 if (unlikely(error))
3985 goto out_dput;
3986 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3987 if (error)
3988 goto out_dput;
3989 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3990 out_dput:
3991 done_path_create(&new_path, new_dentry);
3992 if (delegated_inode) {
3993 error = break_deleg_wait(&delegated_inode);
3994 if (!error) {
3995 path_put(&old_path);
3996 goto retry;
3997 }
3998 }
3999 if (retry_estale(error, how)) {
4000 path_put(&old_path);
4001 how |= LOOKUP_REVAL;
4002 goto retry;
4003 }
4004 out:
4005 path_put(&old_path);
4006
4007 return error;
4008 }
4009
4010 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4011 {
4012 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4013 }
4014
4015 /**
4016 * vfs_rename - rename a filesystem object
4017 * @old_dir: parent of source
4018 * @old_dentry: source
4019 * @new_dir: parent of destination
4020 * @new_dentry: destination
4021 * @delegated_inode: returns an inode needing a delegation break
4022 * @flags: rename flags
4023 *
4024 * The caller must hold multiple mutexes--see lock_rename()).
4025 *
4026 * If vfs_rename discovers a delegation in need of breaking at either
4027 * the source or destination, it will return -EWOULDBLOCK and return a
4028 * reference to the inode in delegated_inode. The caller should then
4029 * break the delegation and retry. Because breaking a delegation may
4030 * take a long time, the caller should drop all locks before doing
4031 * so.
4032 *
4033 * Alternatively, a caller may pass NULL for delegated_inode. This may
4034 * be appropriate for callers that expect the underlying filesystem not
4035 * to be NFS exported.
4036 *
4037 * The worst of all namespace operations - renaming directory. "Perverted"
4038 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4039 * Problems:
4040 * a) we can get into loop creation.
4041 * b) race potential - two innocent renames can create a loop together.
4042 * That's where 4.4 screws up. Current fix: serialization on
4043 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4044 * story.
4045 * c) we have to lock _four_ objects - parents and victim (if it exists),
4046 * and source (if it is not a directory).
4047 * And that - after we got ->i_mutex on parents (until then we don't know
4048 * whether the target exists). Solution: try to be smart with locking
4049 * order for inodes. We rely on the fact that tree topology may change
4050 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4051 * move will be locked. Thus we can rank directories by the tree
4052 * (ancestors first) and rank all non-directories after them.
4053 * That works since everybody except rename does "lock parent, lookup,
4054 * lock child" and rename is under ->s_vfs_rename_mutex.
4055 * HOWEVER, it relies on the assumption that any object with ->lookup()
4056 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4057 * we'd better make sure that there's no link(2) for them.
4058 * d) conversion from fhandle to dentry may come in the wrong moment - when
4059 * we are removing the target. Solution: we will have to grab ->i_mutex
4060 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4061 * ->i_mutex on parents, which works but leads to some truly excessive
4062 * locking].
4063 */
4064 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4065 struct inode *new_dir, struct dentry *new_dentry,
4066 struct inode **delegated_inode, unsigned int flags)
4067 {
4068 int error;
4069 bool is_dir = d_is_dir(old_dentry);
4070 const unsigned char *old_name;
4071 struct inode *source = old_dentry->d_inode;
4072 struct inode *target = new_dentry->d_inode;
4073 bool new_is_dir = false;
4074 unsigned max_links = new_dir->i_sb->s_max_links;
4075
4076 if (source == target)
4077 return 0;
4078
4079 error = may_delete(old_dir, old_dentry, is_dir);
4080 if (error)
4081 return error;
4082
4083 if (!target) {
4084 error = may_create(new_dir, new_dentry);
4085 } else {
4086 new_is_dir = d_is_dir(new_dentry);
4087
4088 if (!(flags & RENAME_EXCHANGE))
4089 error = may_delete(new_dir, new_dentry, is_dir);
4090 else
4091 error = may_delete(new_dir, new_dentry, new_is_dir);
4092 }
4093 if (error)
4094 return error;
4095
4096 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4097 return -EPERM;
4098
4099 if (flags && !old_dir->i_op->rename2)
4100 return -EINVAL;
4101
4102 /*
4103 * If we are going to change the parent - check write permissions,
4104 * we'll need to flip '..'.
4105 */
4106 if (new_dir != old_dir) {
4107 if (is_dir) {
4108 error = inode_permission(source, MAY_WRITE);
4109 if (error)
4110 return error;
4111 }
4112 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4113 error = inode_permission(target, MAY_WRITE);
4114 if (error)
4115 return error;
4116 }
4117 }
4118
4119 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4120 flags);
4121 if (error)
4122 return error;
4123
4124 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4125 dget(new_dentry);
4126 if (!is_dir || (flags & RENAME_EXCHANGE))
4127 lock_two_nondirectories(source, target);
4128 else if (target)
4129 mutex_lock(&target->i_mutex);
4130
4131 error = -EBUSY;
4132 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4133 goto out;
4134
4135 if (max_links && new_dir != old_dir) {
4136 error = -EMLINK;
4137 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4138 goto out;
4139 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4140 old_dir->i_nlink >= max_links)
4141 goto out;
4142 }
4143 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4144 shrink_dcache_parent(new_dentry);
4145 if (!is_dir) {
4146 error = try_break_deleg(source, delegated_inode);
4147 if (error)
4148 goto out;
4149 }
4150 if (target && !new_is_dir) {
4151 error = try_break_deleg(target, delegated_inode);
4152 if (error)
4153 goto out;
4154 }
4155 if (!old_dir->i_op->rename2) {
4156 error = old_dir->i_op->rename(old_dir, old_dentry,
4157 new_dir, new_dentry);
4158 } else {
4159 WARN_ON(old_dir->i_op->rename != NULL);
4160 error = old_dir->i_op->rename2(old_dir, old_dentry,
4161 new_dir, new_dentry, flags);
4162 }
4163 if (error)
4164 goto out;
4165
4166 if (!(flags & RENAME_EXCHANGE) && target) {
4167 if (is_dir)
4168 target->i_flags |= S_DEAD;
4169 dont_mount(new_dentry);
4170 detach_mounts(new_dentry);
4171 }
4172 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4173 if (!(flags & RENAME_EXCHANGE))
4174 d_move(old_dentry, new_dentry);
4175 else
4176 d_exchange(old_dentry, new_dentry);
4177 }
4178 out:
4179 if (!is_dir || (flags & RENAME_EXCHANGE))
4180 unlock_two_nondirectories(source, target);
4181 else if (target)
4182 mutex_unlock(&target->i_mutex);
4183 dput(new_dentry);
4184 if (!error) {
4185 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4186 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4187 if (flags & RENAME_EXCHANGE) {
4188 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4189 new_is_dir, NULL, new_dentry);
4190 }
4191 }
4192 fsnotify_oldname_free(old_name);
4193
4194 return error;
4195 }
4196 EXPORT_SYMBOL(vfs_rename);
4197
4198 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4199 int, newdfd, const char __user *, newname, unsigned int, flags)
4200 {
4201 struct dentry *old_dir, *new_dir;
4202 struct dentry *old_dentry, *new_dentry;
4203 struct dentry *trap;
4204 struct nameidata oldnd, newnd;
4205 struct inode *delegated_inode = NULL;
4206 struct filename *from;
4207 struct filename *to;
4208 unsigned int lookup_flags = 0;
4209 bool should_retry = false;
4210 int error;
4211
4212 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
4213 return -EINVAL;
4214
4215 if ((flags & RENAME_NOREPLACE) && (flags & RENAME_EXCHANGE))
4216 return -EINVAL;
4217
4218 retry:
4219 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4220 if (IS_ERR(from)) {
4221 error = PTR_ERR(from);
4222 goto exit;
4223 }
4224
4225 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4226 if (IS_ERR(to)) {
4227 error = PTR_ERR(to);
4228 goto exit1;
4229 }
4230
4231 error = -EXDEV;
4232 if (oldnd.path.mnt != newnd.path.mnt)
4233 goto exit2;
4234
4235 old_dir = oldnd.path.dentry;
4236 error = -EBUSY;
4237 if (oldnd.last_type != LAST_NORM)
4238 goto exit2;
4239
4240 new_dir = newnd.path.dentry;
4241 if (flags & RENAME_NOREPLACE)
4242 error = -EEXIST;
4243 if (newnd.last_type != LAST_NORM)
4244 goto exit2;
4245
4246 error = mnt_want_write(oldnd.path.mnt);
4247 if (error)
4248 goto exit2;
4249
4250 oldnd.flags &= ~LOOKUP_PARENT;
4251 newnd.flags &= ~LOOKUP_PARENT;
4252 if (!(flags & RENAME_EXCHANGE))
4253 newnd.flags |= LOOKUP_RENAME_TARGET;
4254
4255 retry_deleg:
4256 trap = lock_rename(new_dir, old_dir);
4257
4258 old_dentry = lookup_hash(&oldnd);
4259 error = PTR_ERR(old_dentry);
4260 if (IS_ERR(old_dentry))
4261 goto exit3;
4262 /* source must exist */
4263 error = -ENOENT;
4264 if (d_is_negative(old_dentry))
4265 goto exit4;
4266 new_dentry = lookup_hash(&newnd);
4267 error = PTR_ERR(new_dentry);
4268 if (IS_ERR(new_dentry))
4269 goto exit4;
4270 error = -EEXIST;
4271 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4272 goto exit5;
4273 if (flags & RENAME_EXCHANGE) {
4274 error = -ENOENT;
4275 if (d_is_negative(new_dentry))
4276 goto exit5;
4277
4278 if (!d_is_dir(new_dentry)) {
4279 error = -ENOTDIR;
4280 if (newnd.last.name[newnd.last.len])
4281 goto exit5;
4282 }
4283 }
4284 /* unless the source is a directory trailing slashes give -ENOTDIR */
4285 if (!d_is_dir(old_dentry)) {
4286 error = -ENOTDIR;
4287 if (oldnd.last.name[oldnd.last.len])
4288 goto exit5;
4289 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4290 goto exit5;
4291 }
4292 /* source should not be ancestor of target */
4293 error = -EINVAL;
4294 if (old_dentry == trap)
4295 goto exit5;
4296 /* target should not be an ancestor of source */
4297 if (!(flags & RENAME_EXCHANGE))
4298 error = -ENOTEMPTY;
4299 if (new_dentry == trap)
4300 goto exit5;
4301
4302 error = security_path_rename(&oldnd.path, old_dentry,
4303 &newnd.path, new_dentry, flags);
4304 if (error)
4305 goto exit5;
4306 error = vfs_rename(old_dir->d_inode, old_dentry,
4307 new_dir->d_inode, new_dentry,
4308 &delegated_inode, flags);
4309 exit5:
4310 dput(new_dentry);
4311 exit4:
4312 dput(old_dentry);
4313 exit3:
4314 unlock_rename(new_dir, old_dir);
4315 if (delegated_inode) {
4316 error = break_deleg_wait(&delegated_inode);
4317 if (!error)
4318 goto retry_deleg;
4319 }
4320 mnt_drop_write(oldnd.path.mnt);
4321 exit2:
4322 if (retry_estale(error, lookup_flags))
4323 should_retry = true;
4324 path_put(&newnd.path);
4325 putname(to);
4326 exit1:
4327 path_put(&oldnd.path);
4328 putname(from);
4329 if (should_retry) {
4330 should_retry = false;
4331 lookup_flags |= LOOKUP_REVAL;
4332 goto retry;
4333 }
4334 exit:
4335 return error;
4336 }
4337
4338 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4339 int, newdfd, const char __user *, newname)
4340 {
4341 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4342 }
4343
4344 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4345 {
4346 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4347 }
4348
4349 int readlink_copy(char __user *buffer, int buflen, const char *link)
4350 {
4351 int len = PTR_ERR(link);
4352 if (IS_ERR(link))
4353 goto out;
4354
4355 len = strlen(link);
4356 if (len > (unsigned) buflen)
4357 len = buflen;
4358 if (copy_to_user(buffer, link, len))
4359 len = -EFAULT;
4360 out:
4361 return len;
4362 }
4363 EXPORT_SYMBOL(readlink_copy);
4364
4365 /*
4366 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4367 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4368 * using) it for any given inode is up to filesystem.
4369 */
4370 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4371 {
4372 struct nameidata nd;
4373 void *cookie;
4374 int res;
4375
4376 nd.depth = 0;
4377 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4378 if (IS_ERR(cookie))
4379 return PTR_ERR(cookie);
4380
4381 res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4382 if (dentry->d_inode->i_op->put_link)
4383 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4384 return res;
4385 }
4386 EXPORT_SYMBOL(generic_readlink);
4387
4388 /* get the link contents into pagecache */
4389 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4390 {
4391 char *kaddr;
4392 struct page *page;
4393 struct address_space *mapping = dentry->d_inode->i_mapping;
4394 page = read_mapping_page(mapping, 0, NULL);
4395 if (IS_ERR(page))
4396 return (char*)page;
4397 *ppage = page;
4398 kaddr = kmap(page);
4399 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4400 return kaddr;
4401 }
4402
4403 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4404 {
4405 struct page *page = NULL;
4406 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4407 if (page) {
4408 kunmap(page);
4409 page_cache_release(page);
4410 }
4411 return res;
4412 }
4413 EXPORT_SYMBOL(page_readlink);
4414
4415 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4416 {
4417 struct page *page = NULL;
4418 nd_set_link(nd, page_getlink(dentry, &page));
4419 return page;
4420 }
4421 EXPORT_SYMBOL(page_follow_link_light);
4422
4423 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4424 {
4425 struct page *page = cookie;
4426
4427 if (page) {
4428 kunmap(page);
4429 page_cache_release(page);
4430 }
4431 }
4432 EXPORT_SYMBOL(page_put_link);
4433
4434 /*
4435 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4436 */
4437 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4438 {
4439 struct address_space *mapping = inode->i_mapping;
4440 struct page *page;
4441 void *fsdata;
4442 int err;
4443 char *kaddr;
4444 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4445 if (nofs)
4446 flags |= AOP_FLAG_NOFS;
4447
4448 retry:
4449 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4450 flags, &page, &fsdata);
4451 if (err)
4452 goto fail;
4453
4454 kaddr = kmap_atomic(page);
4455 memcpy(kaddr, symname, len-1);
4456 kunmap_atomic(kaddr);
4457
4458 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4459 page, fsdata);
4460 if (err < 0)
4461 goto fail;
4462 if (err < len-1)
4463 goto retry;
4464
4465 mark_inode_dirty(inode);
4466 return 0;
4467 fail:
4468 return err;
4469 }
4470 EXPORT_SYMBOL(__page_symlink);
4471
4472 int page_symlink(struct inode *inode, const char *symname, int len)
4473 {
4474 return __page_symlink(inode, symname, len,
4475 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4476 }
4477 EXPORT_SYMBOL(page_symlink);
4478
4479 const struct inode_operations page_symlink_inode_operations = {
4480 .readlink = generic_readlink,
4481 .follow_link = page_follow_link_light,
4482 .put_link = page_put_link,
4483 };
4484 EXPORT_SYMBOL(page_symlink_inode_operations);