]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namei.c
Merge branch 'for-2.6.36' of git://linux-nfs.org/~bfields/linux
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36
37 #include "internal.h"
38
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
44 *
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
51 *
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
55 *
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
58 *
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
65 */
66
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
74 *
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
82 */
83
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
86 *
87 * [10-Sep-98 Alan Modra] Another symlink change.
88 */
89
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
97 *
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
103 */
104 /*
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
108 */
109
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
113 *
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
116 */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 int retval;
120 unsigned long len = PATH_MAX;
121
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
127 }
128
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
137 }
138
139 char * getname(const char __user * filename)
140 {
141 char *tmp, *result;
142
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
147
148 result = tmp;
149 if (retval < 0) {
150 __putname(tmp);
151 result = ERR_PTR(retval);
152 }
153 }
154 audit_getname(result);
155 return result;
156 }
157
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168
169 /*
170 * This does basic POSIX ACL permission checking
171 */
172 static int acl_permission_check(struct inode *inode, int mask,
173 int (*check_acl)(struct inode *inode, int mask))
174 {
175 umode_t mode = inode->i_mode;
176
177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
178
179 if (current_fsuid() == inode->i_uid)
180 mode >>= 6;
181 else {
182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 int error = check_acl(inode, mask);
184 if (error != -EAGAIN)
185 return error;
186 }
187
188 if (in_group_p(inode->i_gid))
189 mode >>= 3;
190 }
191
192 /*
193 * If the DACs are ok we don't need any capability check.
194 */
195 if ((mask & ~mode) == 0)
196 return 0;
197 return -EACCES;
198 }
199
200 /**
201 * generic_permission - check for access rights on a Posix-like filesystem
202 * @inode: inode to check access rights for
203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204 * @check_acl: optional callback to check for Posix ACLs
205 *
206 * Used to check for read/write/execute permissions on a file.
207 * We use "fsuid" for this, letting us set arbitrary permissions
208 * for filesystem access without changing the "normal" uids which
209 * are used for other things..
210 */
211 int generic_permission(struct inode *inode, int mask,
212 int (*check_acl)(struct inode *inode, int mask))
213 {
214 int ret;
215
216 /*
217 * Do the basic POSIX ACL permission checks.
218 */
219 ret = acl_permission_check(inode, mask, check_acl);
220 if (ret != -EACCES)
221 return ret;
222
223 /*
224 * Read/write DACs are always overridable.
225 * Executable DACs are overridable if at least one exec bit is set.
226 */
227 if (!(mask & MAY_EXEC) || execute_ok(inode))
228 if (capable(CAP_DAC_OVERRIDE))
229 return 0;
230
231 /*
232 * Searching includes executable on directories, else just read.
233 */
234 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
235 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
236 if (capable(CAP_DAC_READ_SEARCH))
237 return 0;
238
239 return -EACCES;
240 }
241
242 /**
243 * inode_permission - check for access rights to a given inode
244 * @inode: inode to check permission on
245 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
246 *
247 * Used to check for read/write/execute permissions on an inode.
248 * We use "fsuid" for this, letting us set arbitrary permissions
249 * for filesystem access without changing the "normal" uids which
250 * are used for other things.
251 */
252 int inode_permission(struct inode *inode, int mask)
253 {
254 int retval;
255
256 if (mask & MAY_WRITE) {
257 umode_t mode = inode->i_mode;
258
259 /*
260 * Nobody gets write access to a read-only fs.
261 */
262 if (IS_RDONLY(inode) &&
263 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
264 return -EROFS;
265
266 /*
267 * Nobody gets write access to an immutable file.
268 */
269 if (IS_IMMUTABLE(inode))
270 return -EACCES;
271 }
272
273 if (inode->i_op->permission)
274 retval = inode->i_op->permission(inode, mask);
275 else
276 retval = generic_permission(inode, mask, inode->i_op->check_acl);
277
278 if (retval)
279 return retval;
280
281 retval = devcgroup_inode_permission(inode, mask);
282 if (retval)
283 return retval;
284
285 return security_inode_permission(inode, mask);
286 }
287
288 /**
289 * file_permission - check for additional access rights to a given file
290 * @file: file to check access rights for
291 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
292 *
293 * Used to check for read/write/execute permissions on an already opened
294 * file.
295 *
296 * Note:
297 * Do not use this function in new code. All access checks should
298 * be done using inode_permission().
299 */
300 int file_permission(struct file *file, int mask)
301 {
302 return inode_permission(file->f_path.dentry->d_inode, mask);
303 }
304
305 /*
306 * get_write_access() gets write permission for a file.
307 * put_write_access() releases this write permission.
308 * This is used for regular files.
309 * We cannot support write (and maybe mmap read-write shared) accesses and
310 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
311 * can have the following values:
312 * 0: no writers, no VM_DENYWRITE mappings
313 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
314 * > 0: (i_writecount) users are writing to the file.
315 *
316 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
317 * except for the cases where we don't hold i_writecount yet. Then we need to
318 * use {get,deny}_write_access() - these functions check the sign and refuse
319 * to do the change if sign is wrong. Exclusion between them is provided by
320 * the inode->i_lock spinlock.
321 */
322
323 int get_write_access(struct inode * inode)
324 {
325 spin_lock(&inode->i_lock);
326 if (atomic_read(&inode->i_writecount) < 0) {
327 spin_unlock(&inode->i_lock);
328 return -ETXTBSY;
329 }
330 atomic_inc(&inode->i_writecount);
331 spin_unlock(&inode->i_lock);
332
333 return 0;
334 }
335
336 int deny_write_access(struct file * file)
337 {
338 struct inode *inode = file->f_path.dentry->d_inode;
339
340 spin_lock(&inode->i_lock);
341 if (atomic_read(&inode->i_writecount) > 0) {
342 spin_unlock(&inode->i_lock);
343 return -ETXTBSY;
344 }
345 atomic_dec(&inode->i_writecount);
346 spin_unlock(&inode->i_lock);
347
348 return 0;
349 }
350
351 /**
352 * path_get - get a reference to a path
353 * @path: path to get the reference to
354 *
355 * Given a path increment the reference count to the dentry and the vfsmount.
356 */
357 void path_get(struct path *path)
358 {
359 mntget(path->mnt);
360 dget(path->dentry);
361 }
362 EXPORT_SYMBOL(path_get);
363
364 /**
365 * path_put - put a reference to a path
366 * @path: path to put the reference to
367 *
368 * Given a path decrement the reference count to the dentry and the vfsmount.
369 */
370 void path_put(struct path *path)
371 {
372 dput(path->dentry);
373 mntput(path->mnt);
374 }
375 EXPORT_SYMBOL(path_put);
376
377 /**
378 * release_open_intent - free up open intent resources
379 * @nd: pointer to nameidata
380 */
381 void release_open_intent(struct nameidata *nd)
382 {
383 if (nd->intent.open.file->f_path.dentry == NULL)
384 put_filp(nd->intent.open.file);
385 else
386 fput(nd->intent.open.file);
387 }
388
389 static inline struct dentry *
390 do_revalidate(struct dentry *dentry, struct nameidata *nd)
391 {
392 int status = dentry->d_op->d_revalidate(dentry, nd);
393 if (unlikely(status <= 0)) {
394 /*
395 * The dentry failed validation.
396 * If d_revalidate returned 0 attempt to invalidate
397 * the dentry otherwise d_revalidate is asking us
398 * to return a fail status.
399 */
400 if (!status) {
401 if (!d_invalidate(dentry)) {
402 dput(dentry);
403 dentry = NULL;
404 }
405 } else {
406 dput(dentry);
407 dentry = ERR_PTR(status);
408 }
409 }
410 return dentry;
411 }
412
413 /*
414 * force_reval_path - force revalidation of a dentry
415 *
416 * In some situations the path walking code will trust dentries without
417 * revalidating them. This causes problems for filesystems that depend on
418 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
419 * (which indicates that it's possible for the dentry to go stale), force
420 * a d_revalidate call before proceeding.
421 *
422 * Returns 0 if the revalidation was successful. If the revalidation fails,
423 * either return the error returned by d_revalidate or -ESTALE if the
424 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
425 * invalidate the dentry. It's up to the caller to handle putting references
426 * to the path if necessary.
427 */
428 static int
429 force_reval_path(struct path *path, struct nameidata *nd)
430 {
431 int status;
432 struct dentry *dentry = path->dentry;
433
434 /*
435 * only check on filesystems where it's possible for the dentry to
436 * become stale. It's assumed that if this flag is set then the
437 * d_revalidate op will also be defined.
438 */
439 if (!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))
440 return 0;
441
442 status = dentry->d_op->d_revalidate(dentry, nd);
443 if (status > 0)
444 return 0;
445
446 if (!status) {
447 d_invalidate(dentry);
448 status = -ESTALE;
449 }
450 return status;
451 }
452
453 /*
454 * Short-cut version of permission(), for calling on directories
455 * during pathname resolution. Combines parts of permission()
456 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
457 *
458 * If appropriate, check DAC only. If not appropriate, or
459 * short-cut DAC fails, then call ->permission() to do more
460 * complete permission check.
461 */
462 static int exec_permission(struct inode *inode)
463 {
464 int ret;
465
466 if (inode->i_op->permission) {
467 ret = inode->i_op->permission(inode, MAY_EXEC);
468 if (!ret)
469 goto ok;
470 return ret;
471 }
472 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
473 if (!ret)
474 goto ok;
475
476 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
477 goto ok;
478
479 return ret;
480 ok:
481 return security_inode_permission(inode, MAY_EXEC);
482 }
483
484 static __always_inline void set_root(struct nameidata *nd)
485 {
486 if (!nd->root.mnt)
487 get_fs_root(current->fs, &nd->root);
488 }
489
490 static int link_path_walk(const char *, struct nameidata *);
491
492 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
493 {
494 if (IS_ERR(link))
495 goto fail;
496
497 if (*link == '/') {
498 set_root(nd);
499 path_put(&nd->path);
500 nd->path = nd->root;
501 path_get(&nd->root);
502 }
503
504 return link_path_walk(link, nd);
505 fail:
506 path_put(&nd->path);
507 return PTR_ERR(link);
508 }
509
510 static void path_put_conditional(struct path *path, struct nameidata *nd)
511 {
512 dput(path->dentry);
513 if (path->mnt != nd->path.mnt)
514 mntput(path->mnt);
515 }
516
517 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
518 {
519 dput(nd->path.dentry);
520 if (nd->path.mnt != path->mnt) {
521 mntput(nd->path.mnt);
522 nd->path.mnt = path->mnt;
523 }
524 nd->path.dentry = path->dentry;
525 }
526
527 static __always_inline int
528 __do_follow_link(struct path *path, struct nameidata *nd, void **p)
529 {
530 int error;
531 struct dentry *dentry = path->dentry;
532
533 touch_atime(path->mnt, dentry);
534 nd_set_link(nd, NULL);
535
536 if (path->mnt != nd->path.mnt) {
537 path_to_nameidata(path, nd);
538 dget(dentry);
539 }
540 mntget(path->mnt);
541 nd->last_type = LAST_BIND;
542 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
543 error = PTR_ERR(*p);
544 if (!IS_ERR(*p)) {
545 char *s = nd_get_link(nd);
546 error = 0;
547 if (s)
548 error = __vfs_follow_link(nd, s);
549 else if (nd->last_type == LAST_BIND) {
550 error = force_reval_path(&nd->path, nd);
551 if (error)
552 path_put(&nd->path);
553 }
554 }
555 return error;
556 }
557
558 /*
559 * This limits recursive symlink follows to 8, while
560 * limiting consecutive symlinks to 40.
561 *
562 * Without that kind of total limit, nasty chains of consecutive
563 * symlinks can cause almost arbitrarily long lookups.
564 */
565 static inline int do_follow_link(struct path *path, struct nameidata *nd)
566 {
567 void *cookie;
568 int err = -ELOOP;
569 if (current->link_count >= MAX_NESTED_LINKS)
570 goto loop;
571 if (current->total_link_count >= 40)
572 goto loop;
573 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
574 cond_resched();
575 err = security_inode_follow_link(path->dentry, nd);
576 if (err)
577 goto loop;
578 current->link_count++;
579 current->total_link_count++;
580 nd->depth++;
581 err = __do_follow_link(path, nd, &cookie);
582 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
583 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
584 path_put(path);
585 current->link_count--;
586 nd->depth--;
587 return err;
588 loop:
589 path_put_conditional(path, nd);
590 path_put(&nd->path);
591 return err;
592 }
593
594 int follow_up(struct path *path)
595 {
596 struct vfsmount *parent;
597 struct dentry *mountpoint;
598
599 br_read_lock(vfsmount_lock);
600 parent = path->mnt->mnt_parent;
601 if (parent == path->mnt) {
602 br_read_unlock(vfsmount_lock);
603 return 0;
604 }
605 mntget(parent);
606 mountpoint = dget(path->mnt->mnt_mountpoint);
607 br_read_unlock(vfsmount_lock);
608 dput(path->dentry);
609 path->dentry = mountpoint;
610 mntput(path->mnt);
611 path->mnt = parent;
612 return 1;
613 }
614
615 /* no need for dcache_lock, as serialization is taken care in
616 * namespace.c
617 */
618 static int __follow_mount(struct path *path)
619 {
620 int res = 0;
621 while (d_mountpoint(path->dentry)) {
622 struct vfsmount *mounted = lookup_mnt(path);
623 if (!mounted)
624 break;
625 dput(path->dentry);
626 if (res)
627 mntput(path->mnt);
628 path->mnt = mounted;
629 path->dentry = dget(mounted->mnt_root);
630 res = 1;
631 }
632 return res;
633 }
634
635 static void follow_mount(struct path *path)
636 {
637 while (d_mountpoint(path->dentry)) {
638 struct vfsmount *mounted = lookup_mnt(path);
639 if (!mounted)
640 break;
641 dput(path->dentry);
642 mntput(path->mnt);
643 path->mnt = mounted;
644 path->dentry = dget(mounted->mnt_root);
645 }
646 }
647
648 /* no need for dcache_lock, as serialization is taken care in
649 * namespace.c
650 */
651 int follow_down(struct path *path)
652 {
653 struct vfsmount *mounted;
654
655 mounted = lookup_mnt(path);
656 if (mounted) {
657 dput(path->dentry);
658 mntput(path->mnt);
659 path->mnt = mounted;
660 path->dentry = dget(mounted->mnt_root);
661 return 1;
662 }
663 return 0;
664 }
665
666 static __always_inline void follow_dotdot(struct nameidata *nd)
667 {
668 set_root(nd);
669
670 while(1) {
671 struct dentry *old = nd->path.dentry;
672
673 if (nd->path.dentry == nd->root.dentry &&
674 nd->path.mnt == nd->root.mnt) {
675 break;
676 }
677 if (nd->path.dentry != nd->path.mnt->mnt_root) {
678 /* rare case of legitimate dget_parent()... */
679 nd->path.dentry = dget_parent(nd->path.dentry);
680 dput(old);
681 break;
682 }
683 if (!follow_up(&nd->path))
684 break;
685 }
686 follow_mount(&nd->path);
687 }
688
689 /*
690 * Allocate a dentry with name and parent, and perform a parent
691 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
692 * on error. parent->d_inode->i_mutex must be held. d_lookup must
693 * have verified that no child exists while under i_mutex.
694 */
695 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
696 struct qstr *name, struct nameidata *nd)
697 {
698 struct inode *inode = parent->d_inode;
699 struct dentry *dentry;
700 struct dentry *old;
701
702 /* Don't create child dentry for a dead directory. */
703 if (unlikely(IS_DEADDIR(inode)))
704 return ERR_PTR(-ENOENT);
705
706 dentry = d_alloc(parent, name);
707 if (unlikely(!dentry))
708 return ERR_PTR(-ENOMEM);
709
710 old = inode->i_op->lookup(inode, dentry, nd);
711 if (unlikely(old)) {
712 dput(dentry);
713 dentry = old;
714 }
715 return dentry;
716 }
717
718 /*
719 * It's more convoluted than I'd like it to be, but... it's still fairly
720 * small and for now I'd prefer to have fast path as straight as possible.
721 * It _is_ time-critical.
722 */
723 static int do_lookup(struct nameidata *nd, struct qstr *name,
724 struct path *path)
725 {
726 struct vfsmount *mnt = nd->path.mnt;
727 struct dentry *dentry, *parent;
728 struct inode *dir;
729 /*
730 * See if the low-level filesystem might want
731 * to use its own hash..
732 */
733 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
734 int err = nd->path.dentry->d_op->d_hash(nd->path.dentry, name);
735 if (err < 0)
736 return err;
737 }
738
739 /*
740 * Rename seqlock is not required here because in the off chance
741 * of a false negative due to a concurrent rename, we're going to
742 * do the non-racy lookup, below.
743 */
744 dentry = __d_lookup(nd->path.dentry, name);
745 if (!dentry)
746 goto need_lookup;
747 found:
748 if (dentry->d_op && dentry->d_op->d_revalidate)
749 goto need_revalidate;
750 done:
751 path->mnt = mnt;
752 path->dentry = dentry;
753 __follow_mount(path);
754 return 0;
755
756 need_lookup:
757 parent = nd->path.dentry;
758 dir = parent->d_inode;
759
760 mutex_lock(&dir->i_mutex);
761 /*
762 * First re-do the cached lookup just in case it was created
763 * while we waited for the directory semaphore, or the first
764 * lookup failed due to an unrelated rename.
765 *
766 * This could use version numbering or similar to avoid unnecessary
767 * cache lookups, but then we'd have to do the first lookup in the
768 * non-racy way. However in the common case here, everything should
769 * be hot in cache, so would it be a big win?
770 */
771 dentry = d_lookup(parent, name);
772 if (likely(!dentry)) {
773 dentry = d_alloc_and_lookup(parent, name, nd);
774 mutex_unlock(&dir->i_mutex);
775 if (IS_ERR(dentry))
776 goto fail;
777 goto done;
778 }
779 /*
780 * Uhhuh! Nasty case: the cache was re-populated while
781 * we waited on the semaphore. Need to revalidate.
782 */
783 mutex_unlock(&dir->i_mutex);
784 goto found;
785
786 need_revalidate:
787 dentry = do_revalidate(dentry, nd);
788 if (!dentry)
789 goto need_lookup;
790 if (IS_ERR(dentry))
791 goto fail;
792 goto done;
793
794 fail:
795 return PTR_ERR(dentry);
796 }
797
798 /*
799 * This is a temporary kludge to deal with "automount" symlinks; proper
800 * solution is to trigger them on follow_mount(), so that do_lookup()
801 * would DTRT. To be killed before 2.6.34-final.
802 */
803 static inline int follow_on_final(struct inode *inode, unsigned lookup_flags)
804 {
805 return inode && unlikely(inode->i_op->follow_link) &&
806 ((lookup_flags & LOOKUP_FOLLOW) || S_ISDIR(inode->i_mode));
807 }
808
809 /*
810 * Name resolution.
811 * This is the basic name resolution function, turning a pathname into
812 * the final dentry. We expect 'base' to be positive and a directory.
813 *
814 * Returns 0 and nd will have valid dentry and mnt on success.
815 * Returns error and drops reference to input namei data on failure.
816 */
817 static int link_path_walk(const char *name, struct nameidata *nd)
818 {
819 struct path next;
820 struct inode *inode;
821 int err;
822 unsigned int lookup_flags = nd->flags;
823
824 while (*name=='/')
825 name++;
826 if (!*name)
827 goto return_reval;
828
829 inode = nd->path.dentry->d_inode;
830 if (nd->depth)
831 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
832
833 /* At this point we know we have a real path component. */
834 for(;;) {
835 unsigned long hash;
836 struct qstr this;
837 unsigned int c;
838
839 nd->flags |= LOOKUP_CONTINUE;
840 err = exec_permission(inode);
841 if (err)
842 break;
843
844 this.name = name;
845 c = *(const unsigned char *)name;
846
847 hash = init_name_hash();
848 do {
849 name++;
850 hash = partial_name_hash(c, hash);
851 c = *(const unsigned char *)name;
852 } while (c && (c != '/'));
853 this.len = name - (const char *) this.name;
854 this.hash = end_name_hash(hash);
855
856 /* remove trailing slashes? */
857 if (!c)
858 goto last_component;
859 while (*++name == '/');
860 if (!*name)
861 goto last_with_slashes;
862
863 /*
864 * "." and ".." are special - ".." especially so because it has
865 * to be able to know about the current root directory and
866 * parent relationships.
867 */
868 if (this.name[0] == '.') switch (this.len) {
869 default:
870 break;
871 case 2:
872 if (this.name[1] != '.')
873 break;
874 follow_dotdot(nd);
875 inode = nd->path.dentry->d_inode;
876 /* fallthrough */
877 case 1:
878 continue;
879 }
880 /* This does the actual lookups.. */
881 err = do_lookup(nd, &this, &next);
882 if (err)
883 break;
884
885 err = -ENOENT;
886 inode = next.dentry->d_inode;
887 if (!inode)
888 goto out_dput;
889
890 if (inode->i_op->follow_link) {
891 err = do_follow_link(&next, nd);
892 if (err)
893 goto return_err;
894 err = -ENOENT;
895 inode = nd->path.dentry->d_inode;
896 if (!inode)
897 break;
898 } else
899 path_to_nameidata(&next, nd);
900 err = -ENOTDIR;
901 if (!inode->i_op->lookup)
902 break;
903 continue;
904 /* here ends the main loop */
905
906 last_with_slashes:
907 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
908 last_component:
909 /* Clear LOOKUP_CONTINUE iff it was previously unset */
910 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
911 if (lookup_flags & LOOKUP_PARENT)
912 goto lookup_parent;
913 if (this.name[0] == '.') switch (this.len) {
914 default:
915 break;
916 case 2:
917 if (this.name[1] != '.')
918 break;
919 follow_dotdot(nd);
920 inode = nd->path.dentry->d_inode;
921 /* fallthrough */
922 case 1:
923 goto return_reval;
924 }
925 err = do_lookup(nd, &this, &next);
926 if (err)
927 break;
928 inode = next.dentry->d_inode;
929 if (follow_on_final(inode, lookup_flags)) {
930 err = do_follow_link(&next, nd);
931 if (err)
932 goto return_err;
933 inode = nd->path.dentry->d_inode;
934 } else
935 path_to_nameidata(&next, nd);
936 err = -ENOENT;
937 if (!inode)
938 break;
939 if (lookup_flags & LOOKUP_DIRECTORY) {
940 err = -ENOTDIR;
941 if (!inode->i_op->lookup)
942 break;
943 }
944 goto return_base;
945 lookup_parent:
946 nd->last = this;
947 nd->last_type = LAST_NORM;
948 if (this.name[0] != '.')
949 goto return_base;
950 if (this.len == 1)
951 nd->last_type = LAST_DOT;
952 else if (this.len == 2 && this.name[1] == '.')
953 nd->last_type = LAST_DOTDOT;
954 else
955 goto return_base;
956 return_reval:
957 /*
958 * We bypassed the ordinary revalidation routines.
959 * We may need to check the cached dentry for staleness.
960 */
961 if (nd->path.dentry && nd->path.dentry->d_sb &&
962 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
963 err = -ESTALE;
964 /* Note: we do not d_invalidate() */
965 if (!nd->path.dentry->d_op->d_revalidate(
966 nd->path.dentry, nd))
967 break;
968 }
969 return_base:
970 return 0;
971 out_dput:
972 path_put_conditional(&next, nd);
973 break;
974 }
975 path_put(&nd->path);
976 return_err:
977 return err;
978 }
979
980 static int path_walk(const char *name, struct nameidata *nd)
981 {
982 struct path save = nd->path;
983 int result;
984
985 current->total_link_count = 0;
986
987 /* make sure the stuff we saved doesn't go away */
988 path_get(&save);
989
990 result = link_path_walk(name, nd);
991 if (result == -ESTALE) {
992 /* nd->path had been dropped */
993 current->total_link_count = 0;
994 nd->path = save;
995 path_get(&nd->path);
996 nd->flags |= LOOKUP_REVAL;
997 result = link_path_walk(name, nd);
998 }
999
1000 path_put(&save);
1001
1002 return result;
1003 }
1004
1005 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1006 {
1007 int retval = 0;
1008 int fput_needed;
1009 struct file *file;
1010
1011 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1012 nd->flags = flags;
1013 nd->depth = 0;
1014 nd->root.mnt = NULL;
1015
1016 if (*name=='/') {
1017 set_root(nd);
1018 nd->path = nd->root;
1019 path_get(&nd->root);
1020 } else if (dfd == AT_FDCWD) {
1021 get_fs_pwd(current->fs, &nd->path);
1022 } else {
1023 struct dentry *dentry;
1024
1025 file = fget_light(dfd, &fput_needed);
1026 retval = -EBADF;
1027 if (!file)
1028 goto out_fail;
1029
1030 dentry = file->f_path.dentry;
1031
1032 retval = -ENOTDIR;
1033 if (!S_ISDIR(dentry->d_inode->i_mode))
1034 goto fput_fail;
1035
1036 retval = file_permission(file, MAY_EXEC);
1037 if (retval)
1038 goto fput_fail;
1039
1040 nd->path = file->f_path;
1041 path_get(&file->f_path);
1042
1043 fput_light(file, fput_needed);
1044 }
1045 return 0;
1046
1047 fput_fail:
1048 fput_light(file, fput_needed);
1049 out_fail:
1050 return retval;
1051 }
1052
1053 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1054 static int do_path_lookup(int dfd, const char *name,
1055 unsigned int flags, struct nameidata *nd)
1056 {
1057 int retval = path_init(dfd, name, flags, nd);
1058 if (!retval)
1059 retval = path_walk(name, nd);
1060 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1061 nd->path.dentry->d_inode))
1062 audit_inode(name, nd->path.dentry);
1063 if (nd->root.mnt) {
1064 path_put(&nd->root);
1065 nd->root.mnt = NULL;
1066 }
1067 return retval;
1068 }
1069
1070 int path_lookup(const char *name, unsigned int flags,
1071 struct nameidata *nd)
1072 {
1073 return do_path_lookup(AT_FDCWD, name, flags, nd);
1074 }
1075
1076 int kern_path(const char *name, unsigned int flags, struct path *path)
1077 {
1078 struct nameidata nd;
1079 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1080 if (!res)
1081 *path = nd.path;
1082 return res;
1083 }
1084
1085 /**
1086 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1087 * @dentry: pointer to dentry of the base directory
1088 * @mnt: pointer to vfs mount of the base directory
1089 * @name: pointer to file name
1090 * @flags: lookup flags
1091 * @nd: pointer to nameidata
1092 */
1093 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1094 const char *name, unsigned int flags,
1095 struct nameidata *nd)
1096 {
1097 int retval;
1098
1099 /* same as do_path_lookup */
1100 nd->last_type = LAST_ROOT;
1101 nd->flags = flags;
1102 nd->depth = 0;
1103
1104 nd->path.dentry = dentry;
1105 nd->path.mnt = mnt;
1106 path_get(&nd->path);
1107 nd->root = nd->path;
1108 path_get(&nd->root);
1109
1110 retval = path_walk(name, nd);
1111 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1112 nd->path.dentry->d_inode))
1113 audit_inode(name, nd->path.dentry);
1114
1115 path_put(&nd->root);
1116 nd->root.mnt = NULL;
1117
1118 return retval;
1119 }
1120
1121 static struct dentry *__lookup_hash(struct qstr *name,
1122 struct dentry *base, struct nameidata *nd)
1123 {
1124 struct dentry *dentry;
1125 struct inode *inode;
1126 int err;
1127
1128 inode = base->d_inode;
1129
1130 /*
1131 * See if the low-level filesystem might want
1132 * to use its own hash..
1133 */
1134 if (base->d_op && base->d_op->d_hash) {
1135 err = base->d_op->d_hash(base, name);
1136 dentry = ERR_PTR(err);
1137 if (err < 0)
1138 goto out;
1139 }
1140
1141 /*
1142 * Don't bother with __d_lookup: callers are for creat as
1143 * well as unlink, so a lot of the time it would cost
1144 * a double lookup.
1145 */
1146 dentry = d_lookup(base, name);
1147
1148 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
1149 dentry = do_revalidate(dentry, nd);
1150
1151 if (!dentry)
1152 dentry = d_alloc_and_lookup(base, name, nd);
1153 out:
1154 return dentry;
1155 }
1156
1157 /*
1158 * Restricted form of lookup. Doesn't follow links, single-component only,
1159 * needs parent already locked. Doesn't follow mounts.
1160 * SMP-safe.
1161 */
1162 static struct dentry *lookup_hash(struct nameidata *nd)
1163 {
1164 int err;
1165
1166 err = exec_permission(nd->path.dentry->d_inode);
1167 if (err)
1168 return ERR_PTR(err);
1169 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1170 }
1171
1172 static int __lookup_one_len(const char *name, struct qstr *this,
1173 struct dentry *base, int len)
1174 {
1175 unsigned long hash;
1176 unsigned int c;
1177
1178 this->name = name;
1179 this->len = len;
1180 if (!len)
1181 return -EACCES;
1182
1183 hash = init_name_hash();
1184 while (len--) {
1185 c = *(const unsigned char *)name++;
1186 if (c == '/' || c == '\0')
1187 return -EACCES;
1188 hash = partial_name_hash(c, hash);
1189 }
1190 this->hash = end_name_hash(hash);
1191 return 0;
1192 }
1193
1194 /**
1195 * lookup_one_len - filesystem helper to lookup single pathname component
1196 * @name: pathname component to lookup
1197 * @base: base directory to lookup from
1198 * @len: maximum length @len should be interpreted to
1199 *
1200 * Note that this routine is purely a helper for filesystem usage and should
1201 * not be called by generic code. Also note that by using this function the
1202 * nameidata argument is passed to the filesystem methods and a filesystem
1203 * using this helper needs to be prepared for that.
1204 */
1205 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1206 {
1207 int err;
1208 struct qstr this;
1209
1210 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1211
1212 err = __lookup_one_len(name, &this, base, len);
1213 if (err)
1214 return ERR_PTR(err);
1215
1216 err = exec_permission(base->d_inode);
1217 if (err)
1218 return ERR_PTR(err);
1219 return __lookup_hash(&this, base, NULL);
1220 }
1221
1222 int user_path_at(int dfd, const char __user *name, unsigned flags,
1223 struct path *path)
1224 {
1225 struct nameidata nd;
1226 char *tmp = getname(name);
1227 int err = PTR_ERR(tmp);
1228 if (!IS_ERR(tmp)) {
1229
1230 BUG_ON(flags & LOOKUP_PARENT);
1231
1232 err = do_path_lookup(dfd, tmp, flags, &nd);
1233 putname(tmp);
1234 if (!err)
1235 *path = nd.path;
1236 }
1237 return err;
1238 }
1239
1240 static int user_path_parent(int dfd, const char __user *path,
1241 struct nameidata *nd, char **name)
1242 {
1243 char *s = getname(path);
1244 int error;
1245
1246 if (IS_ERR(s))
1247 return PTR_ERR(s);
1248
1249 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1250 if (error)
1251 putname(s);
1252 else
1253 *name = s;
1254
1255 return error;
1256 }
1257
1258 /*
1259 * It's inline, so penalty for filesystems that don't use sticky bit is
1260 * minimal.
1261 */
1262 static inline int check_sticky(struct inode *dir, struct inode *inode)
1263 {
1264 uid_t fsuid = current_fsuid();
1265
1266 if (!(dir->i_mode & S_ISVTX))
1267 return 0;
1268 if (inode->i_uid == fsuid)
1269 return 0;
1270 if (dir->i_uid == fsuid)
1271 return 0;
1272 return !capable(CAP_FOWNER);
1273 }
1274
1275 /*
1276 * Check whether we can remove a link victim from directory dir, check
1277 * whether the type of victim is right.
1278 * 1. We can't do it if dir is read-only (done in permission())
1279 * 2. We should have write and exec permissions on dir
1280 * 3. We can't remove anything from append-only dir
1281 * 4. We can't do anything with immutable dir (done in permission())
1282 * 5. If the sticky bit on dir is set we should either
1283 * a. be owner of dir, or
1284 * b. be owner of victim, or
1285 * c. have CAP_FOWNER capability
1286 * 6. If the victim is append-only or immutable we can't do antyhing with
1287 * links pointing to it.
1288 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1289 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1290 * 9. We can't remove a root or mountpoint.
1291 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1292 * nfs_async_unlink().
1293 */
1294 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1295 {
1296 int error;
1297
1298 if (!victim->d_inode)
1299 return -ENOENT;
1300
1301 BUG_ON(victim->d_parent->d_inode != dir);
1302 audit_inode_child(victim, dir);
1303
1304 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1305 if (error)
1306 return error;
1307 if (IS_APPEND(dir))
1308 return -EPERM;
1309 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1310 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1311 return -EPERM;
1312 if (isdir) {
1313 if (!S_ISDIR(victim->d_inode->i_mode))
1314 return -ENOTDIR;
1315 if (IS_ROOT(victim))
1316 return -EBUSY;
1317 } else if (S_ISDIR(victim->d_inode->i_mode))
1318 return -EISDIR;
1319 if (IS_DEADDIR(dir))
1320 return -ENOENT;
1321 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1322 return -EBUSY;
1323 return 0;
1324 }
1325
1326 /* Check whether we can create an object with dentry child in directory
1327 * dir.
1328 * 1. We can't do it if child already exists (open has special treatment for
1329 * this case, but since we are inlined it's OK)
1330 * 2. We can't do it if dir is read-only (done in permission())
1331 * 3. We should have write and exec permissions on dir
1332 * 4. We can't do it if dir is immutable (done in permission())
1333 */
1334 static inline int may_create(struct inode *dir, struct dentry *child)
1335 {
1336 if (child->d_inode)
1337 return -EEXIST;
1338 if (IS_DEADDIR(dir))
1339 return -ENOENT;
1340 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1341 }
1342
1343 /*
1344 * p1 and p2 should be directories on the same fs.
1345 */
1346 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1347 {
1348 struct dentry *p;
1349
1350 if (p1 == p2) {
1351 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1352 return NULL;
1353 }
1354
1355 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1356
1357 p = d_ancestor(p2, p1);
1358 if (p) {
1359 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1360 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1361 return p;
1362 }
1363
1364 p = d_ancestor(p1, p2);
1365 if (p) {
1366 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1367 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1368 return p;
1369 }
1370
1371 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1372 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1373 return NULL;
1374 }
1375
1376 void unlock_rename(struct dentry *p1, struct dentry *p2)
1377 {
1378 mutex_unlock(&p1->d_inode->i_mutex);
1379 if (p1 != p2) {
1380 mutex_unlock(&p2->d_inode->i_mutex);
1381 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1382 }
1383 }
1384
1385 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1386 struct nameidata *nd)
1387 {
1388 int error = may_create(dir, dentry);
1389
1390 if (error)
1391 return error;
1392
1393 if (!dir->i_op->create)
1394 return -EACCES; /* shouldn't it be ENOSYS? */
1395 mode &= S_IALLUGO;
1396 mode |= S_IFREG;
1397 error = security_inode_create(dir, dentry, mode);
1398 if (error)
1399 return error;
1400 error = dir->i_op->create(dir, dentry, mode, nd);
1401 if (!error)
1402 fsnotify_create(dir, dentry);
1403 return error;
1404 }
1405
1406 int may_open(struct path *path, int acc_mode, int flag)
1407 {
1408 struct dentry *dentry = path->dentry;
1409 struct inode *inode = dentry->d_inode;
1410 int error;
1411
1412 if (!inode)
1413 return -ENOENT;
1414
1415 switch (inode->i_mode & S_IFMT) {
1416 case S_IFLNK:
1417 return -ELOOP;
1418 case S_IFDIR:
1419 if (acc_mode & MAY_WRITE)
1420 return -EISDIR;
1421 break;
1422 case S_IFBLK:
1423 case S_IFCHR:
1424 if (path->mnt->mnt_flags & MNT_NODEV)
1425 return -EACCES;
1426 /*FALLTHRU*/
1427 case S_IFIFO:
1428 case S_IFSOCK:
1429 flag &= ~O_TRUNC;
1430 break;
1431 }
1432
1433 error = inode_permission(inode, acc_mode);
1434 if (error)
1435 return error;
1436
1437 /*
1438 * An append-only file must be opened in append mode for writing.
1439 */
1440 if (IS_APPEND(inode)) {
1441 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1442 return -EPERM;
1443 if (flag & O_TRUNC)
1444 return -EPERM;
1445 }
1446
1447 /* O_NOATIME can only be set by the owner or superuser */
1448 if (flag & O_NOATIME && !is_owner_or_cap(inode))
1449 return -EPERM;
1450
1451 /*
1452 * Ensure there are no outstanding leases on the file.
1453 */
1454 return break_lease(inode, flag);
1455 }
1456
1457 static int handle_truncate(struct path *path)
1458 {
1459 struct inode *inode = path->dentry->d_inode;
1460 int error = get_write_access(inode);
1461 if (error)
1462 return error;
1463 /*
1464 * Refuse to truncate files with mandatory locks held on them.
1465 */
1466 error = locks_verify_locked(inode);
1467 if (!error)
1468 error = security_path_truncate(path);
1469 if (!error) {
1470 error = do_truncate(path->dentry, 0,
1471 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1472 NULL);
1473 }
1474 put_write_access(inode);
1475 return error;
1476 }
1477
1478 /*
1479 * Be careful about ever adding any more callers of this
1480 * function. Its flags must be in the namei format, not
1481 * what get passed to sys_open().
1482 */
1483 static int __open_namei_create(struct nameidata *nd, struct path *path,
1484 int open_flag, int mode)
1485 {
1486 int error;
1487 struct dentry *dir = nd->path.dentry;
1488
1489 if (!IS_POSIXACL(dir->d_inode))
1490 mode &= ~current_umask();
1491 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1492 if (error)
1493 goto out_unlock;
1494 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1495 out_unlock:
1496 mutex_unlock(&dir->d_inode->i_mutex);
1497 dput(nd->path.dentry);
1498 nd->path.dentry = path->dentry;
1499 if (error)
1500 return error;
1501 /* Don't check for write permission, don't truncate */
1502 return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
1503 }
1504
1505 /*
1506 * Note that while the flag value (low two bits) for sys_open means:
1507 * 00 - read-only
1508 * 01 - write-only
1509 * 10 - read-write
1510 * 11 - special
1511 * it is changed into
1512 * 00 - no permissions needed
1513 * 01 - read-permission
1514 * 10 - write-permission
1515 * 11 - read-write
1516 * for the internal routines (ie open_namei()/follow_link() etc)
1517 * This is more logical, and also allows the 00 "no perm needed"
1518 * to be used for symlinks (where the permissions are checked
1519 * later).
1520 *
1521 */
1522 static inline int open_to_namei_flags(int flag)
1523 {
1524 if ((flag+1) & O_ACCMODE)
1525 flag++;
1526 return flag;
1527 }
1528
1529 static int open_will_truncate(int flag, struct inode *inode)
1530 {
1531 /*
1532 * We'll never write to the fs underlying
1533 * a device file.
1534 */
1535 if (special_file(inode->i_mode))
1536 return 0;
1537 return (flag & O_TRUNC);
1538 }
1539
1540 static struct file *finish_open(struct nameidata *nd,
1541 int open_flag, int acc_mode)
1542 {
1543 struct file *filp;
1544 int will_truncate;
1545 int error;
1546
1547 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
1548 if (will_truncate) {
1549 error = mnt_want_write(nd->path.mnt);
1550 if (error)
1551 goto exit;
1552 }
1553 error = may_open(&nd->path, acc_mode, open_flag);
1554 if (error) {
1555 if (will_truncate)
1556 mnt_drop_write(nd->path.mnt);
1557 goto exit;
1558 }
1559 filp = nameidata_to_filp(nd);
1560 if (!IS_ERR(filp)) {
1561 error = ima_file_check(filp, acc_mode);
1562 if (error) {
1563 fput(filp);
1564 filp = ERR_PTR(error);
1565 }
1566 }
1567 if (!IS_ERR(filp)) {
1568 if (will_truncate) {
1569 error = handle_truncate(&nd->path);
1570 if (error) {
1571 fput(filp);
1572 filp = ERR_PTR(error);
1573 }
1574 }
1575 }
1576 /*
1577 * It is now safe to drop the mnt write
1578 * because the filp has had a write taken
1579 * on its behalf.
1580 */
1581 if (will_truncate)
1582 mnt_drop_write(nd->path.mnt);
1583 return filp;
1584
1585 exit:
1586 if (!IS_ERR(nd->intent.open.file))
1587 release_open_intent(nd);
1588 path_put(&nd->path);
1589 return ERR_PTR(error);
1590 }
1591
1592 static struct file *do_last(struct nameidata *nd, struct path *path,
1593 int open_flag, int acc_mode,
1594 int mode, const char *pathname)
1595 {
1596 struct dentry *dir = nd->path.dentry;
1597 struct file *filp;
1598 int error = -EISDIR;
1599
1600 switch (nd->last_type) {
1601 case LAST_DOTDOT:
1602 follow_dotdot(nd);
1603 dir = nd->path.dentry;
1604 case LAST_DOT:
1605 if (nd->path.mnt->mnt_sb->s_type->fs_flags & FS_REVAL_DOT) {
1606 if (!dir->d_op->d_revalidate(dir, nd)) {
1607 error = -ESTALE;
1608 goto exit;
1609 }
1610 }
1611 /* fallthrough */
1612 case LAST_ROOT:
1613 if (open_flag & O_CREAT)
1614 goto exit;
1615 /* fallthrough */
1616 case LAST_BIND:
1617 audit_inode(pathname, dir);
1618 goto ok;
1619 }
1620
1621 /* trailing slashes? */
1622 if (nd->last.name[nd->last.len]) {
1623 if (open_flag & O_CREAT)
1624 goto exit;
1625 nd->flags |= LOOKUP_DIRECTORY | LOOKUP_FOLLOW;
1626 }
1627
1628 /* just plain open? */
1629 if (!(open_flag & O_CREAT)) {
1630 error = do_lookup(nd, &nd->last, path);
1631 if (error)
1632 goto exit;
1633 error = -ENOENT;
1634 if (!path->dentry->d_inode)
1635 goto exit_dput;
1636 if (path->dentry->d_inode->i_op->follow_link)
1637 return NULL;
1638 error = -ENOTDIR;
1639 if (nd->flags & LOOKUP_DIRECTORY) {
1640 if (!path->dentry->d_inode->i_op->lookup)
1641 goto exit_dput;
1642 }
1643 path_to_nameidata(path, nd);
1644 audit_inode(pathname, nd->path.dentry);
1645 goto ok;
1646 }
1647
1648 /* OK, it's O_CREAT */
1649 mutex_lock(&dir->d_inode->i_mutex);
1650
1651 path->dentry = lookup_hash(nd);
1652 path->mnt = nd->path.mnt;
1653
1654 error = PTR_ERR(path->dentry);
1655 if (IS_ERR(path->dentry)) {
1656 mutex_unlock(&dir->d_inode->i_mutex);
1657 goto exit;
1658 }
1659
1660 if (IS_ERR(nd->intent.open.file)) {
1661 error = PTR_ERR(nd->intent.open.file);
1662 goto exit_mutex_unlock;
1663 }
1664
1665 /* Negative dentry, just create the file */
1666 if (!path->dentry->d_inode) {
1667 /*
1668 * This write is needed to ensure that a
1669 * ro->rw transition does not occur between
1670 * the time when the file is created and when
1671 * a permanent write count is taken through
1672 * the 'struct file' in nameidata_to_filp().
1673 */
1674 error = mnt_want_write(nd->path.mnt);
1675 if (error)
1676 goto exit_mutex_unlock;
1677 error = __open_namei_create(nd, path, open_flag, mode);
1678 if (error) {
1679 mnt_drop_write(nd->path.mnt);
1680 goto exit;
1681 }
1682 filp = nameidata_to_filp(nd);
1683 mnt_drop_write(nd->path.mnt);
1684 if (!IS_ERR(filp)) {
1685 error = ima_file_check(filp, acc_mode);
1686 if (error) {
1687 fput(filp);
1688 filp = ERR_PTR(error);
1689 }
1690 }
1691 return filp;
1692 }
1693
1694 /*
1695 * It already exists.
1696 */
1697 mutex_unlock(&dir->d_inode->i_mutex);
1698 audit_inode(pathname, path->dentry);
1699
1700 error = -EEXIST;
1701 if (open_flag & O_EXCL)
1702 goto exit_dput;
1703
1704 if (__follow_mount(path)) {
1705 error = -ELOOP;
1706 if (open_flag & O_NOFOLLOW)
1707 goto exit_dput;
1708 }
1709
1710 error = -ENOENT;
1711 if (!path->dentry->d_inode)
1712 goto exit_dput;
1713
1714 if (path->dentry->d_inode->i_op->follow_link)
1715 return NULL;
1716
1717 path_to_nameidata(path, nd);
1718 error = -EISDIR;
1719 if (S_ISDIR(path->dentry->d_inode->i_mode))
1720 goto exit;
1721 ok:
1722 filp = finish_open(nd, open_flag, acc_mode);
1723 return filp;
1724
1725 exit_mutex_unlock:
1726 mutex_unlock(&dir->d_inode->i_mutex);
1727 exit_dput:
1728 path_put_conditional(path, nd);
1729 exit:
1730 if (!IS_ERR(nd->intent.open.file))
1731 release_open_intent(nd);
1732 path_put(&nd->path);
1733 return ERR_PTR(error);
1734 }
1735
1736 /*
1737 * Note that the low bits of the passed in "open_flag"
1738 * are not the same as in the local variable "flag". See
1739 * open_to_namei_flags() for more details.
1740 */
1741 struct file *do_filp_open(int dfd, const char *pathname,
1742 int open_flag, int mode, int acc_mode)
1743 {
1744 struct file *filp;
1745 struct nameidata nd;
1746 int error;
1747 struct path path;
1748 int count = 0;
1749 int flag = open_to_namei_flags(open_flag);
1750 int force_reval = 0;
1751
1752 if (!(open_flag & O_CREAT))
1753 mode = 0;
1754
1755 /*
1756 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
1757 * check for O_DSYNC if the need any syncing at all we enforce it's
1758 * always set instead of having to deal with possibly weird behaviour
1759 * for malicious applications setting only __O_SYNC.
1760 */
1761 if (open_flag & __O_SYNC)
1762 open_flag |= O_DSYNC;
1763
1764 if (!acc_mode)
1765 acc_mode = MAY_OPEN | ACC_MODE(open_flag);
1766
1767 /* O_TRUNC implies we need access checks for write permissions */
1768 if (open_flag & O_TRUNC)
1769 acc_mode |= MAY_WRITE;
1770
1771 /* Allow the LSM permission hook to distinguish append
1772 access from general write access. */
1773 if (open_flag & O_APPEND)
1774 acc_mode |= MAY_APPEND;
1775
1776 /* find the parent */
1777 reval:
1778 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1779 if (error)
1780 return ERR_PTR(error);
1781 if (force_reval)
1782 nd.flags |= LOOKUP_REVAL;
1783
1784 current->total_link_count = 0;
1785 error = link_path_walk(pathname, &nd);
1786 if (error) {
1787 filp = ERR_PTR(error);
1788 goto out;
1789 }
1790 if (unlikely(!audit_dummy_context()) && (open_flag & O_CREAT))
1791 audit_inode(pathname, nd.path.dentry);
1792
1793 /*
1794 * We have the parent and last component.
1795 */
1796
1797 error = -ENFILE;
1798 filp = get_empty_filp();
1799 if (filp == NULL)
1800 goto exit_parent;
1801 nd.intent.open.file = filp;
1802 filp->f_flags = open_flag;
1803 nd.intent.open.flags = flag;
1804 nd.intent.open.create_mode = mode;
1805 nd.flags &= ~LOOKUP_PARENT;
1806 nd.flags |= LOOKUP_OPEN;
1807 if (open_flag & O_CREAT) {
1808 nd.flags |= LOOKUP_CREATE;
1809 if (open_flag & O_EXCL)
1810 nd.flags |= LOOKUP_EXCL;
1811 }
1812 if (open_flag & O_DIRECTORY)
1813 nd.flags |= LOOKUP_DIRECTORY;
1814 if (!(open_flag & O_NOFOLLOW))
1815 nd.flags |= LOOKUP_FOLLOW;
1816 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1817 while (unlikely(!filp)) { /* trailing symlink */
1818 struct path holder;
1819 struct inode *inode = path.dentry->d_inode;
1820 void *cookie;
1821 error = -ELOOP;
1822 /* S_ISDIR part is a temporary automount kludge */
1823 if (!(nd.flags & LOOKUP_FOLLOW) && !S_ISDIR(inode->i_mode))
1824 goto exit_dput;
1825 if (count++ == 32)
1826 goto exit_dput;
1827 /*
1828 * This is subtle. Instead of calling do_follow_link() we do
1829 * the thing by hands. The reason is that this way we have zero
1830 * link_count and path_walk() (called from ->follow_link)
1831 * honoring LOOKUP_PARENT. After that we have the parent and
1832 * last component, i.e. we are in the same situation as after
1833 * the first path_walk(). Well, almost - if the last component
1834 * is normal we get its copy stored in nd->last.name and we will
1835 * have to putname() it when we are done. Procfs-like symlinks
1836 * just set LAST_BIND.
1837 */
1838 nd.flags |= LOOKUP_PARENT;
1839 error = security_inode_follow_link(path.dentry, &nd);
1840 if (error)
1841 goto exit_dput;
1842 error = __do_follow_link(&path, &nd, &cookie);
1843 if (unlikely(error)) {
1844 /* nd.path had been dropped */
1845 if (!IS_ERR(cookie) && inode->i_op->put_link)
1846 inode->i_op->put_link(path.dentry, &nd, cookie);
1847 path_put(&path);
1848 release_open_intent(&nd);
1849 filp = ERR_PTR(error);
1850 goto out;
1851 }
1852 holder = path;
1853 nd.flags &= ~LOOKUP_PARENT;
1854 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1855 if (inode->i_op->put_link)
1856 inode->i_op->put_link(holder.dentry, &nd, cookie);
1857 path_put(&holder);
1858 }
1859 out:
1860 if (nd.root.mnt)
1861 path_put(&nd.root);
1862 if (filp == ERR_PTR(-ESTALE) && !force_reval) {
1863 force_reval = 1;
1864 goto reval;
1865 }
1866 return filp;
1867
1868 exit_dput:
1869 path_put_conditional(&path, &nd);
1870 if (!IS_ERR(nd.intent.open.file))
1871 release_open_intent(&nd);
1872 exit_parent:
1873 path_put(&nd.path);
1874 filp = ERR_PTR(error);
1875 goto out;
1876 }
1877
1878 /**
1879 * filp_open - open file and return file pointer
1880 *
1881 * @filename: path to open
1882 * @flags: open flags as per the open(2) second argument
1883 * @mode: mode for the new file if O_CREAT is set, else ignored
1884 *
1885 * This is the helper to open a file from kernelspace if you really
1886 * have to. But in generally you should not do this, so please move
1887 * along, nothing to see here..
1888 */
1889 struct file *filp_open(const char *filename, int flags, int mode)
1890 {
1891 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1892 }
1893 EXPORT_SYMBOL(filp_open);
1894
1895 /**
1896 * lookup_create - lookup a dentry, creating it if it doesn't exist
1897 * @nd: nameidata info
1898 * @is_dir: directory flag
1899 *
1900 * Simple function to lookup and return a dentry and create it
1901 * if it doesn't exist. Is SMP-safe.
1902 *
1903 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1904 */
1905 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1906 {
1907 struct dentry *dentry = ERR_PTR(-EEXIST);
1908
1909 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1910 /*
1911 * Yucky last component or no last component at all?
1912 * (foo/., foo/.., /////)
1913 */
1914 if (nd->last_type != LAST_NORM)
1915 goto fail;
1916 nd->flags &= ~LOOKUP_PARENT;
1917 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1918 nd->intent.open.flags = O_EXCL;
1919
1920 /*
1921 * Do the final lookup.
1922 */
1923 dentry = lookup_hash(nd);
1924 if (IS_ERR(dentry))
1925 goto fail;
1926
1927 if (dentry->d_inode)
1928 goto eexist;
1929 /*
1930 * Special case - lookup gave negative, but... we had foo/bar/
1931 * From the vfs_mknod() POV we just have a negative dentry -
1932 * all is fine. Let's be bastards - you had / on the end, you've
1933 * been asking for (non-existent) directory. -ENOENT for you.
1934 */
1935 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1936 dput(dentry);
1937 dentry = ERR_PTR(-ENOENT);
1938 }
1939 return dentry;
1940 eexist:
1941 dput(dentry);
1942 dentry = ERR_PTR(-EEXIST);
1943 fail:
1944 return dentry;
1945 }
1946 EXPORT_SYMBOL_GPL(lookup_create);
1947
1948 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1949 {
1950 int error = may_create(dir, dentry);
1951
1952 if (error)
1953 return error;
1954
1955 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1956 return -EPERM;
1957
1958 if (!dir->i_op->mknod)
1959 return -EPERM;
1960
1961 error = devcgroup_inode_mknod(mode, dev);
1962 if (error)
1963 return error;
1964
1965 error = security_inode_mknod(dir, dentry, mode, dev);
1966 if (error)
1967 return error;
1968
1969 error = dir->i_op->mknod(dir, dentry, mode, dev);
1970 if (!error)
1971 fsnotify_create(dir, dentry);
1972 return error;
1973 }
1974
1975 static int may_mknod(mode_t mode)
1976 {
1977 switch (mode & S_IFMT) {
1978 case S_IFREG:
1979 case S_IFCHR:
1980 case S_IFBLK:
1981 case S_IFIFO:
1982 case S_IFSOCK:
1983 case 0: /* zero mode translates to S_IFREG */
1984 return 0;
1985 case S_IFDIR:
1986 return -EPERM;
1987 default:
1988 return -EINVAL;
1989 }
1990 }
1991
1992 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
1993 unsigned, dev)
1994 {
1995 int error;
1996 char *tmp;
1997 struct dentry *dentry;
1998 struct nameidata nd;
1999
2000 if (S_ISDIR(mode))
2001 return -EPERM;
2002
2003 error = user_path_parent(dfd, filename, &nd, &tmp);
2004 if (error)
2005 return error;
2006
2007 dentry = lookup_create(&nd, 0);
2008 if (IS_ERR(dentry)) {
2009 error = PTR_ERR(dentry);
2010 goto out_unlock;
2011 }
2012 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2013 mode &= ~current_umask();
2014 error = may_mknod(mode);
2015 if (error)
2016 goto out_dput;
2017 error = mnt_want_write(nd.path.mnt);
2018 if (error)
2019 goto out_dput;
2020 error = security_path_mknod(&nd.path, dentry, mode, dev);
2021 if (error)
2022 goto out_drop_write;
2023 switch (mode & S_IFMT) {
2024 case 0: case S_IFREG:
2025 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2026 break;
2027 case S_IFCHR: case S_IFBLK:
2028 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2029 new_decode_dev(dev));
2030 break;
2031 case S_IFIFO: case S_IFSOCK:
2032 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2033 break;
2034 }
2035 out_drop_write:
2036 mnt_drop_write(nd.path.mnt);
2037 out_dput:
2038 dput(dentry);
2039 out_unlock:
2040 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2041 path_put(&nd.path);
2042 putname(tmp);
2043
2044 return error;
2045 }
2046
2047 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2048 {
2049 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2050 }
2051
2052 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2053 {
2054 int error = may_create(dir, dentry);
2055
2056 if (error)
2057 return error;
2058
2059 if (!dir->i_op->mkdir)
2060 return -EPERM;
2061
2062 mode &= (S_IRWXUGO|S_ISVTX);
2063 error = security_inode_mkdir(dir, dentry, mode);
2064 if (error)
2065 return error;
2066
2067 error = dir->i_op->mkdir(dir, dentry, mode);
2068 if (!error)
2069 fsnotify_mkdir(dir, dentry);
2070 return error;
2071 }
2072
2073 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2074 {
2075 int error = 0;
2076 char * tmp;
2077 struct dentry *dentry;
2078 struct nameidata nd;
2079
2080 error = user_path_parent(dfd, pathname, &nd, &tmp);
2081 if (error)
2082 goto out_err;
2083
2084 dentry = lookup_create(&nd, 1);
2085 error = PTR_ERR(dentry);
2086 if (IS_ERR(dentry))
2087 goto out_unlock;
2088
2089 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2090 mode &= ~current_umask();
2091 error = mnt_want_write(nd.path.mnt);
2092 if (error)
2093 goto out_dput;
2094 error = security_path_mkdir(&nd.path, dentry, mode);
2095 if (error)
2096 goto out_drop_write;
2097 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2098 out_drop_write:
2099 mnt_drop_write(nd.path.mnt);
2100 out_dput:
2101 dput(dentry);
2102 out_unlock:
2103 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2104 path_put(&nd.path);
2105 putname(tmp);
2106 out_err:
2107 return error;
2108 }
2109
2110 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2111 {
2112 return sys_mkdirat(AT_FDCWD, pathname, mode);
2113 }
2114
2115 /*
2116 * We try to drop the dentry early: we should have
2117 * a usage count of 2 if we're the only user of this
2118 * dentry, and if that is true (possibly after pruning
2119 * the dcache), then we drop the dentry now.
2120 *
2121 * A low-level filesystem can, if it choses, legally
2122 * do a
2123 *
2124 * if (!d_unhashed(dentry))
2125 * return -EBUSY;
2126 *
2127 * if it cannot handle the case of removing a directory
2128 * that is still in use by something else..
2129 */
2130 void dentry_unhash(struct dentry *dentry)
2131 {
2132 dget(dentry);
2133 shrink_dcache_parent(dentry);
2134 spin_lock(&dcache_lock);
2135 spin_lock(&dentry->d_lock);
2136 if (atomic_read(&dentry->d_count) == 2)
2137 __d_drop(dentry);
2138 spin_unlock(&dentry->d_lock);
2139 spin_unlock(&dcache_lock);
2140 }
2141
2142 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2143 {
2144 int error = may_delete(dir, dentry, 1);
2145
2146 if (error)
2147 return error;
2148
2149 if (!dir->i_op->rmdir)
2150 return -EPERM;
2151
2152 mutex_lock(&dentry->d_inode->i_mutex);
2153 dentry_unhash(dentry);
2154 if (d_mountpoint(dentry))
2155 error = -EBUSY;
2156 else {
2157 error = security_inode_rmdir(dir, dentry);
2158 if (!error) {
2159 error = dir->i_op->rmdir(dir, dentry);
2160 if (!error) {
2161 dentry->d_inode->i_flags |= S_DEAD;
2162 dont_mount(dentry);
2163 }
2164 }
2165 }
2166 mutex_unlock(&dentry->d_inode->i_mutex);
2167 if (!error) {
2168 d_delete(dentry);
2169 }
2170 dput(dentry);
2171
2172 return error;
2173 }
2174
2175 static long do_rmdir(int dfd, const char __user *pathname)
2176 {
2177 int error = 0;
2178 char * name;
2179 struct dentry *dentry;
2180 struct nameidata nd;
2181
2182 error = user_path_parent(dfd, pathname, &nd, &name);
2183 if (error)
2184 return error;
2185
2186 switch(nd.last_type) {
2187 case LAST_DOTDOT:
2188 error = -ENOTEMPTY;
2189 goto exit1;
2190 case LAST_DOT:
2191 error = -EINVAL;
2192 goto exit1;
2193 case LAST_ROOT:
2194 error = -EBUSY;
2195 goto exit1;
2196 }
2197
2198 nd.flags &= ~LOOKUP_PARENT;
2199
2200 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2201 dentry = lookup_hash(&nd);
2202 error = PTR_ERR(dentry);
2203 if (IS_ERR(dentry))
2204 goto exit2;
2205 error = mnt_want_write(nd.path.mnt);
2206 if (error)
2207 goto exit3;
2208 error = security_path_rmdir(&nd.path, dentry);
2209 if (error)
2210 goto exit4;
2211 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2212 exit4:
2213 mnt_drop_write(nd.path.mnt);
2214 exit3:
2215 dput(dentry);
2216 exit2:
2217 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2218 exit1:
2219 path_put(&nd.path);
2220 putname(name);
2221 return error;
2222 }
2223
2224 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2225 {
2226 return do_rmdir(AT_FDCWD, pathname);
2227 }
2228
2229 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2230 {
2231 int error = may_delete(dir, dentry, 0);
2232
2233 if (error)
2234 return error;
2235
2236 if (!dir->i_op->unlink)
2237 return -EPERM;
2238
2239 mutex_lock(&dentry->d_inode->i_mutex);
2240 if (d_mountpoint(dentry))
2241 error = -EBUSY;
2242 else {
2243 error = security_inode_unlink(dir, dentry);
2244 if (!error) {
2245 error = dir->i_op->unlink(dir, dentry);
2246 if (!error)
2247 dont_mount(dentry);
2248 }
2249 }
2250 mutex_unlock(&dentry->d_inode->i_mutex);
2251
2252 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2253 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2254 fsnotify_link_count(dentry->d_inode);
2255 d_delete(dentry);
2256 }
2257
2258 return error;
2259 }
2260
2261 /*
2262 * Make sure that the actual truncation of the file will occur outside its
2263 * directory's i_mutex. Truncate can take a long time if there is a lot of
2264 * writeout happening, and we don't want to prevent access to the directory
2265 * while waiting on the I/O.
2266 */
2267 static long do_unlinkat(int dfd, const char __user *pathname)
2268 {
2269 int error;
2270 char *name;
2271 struct dentry *dentry;
2272 struct nameidata nd;
2273 struct inode *inode = NULL;
2274
2275 error = user_path_parent(dfd, pathname, &nd, &name);
2276 if (error)
2277 return error;
2278
2279 error = -EISDIR;
2280 if (nd.last_type != LAST_NORM)
2281 goto exit1;
2282
2283 nd.flags &= ~LOOKUP_PARENT;
2284
2285 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2286 dentry = lookup_hash(&nd);
2287 error = PTR_ERR(dentry);
2288 if (!IS_ERR(dentry)) {
2289 /* Why not before? Because we want correct error value */
2290 if (nd.last.name[nd.last.len])
2291 goto slashes;
2292 inode = dentry->d_inode;
2293 if (inode)
2294 atomic_inc(&inode->i_count);
2295 error = mnt_want_write(nd.path.mnt);
2296 if (error)
2297 goto exit2;
2298 error = security_path_unlink(&nd.path, dentry);
2299 if (error)
2300 goto exit3;
2301 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2302 exit3:
2303 mnt_drop_write(nd.path.mnt);
2304 exit2:
2305 dput(dentry);
2306 }
2307 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2308 if (inode)
2309 iput(inode); /* truncate the inode here */
2310 exit1:
2311 path_put(&nd.path);
2312 putname(name);
2313 return error;
2314
2315 slashes:
2316 error = !dentry->d_inode ? -ENOENT :
2317 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2318 goto exit2;
2319 }
2320
2321 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2322 {
2323 if ((flag & ~AT_REMOVEDIR) != 0)
2324 return -EINVAL;
2325
2326 if (flag & AT_REMOVEDIR)
2327 return do_rmdir(dfd, pathname);
2328
2329 return do_unlinkat(dfd, pathname);
2330 }
2331
2332 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2333 {
2334 return do_unlinkat(AT_FDCWD, pathname);
2335 }
2336
2337 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2338 {
2339 int error = may_create(dir, dentry);
2340
2341 if (error)
2342 return error;
2343
2344 if (!dir->i_op->symlink)
2345 return -EPERM;
2346
2347 error = security_inode_symlink(dir, dentry, oldname);
2348 if (error)
2349 return error;
2350
2351 error = dir->i_op->symlink(dir, dentry, oldname);
2352 if (!error)
2353 fsnotify_create(dir, dentry);
2354 return error;
2355 }
2356
2357 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2358 int, newdfd, const char __user *, newname)
2359 {
2360 int error;
2361 char *from;
2362 char *to;
2363 struct dentry *dentry;
2364 struct nameidata nd;
2365
2366 from = getname(oldname);
2367 if (IS_ERR(from))
2368 return PTR_ERR(from);
2369
2370 error = user_path_parent(newdfd, newname, &nd, &to);
2371 if (error)
2372 goto out_putname;
2373
2374 dentry = lookup_create(&nd, 0);
2375 error = PTR_ERR(dentry);
2376 if (IS_ERR(dentry))
2377 goto out_unlock;
2378
2379 error = mnt_want_write(nd.path.mnt);
2380 if (error)
2381 goto out_dput;
2382 error = security_path_symlink(&nd.path, dentry, from);
2383 if (error)
2384 goto out_drop_write;
2385 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2386 out_drop_write:
2387 mnt_drop_write(nd.path.mnt);
2388 out_dput:
2389 dput(dentry);
2390 out_unlock:
2391 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2392 path_put(&nd.path);
2393 putname(to);
2394 out_putname:
2395 putname(from);
2396 return error;
2397 }
2398
2399 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2400 {
2401 return sys_symlinkat(oldname, AT_FDCWD, newname);
2402 }
2403
2404 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2405 {
2406 struct inode *inode = old_dentry->d_inode;
2407 int error;
2408
2409 if (!inode)
2410 return -ENOENT;
2411
2412 error = may_create(dir, new_dentry);
2413 if (error)
2414 return error;
2415
2416 if (dir->i_sb != inode->i_sb)
2417 return -EXDEV;
2418
2419 /*
2420 * A link to an append-only or immutable file cannot be created.
2421 */
2422 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2423 return -EPERM;
2424 if (!dir->i_op->link)
2425 return -EPERM;
2426 if (S_ISDIR(inode->i_mode))
2427 return -EPERM;
2428
2429 error = security_inode_link(old_dentry, dir, new_dentry);
2430 if (error)
2431 return error;
2432
2433 mutex_lock(&inode->i_mutex);
2434 error = dir->i_op->link(old_dentry, dir, new_dentry);
2435 mutex_unlock(&inode->i_mutex);
2436 if (!error)
2437 fsnotify_link(dir, inode, new_dentry);
2438 return error;
2439 }
2440
2441 /*
2442 * Hardlinks are often used in delicate situations. We avoid
2443 * security-related surprises by not following symlinks on the
2444 * newname. --KAB
2445 *
2446 * We don't follow them on the oldname either to be compatible
2447 * with linux 2.0, and to avoid hard-linking to directories
2448 * and other special files. --ADM
2449 */
2450 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2451 int, newdfd, const char __user *, newname, int, flags)
2452 {
2453 struct dentry *new_dentry;
2454 struct nameidata nd;
2455 struct path old_path;
2456 int error;
2457 char *to;
2458
2459 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2460 return -EINVAL;
2461
2462 error = user_path_at(olddfd, oldname,
2463 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2464 &old_path);
2465 if (error)
2466 return error;
2467
2468 error = user_path_parent(newdfd, newname, &nd, &to);
2469 if (error)
2470 goto out;
2471 error = -EXDEV;
2472 if (old_path.mnt != nd.path.mnt)
2473 goto out_release;
2474 new_dentry = lookup_create(&nd, 0);
2475 error = PTR_ERR(new_dentry);
2476 if (IS_ERR(new_dentry))
2477 goto out_unlock;
2478 error = mnt_want_write(nd.path.mnt);
2479 if (error)
2480 goto out_dput;
2481 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2482 if (error)
2483 goto out_drop_write;
2484 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2485 out_drop_write:
2486 mnt_drop_write(nd.path.mnt);
2487 out_dput:
2488 dput(new_dentry);
2489 out_unlock:
2490 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2491 out_release:
2492 path_put(&nd.path);
2493 putname(to);
2494 out:
2495 path_put(&old_path);
2496
2497 return error;
2498 }
2499
2500 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2501 {
2502 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2503 }
2504
2505 /*
2506 * The worst of all namespace operations - renaming directory. "Perverted"
2507 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2508 * Problems:
2509 * a) we can get into loop creation. Check is done in is_subdir().
2510 * b) race potential - two innocent renames can create a loop together.
2511 * That's where 4.4 screws up. Current fix: serialization on
2512 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2513 * story.
2514 * c) we have to lock _three_ objects - parents and victim (if it exists).
2515 * And that - after we got ->i_mutex on parents (until then we don't know
2516 * whether the target exists). Solution: try to be smart with locking
2517 * order for inodes. We rely on the fact that tree topology may change
2518 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2519 * move will be locked. Thus we can rank directories by the tree
2520 * (ancestors first) and rank all non-directories after them.
2521 * That works since everybody except rename does "lock parent, lookup,
2522 * lock child" and rename is under ->s_vfs_rename_mutex.
2523 * HOWEVER, it relies on the assumption that any object with ->lookup()
2524 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2525 * we'd better make sure that there's no link(2) for them.
2526 * d) some filesystems don't support opened-but-unlinked directories,
2527 * either because of layout or because they are not ready to deal with
2528 * all cases correctly. The latter will be fixed (taking this sort of
2529 * stuff into VFS), but the former is not going away. Solution: the same
2530 * trick as in rmdir().
2531 * e) conversion from fhandle to dentry may come in the wrong moment - when
2532 * we are removing the target. Solution: we will have to grab ->i_mutex
2533 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2534 * ->i_mutex on parents, which works but leads to some truly excessive
2535 * locking].
2536 */
2537 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2538 struct inode *new_dir, struct dentry *new_dentry)
2539 {
2540 int error = 0;
2541 struct inode *target;
2542
2543 /*
2544 * If we are going to change the parent - check write permissions,
2545 * we'll need to flip '..'.
2546 */
2547 if (new_dir != old_dir) {
2548 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2549 if (error)
2550 return error;
2551 }
2552
2553 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2554 if (error)
2555 return error;
2556
2557 target = new_dentry->d_inode;
2558 if (target)
2559 mutex_lock(&target->i_mutex);
2560 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2561 error = -EBUSY;
2562 else {
2563 if (target)
2564 dentry_unhash(new_dentry);
2565 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2566 }
2567 if (target) {
2568 if (!error) {
2569 target->i_flags |= S_DEAD;
2570 dont_mount(new_dentry);
2571 }
2572 mutex_unlock(&target->i_mutex);
2573 if (d_unhashed(new_dentry))
2574 d_rehash(new_dentry);
2575 dput(new_dentry);
2576 }
2577 if (!error)
2578 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2579 d_move(old_dentry,new_dentry);
2580 return error;
2581 }
2582
2583 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2584 struct inode *new_dir, struct dentry *new_dentry)
2585 {
2586 struct inode *target;
2587 int error;
2588
2589 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2590 if (error)
2591 return error;
2592
2593 dget(new_dentry);
2594 target = new_dentry->d_inode;
2595 if (target)
2596 mutex_lock(&target->i_mutex);
2597 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2598 error = -EBUSY;
2599 else
2600 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2601 if (!error) {
2602 if (target)
2603 dont_mount(new_dentry);
2604 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2605 d_move(old_dentry, new_dentry);
2606 }
2607 if (target)
2608 mutex_unlock(&target->i_mutex);
2609 dput(new_dentry);
2610 return error;
2611 }
2612
2613 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2614 struct inode *new_dir, struct dentry *new_dentry)
2615 {
2616 int error;
2617 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2618 const unsigned char *old_name;
2619
2620 if (old_dentry->d_inode == new_dentry->d_inode)
2621 return 0;
2622
2623 error = may_delete(old_dir, old_dentry, is_dir);
2624 if (error)
2625 return error;
2626
2627 if (!new_dentry->d_inode)
2628 error = may_create(new_dir, new_dentry);
2629 else
2630 error = may_delete(new_dir, new_dentry, is_dir);
2631 if (error)
2632 return error;
2633
2634 if (!old_dir->i_op->rename)
2635 return -EPERM;
2636
2637 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2638
2639 if (is_dir)
2640 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2641 else
2642 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2643 if (!error)
2644 fsnotify_move(old_dir, new_dir, old_name, is_dir,
2645 new_dentry->d_inode, old_dentry);
2646 fsnotify_oldname_free(old_name);
2647
2648 return error;
2649 }
2650
2651 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2652 int, newdfd, const char __user *, newname)
2653 {
2654 struct dentry *old_dir, *new_dir;
2655 struct dentry *old_dentry, *new_dentry;
2656 struct dentry *trap;
2657 struct nameidata oldnd, newnd;
2658 char *from;
2659 char *to;
2660 int error;
2661
2662 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2663 if (error)
2664 goto exit;
2665
2666 error = user_path_parent(newdfd, newname, &newnd, &to);
2667 if (error)
2668 goto exit1;
2669
2670 error = -EXDEV;
2671 if (oldnd.path.mnt != newnd.path.mnt)
2672 goto exit2;
2673
2674 old_dir = oldnd.path.dentry;
2675 error = -EBUSY;
2676 if (oldnd.last_type != LAST_NORM)
2677 goto exit2;
2678
2679 new_dir = newnd.path.dentry;
2680 if (newnd.last_type != LAST_NORM)
2681 goto exit2;
2682
2683 oldnd.flags &= ~LOOKUP_PARENT;
2684 newnd.flags &= ~LOOKUP_PARENT;
2685 newnd.flags |= LOOKUP_RENAME_TARGET;
2686
2687 trap = lock_rename(new_dir, old_dir);
2688
2689 old_dentry = lookup_hash(&oldnd);
2690 error = PTR_ERR(old_dentry);
2691 if (IS_ERR(old_dentry))
2692 goto exit3;
2693 /* source must exist */
2694 error = -ENOENT;
2695 if (!old_dentry->d_inode)
2696 goto exit4;
2697 /* unless the source is a directory trailing slashes give -ENOTDIR */
2698 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2699 error = -ENOTDIR;
2700 if (oldnd.last.name[oldnd.last.len])
2701 goto exit4;
2702 if (newnd.last.name[newnd.last.len])
2703 goto exit4;
2704 }
2705 /* source should not be ancestor of target */
2706 error = -EINVAL;
2707 if (old_dentry == trap)
2708 goto exit4;
2709 new_dentry = lookup_hash(&newnd);
2710 error = PTR_ERR(new_dentry);
2711 if (IS_ERR(new_dentry))
2712 goto exit4;
2713 /* target should not be an ancestor of source */
2714 error = -ENOTEMPTY;
2715 if (new_dentry == trap)
2716 goto exit5;
2717
2718 error = mnt_want_write(oldnd.path.mnt);
2719 if (error)
2720 goto exit5;
2721 error = security_path_rename(&oldnd.path, old_dentry,
2722 &newnd.path, new_dentry);
2723 if (error)
2724 goto exit6;
2725 error = vfs_rename(old_dir->d_inode, old_dentry,
2726 new_dir->d_inode, new_dentry);
2727 exit6:
2728 mnt_drop_write(oldnd.path.mnt);
2729 exit5:
2730 dput(new_dentry);
2731 exit4:
2732 dput(old_dentry);
2733 exit3:
2734 unlock_rename(new_dir, old_dir);
2735 exit2:
2736 path_put(&newnd.path);
2737 putname(to);
2738 exit1:
2739 path_put(&oldnd.path);
2740 putname(from);
2741 exit:
2742 return error;
2743 }
2744
2745 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2746 {
2747 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2748 }
2749
2750 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2751 {
2752 int len;
2753
2754 len = PTR_ERR(link);
2755 if (IS_ERR(link))
2756 goto out;
2757
2758 len = strlen(link);
2759 if (len > (unsigned) buflen)
2760 len = buflen;
2761 if (copy_to_user(buffer, link, len))
2762 len = -EFAULT;
2763 out:
2764 return len;
2765 }
2766
2767 /*
2768 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2769 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2770 * using) it for any given inode is up to filesystem.
2771 */
2772 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2773 {
2774 struct nameidata nd;
2775 void *cookie;
2776 int res;
2777
2778 nd.depth = 0;
2779 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2780 if (IS_ERR(cookie))
2781 return PTR_ERR(cookie);
2782
2783 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2784 if (dentry->d_inode->i_op->put_link)
2785 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2786 return res;
2787 }
2788
2789 int vfs_follow_link(struct nameidata *nd, const char *link)
2790 {
2791 return __vfs_follow_link(nd, link);
2792 }
2793
2794 /* get the link contents into pagecache */
2795 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2796 {
2797 char *kaddr;
2798 struct page *page;
2799 struct address_space *mapping = dentry->d_inode->i_mapping;
2800 page = read_mapping_page(mapping, 0, NULL);
2801 if (IS_ERR(page))
2802 return (char*)page;
2803 *ppage = page;
2804 kaddr = kmap(page);
2805 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2806 return kaddr;
2807 }
2808
2809 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2810 {
2811 struct page *page = NULL;
2812 char *s = page_getlink(dentry, &page);
2813 int res = vfs_readlink(dentry,buffer,buflen,s);
2814 if (page) {
2815 kunmap(page);
2816 page_cache_release(page);
2817 }
2818 return res;
2819 }
2820
2821 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2822 {
2823 struct page *page = NULL;
2824 nd_set_link(nd, page_getlink(dentry, &page));
2825 return page;
2826 }
2827
2828 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2829 {
2830 struct page *page = cookie;
2831
2832 if (page) {
2833 kunmap(page);
2834 page_cache_release(page);
2835 }
2836 }
2837
2838 /*
2839 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2840 */
2841 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2842 {
2843 struct address_space *mapping = inode->i_mapping;
2844 struct page *page;
2845 void *fsdata;
2846 int err;
2847 char *kaddr;
2848 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2849 if (nofs)
2850 flags |= AOP_FLAG_NOFS;
2851
2852 retry:
2853 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2854 flags, &page, &fsdata);
2855 if (err)
2856 goto fail;
2857
2858 kaddr = kmap_atomic(page, KM_USER0);
2859 memcpy(kaddr, symname, len-1);
2860 kunmap_atomic(kaddr, KM_USER0);
2861
2862 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2863 page, fsdata);
2864 if (err < 0)
2865 goto fail;
2866 if (err < len-1)
2867 goto retry;
2868
2869 mark_inode_dirty(inode);
2870 return 0;
2871 fail:
2872 return err;
2873 }
2874
2875 int page_symlink(struct inode *inode, const char *symname, int len)
2876 {
2877 return __page_symlink(inode, symname, len,
2878 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2879 }
2880
2881 const struct inode_operations page_symlink_inode_operations = {
2882 .readlink = generic_readlink,
2883 .follow_link = page_follow_link_light,
2884 .put_link = page_put_link,
2885 };
2886
2887 EXPORT_SYMBOL(user_path_at);
2888 EXPORT_SYMBOL(follow_down);
2889 EXPORT_SYMBOL(follow_up);
2890 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2891 EXPORT_SYMBOL(getname);
2892 EXPORT_SYMBOL(lock_rename);
2893 EXPORT_SYMBOL(lookup_one_len);
2894 EXPORT_SYMBOL(page_follow_link_light);
2895 EXPORT_SYMBOL(page_put_link);
2896 EXPORT_SYMBOL(page_readlink);
2897 EXPORT_SYMBOL(__page_symlink);
2898 EXPORT_SYMBOL(page_symlink);
2899 EXPORT_SYMBOL(page_symlink_inode_operations);
2900 EXPORT_SYMBOL(path_lookup);
2901 EXPORT_SYMBOL(kern_path);
2902 EXPORT_SYMBOL(vfs_path_lookup);
2903 EXPORT_SYMBOL(inode_permission);
2904 EXPORT_SYMBOL(file_permission);
2905 EXPORT_SYMBOL(unlock_rename);
2906 EXPORT_SYMBOL(vfs_create);
2907 EXPORT_SYMBOL(vfs_follow_link);
2908 EXPORT_SYMBOL(vfs_link);
2909 EXPORT_SYMBOL(vfs_mkdir);
2910 EXPORT_SYMBOL(vfs_mknod);
2911 EXPORT_SYMBOL(generic_permission);
2912 EXPORT_SYMBOL(vfs_readlink);
2913 EXPORT_SYMBOL(vfs_rename);
2914 EXPORT_SYMBOL(vfs_rmdir);
2915 EXPORT_SYMBOL(vfs_symlink);
2916 EXPORT_SYMBOL(vfs_unlink);
2917 EXPORT_SYMBOL(dentry_unhash);
2918 EXPORT_SYMBOL(generic_readlink);