]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namei.c
fs/namei.c: Improve dcache hash function
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <linux/bitops.h>
39 #include <asm/uaccess.h>
40
41 #include "internal.h"
42 #include "mount.h"
43
44 /* [Feb-1997 T. Schoebel-Theuer]
45 * Fundamental changes in the pathname lookup mechanisms (namei)
46 * were necessary because of omirr. The reason is that omirr needs
47 * to know the _real_ pathname, not the user-supplied one, in case
48 * of symlinks (and also when transname replacements occur).
49 *
50 * The new code replaces the old recursive symlink resolution with
51 * an iterative one (in case of non-nested symlink chains). It does
52 * this with calls to <fs>_follow_link().
53 * As a side effect, dir_namei(), _namei() and follow_link() are now
54 * replaced with a single function lookup_dentry() that can handle all
55 * the special cases of the former code.
56 *
57 * With the new dcache, the pathname is stored at each inode, at least as
58 * long as the refcount of the inode is positive. As a side effect, the
59 * size of the dcache depends on the inode cache and thus is dynamic.
60 *
61 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
62 * resolution to correspond with current state of the code.
63 *
64 * Note that the symlink resolution is not *completely* iterative.
65 * There is still a significant amount of tail- and mid- recursion in
66 * the algorithm. Also, note that <fs>_readlink() is not used in
67 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
68 * may return different results than <fs>_follow_link(). Many virtual
69 * filesystems (including /proc) exhibit this behavior.
70 */
71
72 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
73 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
74 * and the name already exists in form of a symlink, try to create the new
75 * name indicated by the symlink. The old code always complained that the
76 * name already exists, due to not following the symlink even if its target
77 * is nonexistent. The new semantics affects also mknod() and link() when
78 * the name is a symlink pointing to a non-existent name.
79 *
80 * I don't know which semantics is the right one, since I have no access
81 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
82 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
83 * "old" one. Personally, I think the new semantics is much more logical.
84 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
85 * file does succeed in both HP-UX and SunOs, but not in Solaris
86 * and in the old Linux semantics.
87 */
88
89 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
90 * semantics. See the comments in "open_namei" and "do_link" below.
91 *
92 * [10-Sep-98 Alan Modra] Another symlink change.
93 */
94
95 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
96 * inside the path - always follow.
97 * in the last component in creation/removal/renaming - never follow.
98 * if LOOKUP_FOLLOW passed - follow.
99 * if the pathname has trailing slashes - follow.
100 * otherwise - don't follow.
101 * (applied in that order).
102 *
103 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
104 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
105 * During the 2.4 we need to fix the userland stuff depending on it -
106 * hopefully we will be able to get rid of that wart in 2.5. So far only
107 * XEmacs seems to be relying on it...
108 */
109 /*
110 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
111 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
112 * any extra contention...
113 */
114
115 /* In order to reduce some races, while at the same time doing additional
116 * checking and hopefully speeding things up, we copy filenames to the
117 * kernel data space before using them..
118 *
119 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
120 * PATH_MAX includes the nul terminator --RR.
121 */
122
123 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
124
125 struct filename *
126 getname_flags(const char __user *filename, int flags, int *empty)
127 {
128 struct filename *result;
129 char *kname;
130 int len;
131
132 result = audit_reusename(filename);
133 if (result)
134 return result;
135
136 result = __getname();
137 if (unlikely(!result))
138 return ERR_PTR(-ENOMEM);
139
140 /*
141 * First, try to embed the struct filename inside the names_cache
142 * allocation
143 */
144 kname = (char *)result->iname;
145 result->name = kname;
146
147 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
148 if (unlikely(len < 0)) {
149 __putname(result);
150 return ERR_PTR(len);
151 }
152
153 /*
154 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
155 * separate struct filename so we can dedicate the entire
156 * names_cache allocation for the pathname, and re-do the copy from
157 * userland.
158 */
159 if (unlikely(len == EMBEDDED_NAME_MAX)) {
160 const size_t size = offsetof(struct filename, iname[1]);
161 kname = (char *)result;
162
163 /*
164 * size is chosen that way we to guarantee that
165 * result->iname[0] is within the same object and that
166 * kname can't be equal to result->iname, no matter what.
167 */
168 result = kzalloc(size, GFP_KERNEL);
169 if (unlikely(!result)) {
170 __putname(kname);
171 return ERR_PTR(-ENOMEM);
172 }
173 result->name = kname;
174 len = strncpy_from_user(kname, filename, PATH_MAX);
175 if (unlikely(len < 0)) {
176 __putname(kname);
177 kfree(result);
178 return ERR_PTR(len);
179 }
180 if (unlikely(len == PATH_MAX)) {
181 __putname(kname);
182 kfree(result);
183 return ERR_PTR(-ENAMETOOLONG);
184 }
185 }
186
187 result->refcnt = 1;
188 /* The empty path is special. */
189 if (unlikely(!len)) {
190 if (empty)
191 *empty = 1;
192 if (!(flags & LOOKUP_EMPTY)) {
193 putname(result);
194 return ERR_PTR(-ENOENT);
195 }
196 }
197
198 result->uptr = filename;
199 result->aname = NULL;
200 audit_getname(result);
201 return result;
202 }
203
204 struct filename *
205 getname(const char __user * filename)
206 {
207 return getname_flags(filename, 0, NULL);
208 }
209
210 struct filename *
211 getname_kernel(const char * filename)
212 {
213 struct filename *result;
214 int len = strlen(filename) + 1;
215
216 result = __getname();
217 if (unlikely(!result))
218 return ERR_PTR(-ENOMEM);
219
220 if (len <= EMBEDDED_NAME_MAX) {
221 result->name = (char *)result->iname;
222 } else if (len <= PATH_MAX) {
223 struct filename *tmp;
224
225 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
226 if (unlikely(!tmp)) {
227 __putname(result);
228 return ERR_PTR(-ENOMEM);
229 }
230 tmp->name = (char *)result;
231 result = tmp;
232 } else {
233 __putname(result);
234 return ERR_PTR(-ENAMETOOLONG);
235 }
236 memcpy((char *)result->name, filename, len);
237 result->uptr = NULL;
238 result->aname = NULL;
239 result->refcnt = 1;
240 audit_getname(result);
241
242 return result;
243 }
244
245 void putname(struct filename *name)
246 {
247 BUG_ON(name->refcnt <= 0);
248
249 if (--name->refcnt > 0)
250 return;
251
252 if (name->name != name->iname) {
253 __putname(name->name);
254 kfree(name);
255 } else
256 __putname(name);
257 }
258
259 static int check_acl(struct inode *inode, int mask)
260 {
261 #ifdef CONFIG_FS_POSIX_ACL
262 struct posix_acl *acl;
263
264 if (mask & MAY_NOT_BLOCK) {
265 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
266 if (!acl)
267 return -EAGAIN;
268 /* no ->get_acl() calls in RCU mode... */
269 if (acl == ACL_NOT_CACHED)
270 return -ECHILD;
271 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
272 }
273
274 acl = get_acl(inode, ACL_TYPE_ACCESS);
275 if (IS_ERR(acl))
276 return PTR_ERR(acl);
277 if (acl) {
278 int error = posix_acl_permission(inode, acl, mask);
279 posix_acl_release(acl);
280 return error;
281 }
282 #endif
283
284 return -EAGAIN;
285 }
286
287 /*
288 * This does the basic permission checking
289 */
290 static int acl_permission_check(struct inode *inode, int mask)
291 {
292 unsigned int mode = inode->i_mode;
293
294 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
295 mode >>= 6;
296 else {
297 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
298 int error = check_acl(inode, mask);
299 if (error != -EAGAIN)
300 return error;
301 }
302
303 if (in_group_p(inode->i_gid))
304 mode >>= 3;
305 }
306
307 /*
308 * If the DACs are ok we don't need any capability check.
309 */
310 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
311 return 0;
312 return -EACCES;
313 }
314
315 /**
316 * generic_permission - check for access rights on a Posix-like filesystem
317 * @inode: inode to check access rights for
318 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
319 *
320 * Used to check for read/write/execute permissions on a file.
321 * We use "fsuid" for this, letting us set arbitrary permissions
322 * for filesystem access without changing the "normal" uids which
323 * are used for other things.
324 *
325 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
326 * request cannot be satisfied (eg. requires blocking or too much complexity).
327 * It would then be called again in ref-walk mode.
328 */
329 int generic_permission(struct inode *inode, int mask)
330 {
331 int ret;
332
333 /*
334 * Do the basic permission checks.
335 */
336 ret = acl_permission_check(inode, mask);
337 if (ret != -EACCES)
338 return ret;
339
340 if (S_ISDIR(inode->i_mode)) {
341 /* DACs are overridable for directories */
342 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
343 return 0;
344 if (!(mask & MAY_WRITE))
345 if (capable_wrt_inode_uidgid(inode,
346 CAP_DAC_READ_SEARCH))
347 return 0;
348 return -EACCES;
349 }
350 /*
351 * Read/write DACs are always overridable.
352 * Executable DACs are overridable when there is
353 * at least one exec bit set.
354 */
355 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
356 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
357 return 0;
358
359 /*
360 * Searching includes executable on directories, else just read.
361 */
362 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
363 if (mask == MAY_READ)
364 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
365 return 0;
366
367 return -EACCES;
368 }
369 EXPORT_SYMBOL(generic_permission);
370
371 /*
372 * We _really_ want to just do "generic_permission()" without
373 * even looking at the inode->i_op values. So we keep a cache
374 * flag in inode->i_opflags, that says "this has not special
375 * permission function, use the fast case".
376 */
377 static inline int do_inode_permission(struct inode *inode, int mask)
378 {
379 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
380 if (likely(inode->i_op->permission))
381 return inode->i_op->permission(inode, mask);
382
383 /* This gets set once for the inode lifetime */
384 spin_lock(&inode->i_lock);
385 inode->i_opflags |= IOP_FASTPERM;
386 spin_unlock(&inode->i_lock);
387 }
388 return generic_permission(inode, mask);
389 }
390
391 /**
392 * __inode_permission - Check for access rights to a given inode
393 * @inode: Inode to check permission on
394 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
395 *
396 * Check for read/write/execute permissions on an inode.
397 *
398 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
399 *
400 * This does not check for a read-only file system. You probably want
401 * inode_permission().
402 */
403 int __inode_permission(struct inode *inode, int mask)
404 {
405 int retval;
406
407 if (unlikely(mask & MAY_WRITE)) {
408 /*
409 * Nobody gets write access to an immutable file.
410 */
411 if (IS_IMMUTABLE(inode))
412 return -EACCES;
413 }
414
415 retval = do_inode_permission(inode, mask);
416 if (retval)
417 return retval;
418
419 retval = devcgroup_inode_permission(inode, mask);
420 if (retval)
421 return retval;
422
423 return security_inode_permission(inode, mask);
424 }
425 EXPORT_SYMBOL(__inode_permission);
426
427 /**
428 * sb_permission - Check superblock-level permissions
429 * @sb: Superblock of inode to check permission on
430 * @inode: Inode to check permission on
431 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
432 *
433 * Separate out file-system wide checks from inode-specific permission checks.
434 */
435 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
436 {
437 if (unlikely(mask & MAY_WRITE)) {
438 umode_t mode = inode->i_mode;
439
440 /* Nobody gets write access to a read-only fs. */
441 if ((sb->s_flags & MS_RDONLY) &&
442 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
443 return -EROFS;
444 }
445 return 0;
446 }
447
448 /**
449 * inode_permission - Check for access rights to a given inode
450 * @inode: Inode to check permission on
451 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
452 *
453 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
454 * this, letting us set arbitrary permissions for filesystem access without
455 * changing the "normal" UIDs which are used for other things.
456 *
457 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
458 */
459 int inode_permission(struct inode *inode, int mask)
460 {
461 int retval;
462
463 retval = sb_permission(inode->i_sb, inode, mask);
464 if (retval)
465 return retval;
466 return __inode_permission(inode, mask);
467 }
468 EXPORT_SYMBOL(inode_permission);
469
470 /**
471 * path_get - get a reference to a path
472 * @path: path to get the reference to
473 *
474 * Given a path increment the reference count to the dentry and the vfsmount.
475 */
476 void path_get(const struct path *path)
477 {
478 mntget(path->mnt);
479 dget(path->dentry);
480 }
481 EXPORT_SYMBOL(path_get);
482
483 /**
484 * path_put - put a reference to a path
485 * @path: path to put the reference to
486 *
487 * Given a path decrement the reference count to the dentry and the vfsmount.
488 */
489 void path_put(const struct path *path)
490 {
491 dput(path->dentry);
492 mntput(path->mnt);
493 }
494 EXPORT_SYMBOL(path_put);
495
496 #define EMBEDDED_LEVELS 2
497 struct nameidata {
498 struct path path;
499 struct qstr last;
500 struct path root;
501 struct inode *inode; /* path.dentry.d_inode */
502 unsigned int flags;
503 unsigned seq, m_seq;
504 int last_type;
505 unsigned depth;
506 int total_link_count;
507 struct saved {
508 struct path link;
509 struct delayed_call done;
510 const char *name;
511 unsigned seq;
512 } *stack, internal[EMBEDDED_LEVELS];
513 struct filename *name;
514 struct nameidata *saved;
515 struct inode *link_inode;
516 unsigned root_seq;
517 int dfd;
518 };
519
520 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
521 {
522 struct nameidata *old = current->nameidata;
523 p->stack = p->internal;
524 p->dfd = dfd;
525 p->name = name;
526 p->total_link_count = old ? old->total_link_count : 0;
527 p->saved = old;
528 current->nameidata = p;
529 }
530
531 static void restore_nameidata(void)
532 {
533 struct nameidata *now = current->nameidata, *old = now->saved;
534
535 current->nameidata = old;
536 if (old)
537 old->total_link_count = now->total_link_count;
538 if (now->stack != now->internal)
539 kfree(now->stack);
540 }
541
542 static int __nd_alloc_stack(struct nameidata *nd)
543 {
544 struct saved *p;
545
546 if (nd->flags & LOOKUP_RCU) {
547 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
548 GFP_ATOMIC);
549 if (unlikely(!p))
550 return -ECHILD;
551 } else {
552 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
553 GFP_KERNEL);
554 if (unlikely(!p))
555 return -ENOMEM;
556 }
557 memcpy(p, nd->internal, sizeof(nd->internal));
558 nd->stack = p;
559 return 0;
560 }
561
562 /**
563 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
564 * @path: nameidate to verify
565 *
566 * Rename can sometimes move a file or directory outside of a bind
567 * mount, path_connected allows those cases to be detected.
568 */
569 static bool path_connected(const struct path *path)
570 {
571 struct vfsmount *mnt = path->mnt;
572
573 /* Only bind mounts can have disconnected paths */
574 if (mnt->mnt_root == mnt->mnt_sb->s_root)
575 return true;
576
577 return is_subdir(path->dentry, mnt->mnt_root);
578 }
579
580 static inline int nd_alloc_stack(struct nameidata *nd)
581 {
582 if (likely(nd->depth != EMBEDDED_LEVELS))
583 return 0;
584 if (likely(nd->stack != nd->internal))
585 return 0;
586 return __nd_alloc_stack(nd);
587 }
588
589 static void drop_links(struct nameidata *nd)
590 {
591 int i = nd->depth;
592 while (i--) {
593 struct saved *last = nd->stack + i;
594 do_delayed_call(&last->done);
595 clear_delayed_call(&last->done);
596 }
597 }
598
599 static void terminate_walk(struct nameidata *nd)
600 {
601 drop_links(nd);
602 if (!(nd->flags & LOOKUP_RCU)) {
603 int i;
604 path_put(&nd->path);
605 for (i = 0; i < nd->depth; i++)
606 path_put(&nd->stack[i].link);
607 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
608 path_put(&nd->root);
609 nd->root.mnt = NULL;
610 }
611 } else {
612 nd->flags &= ~LOOKUP_RCU;
613 if (!(nd->flags & LOOKUP_ROOT))
614 nd->root.mnt = NULL;
615 rcu_read_unlock();
616 }
617 nd->depth = 0;
618 }
619
620 /* path_put is needed afterwards regardless of success or failure */
621 static bool legitimize_path(struct nameidata *nd,
622 struct path *path, unsigned seq)
623 {
624 int res = __legitimize_mnt(path->mnt, nd->m_seq);
625 if (unlikely(res)) {
626 if (res > 0)
627 path->mnt = NULL;
628 path->dentry = NULL;
629 return false;
630 }
631 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
632 path->dentry = NULL;
633 return false;
634 }
635 return !read_seqcount_retry(&path->dentry->d_seq, seq);
636 }
637
638 static bool legitimize_links(struct nameidata *nd)
639 {
640 int i;
641 for (i = 0; i < nd->depth; i++) {
642 struct saved *last = nd->stack + i;
643 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
644 drop_links(nd);
645 nd->depth = i + 1;
646 return false;
647 }
648 }
649 return true;
650 }
651
652 /*
653 * Path walking has 2 modes, rcu-walk and ref-walk (see
654 * Documentation/filesystems/path-lookup.txt). In situations when we can't
655 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
656 * normal reference counts on dentries and vfsmounts to transition to ref-walk
657 * mode. Refcounts are grabbed at the last known good point before rcu-walk
658 * got stuck, so ref-walk may continue from there. If this is not successful
659 * (eg. a seqcount has changed), then failure is returned and it's up to caller
660 * to restart the path walk from the beginning in ref-walk mode.
661 */
662
663 /**
664 * unlazy_walk - try to switch to ref-walk mode.
665 * @nd: nameidata pathwalk data
666 * @dentry: child of nd->path.dentry or NULL
667 * @seq: seq number to check dentry against
668 * Returns: 0 on success, -ECHILD on failure
669 *
670 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
671 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
672 * @nd or NULL. Must be called from rcu-walk context.
673 * Nothing should touch nameidata between unlazy_walk() failure and
674 * terminate_walk().
675 */
676 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
677 {
678 struct dentry *parent = nd->path.dentry;
679
680 BUG_ON(!(nd->flags & LOOKUP_RCU));
681
682 nd->flags &= ~LOOKUP_RCU;
683 if (unlikely(!legitimize_links(nd)))
684 goto out2;
685 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
686 goto out2;
687 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
688 goto out1;
689
690 /*
691 * For a negative lookup, the lookup sequence point is the parents
692 * sequence point, and it only needs to revalidate the parent dentry.
693 *
694 * For a positive lookup, we need to move both the parent and the
695 * dentry from the RCU domain to be properly refcounted. And the
696 * sequence number in the dentry validates *both* dentry counters,
697 * since we checked the sequence number of the parent after we got
698 * the child sequence number. So we know the parent must still
699 * be valid if the child sequence number is still valid.
700 */
701 if (!dentry) {
702 if (read_seqcount_retry(&parent->d_seq, nd->seq))
703 goto out;
704 BUG_ON(nd->inode != parent->d_inode);
705 } else {
706 if (!lockref_get_not_dead(&dentry->d_lockref))
707 goto out;
708 if (read_seqcount_retry(&dentry->d_seq, seq))
709 goto drop_dentry;
710 }
711
712 /*
713 * Sequence counts matched. Now make sure that the root is
714 * still valid and get it if required.
715 */
716 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
717 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
718 rcu_read_unlock();
719 dput(dentry);
720 return -ECHILD;
721 }
722 }
723
724 rcu_read_unlock();
725 return 0;
726
727 drop_dentry:
728 rcu_read_unlock();
729 dput(dentry);
730 goto drop_root_mnt;
731 out2:
732 nd->path.mnt = NULL;
733 out1:
734 nd->path.dentry = NULL;
735 out:
736 rcu_read_unlock();
737 drop_root_mnt:
738 if (!(nd->flags & LOOKUP_ROOT))
739 nd->root.mnt = NULL;
740 return -ECHILD;
741 }
742
743 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
744 {
745 if (unlikely(!legitimize_path(nd, link, seq))) {
746 drop_links(nd);
747 nd->depth = 0;
748 nd->flags &= ~LOOKUP_RCU;
749 nd->path.mnt = NULL;
750 nd->path.dentry = NULL;
751 if (!(nd->flags & LOOKUP_ROOT))
752 nd->root.mnt = NULL;
753 rcu_read_unlock();
754 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
755 return 0;
756 }
757 path_put(link);
758 return -ECHILD;
759 }
760
761 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
762 {
763 return dentry->d_op->d_revalidate(dentry, flags);
764 }
765
766 /**
767 * complete_walk - successful completion of path walk
768 * @nd: pointer nameidata
769 *
770 * If we had been in RCU mode, drop out of it and legitimize nd->path.
771 * Revalidate the final result, unless we'd already done that during
772 * the path walk or the filesystem doesn't ask for it. Return 0 on
773 * success, -error on failure. In case of failure caller does not
774 * need to drop nd->path.
775 */
776 static int complete_walk(struct nameidata *nd)
777 {
778 struct dentry *dentry = nd->path.dentry;
779 int status;
780
781 if (nd->flags & LOOKUP_RCU) {
782 if (!(nd->flags & LOOKUP_ROOT))
783 nd->root.mnt = NULL;
784 if (unlikely(unlazy_walk(nd, NULL, 0)))
785 return -ECHILD;
786 }
787
788 if (likely(!(nd->flags & LOOKUP_JUMPED)))
789 return 0;
790
791 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
792 return 0;
793
794 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
795 if (status > 0)
796 return 0;
797
798 if (!status)
799 status = -ESTALE;
800
801 return status;
802 }
803
804 static void set_root(struct nameidata *nd)
805 {
806 struct fs_struct *fs = current->fs;
807
808 if (nd->flags & LOOKUP_RCU) {
809 unsigned seq;
810
811 do {
812 seq = read_seqcount_begin(&fs->seq);
813 nd->root = fs->root;
814 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
815 } while (read_seqcount_retry(&fs->seq, seq));
816 } else {
817 get_fs_root(fs, &nd->root);
818 }
819 }
820
821 static void path_put_conditional(struct path *path, struct nameidata *nd)
822 {
823 dput(path->dentry);
824 if (path->mnt != nd->path.mnt)
825 mntput(path->mnt);
826 }
827
828 static inline void path_to_nameidata(const struct path *path,
829 struct nameidata *nd)
830 {
831 if (!(nd->flags & LOOKUP_RCU)) {
832 dput(nd->path.dentry);
833 if (nd->path.mnt != path->mnt)
834 mntput(nd->path.mnt);
835 }
836 nd->path.mnt = path->mnt;
837 nd->path.dentry = path->dentry;
838 }
839
840 static int nd_jump_root(struct nameidata *nd)
841 {
842 if (nd->flags & LOOKUP_RCU) {
843 struct dentry *d;
844 nd->path = nd->root;
845 d = nd->path.dentry;
846 nd->inode = d->d_inode;
847 nd->seq = nd->root_seq;
848 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
849 return -ECHILD;
850 } else {
851 path_put(&nd->path);
852 nd->path = nd->root;
853 path_get(&nd->path);
854 nd->inode = nd->path.dentry->d_inode;
855 }
856 nd->flags |= LOOKUP_JUMPED;
857 return 0;
858 }
859
860 /*
861 * Helper to directly jump to a known parsed path from ->get_link,
862 * caller must have taken a reference to path beforehand.
863 */
864 void nd_jump_link(struct path *path)
865 {
866 struct nameidata *nd = current->nameidata;
867 path_put(&nd->path);
868
869 nd->path = *path;
870 nd->inode = nd->path.dentry->d_inode;
871 nd->flags |= LOOKUP_JUMPED;
872 }
873
874 static inline void put_link(struct nameidata *nd)
875 {
876 struct saved *last = nd->stack + --nd->depth;
877 do_delayed_call(&last->done);
878 if (!(nd->flags & LOOKUP_RCU))
879 path_put(&last->link);
880 }
881
882 int sysctl_protected_symlinks __read_mostly = 0;
883 int sysctl_protected_hardlinks __read_mostly = 0;
884
885 /**
886 * may_follow_link - Check symlink following for unsafe situations
887 * @nd: nameidata pathwalk data
888 *
889 * In the case of the sysctl_protected_symlinks sysctl being enabled,
890 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
891 * in a sticky world-writable directory. This is to protect privileged
892 * processes from failing races against path names that may change out
893 * from under them by way of other users creating malicious symlinks.
894 * It will permit symlinks to be followed only when outside a sticky
895 * world-writable directory, or when the uid of the symlink and follower
896 * match, or when the directory owner matches the symlink's owner.
897 *
898 * Returns 0 if following the symlink is allowed, -ve on error.
899 */
900 static inline int may_follow_link(struct nameidata *nd)
901 {
902 const struct inode *inode;
903 const struct inode *parent;
904
905 if (!sysctl_protected_symlinks)
906 return 0;
907
908 /* Allowed if owner and follower match. */
909 inode = nd->link_inode;
910 if (uid_eq(current_cred()->fsuid, inode->i_uid))
911 return 0;
912
913 /* Allowed if parent directory not sticky and world-writable. */
914 parent = nd->inode;
915 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
916 return 0;
917
918 /* Allowed if parent directory and link owner match. */
919 if (uid_eq(parent->i_uid, inode->i_uid))
920 return 0;
921
922 if (nd->flags & LOOKUP_RCU)
923 return -ECHILD;
924
925 audit_log_link_denied("follow_link", &nd->stack[0].link);
926 return -EACCES;
927 }
928
929 /**
930 * safe_hardlink_source - Check for safe hardlink conditions
931 * @inode: the source inode to hardlink from
932 *
933 * Return false if at least one of the following conditions:
934 * - inode is not a regular file
935 * - inode is setuid
936 * - inode is setgid and group-exec
937 * - access failure for read and write
938 *
939 * Otherwise returns true.
940 */
941 static bool safe_hardlink_source(struct inode *inode)
942 {
943 umode_t mode = inode->i_mode;
944
945 /* Special files should not get pinned to the filesystem. */
946 if (!S_ISREG(mode))
947 return false;
948
949 /* Setuid files should not get pinned to the filesystem. */
950 if (mode & S_ISUID)
951 return false;
952
953 /* Executable setgid files should not get pinned to the filesystem. */
954 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
955 return false;
956
957 /* Hardlinking to unreadable or unwritable sources is dangerous. */
958 if (inode_permission(inode, MAY_READ | MAY_WRITE))
959 return false;
960
961 return true;
962 }
963
964 /**
965 * may_linkat - Check permissions for creating a hardlink
966 * @link: the source to hardlink from
967 *
968 * Block hardlink when all of:
969 * - sysctl_protected_hardlinks enabled
970 * - fsuid does not match inode
971 * - hardlink source is unsafe (see safe_hardlink_source() above)
972 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
973 *
974 * Returns 0 if successful, -ve on error.
975 */
976 static int may_linkat(struct path *link)
977 {
978 struct inode *inode;
979
980 if (!sysctl_protected_hardlinks)
981 return 0;
982
983 inode = link->dentry->d_inode;
984
985 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
986 * otherwise, it must be a safe source.
987 */
988 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
989 return 0;
990
991 audit_log_link_denied("linkat", link);
992 return -EPERM;
993 }
994
995 static __always_inline
996 const char *get_link(struct nameidata *nd)
997 {
998 struct saved *last = nd->stack + nd->depth - 1;
999 struct dentry *dentry = last->link.dentry;
1000 struct inode *inode = nd->link_inode;
1001 int error;
1002 const char *res;
1003
1004 if (!(nd->flags & LOOKUP_RCU)) {
1005 touch_atime(&last->link);
1006 cond_resched();
1007 } else if (atime_needs_update(&last->link, inode)) {
1008 if (unlikely(unlazy_walk(nd, NULL, 0)))
1009 return ERR_PTR(-ECHILD);
1010 touch_atime(&last->link);
1011 }
1012
1013 error = security_inode_follow_link(dentry, inode,
1014 nd->flags & LOOKUP_RCU);
1015 if (unlikely(error))
1016 return ERR_PTR(error);
1017
1018 nd->last_type = LAST_BIND;
1019 res = inode->i_link;
1020 if (!res) {
1021 const char * (*get)(struct dentry *, struct inode *,
1022 struct delayed_call *);
1023 get = inode->i_op->get_link;
1024 if (nd->flags & LOOKUP_RCU) {
1025 res = get(NULL, inode, &last->done);
1026 if (res == ERR_PTR(-ECHILD)) {
1027 if (unlikely(unlazy_walk(nd, NULL, 0)))
1028 return ERR_PTR(-ECHILD);
1029 res = get(dentry, inode, &last->done);
1030 }
1031 } else {
1032 res = get(dentry, inode, &last->done);
1033 }
1034 if (IS_ERR_OR_NULL(res))
1035 return res;
1036 }
1037 if (*res == '/') {
1038 if (!nd->root.mnt)
1039 set_root(nd);
1040 if (unlikely(nd_jump_root(nd)))
1041 return ERR_PTR(-ECHILD);
1042 while (unlikely(*++res == '/'))
1043 ;
1044 }
1045 if (!*res)
1046 res = NULL;
1047 return res;
1048 }
1049
1050 /*
1051 * follow_up - Find the mountpoint of path's vfsmount
1052 *
1053 * Given a path, find the mountpoint of its source file system.
1054 * Replace @path with the path of the mountpoint in the parent mount.
1055 * Up is towards /.
1056 *
1057 * Return 1 if we went up a level and 0 if we were already at the
1058 * root.
1059 */
1060 int follow_up(struct path *path)
1061 {
1062 struct mount *mnt = real_mount(path->mnt);
1063 struct mount *parent;
1064 struct dentry *mountpoint;
1065
1066 read_seqlock_excl(&mount_lock);
1067 parent = mnt->mnt_parent;
1068 if (parent == mnt) {
1069 read_sequnlock_excl(&mount_lock);
1070 return 0;
1071 }
1072 mntget(&parent->mnt);
1073 mountpoint = dget(mnt->mnt_mountpoint);
1074 read_sequnlock_excl(&mount_lock);
1075 dput(path->dentry);
1076 path->dentry = mountpoint;
1077 mntput(path->mnt);
1078 path->mnt = &parent->mnt;
1079 return 1;
1080 }
1081 EXPORT_SYMBOL(follow_up);
1082
1083 /*
1084 * Perform an automount
1085 * - return -EISDIR to tell follow_managed() to stop and return the path we
1086 * were called with.
1087 */
1088 static int follow_automount(struct path *path, struct nameidata *nd,
1089 bool *need_mntput)
1090 {
1091 struct vfsmount *mnt;
1092 int err;
1093
1094 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1095 return -EREMOTE;
1096
1097 /* We don't want to mount if someone's just doing a stat -
1098 * unless they're stat'ing a directory and appended a '/' to
1099 * the name.
1100 *
1101 * We do, however, want to mount if someone wants to open or
1102 * create a file of any type under the mountpoint, wants to
1103 * traverse through the mountpoint or wants to open the
1104 * mounted directory. Also, autofs may mark negative dentries
1105 * as being automount points. These will need the attentions
1106 * of the daemon to instantiate them before they can be used.
1107 */
1108 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1109 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1110 path->dentry->d_inode)
1111 return -EISDIR;
1112
1113 nd->total_link_count++;
1114 if (nd->total_link_count >= 40)
1115 return -ELOOP;
1116
1117 mnt = path->dentry->d_op->d_automount(path);
1118 if (IS_ERR(mnt)) {
1119 /*
1120 * The filesystem is allowed to return -EISDIR here to indicate
1121 * it doesn't want to automount. For instance, autofs would do
1122 * this so that its userspace daemon can mount on this dentry.
1123 *
1124 * However, we can only permit this if it's a terminal point in
1125 * the path being looked up; if it wasn't then the remainder of
1126 * the path is inaccessible and we should say so.
1127 */
1128 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1129 return -EREMOTE;
1130 return PTR_ERR(mnt);
1131 }
1132
1133 if (!mnt) /* mount collision */
1134 return 0;
1135
1136 if (!*need_mntput) {
1137 /* lock_mount() may release path->mnt on error */
1138 mntget(path->mnt);
1139 *need_mntput = true;
1140 }
1141 err = finish_automount(mnt, path);
1142
1143 switch (err) {
1144 case -EBUSY:
1145 /* Someone else made a mount here whilst we were busy */
1146 return 0;
1147 case 0:
1148 path_put(path);
1149 path->mnt = mnt;
1150 path->dentry = dget(mnt->mnt_root);
1151 return 0;
1152 default:
1153 return err;
1154 }
1155
1156 }
1157
1158 /*
1159 * Handle a dentry that is managed in some way.
1160 * - Flagged for transit management (autofs)
1161 * - Flagged as mountpoint
1162 * - Flagged as automount point
1163 *
1164 * This may only be called in refwalk mode.
1165 *
1166 * Serialization is taken care of in namespace.c
1167 */
1168 static int follow_managed(struct path *path, struct nameidata *nd)
1169 {
1170 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1171 unsigned managed;
1172 bool need_mntput = false;
1173 int ret = 0;
1174
1175 /* Given that we're not holding a lock here, we retain the value in a
1176 * local variable for each dentry as we look at it so that we don't see
1177 * the components of that value change under us */
1178 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1179 managed &= DCACHE_MANAGED_DENTRY,
1180 unlikely(managed != 0)) {
1181 /* Allow the filesystem to manage the transit without i_mutex
1182 * being held. */
1183 if (managed & DCACHE_MANAGE_TRANSIT) {
1184 BUG_ON(!path->dentry->d_op);
1185 BUG_ON(!path->dentry->d_op->d_manage);
1186 ret = path->dentry->d_op->d_manage(path->dentry, false);
1187 if (ret < 0)
1188 break;
1189 }
1190
1191 /* Transit to a mounted filesystem. */
1192 if (managed & DCACHE_MOUNTED) {
1193 struct vfsmount *mounted = lookup_mnt(path);
1194 if (mounted) {
1195 dput(path->dentry);
1196 if (need_mntput)
1197 mntput(path->mnt);
1198 path->mnt = mounted;
1199 path->dentry = dget(mounted->mnt_root);
1200 need_mntput = true;
1201 continue;
1202 }
1203
1204 /* Something is mounted on this dentry in another
1205 * namespace and/or whatever was mounted there in this
1206 * namespace got unmounted before lookup_mnt() could
1207 * get it */
1208 }
1209
1210 /* Handle an automount point */
1211 if (managed & DCACHE_NEED_AUTOMOUNT) {
1212 ret = follow_automount(path, nd, &need_mntput);
1213 if (ret < 0)
1214 break;
1215 continue;
1216 }
1217
1218 /* We didn't change the current path point */
1219 break;
1220 }
1221
1222 if (need_mntput && path->mnt == mnt)
1223 mntput(path->mnt);
1224 if (ret == -EISDIR || !ret)
1225 ret = 1;
1226 if (need_mntput)
1227 nd->flags |= LOOKUP_JUMPED;
1228 if (unlikely(ret < 0))
1229 path_put_conditional(path, nd);
1230 return ret;
1231 }
1232
1233 int follow_down_one(struct path *path)
1234 {
1235 struct vfsmount *mounted;
1236
1237 mounted = lookup_mnt(path);
1238 if (mounted) {
1239 dput(path->dentry);
1240 mntput(path->mnt);
1241 path->mnt = mounted;
1242 path->dentry = dget(mounted->mnt_root);
1243 return 1;
1244 }
1245 return 0;
1246 }
1247 EXPORT_SYMBOL(follow_down_one);
1248
1249 static inline int managed_dentry_rcu(struct dentry *dentry)
1250 {
1251 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1252 dentry->d_op->d_manage(dentry, true) : 0;
1253 }
1254
1255 /*
1256 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1257 * we meet a managed dentry that would need blocking.
1258 */
1259 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1260 struct inode **inode, unsigned *seqp)
1261 {
1262 for (;;) {
1263 struct mount *mounted;
1264 /*
1265 * Don't forget we might have a non-mountpoint managed dentry
1266 * that wants to block transit.
1267 */
1268 switch (managed_dentry_rcu(path->dentry)) {
1269 case -ECHILD:
1270 default:
1271 return false;
1272 case -EISDIR:
1273 return true;
1274 case 0:
1275 break;
1276 }
1277
1278 if (!d_mountpoint(path->dentry))
1279 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1280
1281 mounted = __lookup_mnt(path->mnt, path->dentry);
1282 if (!mounted)
1283 break;
1284 path->mnt = &mounted->mnt;
1285 path->dentry = mounted->mnt.mnt_root;
1286 nd->flags |= LOOKUP_JUMPED;
1287 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1288 /*
1289 * Update the inode too. We don't need to re-check the
1290 * dentry sequence number here after this d_inode read,
1291 * because a mount-point is always pinned.
1292 */
1293 *inode = path->dentry->d_inode;
1294 }
1295 return !read_seqretry(&mount_lock, nd->m_seq) &&
1296 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1297 }
1298
1299 static int follow_dotdot_rcu(struct nameidata *nd)
1300 {
1301 struct inode *inode = nd->inode;
1302
1303 while (1) {
1304 if (path_equal(&nd->path, &nd->root))
1305 break;
1306 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1307 struct dentry *old = nd->path.dentry;
1308 struct dentry *parent = old->d_parent;
1309 unsigned seq;
1310
1311 inode = parent->d_inode;
1312 seq = read_seqcount_begin(&parent->d_seq);
1313 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1314 return -ECHILD;
1315 nd->path.dentry = parent;
1316 nd->seq = seq;
1317 if (unlikely(!path_connected(&nd->path)))
1318 return -ENOENT;
1319 break;
1320 } else {
1321 struct mount *mnt = real_mount(nd->path.mnt);
1322 struct mount *mparent = mnt->mnt_parent;
1323 struct dentry *mountpoint = mnt->mnt_mountpoint;
1324 struct inode *inode2 = mountpoint->d_inode;
1325 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1326 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1327 return -ECHILD;
1328 if (&mparent->mnt == nd->path.mnt)
1329 break;
1330 /* we know that mountpoint was pinned */
1331 nd->path.dentry = mountpoint;
1332 nd->path.mnt = &mparent->mnt;
1333 inode = inode2;
1334 nd->seq = seq;
1335 }
1336 }
1337 while (unlikely(d_mountpoint(nd->path.dentry))) {
1338 struct mount *mounted;
1339 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1340 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1341 return -ECHILD;
1342 if (!mounted)
1343 break;
1344 nd->path.mnt = &mounted->mnt;
1345 nd->path.dentry = mounted->mnt.mnt_root;
1346 inode = nd->path.dentry->d_inode;
1347 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1348 }
1349 nd->inode = inode;
1350 return 0;
1351 }
1352
1353 /*
1354 * Follow down to the covering mount currently visible to userspace. At each
1355 * point, the filesystem owning that dentry may be queried as to whether the
1356 * caller is permitted to proceed or not.
1357 */
1358 int follow_down(struct path *path)
1359 {
1360 unsigned managed;
1361 int ret;
1362
1363 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1364 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1365 /* Allow the filesystem to manage the transit without i_mutex
1366 * being held.
1367 *
1368 * We indicate to the filesystem if someone is trying to mount
1369 * something here. This gives autofs the chance to deny anyone
1370 * other than its daemon the right to mount on its
1371 * superstructure.
1372 *
1373 * The filesystem may sleep at this point.
1374 */
1375 if (managed & DCACHE_MANAGE_TRANSIT) {
1376 BUG_ON(!path->dentry->d_op);
1377 BUG_ON(!path->dentry->d_op->d_manage);
1378 ret = path->dentry->d_op->d_manage(
1379 path->dentry, false);
1380 if (ret < 0)
1381 return ret == -EISDIR ? 0 : ret;
1382 }
1383
1384 /* Transit to a mounted filesystem. */
1385 if (managed & DCACHE_MOUNTED) {
1386 struct vfsmount *mounted = lookup_mnt(path);
1387 if (!mounted)
1388 break;
1389 dput(path->dentry);
1390 mntput(path->mnt);
1391 path->mnt = mounted;
1392 path->dentry = dget(mounted->mnt_root);
1393 continue;
1394 }
1395
1396 /* Don't handle automount points here */
1397 break;
1398 }
1399 return 0;
1400 }
1401 EXPORT_SYMBOL(follow_down);
1402
1403 /*
1404 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1405 */
1406 static void follow_mount(struct path *path)
1407 {
1408 while (d_mountpoint(path->dentry)) {
1409 struct vfsmount *mounted = lookup_mnt(path);
1410 if (!mounted)
1411 break;
1412 dput(path->dentry);
1413 mntput(path->mnt);
1414 path->mnt = mounted;
1415 path->dentry = dget(mounted->mnt_root);
1416 }
1417 }
1418
1419 static int follow_dotdot(struct nameidata *nd)
1420 {
1421 while(1) {
1422 struct dentry *old = nd->path.dentry;
1423
1424 if (nd->path.dentry == nd->root.dentry &&
1425 nd->path.mnt == nd->root.mnt) {
1426 break;
1427 }
1428 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1429 /* rare case of legitimate dget_parent()... */
1430 nd->path.dentry = dget_parent(nd->path.dentry);
1431 dput(old);
1432 if (unlikely(!path_connected(&nd->path)))
1433 return -ENOENT;
1434 break;
1435 }
1436 if (!follow_up(&nd->path))
1437 break;
1438 }
1439 follow_mount(&nd->path);
1440 nd->inode = nd->path.dentry->d_inode;
1441 return 0;
1442 }
1443
1444 /*
1445 * This looks up the name in dcache, possibly revalidates the old dentry and
1446 * allocates a new one if not found or not valid. In the need_lookup argument
1447 * returns whether i_op->lookup is necessary.
1448 */
1449 static struct dentry *lookup_dcache(const struct qstr *name,
1450 struct dentry *dir,
1451 unsigned int flags)
1452 {
1453 struct dentry *dentry;
1454 int error;
1455
1456 dentry = d_lookup(dir, name);
1457 if (dentry) {
1458 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1459 error = d_revalidate(dentry, flags);
1460 if (unlikely(error <= 0)) {
1461 if (!error)
1462 d_invalidate(dentry);
1463 dput(dentry);
1464 return ERR_PTR(error);
1465 }
1466 }
1467 }
1468 return dentry;
1469 }
1470
1471 /*
1472 * Call i_op->lookup on the dentry. The dentry must be negative and
1473 * unhashed.
1474 *
1475 * dir->d_inode->i_mutex must be held
1476 */
1477 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1478 unsigned int flags)
1479 {
1480 struct dentry *old;
1481
1482 /* Don't create child dentry for a dead directory. */
1483 if (unlikely(IS_DEADDIR(dir))) {
1484 dput(dentry);
1485 return ERR_PTR(-ENOENT);
1486 }
1487
1488 old = dir->i_op->lookup(dir, dentry, flags);
1489 if (unlikely(old)) {
1490 dput(dentry);
1491 dentry = old;
1492 }
1493 return dentry;
1494 }
1495
1496 static struct dentry *__lookup_hash(const struct qstr *name,
1497 struct dentry *base, unsigned int flags)
1498 {
1499 struct dentry *dentry = lookup_dcache(name, base, flags);
1500
1501 if (dentry)
1502 return dentry;
1503
1504 dentry = d_alloc(base, name);
1505 if (unlikely(!dentry))
1506 return ERR_PTR(-ENOMEM);
1507
1508 return lookup_real(base->d_inode, dentry, flags);
1509 }
1510
1511 static int lookup_fast(struct nameidata *nd,
1512 struct path *path, struct inode **inode,
1513 unsigned *seqp)
1514 {
1515 struct vfsmount *mnt = nd->path.mnt;
1516 struct dentry *dentry, *parent = nd->path.dentry;
1517 int status = 1;
1518 int err;
1519
1520 /*
1521 * Rename seqlock is not required here because in the off chance
1522 * of a false negative due to a concurrent rename, the caller is
1523 * going to fall back to non-racy lookup.
1524 */
1525 if (nd->flags & LOOKUP_RCU) {
1526 unsigned seq;
1527 bool negative;
1528 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1529 if (unlikely(!dentry)) {
1530 if (unlazy_walk(nd, NULL, 0))
1531 return -ECHILD;
1532 return 0;
1533 }
1534
1535 /*
1536 * This sequence count validates that the inode matches
1537 * the dentry name information from lookup.
1538 */
1539 *inode = d_backing_inode(dentry);
1540 negative = d_is_negative(dentry);
1541 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1542 return -ECHILD;
1543
1544 /*
1545 * This sequence count validates that the parent had no
1546 * changes while we did the lookup of the dentry above.
1547 *
1548 * The memory barrier in read_seqcount_begin of child is
1549 * enough, we can use __read_seqcount_retry here.
1550 */
1551 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1552 return -ECHILD;
1553
1554 *seqp = seq;
1555 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1556 status = d_revalidate(dentry, nd->flags);
1557 if (unlikely(status <= 0)) {
1558 if (unlazy_walk(nd, dentry, seq))
1559 return -ECHILD;
1560 if (status == -ECHILD)
1561 status = d_revalidate(dentry, nd->flags);
1562 } else {
1563 /*
1564 * Note: do negative dentry check after revalidation in
1565 * case that drops it.
1566 */
1567 if (unlikely(negative))
1568 return -ENOENT;
1569 path->mnt = mnt;
1570 path->dentry = dentry;
1571 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1572 return 1;
1573 if (unlazy_walk(nd, dentry, seq))
1574 return -ECHILD;
1575 }
1576 } else {
1577 dentry = __d_lookup(parent, &nd->last);
1578 if (unlikely(!dentry))
1579 return 0;
1580 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1581 status = d_revalidate(dentry, nd->flags);
1582 }
1583 if (unlikely(status <= 0)) {
1584 if (!status)
1585 d_invalidate(dentry);
1586 dput(dentry);
1587 return status;
1588 }
1589 if (unlikely(d_is_negative(dentry))) {
1590 dput(dentry);
1591 return -ENOENT;
1592 }
1593
1594 path->mnt = mnt;
1595 path->dentry = dentry;
1596 err = follow_managed(path, nd);
1597 if (likely(err > 0))
1598 *inode = d_backing_inode(path->dentry);
1599 return err;
1600 }
1601
1602 /* Fast lookup failed, do it the slow way */
1603 static struct dentry *lookup_slow(const struct qstr *name,
1604 struct dentry *dir,
1605 unsigned int flags)
1606 {
1607 struct dentry *dentry;
1608 inode_lock(dir->d_inode);
1609 dentry = d_lookup(dir, name);
1610 if (unlikely(dentry)) {
1611 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1612 !(flags & LOOKUP_NO_REVAL)) {
1613 int error = d_revalidate(dentry, flags);
1614 if (unlikely(error <= 0)) {
1615 if (!error)
1616 d_invalidate(dentry);
1617 dput(dentry);
1618 dentry = ERR_PTR(error);
1619 }
1620 }
1621 if (dentry) {
1622 inode_unlock(dir->d_inode);
1623 return dentry;
1624 }
1625 }
1626 dentry = d_alloc(dir, name);
1627 if (unlikely(!dentry)) {
1628 inode_unlock(dir->d_inode);
1629 return ERR_PTR(-ENOMEM);
1630 }
1631 dentry = lookup_real(dir->d_inode, dentry, flags);
1632 inode_unlock(dir->d_inode);
1633 return dentry;
1634 }
1635
1636 static inline int may_lookup(struct nameidata *nd)
1637 {
1638 if (nd->flags & LOOKUP_RCU) {
1639 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1640 if (err != -ECHILD)
1641 return err;
1642 if (unlazy_walk(nd, NULL, 0))
1643 return -ECHILD;
1644 }
1645 return inode_permission(nd->inode, MAY_EXEC);
1646 }
1647
1648 static inline int handle_dots(struct nameidata *nd, int type)
1649 {
1650 if (type == LAST_DOTDOT) {
1651 if (!nd->root.mnt)
1652 set_root(nd);
1653 if (nd->flags & LOOKUP_RCU) {
1654 return follow_dotdot_rcu(nd);
1655 } else
1656 return follow_dotdot(nd);
1657 }
1658 return 0;
1659 }
1660
1661 static int pick_link(struct nameidata *nd, struct path *link,
1662 struct inode *inode, unsigned seq)
1663 {
1664 int error;
1665 struct saved *last;
1666 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1667 path_to_nameidata(link, nd);
1668 return -ELOOP;
1669 }
1670 if (!(nd->flags & LOOKUP_RCU)) {
1671 if (link->mnt == nd->path.mnt)
1672 mntget(link->mnt);
1673 }
1674 error = nd_alloc_stack(nd);
1675 if (unlikely(error)) {
1676 if (error == -ECHILD) {
1677 if (unlikely(unlazy_link(nd, link, seq)))
1678 return -ECHILD;
1679 error = nd_alloc_stack(nd);
1680 }
1681 if (error) {
1682 path_put(link);
1683 return error;
1684 }
1685 }
1686
1687 last = nd->stack + nd->depth++;
1688 last->link = *link;
1689 clear_delayed_call(&last->done);
1690 nd->link_inode = inode;
1691 last->seq = seq;
1692 return 1;
1693 }
1694
1695 /*
1696 * Do we need to follow links? We _really_ want to be able
1697 * to do this check without having to look at inode->i_op,
1698 * so we keep a cache of "no, this doesn't need follow_link"
1699 * for the common case.
1700 */
1701 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1702 int follow,
1703 struct inode *inode, unsigned seq)
1704 {
1705 if (likely(!d_is_symlink(link->dentry)))
1706 return 0;
1707 if (!follow)
1708 return 0;
1709 /* make sure that d_is_symlink above matches inode */
1710 if (nd->flags & LOOKUP_RCU) {
1711 if (read_seqcount_retry(&link->dentry->d_seq, seq))
1712 return -ECHILD;
1713 }
1714 return pick_link(nd, link, inode, seq);
1715 }
1716
1717 enum {WALK_GET = 1, WALK_PUT = 2};
1718
1719 static int walk_component(struct nameidata *nd, int flags)
1720 {
1721 struct path path;
1722 struct inode *inode;
1723 unsigned seq;
1724 int err;
1725 /*
1726 * "." and ".." are special - ".." especially so because it has
1727 * to be able to know about the current root directory and
1728 * parent relationships.
1729 */
1730 if (unlikely(nd->last_type != LAST_NORM)) {
1731 err = handle_dots(nd, nd->last_type);
1732 if (flags & WALK_PUT)
1733 put_link(nd);
1734 return err;
1735 }
1736 err = lookup_fast(nd, &path, &inode, &seq);
1737 if (unlikely(err <= 0)) {
1738 if (err < 0)
1739 return err;
1740 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1741 nd->flags);
1742 if (IS_ERR(path.dentry))
1743 return PTR_ERR(path.dentry);
1744
1745 path.mnt = nd->path.mnt;
1746 err = follow_managed(&path, nd);
1747 if (unlikely(err < 0))
1748 return err;
1749
1750 if (unlikely(d_is_negative(path.dentry))) {
1751 path_to_nameidata(&path, nd);
1752 return -ENOENT;
1753 }
1754
1755 seq = 0; /* we are already out of RCU mode */
1756 inode = d_backing_inode(path.dentry);
1757 }
1758
1759 if (flags & WALK_PUT)
1760 put_link(nd);
1761 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1762 if (unlikely(err))
1763 return err;
1764 path_to_nameidata(&path, nd);
1765 nd->inode = inode;
1766 nd->seq = seq;
1767 return 0;
1768 }
1769
1770 /*
1771 * We can do the critical dentry name comparison and hashing
1772 * operations one word at a time, but we are limited to:
1773 *
1774 * - Architectures with fast unaligned word accesses. We could
1775 * do a "get_unaligned()" if this helps and is sufficiently
1776 * fast.
1777 *
1778 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1779 * do not trap on the (extremely unlikely) case of a page
1780 * crossing operation.
1781 *
1782 * - Furthermore, we need an efficient 64-bit compile for the
1783 * 64-bit case in order to generate the "number of bytes in
1784 * the final mask". Again, that could be replaced with a
1785 * efficient population count instruction or similar.
1786 */
1787 #ifdef CONFIG_DCACHE_WORD_ACCESS
1788
1789 #include <asm/word-at-a-time.h>
1790
1791 #ifdef CONFIG_64BIT
1792 /*
1793 * Register pressure in the mixing function is an issue, particularly
1794 * on 32-bit x86, but almost any function requires one state value and
1795 * one temporary. Instead, use a function designed for two state values
1796 * and no temporaries.
1797 *
1798 * This function cannot create a collision in only two iterations, so
1799 * we have two iterations to achieve avalanche. In those two iterations,
1800 * we have six layers of mixing, which is enough to spread one bit's
1801 * influence out to 2^6 = 64 state bits.
1802 *
1803 * Rotate constants are scored by considering either 64 one-bit input
1804 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1805 * probability of that delta causing a change to each of the 128 output
1806 * bits, using a sample of random initial states.
1807 *
1808 * The Shannon entropy of the computed probabilities is then summed
1809 * to produce a score. Ideally, any input change has a 50% chance of
1810 * toggling any given output bit.
1811 *
1812 * Mixing scores (in bits) for (12,45):
1813 * Input delta: 1-bit 2-bit
1814 * 1 round: 713.3 42542.6
1815 * 2 rounds: 2753.7 140389.8
1816 * 3 rounds: 5954.1 233458.2
1817 * 4 rounds: 7862.6 256672.2
1818 * Perfect: 8192 258048
1819 * (64*128) (64*63/2 * 128)
1820 */
1821 #define HASH_MIX(x, y, a) \
1822 ( x ^= (a), \
1823 y ^= x, x = rol64(x,12),\
1824 x += y, y = rol64(y,45),\
1825 y *= 9 )
1826
1827 /*
1828 * Fold two longs into one 32-bit hash value. This must be fast, but
1829 * latency isn't quite as critical, as there is a fair bit of additional
1830 * work done before the hash value is used.
1831 */
1832 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1833 {
1834 y ^= x * GOLDEN_RATIO_64;
1835 y *= GOLDEN_RATIO_64;
1836 return y >> 32;
1837 }
1838
1839 #else /* 32-bit case */
1840
1841 /*
1842 * Mixing scores (in bits) for (7,20):
1843 * Input delta: 1-bit 2-bit
1844 * 1 round: 330.3 9201.6
1845 * 2 rounds: 1246.4 25475.4
1846 * 3 rounds: 1907.1 31295.1
1847 * 4 rounds: 2042.3 31718.6
1848 * Perfect: 2048 31744
1849 * (32*64) (32*31/2 * 64)
1850 */
1851 #define HASH_MIX(x, y, a) \
1852 ( x ^= (a), \
1853 y ^= x, x = rol32(x, 7),\
1854 x += y, y = rol32(y,20),\
1855 y *= 9 )
1856
1857 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1858 {
1859 /* Use arch-optimized multiply if one exists */
1860 return __hash_32(y ^ __hash_32(x));
1861 }
1862
1863 #endif
1864
1865 /*
1866 * Return the hash of a string of known length. This is carfully
1867 * designed to match hash_name(), which is the more critical function.
1868 * In particular, we must end by hashing a final word containing 0..7
1869 * payload bytes, to match the way that hash_name() iterates until it
1870 * finds the delimiter after the name.
1871 */
1872 unsigned int full_name_hash(const char *name, unsigned int len)
1873 {
1874 unsigned long a, x = 0, y = 0;
1875
1876 for (;;) {
1877 if (!len)
1878 goto done;
1879 a = load_unaligned_zeropad(name);
1880 if (len < sizeof(unsigned long))
1881 break;
1882 HASH_MIX(x, y, a);
1883 name += sizeof(unsigned long);
1884 len -= sizeof(unsigned long);
1885 }
1886 x ^= a & bytemask_from_count(len);
1887 done:
1888 return fold_hash(x, y);
1889 }
1890 EXPORT_SYMBOL(full_name_hash);
1891
1892 /* Return the "hash_len" (hash and length) of a null-terminated string */
1893 u64 hashlen_string(const char *name)
1894 {
1895 unsigned long a = 0, x = 0, y = 0, adata, mask, len;
1896 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1897
1898 len = -sizeof(unsigned long);
1899 do {
1900 HASH_MIX(x, y, a);
1901 len += sizeof(unsigned long);
1902 a = load_unaligned_zeropad(name+len);
1903 } while (!has_zero(a, &adata, &constants));
1904
1905 adata = prep_zero_mask(a, adata, &constants);
1906 mask = create_zero_mask(adata);
1907 x ^= a & zero_bytemask(mask);
1908
1909 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1910 }
1911 EXPORT_SYMBOL(hashlen_string);
1912
1913 /*
1914 * Calculate the length and hash of the path component, and
1915 * return the "hash_len" as the result.
1916 */
1917 static inline u64 hash_name(const char *name)
1918 {
1919 unsigned long a = 0, b, x = 0, y = 0, adata, bdata, mask, len;
1920 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1921
1922 len = -sizeof(unsigned long);
1923 do {
1924 HASH_MIX(x, y, a);
1925 len += sizeof(unsigned long);
1926 a = load_unaligned_zeropad(name+len);
1927 b = a ^ REPEAT_BYTE('/');
1928 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1929
1930 adata = prep_zero_mask(a, adata, &constants);
1931 bdata = prep_zero_mask(b, bdata, &constants);
1932 mask = create_zero_mask(adata | bdata);
1933 x ^= a & zero_bytemask(mask);
1934
1935 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1936 }
1937
1938 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1939
1940 /* Return the hash of a string of known length */
1941 unsigned int full_name_hash(const char *name, unsigned int len)
1942 {
1943 unsigned long hash = init_name_hash();
1944 while (len--)
1945 hash = partial_name_hash((unsigned char)*name++, hash);
1946 return end_name_hash(hash);
1947 }
1948 EXPORT_SYMBOL(full_name_hash);
1949
1950 /* Return the "hash_len" (hash and length) of a null-terminated string */
1951 u64 hash_string(const char *name)
1952 {
1953 unsigned long hash = init_name_hash();
1954 unsigned long len = 0, c;
1955
1956 c = (unsigned char)*name;
1957 do {
1958 len++;
1959 hash = partial_name_hash(c, hash);
1960 c = (unsigned char)name[len];
1961 } while (c);
1962 return hashlen_create(end_name_hash(hash), len);
1963 }
1964 EXPORT_SYMBOL(hash_string);
1965
1966 /*
1967 * We know there's a real path component here of at least
1968 * one character.
1969 */
1970 static inline u64 hash_name(const char *name)
1971 {
1972 unsigned long hash = init_name_hash();
1973 unsigned long len = 0, c;
1974
1975 c = (unsigned char)*name;
1976 do {
1977 len++;
1978 hash = partial_name_hash(c, hash);
1979 c = (unsigned char)name[len];
1980 } while (c && c != '/');
1981 return hashlen_create(end_name_hash(hash), len);
1982 }
1983
1984 #endif
1985
1986 /*
1987 * Name resolution.
1988 * This is the basic name resolution function, turning a pathname into
1989 * the final dentry. We expect 'base' to be positive and a directory.
1990 *
1991 * Returns 0 and nd will have valid dentry and mnt on success.
1992 * Returns error and drops reference to input namei data on failure.
1993 */
1994 static int link_path_walk(const char *name, struct nameidata *nd)
1995 {
1996 int err;
1997
1998 while (*name=='/')
1999 name++;
2000 if (!*name)
2001 return 0;
2002
2003 /* At this point we know we have a real path component. */
2004 for(;;) {
2005 u64 hash_len;
2006 int type;
2007
2008 err = may_lookup(nd);
2009 if (err)
2010 return err;
2011
2012 hash_len = hash_name(name);
2013
2014 type = LAST_NORM;
2015 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2016 case 2:
2017 if (name[1] == '.') {
2018 type = LAST_DOTDOT;
2019 nd->flags |= LOOKUP_JUMPED;
2020 }
2021 break;
2022 case 1:
2023 type = LAST_DOT;
2024 }
2025 if (likely(type == LAST_NORM)) {
2026 struct dentry *parent = nd->path.dentry;
2027 nd->flags &= ~LOOKUP_JUMPED;
2028 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2029 struct qstr this = { { .hash_len = hash_len }, .name = name };
2030 err = parent->d_op->d_hash(parent, &this);
2031 if (err < 0)
2032 return err;
2033 hash_len = this.hash_len;
2034 name = this.name;
2035 }
2036 }
2037
2038 nd->last.hash_len = hash_len;
2039 nd->last.name = name;
2040 nd->last_type = type;
2041
2042 name += hashlen_len(hash_len);
2043 if (!*name)
2044 goto OK;
2045 /*
2046 * If it wasn't NUL, we know it was '/'. Skip that
2047 * slash, and continue until no more slashes.
2048 */
2049 do {
2050 name++;
2051 } while (unlikely(*name == '/'));
2052 if (unlikely(!*name)) {
2053 OK:
2054 /* pathname body, done */
2055 if (!nd->depth)
2056 return 0;
2057 name = nd->stack[nd->depth - 1].name;
2058 /* trailing symlink, done */
2059 if (!name)
2060 return 0;
2061 /* last component of nested symlink */
2062 err = walk_component(nd, WALK_GET | WALK_PUT);
2063 } else {
2064 err = walk_component(nd, WALK_GET);
2065 }
2066 if (err < 0)
2067 return err;
2068
2069 if (err) {
2070 const char *s = get_link(nd);
2071
2072 if (IS_ERR(s))
2073 return PTR_ERR(s);
2074 err = 0;
2075 if (unlikely(!s)) {
2076 /* jumped */
2077 put_link(nd);
2078 } else {
2079 nd->stack[nd->depth - 1].name = name;
2080 name = s;
2081 continue;
2082 }
2083 }
2084 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2085 if (nd->flags & LOOKUP_RCU) {
2086 if (unlazy_walk(nd, NULL, 0))
2087 return -ECHILD;
2088 }
2089 return -ENOTDIR;
2090 }
2091 }
2092 }
2093
2094 static const char *path_init(struct nameidata *nd, unsigned flags)
2095 {
2096 int retval = 0;
2097 const char *s = nd->name->name;
2098
2099 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2100 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2101 nd->depth = 0;
2102 if (flags & LOOKUP_ROOT) {
2103 struct dentry *root = nd->root.dentry;
2104 struct inode *inode = root->d_inode;
2105 if (*s) {
2106 if (!d_can_lookup(root))
2107 return ERR_PTR(-ENOTDIR);
2108 retval = inode_permission(inode, MAY_EXEC);
2109 if (retval)
2110 return ERR_PTR(retval);
2111 }
2112 nd->path = nd->root;
2113 nd->inode = inode;
2114 if (flags & LOOKUP_RCU) {
2115 rcu_read_lock();
2116 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2117 nd->root_seq = nd->seq;
2118 nd->m_seq = read_seqbegin(&mount_lock);
2119 } else {
2120 path_get(&nd->path);
2121 }
2122 return s;
2123 }
2124
2125 nd->root.mnt = NULL;
2126 nd->path.mnt = NULL;
2127 nd->path.dentry = NULL;
2128
2129 nd->m_seq = read_seqbegin(&mount_lock);
2130 if (*s == '/') {
2131 if (flags & LOOKUP_RCU)
2132 rcu_read_lock();
2133 set_root(nd);
2134 if (likely(!nd_jump_root(nd)))
2135 return s;
2136 nd->root.mnt = NULL;
2137 rcu_read_unlock();
2138 return ERR_PTR(-ECHILD);
2139 } else if (nd->dfd == AT_FDCWD) {
2140 if (flags & LOOKUP_RCU) {
2141 struct fs_struct *fs = current->fs;
2142 unsigned seq;
2143
2144 rcu_read_lock();
2145
2146 do {
2147 seq = read_seqcount_begin(&fs->seq);
2148 nd->path = fs->pwd;
2149 nd->inode = nd->path.dentry->d_inode;
2150 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2151 } while (read_seqcount_retry(&fs->seq, seq));
2152 } else {
2153 get_fs_pwd(current->fs, &nd->path);
2154 nd->inode = nd->path.dentry->d_inode;
2155 }
2156 return s;
2157 } else {
2158 /* Caller must check execute permissions on the starting path component */
2159 struct fd f = fdget_raw(nd->dfd);
2160 struct dentry *dentry;
2161
2162 if (!f.file)
2163 return ERR_PTR(-EBADF);
2164
2165 dentry = f.file->f_path.dentry;
2166
2167 if (*s) {
2168 if (!d_can_lookup(dentry)) {
2169 fdput(f);
2170 return ERR_PTR(-ENOTDIR);
2171 }
2172 }
2173
2174 nd->path = f.file->f_path;
2175 if (flags & LOOKUP_RCU) {
2176 rcu_read_lock();
2177 nd->inode = nd->path.dentry->d_inode;
2178 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2179 } else {
2180 path_get(&nd->path);
2181 nd->inode = nd->path.dentry->d_inode;
2182 }
2183 fdput(f);
2184 return s;
2185 }
2186 }
2187
2188 static const char *trailing_symlink(struct nameidata *nd)
2189 {
2190 const char *s;
2191 int error = may_follow_link(nd);
2192 if (unlikely(error))
2193 return ERR_PTR(error);
2194 nd->flags |= LOOKUP_PARENT;
2195 nd->stack[0].name = NULL;
2196 s = get_link(nd);
2197 return s ? s : "";
2198 }
2199
2200 static inline int lookup_last(struct nameidata *nd)
2201 {
2202 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2203 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2204
2205 nd->flags &= ~LOOKUP_PARENT;
2206 return walk_component(nd,
2207 nd->flags & LOOKUP_FOLLOW
2208 ? nd->depth
2209 ? WALK_PUT | WALK_GET
2210 : WALK_GET
2211 : 0);
2212 }
2213
2214 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2215 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2216 {
2217 const char *s = path_init(nd, flags);
2218 int err;
2219
2220 if (IS_ERR(s))
2221 return PTR_ERR(s);
2222 while (!(err = link_path_walk(s, nd))
2223 && ((err = lookup_last(nd)) > 0)) {
2224 s = trailing_symlink(nd);
2225 if (IS_ERR(s)) {
2226 err = PTR_ERR(s);
2227 break;
2228 }
2229 }
2230 if (!err)
2231 err = complete_walk(nd);
2232
2233 if (!err && nd->flags & LOOKUP_DIRECTORY)
2234 if (!d_can_lookup(nd->path.dentry))
2235 err = -ENOTDIR;
2236 if (!err) {
2237 *path = nd->path;
2238 nd->path.mnt = NULL;
2239 nd->path.dentry = NULL;
2240 }
2241 terminate_walk(nd);
2242 return err;
2243 }
2244
2245 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2246 struct path *path, struct path *root)
2247 {
2248 int retval;
2249 struct nameidata nd;
2250 if (IS_ERR(name))
2251 return PTR_ERR(name);
2252 if (unlikely(root)) {
2253 nd.root = *root;
2254 flags |= LOOKUP_ROOT;
2255 }
2256 set_nameidata(&nd, dfd, name);
2257 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2258 if (unlikely(retval == -ECHILD))
2259 retval = path_lookupat(&nd, flags, path);
2260 if (unlikely(retval == -ESTALE))
2261 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2262
2263 if (likely(!retval))
2264 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2265 restore_nameidata();
2266 putname(name);
2267 return retval;
2268 }
2269
2270 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2271 static int path_parentat(struct nameidata *nd, unsigned flags,
2272 struct path *parent)
2273 {
2274 const char *s = path_init(nd, flags);
2275 int err;
2276 if (IS_ERR(s))
2277 return PTR_ERR(s);
2278 err = link_path_walk(s, nd);
2279 if (!err)
2280 err = complete_walk(nd);
2281 if (!err) {
2282 *parent = nd->path;
2283 nd->path.mnt = NULL;
2284 nd->path.dentry = NULL;
2285 }
2286 terminate_walk(nd);
2287 return err;
2288 }
2289
2290 static struct filename *filename_parentat(int dfd, struct filename *name,
2291 unsigned int flags, struct path *parent,
2292 struct qstr *last, int *type)
2293 {
2294 int retval;
2295 struct nameidata nd;
2296
2297 if (IS_ERR(name))
2298 return name;
2299 set_nameidata(&nd, dfd, name);
2300 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2301 if (unlikely(retval == -ECHILD))
2302 retval = path_parentat(&nd, flags, parent);
2303 if (unlikely(retval == -ESTALE))
2304 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2305 if (likely(!retval)) {
2306 *last = nd.last;
2307 *type = nd.last_type;
2308 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2309 } else {
2310 putname(name);
2311 name = ERR_PTR(retval);
2312 }
2313 restore_nameidata();
2314 return name;
2315 }
2316
2317 /* does lookup, returns the object with parent locked */
2318 struct dentry *kern_path_locked(const char *name, struct path *path)
2319 {
2320 struct filename *filename;
2321 struct dentry *d;
2322 struct qstr last;
2323 int type;
2324
2325 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2326 &last, &type);
2327 if (IS_ERR(filename))
2328 return ERR_CAST(filename);
2329 if (unlikely(type != LAST_NORM)) {
2330 path_put(path);
2331 putname(filename);
2332 return ERR_PTR(-EINVAL);
2333 }
2334 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2335 d = __lookup_hash(&last, path->dentry, 0);
2336 if (IS_ERR(d)) {
2337 inode_unlock(path->dentry->d_inode);
2338 path_put(path);
2339 }
2340 putname(filename);
2341 return d;
2342 }
2343
2344 int kern_path(const char *name, unsigned int flags, struct path *path)
2345 {
2346 return filename_lookup(AT_FDCWD, getname_kernel(name),
2347 flags, path, NULL);
2348 }
2349 EXPORT_SYMBOL(kern_path);
2350
2351 /**
2352 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2353 * @dentry: pointer to dentry of the base directory
2354 * @mnt: pointer to vfs mount of the base directory
2355 * @name: pointer to file name
2356 * @flags: lookup flags
2357 * @path: pointer to struct path to fill
2358 */
2359 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2360 const char *name, unsigned int flags,
2361 struct path *path)
2362 {
2363 struct path root = {.mnt = mnt, .dentry = dentry};
2364 /* the first argument of filename_lookup() is ignored with root */
2365 return filename_lookup(AT_FDCWD, getname_kernel(name),
2366 flags , path, &root);
2367 }
2368 EXPORT_SYMBOL(vfs_path_lookup);
2369
2370 /**
2371 * lookup_hash - lookup single pathname component on already hashed name
2372 * @name: name and hash to lookup
2373 * @base: base directory to lookup from
2374 *
2375 * The name must have been verified and hashed (see lookup_one_len()). Using
2376 * this after just full_name_hash() is unsafe.
2377 *
2378 * This function also doesn't check for search permission on base directory.
2379 *
2380 * Use lookup_one_len_unlocked() instead, unless you really know what you are
2381 * doing.
2382 *
2383 * Do not hold i_mutex; this helper takes i_mutex if necessary.
2384 */
2385 struct dentry *lookup_hash(const struct qstr *name, struct dentry *base)
2386 {
2387 struct dentry *ret;
2388
2389 ret = lookup_dcache(name, base, 0);
2390 if (!ret)
2391 ret = lookup_slow(name, base, 0);
2392
2393 return ret;
2394 }
2395 EXPORT_SYMBOL(lookup_hash);
2396
2397 /**
2398 * lookup_one_len - filesystem helper to lookup single pathname component
2399 * @name: pathname component to lookup
2400 * @base: base directory to lookup from
2401 * @len: maximum length @len should be interpreted to
2402 *
2403 * Note that this routine is purely a helper for filesystem usage and should
2404 * not be called by generic code.
2405 *
2406 * The caller must hold base->i_mutex.
2407 */
2408 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2409 {
2410 struct qstr this;
2411 unsigned int c;
2412 int err;
2413
2414 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2415
2416 this.name = name;
2417 this.len = len;
2418 this.hash = full_name_hash(name, len);
2419 if (!len)
2420 return ERR_PTR(-EACCES);
2421
2422 if (unlikely(name[0] == '.')) {
2423 if (len < 2 || (len == 2 && name[1] == '.'))
2424 return ERR_PTR(-EACCES);
2425 }
2426
2427 while (len--) {
2428 c = *(const unsigned char *)name++;
2429 if (c == '/' || c == '\0')
2430 return ERR_PTR(-EACCES);
2431 }
2432 /*
2433 * See if the low-level filesystem might want
2434 * to use its own hash..
2435 */
2436 if (base->d_flags & DCACHE_OP_HASH) {
2437 int err = base->d_op->d_hash(base, &this);
2438 if (err < 0)
2439 return ERR_PTR(err);
2440 }
2441
2442 err = inode_permission(base->d_inode, MAY_EXEC);
2443 if (err)
2444 return ERR_PTR(err);
2445
2446 return __lookup_hash(&this, base, 0);
2447 }
2448 EXPORT_SYMBOL(lookup_one_len);
2449
2450 /**
2451 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2452 * @name: pathname component to lookup
2453 * @base: base directory to lookup from
2454 * @len: maximum length @len should be interpreted to
2455 *
2456 * Note that this routine is purely a helper for filesystem usage and should
2457 * not be called by generic code.
2458 *
2459 * Unlike lookup_one_len, it should be called without the parent
2460 * i_mutex held, and will take the i_mutex itself if necessary.
2461 */
2462 struct dentry *lookup_one_len_unlocked(const char *name,
2463 struct dentry *base, int len)
2464 {
2465 struct qstr this;
2466 unsigned int c;
2467 int err;
2468
2469 this.name = name;
2470 this.len = len;
2471 this.hash = full_name_hash(name, len);
2472 if (!len)
2473 return ERR_PTR(-EACCES);
2474
2475 if (unlikely(name[0] == '.')) {
2476 if (len < 2 || (len == 2 && name[1] == '.'))
2477 return ERR_PTR(-EACCES);
2478 }
2479
2480 while (len--) {
2481 c = *(const unsigned char *)name++;
2482 if (c == '/' || c == '\0')
2483 return ERR_PTR(-EACCES);
2484 }
2485 /*
2486 * See if the low-level filesystem might want
2487 * to use its own hash..
2488 */
2489 if (base->d_flags & DCACHE_OP_HASH) {
2490 int err = base->d_op->d_hash(base, &this);
2491 if (err < 0)
2492 return ERR_PTR(err);
2493 }
2494
2495 err = inode_permission(base->d_inode, MAY_EXEC);
2496 if (err)
2497 return ERR_PTR(err);
2498
2499 return lookup_hash(&this, base);
2500 }
2501 EXPORT_SYMBOL(lookup_one_len_unlocked);
2502
2503 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2504 struct path *path, int *empty)
2505 {
2506 return filename_lookup(dfd, getname_flags(name, flags, empty),
2507 flags, path, NULL);
2508 }
2509 EXPORT_SYMBOL(user_path_at_empty);
2510
2511 /*
2512 * NB: most callers don't do anything directly with the reference to the
2513 * to struct filename, but the nd->last pointer points into the name string
2514 * allocated by getname. So we must hold the reference to it until all
2515 * path-walking is complete.
2516 */
2517 static inline struct filename *
2518 user_path_parent(int dfd, const char __user *path,
2519 struct path *parent,
2520 struct qstr *last,
2521 int *type,
2522 unsigned int flags)
2523 {
2524 /* only LOOKUP_REVAL is allowed in extra flags */
2525 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2526 parent, last, type);
2527 }
2528
2529 /**
2530 * mountpoint_last - look up last component for umount
2531 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2532 * @path: pointer to container for result
2533 *
2534 * This is a special lookup_last function just for umount. In this case, we
2535 * need to resolve the path without doing any revalidation.
2536 *
2537 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2538 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2539 * in almost all cases, this lookup will be served out of the dcache. The only
2540 * cases where it won't are if nd->last refers to a symlink or the path is
2541 * bogus and it doesn't exist.
2542 *
2543 * Returns:
2544 * -error: if there was an error during lookup. This includes -ENOENT if the
2545 * lookup found a negative dentry. The nd->path reference will also be
2546 * put in this case.
2547 *
2548 * 0: if we successfully resolved nd->path and found it to not to be a
2549 * symlink that needs to be followed. "path" will also be populated.
2550 * The nd->path reference will also be put.
2551 *
2552 * 1: if we successfully resolved nd->last and found it to be a symlink
2553 * that needs to be followed. "path" will be populated with the path
2554 * to the link, and nd->path will *not* be put.
2555 */
2556 static int
2557 mountpoint_last(struct nameidata *nd, struct path *path)
2558 {
2559 int error = 0;
2560 struct dentry *dentry;
2561 struct dentry *dir = nd->path.dentry;
2562
2563 /* If we're in rcuwalk, drop out of it to handle last component */
2564 if (nd->flags & LOOKUP_RCU) {
2565 if (unlazy_walk(nd, NULL, 0))
2566 return -ECHILD;
2567 }
2568
2569 nd->flags &= ~LOOKUP_PARENT;
2570
2571 if (unlikely(nd->last_type != LAST_NORM)) {
2572 error = handle_dots(nd, nd->last_type);
2573 if (error)
2574 return error;
2575 dentry = dget(nd->path.dentry);
2576 } else {
2577 dentry = d_lookup(dir, &nd->last);
2578 if (!dentry) {
2579 /*
2580 * No cached dentry. Mounted dentries are pinned in the
2581 * cache, so that means that this dentry is probably
2582 * a symlink or the path doesn't actually point
2583 * to a mounted dentry.
2584 */
2585 dentry = lookup_slow(&nd->last, dir,
2586 nd->flags | LOOKUP_NO_REVAL);
2587 if (IS_ERR(dentry))
2588 return PTR_ERR(dentry);
2589 }
2590 }
2591 if (d_is_negative(dentry)) {
2592 dput(dentry);
2593 return -ENOENT;
2594 }
2595 if (nd->depth)
2596 put_link(nd);
2597 path->dentry = dentry;
2598 path->mnt = nd->path.mnt;
2599 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2600 d_backing_inode(dentry), 0);
2601 if (unlikely(error))
2602 return error;
2603 mntget(path->mnt);
2604 follow_mount(path);
2605 return 0;
2606 }
2607
2608 /**
2609 * path_mountpoint - look up a path to be umounted
2610 * @nd: lookup context
2611 * @flags: lookup flags
2612 * @path: pointer to container for result
2613 *
2614 * Look up the given name, but don't attempt to revalidate the last component.
2615 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2616 */
2617 static int
2618 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2619 {
2620 const char *s = path_init(nd, flags);
2621 int err;
2622 if (IS_ERR(s))
2623 return PTR_ERR(s);
2624 while (!(err = link_path_walk(s, nd)) &&
2625 (err = mountpoint_last(nd, path)) > 0) {
2626 s = trailing_symlink(nd);
2627 if (IS_ERR(s)) {
2628 err = PTR_ERR(s);
2629 break;
2630 }
2631 }
2632 terminate_walk(nd);
2633 return err;
2634 }
2635
2636 static int
2637 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2638 unsigned int flags)
2639 {
2640 struct nameidata nd;
2641 int error;
2642 if (IS_ERR(name))
2643 return PTR_ERR(name);
2644 set_nameidata(&nd, dfd, name);
2645 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2646 if (unlikely(error == -ECHILD))
2647 error = path_mountpoint(&nd, flags, path);
2648 if (unlikely(error == -ESTALE))
2649 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2650 if (likely(!error))
2651 audit_inode(name, path->dentry, 0);
2652 restore_nameidata();
2653 putname(name);
2654 return error;
2655 }
2656
2657 /**
2658 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2659 * @dfd: directory file descriptor
2660 * @name: pathname from userland
2661 * @flags: lookup flags
2662 * @path: pointer to container to hold result
2663 *
2664 * A umount is a special case for path walking. We're not actually interested
2665 * in the inode in this situation, and ESTALE errors can be a problem. We
2666 * simply want track down the dentry and vfsmount attached at the mountpoint
2667 * and avoid revalidating the last component.
2668 *
2669 * Returns 0 and populates "path" on success.
2670 */
2671 int
2672 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2673 struct path *path)
2674 {
2675 return filename_mountpoint(dfd, getname(name), path, flags);
2676 }
2677
2678 int
2679 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2680 unsigned int flags)
2681 {
2682 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2683 }
2684 EXPORT_SYMBOL(kern_path_mountpoint);
2685
2686 int __check_sticky(struct inode *dir, struct inode *inode)
2687 {
2688 kuid_t fsuid = current_fsuid();
2689
2690 if (uid_eq(inode->i_uid, fsuid))
2691 return 0;
2692 if (uid_eq(dir->i_uid, fsuid))
2693 return 0;
2694 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2695 }
2696 EXPORT_SYMBOL(__check_sticky);
2697
2698 /*
2699 * Check whether we can remove a link victim from directory dir, check
2700 * whether the type of victim is right.
2701 * 1. We can't do it if dir is read-only (done in permission())
2702 * 2. We should have write and exec permissions on dir
2703 * 3. We can't remove anything from append-only dir
2704 * 4. We can't do anything with immutable dir (done in permission())
2705 * 5. If the sticky bit on dir is set we should either
2706 * a. be owner of dir, or
2707 * b. be owner of victim, or
2708 * c. have CAP_FOWNER capability
2709 * 6. If the victim is append-only or immutable we can't do antyhing with
2710 * links pointing to it.
2711 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2712 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2713 * 9. We can't remove a root or mountpoint.
2714 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2715 * nfs_async_unlink().
2716 */
2717 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2718 {
2719 struct inode *inode = d_backing_inode(victim);
2720 int error;
2721
2722 if (d_is_negative(victim))
2723 return -ENOENT;
2724 BUG_ON(!inode);
2725
2726 BUG_ON(victim->d_parent->d_inode != dir);
2727 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2728
2729 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2730 if (error)
2731 return error;
2732 if (IS_APPEND(dir))
2733 return -EPERM;
2734
2735 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2736 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2737 return -EPERM;
2738 if (isdir) {
2739 if (!d_is_dir(victim))
2740 return -ENOTDIR;
2741 if (IS_ROOT(victim))
2742 return -EBUSY;
2743 } else if (d_is_dir(victim))
2744 return -EISDIR;
2745 if (IS_DEADDIR(dir))
2746 return -ENOENT;
2747 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2748 return -EBUSY;
2749 return 0;
2750 }
2751
2752 /* Check whether we can create an object with dentry child in directory
2753 * dir.
2754 * 1. We can't do it if child already exists (open has special treatment for
2755 * this case, but since we are inlined it's OK)
2756 * 2. We can't do it if dir is read-only (done in permission())
2757 * 3. We should have write and exec permissions on dir
2758 * 4. We can't do it if dir is immutable (done in permission())
2759 */
2760 static inline int may_create(struct inode *dir, struct dentry *child)
2761 {
2762 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2763 if (child->d_inode)
2764 return -EEXIST;
2765 if (IS_DEADDIR(dir))
2766 return -ENOENT;
2767 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2768 }
2769
2770 /*
2771 * p1 and p2 should be directories on the same fs.
2772 */
2773 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2774 {
2775 struct dentry *p;
2776
2777 if (p1 == p2) {
2778 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2779 return NULL;
2780 }
2781
2782 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2783
2784 p = d_ancestor(p2, p1);
2785 if (p) {
2786 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2787 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2788 return p;
2789 }
2790
2791 p = d_ancestor(p1, p2);
2792 if (p) {
2793 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2794 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2795 return p;
2796 }
2797
2798 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2799 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2800 return NULL;
2801 }
2802 EXPORT_SYMBOL(lock_rename);
2803
2804 void unlock_rename(struct dentry *p1, struct dentry *p2)
2805 {
2806 inode_unlock(p1->d_inode);
2807 if (p1 != p2) {
2808 inode_unlock(p2->d_inode);
2809 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2810 }
2811 }
2812 EXPORT_SYMBOL(unlock_rename);
2813
2814 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2815 bool want_excl)
2816 {
2817 int error = may_create(dir, dentry);
2818 if (error)
2819 return error;
2820
2821 if (!dir->i_op->create)
2822 return -EACCES; /* shouldn't it be ENOSYS? */
2823 mode &= S_IALLUGO;
2824 mode |= S_IFREG;
2825 error = security_inode_create(dir, dentry, mode);
2826 if (error)
2827 return error;
2828 error = dir->i_op->create(dir, dentry, mode, want_excl);
2829 if (!error)
2830 fsnotify_create(dir, dentry);
2831 return error;
2832 }
2833 EXPORT_SYMBOL(vfs_create);
2834
2835 static int may_open(struct path *path, int acc_mode, int flag)
2836 {
2837 struct dentry *dentry = path->dentry;
2838 struct inode *inode = dentry->d_inode;
2839 int error;
2840
2841 if (!inode)
2842 return -ENOENT;
2843
2844 switch (inode->i_mode & S_IFMT) {
2845 case S_IFLNK:
2846 return -ELOOP;
2847 case S_IFDIR:
2848 if (acc_mode & MAY_WRITE)
2849 return -EISDIR;
2850 break;
2851 case S_IFBLK:
2852 case S_IFCHR:
2853 if (path->mnt->mnt_flags & MNT_NODEV)
2854 return -EACCES;
2855 /*FALLTHRU*/
2856 case S_IFIFO:
2857 case S_IFSOCK:
2858 flag &= ~O_TRUNC;
2859 break;
2860 }
2861
2862 error = inode_permission(inode, MAY_OPEN | acc_mode);
2863 if (error)
2864 return error;
2865
2866 /*
2867 * An append-only file must be opened in append mode for writing.
2868 */
2869 if (IS_APPEND(inode)) {
2870 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2871 return -EPERM;
2872 if (flag & O_TRUNC)
2873 return -EPERM;
2874 }
2875
2876 /* O_NOATIME can only be set by the owner or superuser */
2877 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2878 return -EPERM;
2879
2880 return 0;
2881 }
2882
2883 static int handle_truncate(struct file *filp)
2884 {
2885 struct path *path = &filp->f_path;
2886 struct inode *inode = path->dentry->d_inode;
2887 int error = get_write_access(inode);
2888 if (error)
2889 return error;
2890 /*
2891 * Refuse to truncate files with mandatory locks held on them.
2892 */
2893 error = locks_verify_locked(filp);
2894 if (!error)
2895 error = security_path_truncate(path);
2896 if (!error) {
2897 error = do_truncate(path->dentry, 0,
2898 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2899 filp);
2900 }
2901 put_write_access(inode);
2902 return error;
2903 }
2904
2905 static inline int open_to_namei_flags(int flag)
2906 {
2907 if ((flag & O_ACCMODE) == 3)
2908 flag--;
2909 return flag;
2910 }
2911
2912 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2913 {
2914 int error = security_path_mknod(dir, dentry, mode, 0);
2915 if (error)
2916 return error;
2917
2918 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2919 if (error)
2920 return error;
2921
2922 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2923 }
2924
2925 /*
2926 * Attempt to atomically look up, create and open a file from a negative
2927 * dentry.
2928 *
2929 * Returns 0 if successful. The file will have been created and attached to
2930 * @file by the filesystem calling finish_open().
2931 *
2932 * Returns 1 if the file was looked up only or didn't need creating. The
2933 * caller will need to perform the open themselves. @path will have been
2934 * updated to point to the new dentry. This may be negative.
2935 *
2936 * Returns an error code otherwise.
2937 */
2938 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2939 struct path *path, struct file *file,
2940 const struct open_flags *op,
2941 bool got_write, bool need_lookup,
2942 int *opened)
2943 {
2944 struct inode *dir = nd->path.dentry->d_inode;
2945 unsigned open_flag = open_to_namei_flags(op->open_flag);
2946 umode_t mode;
2947 int error;
2948 int acc_mode;
2949 int create_error = 0;
2950 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2951 bool excl;
2952
2953 BUG_ON(dentry->d_inode);
2954
2955 /* Don't create child dentry for a dead directory. */
2956 if (unlikely(IS_DEADDIR(dir))) {
2957 error = -ENOENT;
2958 goto out;
2959 }
2960
2961 mode = op->mode;
2962 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2963 mode &= ~current_umask();
2964
2965 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2966 if (excl)
2967 open_flag &= ~O_TRUNC;
2968
2969 /*
2970 * Checking write permission is tricky, bacuse we don't know if we are
2971 * going to actually need it: O_CREAT opens should work as long as the
2972 * file exists. But checking existence breaks atomicity. The trick is
2973 * to check access and if not granted clear O_CREAT from the flags.
2974 *
2975 * Another problem is returing the "right" error value (e.g. for an
2976 * O_EXCL open we want to return EEXIST not EROFS).
2977 */
2978 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2979 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2980 if (!(open_flag & O_CREAT)) {
2981 /*
2982 * No O_CREATE -> atomicity not a requirement -> fall
2983 * back to lookup + open
2984 */
2985 goto no_open;
2986 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2987 /* Fall back and fail with the right error */
2988 create_error = -EROFS;
2989 goto no_open;
2990 } else {
2991 /* No side effects, safe to clear O_CREAT */
2992 create_error = -EROFS;
2993 open_flag &= ~O_CREAT;
2994 }
2995 }
2996
2997 if (open_flag & O_CREAT) {
2998 error = may_o_create(&nd->path, dentry, mode);
2999 if (error) {
3000 create_error = error;
3001 if (open_flag & O_EXCL)
3002 goto no_open;
3003 open_flag &= ~O_CREAT;
3004 }
3005 }
3006
3007 if (nd->flags & LOOKUP_DIRECTORY)
3008 open_flag |= O_DIRECTORY;
3009
3010 file->f_path.dentry = DENTRY_NOT_SET;
3011 file->f_path.mnt = nd->path.mnt;
3012 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
3013 opened);
3014 if (error < 0) {
3015 if (create_error && error == -ENOENT)
3016 error = create_error;
3017 goto out;
3018 }
3019
3020 if (error) { /* returned 1, that is */
3021 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3022 error = -EIO;
3023 goto out;
3024 }
3025 if (file->f_path.dentry) {
3026 dput(dentry);
3027 dentry = file->f_path.dentry;
3028 }
3029 if (*opened & FILE_CREATED)
3030 fsnotify_create(dir, dentry);
3031 if (!dentry->d_inode) {
3032 WARN_ON(*opened & FILE_CREATED);
3033 if (create_error) {
3034 error = create_error;
3035 goto out;
3036 }
3037 } else {
3038 if (excl && !(*opened & FILE_CREATED)) {
3039 error = -EEXIST;
3040 goto out;
3041 }
3042 }
3043 goto looked_up;
3044 }
3045
3046 /*
3047 * We didn't have the inode before the open, so check open permission
3048 * here.
3049 */
3050 acc_mode = op->acc_mode;
3051 if (*opened & FILE_CREATED) {
3052 WARN_ON(!(open_flag & O_CREAT));
3053 fsnotify_create(dir, dentry);
3054 acc_mode = 0;
3055 }
3056 error = may_open(&file->f_path, acc_mode, open_flag);
3057 if (error)
3058 fput(file);
3059
3060 out:
3061 dput(dentry);
3062 return error;
3063
3064 no_open:
3065 if (need_lookup) {
3066 dentry = lookup_real(dir, dentry, nd->flags);
3067 if (IS_ERR(dentry))
3068 return PTR_ERR(dentry);
3069 }
3070 if (create_error && !dentry->d_inode) {
3071 error = create_error;
3072 goto out;
3073 }
3074 looked_up:
3075 path->dentry = dentry;
3076 path->mnt = nd->path.mnt;
3077 return 1;
3078 }
3079
3080 /*
3081 * Look up and maybe create and open the last component.
3082 *
3083 * Must be called with i_mutex held on parent.
3084 *
3085 * Returns 0 if the file was successfully atomically created (if necessary) and
3086 * opened. In this case the file will be returned attached to @file.
3087 *
3088 * Returns 1 if the file was not completely opened at this time, though lookups
3089 * and creations will have been performed and the dentry returned in @path will
3090 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3091 * specified then a negative dentry may be returned.
3092 *
3093 * An error code is returned otherwise.
3094 *
3095 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3096 * cleared otherwise prior to returning.
3097 */
3098 static int lookup_open(struct nameidata *nd, struct path *path,
3099 struct file *file,
3100 const struct open_flags *op,
3101 bool got_write, int *opened)
3102 {
3103 struct dentry *dir = nd->path.dentry;
3104 struct inode *dir_inode = dir->d_inode;
3105 struct dentry *dentry;
3106 int error;
3107 bool need_lookup = false;
3108
3109 *opened &= ~FILE_CREATED;
3110 dentry = lookup_dcache(&nd->last, dir, nd->flags);
3111 if (IS_ERR(dentry))
3112 return PTR_ERR(dentry);
3113
3114 if (!dentry) {
3115 dentry = d_alloc(dir, &nd->last);
3116 if (unlikely(!dentry))
3117 return -ENOMEM;
3118 need_lookup = true;
3119 } else if (dentry->d_inode) {
3120 /* Cached positive dentry: will open in f_op->open */
3121 goto out_no_open;
3122 }
3123
3124 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
3125 return atomic_open(nd, dentry, path, file, op, got_write,
3126 need_lookup, opened);
3127 }
3128
3129 if (need_lookup) {
3130 BUG_ON(dentry->d_inode);
3131
3132 dentry = lookup_real(dir_inode, dentry, nd->flags);
3133 if (IS_ERR(dentry))
3134 return PTR_ERR(dentry);
3135 }
3136
3137 /* Negative dentry, just create the file */
3138 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
3139 umode_t mode = op->mode;
3140 if (!IS_POSIXACL(dir->d_inode))
3141 mode &= ~current_umask();
3142 /*
3143 * This write is needed to ensure that a
3144 * rw->ro transition does not occur between
3145 * the time when the file is created and when
3146 * a permanent write count is taken through
3147 * the 'struct file' in finish_open().
3148 */
3149 if (!got_write) {
3150 error = -EROFS;
3151 goto out_dput;
3152 }
3153 *opened |= FILE_CREATED;
3154 error = security_path_mknod(&nd->path, dentry, mode, 0);
3155 if (error)
3156 goto out_dput;
3157 error = vfs_create(dir->d_inode, dentry, mode,
3158 nd->flags & LOOKUP_EXCL);
3159 if (error)
3160 goto out_dput;
3161 }
3162 out_no_open:
3163 path->dentry = dentry;
3164 path->mnt = nd->path.mnt;
3165 return 1;
3166
3167 out_dput:
3168 dput(dentry);
3169 return error;
3170 }
3171
3172 /*
3173 * Handle the last step of open()
3174 */
3175 static int do_last(struct nameidata *nd,
3176 struct file *file, const struct open_flags *op,
3177 int *opened)
3178 {
3179 struct dentry *dir = nd->path.dentry;
3180 int open_flag = op->open_flag;
3181 bool will_truncate = (open_flag & O_TRUNC) != 0;
3182 bool got_write = false;
3183 int acc_mode = op->acc_mode;
3184 unsigned seq;
3185 struct inode *inode;
3186 struct path save_parent = { .dentry = NULL, .mnt = NULL };
3187 struct path path;
3188 bool retried = false;
3189 int error;
3190
3191 nd->flags &= ~LOOKUP_PARENT;
3192 nd->flags |= op->intent;
3193
3194 if (nd->last_type != LAST_NORM) {
3195 error = handle_dots(nd, nd->last_type);
3196 if (unlikely(error))
3197 return error;
3198 goto finish_open;
3199 }
3200
3201 if (!(open_flag & O_CREAT)) {
3202 if (nd->last.name[nd->last.len])
3203 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3204 /* we _can_ be in RCU mode here */
3205 error = lookup_fast(nd, &path, &inode, &seq);
3206 if (likely(error > 0))
3207 goto finish_lookup;
3208
3209 if (error < 0)
3210 return error;
3211
3212 BUG_ON(nd->inode != dir->d_inode);
3213 BUG_ON(nd->flags & LOOKUP_RCU);
3214 } else {
3215 /* create side of things */
3216 /*
3217 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3218 * has been cleared when we got to the last component we are
3219 * about to look up
3220 */
3221 error = complete_walk(nd);
3222 if (error)
3223 return error;
3224
3225 audit_inode(nd->name, dir, LOOKUP_PARENT);
3226 /* trailing slashes? */
3227 if (unlikely(nd->last.name[nd->last.len]))
3228 return -EISDIR;
3229 }
3230
3231 retry_lookup:
3232 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3233 error = mnt_want_write(nd->path.mnt);
3234 if (!error)
3235 got_write = true;
3236 /*
3237 * do _not_ fail yet - we might not need that or fail with
3238 * a different error; let lookup_open() decide; we'll be
3239 * dropping this one anyway.
3240 */
3241 }
3242 inode_lock(dir->d_inode);
3243 error = lookup_open(nd, &path, file, op, got_write, opened);
3244 inode_unlock(dir->d_inode);
3245
3246 if (error <= 0) {
3247 if (error)
3248 goto out;
3249
3250 if ((*opened & FILE_CREATED) ||
3251 !S_ISREG(file_inode(file)->i_mode))
3252 will_truncate = false;
3253
3254 audit_inode(nd->name, file->f_path.dentry, 0);
3255 goto opened;
3256 }
3257
3258 if (*opened & FILE_CREATED) {
3259 /* Don't check for write permission, don't truncate */
3260 open_flag &= ~O_TRUNC;
3261 will_truncate = false;
3262 acc_mode = 0;
3263 path_to_nameidata(&path, nd);
3264 goto finish_open_created;
3265 }
3266
3267 /*
3268 * If atomic_open() acquired write access it is dropped now due to
3269 * possible mount and symlink following (this might be optimized away if
3270 * necessary...)
3271 */
3272 if (got_write) {
3273 mnt_drop_write(nd->path.mnt);
3274 got_write = false;
3275 }
3276
3277 if (unlikely(d_is_negative(path.dentry))) {
3278 path_to_nameidata(&path, nd);
3279 return -ENOENT;
3280 }
3281
3282 /*
3283 * create/update audit record if it already exists.
3284 */
3285 audit_inode(nd->name, path.dentry, 0);
3286
3287 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3288 path_to_nameidata(&path, nd);
3289 return -EEXIST;
3290 }
3291
3292 error = follow_managed(&path, nd);
3293 if (unlikely(error < 0))
3294 return error;
3295
3296 seq = 0; /* out of RCU mode, so the value doesn't matter */
3297 inode = d_backing_inode(path.dentry);
3298 finish_lookup:
3299 if (nd->depth)
3300 put_link(nd);
3301 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3302 inode, seq);
3303 if (unlikely(error))
3304 return error;
3305
3306 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3307 path_to_nameidata(&path, nd);
3308 } else {
3309 save_parent.dentry = nd->path.dentry;
3310 save_parent.mnt = mntget(path.mnt);
3311 nd->path.dentry = path.dentry;
3312
3313 }
3314 nd->inode = inode;
3315 nd->seq = seq;
3316 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3317 finish_open:
3318 error = complete_walk(nd);
3319 if (error) {
3320 path_put(&save_parent);
3321 return error;
3322 }
3323 audit_inode(nd->name, nd->path.dentry, 0);
3324 if (unlikely(d_is_symlink(nd->path.dentry)) && !(open_flag & O_PATH)) {
3325 error = -ELOOP;
3326 goto out;
3327 }
3328 error = -EISDIR;
3329 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3330 goto out;
3331 error = -ENOTDIR;
3332 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3333 goto out;
3334 if (!d_is_reg(nd->path.dentry))
3335 will_truncate = false;
3336
3337 if (will_truncate) {
3338 error = mnt_want_write(nd->path.mnt);
3339 if (error)
3340 goto out;
3341 got_write = true;
3342 }
3343 finish_open_created:
3344 if (likely(!(open_flag & O_PATH))) {
3345 error = may_open(&nd->path, acc_mode, open_flag);
3346 if (error)
3347 goto out;
3348 }
3349 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3350 error = vfs_open(&nd->path, file, current_cred());
3351 if (!error) {
3352 *opened |= FILE_OPENED;
3353 } else {
3354 if (error == -EOPENSTALE)
3355 goto stale_open;
3356 goto out;
3357 }
3358 opened:
3359 error = open_check_o_direct(file);
3360 if (error)
3361 goto exit_fput;
3362 error = ima_file_check(file, op->acc_mode, *opened);
3363 if (error)
3364 goto exit_fput;
3365
3366 if (will_truncate) {
3367 error = handle_truncate(file);
3368 if (error)
3369 goto exit_fput;
3370 }
3371 out:
3372 if (unlikely(error > 0)) {
3373 WARN_ON(1);
3374 error = -EINVAL;
3375 }
3376 if (got_write)
3377 mnt_drop_write(nd->path.mnt);
3378 path_put(&save_parent);
3379 return error;
3380
3381 exit_fput:
3382 fput(file);
3383 goto out;
3384
3385 stale_open:
3386 /* If no saved parent or already retried then can't retry */
3387 if (!save_parent.dentry || retried)
3388 goto out;
3389
3390 BUG_ON(save_parent.dentry != dir);
3391 path_put(&nd->path);
3392 nd->path = save_parent;
3393 nd->inode = dir->d_inode;
3394 save_parent.mnt = NULL;
3395 save_parent.dentry = NULL;
3396 if (got_write) {
3397 mnt_drop_write(nd->path.mnt);
3398 got_write = false;
3399 }
3400 retried = true;
3401 goto retry_lookup;
3402 }
3403
3404 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3405 const struct open_flags *op,
3406 struct file *file, int *opened)
3407 {
3408 static const struct qstr name = QSTR_INIT("/", 1);
3409 struct dentry *child;
3410 struct inode *dir;
3411 struct path path;
3412 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3413 if (unlikely(error))
3414 return error;
3415 error = mnt_want_write(path.mnt);
3416 if (unlikely(error))
3417 goto out;
3418 dir = path.dentry->d_inode;
3419 /* we want directory to be writable */
3420 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3421 if (error)
3422 goto out2;
3423 if (!dir->i_op->tmpfile) {
3424 error = -EOPNOTSUPP;
3425 goto out2;
3426 }
3427 child = d_alloc(path.dentry, &name);
3428 if (unlikely(!child)) {
3429 error = -ENOMEM;
3430 goto out2;
3431 }
3432 dput(path.dentry);
3433 path.dentry = child;
3434 error = dir->i_op->tmpfile(dir, child, op->mode);
3435 if (error)
3436 goto out2;
3437 audit_inode(nd->name, child, 0);
3438 /* Don't check for other permissions, the inode was just created */
3439 error = may_open(&path, 0, op->open_flag);
3440 if (error)
3441 goto out2;
3442 file->f_path.mnt = path.mnt;
3443 error = finish_open(file, child, NULL, opened);
3444 if (error)
3445 goto out2;
3446 error = open_check_o_direct(file);
3447 if (error) {
3448 fput(file);
3449 } else if (!(op->open_flag & O_EXCL)) {
3450 struct inode *inode = file_inode(file);
3451 spin_lock(&inode->i_lock);
3452 inode->i_state |= I_LINKABLE;
3453 spin_unlock(&inode->i_lock);
3454 }
3455 out2:
3456 mnt_drop_write(path.mnt);
3457 out:
3458 path_put(&path);
3459 return error;
3460 }
3461
3462 static struct file *path_openat(struct nameidata *nd,
3463 const struct open_flags *op, unsigned flags)
3464 {
3465 const char *s;
3466 struct file *file;
3467 int opened = 0;
3468 int error;
3469
3470 file = get_empty_filp();
3471 if (IS_ERR(file))
3472 return file;
3473
3474 file->f_flags = op->open_flag;
3475
3476 if (unlikely(file->f_flags & __O_TMPFILE)) {
3477 error = do_tmpfile(nd, flags, op, file, &opened);
3478 goto out2;
3479 }
3480
3481 s = path_init(nd, flags);
3482 if (IS_ERR(s)) {
3483 put_filp(file);
3484 return ERR_CAST(s);
3485 }
3486 while (!(error = link_path_walk(s, nd)) &&
3487 (error = do_last(nd, file, op, &opened)) > 0) {
3488 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3489 s = trailing_symlink(nd);
3490 if (IS_ERR(s)) {
3491 error = PTR_ERR(s);
3492 break;
3493 }
3494 }
3495 terminate_walk(nd);
3496 out2:
3497 if (!(opened & FILE_OPENED)) {
3498 BUG_ON(!error);
3499 put_filp(file);
3500 }
3501 if (unlikely(error)) {
3502 if (error == -EOPENSTALE) {
3503 if (flags & LOOKUP_RCU)
3504 error = -ECHILD;
3505 else
3506 error = -ESTALE;
3507 }
3508 file = ERR_PTR(error);
3509 }
3510 return file;
3511 }
3512
3513 struct file *do_filp_open(int dfd, struct filename *pathname,
3514 const struct open_flags *op)
3515 {
3516 struct nameidata nd;
3517 int flags = op->lookup_flags;
3518 struct file *filp;
3519
3520 set_nameidata(&nd, dfd, pathname);
3521 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3522 if (unlikely(filp == ERR_PTR(-ECHILD)))
3523 filp = path_openat(&nd, op, flags);
3524 if (unlikely(filp == ERR_PTR(-ESTALE)))
3525 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3526 restore_nameidata();
3527 return filp;
3528 }
3529
3530 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3531 const char *name, const struct open_flags *op)
3532 {
3533 struct nameidata nd;
3534 struct file *file;
3535 struct filename *filename;
3536 int flags = op->lookup_flags | LOOKUP_ROOT;
3537
3538 nd.root.mnt = mnt;
3539 nd.root.dentry = dentry;
3540
3541 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3542 return ERR_PTR(-ELOOP);
3543
3544 filename = getname_kernel(name);
3545 if (IS_ERR(filename))
3546 return ERR_CAST(filename);
3547
3548 set_nameidata(&nd, -1, filename);
3549 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3550 if (unlikely(file == ERR_PTR(-ECHILD)))
3551 file = path_openat(&nd, op, flags);
3552 if (unlikely(file == ERR_PTR(-ESTALE)))
3553 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3554 restore_nameidata();
3555 putname(filename);
3556 return file;
3557 }
3558
3559 static struct dentry *filename_create(int dfd, struct filename *name,
3560 struct path *path, unsigned int lookup_flags)
3561 {
3562 struct dentry *dentry = ERR_PTR(-EEXIST);
3563 struct qstr last;
3564 int type;
3565 int err2;
3566 int error;
3567 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3568
3569 /*
3570 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3571 * other flags passed in are ignored!
3572 */
3573 lookup_flags &= LOOKUP_REVAL;
3574
3575 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3576 if (IS_ERR(name))
3577 return ERR_CAST(name);
3578
3579 /*
3580 * Yucky last component or no last component at all?
3581 * (foo/., foo/.., /////)
3582 */
3583 if (unlikely(type != LAST_NORM))
3584 goto out;
3585
3586 /* don't fail immediately if it's r/o, at least try to report other errors */
3587 err2 = mnt_want_write(path->mnt);
3588 /*
3589 * Do the final lookup.
3590 */
3591 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3592 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3593 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3594 if (IS_ERR(dentry))
3595 goto unlock;
3596
3597 error = -EEXIST;
3598 if (d_is_positive(dentry))
3599 goto fail;
3600
3601 /*
3602 * Special case - lookup gave negative, but... we had foo/bar/
3603 * From the vfs_mknod() POV we just have a negative dentry -
3604 * all is fine. Let's be bastards - you had / on the end, you've
3605 * been asking for (non-existent) directory. -ENOENT for you.
3606 */
3607 if (unlikely(!is_dir && last.name[last.len])) {
3608 error = -ENOENT;
3609 goto fail;
3610 }
3611 if (unlikely(err2)) {
3612 error = err2;
3613 goto fail;
3614 }
3615 putname(name);
3616 return dentry;
3617 fail:
3618 dput(dentry);
3619 dentry = ERR_PTR(error);
3620 unlock:
3621 inode_unlock(path->dentry->d_inode);
3622 if (!err2)
3623 mnt_drop_write(path->mnt);
3624 out:
3625 path_put(path);
3626 putname(name);
3627 return dentry;
3628 }
3629
3630 struct dentry *kern_path_create(int dfd, const char *pathname,
3631 struct path *path, unsigned int lookup_flags)
3632 {
3633 return filename_create(dfd, getname_kernel(pathname),
3634 path, lookup_flags);
3635 }
3636 EXPORT_SYMBOL(kern_path_create);
3637
3638 void done_path_create(struct path *path, struct dentry *dentry)
3639 {
3640 dput(dentry);
3641 inode_unlock(path->dentry->d_inode);
3642 mnt_drop_write(path->mnt);
3643 path_put(path);
3644 }
3645 EXPORT_SYMBOL(done_path_create);
3646
3647 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3648 struct path *path, unsigned int lookup_flags)
3649 {
3650 return filename_create(dfd, getname(pathname), path, lookup_flags);
3651 }
3652 EXPORT_SYMBOL(user_path_create);
3653
3654 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3655 {
3656 int error = may_create(dir, dentry);
3657
3658 if (error)
3659 return error;
3660
3661 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3662 return -EPERM;
3663
3664 if (!dir->i_op->mknod)
3665 return -EPERM;
3666
3667 error = devcgroup_inode_mknod(mode, dev);
3668 if (error)
3669 return error;
3670
3671 error = security_inode_mknod(dir, dentry, mode, dev);
3672 if (error)
3673 return error;
3674
3675 error = dir->i_op->mknod(dir, dentry, mode, dev);
3676 if (!error)
3677 fsnotify_create(dir, dentry);
3678 return error;
3679 }
3680 EXPORT_SYMBOL(vfs_mknod);
3681
3682 static int may_mknod(umode_t mode)
3683 {
3684 switch (mode & S_IFMT) {
3685 case S_IFREG:
3686 case S_IFCHR:
3687 case S_IFBLK:
3688 case S_IFIFO:
3689 case S_IFSOCK:
3690 case 0: /* zero mode translates to S_IFREG */
3691 return 0;
3692 case S_IFDIR:
3693 return -EPERM;
3694 default:
3695 return -EINVAL;
3696 }
3697 }
3698
3699 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3700 unsigned, dev)
3701 {
3702 struct dentry *dentry;
3703 struct path path;
3704 int error;
3705 unsigned int lookup_flags = 0;
3706
3707 error = may_mknod(mode);
3708 if (error)
3709 return error;
3710 retry:
3711 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3712 if (IS_ERR(dentry))
3713 return PTR_ERR(dentry);
3714
3715 if (!IS_POSIXACL(path.dentry->d_inode))
3716 mode &= ~current_umask();
3717 error = security_path_mknod(&path, dentry, mode, dev);
3718 if (error)
3719 goto out;
3720 switch (mode & S_IFMT) {
3721 case 0: case S_IFREG:
3722 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3723 break;
3724 case S_IFCHR: case S_IFBLK:
3725 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3726 new_decode_dev(dev));
3727 break;
3728 case S_IFIFO: case S_IFSOCK:
3729 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3730 break;
3731 }
3732 out:
3733 done_path_create(&path, dentry);
3734 if (retry_estale(error, lookup_flags)) {
3735 lookup_flags |= LOOKUP_REVAL;
3736 goto retry;
3737 }
3738 return error;
3739 }
3740
3741 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3742 {
3743 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3744 }
3745
3746 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3747 {
3748 int error = may_create(dir, dentry);
3749 unsigned max_links = dir->i_sb->s_max_links;
3750
3751 if (error)
3752 return error;
3753
3754 if (!dir->i_op->mkdir)
3755 return -EPERM;
3756
3757 mode &= (S_IRWXUGO|S_ISVTX);
3758 error = security_inode_mkdir(dir, dentry, mode);
3759 if (error)
3760 return error;
3761
3762 if (max_links && dir->i_nlink >= max_links)
3763 return -EMLINK;
3764
3765 error = dir->i_op->mkdir(dir, dentry, mode);
3766 if (!error)
3767 fsnotify_mkdir(dir, dentry);
3768 return error;
3769 }
3770 EXPORT_SYMBOL(vfs_mkdir);
3771
3772 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3773 {
3774 struct dentry *dentry;
3775 struct path path;
3776 int error;
3777 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3778
3779 retry:
3780 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3781 if (IS_ERR(dentry))
3782 return PTR_ERR(dentry);
3783
3784 if (!IS_POSIXACL(path.dentry->d_inode))
3785 mode &= ~current_umask();
3786 error = security_path_mkdir(&path, dentry, mode);
3787 if (!error)
3788 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3789 done_path_create(&path, dentry);
3790 if (retry_estale(error, lookup_flags)) {
3791 lookup_flags |= LOOKUP_REVAL;
3792 goto retry;
3793 }
3794 return error;
3795 }
3796
3797 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3798 {
3799 return sys_mkdirat(AT_FDCWD, pathname, mode);
3800 }
3801
3802 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3803 {
3804 int error = may_delete(dir, dentry, 1);
3805
3806 if (error)
3807 return error;
3808
3809 if (!dir->i_op->rmdir)
3810 return -EPERM;
3811
3812 dget(dentry);
3813 inode_lock(dentry->d_inode);
3814
3815 error = -EBUSY;
3816 if (is_local_mountpoint(dentry))
3817 goto out;
3818
3819 error = security_inode_rmdir(dir, dentry);
3820 if (error)
3821 goto out;
3822
3823 shrink_dcache_parent(dentry);
3824 error = dir->i_op->rmdir(dir, dentry);
3825 if (error)
3826 goto out;
3827
3828 dentry->d_inode->i_flags |= S_DEAD;
3829 dont_mount(dentry);
3830 detach_mounts(dentry);
3831
3832 out:
3833 inode_unlock(dentry->d_inode);
3834 dput(dentry);
3835 if (!error)
3836 d_delete(dentry);
3837 return error;
3838 }
3839 EXPORT_SYMBOL(vfs_rmdir);
3840
3841 static long do_rmdir(int dfd, const char __user *pathname)
3842 {
3843 int error = 0;
3844 struct filename *name;
3845 struct dentry *dentry;
3846 struct path path;
3847 struct qstr last;
3848 int type;
3849 unsigned int lookup_flags = 0;
3850 retry:
3851 name = user_path_parent(dfd, pathname,
3852 &path, &last, &type, lookup_flags);
3853 if (IS_ERR(name))
3854 return PTR_ERR(name);
3855
3856 switch (type) {
3857 case LAST_DOTDOT:
3858 error = -ENOTEMPTY;
3859 goto exit1;
3860 case LAST_DOT:
3861 error = -EINVAL;
3862 goto exit1;
3863 case LAST_ROOT:
3864 error = -EBUSY;
3865 goto exit1;
3866 }
3867
3868 error = mnt_want_write(path.mnt);
3869 if (error)
3870 goto exit1;
3871
3872 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3873 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3874 error = PTR_ERR(dentry);
3875 if (IS_ERR(dentry))
3876 goto exit2;
3877 if (!dentry->d_inode) {
3878 error = -ENOENT;
3879 goto exit3;
3880 }
3881 error = security_path_rmdir(&path, dentry);
3882 if (error)
3883 goto exit3;
3884 error = vfs_rmdir(path.dentry->d_inode, dentry);
3885 exit3:
3886 dput(dentry);
3887 exit2:
3888 inode_unlock(path.dentry->d_inode);
3889 mnt_drop_write(path.mnt);
3890 exit1:
3891 path_put(&path);
3892 putname(name);
3893 if (retry_estale(error, lookup_flags)) {
3894 lookup_flags |= LOOKUP_REVAL;
3895 goto retry;
3896 }
3897 return error;
3898 }
3899
3900 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3901 {
3902 return do_rmdir(AT_FDCWD, pathname);
3903 }
3904
3905 /**
3906 * vfs_unlink - unlink a filesystem object
3907 * @dir: parent directory
3908 * @dentry: victim
3909 * @delegated_inode: returns victim inode, if the inode is delegated.
3910 *
3911 * The caller must hold dir->i_mutex.
3912 *
3913 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3914 * return a reference to the inode in delegated_inode. The caller
3915 * should then break the delegation on that inode and retry. Because
3916 * breaking a delegation may take a long time, the caller should drop
3917 * dir->i_mutex before doing so.
3918 *
3919 * Alternatively, a caller may pass NULL for delegated_inode. This may
3920 * be appropriate for callers that expect the underlying filesystem not
3921 * to be NFS exported.
3922 */
3923 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3924 {
3925 struct inode *target = dentry->d_inode;
3926 int error = may_delete(dir, dentry, 0);
3927
3928 if (error)
3929 return error;
3930
3931 if (!dir->i_op->unlink)
3932 return -EPERM;
3933
3934 inode_lock(target);
3935 if (is_local_mountpoint(dentry))
3936 error = -EBUSY;
3937 else {
3938 error = security_inode_unlink(dir, dentry);
3939 if (!error) {
3940 error = try_break_deleg(target, delegated_inode);
3941 if (error)
3942 goto out;
3943 error = dir->i_op->unlink(dir, dentry);
3944 if (!error) {
3945 dont_mount(dentry);
3946 detach_mounts(dentry);
3947 }
3948 }
3949 }
3950 out:
3951 inode_unlock(target);
3952
3953 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3954 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3955 fsnotify_link_count(target);
3956 d_delete(dentry);
3957 }
3958
3959 return error;
3960 }
3961 EXPORT_SYMBOL(vfs_unlink);
3962
3963 /*
3964 * Make sure that the actual truncation of the file will occur outside its
3965 * directory's i_mutex. Truncate can take a long time if there is a lot of
3966 * writeout happening, and we don't want to prevent access to the directory
3967 * while waiting on the I/O.
3968 */
3969 static long do_unlinkat(int dfd, const char __user *pathname)
3970 {
3971 int error;
3972 struct filename *name;
3973 struct dentry *dentry;
3974 struct path path;
3975 struct qstr last;
3976 int type;
3977 struct inode *inode = NULL;
3978 struct inode *delegated_inode = NULL;
3979 unsigned int lookup_flags = 0;
3980 retry:
3981 name = user_path_parent(dfd, pathname,
3982 &path, &last, &type, lookup_flags);
3983 if (IS_ERR(name))
3984 return PTR_ERR(name);
3985
3986 error = -EISDIR;
3987 if (type != LAST_NORM)
3988 goto exit1;
3989
3990 error = mnt_want_write(path.mnt);
3991 if (error)
3992 goto exit1;
3993 retry_deleg:
3994 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3995 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3996 error = PTR_ERR(dentry);
3997 if (!IS_ERR(dentry)) {
3998 /* Why not before? Because we want correct error value */
3999 if (last.name[last.len])
4000 goto slashes;
4001 inode = dentry->d_inode;
4002 if (d_is_negative(dentry))
4003 goto slashes;
4004 ihold(inode);
4005 error = security_path_unlink(&path, dentry);
4006 if (error)
4007 goto exit2;
4008 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4009 exit2:
4010 dput(dentry);
4011 }
4012 inode_unlock(path.dentry->d_inode);
4013 if (inode)
4014 iput(inode); /* truncate the inode here */
4015 inode = NULL;
4016 if (delegated_inode) {
4017 error = break_deleg_wait(&delegated_inode);
4018 if (!error)
4019 goto retry_deleg;
4020 }
4021 mnt_drop_write(path.mnt);
4022 exit1:
4023 path_put(&path);
4024 putname(name);
4025 if (retry_estale(error, lookup_flags)) {
4026 lookup_flags |= LOOKUP_REVAL;
4027 inode = NULL;
4028 goto retry;
4029 }
4030 return error;
4031
4032 slashes:
4033 if (d_is_negative(dentry))
4034 error = -ENOENT;
4035 else if (d_is_dir(dentry))
4036 error = -EISDIR;
4037 else
4038 error = -ENOTDIR;
4039 goto exit2;
4040 }
4041
4042 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4043 {
4044 if ((flag & ~AT_REMOVEDIR) != 0)
4045 return -EINVAL;
4046
4047 if (flag & AT_REMOVEDIR)
4048 return do_rmdir(dfd, pathname);
4049
4050 return do_unlinkat(dfd, pathname);
4051 }
4052
4053 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4054 {
4055 return do_unlinkat(AT_FDCWD, pathname);
4056 }
4057
4058 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4059 {
4060 int error = may_create(dir, dentry);
4061
4062 if (error)
4063 return error;
4064
4065 if (!dir->i_op->symlink)
4066 return -EPERM;
4067
4068 error = security_inode_symlink(dir, dentry, oldname);
4069 if (error)
4070 return error;
4071
4072 error = dir->i_op->symlink(dir, dentry, oldname);
4073 if (!error)
4074 fsnotify_create(dir, dentry);
4075 return error;
4076 }
4077 EXPORT_SYMBOL(vfs_symlink);
4078
4079 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4080 int, newdfd, const char __user *, newname)
4081 {
4082 int error;
4083 struct filename *from;
4084 struct dentry *dentry;
4085 struct path path;
4086 unsigned int lookup_flags = 0;
4087
4088 from = getname(oldname);
4089 if (IS_ERR(from))
4090 return PTR_ERR(from);
4091 retry:
4092 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4093 error = PTR_ERR(dentry);
4094 if (IS_ERR(dentry))
4095 goto out_putname;
4096
4097 error = security_path_symlink(&path, dentry, from->name);
4098 if (!error)
4099 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4100 done_path_create(&path, dentry);
4101 if (retry_estale(error, lookup_flags)) {
4102 lookup_flags |= LOOKUP_REVAL;
4103 goto retry;
4104 }
4105 out_putname:
4106 putname(from);
4107 return error;
4108 }
4109
4110 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4111 {
4112 return sys_symlinkat(oldname, AT_FDCWD, newname);
4113 }
4114
4115 /**
4116 * vfs_link - create a new link
4117 * @old_dentry: object to be linked
4118 * @dir: new parent
4119 * @new_dentry: where to create the new link
4120 * @delegated_inode: returns inode needing a delegation break
4121 *
4122 * The caller must hold dir->i_mutex
4123 *
4124 * If vfs_link discovers a delegation on the to-be-linked file in need
4125 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4126 * inode in delegated_inode. The caller should then break the delegation
4127 * and retry. Because breaking a delegation may take a long time, the
4128 * caller should drop the i_mutex before doing so.
4129 *
4130 * Alternatively, a caller may pass NULL for delegated_inode. This may
4131 * be appropriate for callers that expect the underlying filesystem not
4132 * to be NFS exported.
4133 */
4134 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4135 {
4136 struct inode *inode = old_dentry->d_inode;
4137 unsigned max_links = dir->i_sb->s_max_links;
4138 int error;
4139
4140 if (!inode)
4141 return -ENOENT;
4142
4143 error = may_create(dir, new_dentry);
4144 if (error)
4145 return error;
4146
4147 if (dir->i_sb != inode->i_sb)
4148 return -EXDEV;
4149
4150 /*
4151 * A link to an append-only or immutable file cannot be created.
4152 */
4153 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4154 return -EPERM;
4155 if (!dir->i_op->link)
4156 return -EPERM;
4157 if (S_ISDIR(inode->i_mode))
4158 return -EPERM;
4159
4160 error = security_inode_link(old_dentry, dir, new_dentry);
4161 if (error)
4162 return error;
4163
4164 inode_lock(inode);
4165 /* Make sure we don't allow creating hardlink to an unlinked file */
4166 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4167 error = -ENOENT;
4168 else if (max_links && inode->i_nlink >= max_links)
4169 error = -EMLINK;
4170 else {
4171 error = try_break_deleg(inode, delegated_inode);
4172 if (!error)
4173 error = dir->i_op->link(old_dentry, dir, new_dentry);
4174 }
4175
4176 if (!error && (inode->i_state & I_LINKABLE)) {
4177 spin_lock(&inode->i_lock);
4178 inode->i_state &= ~I_LINKABLE;
4179 spin_unlock(&inode->i_lock);
4180 }
4181 inode_unlock(inode);
4182 if (!error)
4183 fsnotify_link(dir, inode, new_dentry);
4184 return error;
4185 }
4186 EXPORT_SYMBOL(vfs_link);
4187
4188 /*
4189 * Hardlinks are often used in delicate situations. We avoid
4190 * security-related surprises by not following symlinks on the
4191 * newname. --KAB
4192 *
4193 * We don't follow them on the oldname either to be compatible
4194 * with linux 2.0, and to avoid hard-linking to directories
4195 * and other special files. --ADM
4196 */
4197 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4198 int, newdfd, const char __user *, newname, int, flags)
4199 {
4200 struct dentry *new_dentry;
4201 struct path old_path, new_path;
4202 struct inode *delegated_inode = NULL;
4203 int how = 0;
4204 int error;
4205
4206 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4207 return -EINVAL;
4208 /*
4209 * To use null names we require CAP_DAC_READ_SEARCH
4210 * This ensures that not everyone will be able to create
4211 * handlink using the passed filedescriptor.
4212 */
4213 if (flags & AT_EMPTY_PATH) {
4214 if (!capable(CAP_DAC_READ_SEARCH))
4215 return -ENOENT;
4216 how = LOOKUP_EMPTY;
4217 }
4218
4219 if (flags & AT_SYMLINK_FOLLOW)
4220 how |= LOOKUP_FOLLOW;
4221 retry:
4222 error = user_path_at(olddfd, oldname, how, &old_path);
4223 if (error)
4224 return error;
4225
4226 new_dentry = user_path_create(newdfd, newname, &new_path,
4227 (how & LOOKUP_REVAL));
4228 error = PTR_ERR(new_dentry);
4229 if (IS_ERR(new_dentry))
4230 goto out;
4231
4232 error = -EXDEV;
4233 if (old_path.mnt != new_path.mnt)
4234 goto out_dput;
4235 error = may_linkat(&old_path);
4236 if (unlikely(error))
4237 goto out_dput;
4238 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4239 if (error)
4240 goto out_dput;
4241 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4242 out_dput:
4243 done_path_create(&new_path, new_dentry);
4244 if (delegated_inode) {
4245 error = break_deleg_wait(&delegated_inode);
4246 if (!error) {
4247 path_put(&old_path);
4248 goto retry;
4249 }
4250 }
4251 if (retry_estale(error, how)) {
4252 path_put(&old_path);
4253 how |= LOOKUP_REVAL;
4254 goto retry;
4255 }
4256 out:
4257 path_put(&old_path);
4258
4259 return error;
4260 }
4261
4262 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4263 {
4264 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4265 }
4266
4267 /**
4268 * vfs_rename - rename a filesystem object
4269 * @old_dir: parent of source
4270 * @old_dentry: source
4271 * @new_dir: parent of destination
4272 * @new_dentry: destination
4273 * @delegated_inode: returns an inode needing a delegation break
4274 * @flags: rename flags
4275 *
4276 * The caller must hold multiple mutexes--see lock_rename()).
4277 *
4278 * If vfs_rename discovers a delegation in need of breaking at either
4279 * the source or destination, it will return -EWOULDBLOCK and return a
4280 * reference to the inode in delegated_inode. The caller should then
4281 * break the delegation and retry. Because breaking a delegation may
4282 * take a long time, the caller should drop all locks before doing
4283 * so.
4284 *
4285 * Alternatively, a caller may pass NULL for delegated_inode. This may
4286 * be appropriate for callers that expect the underlying filesystem not
4287 * to be NFS exported.
4288 *
4289 * The worst of all namespace operations - renaming directory. "Perverted"
4290 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4291 * Problems:
4292 * a) we can get into loop creation.
4293 * b) race potential - two innocent renames can create a loop together.
4294 * That's where 4.4 screws up. Current fix: serialization on
4295 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4296 * story.
4297 * c) we have to lock _four_ objects - parents and victim (if it exists),
4298 * and source (if it is not a directory).
4299 * And that - after we got ->i_mutex on parents (until then we don't know
4300 * whether the target exists). Solution: try to be smart with locking
4301 * order for inodes. We rely on the fact that tree topology may change
4302 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4303 * move will be locked. Thus we can rank directories by the tree
4304 * (ancestors first) and rank all non-directories after them.
4305 * That works since everybody except rename does "lock parent, lookup,
4306 * lock child" and rename is under ->s_vfs_rename_mutex.
4307 * HOWEVER, it relies on the assumption that any object with ->lookup()
4308 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4309 * we'd better make sure that there's no link(2) for them.
4310 * d) conversion from fhandle to dentry may come in the wrong moment - when
4311 * we are removing the target. Solution: we will have to grab ->i_mutex
4312 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4313 * ->i_mutex on parents, which works but leads to some truly excessive
4314 * locking].
4315 */
4316 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4317 struct inode *new_dir, struct dentry *new_dentry,
4318 struct inode **delegated_inode, unsigned int flags)
4319 {
4320 int error;
4321 bool is_dir = d_is_dir(old_dentry);
4322 const unsigned char *old_name;
4323 struct inode *source = old_dentry->d_inode;
4324 struct inode *target = new_dentry->d_inode;
4325 bool new_is_dir = false;
4326 unsigned max_links = new_dir->i_sb->s_max_links;
4327
4328 /*
4329 * Check source == target.
4330 * On overlayfs need to look at underlying inodes.
4331 */
4332 if (vfs_select_inode(old_dentry, 0) == vfs_select_inode(new_dentry, 0))
4333 return 0;
4334
4335 error = may_delete(old_dir, old_dentry, is_dir);
4336 if (error)
4337 return error;
4338
4339 if (!target) {
4340 error = may_create(new_dir, new_dentry);
4341 } else {
4342 new_is_dir = d_is_dir(new_dentry);
4343
4344 if (!(flags & RENAME_EXCHANGE))
4345 error = may_delete(new_dir, new_dentry, is_dir);
4346 else
4347 error = may_delete(new_dir, new_dentry, new_is_dir);
4348 }
4349 if (error)
4350 return error;
4351
4352 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4353 return -EPERM;
4354
4355 if (flags && !old_dir->i_op->rename2)
4356 return -EINVAL;
4357
4358 /*
4359 * If we are going to change the parent - check write permissions,
4360 * we'll need to flip '..'.
4361 */
4362 if (new_dir != old_dir) {
4363 if (is_dir) {
4364 error = inode_permission(source, MAY_WRITE);
4365 if (error)
4366 return error;
4367 }
4368 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4369 error = inode_permission(target, MAY_WRITE);
4370 if (error)
4371 return error;
4372 }
4373 }
4374
4375 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4376 flags);
4377 if (error)
4378 return error;
4379
4380 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4381 dget(new_dentry);
4382 if (!is_dir || (flags & RENAME_EXCHANGE))
4383 lock_two_nondirectories(source, target);
4384 else if (target)
4385 inode_lock(target);
4386
4387 error = -EBUSY;
4388 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4389 goto out;
4390
4391 if (max_links && new_dir != old_dir) {
4392 error = -EMLINK;
4393 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4394 goto out;
4395 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4396 old_dir->i_nlink >= max_links)
4397 goto out;
4398 }
4399 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4400 shrink_dcache_parent(new_dentry);
4401 if (!is_dir) {
4402 error = try_break_deleg(source, delegated_inode);
4403 if (error)
4404 goto out;
4405 }
4406 if (target && !new_is_dir) {
4407 error = try_break_deleg(target, delegated_inode);
4408 if (error)
4409 goto out;
4410 }
4411 if (!old_dir->i_op->rename2) {
4412 error = old_dir->i_op->rename(old_dir, old_dentry,
4413 new_dir, new_dentry);
4414 } else {
4415 WARN_ON(old_dir->i_op->rename != NULL);
4416 error = old_dir->i_op->rename2(old_dir, old_dentry,
4417 new_dir, new_dentry, flags);
4418 }
4419 if (error)
4420 goto out;
4421
4422 if (!(flags & RENAME_EXCHANGE) && target) {
4423 if (is_dir)
4424 target->i_flags |= S_DEAD;
4425 dont_mount(new_dentry);
4426 detach_mounts(new_dentry);
4427 }
4428 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4429 if (!(flags & RENAME_EXCHANGE))
4430 d_move(old_dentry, new_dentry);
4431 else
4432 d_exchange(old_dentry, new_dentry);
4433 }
4434 out:
4435 if (!is_dir || (flags & RENAME_EXCHANGE))
4436 unlock_two_nondirectories(source, target);
4437 else if (target)
4438 inode_unlock(target);
4439 dput(new_dentry);
4440 if (!error) {
4441 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4442 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4443 if (flags & RENAME_EXCHANGE) {
4444 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4445 new_is_dir, NULL, new_dentry);
4446 }
4447 }
4448 fsnotify_oldname_free(old_name);
4449
4450 return error;
4451 }
4452 EXPORT_SYMBOL(vfs_rename);
4453
4454 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4455 int, newdfd, const char __user *, newname, unsigned int, flags)
4456 {
4457 struct dentry *old_dentry, *new_dentry;
4458 struct dentry *trap;
4459 struct path old_path, new_path;
4460 struct qstr old_last, new_last;
4461 int old_type, new_type;
4462 struct inode *delegated_inode = NULL;
4463 struct filename *from;
4464 struct filename *to;
4465 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4466 bool should_retry = false;
4467 int error;
4468
4469 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4470 return -EINVAL;
4471
4472 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4473 (flags & RENAME_EXCHANGE))
4474 return -EINVAL;
4475
4476 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4477 return -EPERM;
4478
4479 if (flags & RENAME_EXCHANGE)
4480 target_flags = 0;
4481
4482 retry:
4483 from = user_path_parent(olddfd, oldname,
4484 &old_path, &old_last, &old_type, lookup_flags);
4485 if (IS_ERR(from)) {
4486 error = PTR_ERR(from);
4487 goto exit;
4488 }
4489
4490 to = user_path_parent(newdfd, newname,
4491 &new_path, &new_last, &new_type, lookup_flags);
4492 if (IS_ERR(to)) {
4493 error = PTR_ERR(to);
4494 goto exit1;
4495 }
4496
4497 error = -EXDEV;
4498 if (old_path.mnt != new_path.mnt)
4499 goto exit2;
4500
4501 error = -EBUSY;
4502 if (old_type != LAST_NORM)
4503 goto exit2;
4504
4505 if (flags & RENAME_NOREPLACE)
4506 error = -EEXIST;
4507 if (new_type != LAST_NORM)
4508 goto exit2;
4509
4510 error = mnt_want_write(old_path.mnt);
4511 if (error)
4512 goto exit2;
4513
4514 retry_deleg:
4515 trap = lock_rename(new_path.dentry, old_path.dentry);
4516
4517 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4518 error = PTR_ERR(old_dentry);
4519 if (IS_ERR(old_dentry))
4520 goto exit3;
4521 /* source must exist */
4522 error = -ENOENT;
4523 if (d_is_negative(old_dentry))
4524 goto exit4;
4525 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4526 error = PTR_ERR(new_dentry);
4527 if (IS_ERR(new_dentry))
4528 goto exit4;
4529 error = -EEXIST;
4530 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4531 goto exit5;
4532 if (flags & RENAME_EXCHANGE) {
4533 error = -ENOENT;
4534 if (d_is_negative(new_dentry))
4535 goto exit5;
4536
4537 if (!d_is_dir(new_dentry)) {
4538 error = -ENOTDIR;
4539 if (new_last.name[new_last.len])
4540 goto exit5;
4541 }
4542 }
4543 /* unless the source is a directory trailing slashes give -ENOTDIR */
4544 if (!d_is_dir(old_dentry)) {
4545 error = -ENOTDIR;
4546 if (old_last.name[old_last.len])
4547 goto exit5;
4548 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4549 goto exit5;
4550 }
4551 /* source should not be ancestor of target */
4552 error = -EINVAL;
4553 if (old_dentry == trap)
4554 goto exit5;
4555 /* target should not be an ancestor of source */
4556 if (!(flags & RENAME_EXCHANGE))
4557 error = -ENOTEMPTY;
4558 if (new_dentry == trap)
4559 goto exit5;
4560
4561 error = security_path_rename(&old_path, old_dentry,
4562 &new_path, new_dentry, flags);
4563 if (error)
4564 goto exit5;
4565 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4566 new_path.dentry->d_inode, new_dentry,
4567 &delegated_inode, flags);
4568 exit5:
4569 dput(new_dentry);
4570 exit4:
4571 dput(old_dentry);
4572 exit3:
4573 unlock_rename(new_path.dentry, old_path.dentry);
4574 if (delegated_inode) {
4575 error = break_deleg_wait(&delegated_inode);
4576 if (!error)
4577 goto retry_deleg;
4578 }
4579 mnt_drop_write(old_path.mnt);
4580 exit2:
4581 if (retry_estale(error, lookup_flags))
4582 should_retry = true;
4583 path_put(&new_path);
4584 putname(to);
4585 exit1:
4586 path_put(&old_path);
4587 putname(from);
4588 if (should_retry) {
4589 should_retry = false;
4590 lookup_flags |= LOOKUP_REVAL;
4591 goto retry;
4592 }
4593 exit:
4594 return error;
4595 }
4596
4597 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4598 int, newdfd, const char __user *, newname)
4599 {
4600 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4601 }
4602
4603 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4604 {
4605 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4606 }
4607
4608 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4609 {
4610 int error = may_create(dir, dentry);
4611 if (error)
4612 return error;
4613
4614 if (!dir->i_op->mknod)
4615 return -EPERM;
4616
4617 return dir->i_op->mknod(dir, dentry,
4618 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4619 }
4620 EXPORT_SYMBOL(vfs_whiteout);
4621
4622 int readlink_copy(char __user *buffer, int buflen, const char *link)
4623 {
4624 int len = PTR_ERR(link);
4625 if (IS_ERR(link))
4626 goto out;
4627
4628 len = strlen(link);
4629 if (len > (unsigned) buflen)
4630 len = buflen;
4631 if (copy_to_user(buffer, link, len))
4632 len = -EFAULT;
4633 out:
4634 return len;
4635 }
4636 EXPORT_SYMBOL(readlink_copy);
4637
4638 /*
4639 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4640 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4641 * for any given inode is up to filesystem.
4642 */
4643 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4644 {
4645 DEFINE_DELAYED_CALL(done);
4646 struct inode *inode = d_inode(dentry);
4647 const char *link = inode->i_link;
4648 int res;
4649
4650 if (!link) {
4651 link = inode->i_op->get_link(dentry, inode, &done);
4652 if (IS_ERR(link))
4653 return PTR_ERR(link);
4654 }
4655 res = readlink_copy(buffer, buflen, link);
4656 do_delayed_call(&done);
4657 return res;
4658 }
4659 EXPORT_SYMBOL(generic_readlink);
4660
4661 /* get the link contents into pagecache */
4662 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4663 struct delayed_call *callback)
4664 {
4665 char *kaddr;
4666 struct page *page;
4667 struct address_space *mapping = inode->i_mapping;
4668
4669 if (!dentry) {
4670 page = find_get_page(mapping, 0);
4671 if (!page)
4672 return ERR_PTR(-ECHILD);
4673 if (!PageUptodate(page)) {
4674 put_page(page);
4675 return ERR_PTR(-ECHILD);
4676 }
4677 } else {
4678 page = read_mapping_page(mapping, 0, NULL);
4679 if (IS_ERR(page))
4680 return (char*)page;
4681 }
4682 set_delayed_call(callback, page_put_link, page);
4683 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4684 kaddr = page_address(page);
4685 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4686 return kaddr;
4687 }
4688
4689 EXPORT_SYMBOL(page_get_link);
4690
4691 void page_put_link(void *arg)
4692 {
4693 put_page(arg);
4694 }
4695 EXPORT_SYMBOL(page_put_link);
4696
4697 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4698 {
4699 DEFINE_DELAYED_CALL(done);
4700 int res = readlink_copy(buffer, buflen,
4701 page_get_link(dentry, d_inode(dentry),
4702 &done));
4703 do_delayed_call(&done);
4704 return res;
4705 }
4706 EXPORT_SYMBOL(page_readlink);
4707
4708 /*
4709 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4710 */
4711 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4712 {
4713 struct address_space *mapping = inode->i_mapping;
4714 struct page *page;
4715 void *fsdata;
4716 int err;
4717 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4718 if (nofs)
4719 flags |= AOP_FLAG_NOFS;
4720
4721 retry:
4722 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4723 flags, &page, &fsdata);
4724 if (err)
4725 goto fail;
4726
4727 memcpy(page_address(page), symname, len-1);
4728
4729 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4730 page, fsdata);
4731 if (err < 0)
4732 goto fail;
4733 if (err < len-1)
4734 goto retry;
4735
4736 mark_inode_dirty(inode);
4737 return 0;
4738 fail:
4739 return err;
4740 }
4741 EXPORT_SYMBOL(__page_symlink);
4742
4743 int page_symlink(struct inode *inode, const char *symname, int len)
4744 {
4745 return __page_symlink(inode, symname, len,
4746 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4747 }
4748 EXPORT_SYMBOL(page_symlink);
4749
4750 const struct inode_operations page_symlink_inode_operations = {
4751 .readlink = generic_readlink,
4752 .get_link = page_get_link,
4753 };
4754 EXPORT_SYMBOL(page_symlink_inode_operations);