]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/namei.c
introduce kern_path_mountpoint()
[mirror_ubuntu-bionic-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 void final_putname(struct filename *name)
121 {
122 if (name->separate) {
123 __putname(name->name);
124 kfree(name);
125 } else {
126 __putname(name);
127 }
128 }
129
130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
131
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 struct filename *result, *err;
136 int len;
137 long max;
138 char *kname;
139
140 result = audit_reusename(filename);
141 if (result)
142 return result;
143
144 result = __getname();
145 if (unlikely(!result))
146 return ERR_PTR(-ENOMEM);
147
148 /*
149 * First, try to embed the struct filename inside the names_cache
150 * allocation
151 */
152 kname = (char *)result + sizeof(*result);
153 result->name = kname;
154 result->separate = false;
155 max = EMBEDDED_NAME_MAX;
156
157 recopy:
158 len = strncpy_from_user(kname, filename, max);
159 if (unlikely(len < 0)) {
160 err = ERR_PTR(len);
161 goto error;
162 }
163
164 /*
165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 * separate struct filename so we can dedicate the entire
167 * names_cache allocation for the pathname, and re-do the copy from
168 * userland.
169 */
170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 kname = (char *)result;
172
173 result = kzalloc(sizeof(*result), GFP_KERNEL);
174 if (!result) {
175 err = ERR_PTR(-ENOMEM);
176 result = (struct filename *)kname;
177 goto error;
178 }
179 result->name = kname;
180 result->separate = true;
181 max = PATH_MAX;
182 goto recopy;
183 }
184
185 /* The empty path is special. */
186 if (unlikely(!len)) {
187 if (empty)
188 *empty = 1;
189 err = ERR_PTR(-ENOENT);
190 if (!(flags & LOOKUP_EMPTY))
191 goto error;
192 }
193
194 err = ERR_PTR(-ENAMETOOLONG);
195 if (unlikely(len >= PATH_MAX))
196 goto error;
197
198 result->uptr = filename;
199 audit_getname(result);
200 return result;
201
202 error:
203 final_putname(result);
204 return err;
205 }
206
207 struct filename *
208 getname(const char __user * filename)
209 {
210 return getname_flags(filename, 0, NULL);
211 }
212 EXPORT_SYMBOL(getname);
213
214 #ifdef CONFIG_AUDITSYSCALL
215 void putname(struct filename *name)
216 {
217 if (unlikely(!audit_dummy_context()))
218 return audit_putname(name);
219 final_putname(name);
220 }
221 #endif
222
223 static int check_acl(struct inode *inode, int mask)
224 {
225 #ifdef CONFIG_FS_POSIX_ACL
226 struct posix_acl *acl;
227
228 if (mask & MAY_NOT_BLOCK) {
229 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
230 if (!acl)
231 return -EAGAIN;
232 /* no ->get_acl() calls in RCU mode... */
233 if (acl == ACL_NOT_CACHED)
234 return -ECHILD;
235 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
236 }
237
238 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
239
240 /*
241 * A filesystem can force a ACL callback by just never filling the
242 * ACL cache. But normally you'd fill the cache either at inode
243 * instantiation time, or on the first ->get_acl call.
244 *
245 * If the filesystem doesn't have a get_acl() function at all, we'll
246 * just create the negative cache entry.
247 */
248 if (acl == ACL_NOT_CACHED) {
249 if (inode->i_op->get_acl) {
250 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
251 if (IS_ERR(acl))
252 return PTR_ERR(acl);
253 } else {
254 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
255 return -EAGAIN;
256 }
257 }
258
259 if (acl) {
260 int error = posix_acl_permission(inode, acl, mask);
261 posix_acl_release(acl);
262 return error;
263 }
264 #endif
265
266 return -EAGAIN;
267 }
268
269 /*
270 * This does the basic permission checking
271 */
272 static int acl_permission_check(struct inode *inode, int mask)
273 {
274 unsigned int mode = inode->i_mode;
275
276 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
277 mode >>= 6;
278 else {
279 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
280 int error = check_acl(inode, mask);
281 if (error != -EAGAIN)
282 return error;
283 }
284
285 if (in_group_p(inode->i_gid))
286 mode >>= 3;
287 }
288
289 /*
290 * If the DACs are ok we don't need any capability check.
291 */
292 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
293 return 0;
294 return -EACCES;
295 }
296
297 /**
298 * generic_permission - check for access rights on a Posix-like filesystem
299 * @inode: inode to check access rights for
300 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
301 *
302 * Used to check for read/write/execute permissions on a file.
303 * We use "fsuid" for this, letting us set arbitrary permissions
304 * for filesystem access without changing the "normal" uids which
305 * are used for other things.
306 *
307 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
308 * request cannot be satisfied (eg. requires blocking or too much complexity).
309 * It would then be called again in ref-walk mode.
310 */
311 int generic_permission(struct inode *inode, int mask)
312 {
313 int ret;
314
315 /*
316 * Do the basic permission checks.
317 */
318 ret = acl_permission_check(inode, mask);
319 if (ret != -EACCES)
320 return ret;
321
322 if (S_ISDIR(inode->i_mode)) {
323 /* DACs are overridable for directories */
324 if (inode_capable(inode, CAP_DAC_OVERRIDE))
325 return 0;
326 if (!(mask & MAY_WRITE))
327 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
328 return 0;
329 return -EACCES;
330 }
331 /*
332 * Read/write DACs are always overridable.
333 * Executable DACs are overridable when there is
334 * at least one exec bit set.
335 */
336 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
337 if (inode_capable(inode, CAP_DAC_OVERRIDE))
338 return 0;
339
340 /*
341 * Searching includes executable on directories, else just read.
342 */
343 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
344 if (mask == MAY_READ)
345 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
346 return 0;
347
348 return -EACCES;
349 }
350
351 /*
352 * We _really_ want to just do "generic_permission()" without
353 * even looking at the inode->i_op values. So we keep a cache
354 * flag in inode->i_opflags, that says "this has not special
355 * permission function, use the fast case".
356 */
357 static inline int do_inode_permission(struct inode *inode, int mask)
358 {
359 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
360 if (likely(inode->i_op->permission))
361 return inode->i_op->permission(inode, mask);
362
363 /* This gets set once for the inode lifetime */
364 spin_lock(&inode->i_lock);
365 inode->i_opflags |= IOP_FASTPERM;
366 spin_unlock(&inode->i_lock);
367 }
368 return generic_permission(inode, mask);
369 }
370
371 /**
372 * __inode_permission - Check for access rights to a given inode
373 * @inode: Inode to check permission on
374 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
375 *
376 * Check for read/write/execute permissions on an inode.
377 *
378 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
379 *
380 * This does not check for a read-only file system. You probably want
381 * inode_permission().
382 */
383 int __inode_permission(struct inode *inode, int mask)
384 {
385 int retval;
386
387 if (unlikely(mask & MAY_WRITE)) {
388 /*
389 * Nobody gets write access to an immutable file.
390 */
391 if (IS_IMMUTABLE(inode))
392 return -EACCES;
393 }
394
395 retval = do_inode_permission(inode, mask);
396 if (retval)
397 return retval;
398
399 retval = devcgroup_inode_permission(inode, mask);
400 if (retval)
401 return retval;
402
403 return security_inode_permission(inode, mask);
404 }
405
406 /**
407 * sb_permission - Check superblock-level permissions
408 * @sb: Superblock of inode to check permission on
409 * @inode: Inode to check permission on
410 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
411 *
412 * Separate out file-system wide checks from inode-specific permission checks.
413 */
414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
415 {
416 if (unlikely(mask & MAY_WRITE)) {
417 umode_t mode = inode->i_mode;
418
419 /* Nobody gets write access to a read-only fs. */
420 if ((sb->s_flags & MS_RDONLY) &&
421 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
422 return -EROFS;
423 }
424 return 0;
425 }
426
427 /**
428 * inode_permission - Check for access rights to a given inode
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
433 * this, letting us set arbitrary permissions for filesystem access without
434 * changing the "normal" UIDs which are used for other things.
435 *
436 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
437 */
438 int inode_permission(struct inode *inode, int mask)
439 {
440 int retval;
441
442 retval = sb_permission(inode->i_sb, inode, mask);
443 if (retval)
444 return retval;
445 return __inode_permission(inode, mask);
446 }
447
448 /**
449 * path_get - get a reference to a path
450 * @path: path to get the reference to
451 *
452 * Given a path increment the reference count to the dentry and the vfsmount.
453 */
454 void path_get(const struct path *path)
455 {
456 mntget(path->mnt);
457 dget(path->dentry);
458 }
459 EXPORT_SYMBOL(path_get);
460
461 /**
462 * path_put - put a reference to a path
463 * @path: path to put the reference to
464 *
465 * Given a path decrement the reference count to the dentry and the vfsmount.
466 */
467 void path_put(const struct path *path)
468 {
469 dput(path->dentry);
470 mntput(path->mnt);
471 }
472 EXPORT_SYMBOL(path_put);
473
474 /*
475 * Path walking has 2 modes, rcu-walk and ref-walk (see
476 * Documentation/filesystems/path-lookup.txt). In situations when we can't
477 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
478 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
479 * mode. Refcounts are grabbed at the last known good point before rcu-walk
480 * got stuck, so ref-walk may continue from there. If this is not successful
481 * (eg. a seqcount has changed), then failure is returned and it's up to caller
482 * to restart the path walk from the beginning in ref-walk mode.
483 */
484
485 static inline void lock_rcu_walk(void)
486 {
487 br_read_lock(&vfsmount_lock);
488 rcu_read_lock();
489 }
490
491 static inline void unlock_rcu_walk(void)
492 {
493 rcu_read_unlock();
494 br_read_unlock(&vfsmount_lock);
495 }
496
497 /*
498 * When we move over from the RCU domain to properly refcounted
499 * long-lived dentries, we need to check the sequence numbers
500 * we got before lookup very carefully.
501 *
502 * We cannot blindly increment a dentry refcount - even if it
503 * is not locked - if it is zero, because it may have gone
504 * through the final d_kill() logic already.
505 *
506 * So for a zero refcount, we need to get the spinlock (which is
507 * safe even for a dead dentry because the de-allocation is
508 * RCU-delayed), and check the sequence count under the lock.
509 *
510 * Once we have checked the sequence count, we know it is live,
511 * and since we hold the spinlock it cannot die from under us.
512 *
513 * In contrast, if the reference count wasn't zero, we can just
514 * increment the lockref without having to take the spinlock.
515 * Even if the sequence number ends up being stale, we haven't
516 * gone through the final dput() and killed the dentry yet.
517 */
518 static inline int d_rcu_to_refcount(struct dentry *dentry, seqcount_t *validate, unsigned seq)
519 {
520 int gotref;
521
522 gotref = lockref_get_or_lock(&dentry->d_lockref);
523
524 /* Does the sequence number still match? */
525 if (read_seqcount_retry(validate, seq)) {
526 if (gotref)
527 dput(dentry);
528 else
529 spin_unlock(&dentry->d_lock);
530 return -ECHILD;
531 }
532
533 /* Get the ref now, if we couldn't get it originally */
534 if (!gotref) {
535 dentry->d_lockref.count++;
536 spin_unlock(&dentry->d_lock);
537 }
538 return 0;
539 }
540
541 /**
542 * unlazy_walk - try to switch to ref-walk mode.
543 * @nd: nameidata pathwalk data
544 * @dentry: child of nd->path.dentry or NULL
545 * Returns: 0 on success, -ECHILD on failure
546 *
547 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
548 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
549 * @nd or NULL. Must be called from rcu-walk context.
550 */
551 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
552 {
553 struct fs_struct *fs = current->fs;
554 struct dentry *parent = nd->path.dentry;
555 int want_root = 0;
556
557 BUG_ON(!(nd->flags & LOOKUP_RCU));
558 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
559 want_root = 1;
560 spin_lock(&fs->lock);
561 if (nd->root.mnt != fs->root.mnt ||
562 nd->root.dentry != fs->root.dentry)
563 goto err_root;
564 }
565
566 /*
567 * For a negative lookup, the lookup sequence point is the parents
568 * sequence point, and it only needs to revalidate the parent dentry.
569 *
570 * For a positive lookup, we need to move both the parent and the
571 * dentry from the RCU domain to be properly refcounted. And the
572 * sequence number in the dentry validates *both* dentry counters,
573 * since we checked the sequence number of the parent after we got
574 * the child sequence number. So we know the parent must still
575 * be valid if the child sequence number is still valid.
576 */
577 if (!dentry) {
578 if (d_rcu_to_refcount(parent, &parent->d_seq, nd->seq) < 0)
579 goto err_root;
580 BUG_ON(nd->inode != parent->d_inode);
581 } else {
582 if (d_rcu_to_refcount(dentry, &dentry->d_seq, nd->seq) < 0)
583 goto err_root;
584 if (d_rcu_to_refcount(parent, &dentry->d_seq, nd->seq) < 0)
585 goto err_parent;
586 }
587 if (want_root) {
588 path_get(&nd->root);
589 spin_unlock(&fs->lock);
590 }
591 mntget(nd->path.mnt);
592
593 unlock_rcu_walk();
594 nd->flags &= ~LOOKUP_RCU;
595 return 0;
596
597 err_parent:
598 dput(dentry);
599 err_root:
600 if (want_root)
601 spin_unlock(&fs->lock);
602 return -ECHILD;
603 }
604
605 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
606 {
607 return dentry->d_op->d_revalidate(dentry, flags);
608 }
609
610 /**
611 * complete_walk - successful completion of path walk
612 * @nd: pointer nameidata
613 *
614 * If we had been in RCU mode, drop out of it and legitimize nd->path.
615 * Revalidate the final result, unless we'd already done that during
616 * the path walk or the filesystem doesn't ask for it. Return 0 on
617 * success, -error on failure. In case of failure caller does not
618 * need to drop nd->path.
619 */
620 static int complete_walk(struct nameidata *nd)
621 {
622 struct dentry *dentry = nd->path.dentry;
623 int status;
624
625 if (nd->flags & LOOKUP_RCU) {
626 nd->flags &= ~LOOKUP_RCU;
627 if (!(nd->flags & LOOKUP_ROOT))
628 nd->root.mnt = NULL;
629
630 if (d_rcu_to_refcount(dentry, &dentry->d_seq, nd->seq) < 0) {
631 unlock_rcu_walk();
632 return -ECHILD;
633 }
634 mntget(nd->path.mnt);
635 unlock_rcu_walk();
636 }
637
638 if (likely(!(nd->flags & LOOKUP_JUMPED)))
639 return 0;
640
641 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
642 return 0;
643
644 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
645 if (status > 0)
646 return 0;
647
648 if (!status)
649 status = -ESTALE;
650
651 path_put(&nd->path);
652 return status;
653 }
654
655 static __always_inline void set_root(struct nameidata *nd)
656 {
657 if (!nd->root.mnt)
658 get_fs_root(current->fs, &nd->root);
659 }
660
661 static int link_path_walk(const char *, struct nameidata *);
662
663 static __always_inline void set_root_rcu(struct nameidata *nd)
664 {
665 if (!nd->root.mnt) {
666 struct fs_struct *fs = current->fs;
667 unsigned seq;
668
669 do {
670 seq = read_seqcount_begin(&fs->seq);
671 nd->root = fs->root;
672 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
673 } while (read_seqcount_retry(&fs->seq, seq));
674 }
675 }
676
677 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
678 {
679 int ret;
680
681 if (IS_ERR(link))
682 goto fail;
683
684 if (*link == '/') {
685 set_root(nd);
686 path_put(&nd->path);
687 nd->path = nd->root;
688 path_get(&nd->root);
689 nd->flags |= LOOKUP_JUMPED;
690 }
691 nd->inode = nd->path.dentry->d_inode;
692
693 ret = link_path_walk(link, nd);
694 return ret;
695 fail:
696 path_put(&nd->path);
697 return PTR_ERR(link);
698 }
699
700 static void path_put_conditional(struct path *path, struct nameidata *nd)
701 {
702 dput(path->dentry);
703 if (path->mnt != nd->path.mnt)
704 mntput(path->mnt);
705 }
706
707 static inline void path_to_nameidata(const struct path *path,
708 struct nameidata *nd)
709 {
710 if (!(nd->flags & LOOKUP_RCU)) {
711 dput(nd->path.dentry);
712 if (nd->path.mnt != path->mnt)
713 mntput(nd->path.mnt);
714 }
715 nd->path.mnt = path->mnt;
716 nd->path.dentry = path->dentry;
717 }
718
719 /*
720 * Helper to directly jump to a known parsed path from ->follow_link,
721 * caller must have taken a reference to path beforehand.
722 */
723 void nd_jump_link(struct nameidata *nd, struct path *path)
724 {
725 path_put(&nd->path);
726
727 nd->path = *path;
728 nd->inode = nd->path.dentry->d_inode;
729 nd->flags |= LOOKUP_JUMPED;
730 }
731
732 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
733 {
734 struct inode *inode = link->dentry->d_inode;
735 if (inode->i_op->put_link)
736 inode->i_op->put_link(link->dentry, nd, cookie);
737 path_put(link);
738 }
739
740 int sysctl_protected_symlinks __read_mostly = 0;
741 int sysctl_protected_hardlinks __read_mostly = 0;
742
743 /**
744 * may_follow_link - Check symlink following for unsafe situations
745 * @link: The path of the symlink
746 * @nd: nameidata pathwalk data
747 *
748 * In the case of the sysctl_protected_symlinks sysctl being enabled,
749 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
750 * in a sticky world-writable directory. This is to protect privileged
751 * processes from failing races against path names that may change out
752 * from under them by way of other users creating malicious symlinks.
753 * It will permit symlinks to be followed only when outside a sticky
754 * world-writable directory, or when the uid of the symlink and follower
755 * match, or when the directory owner matches the symlink's owner.
756 *
757 * Returns 0 if following the symlink is allowed, -ve on error.
758 */
759 static inline int may_follow_link(struct path *link, struct nameidata *nd)
760 {
761 const struct inode *inode;
762 const struct inode *parent;
763
764 if (!sysctl_protected_symlinks)
765 return 0;
766
767 /* Allowed if owner and follower match. */
768 inode = link->dentry->d_inode;
769 if (uid_eq(current_cred()->fsuid, inode->i_uid))
770 return 0;
771
772 /* Allowed if parent directory not sticky and world-writable. */
773 parent = nd->path.dentry->d_inode;
774 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
775 return 0;
776
777 /* Allowed if parent directory and link owner match. */
778 if (uid_eq(parent->i_uid, inode->i_uid))
779 return 0;
780
781 audit_log_link_denied("follow_link", link);
782 path_put_conditional(link, nd);
783 path_put(&nd->path);
784 return -EACCES;
785 }
786
787 /**
788 * safe_hardlink_source - Check for safe hardlink conditions
789 * @inode: the source inode to hardlink from
790 *
791 * Return false if at least one of the following conditions:
792 * - inode is not a regular file
793 * - inode is setuid
794 * - inode is setgid and group-exec
795 * - access failure for read and write
796 *
797 * Otherwise returns true.
798 */
799 static bool safe_hardlink_source(struct inode *inode)
800 {
801 umode_t mode = inode->i_mode;
802
803 /* Special files should not get pinned to the filesystem. */
804 if (!S_ISREG(mode))
805 return false;
806
807 /* Setuid files should not get pinned to the filesystem. */
808 if (mode & S_ISUID)
809 return false;
810
811 /* Executable setgid files should not get pinned to the filesystem. */
812 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
813 return false;
814
815 /* Hardlinking to unreadable or unwritable sources is dangerous. */
816 if (inode_permission(inode, MAY_READ | MAY_WRITE))
817 return false;
818
819 return true;
820 }
821
822 /**
823 * may_linkat - Check permissions for creating a hardlink
824 * @link: the source to hardlink from
825 *
826 * Block hardlink when all of:
827 * - sysctl_protected_hardlinks enabled
828 * - fsuid does not match inode
829 * - hardlink source is unsafe (see safe_hardlink_source() above)
830 * - not CAP_FOWNER
831 *
832 * Returns 0 if successful, -ve on error.
833 */
834 static int may_linkat(struct path *link)
835 {
836 const struct cred *cred;
837 struct inode *inode;
838
839 if (!sysctl_protected_hardlinks)
840 return 0;
841
842 cred = current_cred();
843 inode = link->dentry->d_inode;
844
845 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
846 * otherwise, it must be a safe source.
847 */
848 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
849 capable(CAP_FOWNER))
850 return 0;
851
852 audit_log_link_denied("linkat", link);
853 return -EPERM;
854 }
855
856 static __always_inline int
857 follow_link(struct path *link, struct nameidata *nd, void **p)
858 {
859 struct dentry *dentry = link->dentry;
860 int error;
861 char *s;
862
863 BUG_ON(nd->flags & LOOKUP_RCU);
864
865 if (link->mnt == nd->path.mnt)
866 mntget(link->mnt);
867
868 error = -ELOOP;
869 if (unlikely(current->total_link_count >= 40))
870 goto out_put_nd_path;
871
872 cond_resched();
873 current->total_link_count++;
874
875 touch_atime(link);
876 nd_set_link(nd, NULL);
877
878 error = security_inode_follow_link(link->dentry, nd);
879 if (error)
880 goto out_put_nd_path;
881
882 nd->last_type = LAST_BIND;
883 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
884 error = PTR_ERR(*p);
885 if (IS_ERR(*p))
886 goto out_put_nd_path;
887
888 error = 0;
889 s = nd_get_link(nd);
890 if (s) {
891 error = __vfs_follow_link(nd, s);
892 if (unlikely(error))
893 put_link(nd, link, *p);
894 }
895
896 return error;
897
898 out_put_nd_path:
899 *p = NULL;
900 path_put(&nd->path);
901 path_put(link);
902 return error;
903 }
904
905 static int follow_up_rcu(struct path *path)
906 {
907 struct mount *mnt = real_mount(path->mnt);
908 struct mount *parent;
909 struct dentry *mountpoint;
910
911 parent = mnt->mnt_parent;
912 if (&parent->mnt == path->mnt)
913 return 0;
914 mountpoint = mnt->mnt_mountpoint;
915 path->dentry = mountpoint;
916 path->mnt = &parent->mnt;
917 return 1;
918 }
919
920 /*
921 * follow_up - Find the mountpoint of path's vfsmount
922 *
923 * Given a path, find the mountpoint of its source file system.
924 * Replace @path with the path of the mountpoint in the parent mount.
925 * Up is towards /.
926 *
927 * Return 1 if we went up a level and 0 if we were already at the
928 * root.
929 */
930 int follow_up(struct path *path)
931 {
932 struct mount *mnt = real_mount(path->mnt);
933 struct mount *parent;
934 struct dentry *mountpoint;
935
936 br_read_lock(&vfsmount_lock);
937 parent = mnt->mnt_parent;
938 if (parent == mnt) {
939 br_read_unlock(&vfsmount_lock);
940 return 0;
941 }
942 mntget(&parent->mnt);
943 mountpoint = dget(mnt->mnt_mountpoint);
944 br_read_unlock(&vfsmount_lock);
945 dput(path->dentry);
946 path->dentry = mountpoint;
947 mntput(path->mnt);
948 path->mnt = &parent->mnt;
949 return 1;
950 }
951
952 /*
953 * Perform an automount
954 * - return -EISDIR to tell follow_managed() to stop and return the path we
955 * were called with.
956 */
957 static int follow_automount(struct path *path, unsigned flags,
958 bool *need_mntput)
959 {
960 struct vfsmount *mnt;
961 int err;
962
963 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
964 return -EREMOTE;
965
966 /* We don't want to mount if someone's just doing a stat -
967 * unless they're stat'ing a directory and appended a '/' to
968 * the name.
969 *
970 * We do, however, want to mount if someone wants to open or
971 * create a file of any type under the mountpoint, wants to
972 * traverse through the mountpoint or wants to open the
973 * mounted directory. Also, autofs may mark negative dentries
974 * as being automount points. These will need the attentions
975 * of the daemon to instantiate them before they can be used.
976 */
977 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
978 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
979 path->dentry->d_inode)
980 return -EISDIR;
981
982 current->total_link_count++;
983 if (current->total_link_count >= 40)
984 return -ELOOP;
985
986 mnt = path->dentry->d_op->d_automount(path);
987 if (IS_ERR(mnt)) {
988 /*
989 * The filesystem is allowed to return -EISDIR here to indicate
990 * it doesn't want to automount. For instance, autofs would do
991 * this so that its userspace daemon can mount on this dentry.
992 *
993 * However, we can only permit this if it's a terminal point in
994 * the path being looked up; if it wasn't then the remainder of
995 * the path is inaccessible and we should say so.
996 */
997 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
998 return -EREMOTE;
999 return PTR_ERR(mnt);
1000 }
1001
1002 if (!mnt) /* mount collision */
1003 return 0;
1004
1005 if (!*need_mntput) {
1006 /* lock_mount() may release path->mnt on error */
1007 mntget(path->mnt);
1008 *need_mntput = true;
1009 }
1010 err = finish_automount(mnt, path);
1011
1012 switch (err) {
1013 case -EBUSY:
1014 /* Someone else made a mount here whilst we were busy */
1015 return 0;
1016 case 0:
1017 path_put(path);
1018 path->mnt = mnt;
1019 path->dentry = dget(mnt->mnt_root);
1020 return 0;
1021 default:
1022 return err;
1023 }
1024
1025 }
1026
1027 /*
1028 * Handle a dentry that is managed in some way.
1029 * - Flagged for transit management (autofs)
1030 * - Flagged as mountpoint
1031 * - Flagged as automount point
1032 *
1033 * This may only be called in refwalk mode.
1034 *
1035 * Serialization is taken care of in namespace.c
1036 */
1037 static int follow_managed(struct path *path, unsigned flags)
1038 {
1039 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1040 unsigned managed;
1041 bool need_mntput = false;
1042 int ret = 0;
1043
1044 /* Given that we're not holding a lock here, we retain the value in a
1045 * local variable for each dentry as we look at it so that we don't see
1046 * the components of that value change under us */
1047 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1048 managed &= DCACHE_MANAGED_DENTRY,
1049 unlikely(managed != 0)) {
1050 /* Allow the filesystem to manage the transit without i_mutex
1051 * being held. */
1052 if (managed & DCACHE_MANAGE_TRANSIT) {
1053 BUG_ON(!path->dentry->d_op);
1054 BUG_ON(!path->dentry->d_op->d_manage);
1055 ret = path->dentry->d_op->d_manage(path->dentry, false);
1056 if (ret < 0)
1057 break;
1058 }
1059
1060 /* Transit to a mounted filesystem. */
1061 if (managed & DCACHE_MOUNTED) {
1062 struct vfsmount *mounted = lookup_mnt(path);
1063 if (mounted) {
1064 dput(path->dentry);
1065 if (need_mntput)
1066 mntput(path->mnt);
1067 path->mnt = mounted;
1068 path->dentry = dget(mounted->mnt_root);
1069 need_mntput = true;
1070 continue;
1071 }
1072
1073 /* Something is mounted on this dentry in another
1074 * namespace and/or whatever was mounted there in this
1075 * namespace got unmounted before we managed to get the
1076 * vfsmount_lock */
1077 }
1078
1079 /* Handle an automount point */
1080 if (managed & DCACHE_NEED_AUTOMOUNT) {
1081 ret = follow_automount(path, flags, &need_mntput);
1082 if (ret < 0)
1083 break;
1084 continue;
1085 }
1086
1087 /* We didn't change the current path point */
1088 break;
1089 }
1090
1091 if (need_mntput && path->mnt == mnt)
1092 mntput(path->mnt);
1093 if (ret == -EISDIR)
1094 ret = 0;
1095 return ret < 0 ? ret : need_mntput;
1096 }
1097
1098 int follow_down_one(struct path *path)
1099 {
1100 struct vfsmount *mounted;
1101
1102 mounted = lookup_mnt(path);
1103 if (mounted) {
1104 dput(path->dentry);
1105 mntput(path->mnt);
1106 path->mnt = mounted;
1107 path->dentry = dget(mounted->mnt_root);
1108 return 1;
1109 }
1110 return 0;
1111 }
1112
1113 static inline bool managed_dentry_might_block(struct dentry *dentry)
1114 {
1115 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1116 dentry->d_op->d_manage(dentry, true) < 0);
1117 }
1118
1119 /*
1120 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1121 * we meet a managed dentry that would need blocking.
1122 */
1123 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1124 struct inode **inode)
1125 {
1126 for (;;) {
1127 struct mount *mounted;
1128 /*
1129 * Don't forget we might have a non-mountpoint managed dentry
1130 * that wants to block transit.
1131 */
1132 if (unlikely(managed_dentry_might_block(path->dentry)))
1133 return false;
1134
1135 if (!d_mountpoint(path->dentry))
1136 break;
1137
1138 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1139 if (!mounted)
1140 break;
1141 path->mnt = &mounted->mnt;
1142 path->dentry = mounted->mnt.mnt_root;
1143 nd->flags |= LOOKUP_JUMPED;
1144 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1145 /*
1146 * Update the inode too. We don't need to re-check the
1147 * dentry sequence number here after this d_inode read,
1148 * because a mount-point is always pinned.
1149 */
1150 *inode = path->dentry->d_inode;
1151 }
1152 return true;
1153 }
1154
1155 static void follow_mount_rcu(struct nameidata *nd)
1156 {
1157 while (d_mountpoint(nd->path.dentry)) {
1158 struct mount *mounted;
1159 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1160 if (!mounted)
1161 break;
1162 nd->path.mnt = &mounted->mnt;
1163 nd->path.dentry = mounted->mnt.mnt_root;
1164 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1165 }
1166 }
1167
1168 static int follow_dotdot_rcu(struct nameidata *nd)
1169 {
1170 set_root_rcu(nd);
1171
1172 while (1) {
1173 if (nd->path.dentry == nd->root.dentry &&
1174 nd->path.mnt == nd->root.mnt) {
1175 break;
1176 }
1177 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1178 struct dentry *old = nd->path.dentry;
1179 struct dentry *parent = old->d_parent;
1180 unsigned seq;
1181
1182 seq = read_seqcount_begin(&parent->d_seq);
1183 if (read_seqcount_retry(&old->d_seq, nd->seq))
1184 goto failed;
1185 nd->path.dentry = parent;
1186 nd->seq = seq;
1187 break;
1188 }
1189 if (!follow_up_rcu(&nd->path))
1190 break;
1191 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1192 }
1193 follow_mount_rcu(nd);
1194 nd->inode = nd->path.dentry->d_inode;
1195 return 0;
1196
1197 failed:
1198 nd->flags &= ~LOOKUP_RCU;
1199 if (!(nd->flags & LOOKUP_ROOT))
1200 nd->root.mnt = NULL;
1201 unlock_rcu_walk();
1202 return -ECHILD;
1203 }
1204
1205 /*
1206 * Follow down to the covering mount currently visible to userspace. At each
1207 * point, the filesystem owning that dentry may be queried as to whether the
1208 * caller is permitted to proceed or not.
1209 */
1210 int follow_down(struct path *path)
1211 {
1212 unsigned managed;
1213 int ret;
1214
1215 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1216 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1217 /* Allow the filesystem to manage the transit without i_mutex
1218 * being held.
1219 *
1220 * We indicate to the filesystem if someone is trying to mount
1221 * something here. This gives autofs the chance to deny anyone
1222 * other than its daemon the right to mount on its
1223 * superstructure.
1224 *
1225 * The filesystem may sleep at this point.
1226 */
1227 if (managed & DCACHE_MANAGE_TRANSIT) {
1228 BUG_ON(!path->dentry->d_op);
1229 BUG_ON(!path->dentry->d_op->d_manage);
1230 ret = path->dentry->d_op->d_manage(
1231 path->dentry, false);
1232 if (ret < 0)
1233 return ret == -EISDIR ? 0 : ret;
1234 }
1235
1236 /* Transit to a mounted filesystem. */
1237 if (managed & DCACHE_MOUNTED) {
1238 struct vfsmount *mounted = lookup_mnt(path);
1239 if (!mounted)
1240 break;
1241 dput(path->dentry);
1242 mntput(path->mnt);
1243 path->mnt = mounted;
1244 path->dentry = dget(mounted->mnt_root);
1245 continue;
1246 }
1247
1248 /* Don't handle automount points here */
1249 break;
1250 }
1251 return 0;
1252 }
1253
1254 /*
1255 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1256 */
1257 static void follow_mount(struct path *path)
1258 {
1259 while (d_mountpoint(path->dentry)) {
1260 struct vfsmount *mounted = lookup_mnt(path);
1261 if (!mounted)
1262 break;
1263 dput(path->dentry);
1264 mntput(path->mnt);
1265 path->mnt = mounted;
1266 path->dentry = dget(mounted->mnt_root);
1267 }
1268 }
1269
1270 static void follow_dotdot(struct nameidata *nd)
1271 {
1272 set_root(nd);
1273
1274 while(1) {
1275 struct dentry *old = nd->path.dentry;
1276
1277 if (nd->path.dentry == nd->root.dentry &&
1278 nd->path.mnt == nd->root.mnt) {
1279 break;
1280 }
1281 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1282 /* rare case of legitimate dget_parent()... */
1283 nd->path.dentry = dget_parent(nd->path.dentry);
1284 dput(old);
1285 break;
1286 }
1287 if (!follow_up(&nd->path))
1288 break;
1289 }
1290 follow_mount(&nd->path);
1291 nd->inode = nd->path.dentry->d_inode;
1292 }
1293
1294 /*
1295 * This looks up the name in dcache, possibly revalidates the old dentry and
1296 * allocates a new one if not found or not valid. In the need_lookup argument
1297 * returns whether i_op->lookup is necessary.
1298 *
1299 * dir->d_inode->i_mutex must be held
1300 */
1301 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1302 unsigned int flags, bool *need_lookup)
1303 {
1304 struct dentry *dentry;
1305 int error;
1306
1307 *need_lookup = false;
1308 dentry = d_lookup(dir, name);
1309 if (dentry) {
1310 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1311 error = d_revalidate(dentry, flags);
1312 if (unlikely(error <= 0)) {
1313 if (error < 0) {
1314 dput(dentry);
1315 return ERR_PTR(error);
1316 } else if (!d_invalidate(dentry)) {
1317 dput(dentry);
1318 dentry = NULL;
1319 }
1320 }
1321 }
1322 }
1323
1324 if (!dentry) {
1325 dentry = d_alloc(dir, name);
1326 if (unlikely(!dentry))
1327 return ERR_PTR(-ENOMEM);
1328
1329 *need_lookup = true;
1330 }
1331 return dentry;
1332 }
1333
1334 /*
1335 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1336 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1337 *
1338 * dir->d_inode->i_mutex must be held
1339 */
1340 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1341 unsigned int flags)
1342 {
1343 struct dentry *old;
1344
1345 /* Don't create child dentry for a dead directory. */
1346 if (unlikely(IS_DEADDIR(dir))) {
1347 dput(dentry);
1348 return ERR_PTR(-ENOENT);
1349 }
1350
1351 old = dir->i_op->lookup(dir, dentry, flags);
1352 if (unlikely(old)) {
1353 dput(dentry);
1354 dentry = old;
1355 }
1356 return dentry;
1357 }
1358
1359 static struct dentry *__lookup_hash(struct qstr *name,
1360 struct dentry *base, unsigned int flags)
1361 {
1362 bool need_lookup;
1363 struct dentry *dentry;
1364
1365 dentry = lookup_dcache(name, base, flags, &need_lookup);
1366 if (!need_lookup)
1367 return dentry;
1368
1369 return lookup_real(base->d_inode, dentry, flags);
1370 }
1371
1372 /*
1373 * It's more convoluted than I'd like it to be, but... it's still fairly
1374 * small and for now I'd prefer to have fast path as straight as possible.
1375 * It _is_ time-critical.
1376 */
1377 static int lookup_fast(struct nameidata *nd,
1378 struct path *path, struct inode **inode)
1379 {
1380 struct vfsmount *mnt = nd->path.mnt;
1381 struct dentry *dentry, *parent = nd->path.dentry;
1382 int need_reval = 1;
1383 int status = 1;
1384 int err;
1385
1386 /*
1387 * Rename seqlock is not required here because in the off chance
1388 * of a false negative due to a concurrent rename, we're going to
1389 * do the non-racy lookup, below.
1390 */
1391 if (nd->flags & LOOKUP_RCU) {
1392 unsigned seq;
1393 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1394 if (!dentry)
1395 goto unlazy;
1396
1397 /*
1398 * This sequence count validates that the inode matches
1399 * the dentry name information from lookup.
1400 */
1401 *inode = dentry->d_inode;
1402 if (read_seqcount_retry(&dentry->d_seq, seq))
1403 return -ECHILD;
1404
1405 /*
1406 * This sequence count validates that the parent had no
1407 * changes while we did the lookup of the dentry above.
1408 *
1409 * The memory barrier in read_seqcount_begin of child is
1410 * enough, we can use __read_seqcount_retry here.
1411 */
1412 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1413 return -ECHILD;
1414 nd->seq = seq;
1415
1416 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1417 status = d_revalidate(dentry, nd->flags);
1418 if (unlikely(status <= 0)) {
1419 if (status != -ECHILD)
1420 need_reval = 0;
1421 goto unlazy;
1422 }
1423 }
1424 path->mnt = mnt;
1425 path->dentry = dentry;
1426 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1427 goto unlazy;
1428 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1429 goto unlazy;
1430 return 0;
1431 unlazy:
1432 if (unlazy_walk(nd, dentry))
1433 return -ECHILD;
1434 } else {
1435 dentry = __d_lookup(parent, &nd->last);
1436 }
1437
1438 if (unlikely(!dentry))
1439 goto need_lookup;
1440
1441 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1442 status = d_revalidate(dentry, nd->flags);
1443 if (unlikely(status <= 0)) {
1444 if (status < 0) {
1445 dput(dentry);
1446 return status;
1447 }
1448 if (!d_invalidate(dentry)) {
1449 dput(dentry);
1450 goto need_lookup;
1451 }
1452 }
1453
1454 path->mnt = mnt;
1455 path->dentry = dentry;
1456 err = follow_managed(path, nd->flags);
1457 if (unlikely(err < 0)) {
1458 path_put_conditional(path, nd);
1459 return err;
1460 }
1461 if (err)
1462 nd->flags |= LOOKUP_JUMPED;
1463 *inode = path->dentry->d_inode;
1464 return 0;
1465
1466 need_lookup:
1467 return 1;
1468 }
1469
1470 /* Fast lookup failed, do it the slow way */
1471 static int lookup_slow(struct nameidata *nd, struct path *path)
1472 {
1473 struct dentry *dentry, *parent;
1474 int err;
1475
1476 parent = nd->path.dentry;
1477 BUG_ON(nd->inode != parent->d_inode);
1478
1479 mutex_lock(&parent->d_inode->i_mutex);
1480 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1481 mutex_unlock(&parent->d_inode->i_mutex);
1482 if (IS_ERR(dentry))
1483 return PTR_ERR(dentry);
1484 path->mnt = nd->path.mnt;
1485 path->dentry = dentry;
1486 err = follow_managed(path, nd->flags);
1487 if (unlikely(err < 0)) {
1488 path_put_conditional(path, nd);
1489 return err;
1490 }
1491 if (err)
1492 nd->flags |= LOOKUP_JUMPED;
1493 return 0;
1494 }
1495
1496 static inline int may_lookup(struct nameidata *nd)
1497 {
1498 if (nd->flags & LOOKUP_RCU) {
1499 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1500 if (err != -ECHILD)
1501 return err;
1502 if (unlazy_walk(nd, NULL))
1503 return -ECHILD;
1504 }
1505 return inode_permission(nd->inode, MAY_EXEC);
1506 }
1507
1508 static inline int handle_dots(struct nameidata *nd, int type)
1509 {
1510 if (type == LAST_DOTDOT) {
1511 if (nd->flags & LOOKUP_RCU) {
1512 if (follow_dotdot_rcu(nd))
1513 return -ECHILD;
1514 } else
1515 follow_dotdot(nd);
1516 }
1517 return 0;
1518 }
1519
1520 static void terminate_walk(struct nameidata *nd)
1521 {
1522 if (!(nd->flags & LOOKUP_RCU)) {
1523 path_put(&nd->path);
1524 } else {
1525 nd->flags &= ~LOOKUP_RCU;
1526 if (!(nd->flags & LOOKUP_ROOT))
1527 nd->root.mnt = NULL;
1528 unlock_rcu_walk();
1529 }
1530 }
1531
1532 /*
1533 * Do we need to follow links? We _really_ want to be able
1534 * to do this check without having to look at inode->i_op,
1535 * so we keep a cache of "no, this doesn't need follow_link"
1536 * for the common case.
1537 */
1538 static inline int should_follow_link(struct inode *inode, int follow)
1539 {
1540 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1541 if (likely(inode->i_op->follow_link))
1542 return follow;
1543
1544 /* This gets set once for the inode lifetime */
1545 spin_lock(&inode->i_lock);
1546 inode->i_opflags |= IOP_NOFOLLOW;
1547 spin_unlock(&inode->i_lock);
1548 }
1549 return 0;
1550 }
1551
1552 static inline int walk_component(struct nameidata *nd, struct path *path,
1553 int follow)
1554 {
1555 struct inode *inode;
1556 int err;
1557 /*
1558 * "." and ".." are special - ".." especially so because it has
1559 * to be able to know about the current root directory and
1560 * parent relationships.
1561 */
1562 if (unlikely(nd->last_type != LAST_NORM))
1563 return handle_dots(nd, nd->last_type);
1564 err = lookup_fast(nd, path, &inode);
1565 if (unlikely(err)) {
1566 if (err < 0)
1567 goto out_err;
1568
1569 err = lookup_slow(nd, path);
1570 if (err < 0)
1571 goto out_err;
1572
1573 inode = path->dentry->d_inode;
1574 }
1575 err = -ENOENT;
1576 if (!inode)
1577 goto out_path_put;
1578
1579 if (should_follow_link(inode, follow)) {
1580 if (nd->flags & LOOKUP_RCU) {
1581 if (unlikely(unlazy_walk(nd, path->dentry))) {
1582 err = -ECHILD;
1583 goto out_err;
1584 }
1585 }
1586 BUG_ON(inode != path->dentry->d_inode);
1587 return 1;
1588 }
1589 path_to_nameidata(path, nd);
1590 nd->inode = inode;
1591 return 0;
1592
1593 out_path_put:
1594 path_to_nameidata(path, nd);
1595 out_err:
1596 terminate_walk(nd);
1597 return err;
1598 }
1599
1600 /*
1601 * This limits recursive symlink follows to 8, while
1602 * limiting consecutive symlinks to 40.
1603 *
1604 * Without that kind of total limit, nasty chains of consecutive
1605 * symlinks can cause almost arbitrarily long lookups.
1606 */
1607 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1608 {
1609 int res;
1610
1611 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1612 path_put_conditional(path, nd);
1613 path_put(&nd->path);
1614 return -ELOOP;
1615 }
1616 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1617
1618 nd->depth++;
1619 current->link_count++;
1620
1621 do {
1622 struct path link = *path;
1623 void *cookie;
1624
1625 res = follow_link(&link, nd, &cookie);
1626 if (res)
1627 break;
1628 res = walk_component(nd, path, LOOKUP_FOLLOW);
1629 put_link(nd, &link, cookie);
1630 } while (res > 0);
1631
1632 current->link_count--;
1633 nd->depth--;
1634 return res;
1635 }
1636
1637 /*
1638 * We really don't want to look at inode->i_op->lookup
1639 * when we don't have to. So we keep a cache bit in
1640 * the inode ->i_opflags field that says "yes, we can
1641 * do lookup on this inode".
1642 */
1643 static inline int can_lookup(struct inode *inode)
1644 {
1645 if (likely(inode->i_opflags & IOP_LOOKUP))
1646 return 1;
1647 if (likely(!inode->i_op->lookup))
1648 return 0;
1649
1650 /* We do this once for the lifetime of the inode */
1651 spin_lock(&inode->i_lock);
1652 inode->i_opflags |= IOP_LOOKUP;
1653 spin_unlock(&inode->i_lock);
1654 return 1;
1655 }
1656
1657 /*
1658 * We can do the critical dentry name comparison and hashing
1659 * operations one word at a time, but we are limited to:
1660 *
1661 * - Architectures with fast unaligned word accesses. We could
1662 * do a "get_unaligned()" if this helps and is sufficiently
1663 * fast.
1664 *
1665 * - Little-endian machines (so that we can generate the mask
1666 * of low bytes efficiently). Again, we *could* do a byte
1667 * swapping load on big-endian architectures if that is not
1668 * expensive enough to make the optimization worthless.
1669 *
1670 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1671 * do not trap on the (extremely unlikely) case of a page
1672 * crossing operation.
1673 *
1674 * - Furthermore, we need an efficient 64-bit compile for the
1675 * 64-bit case in order to generate the "number of bytes in
1676 * the final mask". Again, that could be replaced with a
1677 * efficient population count instruction or similar.
1678 */
1679 #ifdef CONFIG_DCACHE_WORD_ACCESS
1680
1681 #include <asm/word-at-a-time.h>
1682
1683 #ifdef CONFIG_64BIT
1684
1685 static inline unsigned int fold_hash(unsigned long hash)
1686 {
1687 hash += hash >> (8*sizeof(int));
1688 return hash;
1689 }
1690
1691 #else /* 32-bit case */
1692
1693 #define fold_hash(x) (x)
1694
1695 #endif
1696
1697 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1698 {
1699 unsigned long a, mask;
1700 unsigned long hash = 0;
1701
1702 for (;;) {
1703 a = load_unaligned_zeropad(name);
1704 if (len < sizeof(unsigned long))
1705 break;
1706 hash += a;
1707 hash *= 9;
1708 name += sizeof(unsigned long);
1709 len -= sizeof(unsigned long);
1710 if (!len)
1711 goto done;
1712 }
1713 mask = ~(~0ul << len*8);
1714 hash += mask & a;
1715 done:
1716 return fold_hash(hash);
1717 }
1718 EXPORT_SYMBOL(full_name_hash);
1719
1720 /*
1721 * Calculate the length and hash of the path component, and
1722 * return the length of the component;
1723 */
1724 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1725 {
1726 unsigned long a, b, adata, bdata, mask, hash, len;
1727 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1728
1729 hash = a = 0;
1730 len = -sizeof(unsigned long);
1731 do {
1732 hash = (hash + a) * 9;
1733 len += sizeof(unsigned long);
1734 a = load_unaligned_zeropad(name+len);
1735 b = a ^ REPEAT_BYTE('/');
1736 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1737
1738 adata = prep_zero_mask(a, adata, &constants);
1739 bdata = prep_zero_mask(b, bdata, &constants);
1740
1741 mask = create_zero_mask(adata | bdata);
1742
1743 hash += a & zero_bytemask(mask);
1744 *hashp = fold_hash(hash);
1745
1746 return len + find_zero(mask);
1747 }
1748
1749 #else
1750
1751 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1752 {
1753 unsigned long hash = init_name_hash();
1754 while (len--)
1755 hash = partial_name_hash(*name++, hash);
1756 return end_name_hash(hash);
1757 }
1758 EXPORT_SYMBOL(full_name_hash);
1759
1760 /*
1761 * We know there's a real path component here of at least
1762 * one character.
1763 */
1764 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1765 {
1766 unsigned long hash = init_name_hash();
1767 unsigned long len = 0, c;
1768
1769 c = (unsigned char)*name;
1770 do {
1771 len++;
1772 hash = partial_name_hash(c, hash);
1773 c = (unsigned char)name[len];
1774 } while (c && c != '/');
1775 *hashp = end_name_hash(hash);
1776 return len;
1777 }
1778
1779 #endif
1780
1781 /*
1782 * Name resolution.
1783 * This is the basic name resolution function, turning a pathname into
1784 * the final dentry. We expect 'base' to be positive and a directory.
1785 *
1786 * Returns 0 and nd will have valid dentry and mnt on success.
1787 * Returns error and drops reference to input namei data on failure.
1788 */
1789 static int link_path_walk(const char *name, struct nameidata *nd)
1790 {
1791 struct path next;
1792 int err;
1793
1794 while (*name=='/')
1795 name++;
1796 if (!*name)
1797 return 0;
1798
1799 /* At this point we know we have a real path component. */
1800 for(;;) {
1801 struct qstr this;
1802 long len;
1803 int type;
1804
1805 err = may_lookup(nd);
1806 if (err)
1807 break;
1808
1809 len = hash_name(name, &this.hash);
1810 this.name = name;
1811 this.len = len;
1812
1813 type = LAST_NORM;
1814 if (name[0] == '.') switch (len) {
1815 case 2:
1816 if (name[1] == '.') {
1817 type = LAST_DOTDOT;
1818 nd->flags |= LOOKUP_JUMPED;
1819 }
1820 break;
1821 case 1:
1822 type = LAST_DOT;
1823 }
1824 if (likely(type == LAST_NORM)) {
1825 struct dentry *parent = nd->path.dentry;
1826 nd->flags &= ~LOOKUP_JUMPED;
1827 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1828 err = parent->d_op->d_hash(parent, &this);
1829 if (err < 0)
1830 break;
1831 }
1832 }
1833
1834 nd->last = this;
1835 nd->last_type = type;
1836
1837 if (!name[len])
1838 return 0;
1839 /*
1840 * If it wasn't NUL, we know it was '/'. Skip that
1841 * slash, and continue until no more slashes.
1842 */
1843 do {
1844 len++;
1845 } while (unlikely(name[len] == '/'));
1846 if (!name[len])
1847 return 0;
1848
1849 name += len;
1850
1851 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1852 if (err < 0)
1853 return err;
1854
1855 if (err) {
1856 err = nested_symlink(&next, nd);
1857 if (err)
1858 return err;
1859 }
1860 if (!can_lookup(nd->inode)) {
1861 err = -ENOTDIR;
1862 break;
1863 }
1864 }
1865 terminate_walk(nd);
1866 return err;
1867 }
1868
1869 static int path_init(int dfd, const char *name, unsigned int flags,
1870 struct nameidata *nd, struct file **fp)
1871 {
1872 int retval = 0;
1873
1874 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1875 nd->flags = flags | LOOKUP_JUMPED;
1876 nd->depth = 0;
1877 if (flags & LOOKUP_ROOT) {
1878 struct inode *inode = nd->root.dentry->d_inode;
1879 if (*name) {
1880 if (!can_lookup(inode))
1881 return -ENOTDIR;
1882 retval = inode_permission(inode, MAY_EXEC);
1883 if (retval)
1884 return retval;
1885 }
1886 nd->path = nd->root;
1887 nd->inode = inode;
1888 if (flags & LOOKUP_RCU) {
1889 lock_rcu_walk();
1890 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1891 } else {
1892 path_get(&nd->path);
1893 }
1894 return 0;
1895 }
1896
1897 nd->root.mnt = NULL;
1898
1899 if (*name=='/') {
1900 if (flags & LOOKUP_RCU) {
1901 lock_rcu_walk();
1902 set_root_rcu(nd);
1903 } else {
1904 set_root(nd);
1905 path_get(&nd->root);
1906 }
1907 nd->path = nd->root;
1908 } else if (dfd == AT_FDCWD) {
1909 if (flags & LOOKUP_RCU) {
1910 struct fs_struct *fs = current->fs;
1911 unsigned seq;
1912
1913 lock_rcu_walk();
1914
1915 do {
1916 seq = read_seqcount_begin(&fs->seq);
1917 nd->path = fs->pwd;
1918 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1919 } while (read_seqcount_retry(&fs->seq, seq));
1920 } else {
1921 get_fs_pwd(current->fs, &nd->path);
1922 }
1923 } else {
1924 /* Caller must check execute permissions on the starting path component */
1925 struct fd f = fdget_raw(dfd);
1926 struct dentry *dentry;
1927
1928 if (!f.file)
1929 return -EBADF;
1930
1931 dentry = f.file->f_path.dentry;
1932
1933 if (*name) {
1934 if (!can_lookup(dentry->d_inode)) {
1935 fdput(f);
1936 return -ENOTDIR;
1937 }
1938 }
1939
1940 nd->path = f.file->f_path;
1941 if (flags & LOOKUP_RCU) {
1942 if (f.need_put)
1943 *fp = f.file;
1944 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1945 lock_rcu_walk();
1946 } else {
1947 path_get(&nd->path);
1948 fdput(f);
1949 }
1950 }
1951
1952 nd->inode = nd->path.dentry->d_inode;
1953 return 0;
1954 }
1955
1956 static inline int lookup_last(struct nameidata *nd, struct path *path)
1957 {
1958 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1959 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1960
1961 nd->flags &= ~LOOKUP_PARENT;
1962 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1963 }
1964
1965 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1966 static int path_lookupat(int dfd, const char *name,
1967 unsigned int flags, struct nameidata *nd)
1968 {
1969 struct file *base = NULL;
1970 struct path path;
1971 int err;
1972
1973 /*
1974 * Path walking is largely split up into 2 different synchronisation
1975 * schemes, rcu-walk and ref-walk (explained in
1976 * Documentation/filesystems/path-lookup.txt). These share much of the
1977 * path walk code, but some things particularly setup, cleanup, and
1978 * following mounts are sufficiently divergent that functions are
1979 * duplicated. Typically there is a function foo(), and its RCU
1980 * analogue, foo_rcu().
1981 *
1982 * -ECHILD is the error number of choice (just to avoid clashes) that
1983 * is returned if some aspect of an rcu-walk fails. Such an error must
1984 * be handled by restarting a traditional ref-walk (which will always
1985 * be able to complete).
1986 */
1987 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1988
1989 if (unlikely(err))
1990 return err;
1991
1992 current->total_link_count = 0;
1993 err = link_path_walk(name, nd);
1994
1995 if (!err && !(flags & LOOKUP_PARENT)) {
1996 err = lookup_last(nd, &path);
1997 while (err > 0) {
1998 void *cookie;
1999 struct path link = path;
2000 err = may_follow_link(&link, nd);
2001 if (unlikely(err))
2002 break;
2003 nd->flags |= LOOKUP_PARENT;
2004 err = follow_link(&link, nd, &cookie);
2005 if (err)
2006 break;
2007 err = lookup_last(nd, &path);
2008 put_link(nd, &link, cookie);
2009 }
2010 }
2011
2012 if (!err)
2013 err = complete_walk(nd);
2014
2015 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2016 if (!can_lookup(nd->inode)) {
2017 path_put(&nd->path);
2018 err = -ENOTDIR;
2019 }
2020 }
2021
2022 if (base)
2023 fput(base);
2024
2025 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
2026 path_put(&nd->root);
2027 nd->root.mnt = NULL;
2028 }
2029 return err;
2030 }
2031
2032 static int filename_lookup(int dfd, struct filename *name,
2033 unsigned int flags, struct nameidata *nd)
2034 {
2035 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2036 if (unlikely(retval == -ECHILD))
2037 retval = path_lookupat(dfd, name->name, flags, nd);
2038 if (unlikely(retval == -ESTALE))
2039 retval = path_lookupat(dfd, name->name,
2040 flags | LOOKUP_REVAL, nd);
2041
2042 if (likely(!retval))
2043 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2044 return retval;
2045 }
2046
2047 static int do_path_lookup(int dfd, const char *name,
2048 unsigned int flags, struct nameidata *nd)
2049 {
2050 struct filename filename = { .name = name };
2051
2052 return filename_lookup(dfd, &filename, flags, nd);
2053 }
2054
2055 /* does lookup, returns the object with parent locked */
2056 struct dentry *kern_path_locked(const char *name, struct path *path)
2057 {
2058 struct nameidata nd;
2059 struct dentry *d;
2060 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2061 if (err)
2062 return ERR_PTR(err);
2063 if (nd.last_type != LAST_NORM) {
2064 path_put(&nd.path);
2065 return ERR_PTR(-EINVAL);
2066 }
2067 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2068 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2069 if (IS_ERR(d)) {
2070 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2071 path_put(&nd.path);
2072 return d;
2073 }
2074 *path = nd.path;
2075 return d;
2076 }
2077
2078 int kern_path(const char *name, unsigned int flags, struct path *path)
2079 {
2080 struct nameidata nd;
2081 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2082 if (!res)
2083 *path = nd.path;
2084 return res;
2085 }
2086
2087 /**
2088 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2089 * @dentry: pointer to dentry of the base directory
2090 * @mnt: pointer to vfs mount of the base directory
2091 * @name: pointer to file name
2092 * @flags: lookup flags
2093 * @path: pointer to struct path to fill
2094 */
2095 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2096 const char *name, unsigned int flags,
2097 struct path *path)
2098 {
2099 struct nameidata nd;
2100 int err;
2101 nd.root.dentry = dentry;
2102 nd.root.mnt = mnt;
2103 BUG_ON(flags & LOOKUP_PARENT);
2104 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2105 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2106 if (!err)
2107 *path = nd.path;
2108 return err;
2109 }
2110
2111 /*
2112 * Restricted form of lookup. Doesn't follow links, single-component only,
2113 * needs parent already locked. Doesn't follow mounts.
2114 * SMP-safe.
2115 */
2116 static struct dentry *lookup_hash(struct nameidata *nd)
2117 {
2118 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2119 }
2120
2121 /**
2122 * lookup_one_len - filesystem helper to lookup single pathname component
2123 * @name: pathname component to lookup
2124 * @base: base directory to lookup from
2125 * @len: maximum length @len should be interpreted to
2126 *
2127 * Note that this routine is purely a helper for filesystem usage and should
2128 * not be called by generic code. Also note that by using this function the
2129 * nameidata argument is passed to the filesystem methods and a filesystem
2130 * using this helper needs to be prepared for that.
2131 */
2132 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2133 {
2134 struct qstr this;
2135 unsigned int c;
2136 int err;
2137
2138 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2139
2140 this.name = name;
2141 this.len = len;
2142 this.hash = full_name_hash(name, len);
2143 if (!len)
2144 return ERR_PTR(-EACCES);
2145
2146 if (unlikely(name[0] == '.')) {
2147 if (len < 2 || (len == 2 && name[1] == '.'))
2148 return ERR_PTR(-EACCES);
2149 }
2150
2151 while (len--) {
2152 c = *(const unsigned char *)name++;
2153 if (c == '/' || c == '\0')
2154 return ERR_PTR(-EACCES);
2155 }
2156 /*
2157 * See if the low-level filesystem might want
2158 * to use its own hash..
2159 */
2160 if (base->d_flags & DCACHE_OP_HASH) {
2161 int err = base->d_op->d_hash(base, &this);
2162 if (err < 0)
2163 return ERR_PTR(err);
2164 }
2165
2166 err = inode_permission(base->d_inode, MAY_EXEC);
2167 if (err)
2168 return ERR_PTR(err);
2169
2170 return __lookup_hash(&this, base, 0);
2171 }
2172
2173 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2174 struct path *path, int *empty)
2175 {
2176 struct nameidata nd;
2177 struct filename *tmp = getname_flags(name, flags, empty);
2178 int err = PTR_ERR(tmp);
2179 if (!IS_ERR(tmp)) {
2180
2181 BUG_ON(flags & LOOKUP_PARENT);
2182
2183 err = filename_lookup(dfd, tmp, flags, &nd);
2184 putname(tmp);
2185 if (!err)
2186 *path = nd.path;
2187 }
2188 return err;
2189 }
2190
2191 int user_path_at(int dfd, const char __user *name, unsigned flags,
2192 struct path *path)
2193 {
2194 return user_path_at_empty(dfd, name, flags, path, NULL);
2195 }
2196
2197 /*
2198 * NB: most callers don't do anything directly with the reference to the
2199 * to struct filename, but the nd->last pointer points into the name string
2200 * allocated by getname. So we must hold the reference to it until all
2201 * path-walking is complete.
2202 */
2203 static struct filename *
2204 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2205 unsigned int flags)
2206 {
2207 struct filename *s = getname(path);
2208 int error;
2209
2210 /* only LOOKUP_REVAL is allowed in extra flags */
2211 flags &= LOOKUP_REVAL;
2212
2213 if (IS_ERR(s))
2214 return s;
2215
2216 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2217 if (error) {
2218 putname(s);
2219 return ERR_PTR(error);
2220 }
2221
2222 return s;
2223 }
2224
2225 /**
2226 * mountpoint_last - look up last component for umount
2227 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2228 * @path: pointer to container for result
2229 *
2230 * This is a special lookup_last function just for umount. In this case, we
2231 * need to resolve the path without doing any revalidation.
2232 *
2233 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2234 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2235 * in almost all cases, this lookup will be served out of the dcache. The only
2236 * cases where it won't are if nd->last refers to a symlink or the path is
2237 * bogus and it doesn't exist.
2238 *
2239 * Returns:
2240 * -error: if there was an error during lookup. This includes -ENOENT if the
2241 * lookup found a negative dentry. The nd->path reference will also be
2242 * put in this case.
2243 *
2244 * 0: if we successfully resolved nd->path and found it to not to be a
2245 * symlink that needs to be followed. "path" will also be populated.
2246 * The nd->path reference will also be put.
2247 *
2248 * 1: if we successfully resolved nd->last and found it to be a symlink
2249 * that needs to be followed. "path" will be populated with the path
2250 * to the link, and nd->path will *not* be put.
2251 */
2252 static int
2253 mountpoint_last(struct nameidata *nd, struct path *path)
2254 {
2255 int error = 0;
2256 struct dentry *dentry;
2257 struct dentry *dir = nd->path.dentry;
2258
2259 /* If we're in rcuwalk, drop out of it to handle last component */
2260 if (nd->flags & LOOKUP_RCU) {
2261 if (unlazy_walk(nd, NULL)) {
2262 error = -ECHILD;
2263 goto out;
2264 }
2265 }
2266
2267 nd->flags &= ~LOOKUP_PARENT;
2268
2269 if (unlikely(nd->last_type != LAST_NORM)) {
2270 error = handle_dots(nd, nd->last_type);
2271 if (error)
2272 goto out;
2273 dentry = dget(nd->path.dentry);
2274 goto done;
2275 }
2276
2277 mutex_lock(&dir->d_inode->i_mutex);
2278 dentry = d_lookup(dir, &nd->last);
2279 if (!dentry) {
2280 /*
2281 * No cached dentry. Mounted dentries are pinned in the cache,
2282 * so that means that this dentry is probably a symlink or the
2283 * path doesn't actually point to a mounted dentry.
2284 */
2285 dentry = d_alloc(dir, &nd->last);
2286 if (!dentry) {
2287 error = -ENOMEM;
2288 goto out;
2289 }
2290 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2291 error = PTR_ERR(dentry);
2292 if (IS_ERR(dentry))
2293 goto out;
2294 }
2295 mutex_unlock(&dir->d_inode->i_mutex);
2296
2297 done:
2298 if (!dentry->d_inode) {
2299 error = -ENOENT;
2300 dput(dentry);
2301 goto out;
2302 }
2303 path->dentry = dentry;
2304 path->mnt = mntget(nd->path.mnt);
2305 if (should_follow_link(dentry->d_inode, nd->flags & LOOKUP_FOLLOW))
2306 return 1;
2307 follow_mount(path);
2308 error = 0;
2309 out:
2310 terminate_walk(nd);
2311 return error;
2312 }
2313
2314 /**
2315 * path_mountpoint - look up a path to be umounted
2316 * @dfd: directory file descriptor to start walk from
2317 * @name: full pathname to walk
2318 * @flags: lookup flags
2319 *
2320 * Look up the given name, but don't attempt to revalidate the last component.
2321 * Returns 0 and "path" will be valid on success; Retuns error otherwise.
2322 */
2323 static int
2324 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2325 {
2326 struct file *base = NULL;
2327 struct nameidata nd;
2328 int err;
2329
2330 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2331 if (unlikely(err))
2332 return err;
2333
2334 current->total_link_count = 0;
2335 err = link_path_walk(name, &nd);
2336 if (err)
2337 goto out;
2338
2339 err = mountpoint_last(&nd, path);
2340 while (err > 0) {
2341 void *cookie;
2342 struct path link = *path;
2343 err = may_follow_link(&link, &nd);
2344 if (unlikely(err))
2345 break;
2346 nd.flags |= LOOKUP_PARENT;
2347 err = follow_link(&link, &nd, &cookie);
2348 if (err)
2349 break;
2350 err = mountpoint_last(&nd, path);
2351 put_link(&nd, &link, cookie);
2352 }
2353 out:
2354 if (base)
2355 fput(base);
2356
2357 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2358 path_put(&nd.root);
2359
2360 return err;
2361 }
2362
2363 static int
2364 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2365 unsigned int flags)
2366 {
2367 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2368 if (unlikely(error == -ECHILD))
2369 error = path_mountpoint(dfd, s->name, path, flags);
2370 if (unlikely(error == -ESTALE))
2371 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2372 if (likely(!error))
2373 audit_inode(s, path->dentry, 0);
2374 return error;
2375 }
2376
2377 /**
2378 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2379 * @dfd: directory file descriptor
2380 * @name: pathname from userland
2381 * @flags: lookup flags
2382 * @path: pointer to container to hold result
2383 *
2384 * A umount is a special case for path walking. We're not actually interested
2385 * in the inode in this situation, and ESTALE errors can be a problem. We
2386 * simply want track down the dentry and vfsmount attached at the mountpoint
2387 * and avoid revalidating the last component.
2388 *
2389 * Returns 0 and populates "path" on success.
2390 */
2391 int
2392 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2393 struct path *path)
2394 {
2395 struct filename *s = getname(name);
2396 int error;
2397 if (IS_ERR(s))
2398 return PTR_ERR(s);
2399 error = filename_mountpoint(dfd, s, path, flags);
2400 putname(s);
2401 return error;
2402 }
2403
2404 int
2405 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2406 unsigned int flags)
2407 {
2408 struct filename s = {.name = name};
2409 return filename_mountpoint(dfd, &s, path, flags);
2410 }
2411 EXPORT_SYMBOL(kern_path_mountpoint);
2412
2413 /*
2414 * It's inline, so penalty for filesystems that don't use sticky bit is
2415 * minimal.
2416 */
2417 static inline int check_sticky(struct inode *dir, struct inode *inode)
2418 {
2419 kuid_t fsuid = current_fsuid();
2420
2421 if (!(dir->i_mode & S_ISVTX))
2422 return 0;
2423 if (uid_eq(inode->i_uid, fsuid))
2424 return 0;
2425 if (uid_eq(dir->i_uid, fsuid))
2426 return 0;
2427 return !inode_capable(inode, CAP_FOWNER);
2428 }
2429
2430 /*
2431 * Check whether we can remove a link victim from directory dir, check
2432 * whether the type of victim is right.
2433 * 1. We can't do it if dir is read-only (done in permission())
2434 * 2. We should have write and exec permissions on dir
2435 * 3. We can't remove anything from append-only dir
2436 * 4. We can't do anything with immutable dir (done in permission())
2437 * 5. If the sticky bit on dir is set we should either
2438 * a. be owner of dir, or
2439 * b. be owner of victim, or
2440 * c. have CAP_FOWNER capability
2441 * 6. If the victim is append-only or immutable we can't do antyhing with
2442 * links pointing to it.
2443 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2444 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2445 * 9. We can't remove a root or mountpoint.
2446 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2447 * nfs_async_unlink().
2448 */
2449 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2450 {
2451 int error;
2452
2453 if (!victim->d_inode)
2454 return -ENOENT;
2455
2456 BUG_ON(victim->d_parent->d_inode != dir);
2457 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2458
2459 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2460 if (error)
2461 return error;
2462 if (IS_APPEND(dir))
2463 return -EPERM;
2464 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2465 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2466 return -EPERM;
2467 if (isdir) {
2468 if (!S_ISDIR(victim->d_inode->i_mode))
2469 return -ENOTDIR;
2470 if (IS_ROOT(victim))
2471 return -EBUSY;
2472 } else if (S_ISDIR(victim->d_inode->i_mode))
2473 return -EISDIR;
2474 if (IS_DEADDIR(dir))
2475 return -ENOENT;
2476 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2477 return -EBUSY;
2478 return 0;
2479 }
2480
2481 /* Check whether we can create an object with dentry child in directory
2482 * dir.
2483 * 1. We can't do it if child already exists (open has special treatment for
2484 * this case, but since we are inlined it's OK)
2485 * 2. We can't do it if dir is read-only (done in permission())
2486 * 3. We should have write and exec permissions on dir
2487 * 4. We can't do it if dir is immutable (done in permission())
2488 */
2489 static inline int may_create(struct inode *dir, struct dentry *child)
2490 {
2491 if (child->d_inode)
2492 return -EEXIST;
2493 if (IS_DEADDIR(dir))
2494 return -ENOENT;
2495 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2496 }
2497
2498 /*
2499 * p1 and p2 should be directories on the same fs.
2500 */
2501 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2502 {
2503 struct dentry *p;
2504
2505 if (p1 == p2) {
2506 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2507 return NULL;
2508 }
2509
2510 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2511
2512 p = d_ancestor(p2, p1);
2513 if (p) {
2514 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2515 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2516 return p;
2517 }
2518
2519 p = d_ancestor(p1, p2);
2520 if (p) {
2521 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2522 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2523 return p;
2524 }
2525
2526 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2527 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2528 return NULL;
2529 }
2530
2531 void unlock_rename(struct dentry *p1, struct dentry *p2)
2532 {
2533 mutex_unlock(&p1->d_inode->i_mutex);
2534 if (p1 != p2) {
2535 mutex_unlock(&p2->d_inode->i_mutex);
2536 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2537 }
2538 }
2539
2540 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2541 bool want_excl)
2542 {
2543 int error = may_create(dir, dentry);
2544 if (error)
2545 return error;
2546
2547 if (!dir->i_op->create)
2548 return -EACCES; /* shouldn't it be ENOSYS? */
2549 mode &= S_IALLUGO;
2550 mode |= S_IFREG;
2551 error = security_inode_create(dir, dentry, mode);
2552 if (error)
2553 return error;
2554 error = dir->i_op->create(dir, dentry, mode, want_excl);
2555 if (!error)
2556 fsnotify_create(dir, dentry);
2557 return error;
2558 }
2559
2560 static int may_open(struct path *path, int acc_mode, int flag)
2561 {
2562 struct dentry *dentry = path->dentry;
2563 struct inode *inode = dentry->d_inode;
2564 int error;
2565
2566 /* O_PATH? */
2567 if (!acc_mode)
2568 return 0;
2569
2570 if (!inode)
2571 return -ENOENT;
2572
2573 switch (inode->i_mode & S_IFMT) {
2574 case S_IFLNK:
2575 return -ELOOP;
2576 case S_IFDIR:
2577 if (acc_mode & MAY_WRITE)
2578 return -EISDIR;
2579 break;
2580 case S_IFBLK:
2581 case S_IFCHR:
2582 if (path->mnt->mnt_flags & MNT_NODEV)
2583 return -EACCES;
2584 /*FALLTHRU*/
2585 case S_IFIFO:
2586 case S_IFSOCK:
2587 flag &= ~O_TRUNC;
2588 break;
2589 }
2590
2591 error = inode_permission(inode, acc_mode);
2592 if (error)
2593 return error;
2594
2595 /*
2596 * An append-only file must be opened in append mode for writing.
2597 */
2598 if (IS_APPEND(inode)) {
2599 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2600 return -EPERM;
2601 if (flag & O_TRUNC)
2602 return -EPERM;
2603 }
2604
2605 /* O_NOATIME can only be set by the owner or superuser */
2606 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2607 return -EPERM;
2608
2609 return 0;
2610 }
2611
2612 static int handle_truncate(struct file *filp)
2613 {
2614 struct path *path = &filp->f_path;
2615 struct inode *inode = path->dentry->d_inode;
2616 int error = get_write_access(inode);
2617 if (error)
2618 return error;
2619 /*
2620 * Refuse to truncate files with mandatory locks held on them.
2621 */
2622 error = locks_verify_locked(inode);
2623 if (!error)
2624 error = security_path_truncate(path);
2625 if (!error) {
2626 error = do_truncate(path->dentry, 0,
2627 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2628 filp);
2629 }
2630 put_write_access(inode);
2631 return error;
2632 }
2633
2634 static inline int open_to_namei_flags(int flag)
2635 {
2636 if ((flag & O_ACCMODE) == 3)
2637 flag--;
2638 return flag;
2639 }
2640
2641 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2642 {
2643 int error = security_path_mknod(dir, dentry, mode, 0);
2644 if (error)
2645 return error;
2646
2647 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2648 if (error)
2649 return error;
2650
2651 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2652 }
2653
2654 /*
2655 * Attempt to atomically look up, create and open a file from a negative
2656 * dentry.
2657 *
2658 * Returns 0 if successful. The file will have been created and attached to
2659 * @file by the filesystem calling finish_open().
2660 *
2661 * Returns 1 if the file was looked up only or didn't need creating. The
2662 * caller will need to perform the open themselves. @path will have been
2663 * updated to point to the new dentry. This may be negative.
2664 *
2665 * Returns an error code otherwise.
2666 */
2667 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2668 struct path *path, struct file *file,
2669 const struct open_flags *op,
2670 bool got_write, bool need_lookup,
2671 int *opened)
2672 {
2673 struct inode *dir = nd->path.dentry->d_inode;
2674 unsigned open_flag = open_to_namei_flags(op->open_flag);
2675 umode_t mode;
2676 int error;
2677 int acc_mode;
2678 int create_error = 0;
2679 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2680
2681 BUG_ON(dentry->d_inode);
2682
2683 /* Don't create child dentry for a dead directory. */
2684 if (unlikely(IS_DEADDIR(dir))) {
2685 error = -ENOENT;
2686 goto out;
2687 }
2688
2689 mode = op->mode;
2690 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2691 mode &= ~current_umask();
2692
2693 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2694 open_flag &= ~O_TRUNC;
2695 *opened |= FILE_CREATED;
2696 }
2697
2698 /*
2699 * Checking write permission is tricky, bacuse we don't know if we are
2700 * going to actually need it: O_CREAT opens should work as long as the
2701 * file exists. But checking existence breaks atomicity. The trick is
2702 * to check access and if not granted clear O_CREAT from the flags.
2703 *
2704 * Another problem is returing the "right" error value (e.g. for an
2705 * O_EXCL open we want to return EEXIST not EROFS).
2706 */
2707 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2708 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2709 if (!(open_flag & O_CREAT)) {
2710 /*
2711 * No O_CREATE -> atomicity not a requirement -> fall
2712 * back to lookup + open
2713 */
2714 goto no_open;
2715 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2716 /* Fall back and fail with the right error */
2717 create_error = -EROFS;
2718 goto no_open;
2719 } else {
2720 /* No side effects, safe to clear O_CREAT */
2721 create_error = -EROFS;
2722 open_flag &= ~O_CREAT;
2723 }
2724 }
2725
2726 if (open_flag & O_CREAT) {
2727 error = may_o_create(&nd->path, dentry, mode);
2728 if (error) {
2729 create_error = error;
2730 if (open_flag & O_EXCL)
2731 goto no_open;
2732 open_flag &= ~O_CREAT;
2733 }
2734 }
2735
2736 if (nd->flags & LOOKUP_DIRECTORY)
2737 open_flag |= O_DIRECTORY;
2738
2739 file->f_path.dentry = DENTRY_NOT_SET;
2740 file->f_path.mnt = nd->path.mnt;
2741 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2742 opened);
2743 if (error < 0) {
2744 if (create_error && error == -ENOENT)
2745 error = create_error;
2746 goto out;
2747 }
2748
2749 acc_mode = op->acc_mode;
2750 if (*opened & FILE_CREATED) {
2751 fsnotify_create(dir, dentry);
2752 acc_mode = MAY_OPEN;
2753 }
2754
2755 if (error) { /* returned 1, that is */
2756 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2757 error = -EIO;
2758 goto out;
2759 }
2760 if (file->f_path.dentry) {
2761 dput(dentry);
2762 dentry = file->f_path.dentry;
2763 }
2764 if (create_error && dentry->d_inode == NULL) {
2765 error = create_error;
2766 goto out;
2767 }
2768 goto looked_up;
2769 }
2770
2771 /*
2772 * We didn't have the inode before the open, so check open permission
2773 * here.
2774 */
2775 error = may_open(&file->f_path, acc_mode, open_flag);
2776 if (error)
2777 fput(file);
2778
2779 out:
2780 dput(dentry);
2781 return error;
2782
2783 no_open:
2784 if (need_lookup) {
2785 dentry = lookup_real(dir, dentry, nd->flags);
2786 if (IS_ERR(dentry))
2787 return PTR_ERR(dentry);
2788
2789 if (create_error) {
2790 int open_flag = op->open_flag;
2791
2792 error = create_error;
2793 if ((open_flag & O_EXCL)) {
2794 if (!dentry->d_inode)
2795 goto out;
2796 } else if (!dentry->d_inode) {
2797 goto out;
2798 } else if ((open_flag & O_TRUNC) &&
2799 S_ISREG(dentry->d_inode->i_mode)) {
2800 goto out;
2801 }
2802 /* will fail later, go on to get the right error */
2803 }
2804 }
2805 looked_up:
2806 path->dentry = dentry;
2807 path->mnt = nd->path.mnt;
2808 return 1;
2809 }
2810
2811 /*
2812 * Look up and maybe create and open the last component.
2813 *
2814 * Must be called with i_mutex held on parent.
2815 *
2816 * Returns 0 if the file was successfully atomically created (if necessary) and
2817 * opened. In this case the file will be returned attached to @file.
2818 *
2819 * Returns 1 if the file was not completely opened at this time, though lookups
2820 * and creations will have been performed and the dentry returned in @path will
2821 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2822 * specified then a negative dentry may be returned.
2823 *
2824 * An error code is returned otherwise.
2825 *
2826 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2827 * cleared otherwise prior to returning.
2828 */
2829 static int lookup_open(struct nameidata *nd, struct path *path,
2830 struct file *file,
2831 const struct open_flags *op,
2832 bool got_write, int *opened)
2833 {
2834 struct dentry *dir = nd->path.dentry;
2835 struct inode *dir_inode = dir->d_inode;
2836 struct dentry *dentry;
2837 int error;
2838 bool need_lookup;
2839
2840 *opened &= ~FILE_CREATED;
2841 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2842 if (IS_ERR(dentry))
2843 return PTR_ERR(dentry);
2844
2845 /* Cached positive dentry: will open in f_op->open */
2846 if (!need_lookup && dentry->d_inode)
2847 goto out_no_open;
2848
2849 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2850 return atomic_open(nd, dentry, path, file, op, got_write,
2851 need_lookup, opened);
2852 }
2853
2854 if (need_lookup) {
2855 BUG_ON(dentry->d_inode);
2856
2857 dentry = lookup_real(dir_inode, dentry, nd->flags);
2858 if (IS_ERR(dentry))
2859 return PTR_ERR(dentry);
2860 }
2861
2862 /* Negative dentry, just create the file */
2863 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2864 umode_t mode = op->mode;
2865 if (!IS_POSIXACL(dir->d_inode))
2866 mode &= ~current_umask();
2867 /*
2868 * This write is needed to ensure that a
2869 * rw->ro transition does not occur between
2870 * the time when the file is created and when
2871 * a permanent write count is taken through
2872 * the 'struct file' in finish_open().
2873 */
2874 if (!got_write) {
2875 error = -EROFS;
2876 goto out_dput;
2877 }
2878 *opened |= FILE_CREATED;
2879 error = security_path_mknod(&nd->path, dentry, mode, 0);
2880 if (error)
2881 goto out_dput;
2882 error = vfs_create(dir->d_inode, dentry, mode,
2883 nd->flags & LOOKUP_EXCL);
2884 if (error)
2885 goto out_dput;
2886 }
2887 out_no_open:
2888 path->dentry = dentry;
2889 path->mnt = nd->path.mnt;
2890 return 1;
2891
2892 out_dput:
2893 dput(dentry);
2894 return error;
2895 }
2896
2897 /*
2898 * Handle the last step of open()
2899 */
2900 static int do_last(struct nameidata *nd, struct path *path,
2901 struct file *file, const struct open_flags *op,
2902 int *opened, struct filename *name)
2903 {
2904 struct dentry *dir = nd->path.dentry;
2905 int open_flag = op->open_flag;
2906 bool will_truncate = (open_flag & O_TRUNC) != 0;
2907 bool got_write = false;
2908 int acc_mode = op->acc_mode;
2909 struct inode *inode;
2910 bool symlink_ok = false;
2911 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2912 bool retried = false;
2913 int error;
2914
2915 nd->flags &= ~LOOKUP_PARENT;
2916 nd->flags |= op->intent;
2917
2918 if (nd->last_type != LAST_NORM) {
2919 error = handle_dots(nd, nd->last_type);
2920 if (error)
2921 return error;
2922 goto finish_open;
2923 }
2924
2925 if (!(open_flag & O_CREAT)) {
2926 if (nd->last.name[nd->last.len])
2927 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2928 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2929 symlink_ok = true;
2930 /* we _can_ be in RCU mode here */
2931 error = lookup_fast(nd, path, &inode);
2932 if (likely(!error))
2933 goto finish_lookup;
2934
2935 if (error < 0)
2936 goto out;
2937
2938 BUG_ON(nd->inode != dir->d_inode);
2939 } else {
2940 /* create side of things */
2941 /*
2942 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2943 * has been cleared when we got to the last component we are
2944 * about to look up
2945 */
2946 error = complete_walk(nd);
2947 if (error)
2948 return error;
2949
2950 audit_inode(name, dir, LOOKUP_PARENT);
2951 error = -EISDIR;
2952 /* trailing slashes? */
2953 if (nd->last.name[nd->last.len])
2954 goto out;
2955 }
2956
2957 retry_lookup:
2958 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2959 error = mnt_want_write(nd->path.mnt);
2960 if (!error)
2961 got_write = true;
2962 /*
2963 * do _not_ fail yet - we might not need that or fail with
2964 * a different error; let lookup_open() decide; we'll be
2965 * dropping this one anyway.
2966 */
2967 }
2968 mutex_lock(&dir->d_inode->i_mutex);
2969 error = lookup_open(nd, path, file, op, got_write, opened);
2970 mutex_unlock(&dir->d_inode->i_mutex);
2971
2972 if (error <= 0) {
2973 if (error)
2974 goto out;
2975
2976 if ((*opened & FILE_CREATED) ||
2977 !S_ISREG(file_inode(file)->i_mode))
2978 will_truncate = false;
2979
2980 audit_inode(name, file->f_path.dentry, 0);
2981 goto opened;
2982 }
2983
2984 if (*opened & FILE_CREATED) {
2985 /* Don't check for write permission, don't truncate */
2986 open_flag &= ~O_TRUNC;
2987 will_truncate = false;
2988 acc_mode = MAY_OPEN;
2989 path_to_nameidata(path, nd);
2990 goto finish_open_created;
2991 }
2992
2993 /*
2994 * create/update audit record if it already exists.
2995 */
2996 if (path->dentry->d_inode)
2997 audit_inode(name, path->dentry, 0);
2998
2999 /*
3000 * If atomic_open() acquired write access it is dropped now due to
3001 * possible mount and symlink following (this might be optimized away if
3002 * necessary...)
3003 */
3004 if (got_write) {
3005 mnt_drop_write(nd->path.mnt);
3006 got_write = false;
3007 }
3008
3009 error = -EEXIST;
3010 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3011 goto exit_dput;
3012
3013 error = follow_managed(path, nd->flags);
3014 if (error < 0)
3015 goto exit_dput;
3016
3017 if (error)
3018 nd->flags |= LOOKUP_JUMPED;
3019
3020 BUG_ON(nd->flags & LOOKUP_RCU);
3021 inode = path->dentry->d_inode;
3022 finish_lookup:
3023 /* we _can_ be in RCU mode here */
3024 error = -ENOENT;
3025 if (!inode) {
3026 path_to_nameidata(path, nd);
3027 goto out;
3028 }
3029
3030 if (should_follow_link(inode, !symlink_ok)) {
3031 if (nd->flags & LOOKUP_RCU) {
3032 if (unlikely(unlazy_walk(nd, path->dentry))) {
3033 error = -ECHILD;
3034 goto out;
3035 }
3036 }
3037 BUG_ON(inode != path->dentry->d_inode);
3038 return 1;
3039 }
3040
3041 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3042 path_to_nameidata(path, nd);
3043 } else {
3044 save_parent.dentry = nd->path.dentry;
3045 save_parent.mnt = mntget(path->mnt);
3046 nd->path.dentry = path->dentry;
3047
3048 }
3049 nd->inode = inode;
3050 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3051 finish_open:
3052 error = complete_walk(nd);
3053 if (error) {
3054 path_put(&save_parent);
3055 return error;
3056 }
3057 audit_inode(name, nd->path.dentry, 0);
3058 error = -EISDIR;
3059 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
3060 goto out;
3061 error = -ENOTDIR;
3062 if ((nd->flags & LOOKUP_DIRECTORY) && !can_lookup(nd->inode))
3063 goto out;
3064 if (!S_ISREG(nd->inode->i_mode))
3065 will_truncate = false;
3066
3067 if (will_truncate) {
3068 error = mnt_want_write(nd->path.mnt);
3069 if (error)
3070 goto out;
3071 got_write = true;
3072 }
3073 finish_open_created:
3074 error = may_open(&nd->path, acc_mode, open_flag);
3075 if (error)
3076 goto out;
3077 file->f_path.mnt = nd->path.mnt;
3078 error = finish_open(file, nd->path.dentry, NULL, opened);
3079 if (error) {
3080 if (error == -EOPENSTALE)
3081 goto stale_open;
3082 goto out;
3083 }
3084 opened:
3085 error = open_check_o_direct(file);
3086 if (error)
3087 goto exit_fput;
3088 error = ima_file_check(file, op->acc_mode);
3089 if (error)
3090 goto exit_fput;
3091
3092 if (will_truncate) {
3093 error = handle_truncate(file);
3094 if (error)
3095 goto exit_fput;
3096 }
3097 out:
3098 if (got_write)
3099 mnt_drop_write(nd->path.mnt);
3100 path_put(&save_parent);
3101 terminate_walk(nd);
3102 return error;
3103
3104 exit_dput:
3105 path_put_conditional(path, nd);
3106 goto out;
3107 exit_fput:
3108 fput(file);
3109 goto out;
3110
3111 stale_open:
3112 /* If no saved parent or already retried then can't retry */
3113 if (!save_parent.dentry || retried)
3114 goto out;
3115
3116 BUG_ON(save_parent.dentry != dir);
3117 path_put(&nd->path);
3118 nd->path = save_parent;
3119 nd->inode = dir->d_inode;
3120 save_parent.mnt = NULL;
3121 save_parent.dentry = NULL;
3122 if (got_write) {
3123 mnt_drop_write(nd->path.mnt);
3124 got_write = false;
3125 }
3126 retried = true;
3127 goto retry_lookup;
3128 }
3129
3130 static int do_tmpfile(int dfd, struct filename *pathname,
3131 struct nameidata *nd, int flags,
3132 const struct open_flags *op,
3133 struct file *file, int *opened)
3134 {
3135 static const struct qstr name = QSTR_INIT("/", 1);
3136 struct dentry *dentry, *child;
3137 struct inode *dir;
3138 int error = path_lookupat(dfd, pathname->name,
3139 flags | LOOKUP_DIRECTORY, nd);
3140 if (unlikely(error))
3141 return error;
3142 error = mnt_want_write(nd->path.mnt);
3143 if (unlikely(error))
3144 goto out;
3145 /* we want directory to be writable */
3146 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3147 if (error)
3148 goto out2;
3149 dentry = nd->path.dentry;
3150 dir = dentry->d_inode;
3151 if (!dir->i_op->tmpfile) {
3152 error = -EOPNOTSUPP;
3153 goto out2;
3154 }
3155 child = d_alloc(dentry, &name);
3156 if (unlikely(!child)) {
3157 error = -ENOMEM;
3158 goto out2;
3159 }
3160 nd->flags &= ~LOOKUP_DIRECTORY;
3161 nd->flags |= op->intent;
3162 dput(nd->path.dentry);
3163 nd->path.dentry = child;
3164 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3165 if (error)
3166 goto out2;
3167 audit_inode(pathname, nd->path.dentry, 0);
3168 error = may_open(&nd->path, op->acc_mode, op->open_flag);
3169 if (error)
3170 goto out2;
3171 file->f_path.mnt = nd->path.mnt;
3172 error = finish_open(file, nd->path.dentry, NULL, opened);
3173 if (error)
3174 goto out2;
3175 error = open_check_o_direct(file);
3176 if (error) {
3177 fput(file);
3178 } else if (!(op->open_flag & O_EXCL)) {
3179 struct inode *inode = file_inode(file);
3180 spin_lock(&inode->i_lock);
3181 inode->i_state |= I_LINKABLE;
3182 spin_unlock(&inode->i_lock);
3183 }
3184 out2:
3185 mnt_drop_write(nd->path.mnt);
3186 out:
3187 path_put(&nd->path);
3188 return error;
3189 }
3190
3191 static struct file *path_openat(int dfd, struct filename *pathname,
3192 struct nameidata *nd, const struct open_flags *op, int flags)
3193 {
3194 struct file *base = NULL;
3195 struct file *file;
3196 struct path path;
3197 int opened = 0;
3198 int error;
3199
3200 file = get_empty_filp();
3201 if (IS_ERR(file))
3202 return file;
3203
3204 file->f_flags = op->open_flag;
3205
3206 if (unlikely(file->f_flags & __O_TMPFILE)) {
3207 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3208 goto out;
3209 }
3210
3211 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3212 if (unlikely(error))
3213 goto out;
3214
3215 current->total_link_count = 0;
3216 error = link_path_walk(pathname->name, nd);
3217 if (unlikely(error))
3218 goto out;
3219
3220 error = do_last(nd, &path, file, op, &opened, pathname);
3221 while (unlikely(error > 0)) { /* trailing symlink */
3222 struct path link = path;
3223 void *cookie;
3224 if (!(nd->flags & LOOKUP_FOLLOW)) {
3225 path_put_conditional(&path, nd);
3226 path_put(&nd->path);
3227 error = -ELOOP;
3228 break;
3229 }
3230 error = may_follow_link(&link, nd);
3231 if (unlikely(error))
3232 break;
3233 nd->flags |= LOOKUP_PARENT;
3234 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3235 error = follow_link(&link, nd, &cookie);
3236 if (unlikely(error))
3237 break;
3238 error = do_last(nd, &path, file, op, &opened, pathname);
3239 put_link(nd, &link, cookie);
3240 }
3241 out:
3242 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3243 path_put(&nd->root);
3244 if (base)
3245 fput(base);
3246 if (!(opened & FILE_OPENED)) {
3247 BUG_ON(!error);
3248 put_filp(file);
3249 }
3250 if (unlikely(error)) {
3251 if (error == -EOPENSTALE) {
3252 if (flags & LOOKUP_RCU)
3253 error = -ECHILD;
3254 else
3255 error = -ESTALE;
3256 }
3257 file = ERR_PTR(error);
3258 }
3259 return file;
3260 }
3261
3262 struct file *do_filp_open(int dfd, struct filename *pathname,
3263 const struct open_flags *op)
3264 {
3265 struct nameidata nd;
3266 int flags = op->lookup_flags;
3267 struct file *filp;
3268
3269 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3270 if (unlikely(filp == ERR_PTR(-ECHILD)))
3271 filp = path_openat(dfd, pathname, &nd, op, flags);
3272 if (unlikely(filp == ERR_PTR(-ESTALE)))
3273 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3274 return filp;
3275 }
3276
3277 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3278 const char *name, const struct open_flags *op)
3279 {
3280 struct nameidata nd;
3281 struct file *file;
3282 struct filename filename = { .name = name };
3283 int flags = op->lookup_flags | LOOKUP_ROOT;
3284
3285 nd.root.mnt = mnt;
3286 nd.root.dentry = dentry;
3287
3288 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
3289 return ERR_PTR(-ELOOP);
3290
3291 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3292 if (unlikely(file == ERR_PTR(-ECHILD)))
3293 file = path_openat(-1, &filename, &nd, op, flags);
3294 if (unlikely(file == ERR_PTR(-ESTALE)))
3295 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3296 return file;
3297 }
3298
3299 struct dentry *kern_path_create(int dfd, const char *pathname,
3300 struct path *path, unsigned int lookup_flags)
3301 {
3302 struct dentry *dentry = ERR_PTR(-EEXIST);
3303 struct nameidata nd;
3304 int err2;
3305 int error;
3306 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3307
3308 /*
3309 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3310 * other flags passed in are ignored!
3311 */
3312 lookup_flags &= LOOKUP_REVAL;
3313
3314 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3315 if (error)
3316 return ERR_PTR(error);
3317
3318 /*
3319 * Yucky last component or no last component at all?
3320 * (foo/., foo/.., /////)
3321 */
3322 if (nd.last_type != LAST_NORM)
3323 goto out;
3324 nd.flags &= ~LOOKUP_PARENT;
3325 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3326
3327 /* don't fail immediately if it's r/o, at least try to report other errors */
3328 err2 = mnt_want_write(nd.path.mnt);
3329 /*
3330 * Do the final lookup.
3331 */
3332 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3333 dentry = lookup_hash(&nd);
3334 if (IS_ERR(dentry))
3335 goto unlock;
3336
3337 error = -EEXIST;
3338 if (dentry->d_inode)
3339 goto fail;
3340 /*
3341 * Special case - lookup gave negative, but... we had foo/bar/
3342 * From the vfs_mknod() POV we just have a negative dentry -
3343 * all is fine. Let's be bastards - you had / on the end, you've
3344 * been asking for (non-existent) directory. -ENOENT for you.
3345 */
3346 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3347 error = -ENOENT;
3348 goto fail;
3349 }
3350 if (unlikely(err2)) {
3351 error = err2;
3352 goto fail;
3353 }
3354 *path = nd.path;
3355 return dentry;
3356 fail:
3357 dput(dentry);
3358 dentry = ERR_PTR(error);
3359 unlock:
3360 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3361 if (!err2)
3362 mnt_drop_write(nd.path.mnt);
3363 out:
3364 path_put(&nd.path);
3365 return dentry;
3366 }
3367 EXPORT_SYMBOL(kern_path_create);
3368
3369 void done_path_create(struct path *path, struct dentry *dentry)
3370 {
3371 dput(dentry);
3372 mutex_unlock(&path->dentry->d_inode->i_mutex);
3373 mnt_drop_write(path->mnt);
3374 path_put(path);
3375 }
3376 EXPORT_SYMBOL(done_path_create);
3377
3378 struct dentry *user_path_create(int dfd, const char __user *pathname,
3379 struct path *path, unsigned int lookup_flags)
3380 {
3381 struct filename *tmp = getname(pathname);
3382 struct dentry *res;
3383 if (IS_ERR(tmp))
3384 return ERR_CAST(tmp);
3385 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3386 putname(tmp);
3387 return res;
3388 }
3389 EXPORT_SYMBOL(user_path_create);
3390
3391 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3392 {
3393 int error = may_create(dir, dentry);
3394
3395 if (error)
3396 return error;
3397
3398 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3399 return -EPERM;
3400
3401 if (!dir->i_op->mknod)
3402 return -EPERM;
3403
3404 error = devcgroup_inode_mknod(mode, dev);
3405 if (error)
3406 return error;
3407
3408 error = security_inode_mknod(dir, dentry, mode, dev);
3409 if (error)
3410 return error;
3411
3412 error = dir->i_op->mknod(dir, dentry, mode, dev);
3413 if (!error)
3414 fsnotify_create(dir, dentry);
3415 return error;
3416 }
3417
3418 static int may_mknod(umode_t mode)
3419 {
3420 switch (mode & S_IFMT) {
3421 case S_IFREG:
3422 case S_IFCHR:
3423 case S_IFBLK:
3424 case S_IFIFO:
3425 case S_IFSOCK:
3426 case 0: /* zero mode translates to S_IFREG */
3427 return 0;
3428 case S_IFDIR:
3429 return -EPERM;
3430 default:
3431 return -EINVAL;
3432 }
3433 }
3434
3435 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3436 unsigned, dev)
3437 {
3438 struct dentry *dentry;
3439 struct path path;
3440 int error;
3441 unsigned int lookup_flags = 0;
3442
3443 error = may_mknod(mode);
3444 if (error)
3445 return error;
3446 retry:
3447 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3448 if (IS_ERR(dentry))
3449 return PTR_ERR(dentry);
3450
3451 if (!IS_POSIXACL(path.dentry->d_inode))
3452 mode &= ~current_umask();
3453 error = security_path_mknod(&path, dentry, mode, dev);
3454 if (error)
3455 goto out;
3456 switch (mode & S_IFMT) {
3457 case 0: case S_IFREG:
3458 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3459 break;
3460 case S_IFCHR: case S_IFBLK:
3461 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3462 new_decode_dev(dev));
3463 break;
3464 case S_IFIFO: case S_IFSOCK:
3465 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3466 break;
3467 }
3468 out:
3469 done_path_create(&path, dentry);
3470 if (retry_estale(error, lookup_flags)) {
3471 lookup_flags |= LOOKUP_REVAL;
3472 goto retry;
3473 }
3474 return error;
3475 }
3476
3477 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3478 {
3479 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3480 }
3481
3482 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3483 {
3484 int error = may_create(dir, dentry);
3485 unsigned max_links = dir->i_sb->s_max_links;
3486
3487 if (error)
3488 return error;
3489
3490 if (!dir->i_op->mkdir)
3491 return -EPERM;
3492
3493 mode &= (S_IRWXUGO|S_ISVTX);
3494 error = security_inode_mkdir(dir, dentry, mode);
3495 if (error)
3496 return error;
3497
3498 if (max_links && dir->i_nlink >= max_links)
3499 return -EMLINK;
3500
3501 error = dir->i_op->mkdir(dir, dentry, mode);
3502 if (!error)
3503 fsnotify_mkdir(dir, dentry);
3504 return error;
3505 }
3506
3507 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3508 {
3509 struct dentry *dentry;
3510 struct path path;
3511 int error;
3512 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3513
3514 retry:
3515 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3516 if (IS_ERR(dentry))
3517 return PTR_ERR(dentry);
3518
3519 if (!IS_POSIXACL(path.dentry->d_inode))
3520 mode &= ~current_umask();
3521 error = security_path_mkdir(&path, dentry, mode);
3522 if (!error)
3523 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3524 done_path_create(&path, dentry);
3525 if (retry_estale(error, lookup_flags)) {
3526 lookup_flags |= LOOKUP_REVAL;
3527 goto retry;
3528 }
3529 return error;
3530 }
3531
3532 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3533 {
3534 return sys_mkdirat(AT_FDCWD, pathname, mode);
3535 }
3536
3537 /*
3538 * The dentry_unhash() helper will try to drop the dentry early: we
3539 * should have a usage count of 1 if we're the only user of this
3540 * dentry, and if that is true (possibly after pruning the dcache),
3541 * then we drop the dentry now.
3542 *
3543 * A low-level filesystem can, if it choses, legally
3544 * do a
3545 *
3546 * if (!d_unhashed(dentry))
3547 * return -EBUSY;
3548 *
3549 * if it cannot handle the case of removing a directory
3550 * that is still in use by something else..
3551 */
3552 void dentry_unhash(struct dentry *dentry)
3553 {
3554 shrink_dcache_parent(dentry);
3555 spin_lock(&dentry->d_lock);
3556 if (dentry->d_lockref.count == 1)
3557 __d_drop(dentry);
3558 spin_unlock(&dentry->d_lock);
3559 }
3560
3561 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3562 {
3563 int error = may_delete(dir, dentry, 1);
3564
3565 if (error)
3566 return error;
3567
3568 if (!dir->i_op->rmdir)
3569 return -EPERM;
3570
3571 dget(dentry);
3572 mutex_lock(&dentry->d_inode->i_mutex);
3573
3574 error = -EBUSY;
3575 if (d_mountpoint(dentry))
3576 goto out;
3577
3578 error = security_inode_rmdir(dir, dentry);
3579 if (error)
3580 goto out;
3581
3582 shrink_dcache_parent(dentry);
3583 error = dir->i_op->rmdir(dir, dentry);
3584 if (error)
3585 goto out;
3586
3587 dentry->d_inode->i_flags |= S_DEAD;
3588 dont_mount(dentry);
3589
3590 out:
3591 mutex_unlock(&dentry->d_inode->i_mutex);
3592 dput(dentry);
3593 if (!error)
3594 d_delete(dentry);
3595 return error;
3596 }
3597
3598 static long do_rmdir(int dfd, const char __user *pathname)
3599 {
3600 int error = 0;
3601 struct filename *name;
3602 struct dentry *dentry;
3603 struct nameidata nd;
3604 unsigned int lookup_flags = 0;
3605 retry:
3606 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3607 if (IS_ERR(name))
3608 return PTR_ERR(name);
3609
3610 switch(nd.last_type) {
3611 case LAST_DOTDOT:
3612 error = -ENOTEMPTY;
3613 goto exit1;
3614 case LAST_DOT:
3615 error = -EINVAL;
3616 goto exit1;
3617 case LAST_ROOT:
3618 error = -EBUSY;
3619 goto exit1;
3620 }
3621
3622 nd.flags &= ~LOOKUP_PARENT;
3623 error = mnt_want_write(nd.path.mnt);
3624 if (error)
3625 goto exit1;
3626
3627 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3628 dentry = lookup_hash(&nd);
3629 error = PTR_ERR(dentry);
3630 if (IS_ERR(dentry))
3631 goto exit2;
3632 if (!dentry->d_inode) {
3633 error = -ENOENT;
3634 goto exit3;
3635 }
3636 error = security_path_rmdir(&nd.path, dentry);
3637 if (error)
3638 goto exit3;
3639 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3640 exit3:
3641 dput(dentry);
3642 exit2:
3643 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3644 mnt_drop_write(nd.path.mnt);
3645 exit1:
3646 path_put(&nd.path);
3647 putname(name);
3648 if (retry_estale(error, lookup_flags)) {
3649 lookup_flags |= LOOKUP_REVAL;
3650 goto retry;
3651 }
3652 return error;
3653 }
3654
3655 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3656 {
3657 return do_rmdir(AT_FDCWD, pathname);
3658 }
3659
3660 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3661 {
3662 int error = may_delete(dir, dentry, 0);
3663
3664 if (error)
3665 return error;
3666
3667 if (!dir->i_op->unlink)
3668 return -EPERM;
3669
3670 mutex_lock(&dentry->d_inode->i_mutex);
3671 if (d_mountpoint(dentry))
3672 error = -EBUSY;
3673 else {
3674 error = security_inode_unlink(dir, dentry);
3675 if (!error) {
3676 error = dir->i_op->unlink(dir, dentry);
3677 if (!error)
3678 dont_mount(dentry);
3679 }
3680 }
3681 mutex_unlock(&dentry->d_inode->i_mutex);
3682
3683 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3684 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3685 fsnotify_link_count(dentry->d_inode);
3686 d_delete(dentry);
3687 }
3688
3689 return error;
3690 }
3691
3692 /*
3693 * Make sure that the actual truncation of the file will occur outside its
3694 * directory's i_mutex. Truncate can take a long time if there is a lot of
3695 * writeout happening, and we don't want to prevent access to the directory
3696 * while waiting on the I/O.
3697 */
3698 static long do_unlinkat(int dfd, const char __user *pathname)
3699 {
3700 int error;
3701 struct filename *name;
3702 struct dentry *dentry;
3703 struct nameidata nd;
3704 struct inode *inode = NULL;
3705 unsigned int lookup_flags = 0;
3706 retry:
3707 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3708 if (IS_ERR(name))
3709 return PTR_ERR(name);
3710
3711 error = -EISDIR;
3712 if (nd.last_type != LAST_NORM)
3713 goto exit1;
3714
3715 nd.flags &= ~LOOKUP_PARENT;
3716 error = mnt_want_write(nd.path.mnt);
3717 if (error)
3718 goto exit1;
3719
3720 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3721 dentry = lookup_hash(&nd);
3722 error = PTR_ERR(dentry);
3723 if (!IS_ERR(dentry)) {
3724 /* Why not before? Because we want correct error value */
3725 if (nd.last.name[nd.last.len])
3726 goto slashes;
3727 inode = dentry->d_inode;
3728 if (!inode)
3729 goto slashes;
3730 ihold(inode);
3731 error = security_path_unlink(&nd.path, dentry);
3732 if (error)
3733 goto exit2;
3734 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3735 exit2:
3736 dput(dentry);
3737 }
3738 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3739 if (inode)
3740 iput(inode); /* truncate the inode here */
3741 mnt_drop_write(nd.path.mnt);
3742 exit1:
3743 path_put(&nd.path);
3744 putname(name);
3745 if (retry_estale(error, lookup_flags)) {
3746 lookup_flags |= LOOKUP_REVAL;
3747 inode = NULL;
3748 goto retry;
3749 }
3750 return error;
3751
3752 slashes:
3753 error = !dentry->d_inode ? -ENOENT :
3754 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3755 goto exit2;
3756 }
3757
3758 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3759 {
3760 if ((flag & ~AT_REMOVEDIR) != 0)
3761 return -EINVAL;
3762
3763 if (flag & AT_REMOVEDIR)
3764 return do_rmdir(dfd, pathname);
3765
3766 return do_unlinkat(dfd, pathname);
3767 }
3768
3769 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3770 {
3771 return do_unlinkat(AT_FDCWD, pathname);
3772 }
3773
3774 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3775 {
3776 int error = may_create(dir, dentry);
3777
3778 if (error)
3779 return error;
3780
3781 if (!dir->i_op->symlink)
3782 return -EPERM;
3783
3784 error = security_inode_symlink(dir, dentry, oldname);
3785 if (error)
3786 return error;
3787
3788 error = dir->i_op->symlink(dir, dentry, oldname);
3789 if (!error)
3790 fsnotify_create(dir, dentry);
3791 return error;
3792 }
3793
3794 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3795 int, newdfd, const char __user *, newname)
3796 {
3797 int error;
3798 struct filename *from;
3799 struct dentry *dentry;
3800 struct path path;
3801 unsigned int lookup_flags = 0;
3802
3803 from = getname(oldname);
3804 if (IS_ERR(from))
3805 return PTR_ERR(from);
3806 retry:
3807 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3808 error = PTR_ERR(dentry);
3809 if (IS_ERR(dentry))
3810 goto out_putname;
3811
3812 error = security_path_symlink(&path, dentry, from->name);
3813 if (!error)
3814 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3815 done_path_create(&path, dentry);
3816 if (retry_estale(error, lookup_flags)) {
3817 lookup_flags |= LOOKUP_REVAL;
3818 goto retry;
3819 }
3820 out_putname:
3821 putname(from);
3822 return error;
3823 }
3824
3825 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3826 {
3827 return sys_symlinkat(oldname, AT_FDCWD, newname);
3828 }
3829
3830 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3831 {
3832 struct inode *inode = old_dentry->d_inode;
3833 unsigned max_links = dir->i_sb->s_max_links;
3834 int error;
3835
3836 if (!inode)
3837 return -ENOENT;
3838
3839 error = may_create(dir, new_dentry);
3840 if (error)
3841 return error;
3842
3843 if (dir->i_sb != inode->i_sb)
3844 return -EXDEV;
3845
3846 /*
3847 * A link to an append-only or immutable file cannot be created.
3848 */
3849 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3850 return -EPERM;
3851 if (!dir->i_op->link)
3852 return -EPERM;
3853 if (S_ISDIR(inode->i_mode))
3854 return -EPERM;
3855
3856 error = security_inode_link(old_dentry, dir, new_dentry);
3857 if (error)
3858 return error;
3859
3860 mutex_lock(&inode->i_mutex);
3861 /* Make sure we don't allow creating hardlink to an unlinked file */
3862 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3863 error = -ENOENT;
3864 else if (max_links && inode->i_nlink >= max_links)
3865 error = -EMLINK;
3866 else
3867 error = dir->i_op->link(old_dentry, dir, new_dentry);
3868
3869 if (!error && (inode->i_state & I_LINKABLE)) {
3870 spin_lock(&inode->i_lock);
3871 inode->i_state &= ~I_LINKABLE;
3872 spin_unlock(&inode->i_lock);
3873 }
3874 mutex_unlock(&inode->i_mutex);
3875 if (!error)
3876 fsnotify_link(dir, inode, new_dentry);
3877 return error;
3878 }
3879
3880 /*
3881 * Hardlinks are often used in delicate situations. We avoid
3882 * security-related surprises by not following symlinks on the
3883 * newname. --KAB
3884 *
3885 * We don't follow them on the oldname either to be compatible
3886 * with linux 2.0, and to avoid hard-linking to directories
3887 * and other special files. --ADM
3888 */
3889 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3890 int, newdfd, const char __user *, newname, int, flags)
3891 {
3892 struct dentry *new_dentry;
3893 struct path old_path, new_path;
3894 int how = 0;
3895 int error;
3896
3897 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3898 return -EINVAL;
3899 /*
3900 * To use null names we require CAP_DAC_READ_SEARCH
3901 * This ensures that not everyone will be able to create
3902 * handlink using the passed filedescriptor.
3903 */
3904 if (flags & AT_EMPTY_PATH) {
3905 if (!capable(CAP_DAC_READ_SEARCH))
3906 return -ENOENT;
3907 how = LOOKUP_EMPTY;
3908 }
3909
3910 if (flags & AT_SYMLINK_FOLLOW)
3911 how |= LOOKUP_FOLLOW;
3912 retry:
3913 error = user_path_at(olddfd, oldname, how, &old_path);
3914 if (error)
3915 return error;
3916
3917 new_dentry = user_path_create(newdfd, newname, &new_path,
3918 (how & LOOKUP_REVAL));
3919 error = PTR_ERR(new_dentry);
3920 if (IS_ERR(new_dentry))
3921 goto out;
3922
3923 error = -EXDEV;
3924 if (old_path.mnt != new_path.mnt)
3925 goto out_dput;
3926 error = may_linkat(&old_path);
3927 if (unlikely(error))
3928 goto out_dput;
3929 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3930 if (error)
3931 goto out_dput;
3932 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3933 out_dput:
3934 done_path_create(&new_path, new_dentry);
3935 if (retry_estale(error, how)) {
3936 how |= LOOKUP_REVAL;
3937 goto retry;
3938 }
3939 out:
3940 path_put(&old_path);
3941
3942 return error;
3943 }
3944
3945 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3946 {
3947 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3948 }
3949
3950 /*
3951 * The worst of all namespace operations - renaming directory. "Perverted"
3952 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3953 * Problems:
3954 * a) we can get into loop creation. Check is done in is_subdir().
3955 * b) race potential - two innocent renames can create a loop together.
3956 * That's where 4.4 screws up. Current fix: serialization on
3957 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3958 * story.
3959 * c) we have to lock _three_ objects - parents and victim (if it exists).
3960 * And that - after we got ->i_mutex on parents (until then we don't know
3961 * whether the target exists). Solution: try to be smart with locking
3962 * order for inodes. We rely on the fact that tree topology may change
3963 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3964 * move will be locked. Thus we can rank directories by the tree
3965 * (ancestors first) and rank all non-directories after them.
3966 * That works since everybody except rename does "lock parent, lookup,
3967 * lock child" and rename is under ->s_vfs_rename_mutex.
3968 * HOWEVER, it relies on the assumption that any object with ->lookup()
3969 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3970 * we'd better make sure that there's no link(2) for them.
3971 * d) conversion from fhandle to dentry may come in the wrong moment - when
3972 * we are removing the target. Solution: we will have to grab ->i_mutex
3973 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3974 * ->i_mutex on parents, which works but leads to some truly excessive
3975 * locking].
3976 */
3977 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3978 struct inode *new_dir, struct dentry *new_dentry)
3979 {
3980 int error = 0;
3981 struct inode *target = new_dentry->d_inode;
3982 unsigned max_links = new_dir->i_sb->s_max_links;
3983
3984 /*
3985 * If we are going to change the parent - check write permissions,
3986 * we'll need to flip '..'.
3987 */
3988 if (new_dir != old_dir) {
3989 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3990 if (error)
3991 return error;
3992 }
3993
3994 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3995 if (error)
3996 return error;
3997
3998 dget(new_dentry);
3999 if (target)
4000 mutex_lock(&target->i_mutex);
4001
4002 error = -EBUSY;
4003 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
4004 goto out;
4005
4006 error = -EMLINK;
4007 if (max_links && !target && new_dir != old_dir &&
4008 new_dir->i_nlink >= max_links)
4009 goto out;
4010
4011 if (target)
4012 shrink_dcache_parent(new_dentry);
4013 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4014 if (error)
4015 goto out;
4016
4017 if (target) {
4018 target->i_flags |= S_DEAD;
4019 dont_mount(new_dentry);
4020 }
4021 out:
4022 if (target)
4023 mutex_unlock(&target->i_mutex);
4024 dput(new_dentry);
4025 if (!error)
4026 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4027 d_move(old_dentry,new_dentry);
4028 return error;
4029 }
4030
4031 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
4032 struct inode *new_dir, struct dentry *new_dentry)
4033 {
4034 struct inode *target = new_dentry->d_inode;
4035 int error;
4036
4037 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
4038 if (error)
4039 return error;
4040
4041 dget(new_dentry);
4042 if (target)
4043 mutex_lock(&target->i_mutex);
4044
4045 error = -EBUSY;
4046 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
4047 goto out;
4048
4049 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4050 if (error)
4051 goto out;
4052
4053 if (target)
4054 dont_mount(new_dentry);
4055 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4056 d_move(old_dentry, new_dentry);
4057 out:
4058 if (target)
4059 mutex_unlock(&target->i_mutex);
4060 dput(new_dentry);
4061 return error;
4062 }
4063
4064 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4065 struct inode *new_dir, struct dentry *new_dentry)
4066 {
4067 int error;
4068 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
4069 const unsigned char *old_name;
4070
4071 if (old_dentry->d_inode == new_dentry->d_inode)
4072 return 0;
4073
4074 error = may_delete(old_dir, old_dentry, is_dir);
4075 if (error)
4076 return error;
4077
4078 if (!new_dentry->d_inode)
4079 error = may_create(new_dir, new_dentry);
4080 else
4081 error = may_delete(new_dir, new_dentry, is_dir);
4082 if (error)
4083 return error;
4084
4085 if (!old_dir->i_op->rename)
4086 return -EPERM;
4087
4088 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4089
4090 if (is_dir)
4091 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
4092 else
4093 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
4094 if (!error)
4095 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4096 new_dentry->d_inode, old_dentry);
4097 fsnotify_oldname_free(old_name);
4098
4099 return error;
4100 }
4101
4102 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4103 int, newdfd, const char __user *, newname)
4104 {
4105 struct dentry *old_dir, *new_dir;
4106 struct dentry *old_dentry, *new_dentry;
4107 struct dentry *trap;
4108 struct nameidata oldnd, newnd;
4109 struct filename *from;
4110 struct filename *to;
4111 unsigned int lookup_flags = 0;
4112 bool should_retry = false;
4113 int error;
4114 retry:
4115 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4116 if (IS_ERR(from)) {
4117 error = PTR_ERR(from);
4118 goto exit;
4119 }
4120
4121 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4122 if (IS_ERR(to)) {
4123 error = PTR_ERR(to);
4124 goto exit1;
4125 }
4126
4127 error = -EXDEV;
4128 if (oldnd.path.mnt != newnd.path.mnt)
4129 goto exit2;
4130
4131 old_dir = oldnd.path.dentry;
4132 error = -EBUSY;
4133 if (oldnd.last_type != LAST_NORM)
4134 goto exit2;
4135
4136 new_dir = newnd.path.dentry;
4137 if (newnd.last_type != LAST_NORM)
4138 goto exit2;
4139
4140 error = mnt_want_write(oldnd.path.mnt);
4141 if (error)
4142 goto exit2;
4143
4144 oldnd.flags &= ~LOOKUP_PARENT;
4145 newnd.flags &= ~LOOKUP_PARENT;
4146 newnd.flags |= LOOKUP_RENAME_TARGET;
4147
4148 trap = lock_rename(new_dir, old_dir);
4149
4150 old_dentry = lookup_hash(&oldnd);
4151 error = PTR_ERR(old_dentry);
4152 if (IS_ERR(old_dentry))
4153 goto exit3;
4154 /* source must exist */
4155 error = -ENOENT;
4156 if (!old_dentry->d_inode)
4157 goto exit4;
4158 /* unless the source is a directory trailing slashes give -ENOTDIR */
4159 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
4160 error = -ENOTDIR;
4161 if (oldnd.last.name[oldnd.last.len])
4162 goto exit4;
4163 if (newnd.last.name[newnd.last.len])
4164 goto exit4;
4165 }
4166 /* source should not be ancestor of target */
4167 error = -EINVAL;
4168 if (old_dentry == trap)
4169 goto exit4;
4170 new_dentry = lookup_hash(&newnd);
4171 error = PTR_ERR(new_dentry);
4172 if (IS_ERR(new_dentry))
4173 goto exit4;
4174 /* target should not be an ancestor of source */
4175 error = -ENOTEMPTY;
4176 if (new_dentry == trap)
4177 goto exit5;
4178
4179 error = security_path_rename(&oldnd.path, old_dentry,
4180 &newnd.path, new_dentry);
4181 if (error)
4182 goto exit5;
4183 error = vfs_rename(old_dir->d_inode, old_dentry,
4184 new_dir->d_inode, new_dentry);
4185 exit5:
4186 dput(new_dentry);
4187 exit4:
4188 dput(old_dentry);
4189 exit3:
4190 unlock_rename(new_dir, old_dir);
4191 mnt_drop_write(oldnd.path.mnt);
4192 exit2:
4193 if (retry_estale(error, lookup_flags))
4194 should_retry = true;
4195 path_put(&newnd.path);
4196 putname(to);
4197 exit1:
4198 path_put(&oldnd.path);
4199 putname(from);
4200 if (should_retry) {
4201 should_retry = false;
4202 lookup_flags |= LOOKUP_REVAL;
4203 goto retry;
4204 }
4205 exit:
4206 return error;
4207 }
4208
4209 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4210 {
4211 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
4212 }
4213
4214 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
4215 {
4216 int len;
4217
4218 len = PTR_ERR(link);
4219 if (IS_ERR(link))
4220 goto out;
4221
4222 len = strlen(link);
4223 if (len > (unsigned) buflen)
4224 len = buflen;
4225 if (copy_to_user(buffer, link, len))
4226 len = -EFAULT;
4227 out:
4228 return len;
4229 }
4230
4231 /*
4232 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4233 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4234 * using) it for any given inode is up to filesystem.
4235 */
4236 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4237 {
4238 struct nameidata nd;
4239 void *cookie;
4240 int res;
4241
4242 nd.depth = 0;
4243 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4244 if (IS_ERR(cookie))
4245 return PTR_ERR(cookie);
4246
4247 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
4248 if (dentry->d_inode->i_op->put_link)
4249 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4250 return res;
4251 }
4252
4253 int vfs_follow_link(struct nameidata *nd, const char *link)
4254 {
4255 return __vfs_follow_link(nd, link);
4256 }
4257
4258 /* get the link contents into pagecache */
4259 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4260 {
4261 char *kaddr;
4262 struct page *page;
4263 struct address_space *mapping = dentry->d_inode->i_mapping;
4264 page = read_mapping_page(mapping, 0, NULL);
4265 if (IS_ERR(page))
4266 return (char*)page;
4267 *ppage = page;
4268 kaddr = kmap(page);
4269 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4270 return kaddr;
4271 }
4272
4273 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4274 {
4275 struct page *page = NULL;
4276 char *s = page_getlink(dentry, &page);
4277 int res = vfs_readlink(dentry,buffer,buflen,s);
4278 if (page) {
4279 kunmap(page);
4280 page_cache_release(page);
4281 }
4282 return res;
4283 }
4284
4285 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4286 {
4287 struct page *page = NULL;
4288 nd_set_link(nd, page_getlink(dentry, &page));
4289 return page;
4290 }
4291
4292 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4293 {
4294 struct page *page = cookie;
4295
4296 if (page) {
4297 kunmap(page);
4298 page_cache_release(page);
4299 }
4300 }
4301
4302 /*
4303 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4304 */
4305 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4306 {
4307 struct address_space *mapping = inode->i_mapping;
4308 struct page *page;
4309 void *fsdata;
4310 int err;
4311 char *kaddr;
4312 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4313 if (nofs)
4314 flags |= AOP_FLAG_NOFS;
4315
4316 retry:
4317 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4318 flags, &page, &fsdata);
4319 if (err)
4320 goto fail;
4321
4322 kaddr = kmap_atomic(page);
4323 memcpy(kaddr, symname, len-1);
4324 kunmap_atomic(kaddr);
4325
4326 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4327 page, fsdata);
4328 if (err < 0)
4329 goto fail;
4330 if (err < len-1)
4331 goto retry;
4332
4333 mark_inode_dirty(inode);
4334 return 0;
4335 fail:
4336 return err;
4337 }
4338
4339 int page_symlink(struct inode *inode, const char *symname, int len)
4340 {
4341 return __page_symlink(inode, symname, len,
4342 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4343 }
4344
4345 const struct inode_operations page_symlink_inode_operations = {
4346 .readlink = generic_readlink,
4347 .follow_link = page_follow_link_light,
4348 .put_link = page_put_link,
4349 };
4350
4351 EXPORT_SYMBOL(user_path_at);
4352 EXPORT_SYMBOL(follow_down_one);
4353 EXPORT_SYMBOL(follow_down);
4354 EXPORT_SYMBOL(follow_up);
4355 EXPORT_SYMBOL(get_write_access); /* nfsd */
4356 EXPORT_SYMBOL(lock_rename);
4357 EXPORT_SYMBOL(lookup_one_len);
4358 EXPORT_SYMBOL(page_follow_link_light);
4359 EXPORT_SYMBOL(page_put_link);
4360 EXPORT_SYMBOL(page_readlink);
4361 EXPORT_SYMBOL(__page_symlink);
4362 EXPORT_SYMBOL(page_symlink);
4363 EXPORT_SYMBOL(page_symlink_inode_operations);
4364 EXPORT_SYMBOL(kern_path);
4365 EXPORT_SYMBOL(vfs_path_lookup);
4366 EXPORT_SYMBOL(inode_permission);
4367 EXPORT_SYMBOL(unlock_rename);
4368 EXPORT_SYMBOL(vfs_create);
4369 EXPORT_SYMBOL(vfs_follow_link);
4370 EXPORT_SYMBOL(vfs_link);
4371 EXPORT_SYMBOL(vfs_mkdir);
4372 EXPORT_SYMBOL(vfs_mknod);
4373 EXPORT_SYMBOL(generic_permission);
4374 EXPORT_SYMBOL(vfs_readlink);
4375 EXPORT_SYMBOL(vfs_rename);
4376 EXPORT_SYMBOL(vfs_rmdir);
4377 EXPORT_SYMBOL(vfs_symlink);
4378 EXPORT_SYMBOL(vfs_unlink);
4379 EXPORT_SYMBOL(dentry_unhash);
4380 EXPORT_SYMBOL(generic_readlink);