]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namei.c
vfs: don't let do_last pass negative dentry to audit_inode
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 static char *getname_flags(const char __user *filename, int flags, int *empty)
121 {
122 char *result = __getname(), *err;
123 int len;
124
125 if (unlikely(!result))
126 return ERR_PTR(-ENOMEM);
127
128 len = strncpy_from_user(result, filename, PATH_MAX);
129 err = ERR_PTR(len);
130 if (unlikely(len < 0))
131 goto error;
132
133 /* The empty path is special. */
134 if (unlikely(!len)) {
135 if (empty)
136 *empty = 1;
137 err = ERR_PTR(-ENOENT);
138 if (!(flags & LOOKUP_EMPTY))
139 goto error;
140 }
141
142 err = ERR_PTR(-ENAMETOOLONG);
143 if (likely(len < PATH_MAX)) {
144 audit_getname(result);
145 return result;
146 }
147
148 error:
149 __putname(result);
150 return err;
151 }
152
153 char *getname(const char __user * filename)
154 {
155 return getname_flags(filename, 0, NULL);
156 }
157
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168
169 static int check_acl(struct inode *inode, int mask)
170 {
171 #ifdef CONFIG_FS_POSIX_ACL
172 struct posix_acl *acl;
173
174 if (mask & MAY_NOT_BLOCK) {
175 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
176 if (!acl)
177 return -EAGAIN;
178 /* no ->get_acl() calls in RCU mode... */
179 if (acl == ACL_NOT_CACHED)
180 return -ECHILD;
181 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
182 }
183
184 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
185
186 /*
187 * A filesystem can force a ACL callback by just never filling the
188 * ACL cache. But normally you'd fill the cache either at inode
189 * instantiation time, or on the first ->get_acl call.
190 *
191 * If the filesystem doesn't have a get_acl() function at all, we'll
192 * just create the negative cache entry.
193 */
194 if (acl == ACL_NOT_CACHED) {
195 if (inode->i_op->get_acl) {
196 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
197 if (IS_ERR(acl))
198 return PTR_ERR(acl);
199 } else {
200 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
201 return -EAGAIN;
202 }
203 }
204
205 if (acl) {
206 int error = posix_acl_permission(inode, acl, mask);
207 posix_acl_release(acl);
208 return error;
209 }
210 #endif
211
212 return -EAGAIN;
213 }
214
215 /*
216 * This does the basic permission checking
217 */
218 static int acl_permission_check(struct inode *inode, int mask)
219 {
220 unsigned int mode = inode->i_mode;
221
222 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
223 mode >>= 6;
224 else {
225 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
226 int error = check_acl(inode, mask);
227 if (error != -EAGAIN)
228 return error;
229 }
230
231 if (in_group_p(inode->i_gid))
232 mode >>= 3;
233 }
234
235 /*
236 * If the DACs are ok we don't need any capability check.
237 */
238 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
239 return 0;
240 return -EACCES;
241 }
242
243 /**
244 * generic_permission - check for access rights on a Posix-like filesystem
245 * @inode: inode to check access rights for
246 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
247 *
248 * Used to check for read/write/execute permissions on a file.
249 * We use "fsuid" for this, letting us set arbitrary permissions
250 * for filesystem access without changing the "normal" uids which
251 * are used for other things.
252 *
253 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
254 * request cannot be satisfied (eg. requires blocking or too much complexity).
255 * It would then be called again in ref-walk mode.
256 */
257 int generic_permission(struct inode *inode, int mask)
258 {
259 int ret;
260
261 /*
262 * Do the basic permission checks.
263 */
264 ret = acl_permission_check(inode, mask);
265 if (ret != -EACCES)
266 return ret;
267
268 if (S_ISDIR(inode->i_mode)) {
269 /* DACs are overridable for directories */
270 if (inode_capable(inode, CAP_DAC_OVERRIDE))
271 return 0;
272 if (!(mask & MAY_WRITE))
273 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
274 return 0;
275 return -EACCES;
276 }
277 /*
278 * Read/write DACs are always overridable.
279 * Executable DACs are overridable when there is
280 * at least one exec bit set.
281 */
282 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
283 if (inode_capable(inode, CAP_DAC_OVERRIDE))
284 return 0;
285
286 /*
287 * Searching includes executable on directories, else just read.
288 */
289 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
290 if (mask == MAY_READ)
291 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
292 return 0;
293
294 return -EACCES;
295 }
296
297 /*
298 * We _really_ want to just do "generic_permission()" without
299 * even looking at the inode->i_op values. So we keep a cache
300 * flag in inode->i_opflags, that says "this has not special
301 * permission function, use the fast case".
302 */
303 static inline int do_inode_permission(struct inode *inode, int mask)
304 {
305 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
306 if (likely(inode->i_op->permission))
307 return inode->i_op->permission(inode, mask);
308
309 /* This gets set once for the inode lifetime */
310 spin_lock(&inode->i_lock);
311 inode->i_opflags |= IOP_FASTPERM;
312 spin_unlock(&inode->i_lock);
313 }
314 return generic_permission(inode, mask);
315 }
316
317 /**
318 * __inode_permission - Check for access rights to a given inode
319 * @inode: Inode to check permission on
320 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
321 *
322 * Check for read/write/execute permissions on an inode.
323 *
324 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
325 *
326 * This does not check for a read-only file system. You probably want
327 * inode_permission().
328 */
329 int __inode_permission(struct inode *inode, int mask)
330 {
331 int retval;
332
333 if (unlikely(mask & MAY_WRITE)) {
334 /*
335 * Nobody gets write access to an immutable file.
336 */
337 if (IS_IMMUTABLE(inode))
338 return -EACCES;
339 }
340
341 retval = do_inode_permission(inode, mask);
342 if (retval)
343 return retval;
344
345 retval = devcgroup_inode_permission(inode, mask);
346 if (retval)
347 return retval;
348
349 return security_inode_permission(inode, mask);
350 }
351
352 /**
353 * sb_permission - Check superblock-level permissions
354 * @sb: Superblock of inode to check permission on
355 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
356 *
357 * Separate out file-system wide checks from inode-specific permission checks.
358 */
359 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
360 {
361 if (unlikely(mask & MAY_WRITE)) {
362 umode_t mode = inode->i_mode;
363
364 /* Nobody gets write access to a read-only fs. */
365 if ((sb->s_flags & MS_RDONLY) &&
366 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
367 return -EROFS;
368 }
369 return 0;
370 }
371
372 /**
373 * inode_permission - Check for access rights to a given inode
374 * @inode: Inode to check permission on
375 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
376 *
377 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
378 * this, letting us set arbitrary permissions for filesystem access without
379 * changing the "normal" UIDs which are used for other things.
380 *
381 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
382 */
383 int inode_permission(struct inode *inode, int mask)
384 {
385 int retval;
386
387 retval = sb_permission(inode->i_sb, inode, mask);
388 if (retval)
389 return retval;
390 return __inode_permission(inode, mask);
391 }
392
393 /**
394 * path_get - get a reference to a path
395 * @path: path to get the reference to
396 *
397 * Given a path increment the reference count to the dentry and the vfsmount.
398 */
399 void path_get(struct path *path)
400 {
401 mntget(path->mnt);
402 dget(path->dentry);
403 }
404 EXPORT_SYMBOL(path_get);
405
406 /**
407 * path_put - put a reference to a path
408 * @path: path to put the reference to
409 *
410 * Given a path decrement the reference count to the dentry and the vfsmount.
411 */
412 void path_put(struct path *path)
413 {
414 dput(path->dentry);
415 mntput(path->mnt);
416 }
417 EXPORT_SYMBOL(path_put);
418
419 /*
420 * Path walking has 2 modes, rcu-walk and ref-walk (see
421 * Documentation/filesystems/path-lookup.txt). In situations when we can't
422 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
423 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
424 * mode. Refcounts are grabbed at the last known good point before rcu-walk
425 * got stuck, so ref-walk may continue from there. If this is not successful
426 * (eg. a seqcount has changed), then failure is returned and it's up to caller
427 * to restart the path walk from the beginning in ref-walk mode.
428 */
429
430 static inline void lock_rcu_walk(void)
431 {
432 br_read_lock(&vfsmount_lock);
433 rcu_read_lock();
434 }
435
436 static inline void unlock_rcu_walk(void)
437 {
438 rcu_read_unlock();
439 br_read_unlock(&vfsmount_lock);
440 }
441
442 /**
443 * unlazy_walk - try to switch to ref-walk mode.
444 * @nd: nameidata pathwalk data
445 * @dentry: child of nd->path.dentry or NULL
446 * Returns: 0 on success, -ECHILD on failure
447 *
448 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
449 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
450 * @nd or NULL. Must be called from rcu-walk context.
451 */
452 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
453 {
454 struct fs_struct *fs = current->fs;
455 struct dentry *parent = nd->path.dentry;
456 int want_root = 0;
457
458 BUG_ON(!(nd->flags & LOOKUP_RCU));
459 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
460 want_root = 1;
461 spin_lock(&fs->lock);
462 if (nd->root.mnt != fs->root.mnt ||
463 nd->root.dentry != fs->root.dentry)
464 goto err_root;
465 }
466 spin_lock(&parent->d_lock);
467 if (!dentry) {
468 if (!__d_rcu_to_refcount(parent, nd->seq))
469 goto err_parent;
470 BUG_ON(nd->inode != parent->d_inode);
471 } else {
472 if (dentry->d_parent != parent)
473 goto err_parent;
474 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
475 if (!__d_rcu_to_refcount(dentry, nd->seq))
476 goto err_child;
477 /*
478 * If the sequence check on the child dentry passed, then
479 * the child has not been removed from its parent. This
480 * means the parent dentry must be valid and able to take
481 * a reference at this point.
482 */
483 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
484 BUG_ON(!parent->d_count);
485 parent->d_count++;
486 spin_unlock(&dentry->d_lock);
487 }
488 spin_unlock(&parent->d_lock);
489 if (want_root) {
490 path_get(&nd->root);
491 spin_unlock(&fs->lock);
492 }
493 mntget(nd->path.mnt);
494
495 unlock_rcu_walk();
496 nd->flags &= ~LOOKUP_RCU;
497 return 0;
498
499 err_child:
500 spin_unlock(&dentry->d_lock);
501 err_parent:
502 spin_unlock(&parent->d_lock);
503 err_root:
504 if (want_root)
505 spin_unlock(&fs->lock);
506 return -ECHILD;
507 }
508
509 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
510 {
511 return dentry->d_op->d_revalidate(dentry, flags);
512 }
513
514 /**
515 * complete_walk - successful completion of path walk
516 * @nd: pointer nameidata
517 *
518 * If we had been in RCU mode, drop out of it and legitimize nd->path.
519 * Revalidate the final result, unless we'd already done that during
520 * the path walk or the filesystem doesn't ask for it. Return 0 on
521 * success, -error on failure. In case of failure caller does not
522 * need to drop nd->path.
523 */
524 static int complete_walk(struct nameidata *nd)
525 {
526 struct dentry *dentry = nd->path.dentry;
527 int status;
528
529 if (nd->flags & LOOKUP_RCU) {
530 nd->flags &= ~LOOKUP_RCU;
531 if (!(nd->flags & LOOKUP_ROOT))
532 nd->root.mnt = NULL;
533 spin_lock(&dentry->d_lock);
534 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
535 spin_unlock(&dentry->d_lock);
536 unlock_rcu_walk();
537 return -ECHILD;
538 }
539 BUG_ON(nd->inode != dentry->d_inode);
540 spin_unlock(&dentry->d_lock);
541 mntget(nd->path.mnt);
542 unlock_rcu_walk();
543 }
544
545 if (likely(!(nd->flags & LOOKUP_JUMPED)))
546 return 0;
547
548 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
549 return 0;
550
551 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
552 return 0;
553
554 /* Note: we do not d_invalidate() */
555 status = d_revalidate(dentry, nd->flags);
556 if (status > 0)
557 return 0;
558
559 if (!status)
560 status = -ESTALE;
561
562 path_put(&nd->path);
563 return status;
564 }
565
566 static __always_inline void set_root(struct nameidata *nd)
567 {
568 if (!nd->root.mnt)
569 get_fs_root(current->fs, &nd->root);
570 }
571
572 static int link_path_walk(const char *, struct nameidata *);
573
574 static __always_inline void set_root_rcu(struct nameidata *nd)
575 {
576 if (!nd->root.mnt) {
577 struct fs_struct *fs = current->fs;
578 unsigned seq;
579
580 do {
581 seq = read_seqcount_begin(&fs->seq);
582 nd->root = fs->root;
583 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
584 } while (read_seqcount_retry(&fs->seq, seq));
585 }
586 }
587
588 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
589 {
590 int ret;
591
592 if (IS_ERR(link))
593 goto fail;
594
595 if (*link == '/') {
596 set_root(nd);
597 path_put(&nd->path);
598 nd->path = nd->root;
599 path_get(&nd->root);
600 nd->flags |= LOOKUP_JUMPED;
601 }
602 nd->inode = nd->path.dentry->d_inode;
603
604 ret = link_path_walk(link, nd);
605 return ret;
606 fail:
607 path_put(&nd->path);
608 return PTR_ERR(link);
609 }
610
611 static void path_put_conditional(struct path *path, struct nameidata *nd)
612 {
613 dput(path->dentry);
614 if (path->mnt != nd->path.mnt)
615 mntput(path->mnt);
616 }
617
618 static inline void path_to_nameidata(const struct path *path,
619 struct nameidata *nd)
620 {
621 if (!(nd->flags & LOOKUP_RCU)) {
622 dput(nd->path.dentry);
623 if (nd->path.mnt != path->mnt)
624 mntput(nd->path.mnt);
625 }
626 nd->path.mnt = path->mnt;
627 nd->path.dentry = path->dentry;
628 }
629
630 /*
631 * Helper to directly jump to a known parsed path from ->follow_link,
632 * caller must have taken a reference to path beforehand.
633 */
634 void nd_jump_link(struct nameidata *nd, struct path *path)
635 {
636 path_put(&nd->path);
637
638 nd->path = *path;
639 nd->inode = nd->path.dentry->d_inode;
640 nd->flags |= LOOKUP_JUMPED;
641
642 BUG_ON(nd->inode->i_op->follow_link);
643 }
644
645 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
646 {
647 struct inode *inode = link->dentry->d_inode;
648 if (inode->i_op->put_link)
649 inode->i_op->put_link(link->dentry, nd, cookie);
650 path_put(link);
651 }
652
653 static __always_inline int
654 follow_link(struct path *link, struct nameidata *nd, void **p)
655 {
656 struct dentry *dentry = link->dentry;
657 int error;
658 char *s;
659
660 BUG_ON(nd->flags & LOOKUP_RCU);
661
662 if (link->mnt == nd->path.mnt)
663 mntget(link->mnt);
664
665 error = -ELOOP;
666 if (unlikely(current->total_link_count >= 40))
667 goto out_put_nd_path;
668
669 cond_resched();
670 current->total_link_count++;
671
672 touch_atime(link);
673 nd_set_link(nd, NULL);
674
675 error = security_inode_follow_link(link->dentry, nd);
676 if (error)
677 goto out_put_nd_path;
678
679 nd->last_type = LAST_BIND;
680 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
681 error = PTR_ERR(*p);
682 if (IS_ERR(*p))
683 goto out_put_nd_path;
684
685 error = 0;
686 s = nd_get_link(nd);
687 if (s) {
688 error = __vfs_follow_link(nd, s);
689 if (unlikely(error))
690 put_link(nd, link, *p);
691 }
692
693 return error;
694
695 out_put_nd_path:
696 path_put(&nd->path);
697 path_put(link);
698 return error;
699 }
700
701 static int follow_up_rcu(struct path *path)
702 {
703 struct mount *mnt = real_mount(path->mnt);
704 struct mount *parent;
705 struct dentry *mountpoint;
706
707 parent = mnt->mnt_parent;
708 if (&parent->mnt == path->mnt)
709 return 0;
710 mountpoint = mnt->mnt_mountpoint;
711 path->dentry = mountpoint;
712 path->mnt = &parent->mnt;
713 return 1;
714 }
715
716 /*
717 * follow_up - Find the mountpoint of path's vfsmount
718 *
719 * Given a path, find the mountpoint of its source file system.
720 * Replace @path with the path of the mountpoint in the parent mount.
721 * Up is towards /.
722 *
723 * Return 1 if we went up a level and 0 if we were already at the
724 * root.
725 */
726 int follow_up(struct path *path)
727 {
728 struct mount *mnt = real_mount(path->mnt);
729 struct mount *parent;
730 struct dentry *mountpoint;
731
732 br_read_lock(&vfsmount_lock);
733 parent = mnt->mnt_parent;
734 if (parent == mnt) {
735 br_read_unlock(&vfsmount_lock);
736 return 0;
737 }
738 mntget(&parent->mnt);
739 mountpoint = dget(mnt->mnt_mountpoint);
740 br_read_unlock(&vfsmount_lock);
741 dput(path->dentry);
742 path->dentry = mountpoint;
743 mntput(path->mnt);
744 path->mnt = &parent->mnt;
745 return 1;
746 }
747
748 /*
749 * Perform an automount
750 * - return -EISDIR to tell follow_managed() to stop and return the path we
751 * were called with.
752 */
753 static int follow_automount(struct path *path, unsigned flags,
754 bool *need_mntput)
755 {
756 struct vfsmount *mnt;
757 int err;
758
759 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
760 return -EREMOTE;
761
762 /* We don't want to mount if someone's just doing a stat -
763 * unless they're stat'ing a directory and appended a '/' to
764 * the name.
765 *
766 * We do, however, want to mount if someone wants to open or
767 * create a file of any type under the mountpoint, wants to
768 * traverse through the mountpoint or wants to open the
769 * mounted directory. Also, autofs may mark negative dentries
770 * as being automount points. These will need the attentions
771 * of the daemon to instantiate them before they can be used.
772 */
773 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
774 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
775 path->dentry->d_inode)
776 return -EISDIR;
777
778 current->total_link_count++;
779 if (current->total_link_count >= 40)
780 return -ELOOP;
781
782 mnt = path->dentry->d_op->d_automount(path);
783 if (IS_ERR(mnt)) {
784 /*
785 * The filesystem is allowed to return -EISDIR here to indicate
786 * it doesn't want to automount. For instance, autofs would do
787 * this so that its userspace daemon can mount on this dentry.
788 *
789 * However, we can only permit this if it's a terminal point in
790 * the path being looked up; if it wasn't then the remainder of
791 * the path is inaccessible and we should say so.
792 */
793 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
794 return -EREMOTE;
795 return PTR_ERR(mnt);
796 }
797
798 if (!mnt) /* mount collision */
799 return 0;
800
801 if (!*need_mntput) {
802 /* lock_mount() may release path->mnt on error */
803 mntget(path->mnt);
804 *need_mntput = true;
805 }
806 err = finish_automount(mnt, path);
807
808 switch (err) {
809 case -EBUSY:
810 /* Someone else made a mount here whilst we were busy */
811 return 0;
812 case 0:
813 path_put(path);
814 path->mnt = mnt;
815 path->dentry = dget(mnt->mnt_root);
816 return 0;
817 default:
818 return err;
819 }
820
821 }
822
823 /*
824 * Handle a dentry that is managed in some way.
825 * - Flagged for transit management (autofs)
826 * - Flagged as mountpoint
827 * - Flagged as automount point
828 *
829 * This may only be called in refwalk mode.
830 *
831 * Serialization is taken care of in namespace.c
832 */
833 static int follow_managed(struct path *path, unsigned flags)
834 {
835 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
836 unsigned managed;
837 bool need_mntput = false;
838 int ret = 0;
839
840 /* Given that we're not holding a lock here, we retain the value in a
841 * local variable for each dentry as we look at it so that we don't see
842 * the components of that value change under us */
843 while (managed = ACCESS_ONCE(path->dentry->d_flags),
844 managed &= DCACHE_MANAGED_DENTRY,
845 unlikely(managed != 0)) {
846 /* Allow the filesystem to manage the transit without i_mutex
847 * being held. */
848 if (managed & DCACHE_MANAGE_TRANSIT) {
849 BUG_ON(!path->dentry->d_op);
850 BUG_ON(!path->dentry->d_op->d_manage);
851 ret = path->dentry->d_op->d_manage(path->dentry, false);
852 if (ret < 0)
853 break;
854 }
855
856 /* Transit to a mounted filesystem. */
857 if (managed & DCACHE_MOUNTED) {
858 struct vfsmount *mounted = lookup_mnt(path);
859 if (mounted) {
860 dput(path->dentry);
861 if (need_mntput)
862 mntput(path->mnt);
863 path->mnt = mounted;
864 path->dentry = dget(mounted->mnt_root);
865 need_mntput = true;
866 continue;
867 }
868
869 /* Something is mounted on this dentry in another
870 * namespace and/or whatever was mounted there in this
871 * namespace got unmounted before we managed to get the
872 * vfsmount_lock */
873 }
874
875 /* Handle an automount point */
876 if (managed & DCACHE_NEED_AUTOMOUNT) {
877 ret = follow_automount(path, flags, &need_mntput);
878 if (ret < 0)
879 break;
880 continue;
881 }
882
883 /* We didn't change the current path point */
884 break;
885 }
886
887 if (need_mntput && path->mnt == mnt)
888 mntput(path->mnt);
889 if (ret == -EISDIR)
890 ret = 0;
891 return ret < 0 ? ret : need_mntput;
892 }
893
894 int follow_down_one(struct path *path)
895 {
896 struct vfsmount *mounted;
897
898 mounted = lookup_mnt(path);
899 if (mounted) {
900 dput(path->dentry);
901 mntput(path->mnt);
902 path->mnt = mounted;
903 path->dentry = dget(mounted->mnt_root);
904 return 1;
905 }
906 return 0;
907 }
908
909 static inline bool managed_dentry_might_block(struct dentry *dentry)
910 {
911 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
912 dentry->d_op->d_manage(dentry, true) < 0);
913 }
914
915 /*
916 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
917 * we meet a managed dentry that would need blocking.
918 */
919 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
920 struct inode **inode)
921 {
922 for (;;) {
923 struct mount *mounted;
924 /*
925 * Don't forget we might have a non-mountpoint managed dentry
926 * that wants to block transit.
927 */
928 if (unlikely(managed_dentry_might_block(path->dentry)))
929 return false;
930
931 if (!d_mountpoint(path->dentry))
932 break;
933
934 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
935 if (!mounted)
936 break;
937 path->mnt = &mounted->mnt;
938 path->dentry = mounted->mnt.mnt_root;
939 nd->flags |= LOOKUP_JUMPED;
940 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
941 /*
942 * Update the inode too. We don't need to re-check the
943 * dentry sequence number here after this d_inode read,
944 * because a mount-point is always pinned.
945 */
946 *inode = path->dentry->d_inode;
947 }
948 return true;
949 }
950
951 static void follow_mount_rcu(struct nameidata *nd)
952 {
953 while (d_mountpoint(nd->path.dentry)) {
954 struct mount *mounted;
955 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
956 if (!mounted)
957 break;
958 nd->path.mnt = &mounted->mnt;
959 nd->path.dentry = mounted->mnt.mnt_root;
960 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
961 }
962 }
963
964 static int follow_dotdot_rcu(struct nameidata *nd)
965 {
966 set_root_rcu(nd);
967
968 while (1) {
969 if (nd->path.dentry == nd->root.dentry &&
970 nd->path.mnt == nd->root.mnt) {
971 break;
972 }
973 if (nd->path.dentry != nd->path.mnt->mnt_root) {
974 struct dentry *old = nd->path.dentry;
975 struct dentry *parent = old->d_parent;
976 unsigned seq;
977
978 seq = read_seqcount_begin(&parent->d_seq);
979 if (read_seqcount_retry(&old->d_seq, nd->seq))
980 goto failed;
981 nd->path.dentry = parent;
982 nd->seq = seq;
983 break;
984 }
985 if (!follow_up_rcu(&nd->path))
986 break;
987 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
988 }
989 follow_mount_rcu(nd);
990 nd->inode = nd->path.dentry->d_inode;
991 return 0;
992
993 failed:
994 nd->flags &= ~LOOKUP_RCU;
995 if (!(nd->flags & LOOKUP_ROOT))
996 nd->root.mnt = NULL;
997 unlock_rcu_walk();
998 return -ECHILD;
999 }
1000
1001 /*
1002 * Follow down to the covering mount currently visible to userspace. At each
1003 * point, the filesystem owning that dentry may be queried as to whether the
1004 * caller is permitted to proceed or not.
1005 */
1006 int follow_down(struct path *path)
1007 {
1008 unsigned managed;
1009 int ret;
1010
1011 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1012 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1013 /* Allow the filesystem to manage the transit without i_mutex
1014 * being held.
1015 *
1016 * We indicate to the filesystem if someone is trying to mount
1017 * something here. This gives autofs the chance to deny anyone
1018 * other than its daemon the right to mount on its
1019 * superstructure.
1020 *
1021 * The filesystem may sleep at this point.
1022 */
1023 if (managed & DCACHE_MANAGE_TRANSIT) {
1024 BUG_ON(!path->dentry->d_op);
1025 BUG_ON(!path->dentry->d_op->d_manage);
1026 ret = path->dentry->d_op->d_manage(
1027 path->dentry, false);
1028 if (ret < 0)
1029 return ret == -EISDIR ? 0 : ret;
1030 }
1031
1032 /* Transit to a mounted filesystem. */
1033 if (managed & DCACHE_MOUNTED) {
1034 struct vfsmount *mounted = lookup_mnt(path);
1035 if (!mounted)
1036 break;
1037 dput(path->dentry);
1038 mntput(path->mnt);
1039 path->mnt = mounted;
1040 path->dentry = dget(mounted->mnt_root);
1041 continue;
1042 }
1043
1044 /* Don't handle automount points here */
1045 break;
1046 }
1047 return 0;
1048 }
1049
1050 /*
1051 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1052 */
1053 static void follow_mount(struct path *path)
1054 {
1055 while (d_mountpoint(path->dentry)) {
1056 struct vfsmount *mounted = lookup_mnt(path);
1057 if (!mounted)
1058 break;
1059 dput(path->dentry);
1060 mntput(path->mnt);
1061 path->mnt = mounted;
1062 path->dentry = dget(mounted->mnt_root);
1063 }
1064 }
1065
1066 static void follow_dotdot(struct nameidata *nd)
1067 {
1068 set_root(nd);
1069
1070 while(1) {
1071 struct dentry *old = nd->path.dentry;
1072
1073 if (nd->path.dentry == nd->root.dentry &&
1074 nd->path.mnt == nd->root.mnt) {
1075 break;
1076 }
1077 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1078 /* rare case of legitimate dget_parent()... */
1079 nd->path.dentry = dget_parent(nd->path.dentry);
1080 dput(old);
1081 break;
1082 }
1083 if (!follow_up(&nd->path))
1084 break;
1085 }
1086 follow_mount(&nd->path);
1087 nd->inode = nd->path.dentry->d_inode;
1088 }
1089
1090 /*
1091 * This looks up the name in dcache, possibly revalidates the old dentry and
1092 * allocates a new one if not found or not valid. In the need_lookup argument
1093 * returns whether i_op->lookup is necessary.
1094 *
1095 * dir->d_inode->i_mutex must be held
1096 */
1097 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1098 unsigned int flags, bool *need_lookup)
1099 {
1100 struct dentry *dentry;
1101 int error;
1102
1103 *need_lookup = false;
1104 dentry = d_lookup(dir, name);
1105 if (dentry) {
1106 if (d_need_lookup(dentry)) {
1107 *need_lookup = true;
1108 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1109 error = d_revalidate(dentry, flags);
1110 if (unlikely(error <= 0)) {
1111 if (error < 0) {
1112 dput(dentry);
1113 return ERR_PTR(error);
1114 } else if (!d_invalidate(dentry)) {
1115 dput(dentry);
1116 dentry = NULL;
1117 }
1118 }
1119 }
1120 }
1121
1122 if (!dentry) {
1123 dentry = d_alloc(dir, name);
1124 if (unlikely(!dentry))
1125 return ERR_PTR(-ENOMEM);
1126
1127 *need_lookup = true;
1128 }
1129 return dentry;
1130 }
1131
1132 /*
1133 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1134 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1135 *
1136 * dir->d_inode->i_mutex must be held
1137 */
1138 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1139 unsigned int flags)
1140 {
1141 struct dentry *old;
1142
1143 /* Don't create child dentry for a dead directory. */
1144 if (unlikely(IS_DEADDIR(dir))) {
1145 dput(dentry);
1146 return ERR_PTR(-ENOENT);
1147 }
1148
1149 old = dir->i_op->lookup(dir, dentry, flags);
1150 if (unlikely(old)) {
1151 dput(dentry);
1152 dentry = old;
1153 }
1154 return dentry;
1155 }
1156
1157 static struct dentry *__lookup_hash(struct qstr *name,
1158 struct dentry *base, unsigned int flags)
1159 {
1160 bool need_lookup;
1161 struct dentry *dentry;
1162
1163 dentry = lookup_dcache(name, base, flags, &need_lookup);
1164 if (!need_lookup)
1165 return dentry;
1166
1167 return lookup_real(base->d_inode, dentry, flags);
1168 }
1169
1170 /*
1171 * It's more convoluted than I'd like it to be, but... it's still fairly
1172 * small and for now I'd prefer to have fast path as straight as possible.
1173 * It _is_ time-critical.
1174 */
1175 static int lookup_fast(struct nameidata *nd, struct qstr *name,
1176 struct path *path, struct inode **inode)
1177 {
1178 struct vfsmount *mnt = nd->path.mnt;
1179 struct dentry *dentry, *parent = nd->path.dentry;
1180 int need_reval = 1;
1181 int status = 1;
1182 int err;
1183
1184 /*
1185 * Rename seqlock is not required here because in the off chance
1186 * of a false negative due to a concurrent rename, we're going to
1187 * do the non-racy lookup, below.
1188 */
1189 if (nd->flags & LOOKUP_RCU) {
1190 unsigned seq;
1191 dentry = __d_lookup_rcu(parent, name, &seq, nd->inode);
1192 if (!dentry)
1193 goto unlazy;
1194
1195 /*
1196 * This sequence count validates that the inode matches
1197 * the dentry name information from lookup.
1198 */
1199 *inode = dentry->d_inode;
1200 if (read_seqcount_retry(&dentry->d_seq, seq))
1201 return -ECHILD;
1202
1203 /*
1204 * This sequence count validates that the parent had no
1205 * changes while we did the lookup of the dentry above.
1206 *
1207 * The memory barrier in read_seqcount_begin of child is
1208 * enough, we can use __read_seqcount_retry here.
1209 */
1210 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1211 return -ECHILD;
1212 nd->seq = seq;
1213
1214 if (unlikely(d_need_lookup(dentry)))
1215 goto unlazy;
1216 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1217 status = d_revalidate(dentry, nd->flags);
1218 if (unlikely(status <= 0)) {
1219 if (status != -ECHILD)
1220 need_reval = 0;
1221 goto unlazy;
1222 }
1223 }
1224 path->mnt = mnt;
1225 path->dentry = dentry;
1226 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1227 goto unlazy;
1228 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1229 goto unlazy;
1230 return 0;
1231 unlazy:
1232 if (unlazy_walk(nd, dentry))
1233 return -ECHILD;
1234 } else {
1235 dentry = __d_lookup(parent, name);
1236 }
1237
1238 if (unlikely(!dentry))
1239 goto need_lookup;
1240
1241 if (unlikely(d_need_lookup(dentry))) {
1242 dput(dentry);
1243 goto need_lookup;
1244 }
1245
1246 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1247 status = d_revalidate(dentry, nd->flags);
1248 if (unlikely(status <= 0)) {
1249 if (status < 0) {
1250 dput(dentry);
1251 return status;
1252 }
1253 if (!d_invalidate(dentry)) {
1254 dput(dentry);
1255 goto need_lookup;
1256 }
1257 }
1258
1259 path->mnt = mnt;
1260 path->dentry = dentry;
1261 err = follow_managed(path, nd->flags);
1262 if (unlikely(err < 0)) {
1263 path_put_conditional(path, nd);
1264 return err;
1265 }
1266 if (err)
1267 nd->flags |= LOOKUP_JUMPED;
1268 *inode = path->dentry->d_inode;
1269 return 0;
1270
1271 need_lookup:
1272 return 1;
1273 }
1274
1275 /* Fast lookup failed, do it the slow way */
1276 static int lookup_slow(struct nameidata *nd, struct qstr *name,
1277 struct path *path)
1278 {
1279 struct dentry *dentry, *parent;
1280 int err;
1281
1282 parent = nd->path.dentry;
1283 BUG_ON(nd->inode != parent->d_inode);
1284
1285 mutex_lock(&parent->d_inode->i_mutex);
1286 dentry = __lookup_hash(name, parent, nd->flags);
1287 mutex_unlock(&parent->d_inode->i_mutex);
1288 if (IS_ERR(dentry))
1289 return PTR_ERR(dentry);
1290 path->mnt = nd->path.mnt;
1291 path->dentry = dentry;
1292 err = follow_managed(path, nd->flags);
1293 if (unlikely(err < 0)) {
1294 path_put_conditional(path, nd);
1295 return err;
1296 }
1297 if (err)
1298 nd->flags |= LOOKUP_JUMPED;
1299 return 0;
1300 }
1301
1302 static inline int may_lookup(struct nameidata *nd)
1303 {
1304 if (nd->flags & LOOKUP_RCU) {
1305 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1306 if (err != -ECHILD)
1307 return err;
1308 if (unlazy_walk(nd, NULL))
1309 return -ECHILD;
1310 }
1311 return inode_permission(nd->inode, MAY_EXEC);
1312 }
1313
1314 static inline int handle_dots(struct nameidata *nd, int type)
1315 {
1316 if (type == LAST_DOTDOT) {
1317 if (nd->flags & LOOKUP_RCU) {
1318 if (follow_dotdot_rcu(nd))
1319 return -ECHILD;
1320 } else
1321 follow_dotdot(nd);
1322 }
1323 return 0;
1324 }
1325
1326 static void terminate_walk(struct nameidata *nd)
1327 {
1328 if (!(nd->flags & LOOKUP_RCU)) {
1329 path_put(&nd->path);
1330 } else {
1331 nd->flags &= ~LOOKUP_RCU;
1332 if (!(nd->flags & LOOKUP_ROOT))
1333 nd->root.mnt = NULL;
1334 unlock_rcu_walk();
1335 }
1336 }
1337
1338 /*
1339 * Do we need to follow links? We _really_ want to be able
1340 * to do this check without having to look at inode->i_op,
1341 * so we keep a cache of "no, this doesn't need follow_link"
1342 * for the common case.
1343 */
1344 static inline int should_follow_link(struct inode *inode, int follow)
1345 {
1346 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1347 if (likely(inode->i_op->follow_link))
1348 return follow;
1349
1350 /* This gets set once for the inode lifetime */
1351 spin_lock(&inode->i_lock);
1352 inode->i_opflags |= IOP_NOFOLLOW;
1353 spin_unlock(&inode->i_lock);
1354 }
1355 return 0;
1356 }
1357
1358 static inline int walk_component(struct nameidata *nd, struct path *path,
1359 struct qstr *name, int type, int follow)
1360 {
1361 struct inode *inode;
1362 int err;
1363 /*
1364 * "." and ".." are special - ".." especially so because it has
1365 * to be able to know about the current root directory and
1366 * parent relationships.
1367 */
1368 if (unlikely(type != LAST_NORM))
1369 return handle_dots(nd, type);
1370 err = lookup_fast(nd, name, path, &inode);
1371 if (unlikely(err)) {
1372 if (err < 0)
1373 goto out_err;
1374
1375 err = lookup_slow(nd, name, path);
1376 if (err < 0)
1377 goto out_err;
1378
1379 inode = path->dentry->d_inode;
1380 }
1381 err = -ENOENT;
1382 if (!inode)
1383 goto out_path_put;
1384
1385 if (should_follow_link(inode, follow)) {
1386 if (nd->flags & LOOKUP_RCU) {
1387 if (unlikely(unlazy_walk(nd, path->dentry))) {
1388 err = -ECHILD;
1389 goto out_err;
1390 }
1391 }
1392 BUG_ON(inode != path->dentry->d_inode);
1393 return 1;
1394 }
1395 path_to_nameidata(path, nd);
1396 nd->inode = inode;
1397 return 0;
1398
1399 out_path_put:
1400 path_to_nameidata(path, nd);
1401 out_err:
1402 terminate_walk(nd);
1403 return err;
1404 }
1405
1406 /*
1407 * This limits recursive symlink follows to 8, while
1408 * limiting consecutive symlinks to 40.
1409 *
1410 * Without that kind of total limit, nasty chains of consecutive
1411 * symlinks can cause almost arbitrarily long lookups.
1412 */
1413 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1414 {
1415 int res;
1416
1417 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1418 path_put_conditional(path, nd);
1419 path_put(&nd->path);
1420 return -ELOOP;
1421 }
1422 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1423
1424 nd->depth++;
1425 current->link_count++;
1426
1427 do {
1428 struct path link = *path;
1429 void *cookie;
1430
1431 res = follow_link(&link, nd, &cookie);
1432 if (res)
1433 break;
1434 res = walk_component(nd, path, &nd->last,
1435 nd->last_type, LOOKUP_FOLLOW);
1436 put_link(nd, &link, cookie);
1437 } while (res > 0);
1438
1439 current->link_count--;
1440 nd->depth--;
1441 return res;
1442 }
1443
1444 /*
1445 * We really don't want to look at inode->i_op->lookup
1446 * when we don't have to. So we keep a cache bit in
1447 * the inode ->i_opflags field that says "yes, we can
1448 * do lookup on this inode".
1449 */
1450 static inline int can_lookup(struct inode *inode)
1451 {
1452 if (likely(inode->i_opflags & IOP_LOOKUP))
1453 return 1;
1454 if (likely(!inode->i_op->lookup))
1455 return 0;
1456
1457 /* We do this once for the lifetime of the inode */
1458 spin_lock(&inode->i_lock);
1459 inode->i_opflags |= IOP_LOOKUP;
1460 spin_unlock(&inode->i_lock);
1461 return 1;
1462 }
1463
1464 /*
1465 * We can do the critical dentry name comparison and hashing
1466 * operations one word at a time, but we are limited to:
1467 *
1468 * - Architectures with fast unaligned word accesses. We could
1469 * do a "get_unaligned()" if this helps and is sufficiently
1470 * fast.
1471 *
1472 * - Little-endian machines (so that we can generate the mask
1473 * of low bytes efficiently). Again, we *could* do a byte
1474 * swapping load on big-endian architectures if that is not
1475 * expensive enough to make the optimization worthless.
1476 *
1477 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1478 * do not trap on the (extremely unlikely) case of a page
1479 * crossing operation.
1480 *
1481 * - Furthermore, we need an efficient 64-bit compile for the
1482 * 64-bit case in order to generate the "number of bytes in
1483 * the final mask". Again, that could be replaced with a
1484 * efficient population count instruction or similar.
1485 */
1486 #ifdef CONFIG_DCACHE_WORD_ACCESS
1487
1488 #include <asm/word-at-a-time.h>
1489
1490 #ifdef CONFIG_64BIT
1491
1492 static inline unsigned int fold_hash(unsigned long hash)
1493 {
1494 hash += hash >> (8*sizeof(int));
1495 return hash;
1496 }
1497
1498 #else /* 32-bit case */
1499
1500 #define fold_hash(x) (x)
1501
1502 #endif
1503
1504 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1505 {
1506 unsigned long a, mask;
1507 unsigned long hash = 0;
1508
1509 for (;;) {
1510 a = load_unaligned_zeropad(name);
1511 if (len < sizeof(unsigned long))
1512 break;
1513 hash += a;
1514 hash *= 9;
1515 name += sizeof(unsigned long);
1516 len -= sizeof(unsigned long);
1517 if (!len)
1518 goto done;
1519 }
1520 mask = ~(~0ul << len*8);
1521 hash += mask & a;
1522 done:
1523 return fold_hash(hash);
1524 }
1525 EXPORT_SYMBOL(full_name_hash);
1526
1527 /*
1528 * Calculate the length and hash of the path component, and
1529 * return the length of the component;
1530 */
1531 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1532 {
1533 unsigned long a, b, adata, bdata, mask, hash, len;
1534 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1535
1536 hash = a = 0;
1537 len = -sizeof(unsigned long);
1538 do {
1539 hash = (hash + a) * 9;
1540 len += sizeof(unsigned long);
1541 a = load_unaligned_zeropad(name+len);
1542 b = a ^ REPEAT_BYTE('/');
1543 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1544
1545 adata = prep_zero_mask(a, adata, &constants);
1546 bdata = prep_zero_mask(b, bdata, &constants);
1547
1548 mask = create_zero_mask(adata | bdata);
1549
1550 hash += a & zero_bytemask(mask);
1551 *hashp = fold_hash(hash);
1552
1553 return len + find_zero(mask);
1554 }
1555
1556 #else
1557
1558 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1559 {
1560 unsigned long hash = init_name_hash();
1561 while (len--)
1562 hash = partial_name_hash(*name++, hash);
1563 return end_name_hash(hash);
1564 }
1565 EXPORT_SYMBOL(full_name_hash);
1566
1567 /*
1568 * We know there's a real path component here of at least
1569 * one character.
1570 */
1571 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1572 {
1573 unsigned long hash = init_name_hash();
1574 unsigned long len = 0, c;
1575
1576 c = (unsigned char)*name;
1577 do {
1578 len++;
1579 hash = partial_name_hash(c, hash);
1580 c = (unsigned char)name[len];
1581 } while (c && c != '/');
1582 *hashp = end_name_hash(hash);
1583 return len;
1584 }
1585
1586 #endif
1587
1588 /*
1589 * Name resolution.
1590 * This is the basic name resolution function, turning a pathname into
1591 * the final dentry. We expect 'base' to be positive and a directory.
1592 *
1593 * Returns 0 and nd will have valid dentry and mnt on success.
1594 * Returns error and drops reference to input namei data on failure.
1595 */
1596 static int link_path_walk(const char *name, struct nameidata *nd)
1597 {
1598 struct path next;
1599 int err;
1600
1601 while (*name=='/')
1602 name++;
1603 if (!*name)
1604 return 0;
1605
1606 /* At this point we know we have a real path component. */
1607 for(;;) {
1608 struct qstr this;
1609 long len;
1610 int type;
1611
1612 err = may_lookup(nd);
1613 if (err)
1614 break;
1615
1616 len = hash_name(name, &this.hash);
1617 this.name = name;
1618 this.len = len;
1619
1620 type = LAST_NORM;
1621 if (name[0] == '.') switch (len) {
1622 case 2:
1623 if (name[1] == '.') {
1624 type = LAST_DOTDOT;
1625 nd->flags |= LOOKUP_JUMPED;
1626 }
1627 break;
1628 case 1:
1629 type = LAST_DOT;
1630 }
1631 if (likely(type == LAST_NORM)) {
1632 struct dentry *parent = nd->path.dentry;
1633 nd->flags &= ~LOOKUP_JUMPED;
1634 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1635 err = parent->d_op->d_hash(parent, nd->inode,
1636 &this);
1637 if (err < 0)
1638 break;
1639 }
1640 }
1641
1642 if (!name[len])
1643 goto last_component;
1644 /*
1645 * If it wasn't NUL, we know it was '/'. Skip that
1646 * slash, and continue until no more slashes.
1647 */
1648 do {
1649 len++;
1650 } while (unlikely(name[len] == '/'));
1651 if (!name[len])
1652 goto last_component;
1653 name += len;
1654
1655 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1656 if (err < 0)
1657 return err;
1658
1659 if (err) {
1660 err = nested_symlink(&next, nd);
1661 if (err)
1662 return err;
1663 }
1664 if (can_lookup(nd->inode))
1665 continue;
1666 err = -ENOTDIR;
1667 break;
1668 /* here ends the main loop */
1669
1670 last_component:
1671 nd->last = this;
1672 nd->last_type = type;
1673 return 0;
1674 }
1675 terminate_walk(nd);
1676 return err;
1677 }
1678
1679 static int path_init(int dfd, const char *name, unsigned int flags,
1680 struct nameidata *nd, struct file **fp)
1681 {
1682 int retval = 0;
1683 int fput_needed;
1684 struct file *file;
1685
1686 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1687 nd->flags = flags | LOOKUP_JUMPED;
1688 nd->depth = 0;
1689 if (flags & LOOKUP_ROOT) {
1690 struct inode *inode = nd->root.dentry->d_inode;
1691 if (*name) {
1692 if (!inode->i_op->lookup)
1693 return -ENOTDIR;
1694 retval = inode_permission(inode, MAY_EXEC);
1695 if (retval)
1696 return retval;
1697 }
1698 nd->path = nd->root;
1699 nd->inode = inode;
1700 if (flags & LOOKUP_RCU) {
1701 lock_rcu_walk();
1702 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1703 } else {
1704 path_get(&nd->path);
1705 }
1706 return 0;
1707 }
1708
1709 nd->root.mnt = NULL;
1710
1711 if (*name=='/') {
1712 if (flags & LOOKUP_RCU) {
1713 lock_rcu_walk();
1714 set_root_rcu(nd);
1715 } else {
1716 set_root(nd);
1717 path_get(&nd->root);
1718 }
1719 nd->path = nd->root;
1720 } else if (dfd == AT_FDCWD) {
1721 if (flags & LOOKUP_RCU) {
1722 struct fs_struct *fs = current->fs;
1723 unsigned seq;
1724
1725 lock_rcu_walk();
1726
1727 do {
1728 seq = read_seqcount_begin(&fs->seq);
1729 nd->path = fs->pwd;
1730 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1731 } while (read_seqcount_retry(&fs->seq, seq));
1732 } else {
1733 get_fs_pwd(current->fs, &nd->path);
1734 }
1735 } else {
1736 struct dentry *dentry;
1737
1738 file = fget_raw_light(dfd, &fput_needed);
1739 retval = -EBADF;
1740 if (!file)
1741 goto out_fail;
1742
1743 dentry = file->f_path.dentry;
1744
1745 if (*name) {
1746 retval = -ENOTDIR;
1747 if (!S_ISDIR(dentry->d_inode->i_mode))
1748 goto fput_fail;
1749
1750 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1751 if (retval)
1752 goto fput_fail;
1753 }
1754
1755 nd->path = file->f_path;
1756 if (flags & LOOKUP_RCU) {
1757 if (fput_needed)
1758 *fp = file;
1759 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1760 lock_rcu_walk();
1761 } else {
1762 path_get(&file->f_path);
1763 fput_light(file, fput_needed);
1764 }
1765 }
1766
1767 nd->inode = nd->path.dentry->d_inode;
1768 return 0;
1769
1770 fput_fail:
1771 fput_light(file, fput_needed);
1772 out_fail:
1773 return retval;
1774 }
1775
1776 static inline int lookup_last(struct nameidata *nd, struct path *path)
1777 {
1778 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1779 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1780
1781 nd->flags &= ~LOOKUP_PARENT;
1782 return walk_component(nd, path, &nd->last, nd->last_type,
1783 nd->flags & LOOKUP_FOLLOW);
1784 }
1785
1786 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1787 static int path_lookupat(int dfd, const char *name,
1788 unsigned int flags, struct nameidata *nd)
1789 {
1790 struct file *base = NULL;
1791 struct path path;
1792 int err;
1793
1794 /*
1795 * Path walking is largely split up into 2 different synchronisation
1796 * schemes, rcu-walk and ref-walk (explained in
1797 * Documentation/filesystems/path-lookup.txt). These share much of the
1798 * path walk code, but some things particularly setup, cleanup, and
1799 * following mounts are sufficiently divergent that functions are
1800 * duplicated. Typically there is a function foo(), and its RCU
1801 * analogue, foo_rcu().
1802 *
1803 * -ECHILD is the error number of choice (just to avoid clashes) that
1804 * is returned if some aspect of an rcu-walk fails. Such an error must
1805 * be handled by restarting a traditional ref-walk (which will always
1806 * be able to complete).
1807 */
1808 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1809
1810 if (unlikely(err))
1811 return err;
1812
1813 current->total_link_count = 0;
1814 err = link_path_walk(name, nd);
1815
1816 if (!err && !(flags & LOOKUP_PARENT)) {
1817 err = lookup_last(nd, &path);
1818 while (err > 0) {
1819 void *cookie;
1820 struct path link = path;
1821 nd->flags |= LOOKUP_PARENT;
1822 err = follow_link(&link, nd, &cookie);
1823 if (err)
1824 break;
1825 err = lookup_last(nd, &path);
1826 put_link(nd, &link, cookie);
1827 }
1828 }
1829
1830 if (!err)
1831 err = complete_walk(nd);
1832
1833 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1834 if (!nd->inode->i_op->lookup) {
1835 path_put(&nd->path);
1836 err = -ENOTDIR;
1837 }
1838 }
1839
1840 if (base)
1841 fput(base);
1842
1843 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1844 path_put(&nd->root);
1845 nd->root.mnt = NULL;
1846 }
1847 return err;
1848 }
1849
1850 static int do_path_lookup(int dfd, const char *name,
1851 unsigned int flags, struct nameidata *nd)
1852 {
1853 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1854 if (unlikely(retval == -ECHILD))
1855 retval = path_lookupat(dfd, name, flags, nd);
1856 if (unlikely(retval == -ESTALE))
1857 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1858
1859 if (likely(!retval)) {
1860 if (unlikely(!audit_dummy_context())) {
1861 if (nd->path.dentry && nd->inode)
1862 audit_inode(name, nd->path.dentry);
1863 }
1864 }
1865 return retval;
1866 }
1867
1868 /* does lookup, returns the object with parent locked */
1869 struct dentry *kern_path_locked(const char *name, struct path *path)
1870 {
1871 struct nameidata nd;
1872 struct dentry *d;
1873 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
1874 if (err)
1875 return ERR_PTR(err);
1876 if (nd.last_type != LAST_NORM) {
1877 path_put(&nd.path);
1878 return ERR_PTR(-EINVAL);
1879 }
1880 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1881 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
1882 if (IS_ERR(d)) {
1883 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
1884 path_put(&nd.path);
1885 return d;
1886 }
1887 *path = nd.path;
1888 return d;
1889 }
1890
1891 int kern_path(const char *name, unsigned int flags, struct path *path)
1892 {
1893 struct nameidata nd;
1894 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1895 if (!res)
1896 *path = nd.path;
1897 return res;
1898 }
1899
1900 /**
1901 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1902 * @dentry: pointer to dentry of the base directory
1903 * @mnt: pointer to vfs mount of the base directory
1904 * @name: pointer to file name
1905 * @flags: lookup flags
1906 * @path: pointer to struct path to fill
1907 */
1908 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1909 const char *name, unsigned int flags,
1910 struct path *path)
1911 {
1912 struct nameidata nd;
1913 int err;
1914 nd.root.dentry = dentry;
1915 nd.root.mnt = mnt;
1916 BUG_ON(flags & LOOKUP_PARENT);
1917 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1918 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1919 if (!err)
1920 *path = nd.path;
1921 return err;
1922 }
1923
1924 /*
1925 * Restricted form of lookup. Doesn't follow links, single-component only,
1926 * needs parent already locked. Doesn't follow mounts.
1927 * SMP-safe.
1928 */
1929 static struct dentry *lookup_hash(struct nameidata *nd)
1930 {
1931 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
1932 }
1933
1934 /**
1935 * lookup_one_len - filesystem helper to lookup single pathname component
1936 * @name: pathname component to lookup
1937 * @base: base directory to lookup from
1938 * @len: maximum length @len should be interpreted to
1939 *
1940 * Note that this routine is purely a helper for filesystem usage and should
1941 * not be called by generic code. Also note that by using this function the
1942 * nameidata argument is passed to the filesystem methods and a filesystem
1943 * using this helper needs to be prepared for that.
1944 */
1945 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1946 {
1947 struct qstr this;
1948 unsigned int c;
1949 int err;
1950
1951 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1952
1953 this.name = name;
1954 this.len = len;
1955 this.hash = full_name_hash(name, len);
1956 if (!len)
1957 return ERR_PTR(-EACCES);
1958
1959 while (len--) {
1960 c = *(const unsigned char *)name++;
1961 if (c == '/' || c == '\0')
1962 return ERR_PTR(-EACCES);
1963 }
1964 /*
1965 * See if the low-level filesystem might want
1966 * to use its own hash..
1967 */
1968 if (base->d_flags & DCACHE_OP_HASH) {
1969 int err = base->d_op->d_hash(base, base->d_inode, &this);
1970 if (err < 0)
1971 return ERR_PTR(err);
1972 }
1973
1974 err = inode_permission(base->d_inode, MAY_EXEC);
1975 if (err)
1976 return ERR_PTR(err);
1977
1978 return __lookup_hash(&this, base, 0);
1979 }
1980
1981 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1982 struct path *path, int *empty)
1983 {
1984 struct nameidata nd;
1985 char *tmp = getname_flags(name, flags, empty);
1986 int err = PTR_ERR(tmp);
1987 if (!IS_ERR(tmp)) {
1988
1989 BUG_ON(flags & LOOKUP_PARENT);
1990
1991 err = do_path_lookup(dfd, tmp, flags, &nd);
1992 putname(tmp);
1993 if (!err)
1994 *path = nd.path;
1995 }
1996 return err;
1997 }
1998
1999 int user_path_at(int dfd, const char __user *name, unsigned flags,
2000 struct path *path)
2001 {
2002 return user_path_at_empty(dfd, name, flags, path, NULL);
2003 }
2004
2005 static int user_path_parent(int dfd, const char __user *path,
2006 struct nameidata *nd, char **name)
2007 {
2008 char *s = getname(path);
2009 int error;
2010
2011 if (IS_ERR(s))
2012 return PTR_ERR(s);
2013
2014 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
2015 if (error)
2016 putname(s);
2017 else
2018 *name = s;
2019
2020 return error;
2021 }
2022
2023 /*
2024 * It's inline, so penalty for filesystems that don't use sticky bit is
2025 * minimal.
2026 */
2027 static inline int check_sticky(struct inode *dir, struct inode *inode)
2028 {
2029 kuid_t fsuid = current_fsuid();
2030
2031 if (!(dir->i_mode & S_ISVTX))
2032 return 0;
2033 if (uid_eq(inode->i_uid, fsuid))
2034 return 0;
2035 if (uid_eq(dir->i_uid, fsuid))
2036 return 0;
2037 return !inode_capable(inode, CAP_FOWNER);
2038 }
2039
2040 /*
2041 * Check whether we can remove a link victim from directory dir, check
2042 * whether the type of victim is right.
2043 * 1. We can't do it if dir is read-only (done in permission())
2044 * 2. We should have write and exec permissions on dir
2045 * 3. We can't remove anything from append-only dir
2046 * 4. We can't do anything with immutable dir (done in permission())
2047 * 5. If the sticky bit on dir is set we should either
2048 * a. be owner of dir, or
2049 * b. be owner of victim, or
2050 * c. have CAP_FOWNER capability
2051 * 6. If the victim is append-only or immutable we can't do antyhing with
2052 * links pointing to it.
2053 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2054 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2055 * 9. We can't remove a root or mountpoint.
2056 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2057 * nfs_async_unlink().
2058 */
2059 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2060 {
2061 int error;
2062
2063 if (!victim->d_inode)
2064 return -ENOENT;
2065
2066 BUG_ON(victim->d_parent->d_inode != dir);
2067 audit_inode_child(victim, dir);
2068
2069 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2070 if (error)
2071 return error;
2072 if (IS_APPEND(dir))
2073 return -EPERM;
2074 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2075 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2076 return -EPERM;
2077 if (isdir) {
2078 if (!S_ISDIR(victim->d_inode->i_mode))
2079 return -ENOTDIR;
2080 if (IS_ROOT(victim))
2081 return -EBUSY;
2082 } else if (S_ISDIR(victim->d_inode->i_mode))
2083 return -EISDIR;
2084 if (IS_DEADDIR(dir))
2085 return -ENOENT;
2086 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2087 return -EBUSY;
2088 return 0;
2089 }
2090
2091 /* Check whether we can create an object with dentry child in directory
2092 * dir.
2093 * 1. We can't do it if child already exists (open has special treatment for
2094 * this case, but since we are inlined it's OK)
2095 * 2. We can't do it if dir is read-only (done in permission())
2096 * 3. We should have write and exec permissions on dir
2097 * 4. We can't do it if dir is immutable (done in permission())
2098 */
2099 static inline int may_create(struct inode *dir, struct dentry *child)
2100 {
2101 if (child->d_inode)
2102 return -EEXIST;
2103 if (IS_DEADDIR(dir))
2104 return -ENOENT;
2105 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2106 }
2107
2108 /*
2109 * p1 and p2 should be directories on the same fs.
2110 */
2111 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2112 {
2113 struct dentry *p;
2114
2115 if (p1 == p2) {
2116 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2117 return NULL;
2118 }
2119
2120 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2121
2122 p = d_ancestor(p2, p1);
2123 if (p) {
2124 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2125 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2126 return p;
2127 }
2128
2129 p = d_ancestor(p1, p2);
2130 if (p) {
2131 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2132 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2133 return p;
2134 }
2135
2136 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2137 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2138 return NULL;
2139 }
2140
2141 void unlock_rename(struct dentry *p1, struct dentry *p2)
2142 {
2143 mutex_unlock(&p1->d_inode->i_mutex);
2144 if (p1 != p2) {
2145 mutex_unlock(&p2->d_inode->i_mutex);
2146 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2147 }
2148 }
2149
2150 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2151 bool want_excl)
2152 {
2153 int error = may_create(dir, dentry);
2154 if (error)
2155 return error;
2156
2157 if (!dir->i_op->create)
2158 return -EACCES; /* shouldn't it be ENOSYS? */
2159 mode &= S_IALLUGO;
2160 mode |= S_IFREG;
2161 error = security_inode_create(dir, dentry, mode);
2162 if (error)
2163 return error;
2164 error = dir->i_op->create(dir, dentry, mode, want_excl);
2165 if (!error)
2166 fsnotify_create(dir, dentry);
2167 return error;
2168 }
2169
2170 static int may_open(struct path *path, int acc_mode, int flag)
2171 {
2172 struct dentry *dentry = path->dentry;
2173 struct inode *inode = dentry->d_inode;
2174 int error;
2175
2176 /* O_PATH? */
2177 if (!acc_mode)
2178 return 0;
2179
2180 if (!inode)
2181 return -ENOENT;
2182
2183 switch (inode->i_mode & S_IFMT) {
2184 case S_IFLNK:
2185 return -ELOOP;
2186 case S_IFDIR:
2187 if (acc_mode & MAY_WRITE)
2188 return -EISDIR;
2189 break;
2190 case S_IFBLK:
2191 case S_IFCHR:
2192 if (path->mnt->mnt_flags & MNT_NODEV)
2193 return -EACCES;
2194 /*FALLTHRU*/
2195 case S_IFIFO:
2196 case S_IFSOCK:
2197 flag &= ~O_TRUNC;
2198 break;
2199 }
2200
2201 error = inode_permission(inode, acc_mode);
2202 if (error)
2203 return error;
2204
2205 /*
2206 * An append-only file must be opened in append mode for writing.
2207 */
2208 if (IS_APPEND(inode)) {
2209 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2210 return -EPERM;
2211 if (flag & O_TRUNC)
2212 return -EPERM;
2213 }
2214
2215 /* O_NOATIME can only be set by the owner or superuser */
2216 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2217 return -EPERM;
2218
2219 return 0;
2220 }
2221
2222 static int handle_truncate(struct file *filp)
2223 {
2224 struct path *path = &filp->f_path;
2225 struct inode *inode = path->dentry->d_inode;
2226 int error = get_write_access(inode);
2227 if (error)
2228 return error;
2229 /*
2230 * Refuse to truncate files with mandatory locks held on them.
2231 */
2232 error = locks_verify_locked(inode);
2233 if (!error)
2234 error = security_path_truncate(path);
2235 if (!error) {
2236 error = do_truncate(path->dentry, 0,
2237 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2238 filp);
2239 }
2240 put_write_access(inode);
2241 return error;
2242 }
2243
2244 static inline int open_to_namei_flags(int flag)
2245 {
2246 if ((flag & O_ACCMODE) == 3)
2247 flag--;
2248 return flag;
2249 }
2250
2251 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2252 {
2253 int error = security_path_mknod(dir, dentry, mode, 0);
2254 if (error)
2255 return error;
2256
2257 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2258 if (error)
2259 return error;
2260
2261 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2262 }
2263
2264 /*
2265 * Attempt to atomically look up, create and open a file from a negative
2266 * dentry.
2267 *
2268 * Returns 0 if successful. The file will have been created and attached to
2269 * @file by the filesystem calling finish_open().
2270 *
2271 * Returns 1 if the file was looked up only or didn't need creating. The
2272 * caller will need to perform the open themselves. @path will have been
2273 * updated to point to the new dentry. This may be negative.
2274 *
2275 * Returns an error code otherwise.
2276 */
2277 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2278 struct path *path, struct file *file,
2279 const struct open_flags *op,
2280 bool *want_write, bool need_lookup,
2281 int *opened)
2282 {
2283 struct inode *dir = nd->path.dentry->d_inode;
2284 unsigned open_flag = open_to_namei_flags(op->open_flag);
2285 umode_t mode;
2286 int error;
2287 int acc_mode;
2288 int create_error = 0;
2289 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2290
2291 BUG_ON(dentry->d_inode);
2292
2293 /* Don't create child dentry for a dead directory. */
2294 if (unlikely(IS_DEADDIR(dir))) {
2295 error = -ENOENT;
2296 goto out;
2297 }
2298
2299 mode = op->mode & S_IALLUGO;
2300 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2301 mode &= ~current_umask();
2302
2303 if (open_flag & O_EXCL) {
2304 open_flag &= ~O_TRUNC;
2305 *opened |= FILE_CREATED;
2306 }
2307
2308 /*
2309 * Checking write permission is tricky, bacuse we don't know if we are
2310 * going to actually need it: O_CREAT opens should work as long as the
2311 * file exists. But checking existence breaks atomicity. The trick is
2312 * to check access and if not granted clear O_CREAT from the flags.
2313 *
2314 * Another problem is returing the "right" error value (e.g. for an
2315 * O_EXCL open we want to return EEXIST not EROFS).
2316 */
2317 if ((open_flag & (O_CREAT | O_TRUNC)) ||
2318 (open_flag & O_ACCMODE) != O_RDONLY) {
2319 error = mnt_want_write(nd->path.mnt);
2320 if (!error) {
2321 *want_write = true;
2322 } else if (!(open_flag & O_CREAT)) {
2323 /*
2324 * No O_CREATE -> atomicity not a requirement -> fall
2325 * back to lookup + open
2326 */
2327 goto no_open;
2328 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2329 /* Fall back and fail with the right error */
2330 create_error = error;
2331 goto no_open;
2332 } else {
2333 /* No side effects, safe to clear O_CREAT */
2334 create_error = error;
2335 open_flag &= ~O_CREAT;
2336 }
2337 }
2338
2339 if (open_flag & O_CREAT) {
2340 error = may_o_create(&nd->path, dentry, op->mode);
2341 if (error) {
2342 create_error = error;
2343 if (open_flag & O_EXCL)
2344 goto no_open;
2345 open_flag &= ~O_CREAT;
2346 }
2347 }
2348
2349 if (nd->flags & LOOKUP_DIRECTORY)
2350 open_flag |= O_DIRECTORY;
2351
2352 file->f_path.dentry = DENTRY_NOT_SET;
2353 file->f_path.mnt = nd->path.mnt;
2354 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2355 opened);
2356 if (error < 0) {
2357 if (create_error && error == -ENOENT)
2358 error = create_error;
2359 goto out;
2360 }
2361
2362 acc_mode = op->acc_mode;
2363 if (*opened & FILE_CREATED) {
2364 fsnotify_create(dir, dentry);
2365 acc_mode = MAY_OPEN;
2366 }
2367
2368 if (error) { /* returned 1, that is */
2369 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2370 error = -EIO;
2371 goto out;
2372 }
2373 if (file->f_path.dentry) {
2374 dput(dentry);
2375 dentry = file->f_path.dentry;
2376 }
2377 goto looked_up;
2378 }
2379
2380 /*
2381 * We didn't have the inode before the open, so check open permission
2382 * here.
2383 */
2384 error = may_open(&file->f_path, acc_mode, open_flag);
2385 if (error)
2386 fput(file);
2387
2388 out:
2389 dput(dentry);
2390 return error;
2391
2392 no_open:
2393 if (need_lookup) {
2394 dentry = lookup_real(dir, dentry, nd->flags);
2395 if (IS_ERR(dentry))
2396 return PTR_ERR(dentry);
2397
2398 if (create_error) {
2399 int open_flag = op->open_flag;
2400
2401 error = create_error;
2402 if ((open_flag & O_EXCL)) {
2403 if (!dentry->d_inode)
2404 goto out;
2405 } else if (!dentry->d_inode) {
2406 goto out;
2407 } else if ((open_flag & O_TRUNC) &&
2408 S_ISREG(dentry->d_inode->i_mode)) {
2409 goto out;
2410 }
2411 /* will fail later, go on to get the right error */
2412 }
2413 }
2414 looked_up:
2415 path->dentry = dentry;
2416 path->mnt = nd->path.mnt;
2417 return 1;
2418 }
2419
2420 /*
2421 * Look up and maybe create and open the last component.
2422 *
2423 * Must be called with i_mutex held on parent.
2424 *
2425 * Returns 0 if the file was successfully atomically created (if necessary) and
2426 * opened. In this case the file will be returned attached to @file.
2427 *
2428 * Returns 1 if the file was not completely opened at this time, though lookups
2429 * and creations will have been performed and the dentry returned in @path will
2430 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2431 * specified then a negative dentry may be returned.
2432 *
2433 * An error code is returned otherwise.
2434 *
2435 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2436 * cleared otherwise prior to returning.
2437 */
2438 static int lookup_open(struct nameidata *nd, struct path *path,
2439 struct file *file,
2440 const struct open_flags *op,
2441 bool *want_write, int *opened)
2442 {
2443 struct dentry *dir = nd->path.dentry;
2444 struct inode *dir_inode = dir->d_inode;
2445 struct dentry *dentry;
2446 int error;
2447 bool need_lookup;
2448
2449 *opened &= ~FILE_CREATED;
2450 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2451 if (IS_ERR(dentry))
2452 return PTR_ERR(dentry);
2453
2454 /* Cached positive dentry: will open in f_op->open */
2455 if (!need_lookup && dentry->d_inode)
2456 goto out_no_open;
2457
2458 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2459 return atomic_open(nd, dentry, path, file, op, want_write,
2460 need_lookup, opened);
2461 }
2462
2463 if (need_lookup) {
2464 BUG_ON(dentry->d_inode);
2465
2466 dentry = lookup_real(dir_inode, dentry, nd->flags);
2467 if (IS_ERR(dentry))
2468 return PTR_ERR(dentry);
2469 }
2470
2471 /* Negative dentry, just create the file */
2472 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2473 umode_t mode = op->mode;
2474 if (!IS_POSIXACL(dir->d_inode))
2475 mode &= ~current_umask();
2476 /*
2477 * This write is needed to ensure that a
2478 * rw->ro transition does not occur between
2479 * the time when the file is created and when
2480 * a permanent write count is taken through
2481 * the 'struct file' in finish_open().
2482 */
2483 error = mnt_want_write(nd->path.mnt);
2484 if (error)
2485 goto out_dput;
2486 *want_write = true;
2487 *opened |= FILE_CREATED;
2488 error = security_path_mknod(&nd->path, dentry, mode, 0);
2489 if (error)
2490 goto out_dput;
2491 error = vfs_create(dir->d_inode, dentry, mode,
2492 nd->flags & LOOKUP_EXCL);
2493 if (error)
2494 goto out_dput;
2495 }
2496 out_no_open:
2497 path->dentry = dentry;
2498 path->mnt = nd->path.mnt;
2499 return 1;
2500
2501 out_dput:
2502 dput(dentry);
2503 return error;
2504 }
2505
2506 /*
2507 * Handle the last step of open()
2508 */
2509 static int do_last(struct nameidata *nd, struct path *path,
2510 struct file *file, const struct open_flags *op,
2511 int *opened, const char *pathname)
2512 {
2513 struct dentry *dir = nd->path.dentry;
2514 int open_flag = op->open_flag;
2515 bool will_truncate = (open_flag & O_TRUNC) != 0;
2516 bool want_write = false;
2517 int acc_mode = op->acc_mode;
2518 struct inode *inode;
2519 bool symlink_ok = false;
2520 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2521 bool retried = false;
2522 int error;
2523
2524 nd->flags &= ~LOOKUP_PARENT;
2525 nd->flags |= op->intent;
2526
2527 switch (nd->last_type) {
2528 case LAST_DOTDOT:
2529 case LAST_DOT:
2530 error = handle_dots(nd, nd->last_type);
2531 if (error)
2532 return error;
2533 /* fallthrough */
2534 case LAST_ROOT:
2535 error = complete_walk(nd);
2536 if (error)
2537 return error;
2538 audit_inode(pathname, nd->path.dentry);
2539 if (open_flag & O_CREAT) {
2540 error = -EISDIR;
2541 goto out;
2542 }
2543 goto finish_open;
2544 case LAST_BIND:
2545 error = complete_walk(nd);
2546 if (error)
2547 return error;
2548 audit_inode(pathname, dir);
2549 goto finish_open;
2550 }
2551
2552 if (!(open_flag & O_CREAT)) {
2553 if (nd->last.name[nd->last.len])
2554 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2555 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2556 symlink_ok = true;
2557 /* we _can_ be in RCU mode here */
2558 error = lookup_fast(nd, &nd->last, path, &inode);
2559 if (likely(!error))
2560 goto finish_lookup;
2561
2562 if (error < 0)
2563 goto out;
2564
2565 BUG_ON(nd->inode != dir->d_inode);
2566 } else {
2567 /* create side of things */
2568 /*
2569 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2570 * has been cleared when we got to the last component we are
2571 * about to look up
2572 */
2573 error = complete_walk(nd);
2574 if (error)
2575 return error;
2576
2577 audit_inode(pathname, dir);
2578 error = -EISDIR;
2579 /* trailing slashes? */
2580 if (nd->last.name[nd->last.len])
2581 goto out;
2582 }
2583
2584 retry_lookup:
2585 mutex_lock(&dir->d_inode->i_mutex);
2586 error = lookup_open(nd, path, file, op, &want_write, opened);
2587 mutex_unlock(&dir->d_inode->i_mutex);
2588
2589 if (error <= 0) {
2590 if (error)
2591 goto out;
2592
2593 if ((*opened & FILE_CREATED) ||
2594 !S_ISREG(file->f_path.dentry->d_inode->i_mode))
2595 will_truncate = false;
2596
2597 audit_inode(pathname, file->f_path.dentry);
2598 goto opened;
2599 }
2600
2601 if (*opened & FILE_CREATED) {
2602 /* Don't check for write permission, don't truncate */
2603 open_flag &= ~O_TRUNC;
2604 will_truncate = false;
2605 acc_mode = MAY_OPEN;
2606 path_to_nameidata(path, nd);
2607 goto finish_open_created;
2608 }
2609
2610 /*
2611 * create/update audit record if it already exists.
2612 */
2613 if (path->dentry->d_inode)
2614 audit_inode(pathname, path->dentry);
2615
2616 /*
2617 * If atomic_open() acquired write access it is dropped now due to
2618 * possible mount and symlink following (this might be optimized away if
2619 * necessary...)
2620 */
2621 if (want_write) {
2622 mnt_drop_write(nd->path.mnt);
2623 want_write = false;
2624 }
2625
2626 error = -EEXIST;
2627 if (open_flag & O_EXCL)
2628 goto exit_dput;
2629
2630 error = follow_managed(path, nd->flags);
2631 if (error < 0)
2632 goto exit_dput;
2633
2634 if (error)
2635 nd->flags |= LOOKUP_JUMPED;
2636
2637 BUG_ON(nd->flags & LOOKUP_RCU);
2638 inode = path->dentry->d_inode;
2639 finish_lookup:
2640 /* we _can_ be in RCU mode here */
2641 error = -ENOENT;
2642 if (!inode) {
2643 path_to_nameidata(path, nd);
2644 goto out;
2645 }
2646
2647 if (should_follow_link(inode, !symlink_ok)) {
2648 if (nd->flags & LOOKUP_RCU) {
2649 if (unlikely(unlazy_walk(nd, path->dentry))) {
2650 error = -ECHILD;
2651 goto out;
2652 }
2653 }
2654 BUG_ON(inode != path->dentry->d_inode);
2655 return 1;
2656 }
2657
2658 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2659 path_to_nameidata(path, nd);
2660 } else {
2661 save_parent.dentry = nd->path.dentry;
2662 save_parent.mnt = mntget(path->mnt);
2663 nd->path.dentry = path->dentry;
2664
2665 }
2666 nd->inode = inode;
2667 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2668 error = complete_walk(nd);
2669 if (error) {
2670 path_put(&save_parent);
2671 return error;
2672 }
2673 error = -EISDIR;
2674 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2675 goto out;
2676 error = -ENOTDIR;
2677 if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup)
2678 goto out;
2679 audit_inode(pathname, nd->path.dentry);
2680 finish_open:
2681 if (!S_ISREG(nd->inode->i_mode))
2682 will_truncate = false;
2683
2684 if (will_truncate) {
2685 error = mnt_want_write(nd->path.mnt);
2686 if (error)
2687 goto out;
2688 want_write = true;
2689 }
2690 finish_open_created:
2691 error = may_open(&nd->path, acc_mode, open_flag);
2692 if (error)
2693 goto out;
2694 file->f_path.mnt = nd->path.mnt;
2695 error = finish_open(file, nd->path.dentry, NULL, opened);
2696 if (error) {
2697 if (error == -EOPENSTALE)
2698 goto stale_open;
2699 goto out;
2700 }
2701 opened:
2702 error = open_check_o_direct(file);
2703 if (error)
2704 goto exit_fput;
2705 error = ima_file_check(file, op->acc_mode);
2706 if (error)
2707 goto exit_fput;
2708
2709 if (will_truncate) {
2710 error = handle_truncate(file);
2711 if (error)
2712 goto exit_fput;
2713 }
2714 out:
2715 if (want_write)
2716 mnt_drop_write(nd->path.mnt);
2717 path_put(&save_parent);
2718 terminate_walk(nd);
2719 return error;
2720
2721 exit_dput:
2722 path_put_conditional(path, nd);
2723 goto out;
2724 exit_fput:
2725 fput(file);
2726 goto out;
2727
2728 stale_open:
2729 /* If no saved parent or already retried then can't retry */
2730 if (!save_parent.dentry || retried)
2731 goto out;
2732
2733 BUG_ON(save_parent.dentry != dir);
2734 path_put(&nd->path);
2735 nd->path = save_parent;
2736 nd->inode = dir->d_inode;
2737 save_parent.mnt = NULL;
2738 save_parent.dentry = NULL;
2739 if (want_write) {
2740 mnt_drop_write(nd->path.mnt);
2741 want_write = false;
2742 }
2743 retried = true;
2744 goto retry_lookup;
2745 }
2746
2747 static struct file *path_openat(int dfd, const char *pathname,
2748 struct nameidata *nd, const struct open_flags *op, int flags)
2749 {
2750 struct file *base = NULL;
2751 struct file *file;
2752 struct path path;
2753 int opened = 0;
2754 int error;
2755
2756 file = get_empty_filp();
2757 if (!file)
2758 return ERR_PTR(-ENFILE);
2759
2760 file->f_flags = op->open_flag;
2761
2762 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2763 if (unlikely(error))
2764 goto out;
2765
2766 current->total_link_count = 0;
2767 error = link_path_walk(pathname, nd);
2768 if (unlikely(error))
2769 goto out;
2770
2771 error = do_last(nd, &path, file, op, &opened, pathname);
2772 while (unlikely(error > 0)) { /* trailing symlink */
2773 struct path link = path;
2774 void *cookie;
2775 if (!(nd->flags & LOOKUP_FOLLOW)) {
2776 path_put_conditional(&path, nd);
2777 path_put(&nd->path);
2778 error = -ELOOP;
2779 break;
2780 }
2781 nd->flags |= LOOKUP_PARENT;
2782 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2783 error = follow_link(&link, nd, &cookie);
2784 if (unlikely(error))
2785 break;
2786 error = do_last(nd, &path, file, op, &opened, pathname);
2787 put_link(nd, &link, cookie);
2788 }
2789 out:
2790 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2791 path_put(&nd->root);
2792 if (base)
2793 fput(base);
2794 if (!(opened & FILE_OPENED)) {
2795 BUG_ON(!error);
2796 put_filp(file);
2797 }
2798 if (unlikely(error)) {
2799 if (error == -EOPENSTALE) {
2800 if (flags & LOOKUP_RCU)
2801 error = -ECHILD;
2802 else
2803 error = -ESTALE;
2804 }
2805 file = ERR_PTR(error);
2806 }
2807 return file;
2808 }
2809
2810 struct file *do_filp_open(int dfd, const char *pathname,
2811 const struct open_flags *op, int flags)
2812 {
2813 struct nameidata nd;
2814 struct file *filp;
2815
2816 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2817 if (unlikely(filp == ERR_PTR(-ECHILD)))
2818 filp = path_openat(dfd, pathname, &nd, op, flags);
2819 if (unlikely(filp == ERR_PTR(-ESTALE)))
2820 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2821 return filp;
2822 }
2823
2824 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2825 const char *name, const struct open_flags *op, int flags)
2826 {
2827 struct nameidata nd;
2828 struct file *file;
2829
2830 nd.root.mnt = mnt;
2831 nd.root.dentry = dentry;
2832
2833 flags |= LOOKUP_ROOT;
2834
2835 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2836 return ERR_PTR(-ELOOP);
2837
2838 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2839 if (unlikely(file == ERR_PTR(-ECHILD)))
2840 file = path_openat(-1, name, &nd, op, flags);
2841 if (unlikely(file == ERR_PTR(-ESTALE)))
2842 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2843 return file;
2844 }
2845
2846 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2847 {
2848 struct dentry *dentry = ERR_PTR(-EEXIST);
2849 struct nameidata nd;
2850 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2851 if (error)
2852 return ERR_PTR(error);
2853
2854 /*
2855 * Yucky last component or no last component at all?
2856 * (foo/., foo/.., /////)
2857 */
2858 if (nd.last_type != LAST_NORM)
2859 goto out;
2860 nd.flags &= ~LOOKUP_PARENT;
2861 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2862
2863 /*
2864 * Do the final lookup.
2865 */
2866 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2867 dentry = lookup_hash(&nd);
2868 if (IS_ERR(dentry))
2869 goto unlock;
2870
2871 error = -EEXIST;
2872 if (dentry->d_inode)
2873 goto fail;
2874 /*
2875 * Special case - lookup gave negative, but... we had foo/bar/
2876 * From the vfs_mknod() POV we just have a negative dentry -
2877 * all is fine. Let's be bastards - you had / on the end, you've
2878 * been asking for (non-existent) directory. -ENOENT for you.
2879 */
2880 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2881 error = -ENOENT;
2882 goto fail;
2883 }
2884 error = mnt_want_write(nd.path.mnt);
2885 if (error)
2886 goto fail;
2887 *path = nd.path;
2888 return dentry;
2889 fail:
2890 dput(dentry);
2891 dentry = ERR_PTR(error);
2892 unlock:
2893 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2894 out:
2895 path_put(&nd.path);
2896 return dentry;
2897 }
2898 EXPORT_SYMBOL(kern_path_create);
2899
2900 void done_path_create(struct path *path, struct dentry *dentry)
2901 {
2902 dput(dentry);
2903 mutex_unlock(&path->dentry->d_inode->i_mutex);
2904 mnt_drop_write(path->mnt);
2905 path_put(path);
2906 }
2907 EXPORT_SYMBOL(done_path_create);
2908
2909 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2910 {
2911 char *tmp = getname(pathname);
2912 struct dentry *res;
2913 if (IS_ERR(tmp))
2914 return ERR_CAST(tmp);
2915 res = kern_path_create(dfd, tmp, path, is_dir);
2916 putname(tmp);
2917 return res;
2918 }
2919 EXPORT_SYMBOL(user_path_create);
2920
2921 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2922 {
2923 int error = may_create(dir, dentry);
2924
2925 if (error)
2926 return error;
2927
2928 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2929 return -EPERM;
2930
2931 if (!dir->i_op->mknod)
2932 return -EPERM;
2933
2934 error = devcgroup_inode_mknod(mode, dev);
2935 if (error)
2936 return error;
2937
2938 error = security_inode_mknod(dir, dentry, mode, dev);
2939 if (error)
2940 return error;
2941
2942 error = dir->i_op->mknod(dir, dentry, mode, dev);
2943 if (!error)
2944 fsnotify_create(dir, dentry);
2945 return error;
2946 }
2947
2948 static int may_mknod(umode_t mode)
2949 {
2950 switch (mode & S_IFMT) {
2951 case S_IFREG:
2952 case S_IFCHR:
2953 case S_IFBLK:
2954 case S_IFIFO:
2955 case S_IFSOCK:
2956 case 0: /* zero mode translates to S_IFREG */
2957 return 0;
2958 case S_IFDIR:
2959 return -EPERM;
2960 default:
2961 return -EINVAL;
2962 }
2963 }
2964
2965 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2966 unsigned, dev)
2967 {
2968 struct dentry *dentry;
2969 struct path path;
2970 int error;
2971
2972 error = may_mknod(mode);
2973 if (error)
2974 return error;
2975
2976 dentry = user_path_create(dfd, filename, &path, 0);
2977 if (IS_ERR(dentry))
2978 return PTR_ERR(dentry);
2979
2980 if (!IS_POSIXACL(path.dentry->d_inode))
2981 mode &= ~current_umask();
2982 error = security_path_mknod(&path, dentry, mode, dev);
2983 if (error)
2984 goto out;
2985 switch (mode & S_IFMT) {
2986 case 0: case S_IFREG:
2987 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
2988 break;
2989 case S_IFCHR: case S_IFBLK:
2990 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2991 new_decode_dev(dev));
2992 break;
2993 case S_IFIFO: case S_IFSOCK:
2994 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2995 break;
2996 }
2997 out:
2998 done_path_create(&path, dentry);
2999 return error;
3000 }
3001
3002 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3003 {
3004 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3005 }
3006
3007 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3008 {
3009 int error = may_create(dir, dentry);
3010 unsigned max_links = dir->i_sb->s_max_links;
3011
3012 if (error)
3013 return error;
3014
3015 if (!dir->i_op->mkdir)
3016 return -EPERM;
3017
3018 mode &= (S_IRWXUGO|S_ISVTX);
3019 error = security_inode_mkdir(dir, dentry, mode);
3020 if (error)
3021 return error;
3022
3023 if (max_links && dir->i_nlink >= max_links)
3024 return -EMLINK;
3025
3026 error = dir->i_op->mkdir(dir, dentry, mode);
3027 if (!error)
3028 fsnotify_mkdir(dir, dentry);
3029 return error;
3030 }
3031
3032 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3033 {
3034 struct dentry *dentry;
3035 struct path path;
3036 int error;
3037
3038 dentry = user_path_create(dfd, pathname, &path, 1);
3039 if (IS_ERR(dentry))
3040 return PTR_ERR(dentry);
3041
3042 if (!IS_POSIXACL(path.dentry->d_inode))
3043 mode &= ~current_umask();
3044 error = security_path_mkdir(&path, dentry, mode);
3045 if (!error)
3046 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3047 done_path_create(&path, dentry);
3048 return error;
3049 }
3050
3051 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3052 {
3053 return sys_mkdirat(AT_FDCWD, pathname, mode);
3054 }
3055
3056 /*
3057 * The dentry_unhash() helper will try to drop the dentry early: we
3058 * should have a usage count of 1 if we're the only user of this
3059 * dentry, and if that is true (possibly after pruning the dcache),
3060 * then we drop the dentry now.
3061 *
3062 * A low-level filesystem can, if it choses, legally
3063 * do a
3064 *
3065 * if (!d_unhashed(dentry))
3066 * return -EBUSY;
3067 *
3068 * if it cannot handle the case of removing a directory
3069 * that is still in use by something else..
3070 */
3071 void dentry_unhash(struct dentry *dentry)
3072 {
3073 shrink_dcache_parent(dentry);
3074 spin_lock(&dentry->d_lock);
3075 if (dentry->d_count == 1)
3076 __d_drop(dentry);
3077 spin_unlock(&dentry->d_lock);
3078 }
3079
3080 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3081 {
3082 int error = may_delete(dir, dentry, 1);
3083
3084 if (error)
3085 return error;
3086
3087 if (!dir->i_op->rmdir)
3088 return -EPERM;
3089
3090 dget(dentry);
3091 mutex_lock(&dentry->d_inode->i_mutex);
3092
3093 error = -EBUSY;
3094 if (d_mountpoint(dentry))
3095 goto out;
3096
3097 error = security_inode_rmdir(dir, dentry);
3098 if (error)
3099 goto out;
3100
3101 shrink_dcache_parent(dentry);
3102 error = dir->i_op->rmdir(dir, dentry);
3103 if (error)
3104 goto out;
3105
3106 dentry->d_inode->i_flags |= S_DEAD;
3107 dont_mount(dentry);
3108
3109 out:
3110 mutex_unlock(&dentry->d_inode->i_mutex);
3111 dput(dentry);
3112 if (!error)
3113 d_delete(dentry);
3114 return error;
3115 }
3116
3117 static long do_rmdir(int dfd, const char __user *pathname)
3118 {
3119 int error = 0;
3120 char * name;
3121 struct dentry *dentry;
3122 struct nameidata nd;
3123
3124 error = user_path_parent(dfd, pathname, &nd, &name);
3125 if (error)
3126 return error;
3127
3128 switch(nd.last_type) {
3129 case LAST_DOTDOT:
3130 error = -ENOTEMPTY;
3131 goto exit1;
3132 case LAST_DOT:
3133 error = -EINVAL;
3134 goto exit1;
3135 case LAST_ROOT:
3136 error = -EBUSY;
3137 goto exit1;
3138 }
3139
3140 nd.flags &= ~LOOKUP_PARENT;
3141
3142 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3143 dentry = lookup_hash(&nd);
3144 error = PTR_ERR(dentry);
3145 if (IS_ERR(dentry))
3146 goto exit2;
3147 if (!dentry->d_inode) {
3148 error = -ENOENT;
3149 goto exit3;
3150 }
3151 error = mnt_want_write(nd.path.mnt);
3152 if (error)
3153 goto exit3;
3154 error = security_path_rmdir(&nd.path, dentry);
3155 if (error)
3156 goto exit4;
3157 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3158 exit4:
3159 mnt_drop_write(nd.path.mnt);
3160 exit3:
3161 dput(dentry);
3162 exit2:
3163 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3164 exit1:
3165 path_put(&nd.path);
3166 putname(name);
3167 return error;
3168 }
3169
3170 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3171 {
3172 return do_rmdir(AT_FDCWD, pathname);
3173 }
3174
3175 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3176 {
3177 int error = may_delete(dir, dentry, 0);
3178
3179 if (error)
3180 return error;
3181
3182 if (!dir->i_op->unlink)
3183 return -EPERM;
3184
3185 mutex_lock(&dentry->d_inode->i_mutex);
3186 if (d_mountpoint(dentry))
3187 error = -EBUSY;
3188 else {
3189 error = security_inode_unlink(dir, dentry);
3190 if (!error) {
3191 error = dir->i_op->unlink(dir, dentry);
3192 if (!error)
3193 dont_mount(dentry);
3194 }
3195 }
3196 mutex_unlock(&dentry->d_inode->i_mutex);
3197
3198 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3199 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3200 fsnotify_link_count(dentry->d_inode);
3201 d_delete(dentry);
3202 }
3203
3204 return error;
3205 }
3206
3207 /*
3208 * Make sure that the actual truncation of the file will occur outside its
3209 * directory's i_mutex. Truncate can take a long time if there is a lot of
3210 * writeout happening, and we don't want to prevent access to the directory
3211 * while waiting on the I/O.
3212 */
3213 static long do_unlinkat(int dfd, const char __user *pathname)
3214 {
3215 int error;
3216 char *name;
3217 struct dentry *dentry;
3218 struct nameidata nd;
3219 struct inode *inode = NULL;
3220
3221 error = user_path_parent(dfd, pathname, &nd, &name);
3222 if (error)
3223 return error;
3224
3225 error = -EISDIR;
3226 if (nd.last_type != LAST_NORM)
3227 goto exit1;
3228
3229 nd.flags &= ~LOOKUP_PARENT;
3230
3231 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3232 dentry = lookup_hash(&nd);
3233 error = PTR_ERR(dentry);
3234 if (!IS_ERR(dentry)) {
3235 /* Why not before? Because we want correct error value */
3236 if (nd.last.name[nd.last.len])
3237 goto slashes;
3238 inode = dentry->d_inode;
3239 if (!inode)
3240 goto slashes;
3241 ihold(inode);
3242 error = mnt_want_write(nd.path.mnt);
3243 if (error)
3244 goto exit2;
3245 error = security_path_unlink(&nd.path, dentry);
3246 if (error)
3247 goto exit3;
3248 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3249 exit3:
3250 mnt_drop_write(nd.path.mnt);
3251 exit2:
3252 dput(dentry);
3253 }
3254 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3255 if (inode)
3256 iput(inode); /* truncate the inode here */
3257 exit1:
3258 path_put(&nd.path);
3259 putname(name);
3260 return error;
3261
3262 slashes:
3263 error = !dentry->d_inode ? -ENOENT :
3264 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3265 goto exit2;
3266 }
3267
3268 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3269 {
3270 if ((flag & ~AT_REMOVEDIR) != 0)
3271 return -EINVAL;
3272
3273 if (flag & AT_REMOVEDIR)
3274 return do_rmdir(dfd, pathname);
3275
3276 return do_unlinkat(dfd, pathname);
3277 }
3278
3279 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3280 {
3281 return do_unlinkat(AT_FDCWD, pathname);
3282 }
3283
3284 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3285 {
3286 int error = may_create(dir, dentry);
3287
3288 if (error)
3289 return error;
3290
3291 if (!dir->i_op->symlink)
3292 return -EPERM;
3293
3294 error = security_inode_symlink(dir, dentry, oldname);
3295 if (error)
3296 return error;
3297
3298 error = dir->i_op->symlink(dir, dentry, oldname);
3299 if (!error)
3300 fsnotify_create(dir, dentry);
3301 return error;
3302 }
3303
3304 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3305 int, newdfd, const char __user *, newname)
3306 {
3307 int error;
3308 char *from;
3309 struct dentry *dentry;
3310 struct path path;
3311
3312 from = getname(oldname);
3313 if (IS_ERR(from))
3314 return PTR_ERR(from);
3315
3316 dentry = user_path_create(newdfd, newname, &path, 0);
3317 error = PTR_ERR(dentry);
3318 if (IS_ERR(dentry))
3319 goto out_putname;
3320
3321 error = security_path_symlink(&path, dentry, from);
3322 if (!error)
3323 error = vfs_symlink(path.dentry->d_inode, dentry, from);
3324 done_path_create(&path, dentry);
3325 out_putname:
3326 putname(from);
3327 return error;
3328 }
3329
3330 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3331 {
3332 return sys_symlinkat(oldname, AT_FDCWD, newname);
3333 }
3334
3335 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3336 {
3337 struct inode *inode = old_dentry->d_inode;
3338 unsigned max_links = dir->i_sb->s_max_links;
3339 int error;
3340
3341 if (!inode)
3342 return -ENOENT;
3343
3344 error = may_create(dir, new_dentry);
3345 if (error)
3346 return error;
3347
3348 if (dir->i_sb != inode->i_sb)
3349 return -EXDEV;
3350
3351 /*
3352 * A link to an append-only or immutable file cannot be created.
3353 */
3354 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3355 return -EPERM;
3356 if (!dir->i_op->link)
3357 return -EPERM;
3358 if (S_ISDIR(inode->i_mode))
3359 return -EPERM;
3360
3361 error = security_inode_link(old_dentry, dir, new_dentry);
3362 if (error)
3363 return error;
3364
3365 mutex_lock(&inode->i_mutex);
3366 /* Make sure we don't allow creating hardlink to an unlinked file */
3367 if (inode->i_nlink == 0)
3368 error = -ENOENT;
3369 else if (max_links && inode->i_nlink >= max_links)
3370 error = -EMLINK;
3371 else
3372 error = dir->i_op->link(old_dentry, dir, new_dentry);
3373 mutex_unlock(&inode->i_mutex);
3374 if (!error)
3375 fsnotify_link(dir, inode, new_dentry);
3376 return error;
3377 }
3378
3379 /*
3380 * Hardlinks are often used in delicate situations. We avoid
3381 * security-related surprises by not following symlinks on the
3382 * newname. --KAB
3383 *
3384 * We don't follow them on the oldname either to be compatible
3385 * with linux 2.0, and to avoid hard-linking to directories
3386 * and other special files. --ADM
3387 */
3388 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3389 int, newdfd, const char __user *, newname, int, flags)
3390 {
3391 struct dentry *new_dentry;
3392 struct path old_path, new_path;
3393 int how = 0;
3394 int error;
3395
3396 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3397 return -EINVAL;
3398 /*
3399 * To use null names we require CAP_DAC_READ_SEARCH
3400 * This ensures that not everyone will be able to create
3401 * handlink using the passed filedescriptor.
3402 */
3403 if (flags & AT_EMPTY_PATH) {
3404 if (!capable(CAP_DAC_READ_SEARCH))
3405 return -ENOENT;
3406 how = LOOKUP_EMPTY;
3407 }
3408
3409 if (flags & AT_SYMLINK_FOLLOW)
3410 how |= LOOKUP_FOLLOW;
3411
3412 error = user_path_at(olddfd, oldname, how, &old_path);
3413 if (error)
3414 return error;
3415
3416 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3417 error = PTR_ERR(new_dentry);
3418 if (IS_ERR(new_dentry))
3419 goto out;
3420
3421 error = -EXDEV;
3422 if (old_path.mnt != new_path.mnt)
3423 goto out_dput;
3424 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3425 if (error)
3426 goto out_dput;
3427 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3428 out_dput:
3429 done_path_create(&new_path, new_dentry);
3430 out:
3431 path_put(&old_path);
3432
3433 return error;
3434 }
3435
3436 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3437 {
3438 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3439 }
3440
3441 /*
3442 * The worst of all namespace operations - renaming directory. "Perverted"
3443 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3444 * Problems:
3445 * a) we can get into loop creation. Check is done in is_subdir().
3446 * b) race potential - two innocent renames can create a loop together.
3447 * That's where 4.4 screws up. Current fix: serialization on
3448 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3449 * story.
3450 * c) we have to lock _three_ objects - parents and victim (if it exists).
3451 * And that - after we got ->i_mutex on parents (until then we don't know
3452 * whether the target exists). Solution: try to be smart with locking
3453 * order for inodes. We rely on the fact that tree topology may change
3454 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3455 * move will be locked. Thus we can rank directories by the tree
3456 * (ancestors first) and rank all non-directories after them.
3457 * That works since everybody except rename does "lock parent, lookup,
3458 * lock child" and rename is under ->s_vfs_rename_mutex.
3459 * HOWEVER, it relies on the assumption that any object with ->lookup()
3460 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3461 * we'd better make sure that there's no link(2) for them.
3462 * d) conversion from fhandle to dentry may come in the wrong moment - when
3463 * we are removing the target. Solution: we will have to grab ->i_mutex
3464 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3465 * ->i_mutex on parents, which works but leads to some truly excessive
3466 * locking].
3467 */
3468 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3469 struct inode *new_dir, struct dentry *new_dentry)
3470 {
3471 int error = 0;
3472 struct inode *target = new_dentry->d_inode;
3473 unsigned max_links = new_dir->i_sb->s_max_links;
3474
3475 /*
3476 * If we are going to change the parent - check write permissions,
3477 * we'll need to flip '..'.
3478 */
3479 if (new_dir != old_dir) {
3480 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3481 if (error)
3482 return error;
3483 }
3484
3485 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3486 if (error)
3487 return error;
3488
3489 dget(new_dentry);
3490 if (target)
3491 mutex_lock(&target->i_mutex);
3492
3493 error = -EBUSY;
3494 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3495 goto out;
3496
3497 error = -EMLINK;
3498 if (max_links && !target && new_dir != old_dir &&
3499 new_dir->i_nlink >= max_links)
3500 goto out;
3501
3502 if (target)
3503 shrink_dcache_parent(new_dentry);
3504 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3505 if (error)
3506 goto out;
3507
3508 if (target) {
3509 target->i_flags |= S_DEAD;
3510 dont_mount(new_dentry);
3511 }
3512 out:
3513 if (target)
3514 mutex_unlock(&target->i_mutex);
3515 dput(new_dentry);
3516 if (!error)
3517 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3518 d_move(old_dentry,new_dentry);
3519 return error;
3520 }
3521
3522 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3523 struct inode *new_dir, struct dentry *new_dentry)
3524 {
3525 struct inode *target = new_dentry->d_inode;
3526 int error;
3527
3528 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3529 if (error)
3530 return error;
3531
3532 dget(new_dentry);
3533 if (target)
3534 mutex_lock(&target->i_mutex);
3535
3536 error = -EBUSY;
3537 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3538 goto out;
3539
3540 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3541 if (error)
3542 goto out;
3543
3544 if (target)
3545 dont_mount(new_dentry);
3546 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3547 d_move(old_dentry, new_dentry);
3548 out:
3549 if (target)
3550 mutex_unlock(&target->i_mutex);
3551 dput(new_dentry);
3552 return error;
3553 }
3554
3555 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3556 struct inode *new_dir, struct dentry *new_dentry)
3557 {
3558 int error;
3559 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3560 const unsigned char *old_name;
3561
3562 if (old_dentry->d_inode == new_dentry->d_inode)
3563 return 0;
3564
3565 error = may_delete(old_dir, old_dentry, is_dir);
3566 if (error)
3567 return error;
3568
3569 if (!new_dentry->d_inode)
3570 error = may_create(new_dir, new_dentry);
3571 else
3572 error = may_delete(new_dir, new_dentry, is_dir);
3573 if (error)
3574 return error;
3575
3576 if (!old_dir->i_op->rename)
3577 return -EPERM;
3578
3579 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3580
3581 if (is_dir)
3582 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3583 else
3584 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3585 if (!error)
3586 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3587 new_dentry->d_inode, old_dentry);
3588 fsnotify_oldname_free(old_name);
3589
3590 return error;
3591 }
3592
3593 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3594 int, newdfd, const char __user *, newname)
3595 {
3596 struct dentry *old_dir, *new_dir;
3597 struct dentry *old_dentry, *new_dentry;
3598 struct dentry *trap;
3599 struct nameidata oldnd, newnd;
3600 char *from;
3601 char *to;
3602 int error;
3603
3604 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3605 if (error)
3606 goto exit;
3607
3608 error = user_path_parent(newdfd, newname, &newnd, &to);
3609 if (error)
3610 goto exit1;
3611
3612 error = -EXDEV;
3613 if (oldnd.path.mnt != newnd.path.mnt)
3614 goto exit2;
3615
3616 old_dir = oldnd.path.dentry;
3617 error = -EBUSY;
3618 if (oldnd.last_type != LAST_NORM)
3619 goto exit2;
3620
3621 new_dir = newnd.path.dentry;
3622 if (newnd.last_type != LAST_NORM)
3623 goto exit2;
3624
3625 oldnd.flags &= ~LOOKUP_PARENT;
3626 newnd.flags &= ~LOOKUP_PARENT;
3627 newnd.flags |= LOOKUP_RENAME_TARGET;
3628
3629 trap = lock_rename(new_dir, old_dir);
3630
3631 old_dentry = lookup_hash(&oldnd);
3632 error = PTR_ERR(old_dentry);
3633 if (IS_ERR(old_dentry))
3634 goto exit3;
3635 /* source must exist */
3636 error = -ENOENT;
3637 if (!old_dentry->d_inode)
3638 goto exit4;
3639 /* unless the source is a directory trailing slashes give -ENOTDIR */
3640 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3641 error = -ENOTDIR;
3642 if (oldnd.last.name[oldnd.last.len])
3643 goto exit4;
3644 if (newnd.last.name[newnd.last.len])
3645 goto exit4;
3646 }
3647 /* source should not be ancestor of target */
3648 error = -EINVAL;
3649 if (old_dentry == trap)
3650 goto exit4;
3651 new_dentry = lookup_hash(&newnd);
3652 error = PTR_ERR(new_dentry);
3653 if (IS_ERR(new_dentry))
3654 goto exit4;
3655 /* target should not be an ancestor of source */
3656 error = -ENOTEMPTY;
3657 if (new_dentry == trap)
3658 goto exit5;
3659
3660 error = mnt_want_write(oldnd.path.mnt);
3661 if (error)
3662 goto exit5;
3663 error = security_path_rename(&oldnd.path, old_dentry,
3664 &newnd.path, new_dentry);
3665 if (error)
3666 goto exit6;
3667 error = vfs_rename(old_dir->d_inode, old_dentry,
3668 new_dir->d_inode, new_dentry);
3669 exit6:
3670 mnt_drop_write(oldnd.path.mnt);
3671 exit5:
3672 dput(new_dentry);
3673 exit4:
3674 dput(old_dentry);
3675 exit3:
3676 unlock_rename(new_dir, old_dir);
3677 exit2:
3678 path_put(&newnd.path);
3679 putname(to);
3680 exit1:
3681 path_put(&oldnd.path);
3682 putname(from);
3683 exit:
3684 return error;
3685 }
3686
3687 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3688 {
3689 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3690 }
3691
3692 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3693 {
3694 int len;
3695
3696 len = PTR_ERR(link);
3697 if (IS_ERR(link))
3698 goto out;
3699
3700 len = strlen(link);
3701 if (len > (unsigned) buflen)
3702 len = buflen;
3703 if (copy_to_user(buffer, link, len))
3704 len = -EFAULT;
3705 out:
3706 return len;
3707 }
3708
3709 /*
3710 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3711 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3712 * using) it for any given inode is up to filesystem.
3713 */
3714 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3715 {
3716 struct nameidata nd;
3717 void *cookie;
3718 int res;
3719
3720 nd.depth = 0;
3721 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3722 if (IS_ERR(cookie))
3723 return PTR_ERR(cookie);
3724
3725 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3726 if (dentry->d_inode->i_op->put_link)
3727 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3728 return res;
3729 }
3730
3731 int vfs_follow_link(struct nameidata *nd, const char *link)
3732 {
3733 return __vfs_follow_link(nd, link);
3734 }
3735
3736 /* get the link contents into pagecache */
3737 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3738 {
3739 char *kaddr;
3740 struct page *page;
3741 struct address_space *mapping = dentry->d_inode->i_mapping;
3742 page = read_mapping_page(mapping, 0, NULL);
3743 if (IS_ERR(page))
3744 return (char*)page;
3745 *ppage = page;
3746 kaddr = kmap(page);
3747 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3748 return kaddr;
3749 }
3750
3751 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3752 {
3753 struct page *page = NULL;
3754 char *s = page_getlink(dentry, &page);
3755 int res = vfs_readlink(dentry,buffer,buflen,s);
3756 if (page) {
3757 kunmap(page);
3758 page_cache_release(page);
3759 }
3760 return res;
3761 }
3762
3763 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3764 {
3765 struct page *page = NULL;
3766 nd_set_link(nd, page_getlink(dentry, &page));
3767 return page;
3768 }
3769
3770 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3771 {
3772 struct page *page = cookie;
3773
3774 if (page) {
3775 kunmap(page);
3776 page_cache_release(page);
3777 }
3778 }
3779
3780 /*
3781 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3782 */
3783 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3784 {
3785 struct address_space *mapping = inode->i_mapping;
3786 struct page *page;
3787 void *fsdata;
3788 int err;
3789 char *kaddr;
3790 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3791 if (nofs)
3792 flags |= AOP_FLAG_NOFS;
3793
3794 retry:
3795 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3796 flags, &page, &fsdata);
3797 if (err)
3798 goto fail;
3799
3800 kaddr = kmap_atomic(page);
3801 memcpy(kaddr, symname, len-1);
3802 kunmap_atomic(kaddr);
3803
3804 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3805 page, fsdata);
3806 if (err < 0)
3807 goto fail;
3808 if (err < len-1)
3809 goto retry;
3810
3811 mark_inode_dirty(inode);
3812 return 0;
3813 fail:
3814 return err;
3815 }
3816
3817 int page_symlink(struct inode *inode, const char *symname, int len)
3818 {
3819 return __page_symlink(inode, symname, len,
3820 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3821 }
3822
3823 const struct inode_operations page_symlink_inode_operations = {
3824 .readlink = generic_readlink,
3825 .follow_link = page_follow_link_light,
3826 .put_link = page_put_link,
3827 };
3828
3829 EXPORT_SYMBOL(user_path_at);
3830 EXPORT_SYMBOL(follow_down_one);
3831 EXPORT_SYMBOL(follow_down);
3832 EXPORT_SYMBOL(follow_up);
3833 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3834 EXPORT_SYMBOL(getname);
3835 EXPORT_SYMBOL(lock_rename);
3836 EXPORT_SYMBOL(lookup_one_len);
3837 EXPORT_SYMBOL(page_follow_link_light);
3838 EXPORT_SYMBOL(page_put_link);
3839 EXPORT_SYMBOL(page_readlink);
3840 EXPORT_SYMBOL(__page_symlink);
3841 EXPORT_SYMBOL(page_symlink);
3842 EXPORT_SYMBOL(page_symlink_inode_operations);
3843 EXPORT_SYMBOL(kern_path);
3844 EXPORT_SYMBOL(vfs_path_lookup);
3845 EXPORT_SYMBOL(inode_permission);
3846 EXPORT_SYMBOL(unlock_rename);
3847 EXPORT_SYMBOL(vfs_create);
3848 EXPORT_SYMBOL(vfs_follow_link);
3849 EXPORT_SYMBOL(vfs_link);
3850 EXPORT_SYMBOL(vfs_mkdir);
3851 EXPORT_SYMBOL(vfs_mknod);
3852 EXPORT_SYMBOL(generic_permission);
3853 EXPORT_SYMBOL(vfs_readlink);
3854 EXPORT_SYMBOL(vfs_rename);
3855 EXPORT_SYMBOL(vfs_rmdir);
3856 EXPORT_SYMBOL(vfs_symlink);
3857 EXPORT_SYMBOL(vfs_unlink);
3858 EXPORT_SYMBOL(dentry_unhash);
3859 EXPORT_SYMBOL(generic_readlink);