]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namei.c
namei: trim the arguments of get_link()
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 struct nameidata {
496 struct path path;
497 union {
498 struct qstr last;
499 struct path link;
500 };
501 struct path root;
502 struct inode *inode; /* path.dentry.d_inode */
503 unsigned int flags;
504 unsigned seq, m_seq;
505 int last_type;
506 unsigned depth;
507 struct file *base;
508 struct saved {
509 struct path link;
510 void *cookie;
511 const char *name;
512 } stack[MAX_NESTED_LINKS + 1];
513 };
514
515 /*
516 * Path walking has 2 modes, rcu-walk and ref-walk (see
517 * Documentation/filesystems/path-lookup.txt). In situations when we can't
518 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
519 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
520 * mode. Refcounts are grabbed at the last known good point before rcu-walk
521 * got stuck, so ref-walk may continue from there. If this is not successful
522 * (eg. a seqcount has changed), then failure is returned and it's up to caller
523 * to restart the path walk from the beginning in ref-walk mode.
524 */
525
526 /**
527 * unlazy_walk - try to switch to ref-walk mode.
528 * @nd: nameidata pathwalk data
529 * @dentry: child of nd->path.dentry or NULL
530 * Returns: 0 on success, -ECHILD on failure
531 *
532 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
533 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
534 * @nd or NULL. Must be called from rcu-walk context.
535 */
536 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
537 {
538 struct fs_struct *fs = current->fs;
539 struct dentry *parent = nd->path.dentry;
540
541 BUG_ON(!(nd->flags & LOOKUP_RCU));
542
543 /*
544 * After legitimizing the bastards, terminate_walk()
545 * will do the right thing for non-RCU mode, and all our
546 * subsequent exit cases should rcu_read_unlock()
547 * before returning. Do vfsmount first; if dentry
548 * can't be legitimized, just set nd->path.dentry to NULL
549 * and rely on dput(NULL) being a no-op.
550 */
551 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
552 return -ECHILD;
553 nd->flags &= ~LOOKUP_RCU;
554
555 if (!lockref_get_not_dead(&parent->d_lockref)) {
556 nd->path.dentry = NULL;
557 goto out;
558 }
559
560 /*
561 * For a negative lookup, the lookup sequence point is the parents
562 * sequence point, and it only needs to revalidate the parent dentry.
563 *
564 * For a positive lookup, we need to move both the parent and the
565 * dentry from the RCU domain to be properly refcounted. And the
566 * sequence number in the dentry validates *both* dentry counters,
567 * since we checked the sequence number of the parent after we got
568 * the child sequence number. So we know the parent must still
569 * be valid if the child sequence number is still valid.
570 */
571 if (!dentry) {
572 if (read_seqcount_retry(&parent->d_seq, nd->seq))
573 goto out;
574 BUG_ON(nd->inode != parent->d_inode);
575 } else {
576 if (!lockref_get_not_dead(&dentry->d_lockref))
577 goto out;
578 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
579 goto drop_dentry;
580 }
581
582 /*
583 * Sequence counts matched. Now make sure that the root is
584 * still valid and get it if required.
585 */
586 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
587 spin_lock(&fs->lock);
588 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
589 goto unlock_and_drop_dentry;
590 path_get(&nd->root);
591 spin_unlock(&fs->lock);
592 }
593
594 rcu_read_unlock();
595 return 0;
596
597 unlock_and_drop_dentry:
598 spin_unlock(&fs->lock);
599 drop_dentry:
600 rcu_read_unlock();
601 dput(dentry);
602 goto drop_root_mnt;
603 out:
604 rcu_read_unlock();
605 drop_root_mnt:
606 if (!(nd->flags & LOOKUP_ROOT))
607 nd->root.mnt = NULL;
608 return -ECHILD;
609 }
610
611 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
612 {
613 return dentry->d_op->d_revalidate(dentry, flags);
614 }
615
616 /**
617 * complete_walk - successful completion of path walk
618 * @nd: pointer nameidata
619 *
620 * If we had been in RCU mode, drop out of it and legitimize nd->path.
621 * Revalidate the final result, unless we'd already done that during
622 * the path walk or the filesystem doesn't ask for it. Return 0 on
623 * success, -error on failure. In case of failure caller does not
624 * need to drop nd->path.
625 */
626 static int complete_walk(struct nameidata *nd)
627 {
628 struct dentry *dentry = nd->path.dentry;
629 int status;
630
631 if (nd->flags & LOOKUP_RCU) {
632 nd->flags &= ~LOOKUP_RCU;
633 if (!(nd->flags & LOOKUP_ROOT))
634 nd->root.mnt = NULL;
635
636 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
637 rcu_read_unlock();
638 return -ECHILD;
639 }
640 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
641 rcu_read_unlock();
642 mntput(nd->path.mnt);
643 return -ECHILD;
644 }
645 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
646 rcu_read_unlock();
647 dput(dentry);
648 mntput(nd->path.mnt);
649 return -ECHILD;
650 }
651 rcu_read_unlock();
652 }
653
654 if (likely(!(nd->flags & LOOKUP_JUMPED)))
655 return 0;
656
657 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
658 return 0;
659
660 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
661 if (status > 0)
662 return 0;
663
664 if (!status)
665 status = -ESTALE;
666
667 path_put(&nd->path);
668 return status;
669 }
670
671 static __always_inline void set_root(struct nameidata *nd)
672 {
673 get_fs_root(current->fs, &nd->root);
674 }
675
676 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
677 {
678 struct fs_struct *fs = current->fs;
679 unsigned seq, res;
680
681 do {
682 seq = read_seqcount_begin(&fs->seq);
683 nd->root = fs->root;
684 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
685 } while (read_seqcount_retry(&fs->seq, seq));
686 return res;
687 }
688
689 static void path_put_conditional(struct path *path, struct nameidata *nd)
690 {
691 dput(path->dentry);
692 if (path->mnt != nd->path.mnt)
693 mntput(path->mnt);
694 }
695
696 static inline void path_to_nameidata(const struct path *path,
697 struct nameidata *nd)
698 {
699 if (!(nd->flags & LOOKUP_RCU)) {
700 dput(nd->path.dentry);
701 if (nd->path.mnt != path->mnt)
702 mntput(nd->path.mnt);
703 }
704 nd->path.mnt = path->mnt;
705 nd->path.dentry = path->dentry;
706 }
707
708 /*
709 * Helper to directly jump to a known parsed path from ->follow_link,
710 * caller must have taken a reference to path beforehand.
711 */
712 void nd_jump_link(struct nameidata *nd, struct path *path)
713 {
714 path_put(&nd->path);
715
716 nd->path = *path;
717 nd->inode = nd->path.dentry->d_inode;
718 nd->flags |= LOOKUP_JUMPED;
719 }
720
721 static inline void put_link(struct nameidata *nd)
722 {
723 struct saved *last = nd->stack + nd->depth;
724 struct inode *inode = last->link.dentry->d_inode;
725 if (last->cookie && inode->i_op->put_link)
726 inode->i_op->put_link(last->link.dentry, last->cookie);
727 path_put(&last->link);
728 }
729
730 int sysctl_protected_symlinks __read_mostly = 0;
731 int sysctl_protected_hardlinks __read_mostly = 0;
732
733 /**
734 * may_follow_link - Check symlink following for unsafe situations
735 * @link: The path of the symlink
736 * @nd: nameidata pathwalk data
737 *
738 * In the case of the sysctl_protected_symlinks sysctl being enabled,
739 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
740 * in a sticky world-writable directory. This is to protect privileged
741 * processes from failing races against path names that may change out
742 * from under them by way of other users creating malicious symlinks.
743 * It will permit symlinks to be followed only when outside a sticky
744 * world-writable directory, or when the uid of the symlink and follower
745 * match, or when the directory owner matches the symlink's owner.
746 *
747 * Returns 0 if following the symlink is allowed, -ve on error.
748 */
749 static inline int may_follow_link(struct path *link, struct nameidata *nd)
750 {
751 const struct inode *inode;
752 const struct inode *parent;
753
754 if (!sysctl_protected_symlinks)
755 return 0;
756
757 /* Allowed if owner and follower match. */
758 inode = link->dentry->d_inode;
759 if (uid_eq(current_cred()->fsuid, inode->i_uid))
760 return 0;
761
762 /* Allowed if parent directory not sticky and world-writable. */
763 parent = nd->path.dentry->d_inode;
764 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
765 return 0;
766
767 /* Allowed if parent directory and link owner match. */
768 if (uid_eq(parent->i_uid, inode->i_uid))
769 return 0;
770
771 audit_log_link_denied("follow_link", link);
772 path_put_conditional(link, nd);
773 path_put(&nd->path);
774 return -EACCES;
775 }
776
777 /**
778 * safe_hardlink_source - Check for safe hardlink conditions
779 * @inode: the source inode to hardlink from
780 *
781 * Return false if at least one of the following conditions:
782 * - inode is not a regular file
783 * - inode is setuid
784 * - inode is setgid and group-exec
785 * - access failure for read and write
786 *
787 * Otherwise returns true.
788 */
789 static bool safe_hardlink_source(struct inode *inode)
790 {
791 umode_t mode = inode->i_mode;
792
793 /* Special files should not get pinned to the filesystem. */
794 if (!S_ISREG(mode))
795 return false;
796
797 /* Setuid files should not get pinned to the filesystem. */
798 if (mode & S_ISUID)
799 return false;
800
801 /* Executable setgid files should not get pinned to the filesystem. */
802 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
803 return false;
804
805 /* Hardlinking to unreadable or unwritable sources is dangerous. */
806 if (inode_permission(inode, MAY_READ | MAY_WRITE))
807 return false;
808
809 return true;
810 }
811
812 /**
813 * may_linkat - Check permissions for creating a hardlink
814 * @link: the source to hardlink from
815 *
816 * Block hardlink when all of:
817 * - sysctl_protected_hardlinks enabled
818 * - fsuid does not match inode
819 * - hardlink source is unsafe (see safe_hardlink_source() above)
820 * - not CAP_FOWNER
821 *
822 * Returns 0 if successful, -ve on error.
823 */
824 static int may_linkat(struct path *link)
825 {
826 const struct cred *cred;
827 struct inode *inode;
828
829 if (!sysctl_protected_hardlinks)
830 return 0;
831
832 cred = current_cred();
833 inode = link->dentry->d_inode;
834
835 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
836 * otherwise, it must be a safe source.
837 */
838 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
839 capable(CAP_FOWNER))
840 return 0;
841
842 audit_log_link_denied("linkat", link);
843 return -EPERM;
844 }
845
846 static __always_inline
847 const char *get_link(struct nameidata *nd)
848 {
849 struct saved *last = nd->stack + nd->depth;
850 struct dentry *dentry = nd->link.dentry;
851 struct inode *inode = dentry->d_inode;
852 int error;
853 const char *res;
854
855 BUG_ON(nd->flags & LOOKUP_RCU);
856
857 if (nd->link.mnt == nd->path.mnt)
858 mntget(nd->link.mnt);
859
860 if (unlikely(current->total_link_count >= 40)) {
861 path_put(&nd->path);
862 path_put(&nd->link);
863 return ERR_PTR(-ELOOP);
864 }
865
866 last->link = nd->link;
867 last->cookie = NULL;
868
869 cond_resched();
870 current->total_link_count++;
871
872 touch_atime(&last->link);
873
874 error = security_inode_follow_link(dentry);
875 res = ERR_PTR(error);
876 if (error)
877 goto out;
878
879 nd->last_type = LAST_BIND;
880 res = inode->i_link;
881 if (!res) {
882 res = inode->i_op->follow_link(dentry, &last->cookie, nd);
883 if (IS_ERR(res)) {
884 out:
885 path_put(&nd->path);
886 path_put(&last->link);
887 }
888 }
889 return res;
890 }
891
892 static int follow_up_rcu(struct path *path)
893 {
894 struct mount *mnt = real_mount(path->mnt);
895 struct mount *parent;
896 struct dentry *mountpoint;
897
898 parent = mnt->mnt_parent;
899 if (&parent->mnt == path->mnt)
900 return 0;
901 mountpoint = mnt->mnt_mountpoint;
902 path->dentry = mountpoint;
903 path->mnt = &parent->mnt;
904 return 1;
905 }
906
907 /*
908 * follow_up - Find the mountpoint of path's vfsmount
909 *
910 * Given a path, find the mountpoint of its source file system.
911 * Replace @path with the path of the mountpoint in the parent mount.
912 * Up is towards /.
913 *
914 * Return 1 if we went up a level and 0 if we were already at the
915 * root.
916 */
917 int follow_up(struct path *path)
918 {
919 struct mount *mnt = real_mount(path->mnt);
920 struct mount *parent;
921 struct dentry *mountpoint;
922
923 read_seqlock_excl(&mount_lock);
924 parent = mnt->mnt_parent;
925 if (parent == mnt) {
926 read_sequnlock_excl(&mount_lock);
927 return 0;
928 }
929 mntget(&parent->mnt);
930 mountpoint = dget(mnt->mnt_mountpoint);
931 read_sequnlock_excl(&mount_lock);
932 dput(path->dentry);
933 path->dentry = mountpoint;
934 mntput(path->mnt);
935 path->mnt = &parent->mnt;
936 return 1;
937 }
938 EXPORT_SYMBOL(follow_up);
939
940 /*
941 * Perform an automount
942 * - return -EISDIR to tell follow_managed() to stop and return the path we
943 * were called with.
944 */
945 static int follow_automount(struct path *path, unsigned flags,
946 bool *need_mntput)
947 {
948 struct vfsmount *mnt;
949 int err;
950
951 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
952 return -EREMOTE;
953
954 /* We don't want to mount if someone's just doing a stat -
955 * unless they're stat'ing a directory and appended a '/' to
956 * the name.
957 *
958 * We do, however, want to mount if someone wants to open or
959 * create a file of any type under the mountpoint, wants to
960 * traverse through the mountpoint or wants to open the
961 * mounted directory. Also, autofs may mark negative dentries
962 * as being automount points. These will need the attentions
963 * of the daemon to instantiate them before they can be used.
964 */
965 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
966 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
967 path->dentry->d_inode)
968 return -EISDIR;
969
970 current->total_link_count++;
971 if (current->total_link_count >= 40)
972 return -ELOOP;
973
974 mnt = path->dentry->d_op->d_automount(path);
975 if (IS_ERR(mnt)) {
976 /*
977 * The filesystem is allowed to return -EISDIR here to indicate
978 * it doesn't want to automount. For instance, autofs would do
979 * this so that its userspace daemon can mount on this dentry.
980 *
981 * However, we can only permit this if it's a terminal point in
982 * the path being looked up; if it wasn't then the remainder of
983 * the path is inaccessible and we should say so.
984 */
985 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
986 return -EREMOTE;
987 return PTR_ERR(mnt);
988 }
989
990 if (!mnt) /* mount collision */
991 return 0;
992
993 if (!*need_mntput) {
994 /* lock_mount() may release path->mnt on error */
995 mntget(path->mnt);
996 *need_mntput = true;
997 }
998 err = finish_automount(mnt, path);
999
1000 switch (err) {
1001 case -EBUSY:
1002 /* Someone else made a mount here whilst we were busy */
1003 return 0;
1004 case 0:
1005 path_put(path);
1006 path->mnt = mnt;
1007 path->dentry = dget(mnt->mnt_root);
1008 return 0;
1009 default:
1010 return err;
1011 }
1012
1013 }
1014
1015 /*
1016 * Handle a dentry that is managed in some way.
1017 * - Flagged for transit management (autofs)
1018 * - Flagged as mountpoint
1019 * - Flagged as automount point
1020 *
1021 * This may only be called in refwalk mode.
1022 *
1023 * Serialization is taken care of in namespace.c
1024 */
1025 static int follow_managed(struct path *path, unsigned flags)
1026 {
1027 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1028 unsigned managed;
1029 bool need_mntput = false;
1030 int ret = 0;
1031
1032 /* Given that we're not holding a lock here, we retain the value in a
1033 * local variable for each dentry as we look at it so that we don't see
1034 * the components of that value change under us */
1035 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1036 managed &= DCACHE_MANAGED_DENTRY,
1037 unlikely(managed != 0)) {
1038 /* Allow the filesystem to manage the transit without i_mutex
1039 * being held. */
1040 if (managed & DCACHE_MANAGE_TRANSIT) {
1041 BUG_ON(!path->dentry->d_op);
1042 BUG_ON(!path->dentry->d_op->d_manage);
1043 ret = path->dentry->d_op->d_manage(path->dentry, false);
1044 if (ret < 0)
1045 break;
1046 }
1047
1048 /* Transit to a mounted filesystem. */
1049 if (managed & DCACHE_MOUNTED) {
1050 struct vfsmount *mounted = lookup_mnt(path);
1051 if (mounted) {
1052 dput(path->dentry);
1053 if (need_mntput)
1054 mntput(path->mnt);
1055 path->mnt = mounted;
1056 path->dentry = dget(mounted->mnt_root);
1057 need_mntput = true;
1058 continue;
1059 }
1060
1061 /* Something is mounted on this dentry in another
1062 * namespace and/or whatever was mounted there in this
1063 * namespace got unmounted before lookup_mnt() could
1064 * get it */
1065 }
1066
1067 /* Handle an automount point */
1068 if (managed & DCACHE_NEED_AUTOMOUNT) {
1069 ret = follow_automount(path, flags, &need_mntput);
1070 if (ret < 0)
1071 break;
1072 continue;
1073 }
1074
1075 /* We didn't change the current path point */
1076 break;
1077 }
1078
1079 if (need_mntput && path->mnt == mnt)
1080 mntput(path->mnt);
1081 if (ret == -EISDIR)
1082 ret = 0;
1083 return ret < 0 ? ret : need_mntput;
1084 }
1085
1086 int follow_down_one(struct path *path)
1087 {
1088 struct vfsmount *mounted;
1089
1090 mounted = lookup_mnt(path);
1091 if (mounted) {
1092 dput(path->dentry);
1093 mntput(path->mnt);
1094 path->mnt = mounted;
1095 path->dentry = dget(mounted->mnt_root);
1096 return 1;
1097 }
1098 return 0;
1099 }
1100 EXPORT_SYMBOL(follow_down_one);
1101
1102 static inline int managed_dentry_rcu(struct dentry *dentry)
1103 {
1104 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1105 dentry->d_op->d_manage(dentry, true) : 0;
1106 }
1107
1108 /*
1109 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1110 * we meet a managed dentry that would need blocking.
1111 */
1112 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1113 struct inode **inode)
1114 {
1115 for (;;) {
1116 struct mount *mounted;
1117 /*
1118 * Don't forget we might have a non-mountpoint managed dentry
1119 * that wants to block transit.
1120 */
1121 switch (managed_dentry_rcu(path->dentry)) {
1122 case -ECHILD:
1123 default:
1124 return false;
1125 case -EISDIR:
1126 return true;
1127 case 0:
1128 break;
1129 }
1130
1131 if (!d_mountpoint(path->dentry))
1132 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1133
1134 mounted = __lookup_mnt(path->mnt, path->dentry);
1135 if (!mounted)
1136 break;
1137 path->mnt = &mounted->mnt;
1138 path->dentry = mounted->mnt.mnt_root;
1139 nd->flags |= LOOKUP_JUMPED;
1140 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1141 /*
1142 * Update the inode too. We don't need to re-check the
1143 * dentry sequence number here after this d_inode read,
1144 * because a mount-point is always pinned.
1145 */
1146 *inode = path->dentry->d_inode;
1147 }
1148 return !read_seqretry(&mount_lock, nd->m_seq) &&
1149 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1150 }
1151
1152 static int follow_dotdot_rcu(struct nameidata *nd)
1153 {
1154 struct inode *inode = nd->inode;
1155 if (!nd->root.mnt)
1156 set_root_rcu(nd);
1157
1158 while (1) {
1159 if (nd->path.dentry == nd->root.dentry &&
1160 nd->path.mnt == nd->root.mnt) {
1161 break;
1162 }
1163 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1164 struct dentry *old = nd->path.dentry;
1165 struct dentry *parent = old->d_parent;
1166 unsigned seq;
1167
1168 inode = parent->d_inode;
1169 seq = read_seqcount_begin(&parent->d_seq);
1170 if (read_seqcount_retry(&old->d_seq, nd->seq))
1171 goto failed;
1172 nd->path.dentry = parent;
1173 nd->seq = seq;
1174 break;
1175 }
1176 if (!follow_up_rcu(&nd->path))
1177 break;
1178 inode = nd->path.dentry->d_inode;
1179 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1180 }
1181 while (d_mountpoint(nd->path.dentry)) {
1182 struct mount *mounted;
1183 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1184 if (!mounted)
1185 break;
1186 nd->path.mnt = &mounted->mnt;
1187 nd->path.dentry = mounted->mnt.mnt_root;
1188 inode = nd->path.dentry->d_inode;
1189 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1190 if (read_seqretry(&mount_lock, nd->m_seq))
1191 goto failed;
1192 }
1193 nd->inode = inode;
1194 return 0;
1195
1196 failed:
1197 nd->flags &= ~LOOKUP_RCU;
1198 if (!(nd->flags & LOOKUP_ROOT))
1199 nd->root.mnt = NULL;
1200 rcu_read_unlock();
1201 return -ECHILD;
1202 }
1203
1204 /*
1205 * Follow down to the covering mount currently visible to userspace. At each
1206 * point, the filesystem owning that dentry may be queried as to whether the
1207 * caller is permitted to proceed or not.
1208 */
1209 int follow_down(struct path *path)
1210 {
1211 unsigned managed;
1212 int ret;
1213
1214 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1215 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1216 /* Allow the filesystem to manage the transit without i_mutex
1217 * being held.
1218 *
1219 * We indicate to the filesystem if someone is trying to mount
1220 * something here. This gives autofs the chance to deny anyone
1221 * other than its daemon the right to mount on its
1222 * superstructure.
1223 *
1224 * The filesystem may sleep at this point.
1225 */
1226 if (managed & DCACHE_MANAGE_TRANSIT) {
1227 BUG_ON(!path->dentry->d_op);
1228 BUG_ON(!path->dentry->d_op->d_manage);
1229 ret = path->dentry->d_op->d_manage(
1230 path->dentry, false);
1231 if (ret < 0)
1232 return ret == -EISDIR ? 0 : ret;
1233 }
1234
1235 /* Transit to a mounted filesystem. */
1236 if (managed & DCACHE_MOUNTED) {
1237 struct vfsmount *mounted = lookup_mnt(path);
1238 if (!mounted)
1239 break;
1240 dput(path->dentry);
1241 mntput(path->mnt);
1242 path->mnt = mounted;
1243 path->dentry = dget(mounted->mnt_root);
1244 continue;
1245 }
1246
1247 /* Don't handle automount points here */
1248 break;
1249 }
1250 return 0;
1251 }
1252 EXPORT_SYMBOL(follow_down);
1253
1254 /*
1255 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1256 */
1257 static void follow_mount(struct path *path)
1258 {
1259 while (d_mountpoint(path->dentry)) {
1260 struct vfsmount *mounted = lookup_mnt(path);
1261 if (!mounted)
1262 break;
1263 dput(path->dentry);
1264 mntput(path->mnt);
1265 path->mnt = mounted;
1266 path->dentry = dget(mounted->mnt_root);
1267 }
1268 }
1269
1270 static void follow_dotdot(struct nameidata *nd)
1271 {
1272 if (!nd->root.mnt)
1273 set_root(nd);
1274
1275 while(1) {
1276 struct dentry *old = nd->path.dentry;
1277
1278 if (nd->path.dentry == nd->root.dentry &&
1279 nd->path.mnt == nd->root.mnt) {
1280 break;
1281 }
1282 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1283 /* rare case of legitimate dget_parent()... */
1284 nd->path.dentry = dget_parent(nd->path.dentry);
1285 dput(old);
1286 break;
1287 }
1288 if (!follow_up(&nd->path))
1289 break;
1290 }
1291 follow_mount(&nd->path);
1292 nd->inode = nd->path.dentry->d_inode;
1293 }
1294
1295 /*
1296 * This looks up the name in dcache, possibly revalidates the old dentry and
1297 * allocates a new one if not found or not valid. In the need_lookup argument
1298 * returns whether i_op->lookup is necessary.
1299 *
1300 * dir->d_inode->i_mutex must be held
1301 */
1302 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1303 unsigned int flags, bool *need_lookup)
1304 {
1305 struct dentry *dentry;
1306 int error;
1307
1308 *need_lookup = false;
1309 dentry = d_lookup(dir, name);
1310 if (dentry) {
1311 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1312 error = d_revalidate(dentry, flags);
1313 if (unlikely(error <= 0)) {
1314 if (error < 0) {
1315 dput(dentry);
1316 return ERR_PTR(error);
1317 } else {
1318 d_invalidate(dentry);
1319 dput(dentry);
1320 dentry = NULL;
1321 }
1322 }
1323 }
1324 }
1325
1326 if (!dentry) {
1327 dentry = d_alloc(dir, name);
1328 if (unlikely(!dentry))
1329 return ERR_PTR(-ENOMEM);
1330
1331 *need_lookup = true;
1332 }
1333 return dentry;
1334 }
1335
1336 /*
1337 * Call i_op->lookup on the dentry. The dentry must be negative and
1338 * unhashed.
1339 *
1340 * dir->d_inode->i_mutex must be held
1341 */
1342 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1343 unsigned int flags)
1344 {
1345 struct dentry *old;
1346
1347 /* Don't create child dentry for a dead directory. */
1348 if (unlikely(IS_DEADDIR(dir))) {
1349 dput(dentry);
1350 return ERR_PTR(-ENOENT);
1351 }
1352
1353 old = dir->i_op->lookup(dir, dentry, flags);
1354 if (unlikely(old)) {
1355 dput(dentry);
1356 dentry = old;
1357 }
1358 return dentry;
1359 }
1360
1361 static struct dentry *__lookup_hash(struct qstr *name,
1362 struct dentry *base, unsigned int flags)
1363 {
1364 bool need_lookup;
1365 struct dentry *dentry;
1366
1367 dentry = lookup_dcache(name, base, flags, &need_lookup);
1368 if (!need_lookup)
1369 return dentry;
1370
1371 return lookup_real(base->d_inode, dentry, flags);
1372 }
1373
1374 /*
1375 * It's more convoluted than I'd like it to be, but... it's still fairly
1376 * small and for now I'd prefer to have fast path as straight as possible.
1377 * It _is_ time-critical.
1378 */
1379 static int lookup_fast(struct nameidata *nd,
1380 struct path *path, struct inode **inode)
1381 {
1382 struct vfsmount *mnt = nd->path.mnt;
1383 struct dentry *dentry, *parent = nd->path.dentry;
1384 int need_reval = 1;
1385 int status = 1;
1386 int err;
1387
1388 /*
1389 * Rename seqlock is not required here because in the off chance
1390 * of a false negative due to a concurrent rename, we're going to
1391 * do the non-racy lookup, below.
1392 */
1393 if (nd->flags & LOOKUP_RCU) {
1394 unsigned seq;
1395 bool negative;
1396 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1397 if (!dentry)
1398 goto unlazy;
1399
1400 /*
1401 * This sequence count validates that the inode matches
1402 * the dentry name information from lookup.
1403 */
1404 *inode = dentry->d_inode;
1405 negative = d_is_negative(dentry);
1406 if (read_seqcount_retry(&dentry->d_seq, seq))
1407 return -ECHILD;
1408 if (negative)
1409 return -ENOENT;
1410
1411 /*
1412 * This sequence count validates that the parent had no
1413 * changes while we did the lookup of the dentry above.
1414 *
1415 * The memory barrier in read_seqcount_begin of child is
1416 * enough, we can use __read_seqcount_retry here.
1417 */
1418 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1419 return -ECHILD;
1420 nd->seq = seq;
1421
1422 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1423 status = d_revalidate(dentry, nd->flags);
1424 if (unlikely(status <= 0)) {
1425 if (status != -ECHILD)
1426 need_reval = 0;
1427 goto unlazy;
1428 }
1429 }
1430 path->mnt = mnt;
1431 path->dentry = dentry;
1432 if (likely(__follow_mount_rcu(nd, path, inode)))
1433 return 0;
1434 unlazy:
1435 if (unlazy_walk(nd, dentry))
1436 return -ECHILD;
1437 } else {
1438 dentry = __d_lookup(parent, &nd->last);
1439 }
1440
1441 if (unlikely(!dentry))
1442 goto need_lookup;
1443
1444 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1445 status = d_revalidate(dentry, nd->flags);
1446 if (unlikely(status <= 0)) {
1447 if (status < 0) {
1448 dput(dentry);
1449 return status;
1450 }
1451 d_invalidate(dentry);
1452 dput(dentry);
1453 goto need_lookup;
1454 }
1455
1456 if (unlikely(d_is_negative(dentry))) {
1457 dput(dentry);
1458 return -ENOENT;
1459 }
1460 path->mnt = mnt;
1461 path->dentry = dentry;
1462 err = follow_managed(path, nd->flags);
1463 if (unlikely(err < 0)) {
1464 path_put_conditional(path, nd);
1465 return err;
1466 }
1467 if (err)
1468 nd->flags |= LOOKUP_JUMPED;
1469 *inode = path->dentry->d_inode;
1470 return 0;
1471
1472 need_lookup:
1473 return 1;
1474 }
1475
1476 /* Fast lookup failed, do it the slow way */
1477 static int lookup_slow(struct nameidata *nd, struct path *path)
1478 {
1479 struct dentry *dentry, *parent;
1480 int err;
1481
1482 parent = nd->path.dentry;
1483 BUG_ON(nd->inode != parent->d_inode);
1484
1485 mutex_lock(&parent->d_inode->i_mutex);
1486 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1487 mutex_unlock(&parent->d_inode->i_mutex);
1488 if (IS_ERR(dentry))
1489 return PTR_ERR(dentry);
1490 path->mnt = nd->path.mnt;
1491 path->dentry = dentry;
1492 err = follow_managed(path, nd->flags);
1493 if (unlikely(err < 0)) {
1494 path_put_conditional(path, nd);
1495 return err;
1496 }
1497 if (err)
1498 nd->flags |= LOOKUP_JUMPED;
1499 return 0;
1500 }
1501
1502 static inline int may_lookup(struct nameidata *nd)
1503 {
1504 if (nd->flags & LOOKUP_RCU) {
1505 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1506 if (err != -ECHILD)
1507 return err;
1508 if (unlazy_walk(nd, NULL))
1509 return -ECHILD;
1510 }
1511 return inode_permission(nd->inode, MAY_EXEC);
1512 }
1513
1514 static inline int handle_dots(struct nameidata *nd, int type)
1515 {
1516 if (type == LAST_DOTDOT) {
1517 if (nd->flags & LOOKUP_RCU) {
1518 if (follow_dotdot_rcu(nd))
1519 return -ECHILD;
1520 } else
1521 follow_dotdot(nd);
1522 }
1523 return 0;
1524 }
1525
1526 static void terminate_walk(struct nameidata *nd)
1527 {
1528 if (!(nd->flags & LOOKUP_RCU)) {
1529 path_put(&nd->path);
1530 } else {
1531 nd->flags &= ~LOOKUP_RCU;
1532 if (!(nd->flags & LOOKUP_ROOT))
1533 nd->root.mnt = NULL;
1534 rcu_read_unlock();
1535 }
1536 }
1537
1538 /*
1539 * Do we need to follow links? We _really_ want to be able
1540 * to do this check without having to look at inode->i_op,
1541 * so we keep a cache of "no, this doesn't need follow_link"
1542 * for the common case.
1543 */
1544 static inline int should_follow_link(struct dentry *dentry, int follow)
1545 {
1546 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1547 }
1548
1549 static int walk_component(struct nameidata *nd, int follow)
1550 {
1551 struct path path;
1552 struct inode *inode;
1553 int err;
1554 /*
1555 * "." and ".." are special - ".." especially so because it has
1556 * to be able to know about the current root directory and
1557 * parent relationships.
1558 */
1559 if (unlikely(nd->last_type != LAST_NORM))
1560 return handle_dots(nd, nd->last_type);
1561 err = lookup_fast(nd, &path, &inode);
1562 if (unlikely(err)) {
1563 if (err < 0)
1564 goto out_err;
1565
1566 err = lookup_slow(nd, &path);
1567 if (err < 0)
1568 goto out_err;
1569
1570 inode = path.dentry->d_inode;
1571 err = -ENOENT;
1572 if (d_is_negative(path.dentry))
1573 goto out_path_put;
1574 }
1575
1576 if (should_follow_link(path.dentry, follow)) {
1577 if (nd->flags & LOOKUP_RCU) {
1578 if (unlikely(nd->path.mnt != path.mnt ||
1579 unlazy_walk(nd, path.dentry))) {
1580 err = -ECHILD;
1581 goto out_err;
1582 }
1583 }
1584 BUG_ON(inode != path.dentry->d_inode);
1585 nd->link = path;
1586 return 1;
1587 }
1588 path_to_nameidata(&path, nd);
1589 nd->inode = inode;
1590 return 0;
1591
1592 out_path_put:
1593 path_to_nameidata(&path, nd);
1594 out_err:
1595 terminate_walk(nd);
1596 return err;
1597 }
1598
1599 /*
1600 * We can do the critical dentry name comparison and hashing
1601 * operations one word at a time, but we are limited to:
1602 *
1603 * - Architectures with fast unaligned word accesses. We could
1604 * do a "get_unaligned()" if this helps and is sufficiently
1605 * fast.
1606 *
1607 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1608 * do not trap on the (extremely unlikely) case of a page
1609 * crossing operation.
1610 *
1611 * - Furthermore, we need an efficient 64-bit compile for the
1612 * 64-bit case in order to generate the "number of bytes in
1613 * the final mask". Again, that could be replaced with a
1614 * efficient population count instruction or similar.
1615 */
1616 #ifdef CONFIG_DCACHE_WORD_ACCESS
1617
1618 #include <asm/word-at-a-time.h>
1619
1620 #ifdef CONFIG_64BIT
1621
1622 static inline unsigned int fold_hash(unsigned long hash)
1623 {
1624 return hash_64(hash, 32);
1625 }
1626
1627 #else /* 32-bit case */
1628
1629 #define fold_hash(x) (x)
1630
1631 #endif
1632
1633 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1634 {
1635 unsigned long a, mask;
1636 unsigned long hash = 0;
1637
1638 for (;;) {
1639 a = load_unaligned_zeropad(name);
1640 if (len < sizeof(unsigned long))
1641 break;
1642 hash += a;
1643 hash *= 9;
1644 name += sizeof(unsigned long);
1645 len -= sizeof(unsigned long);
1646 if (!len)
1647 goto done;
1648 }
1649 mask = bytemask_from_count(len);
1650 hash += mask & a;
1651 done:
1652 return fold_hash(hash);
1653 }
1654 EXPORT_SYMBOL(full_name_hash);
1655
1656 /*
1657 * Calculate the length and hash of the path component, and
1658 * return the "hash_len" as the result.
1659 */
1660 static inline u64 hash_name(const char *name)
1661 {
1662 unsigned long a, b, adata, bdata, mask, hash, len;
1663 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1664
1665 hash = a = 0;
1666 len = -sizeof(unsigned long);
1667 do {
1668 hash = (hash + a) * 9;
1669 len += sizeof(unsigned long);
1670 a = load_unaligned_zeropad(name+len);
1671 b = a ^ REPEAT_BYTE('/');
1672 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1673
1674 adata = prep_zero_mask(a, adata, &constants);
1675 bdata = prep_zero_mask(b, bdata, &constants);
1676
1677 mask = create_zero_mask(adata | bdata);
1678
1679 hash += a & zero_bytemask(mask);
1680 len += find_zero(mask);
1681 return hashlen_create(fold_hash(hash), len);
1682 }
1683
1684 #else
1685
1686 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1687 {
1688 unsigned long hash = init_name_hash();
1689 while (len--)
1690 hash = partial_name_hash(*name++, hash);
1691 return end_name_hash(hash);
1692 }
1693 EXPORT_SYMBOL(full_name_hash);
1694
1695 /*
1696 * We know there's a real path component here of at least
1697 * one character.
1698 */
1699 static inline u64 hash_name(const char *name)
1700 {
1701 unsigned long hash = init_name_hash();
1702 unsigned long len = 0, c;
1703
1704 c = (unsigned char)*name;
1705 do {
1706 len++;
1707 hash = partial_name_hash(c, hash);
1708 c = (unsigned char)name[len];
1709 } while (c && c != '/');
1710 return hashlen_create(end_name_hash(hash), len);
1711 }
1712
1713 #endif
1714
1715 /*
1716 * Name resolution.
1717 * This is the basic name resolution function, turning a pathname into
1718 * the final dentry. We expect 'base' to be positive and a directory.
1719 *
1720 * Returns 0 and nd will have valid dentry and mnt on success.
1721 * Returns error and drops reference to input namei data on failure.
1722 */
1723 static int link_path_walk(const char *name, struct nameidata *nd)
1724 {
1725 int err;
1726
1727 while (*name=='/')
1728 name++;
1729 if (!*name)
1730 return 0;
1731
1732 /* At this point we know we have a real path component. */
1733 for(;;) {
1734 u64 hash_len;
1735 int type;
1736
1737 err = may_lookup(nd);
1738 if (err)
1739 break;
1740
1741 hash_len = hash_name(name);
1742
1743 type = LAST_NORM;
1744 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1745 case 2:
1746 if (name[1] == '.') {
1747 type = LAST_DOTDOT;
1748 nd->flags |= LOOKUP_JUMPED;
1749 }
1750 break;
1751 case 1:
1752 type = LAST_DOT;
1753 }
1754 if (likely(type == LAST_NORM)) {
1755 struct dentry *parent = nd->path.dentry;
1756 nd->flags &= ~LOOKUP_JUMPED;
1757 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1758 struct qstr this = { { .hash_len = hash_len }, .name = name };
1759 err = parent->d_op->d_hash(parent, &this);
1760 if (err < 0)
1761 break;
1762 hash_len = this.hash_len;
1763 name = this.name;
1764 }
1765 }
1766
1767 nd->last.hash_len = hash_len;
1768 nd->last.name = name;
1769 nd->last_type = type;
1770
1771 name += hashlen_len(hash_len);
1772 if (!*name)
1773 goto OK;
1774 /*
1775 * If it wasn't NUL, we know it was '/'. Skip that
1776 * slash, and continue until no more slashes.
1777 */
1778 do {
1779 name++;
1780 } while (unlikely(*name == '/'));
1781 if (!*name)
1782 goto OK;
1783
1784 err = walk_component(nd, LOOKUP_FOLLOW);
1785 Walked:
1786 if (err < 0)
1787 goto Err;
1788
1789 if (err) {
1790 const char *s;
1791
1792 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1793 path_put_conditional(&nd->link, nd);
1794 path_put(&nd->path);
1795 err = -ELOOP;
1796 goto Err;
1797 }
1798 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1799
1800 nd->depth++;
1801 current->link_count++;
1802
1803 s = get_link(nd);
1804
1805 if (unlikely(IS_ERR(s))) {
1806 err = PTR_ERR(s);
1807 current->link_count--;
1808 nd->depth--;
1809 goto Err;
1810 }
1811 err = 0;
1812 if (unlikely(!s)) {
1813 /* jumped */
1814 put_link(nd);
1815 current->link_count--;
1816 nd->depth--;
1817 } else {
1818 if (*s == '/') {
1819 if (!nd->root.mnt)
1820 set_root(nd);
1821 path_put(&nd->path);
1822 nd->path = nd->root;
1823 path_get(&nd->root);
1824 nd->flags |= LOOKUP_JUMPED;
1825 while (unlikely(*++s == '/'))
1826 ;
1827 }
1828 nd->inode = nd->path.dentry->d_inode;
1829 nd->stack[nd->depth].name = name;
1830 if (!*s)
1831 goto OK;
1832 name = s;
1833 continue;
1834 }
1835 }
1836 if (!d_can_lookup(nd->path.dentry)) {
1837 err = -ENOTDIR;
1838 break;
1839 }
1840 }
1841 terminate_walk(nd);
1842 Err:
1843 while (unlikely(nd->depth)) {
1844 put_link(nd);
1845 current->link_count--;
1846 nd->depth--;
1847 }
1848 return err;
1849 OK:
1850 if (unlikely(nd->depth)) {
1851 name = nd->stack[nd->depth].name;
1852 err = walk_component(nd, LOOKUP_FOLLOW);
1853 put_link(nd);
1854 current->link_count--;
1855 nd->depth--;
1856 goto Walked;
1857 }
1858 return 0;
1859 }
1860
1861 static int path_init(int dfd, const struct filename *name, unsigned int flags,
1862 struct nameidata *nd)
1863 {
1864 int retval = 0;
1865 const char *s = name->name;
1866
1867 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1868 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1869 nd->depth = 0;
1870 nd->base = NULL;
1871 if (flags & LOOKUP_ROOT) {
1872 struct dentry *root = nd->root.dentry;
1873 struct inode *inode = root->d_inode;
1874 if (*s) {
1875 if (!d_can_lookup(root))
1876 return -ENOTDIR;
1877 retval = inode_permission(inode, MAY_EXEC);
1878 if (retval)
1879 return retval;
1880 }
1881 nd->path = nd->root;
1882 nd->inode = inode;
1883 if (flags & LOOKUP_RCU) {
1884 rcu_read_lock();
1885 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1886 nd->m_seq = read_seqbegin(&mount_lock);
1887 } else {
1888 path_get(&nd->path);
1889 }
1890 goto done;
1891 }
1892
1893 nd->root.mnt = NULL;
1894
1895 nd->m_seq = read_seqbegin(&mount_lock);
1896 if (*s == '/') {
1897 if (flags & LOOKUP_RCU) {
1898 rcu_read_lock();
1899 nd->seq = set_root_rcu(nd);
1900 } else {
1901 set_root(nd);
1902 path_get(&nd->root);
1903 }
1904 nd->path = nd->root;
1905 } else if (dfd == AT_FDCWD) {
1906 if (flags & LOOKUP_RCU) {
1907 struct fs_struct *fs = current->fs;
1908 unsigned seq;
1909
1910 rcu_read_lock();
1911
1912 do {
1913 seq = read_seqcount_begin(&fs->seq);
1914 nd->path = fs->pwd;
1915 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1916 } while (read_seqcount_retry(&fs->seq, seq));
1917 } else {
1918 get_fs_pwd(current->fs, &nd->path);
1919 }
1920 } else {
1921 /* Caller must check execute permissions on the starting path component */
1922 struct fd f = fdget_raw(dfd);
1923 struct dentry *dentry;
1924
1925 if (!f.file)
1926 return -EBADF;
1927
1928 dentry = f.file->f_path.dentry;
1929
1930 if (*s) {
1931 if (!d_can_lookup(dentry)) {
1932 fdput(f);
1933 return -ENOTDIR;
1934 }
1935 }
1936
1937 nd->path = f.file->f_path;
1938 if (flags & LOOKUP_RCU) {
1939 if (f.flags & FDPUT_FPUT)
1940 nd->base = f.file;
1941 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1942 rcu_read_lock();
1943 } else {
1944 path_get(&nd->path);
1945 fdput(f);
1946 }
1947 }
1948
1949 nd->inode = nd->path.dentry->d_inode;
1950 if (!(flags & LOOKUP_RCU))
1951 goto done;
1952 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1953 goto done;
1954 if (!(nd->flags & LOOKUP_ROOT))
1955 nd->root.mnt = NULL;
1956 rcu_read_unlock();
1957 return -ECHILD;
1958 done:
1959 current->total_link_count = 0;
1960 return link_path_walk(s, nd);
1961 }
1962
1963 static void path_cleanup(struct nameidata *nd)
1964 {
1965 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1966 path_put(&nd->root);
1967 nd->root.mnt = NULL;
1968 }
1969 if (unlikely(nd->base))
1970 fput(nd->base);
1971 }
1972
1973 static int trailing_symlink(struct nameidata *nd)
1974 {
1975 const char *s;
1976 int error = may_follow_link(&nd->link, nd);
1977 if (unlikely(error))
1978 return error;
1979 nd->flags |= LOOKUP_PARENT;
1980 s = get_link(nd);
1981 if (unlikely(IS_ERR(s)))
1982 return PTR_ERR(s);
1983 if (unlikely(!s))
1984 return 0;
1985 if (*s == '/') {
1986 if (!nd->root.mnt)
1987 set_root(nd);
1988 path_put(&nd->path);
1989 nd->path = nd->root;
1990 path_get(&nd->root);
1991 nd->flags |= LOOKUP_JUMPED;
1992 }
1993 nd->inode = nd->path.dentry->d_inode;
1994 error = link_path_walk(s, nd);
1995 if (unlikely(error))
1996 put_link(nd);
1997 return error;
1998 }
1999
2000 static inline int lookup_last(struct nameidata *nd)
2001 {
2002 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2003 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2004
2005 nd->flags &= ~LOOKUP_PARENT;
2006 return walk_component(nd, nd->flags & LOOKUP_FOLLOW);
2007 }
2008
2009 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2010 static int path_lookupat(int dfd, const struct filename *name,
2011 unsigned int flags, struct nameidata *nd)
2012 {
2013 int err;
2014
2015 /*
2016 * Path walking is largely split up into 2 different synchronisation
2017 * schemes, rcu-walk and ref-walk (explained in
2018 * Documentation/filesystems/path-lookup.txt). These share much of the
2019 * path walk code, but some things particularly setup, cleanup, and
2020 * following mounts are sufficiently divergent that functions are
2021 * duplicated. Typically there is a function foo(), and its RCU
2022 * analogue, foo_rcu().
2023 *
2024 * -ECHILD is the error number of choice (just to avoid clashes) that
2025 * is returned if some aspect of an rcu-walk fails. Such an error must
2026 * be handled by restarting a traditional ref-walk (which will always
2027 * be able to complete).
2028 */
2029 err = path_init(dfd, name, flags, nd);
2030 if (!err && !(flags & LOOKUP_PARENT)) {
2031 err = lookup_last(nd);
2032 while (err > 0) {
2033 err = trailing_symlink(nd);
2034 if (err)
2035 break;
2036 err = lookup_last(nd);
2037 put_link(nd);
2038 }
2039 }
2040
2041 if (!err)
2042 err = complete_walk(nd);
2043
2044 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2045 if (!d_can_lookup(nd->path.dentry)) {
2046 path_put(&nd->path);
2047 err = -ENOTDIR;
2048 }
2049 }
2050
2051 path_cleanup(nd);
2052 return err;
2053 }
2054
2055 static int filename_lookup(int dfd, struct filename *name,
2056 unsigned int flags, struct nameidata *nd)
2057 {
2058 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2059 if (unlikely(retval == -ECHILD))
2060 retval = path_lookupat(dfd, name, flags, nd);
2061 if (unlikely(retval == -ESTALE))
2062 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2063
2064 if (likely(!retval))
2065 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2066 return retval;
2067 }
2068
2069 /* does lookup, returns the object with parent locked */
2070 struct dentry *kern_path_locked(const char *name, struct path *path)
2071 {
2072 struct filename *filename = getname_kernel(name);
2073 struct nameidata nd;
2074 struct dentry *d;
2075 int err;
2076
2077 if (IS_ERR(filename))
2078 return ERR_CAST(filename);
2079
2080 err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd);
2081 if (err) {
2082 d = ERR_PTR(err);
2083 goto out;
2084 }
2085 if (nd.last_type != LAST_NORM) {
2086 path_put(&nd.path);
2087 d = ERR_PTR(-EINVAL);
2088 goto out;
2089 }
2090 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2091 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2092 if (IS_ERR(d)) {
2093 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2094 path_put(&nd.path);
2095 goto out;
2096 }
2097 *path = nd.path;
2098 out:
2099 putname(filename);
2100 return d;
2101 }
2102
2103 int kern_path(const char *name, unsigned int flags, struct path *path)
2104 {
2105 struct nameidata nd;
2106 struct filename *filename = getname_kernel(name);
2107 int res = PTR_ERR(filename);
2108
2109 if (!IS_ERR(filename)) {
2110 res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2111 putname(filename);
2112 if (!res)
2113 *path = nd.path;
2114 }
2115 return res;
2116 }
2117 EXPORT_SYMBOL(kern_path);
2118
2119 /**
2120 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2121 * @dentry: pointer to dentry of the base directory
2122 * @mnt: pointer to vfs mount of the base directory
2123 * @name: pointer to file name
2124 * @flags: lookup flags
2125 * @path: pointer to struct path to fill
2126 */
2127 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2128 const char *name, unsigned int flags,
2129 struct path *path)
2130 {
2131 struct filename *filename = getname_kernel(name);
2132 int err = PTR_ERR(filename);
2133
2134 BUG_ON(flags & LOOKUP_PARENT);
2135
2136 /* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2137 if (!IS_ERR(filename)) {
2138 struct nameidata nd;
2139 nd.root.dentry = dentry;
2140 nd.root.mnt = mnt;
2141 err = filename_lookup(AT_FDCWD, filename,
2142 flags | LOOKUP_ROOT, &nd);
2143 if (!err)
2144 *path = nd.path;
2145 putname(filename);
2146 }
2147 return err;
2148 }
2149 EXPORT_SYMBOL(vfs_path_lookup);
2150
2151 /**
2152 * lookup_one_len - filesystem helper to lookup single pathname component
2153 * @name: pathname component to lookup
2154 * @base: base directory to lookup from
2155 * @len: maximum length @len should be interpreted to
2156 *
2157 * Note that this routine is purely a helper for filesystem usage and should
2158 * not be called by generic code.
2159 */
2160 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2161 {
2162 struct qstr this;
2163 unsigned int c;
2164 int err;
2165
2166 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2167
2168 this.name = name;
2169 this.len = len;
2170 this.hash = full_name_hash(name, len);
2171 if (!len)
2172 return ERR_PTR(-EACCES);
2173
2174 if (unlikely(name[0] == '.')) {
2175 if (len < 2 || (len == 2 && name[1] == '.'))
2176 return ERR_PTR(-EACCES);
2177 }
2178
2179 while (len--) {
2180 c = *(const unsigned char *)name++;
2181 if (c == '/' || c == '\0')
2182 return ERR_PTR(-EACCES);
2183 }
2184 /*
2185 * See if the low-level filesystem might want
2186 * to use its own hash..
2187 */
2188 if (base->d_flags & DCACHE_OP_HASH) {
2189 int err = base->d_op->d_hash(base, &this);
2190 if (err < 0)
2191 return ERR_PTR(err);
2192 }
2193
2194 err = inode_permission(base->d_inode, MAY_EXEC);
2195 if (err)
2196 return ERR_PTR(err);
2197
2198 return __lookup_hash(&this, base, 0);
2199 }
2200 EXPORT_SYMBOL(lookup_one_len);
2201
2202 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2203 struct path *path, int *empty)
2204 {
2205 struct nameidata nd;
2206 struct filename *tmp = getname_flags(name, flags, empty);
2207 int err = PTR_ERR(tmp);
2208 if (!IS_ERR(tmp)) {
2209
2210 BUG_ON(flags & LOOKUP_PARENT);
2211
2212 err = filename_lookup(dfd, tmp, flags, &nd);
2213 putname(tmp);
2214 if (!err)
2215 *path = nd.path;
2216 }
2217 return err;
2218 }
2219
2220 int user_path_at(int dfd, const char __user *name, unsigned flags,
2221 struct path *path)
2222 {
2223 return user_path_at_empty(dfd, name, flags, path, NULL);
2224 }
2225 EXPORT_SYMBOL(user_path_at);
2226
2227 /*
2228 * NB: most callers don't do anything directly with the reference to the
2229 * to struct filename, but the nd->last pointer points into the name string
2230 * allocated by getname. So we must hold the reference to it until all
2231 * path-walking is complete.
2232 */
2233 static struct filename *
2234 user_path_parent(int dfd, const char __user *path,
2235 struct path *parent,
2236 struct qstr *last,
2237 int *type,
2238 unsigned int flags)
2239 {
2240 struct nameidata nd;
2241 struct filename *s = getname(path);
2242 int error;
2243
2244 /* only LOOKUP_REVAL is allowed in extra flags */
2245 flags &= LOOKUP_REVAL;
2246
2247 if (IS_ERR(s))
2248 return s;
2249
2250 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, &nd);
2251 if (error) {
2252 putname(s);
2253 return ERR_PTR(error);
2254 }
2255 *parent = nd.path;
2256 *last = nd.last;
2257 *type = nd.last_type;
2258
2259 return s;
2260 }
2261
2262 /**
2263 * mountpoint_last - look up last component for umount
2264 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2265 * @path: pointer to container for result
2266 *
2267 * This is a special lookup_last function just for umount. In this case, we
2268 * need to resolve the path without doing any revalidation.
2269 *
2270 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2271 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2272 * in almost all cases, this lookup will be served out of the dcache. The only
2273 * cases where it won't are if nd->last refers to a symlink or the path is
2274 * bogus and it doesn't exist.
2275 *
2276 * Returns:
2277 * -error: if there was an error during lookup. This includes -ENOENT if the
2278 * lookup found a negative dentry. The nd->path reference will also be
2279 * put in this case.
2280 *
2281 * 0: if we successfully resolved nd->path and found it to not to be a
2282 * symlink that needs to be followed. "path" will also be populated.
2283 * The nd->path reference will also be put.
2284 *
2285 * 1: if we successfully resolved nd->last and found it to be a symlink
2286 * that needs to be followed. "path" will be populated with the path
2287 * to the link, and nd->path will *not* be put.
2288 */
2289 static int
2290 mountpoint_last(struct nameidata *nd, struct path *path)
2291 {
2292 int error = 0;
2293 struct dentry *dentry;
2294 struct dentry *dir = nd->path.dentry;
2295
2296 /* If we're in rcuwalk, drop out of it to handle last component */
2297 if (nd->flags & LOOKUP_RCU) {
2298 if (unlazy_walk(nd, NULL)) {
2299 error = -ECHILD;
2300 goto out;
2301 }
2302 }
2303
2304 nd->flags &= ~LOOKUP_PARENT;
2305
2306 if (unlikely(nd->last_type != LAST_NORM)) {
2307 error = handle_dots(nd, nd->last_type);
2308 if (error)
2309 goto out;
2310 dentry = dget(nd->path.dentry);
2311 goto done;
2312 }
2313
2314 mutex_lock(&dir->d_inode->i_mutex);
2315 dentry = d_lookup(dir, &nd->last);
2316 if (!dentry) {
2317 /*
2318 * No cached dentry. Mounted dentries are pinned in the cache,
2319 * so that means that this dentry is probably a symlink or the
2320 * path doesn't actually point to a mounted dentry.
2321 */
2322 dentry = d_alloc(dir, &nd->last);
2323 if (!dentry) {
2324 error = -ENOMEM;
2325 mutex_unlock(&dir->d_inode->i_mutex);
2326 goto out;
2327 }
2328 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2329 error = PTR_ERR(dentry);
2330 if (IS_ERR(dentry)) {
2331 mutex_unlock(&dir->d_inode->i_mutex);
2332 goto out;
2333 }
2334 }
2335 mutex_unlock(&dir->d_inode->i_mutex);
2336
2337 done:
2338 if (d_is_negative(dentry)) {
2339 error = -ENOENT;
2340 dput(dentry);
2341 goto out;
2342 }
2343 path->dentry = dentry;
2344 path->mnt = nd->path.mnt;
2345 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW)) {
2346 nd->link = *path;
2347 return 1;
2348 }
2349 mntget(path->mnt);
2350 follow_mount(path);
2351 error = 0;
2352 out:
2353 terminate_walk(nd);
2354 return error;
2355 }
2356
2357 /**
2358 * path_mountpoint - look up a path to be umounted
2359 * @dfd: directory file descriptor to start walk from
2360 * @name: full pathname to walk
2361 * @path: pointer to container for result
2362 * @flags: lookup flags
2363 *
2364 * Look up the given name, but don't attempt to revalidate the last component.
2365 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2366 */
2367 static int
2368 path_mountpoint(int dfd, const struct filename *name, struct path *path,
2369 struct nameidata *nd, unsigned int flags)
2370 {
2371 int err = path_init(dfd, name, flags, nd);
2372 if (unlikely(err))
2373 goto out;
2374
2375 err = mountpoint_last(nd, path);
2376 while (err > 0) {
2377 err = trailing_symlink(nd);
2378 if (err)
2379 break;
2380 err = mountpoint_last(nd, path);
2381 put_link(nd);
2382 }
2383 out:
2384 path_cleanup(nd);
2385 return err;
2386 }
2387
2388 static int
2389 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2390 unsigned int flags)
2391 {
2392 struct nameidata nd;
2393 int error;
2394 if (IS_ERR(name))
2395 return PTR_ERR(name);
2396 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_RCU);
2397 if (unlikely(error == -ECHILD))
2398 error = path_mountpoint(dfd, name, path, &nd, flags);
2399 if (unlikely(error == -ESTALE))
2400 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_REVAL);
2401 if (likely(!error))
2402 audit_inode(name, path->dentry, 0);
2403 putname(name);
2404 return error;
2405 }
2406
2407 /**
2408 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2409 * @dfd: directory file descriptor
2410 * @name: pathname from userland
2411 * @flags: lookup flags
2412 * @path: pointer to container to hold result
2413 *
2414 * A umount is a special case for path walking. We're not actually interested
2415 * in the inode in this situation, and ESTALE errors can be a problem. We
2416 * simply want track down the dentry and vfsmount attached at the mountpoint
2417 * and avoid revalidating the last component.
2418 *
2419 * Returns 0 and populates "path" on success.
2420 */
2421 int
2422 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2423 struct path *path)
2424 {
2425 return filename_mountpoint(dfd, getname(name), path, flags);
2426 }
2427
2428 int
2429 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2430 unsigned int flags)
2431 {
2432 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2433 }
2434 EXPORT_SYMBOL(kern_path_mountpoint);
2435
2436 int __check_sticky(struct inode *dir, struct inode *inode)
2437 {
2438 kuid_t fsuid = current_fsuid();
2439
2440 if (uid_eq(inode->i_uid, fsuid))
2441 return 0;
2442 if (uid_eq(dir->i_uid, fsuid))
2443 return 0;
2444 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2445 }
2446 EXPORT_SYMBOL(__check_sticky);
2447
2448 /*
2449 * Check whether we can remove a link victim from directory dir, check
2450 * whether the type of victim is right.
2451 * 1. We can't do it if dir is read-only (done in permission())
2452 * 2. We should have write and exec permissions on dir
2453 * 3. We can't remove anything from append-only dir
2454 * 4. We can't do anything with immutable dir (done in permission())
2455 * 5. If the sticky bit on dir is set we should either
2456 * a. be owner of dir, or
2457 * b. be owner of victim, or
2458 * c. have CAP_FOWNER capability
2459 * 6. If the victim is append-only or immutable we can't do antyhing with
2460 * links pointing to it.
2461 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2462 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2463 * 9. We can't remove a root or mountpoint.
2464 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2465 * nfs_async_unlink().
2466 */
2467 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2468 {
2469 struct inode *inode = victim->d_inode;
2470 int error;
2471
2472 if (d_is_negative(victim))
2473 return -ENOENT;
2474 BUG_ON(!inode);
2475
2476 BUG_ON(victim->d_parent->d_inode != dir);
2477 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2478
2479 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2480 if (error)
2481 return error;
2482 if (IS_APPEND(dir))
2483 return -EPERM;
2484
2485 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2486 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2487 return -EPERM;
2488 if (isdir) {
2489 if (!d_is_dir(victim))
2490 return -ENOTDIR;
2491 if (IS_ROOT(victim))
2492 return -EBUSY;
2493 } else if (d_is_dir(victim))
2494 return -EISDIR;
2495 if (IS_DEADDIR(dir))
2496 return -ENOENT;
2497 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2498 return -EBUSY;
2499 return 0;
2500 }
2501
2502 /* Check whether we can create an object with dentry child in directory
2503 * dir.
2504 * 1. We can't do it if child already exists (open has special treatment for
2505 * this case, but since we are inlined it's OK)
2506 * 2. We can't do it if dir is read-only (done in permission())
2507 * 3. We should have write and exec permissions on dir
2508 * 4. We can't do it if dir is immutable (done in permission())
2509 */
2510 static inline int may_create(struct inode *dir, struct dentry *child)
2511 {
2512 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2513 if (child->d_inode)
2514 return -EEXIST;
2515 if (IS_DEADDIR(dir))
2516 return -ENOENT;
2517 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2518 }
2519
2520 /*
2521 * p1 and p2 should be directories on the same fs.
2522 */
2523 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2524 {
2525 struct dentry *p;
2526
2527 if (p1 == p2) {
2528 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2529 return NULL;
2530 }
2531
2532 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2533
2534 p = d_ancestor(p2, p1);
2535 if (p) {
2536 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2537 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2538 return p;
2539 }
2540
2541 p = d_ancestor(p1, p2);
2542 if (p) {
2543 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2544 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2545 return p;
2546 }
2547
2548 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2549 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2550 return NULL;
2551 }
2552 EXPORT_SYMBOL(lock_rename);
2553
2554 void unlock_rename(struct dentry *p1, struct dentry *p2)
2555 {
2556 mutex_unlock(&p1->d_inode->i_mutex);
2557 if (p1 != p2) {
2558 mutex_unlock(&p2->d_inode->i_mutex);
2559 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2560 }
2561 }
2562 EXPORT_SYMBOL(unlock_rename);
2563
2564 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2565 bool want_excl)
2566 {
2567 int error = may_create(dir, dentry);
2568 if (error)
2569 return error;
2570
2571 if (!dir->i_op->create)
2572 return -EACCES; /* shouldn't it be ENOSYS? */
2573 mode &= S_IALLUGO;
2574 mode |= S_IFREG;
2575 error = security_inode_create(dir, dentry, mode);
2576 if (error)
2577 return error;
2578 error = dir->i_op->create(dir, dentry, mode, want_excl);
2579 if (!error)
2580 fsnotify_create(dir, dentry);
2581 return error;
2582 }
2583 EXPORT_SYMBOL(vfs_create);
2584
2585 static int may_open(struct path *path, int acc_mode, int flag)
2586 {
2587 struct dentry *dentry = path->dentry;
2588 struct inode *inode = dentry->d_inode;
2589 int error;
2590
2591 /* O_PATH? */
2592 if (!acc_mode)
2593 return 0;
2594
2595 if (!inode)
2596 return -ENOENT;
2597
2598 switch (inode->i_mode & S_IFMT) {
2599 case S_IFLNK:
2600 return -ELOOP;
2601 case S_IFDIR:
2602 if (acc_mode & MAY_WRITE)
2603 return -EISDIR;
2604 break;
2605 case S_IFBLK:
2606 case S_IFCHR:
2607 if (path->mnt->mnt_flags & MNT_NODEV)
2608 return -EACCES;
2609 /*FALLTHRU*/
2610 case S_IFIFO:
2611 case S_IFSOCK:
2612 flag &= ~O_TRUNC;
2613 break;
2614 }
2615
2616 error = inode_permission(inode, acc_mode);
2617 if (error)
2618 return error;
2619
2620 /*
2621 * An append-only file must be opened in append mode for writing.
2622 */
2623 if (IS_APPEND(inode)) {
2624 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2625 return -EPERM;
2626 if (flag & O_TRUNC)
2627 return -EPERM;
2628 }
2629
2630 /* O_NOATIME can only be set by the owner or superuser */
2631 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2632 return -EPERM;
2633
2634 return 0;
2635 }
2636
2637 static int handle_truncate(struct file *filp)
2638 {
2639 struct path *path = &filp->f_path;
2640 struct inode *inode = path->dentry->d_inode;
2641 int error = get_write_access(inode);
2642 if (error)
2643 return error;
2644 /*
2645 * Refuse to truncate files with mandatory locks held on them.
2646 */
2647 error = locks_verify_locked(filp);
2648 if (!error)
2649 error = security_path_truncate(path);
2650 if (!error) {
2651 error = do_truncate(path->dentry, 0,
2652 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2653 filp);
2654 }
2655 put_write_access(inode);
2656 return error;
2657 }
2658
2659 static inline int open_to_namei_flags(int flag)
2660 {
2661 if ((flag & O_ACCMODE) == 3)
2662 flag--;
2663 return flag;
2664 }
2665
2666 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2667 {
2668 int error = security_path_mknod(dir, dentry, mode, 0);
2669 if (error)
2670 return error;
2671
2672 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2673 if (error)
2674 return error;
2675
2676 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2677 }
2678
2679 /*
2680 * Attempt to atomically look up, create and open a file from a negative
2681 * dentry.
2682 *
2683 * Returns 0 if successful. The file will have been created and attached to
2684 * @file by the filesystem calling finish_open().
2685 *
2686 * Returns 1 if the file was looked up only or didn't need creating. The
2687 * caller will need to perform the open themselves. @path will have been
2688 * updated to point to the new dentry. This may be negative.
2689 *
2690 * Returns an error code otherwise.
2691 */
2692 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2693 struct path *path, struct file *file,
2694 const struct open_flags *op,
2695 bool got_write, bool need_lookup,
2696 int *opened)
2697 {
2698 struct inode *dir = nd->path.dentry->d_inode;
2699 unsigned open_flag = open_to_namei_flags(op->open_flag);
2700 umode_t mode;
2701 int error;
2702 int acc_mode;
2703 int create_error = 0;
2704 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2705 bool excl;
2706
2707 BUG_ON(dentry->d_inode);
2708
2709 /* Don't create child dentry for a dead directory. */
2710 if (unlikely(IS_DEADDIR(dir))) {
2711 error = -ENOENT;
2712 goto out;
2713 }
2714
2715 mode = op->mode;
2716 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2717 mode &= ~current_umask();
2718
2719 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2720 if (excl)
2721 open_flag &= ~O_TRUNC;
2722
2723 /*
2724 * Checking write permission is tricky, bacuse we don't know if we are
2725 * going to actually need it: O_CREAT opens should work as long as the
2726 * file exists. But checking existence breaks atomicity. The trick is
2727 * to check access and if not granted clear O_CREAT from the flags.
2728 *
2729 * Another problem is returing the "right" error value (e.g. for an
2730 * O_EXCL open we want to return EEXIST not EROFS).
2731 */
2732 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2733 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2734 if (!(open_flag & O_CREAT)) {
2735 /*
2736 * No O_CREATE -> atomicity not a requirement -> fall
2737 * back to lookup + open
2738 */
2739 goto no_open;
2740 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2741 /* Fall back and fail with the right error */
2742 create_error = -EROFS;
2743 goto no_open;
2744 } else {
2745 /* No side effects, safe to clear O_CREAT */
2746 create_error = -EROFS;
2747 open_flag &= ~O_CREAT;
2748 }
2749 }
2750
2751 if (open_flag & O_CREAT) {
2752 error = may_o_create(&nd->path, dentry, mode);
2753 if (error) {
2754 create_error = error;
2755 if (open_flag & O_EXCL)
2756 goto no_open;
2757 open_flag &= ~O_CREAT;
2758 }
2759 }
2760
2761 if (nd->flags & LOOKUP_DIRECTORY)
2762 open_flag |= O_DIRECTORY;
2763
2764 file->f_path.dentry = DENTRY_NOT_SET;
2765 file->f_path.mnt = nd->path.mnt;
2766 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2767 opened);
2768 if (error < 0) {
2769 if (create_error && error == -ENOENT)
2770 error = create_error;
2771 goto out;
2772 }
2773
2774 if (error) { /* returned 1, that is */
2775 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2776 error = -EIO;
2777 goto out;
2778 }
2779 if (file->f_path.dentry) {
2780 dput(dentry);
2781 dentry = file->f_path.dentry;
2782 }
2783 if (*opened & FILE_CREATED)
2784 fsnotify_create(dir, dentry);
2785 if (!dentry->d_inode) {
2786 WARN_ON(*opened & FILE_CREATED);
2787 if (create_error) {
2788 error = create_error;
2789 goto out;
2790 }
2791 } else {
2792 if (excl && !(*opened & FILE_CREATED)) {
2793 error = -EEXIST;
2794 goto out;
2795 }
2796 }
2797 goto looked_up;
2798 }
2799
2800 /*
2801 * We didn't have the inode before the open, so check open permission
2802 * here.
2803 */
2804 acc_mode = op->acc_mode;
2805 if (*opened & FILE_CREATED) {
2806 WARN_ON(!(open_flag & O_CREAT));
2807 fsnotify_create(dir, dentry);
2808 acc_mode = MAY_OPEN;
2809 }
2810 error = may_open(&file->f_path, acc_mode, open_flag);
2811 if (error)
2812 fput(file);
2813
2814 out:
2815 dput(dentry);
2816 return error;
2817
2818 no_open:
2819 if (need_lookup) {
2820 dentry = lookup_real(dir, dentry, nd->flags);
2821 if (IS_ERR(dentry))
2822 return PTR_ERR(dentry);
2823
2824 if (create_error) {
2825 int open_flag = op->open_flag;
2826
2827 error = create_error;
2828 if ((open_flag & O_EXCL)) {
2829 if (!dentry->d_inode)
2830 goto out;
2831 } else if (!dentry->d_inode) {
2832 goto out;
2833 } else if ((open_flag & O_TRUNC) &&
2834 d_is_reg(dentry)) {
2835 goto out;
2836 }
2837 /* will fail later, go on to get the right error */
2838 }
2839 }
2840 looked_up:
2841 path->dentry = dentry;
2842 path->mnt = nd->path.mnt;
2843 return 1;
2844 }
2845
2846 /*
2847 * Look up and maybe create and open the last component.
2848 *
2849 * Must be called with i_mutex held on parent.
2850 *
2851 * Returns 0 if the file was successfully atomically created (if necessary) and
2852 * opened. In this case the file will be returned attached to @file.
2853 *
2854 * Returns 1 if the file was not completely opened at this time, though lookups
2855 * and creations will have been performed and the dentry returned in @path will
2856 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2857 * specified then a negative dentry may be returned.
2858 *
2859 * An error code is returned otherwise.
2860 *
2861 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2862 * cleared otherwise prior to returning.
2863 */
2864 static int lookup_open(struct nameidata *nd, struct path *path,
2865 struct file *file,
2866 const struct open_flags *op,
2867 bool got_write, int *opened)
2868 {
2869 struct dentry *dir = nd->path.dentry;
2870 struct inode *dir_inode = dir->d_inode;
2871 struct dentry *dentry;
2872 int error;
2873 bool need_lookup;
2874
2875 *opened &= ~FILE_CREATED;
2876 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2877 if (IS_ERR(dentry))
2878 return PTR_ERR(dentry);
2879
2880 /* Cached positive dentry: will open in f_op->open */
2881 if (!need_lookup && dentry->d_inode)
2882 goto out_no_open;
2883
2884 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2885 return atomic_open(nd, dentry, path, file, op, got_write,
2886 need_lookup, opened);
2887 }
2888
2889 if (need_lookup) {
2890 BUG_ON(dentry->d_inode);
2891
2892 dentry = lookup_real(dir_inode, dentry, nd->flags);
2893 if (IS_ERR(dentry))
2894 return PTR_ERR(dentry);
2895 }
2896
2897 /* Negative dentry, just create the file */
2898 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2899 umode_t mode = op->mode;
2900 if (!IS_POSIXACL(dir->d_inode))
2901 mode &= ~current_umask();
2902 /*
2903 * This write is needed to ensure that a
2904 * rw->ro transition does not occur between
2905 * the time when the file is created and when
2906 * a permanent write count is taken through
2907 * the 'struct file' in finish_open().
2908 */
2909 if (!got_write) {
2910 error = -EROFS;
2911 goto out_dput;
2912 }
2913 *opened |= FILE_CREATED;
2914 error = security_path_mknod(&nd->path, dentry, mode, 0);
2915 if (error)
2916 goto out_dput;
2917 error = vfs_create(dir->d_inode, dentry, mode,
2918 nd->flags & LOOKUP_EXCL);
2919 if (error)
2920 goto out_dput;
2921 }
2922 out_no_open:
2923 path->dentry = dentry;
2924 path->mnt = nd->path.mnt;
2925 return 1;
2926
2927 out_dput:
2928 dput(dentry);
2929 return error;
2930 }
2931
2932 /*
2933 * Handle the last step of open()
2934 */
2935 static int do_last(struct nameidata *nd,
2936 struct file *file, const struct open_flags *op,
2937 int *opened, struct filename *name)
2938 {
2939 struct dentry *dir = nd->path.dentry;
2940 int open_flag = op->open_flag;
2941 bool will_truncate = (open_flag & O_TRUNC) != 0;
2942 bool got_write = false;
2943 int acc_mode = op->acc_mode;
2944 struct inode *inode;
2945 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2946 struct path path;
2947 bool retried = false;
2948 int error;
2949
2950 nd->flags &= ~LOOKUP_PARENT;
2951 nd->flags |= op->intent;
2952
2953 if (nd->last_type != LAST_NORM) {
2954 error = handle_dots(nd, nd->last_type);
2955 if (error)
2956 return error;
2957 goto finish_open;
2958 }
2959
2960 if (!(open_flag & O_CREAT)) {
2961 if (nd->last.name[nd->last.len])
2962 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2963 /* we _can_ be in RCU mode here */
2964 error = lookup_fast(nd, &path, &inode);
2965 if (likely(!error))
2966 goto finish_lookup;
2967
2968 if (error < 0)
2969 goto out;
2970
2971 BUG_ON(nd->inode != dir->d_inode);
2972 } else {
2973 /* create side of things */
2974 /*
2975 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2976 * has been cleared when we got to the last component we are
2977 * about to look up
2978 */
2979 error = complete_walk(nd);
2980 if (error)
2981 return error;
2982
2983 audit_inode(name, dir, LOOKUP_PARENT);
2984 error = -EISDIR;
2985 /* trailing slashes? */
2986 if (nd->last.name[nd->last.len])
2987 goto out;
2988 }
2989
2990 retry_lookup:
2991 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2992 error = mnt_want_write(nd->path.mnt);
2993 if (!error)
2994 got_write = true;
2995 /*
2996 * do _not_ fail yet - we might not need that or fail with
2997 * a different error; let lookup_open() decide; we'll be
2998 * dropping this one anyway.
2999 */
3000 }
3001 mutex_lock(&dir->d_inode->i_mutex);
3002 error = lookup_open(nd, &path, file, op, got_write, opened);
3003 mutex_unlock(&dir->d_inode->i_mutex);
3004
3005 if (error <= 0) {
3006 if (error)
3007 goto out;
3008
3009 if ((*opened & FILE_CREATED) ||
3010 !S_ISREG(file_inode(file)->i_mode))
3011 will_truncate = false;
3012
3013 audit_inode(name, file->f_path.dentry, 0);
3014 goto opened;
3015 }
3016
3017 if (*opened & FILE_CREATED) {
3018 /* Don't check for write permission, don't truncate */
3019 open_flag &= ~O_TRUNC;
3020 will_truncate = false;
3021 acc_mode = MAY_OPEN;
3022 path_to_nameidata(&path, nd);
3023 goto finish_open_created;
3024 }
3025
3026 /*
3027 * create/update audit record if it already exists.
3028 */
3029 if (d_is_positive(path.dentry))
3030 audit_inode(name, path.dentry, 0);
3031
3032 /*
3033 * If atomic_open() acquired write access it is dropped now due to
3034 * possible mount and symlink following (this might be optimized away if
3035 * necessary...)
3036 */
3037 if (got_write) {
3038 mnt_drop_write(nd->path.mnt);
3039 got_write = false;
3040 }
3041
3042 error = -EEXIST;
3043 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3044 goto exit_dput;
3045
3046 error = follow_managed(&path, nd->flags);
3047 if (error < 0)
3048 goto exit_dput;
3049
3050 if (error)
3051 nd->flags |= LOOKUP_JUMPED;
3052
3053 BUG_ON(nd->flags & LOOKUP_RCU);
3054 inode = path.dentry->d_inode;
3055 error = -ENOENT;
3056 if (d_is_negative(path.dentry)) {
3057 path_to_nameidata(&path, nd);
3058 goto out;
3059 }
3060 finish_lookup:
3061 if (should_follow_link(path.dentry, nd->flags & LOOKUP_FOLLOW)) {
3062 if (nd->flags & LOOKUP_RCU) {
3063 if (unlikely(nd->path.mnt != path.mnt ||
3064 unlazy_walk(nd, path.dentry))) {
3065 error = -ECHILD;
3066 goto out;
3067 }
3068 }
3069 BUG_ON(inode != path.dentry->d_inode);
3070 nd->link = path;
3071 return 1;
3072 }
3073
3074 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3075 path_to_nameidata(&path, nd);
3076 error = -ELOOP;
3077 goto out;
3078 }
3079
3080 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3081 path_to_nameidata(&path, nd);
3082 } else {
3083 save_parent.dentry = nd->path.dentry;
3084 save_parent.mnt = mntget(path.mnt);
3085 nd->path.dentry = path.dentry;
3086
3087 }
3088 nd->inode = inode;
3089 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3090 finish_open:
3091 error = complete_walk(nd);
3092 if (error) {
3093 path_put(&save_parent);
3094 return error;
3095 }
3096 audit_inode(name, nd->path.dentry, 0);
3097 error = -EISDIR;
3098 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3099 goto out;
3100 error = -ENOTDIR;
3101 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3102 goto out;
3103 if (!d_is_reg(nd->path.dentry))
3104 will_truncate = false;
3105
3106 if (will_truncate) {
3107 error = mnt_want_write(nd->path.mnt);
3108 if (error)
3109 goto out;
3110 got_write = true;
3111 }
3112 finish_open_created:
3113 error = may_open(&nd->path, acc_mode, open_flag);
3114 if (error)
3115 goto out;
3116
3117 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3118 error = vfs_open(&nd->path, file, current_cred());
3119 if (!error) {
3120 *opened |= FILE_OPENED;
3121 } else {
3122 if (error == -EOPENSTALE)
3123 goto stale_open;
3124 goto out;
3125 }
3126 opened:
3127 error = open_check_o_direct(file);
3128 if (error)
3129 goto exit_fput;
3130 error = ima_file_check(file, op->acc_mode, *opened);
3131 if (error)
3132 goto exit_fput;
3133
3134 if (will_truncate) {
3135 error = handle_truncate(file);
3136 if (error)
3137 goto exit_fput;
3138 }
3139 out:
3140 if (got_write)
3141 mnt_drop_write(nd->path.mnt);
3142 path_put(&save_parent);
3143 terminate_walk(nd);
3144 return error;
3145
3146 exit_dput:
3147 path_put_conditional(&path, nd);
3148 goto out;
3149 exit_fput:
3150 fput(file);
3151 goto out;
3152
3153 stale_open:
3154 /* If no saved parent or already retried then can't retry */
3155 if (!save_parent.dentry || retried)
3156 goto out;
3157
3158 BUG_ON(save_parent.dentry != dir);
3159 path_put(&nd->path);
3160 nd->path = save_parent;
3161 nd->inode = dir->d_inode;
3162 save_parent.mnt = NULL;
3163 save_parent.dentry = NULL;
3164 if (got_write) {
3165 mnt_drop_write(nd->path.mnt);
3166 got_write = false;
3167 }
3168 retried = true;
3169 goto retry_lookup;
3170 }
3171
3172 static int do_tmpfile(int dfd, struct filename *pathname,
3173 struct nameidata *nd, int flags,
3174 const struct open_flags *op,
3175 struct file *file, int *opened)
3176 {
3177 static const struct qstr name = QSTR_INIT("/", 1);
3178 struct dentry *dentry, *child;
3179 struct inode *dir;
3180 int error = path_lookupat(dfd, pathname,
3181 flags | LOOKUP_DIRECTORY, nd);
3182 if (unlikely(error))
3183 return error;
3184 error = mnt_want_write(nd->path.mnt);
3185 if (unlikely(error))
3186 goto out;
3187 /* we want directory to be writable */
3188 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3189 if (error)
3190 goto out2;
3191 dentry = nd->path.dentry;
3192 dir = dentry->d_inode;
3193 if (!dir->i_op->tmpfile) {
3194 error = -EOPNOTSUPP;
3195 goto out2;
3196 }
3197 child = d_alloc(dentry, &name);
3198 if (unlikely(!child)) {
3199 error = -ENOMEM;
3200 goto out2;
3201 }
3202 nd->flags &= ~LOOKUP_DIRECTORY;
3203 nd->flags |= op->intent;
3204 dput(nd->path.dentry);
3205 nd->path.dentry = child;
3206 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3207 if (error)
3208 goto out2;
3209 audit_inode(pathname, nd->path.dentry, 0);
3210 /* Don't check for other permissions, the inode was just created */
3211 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3212 if (error)
3213 goto out2;
3214 file->f_path.mnt = nd->path.mnt;
3215 error = finish_open(file, nd->path.dentry, NULL, opened);
3216 if (error)
3217 goto out2;
3218 error = open_check_o_direct(file);
3219 if (error) {
3220 fput(file);
3221 } else if (!(op->open_flag & O_EXCL)) {
3222 struct inode *inode = file_inode(file);
3223 spin_lock(&inode->i_lock);
3224 inode->i_state |= I_LINKABLE;
3225 spin_unlock(&inode->i_lock);
3226 }
3227 out2:
3228 mnt_drop_write(nd->path.mnt);
3229 out:
3230 path_put(&nd->path);
3231 return error;
3232 }
3233
3234 static struct file *path_openat(int dfd, struct filename *pathname,
3235 struct nameidata *nd, const struct open_flags *op, int flags)
3236 {
3237 struct file *file;
3238 int opened = 0;
3239 int error;
3240
3241 file = get_empty_filp();
3242 if (IS_ERR(file))
3243 return file;
3244
3245 file->f_flags = op->open_flag;
3246
3247 if (unlikely(file->f_flags & __O_TMPFILE)) {
3248 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3249 goto out2;
3250 }
3251
3252 error = path_init(dfd, pathname, flags, nd);
3253 if (unlikely(error))
3254 goto out;
3255
3256 error = do_last(nd, file, op, &opened, pathname);
3257 while (unlikely(error > 0)) { /* trailing symlink */
3258 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3259 error = trailing_symlink(nd);
3260 if (unlikely(error))
3261 break;
3262 error = do_last(nd, file, op, &opened, pathname);
3263 put_link(nd);
3264 }
3265 out:
3266 path_cleanup(nd);
3267 out2:
3268 if (!(opened & FILE_OPENED)) {
3269 BUG_ON(!error);
3270 put_filp(file);
3271 }
3272 if (unlikely(error)) {
3273 if (error == -EOPENSTALE) {
3274 if (flags & LOOKUP_RCU)
3275 error = -ECHILD;
3276 else
3277 error = -ESTALE;
3278 }
3279 file = ERR_PTR(error);
3280 }
3281 return file;
3282 }
3283
3284 struct file *do_filp_open(int dfd, struct filename *pathname,
3285 const struct open_flags *op)
3286 {
3287 struct nameidata nd;
3288 int flags = op->lookup_flags;
3289 struct file *filp;
3290
3291 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3292 if (unlikely(filp == ERR_PTR(-ECHILD)))
3293 filp = path_openat(dfd, pathname, &nd, op, flags);
3294 if (unlikely(filp == ERR_PTR(-ESTALE)))
3295 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3296 return filp;
3297 }
3298
3299 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3300 const char *name, const struct open_flags *op)
3301 {
3302 struct nameidata nd;
3303 struct file *file;
3304 struct filename *filename;
3305 int flags = op->lookup_flags | LOOKUP_ROOT;
3306
3307 nd.root.mnt = mnt;
3308 nd.root.dentry = dentry;
3309
3310 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3311 return ERR_PTR(-ELOOP);
3312
3313 filename = getname_kernel(name);
3314 if (unlikely(IS_ERR(filename)))
3315 return ERR_CAST(filename);
3316
3317 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3318 if (unlikely(file == ERR_PTR(-ECHILD)))
3319 file = path_openat(-1, filename, &nd, op, flags);
3320 if (unlikely(file == ERR_PTR(-ESTALE)))
3321 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3322 putname(filename);
3323 return file;
3324 }
3325
3326 static struct dentry *filename_create(int dfd, struct filename *name,
3327 struct path *path, unsigned int lookup_flags)
3328 {
3329 struct dentry *dentry = ERR_PTR(-EEXIST);
3330 struct nameidata nd;
3331 int err2;
3332 int error;
3333 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3334
3335 /*
3336 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3337 * other flags passed in are ignored!
3338 */
3339 lookup_flags &= LOOKUP_REVAL;
3340
3341 error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd);
3342 if (error)
3343 return ERR_PTR(error);
3344
3345 /*
3346 * Yucky last component or no last component at all?
3347 * (foo/., foo/.., /////)
3348 */
3349 if (nd.last_type != LAST_NORM)
3350 goto out;
3351 nd.flags &= ~LOOKUP_PARENT;
3352 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3353
3354 /* don't fail immediately if it's r/o, at least try to report other errors */
3355 err2 = mnt_want_write(nd.path.mnt);
3356 /*
3357 * Do the final lookup.
3358 */
3359 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3360 dentry = __lookup_hash(&nd.last, nd.path.dentry, nd.flags);
3361 if (IS_ERR(dentry))
3362 goto unlock;
3363
3364 error = -EEXIST;
3365 if (d_is_positive(dentry))
3366 goto fail;
3367
3368 /*
3369 * Special case - lookup gave negative, but... we had foo/bar/
3370 * From the vfs_mknod() POV we just have a negative dentry -
3371 * all is fine. Let's be bastards - you had / on the end, you've
3372 * been asking for (non-existent) directory. -ENOENT for you.
3373 */
3374 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3375 error = -ENOENT;
3376 goto fail;
3377 }
3378 if (unlikely(err2)) {
3379 error = err2;
3380 goto fail;
3381 }
3382 *path = nd.path;
3383 return dentry;
3384 fail:
3385 dput(dentry);
3386 dentry = ERR_PTR(error);
3387 unlock:
3388 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3389 if (!err2)
3390 mnt_drop_write(nd.path.mnt);
3391 out:
3392 path_put(&nd.path);
3393 return dentry;
3394 }
3395
3396 struct dentry *kern_path_create(int dfd, const char *pathname,
3397 struct path *path, unsigned int lookup_flags)
3398 {
3399 struct filename *filename = getname_kernel(pathname);
3400 struct dentry *res;
3401
3402 if (IS_ERR(filename))
3403 return ERR_CAST(filename);
3404 res = filename_create(dfd, filename, path, lookup_flags);
3405 putname(filename);
3406 return res;
3407 }
3408 EXPORT_SYMBOL(kern_path_create);
3409
3410 void done_path_create(struct path *path, struct dentry *dentry)
3411 {
3412 dput(dentry);
3413 mutex_unlock(&path->dentry->d_inode->i_mutex);
3414 mnt_drop_write(path->mnt);
3415 path_put(path);
3416 }
3417 EXPORT_SYMBOL(done_path_create);
3418
3419 struct dentry *user_path_create(int dfd, const char __user *pathname,
3420 struct path *path, unsigned int lookup_flags)
3421 {
3422 struct filename *tmp = getname(pathname);
3423 struct dentry *res;
3424 if (IS_ERR(tmp))
3425 return ERR_CAST(tmp);
3426 res = filename_create(dfd, tmp, path, lookup_flags);
3427 putname(tmp);
3428 return res;
3429 }
3430 EXPORT_SYMBOL(user_path_create);
3431
3432 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3433 {
3434 int error = may_create(dir, dentry);
3435
3436 if (error)
3437 return error;
3438
3439 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3440 return -EPERM;
3441
3442 if (!dir->i_op->mknod)
3443 return -EPERM;
3444
3445 error = devcgroup_inode_mknod(mode, dev);
3446 if (error)
3447 return error;
3448
3449 error = security_inode_mknod(dir, dentry, mode, dev);
3450 if (error)
3451 return error;
3452
3453 error = dir->i_op->mknod(dir, dentry, mode, dev);
3454 if (!error)
3455 fsnotify_create(dir, dentry);
3456 return error;
3457 }
3458 EXPORT_SYMBOL(vfs_mknod);
3459
3460 static int may_mknod(umode_t mode)
3461 {
3462 switch (mode & S_IFMT) {
3463 case S_IFREG:
3464 case S_IFCHR:
3465 case S_IFBLK:
3466 case S_IFIFO:
3467 case S_IFSOCK:
3468 case 0: /* zero mode translates to S_IFREG */
3469 return 0;
3470 case S_IFDIR:
3471 return -EPERM;
3472 default:
3473 return -EINVAL;
3474 }
3475 }
3476
3477 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3478 unsigned, dev)
3479 {
3480 struct dentry *dentry;
3481 struct path path;
3482 int error;
3483 unsigned int lookup_flags = 0;
3484
3485 error = may_mknod(mode);
3486 if (error)
3487 return error;
3488 retry:
3489 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3490 if (IS_ERR(dentry))
3491 return PTR_ERR(dentry);
3492
3493 if (!IS_POSIXACL(path.dentry->d_inode))
3494 mode &= ~current_umask();
3495 error = security_path_mknod(&path, dentry, mode, dev);
3496 if (error)
3497 goto out;
3498 switch (mode & S_IFMT) {
3499 case 0: case S_IFREG:
3500 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3501 break;
3502 case S_IFCHR: case S_IFBLK:
3503 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3504 new_decode_dev(dev));
3505 break;
3506 case S_IFIFO: case S_IFSOCK:
3507 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3508 break;
3509 }
3510 out:
3511 done_path_create(&path, dentry);
3512 if (retry_estale(error, lookup_flags)) {
3513 lookup_flags |= LOOKUP_REVAL;
3514 goto retry;
3515 }
3516 return error;
3517 }
3518
3519 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3520 {
3521 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3522 }
3523
3524 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3525 {
3526 int error = may_create(dir, dentry);
3527 unsigned max_links = dir->i_sb->s_max_links;
3528
3529 if (error)
3530 return error;
3531
3532 if (!dir->i_op->mkdir)
3533 return -EPERM;
3534
3535 mode &= (S_IRWXUGO|S_ISVTX);
3536 error = security_inode_mkdir(dir, dentry, mode);
3537 if (error)
3538 return error;
3539
3540 if (max_links && dir->i_nlink >= max_links)
3541 return -EMLINK;
3542
3543 error = dir->i_op->mkdir(dir, dentry, mode);
3544 if (!error)
3545 fsnotify_mkdir(dir, dentry);
3546 return error;
3547 }
3548 EXPORT_SYMBOL(vfs_mkdir);
3549
3550 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3551 {
3552 struct dentry *dentry;
3553 struct path path;
3554 int error;
3555 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3556
3557 retry:
3558 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3559 if (IS_ERR(dentry))
3560 return PTR_ERR(dentry);
3561
3562 if (!IS_POSIXACL(path.dentry->d_inode))
3563 mode &= ~current_umask();
3564 error = security_path_mkdir(&path, dentry, mode);
3565 if (!error)
3566 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3567 done_path_create(&path, dentry);
3568 if (retry_estale(error, lookup_flags)) {
3569 lookup_flags |= LOOKUP_REVAL;
3570 goto retry;
3571 }
3572 return error;
3573 }
3574
3575 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3576 {
3577 return sys_mkdirat(AT_FDCWD, pathname, mode);
3578 }
3579
3580 /*
3581 * The dentry_unhash() helper will try to drop the dentry early: we
3582 * should have a usage count of 1 if we're the only user of this
3583 * dentry, and if that is true (possibly after pruning the dcache),
3584 * then we drop the dentry now.
3585 *
3586 * A low-level filesystem can, if it choses, legally
3587 * do a
3588 *
3589 * if (!d_unhashed(dentry))
3590 * return -EBUSY;
3591 *
3592 * if it cannot handle the case of removing a directory
3593 * that is still in use by something else..
3594 */
3595 void dentry_unhash(struct dentry *dentry)
3596 {
3597 shrink_dcache_parent(dentry);
3598 spin_lock(&dentry->d_lock);
3599 if (dentry->d_lockref.count == 1)
3600 __d_drop(dentry);
3601 spin_unlock(&dentry->d_lock);
3602 }
3603 EXPORT_SYMBOL(dentry_unhash);
3604
3605 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3606 {
3607 int error = may_delete(dir, dentry, 1);
3608
3609 if (error)
3610 return error;
3611
3612 if (!dir->i_op->rmdir)
3613 return -EPERM;
3614
3615 dget(dentry);
3616 mutex_lock(&dentry->d_inode->i_mutex);
3617
3618 error = -EBUSY;
3619 if (is_local_mountpoint(dentry))
3620 goto out;
3621
3622 error = security_inode_rmdir(dir, dentry);
3623 if (error)
3624 goto out;
3625
3626 shrink_dcache_parent(dentry);
3627 error = dir->i_op->rmdir(dir, dentry);
3628 if (error)
3629 goto out;
3630
3631 dentry->d_inode->i_flags |= S_DEAD;
3632 dont_mount(dentry);
3633 detach_mounts(dentry);
3634
3635 out:
3636 mutex_unlock(&dentry->d_inode->i_mutex);
3637 dput(dentry);
3638 if (!error)
3639 d_delete(dentry);
3640 return error;
3641 }
3642 EXPORT_SYMBOL(vfs_rmdir);
3643
3644 static long do_rmdir(int dfd, const char __user *pathname)
3645 {
3646 int error = 0;
3647 struct filename *name;
3648 struct dentry *dentry;
3649 struct path path;
3650 struct qstr last;
3651 int type;
3652 unsigned int lookup_flags = 0;
3653 retry:
3654 name = user_path_parent(dfd, pathname,
3655 &path, &last, &type, lookup_flags);
3656 if (IS_ERR(name))
3657 return PTR_ERR(name);
3658
3659 switch (type) {
3660 case LAST_DOTDOT:
3661 error = -ENOTEMPTY;
3662 goto exit1;
3663 case LAST_DOT:
3664 error = -EINVAL;
3665 goto exit1;
3666 case LAST_ROOT:
3667 error = -EBUSY;
3668 goto exit1;
3669 }
3670
3671 error = mnt_want_write(path.mnt);
3672 if (error)
3673 goto exit1;
3674
3675 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3676 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3677 error = PTR_ERR(dentry);
3678 if (IS_ERR(dentry))
3679 goto exit2;
3680 if (!dentry->d_inode) {
3681 error = -ENOENT;
3682 goto exit3;
3683 }
3684 error = security_path_rmdir(&path, dentry);
3685 if (error)
3686 goto exit3;
3687 error = vfs_rmdir(path.dentry->d_inode, dentry);
3688 exit3:
3689 dput(dentry);
3690 exit2:
3691 mutex_unlock(&path.dentry->d_inode->i_mutex);
3692 mnt_drop_write(path.mnt);
3693 exit1:
3694 path_put(&path);
3695 putname(name);
3696 if (retry_estale(error, lookup_flags)) {
3697 lookup_flags |= LOOKUP_REVAL;
3698 goto retry;
3699 }
3700 return error;
3701 }
3702
3703 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3704 {
3705 return do_rmdir(AT_FDCWD, pathname);
3706 }
3707
3708 /**
3709 * vfs_unlink - unlink a filesystem object
3710 * @dir: parent directory
3711 * @dentry: victim
3712 * @delegated_inode: returns victim inode, if the inode is delegated.
3713 *
3714 * The caller must hold dir->i_mutex.
3715 *
3716 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3717 * return a reference to the inode in delegated_inode. The caller
3718 * should then break the delegation on that inode and retry. Because
3719 * breaking a delegation may take a long time, the caller should drop
3720 * dir->i_mutex before doing so.
3721 *
3722 * Alternatively, a caller may pass NULL for delegated_inode. This may
3723 * be appropriate for callers that expect the underlying filesystem not
3724 * to be NFS exported.
3725 */
3726 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3727 {
3728 struct inode *target = dentry->d_inode;
3729 int error = may_delete(dir, dentry, 0);
3730
3731 if (error)
3732 return error;
3733
3734 if (!dir->i_op->unlink)
3735 return -EPERM;
3736
3737 mutex_lock(&target->i_mutex);
3738 if (is_local_mountpoint(dentry))
3739 error = -EBUSY;
3740 else {
3741 error = security_inode_unlink(dir, dentry);
3742 if (!error) {
3743 error = try_break_deleg(target, delegated_inode);
3744 if (error)
3745 goto out;
3746 error = dir->i_op->unlink(dir, dentry);
3747 if (!error) {
3748 dont_mount(dentry);
3749 detach_mounts(dentry);
3750 }
3751 }
3752 }
3753 out:
3754 mutex_unlock(&target->i_mutex);
3755
3756 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3757 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3758 fsnotify_link_count(target);
3759 d_delete(dentry);
3760 }
3761
3762 return error;
3763 }
3764 EXPORT_SYMBOL(vfs_unlink);
3765
3766 /*
3767 * Make sure that the actual truncation of the file will occur outside its
3768 * directory's i_mutex. Truncate can take a long time if there is a lot of
3769 * writeout happening, and we don't want to prevent access to the directory
3770 * while waiting on the I/O.
3771 */
3772 static long do_unlinkat(int dfd, const char __user *pathname)
3773 {
3774 int error;
3775 struct filename *name;
3776 struct dentry *dentry;
3777 struct path path;
3778 struct qstr last;
3779 int type;
3780 struct inode *inode = NULL;
3781 struct inode *delegated_inode = NULL;
3782 unsigned int lookup_flags = 0;
3783 retry:
3784 name = user_path_parent(dfd, pathname,
3785 &path, &last, &type, lookup_flags);
3786 if (IS_ERR(name))
3787 return PTR_ERR(name);
3788
3789 error = -EISDIR;
3790 if (type != LAST_NORM)
3791 goto exit1;
3792
3793 error = mnt_want_write(path.mnt);
3794 if (error)
3795 goto exit1;
3796 retry_deleg:
3797 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3798 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3799 error = PTR_ERR(dentry);
3800 if (!IS_ERR(dentry)) {
3801 /* Why not before? Because we want correct error value */
3802 if (last.name[last.len])
3803 goto slashes;
3804 inode = dentry->d_inode;
3805 if (d_is_negative(dentry))
3806 goto slashes;
3807 ihold(inode);
3808 error = security_path_unlink(&path, dentry);
3809 if (error)
3810 goto exit2;
3811 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3812 exit2:
3813 dput(dentry);
3814 }
3815 mutex_unlock(&path.dentry->d_inode->i_mutex);
3816 if (inode)
3817 iput(inode); /* truncate the inode here */
3818 inode = NULL;
3819 if (delegated_inode) {
3820 error = break_deleg_wait(&delegated_inode);
3821 if (!error)
3822 goto retry_deleg;
3823 }
3824 mnt_drop_write(path.mnt);
3825 exit1:
3826 path_put(&path);
3827 putname(name);
3828 if (retry_estale(error, lookup_flags)) {
3829 lookup_flags |= LOOKUP_REVAL;
3830 inode = NULL;
3831 goto retry;
3832 }
3833 return error;
3834
3835 slashes:
3836 if (d_is_negative(dentry))
3837 error = -ENOENT;
3838 else if (d_is_dir(dentry))
3839 error = -EISDIR;
3840 else
3841 error = -ENOTDIR;
3842 goto exit2;
3843 }
3844
3845 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3846 {
3847 if ((flag & ~AT_REMOVEDIR) != 0)
3848 return -EINVAL;
3849
3850 if (flag & AT_REMOVEDIR)
3851 return do_rmdir(dfd, pathname);
3852
3853 return do_unlinkat(dfd, pathname);
3854 }
3855
3856 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3857 {
3858 return do_unlinkat(AT_FDCWD, pathname);
3859 }
3860
3861 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3862 {
3863 int error = may_create(dir, dentry);
3864
3865 if (error)
3866 return error;
3867
3868 if (!dir->i_op->symlink)
3869 return -EPERM;
3870
3871 error = security_inode_symlink(dir, dentry, oldname);
3872 if (error)
3873 return error;
3874
3875 error = dir->i_op->symlink(dir, dentry, oldname);
3876 if (!error)
3877 fsnotify_create(dir, dentry);
3878 return error;
3879 }
3880 EXPORT_SYMBOL(vfs_symlink);
3881
3882 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3883 int, newdfd, const char __user *, newname)
3884 {
3885 int error;
3886 struct filename *from;
3887 struct dentry *dentry;
3888 struct path path;
3889 unsigned int lookup_flags = 0;
3890
3891 from = getname(oldname);
3892 if (IS_ERR(from))
3893 return PTR_ERR(from);
3894 retry:
3895 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3896 error = PTR_ERR(dentry);
3897 if (IS_ERR(dentry))
3898 goto out_putname;
3899
3900 error = security_path_symlink(&path, dentry, from->name);
3901 if (!error)
3902 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3903 done_path_create(&path, dentry);
3904 if (retry_estale(error, lookup_flags)) {
3905 lookup_flags |= LOOKUP_REVAL;
3906 goto retry;
3907 }
3908 out_putname:
3909 putname(from);
3910 return error;
3911 }
3912
3913 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3914 {
3915 return sys_symlinkat(oldname, AT_FDCWD, newname);
3916 }
3917
3918 /**
3919 * vfs_link - create a new link
3920 * @old_dentry: object to be linked
3921 * @dir: new parent
3922 * @new_dentry: where to create the new link
3923 * @delegated_inode: returns inode needing a delegation break
3924 *
3925 * The caller must hold dir->i_mutex
3926 *
3927 * If vfs_link discovers a delegation on the to-be-linked file in need
3928 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3929 * inode in delegated_inode. The caller should then break the delegation
3930 * and retry. Because breaking a delegation may take a long time, the
3931 * caller should drop the i_mutex before doing so.
3932 *
3933 * Alternatively, a caller may pass NULL for delegated_inode. This may
3934 * be appropriate for callers that expect the underlying filesystem not
3935 * to be NFS exported.
3936 */
3937 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3938 {
3939 struct inode *inode = old_dentry->d_inode;
3940 unsigned max_links = dir->i_sb->s_max_links;
3941 int error;
3942
3943 if (!inode)
3944 return -ENOENT;
3945
3946 error = may_create(dir, new_dentry);
3947 if (error)
3948 return error;
3949
3950 if (dir->i_sb != inode->i_sb)
3951 return -EXDEV;
3952
3953 /*
3954 * A link to an append-only or immutable file cannot be created.
3955 */
3956 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3957 return -EPERM;
3958 if (!dir->i_op->link)
3959 return -EPERM;
3960 if (S_ISDIR(inode->i_mode))
3961 return -EPERM;
3962
3963 error = security_inode_link(old_dentry, dir, new_dentry);
3964 if (error)
3965 return error;
3966
3967 mutex_lock(&inode->i_mutex);
3968 /* Make sure we don't allow creating hardlink to an unlinked file */
3969 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3970 error = -ENOENT;
3971 else if (max_links && inode->i_nlink >= max_links)
3972 error = -EMLINK;
3973 else {
3974 error = try_break_deleg(inode, delegated_inode);
3975 if (!error)
3976 error = dir->i_op->link(old_dentry, dir, new_dentry);
3977 }
3978
3979 if (!error && (inode->i_state & I_LINKABLE)) {
3980 spin_lock(&inode->i_lock);
3981 inode->i_state &= ~I_LINKABLE;
3982 spin_unlock(&inode->i_lock);
3983 }
3984 mutex_unlock(&inode->i_mutex);
3985 if (!error)
3986 fsnotify_link(dir, inode, new_dentry);
3987 return error;
3988 }
3989 EXPORT_SYMBOL(vfs_link);
3990
3991 /*
3992 * Hardlinks are often used in delicate situations. We avoid
3993 * security-related surprises by not following symlinks on the
3994 * newname. --KAB
3995 *
3996 * We don't follow them on the oldname either to be compatible
3997 * with linux 2.0, and to avoid hard-linking to directories
3998 * and other special files. --ADM
3999 */
4000 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4001 int, newdfd, const char __user *, newname, int, flags)
4002 {
4003 struct dentry *new_dentry;
4004 struct path old_path, new_path;
4005 struct inode *delegated_inode = NULL;
4006 int how = 0;
4007 int error;
4008
4009 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4010 return -EINVAL;
4011 /*
4012 * To use null names we require CAP_DAC_READ_SEARCH
4013 * This ensures that not everyone will be able to create
4014 * handlink using the passed filedescriptor.
4015 */
4016 if (flags & AT_EMPTY_PATH) {
4017 if (!capable(CAP_DAC_READ_SEARCH))
4018 return -ENOENT;
4019 how = LOOKUP_EMPTY;
4020 }
4021
4022 if (flags & AT_SYMLINK_FOLLOW)
4023 how |= LOOKUP_FOLLOW;
4024 retry:
4025 error = user_path_at(olddfd, oldname, how, &old_path);
4026 if (error)
4027 return error;
4028
4029 new_dentry = user_path_create(newdfd, newname, &new_path,
4030 (how & LOOKUP_REVAL));
4031 error = PTR_ERR(new_dentry);
4032 if (IS_ERR(new_dentry))
4033 goto out;
4034
4035 error = -EXDEV;
4036 if (old_path.mnt != new_path.mnt)
4037 goto out_dput;
4038 error = may_linkat(&old_path);
4039 if (unlikely(error))
4040 goto out_dput;
4041 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4042 if (error)
4043 goto out_dput;
4044 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4045 out_dput:
4046 done_path_create(&new_path, new_dentry);
4047 if (delegated_inode) {
4048 error = break_deleg_wait(&delegated_inode);
4049 if (!error) {
4050 path_put(&old_path);
4051 goto retry;
4052 }
4053 }
4054 if (retry_estale(error, how)) {
4055 path_put(&old_path);
4056 how |= LOOKUP_REVAL;
4057 goto retry;
4058 }
4059 out:
4060 path_put(&old_path);
4061
4062 return error;
4063 }
4064
4065 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4066 {
4067 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4068 }
4069
4070 /**
4071 * vfs_rename - rename a filesystem object
4072 * @old_dir: parent of source
4073 * @old_dentry: source
4074 * @new_dir: parent of destination
4075 * @new_dentry: destination
4076 * @delegated_inode: returns an inode needing a delegation break
4077 * @flags: rename flags
4078 *
4079 * The caller must hold multiple mutexes--see lock_rename()).
4080 *
4081 * If vfs_rename discovers a delegation in need of breaking at either
4082 * the source or destination, it will return -EWOULDBLOCK and return a
4083 * reference to the inode in delegated_inode. The caller should then
4084 * break the delegation and retry. Because breaking a delegation may
4085 * take a long time, the caller should drop all locks before doing
4086 * so.
4087 *
4088 * Alternatively, a caller may pass NULL for delegated_inode. This may
4089 * be appropriate for callers that expect the underlying filesystem not
4090 * to be NFS exported.
4091 *
4092 * The worst of all namespace operations - renaming directory. "Perverted"
4093 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4094 * Problems:
4095 * a) we can get into loop creation.
4096 * b) race potential - two innocent renames can create a loop together.
4097 * That's where 4.4 screws up. Current fix: serialization on
4098 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4099 * story.
4100 * c) we have to lock _four_ objects - parents and victim (if it exists),
4101 * and source (if it is not a directory).
4102 * And that - after we got ->i_mutex on parents (until then we don't know
4103 * whether the target exists). Solution: try to be smart with locking
4104 * order for inodes. We rely on the fact that tree topology may change
4105 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4106 * move will be locked. Thus we can rank directories by the tree
4107 * (ancestors first) and rank all non-directories after them.
4108 * That works since everybody except rename does "lock parent, lookup,
4109 * lock child" and rename is under ->s_vfs_rename_mutex.
4110 * HOWEVER, it relies on the assumption that any object with ->lookup()
4111 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4112 * we'd better make sure that there's no link(2) for them.
4113 * d) conversion from fhandle to dentry may come in the wrong moment - when
4114 * we are removing the target. Solution: we will have to grab ->i_mutex
4115 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4116 * ->i_mutex on parents, which works but leads to some truly excessive
4117 * locking].
4118 */
4119 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4120 struct inode *new_dir, struct dentry *new_dentry,
4121 struct inode **delegated_inode, unsigned int flags)
4122 {
4123 int error;
4124 bool is_dir = d_is_dir(old_dentry);
4125 const unsigned char *old_name;
4126 struct inode *source = old_dentry->d_inode;
4127 struct inode *target = new_dentry->d_inode;
4128 bool new_is_dir = false;
4129 unsigned max_links = new_dir->i_sb->s_max_links;
4130
4131 if (source == target)
4132 return 0;
4133
4134 error = may_delete(old_dir, old_dentry, is_dir);
4135 if (error)
4136 return error;
4137
4138 if (!target) {
4139 error = may_create(new_dir, new_dentry);
4140 } else {
4141 new_is_dir = d_is_dir(new_dentry);
4142
4143 if (!(flags & RENAME_EXCHANGE))
4144 error = may_delete(new_dir, new_dentry, is_dir);
4145 else
4146 error = may_delete(new_dir, new_dentry, new_is_dir);
4147 }
4148 if (error)
4149 return error;
4150
4151 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4152 return -EPERM;
4153
4154 if (flags && !old_dir->i_op->rename2)
4155 return -EINVAL;
4156
4157 /*
4158 * If we are going to change the parent - check write permissions,
4159 * we'll need to flip '..'.
4160 */
4161 if (new_dir != old_dir) {
4162 if (is_dir) {
4163 error = inode_permission(source, MAY_WRITE);
4164 if (error)
4165 return error;
4166 }
4167 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4168 error = inode_permission(target, MAY_WRITE);
4169 if (error)
4170 return error;
4171 }
4172 }
4173
4174 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4175 flags);
4176 if (error)
4177 return error;
4178
4179 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4180 dget(new_dentry);
4181 if (!is_dir || (flags & RENAME_EXCHANGE))
4182 lock_two_nondirectories(source, target);
4183 else if (target)
4184 mutex_lock(&target->i_mutex);
4185
4186 error = -EBUSY;
4187 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4188 goto out;
4189
4190 if (max_links && new_dir != old_dir) {
4191 error = -EMLINK;
4192 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4193 goto out;
4194 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4195 old_dir->i_nlink >= max_links)
4196 goto out;
4197 }
4198 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4199 shrink_dcache_parent(new_dentry);
4200 if (!is_dir) {
4201 error = try_break_deleg(source, delegated_inode);
4202 if (error)
4203 goto out;
4204 }
4205 if (target && !new_is_dir) {
4206 error = try_break_deleg(target, delegated_inode);
4207 if (error)
4208 goto out;
4209 }
4210 if (!old_dir->i_op->rename2) {
4211 error = old_dir->i_op->rename(old_dir, old_dentry,
4212 new_dir, new_dentry);
4213 } else {
4214 WARN_ON(old_dir->i_op->rename != NULL);
4215 error = old_dir->i_op->rename2(old_dir, old_dentry,
4216 new_dir, new_dentry, flags);
4217 }
4218 if (error)
4219 goto out;
4220
4221 if (!(flags & RENAME_EXCHANGE) && target) {
4222 if (is_dir)
4223 target->i_flags |= S_DEAD;
4224 dont_mount(new_dentry);
4225 detach_mounts(new_dentry);
4226 }
4227 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4228 if (!(flags & RENAME_EXCHANGE))
4229 d_move(old_dentry, new_dentry);
4230 else
4231 d_exchange(old_dentry, new_dentry);
4232 }
4233 out:
4234 if (!is_dir || (flags & RENAME_EXCHANGE))
4235 unlock_two_nondirectories(source, target);
4236 else if (target)
4237 mutex_unlock(&target->i_mutex);
4238 dput(new_dentry);
4239 if (!error) {
4240 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4241 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4242 if (flags & RENAME_EXCHANGE) {
4243 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4244 new_is_dir, NULL, new_dentry);
4245 }
4246 }
4247 fsnotify_oldname_free(old_name);
4248
4249 return error;
4250 }
4251 EXPORT_SYMBOL(vfs_rename);
4252
4253 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4254 int, newdfd, const char __user *, newname, unsigned int, flags)
4255 {
4256 struct dentry *old_dentry, *new_dentry;
4257 struct dentry *trap;
4258 struct path old_path, new_path;
4259 struct qstr old_last, new_last;
4260 int old_type, new_type;
4261 struct inode *delegated_inode = NULL;
4262 struct filename *from;
4263 struct filename *to;
4264 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4265 bool should_retry = false;
4266 int error;
4267
4268 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4269 return -EINVAL;
4270
4271 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4272 (flags & RENAME_EXCHANGE))
4273 return -EINVAL;
4274
4275 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4276 return -EPERM;
4277
4278 if (flags & RENAME_EXCHANGE)
4279 target_flags = 0;
4280
4281 retry:
4282 from = user_path_parent(olddfd, oldname,
4283 &old_path, &old_last, &old_type, lookup_flags);
4284 if (IS_ERR(from)) {
4285 error = PTR_ERR(from);
4286 goto exit;
4287 }
4288
4289 to = user_path_parent(newdfd, newname,
4290 &new_path, &new_last, &new_type, lookup_flags);
4291 if (IS_ERR(to)) {
4292 error = PTR_ERR(to);
4293 goto exit1;
4294 }
4295
4296 error = -EXDEV;
4297 if (old_path.mnt != new_path.mnt)
4298 goto exit2;
4299
4300 error = -EBUSY;
4301 if (old_type != LAST_NORM)
4302 goto exit2;
4303
4304 if (flags & RENAME_NOREPLACE)
4305 error = -EEXIST;
4306 if (new_type != LAST_NORM)
4307 goto exit2;
4308
4309 error = mnt_want_write(old_path.mnt);
4310 if (error)
4311 goto exit2;
4312
4313 retry_deleg:
4314 trap = lock_rename(new_path.dentry, old_path.dentry);
4315
4316 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4317 error = PTR_ERR(old_dentry);
4318 if (IS_ERR(old_dentry))
4319 goto exit3;
4320 /* source must exist */
4321 error = -ENOENT;
4322 if (d_is_negative(old_dentry))
4323 goto exit4;
4324 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4325 error = PTR_ERR(new_dentry);
4326 if (IS_ERR(new_dentry))
4327 goto exit4;
4328 error = -EEXIST;
4329 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4330 goto exit5;
4331 if (flags & RENAME_EXCHANGE) {
4332 error = -ENOENT;
4333 if (d_is_negative(new_dentry))
4334 goto exit5;
4335
4336 if (!d_is_dir(new_dentry)) {
4337 error = -ENOTDIR;
4338 if (new_last.name[new_last.len])
4339 goto exit5;
4340 }
4341 }
4342 /* unless the source is a directory trailing slashes give -ENOTDIR */
4343 if (!d_is_dir(old_dentry)) {
4344 error = -ENOTDIR;
4345 if (old_last.name[old_last.len])
4346 goto exit5;
4347 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4348 goto exit5;
4349 }
4350 /* source should not be ancestor of target */
4351 error = -EINVAL;
4352 if (old_dentry == trap)
4353 goto exit5;
4354 /* target should not be an ancestor of source */
4355 if (!(flags & RENAME_EXCHANGE))
4356 error = -ENOTEMPTY;
4357 if (new_dentry == trap)
4358 goto exit5;
4359
4360 error = security_path_rename(&old_path, old_dentry,
4361 &new_path, new_dentry, flags);
4362 if (error)
4363 goto exit5;
4364 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4365 new_path.dentry->d_inode, new_dentry,
4366 &delegated_inode, flags);
4367 exit5:
4368 dput(new_dentry);
4369 exit4:
4370 dput(old_dentry);
4371 exit3:
4372 unlock_rename(new_path.dentry, old_path.dentry);
4373 if (delegated_inode) {
4374 error = break_deleg_wait(&delegated_inode);
4375 if (!error)
4376 goto retry_deleg;
4377 }
4378 mnt_drop_write(old_path.mnt);
4379 exit2:
4380 if (retry_estale(error, lookup_flags))
4381 should_retry = true;
4382 path_put(&new_path);
4383 putname(to);
4384 exit1:
4385 path_put(&old_path);
4386 putname(from);
4387 if (should_retry) {
4388 should_retry = false;
4389 lookup_flags |= LOOKUP_REVAL;
4390 goto retry;
4391 }
4392 exit:
4393 return error;
4394 }
4395
4396 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4397 int, newdfd, const char __user *, newname)
4398 {
4399 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4400 }
4401
4402 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4403 {
4404 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4405 }
4406
4407 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4408 {
4409 int error = may_create(dir, dentry);
4410 if (error)
4411 return error;
4412
4413 if (!dir->i_op->mknod)
4414 return -EPERM;
4415
4416 return dir->i_op->mknod(dir, dentry,
4417 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4418 }
4419 EXPORT_SYMBOL(vfs_whiteout);
4420
4421 int readlink_copy(char __user *buffer, int buflen, const char *link)
4422 {
4423 int len = PTR_ERR(link);
4424 if (IS_ERR(link))
4425 goto out;
4426
4427 len = strlen(link);
4428 if (len > (unsigned) buflen)
4429 len = buflen;
4430 if (copy_to_user(buffer, link, len))
4431 len = -EFAULT;
4432 out:
4433 return len;
4434 }
4435 EXPORT_SYMBOL(readlink_copy);
4436
4437 /*
4438 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4439 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4440 * using) it for any given inode is up to filesystem.
4441 */
4442 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4443 {
4444 void *cookie;
4445 const char *link = dentry->d_inode->i_link;
4446 int res;
4447
4448 if (!link) {
4449 link = dentry->d_inode->i_op->follow_link(dentry, &cookie, NULL);
4450 if (IS_ERR(link))
4451 return PTR_ERR(link);
4452 }
4453 res = readlink_copy(buffer, buflen, link);
4454 if (cookie && dentry->d_inode->i_op->put_link)
4455 dentry->d_inode->i_op->put_link(dentry, cookie);
4456 return res;
4457 }
4458 EXPORT_SYMBOL(generic_readlink);
4459
4460 /* get the link contents into pagecache */
4461 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4462 {
4463 char *kaddr;
4464 struct page *page;
4465 struct address_space *mapping = dentry->d_inode->i_mapping;
4466 page = read_mapping_page(mapping, 0, NULL);
4467 if (IS_ERR(page))
4468 return (char*)page;
4469 *ppage = page;
4470 kaddr = kmap(page);
4471 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4472 return kaddr;
4473 }
4474
4475 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4476 {
4477 struct page *page = NULL;
4478 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4479 if (page) {
4480 kunmap(page);
4481 page_cache_release(page);
4482 }
4483 return res;
4484 }
4485 EXPORT_SYMBOL(page_readlink);
4486
4487 const char *page_follow_link_light(struct dentry *dentry, void **cookie, struct nameidata *nd)
4488 {
4489 struct page *page = NULL;
4490 char *res = page_getlink(dentry, &page);
4491 if (!IS_ERR(res))
4492 *cookie = page;
4493 return res;
4494 }
4495 EXPORT_SYMBOL(page_follow_link_light);
4496
4497 void page_put_link(struct dentry *dentry, void *cookie)
4498 {
4499 struct page *page = cookie;
4500 kunmap(page);
4501 page_cache_release(page);
4502 }
4503 EXPORT_SYMBOL(page_put_link);
4504
4505 /*
4506 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4507 */
4508 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4509 {
4510 struct address_space *mapping = inode->i_mapping;
4511 struct page *page;
4512 void *fsdata;
4513 int err;
4514 char *kaddr;
4515 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4516 if (nofs)
4517 flags |= AOP_FLAG_NOFS;
4518
4519 retry:
4520 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4521 flags, &page, &fsdata);
4522 if (err)
4523 goto fail;
4524
4525 kaddr = kmap_atomic(page);
4526 memcpy(kaddr, symname, len-1);
4527 kunmap_atomic(kaddr);
4528
4529 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4530 page, fsdata);
4531 if (err < 0)
4532 goto fail;
4533 if (err < len-1)
4534 goto retry;
4535
4536 mark_inode_dirty(inode);
4537 return 0;
4538 fail:
4539 return err;
4540 }
4541 EXPORT_SYMBOL(__page_symlink);
4542
4543 int page_symlink(struct inode *inode, const char *symname, int len)
4544 {
4545 return __page_symlink(inode, symname, len,
4546 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4547 }
4548 EXPORT_SYMBOL(page_symlink);
4549
4550 const struct inode_operations page_symlink_inode_operations = {
4551 .readlink = generic_readlink,
4552 .follow_link = page_follow_link_light,
4553 .put_link = page_put_link,
4554 };
4555 EXPORT_SYMBOL(page_symlink_inode_operations);