]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namei.c
take RCU-dependent stuff around exec_permission() into a new helper
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36
37 #include "internal.h"
38
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
44 *
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
51 *
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
55 *
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
58 *
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
65 */
66
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
74 *
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
82 */
83
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
86 *
87 * [10-Sep-98 Alan Modra] Another symlink change.
88 */
89
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
97 *
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
103 */
104 /*
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
108 */
109
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
113 *
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
116 */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 int retval;
120 unsigned long len = PATH_MAX;
121
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
127 }
128
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
137 }
138
139 char * getname(const char __user * filename)
140 {
141 char *tmp, *result;
142
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
147
148 result = tmp;
149 if (retval < 0) {
150 __putname(tmp);
151 result = ERR_PTR(retval);
152 }
153 }
154 audit_getname(result);
155 return result;
156 }
157
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168
169 /*
170 * This does basic POSIX ACL permission checking
171 */
172 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
173 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
174 {
175 umode_t mode = inode->i_mode;
176
177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
178
179 if (current_fsuid() == inode->i_uid)
180 mode >>= 6;
181 else {
182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 int error = check_acl(inode, mask, flags);
184 if (error != -EAGAIN)
185 return error;
186 }
187
188 if (in_group_p(inode->i_gid))
189 mode >>= 3;
190 }
191
192 /*
193 * If the DACs are ok we don't need any capability check.
194 */
195 if ((mask & ~mode) == 0)
196 return 0;
197 return -EACCES;
198 }
199
200 /**
201 * generic_permission - check for access rights on a Posix-like filesystem
202 * @inode: inode to check access rights for
203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204 * @check_acl: optional callback to check for Posix ACLs
205 * @flags: IPERM_FLAG_ flags.
206 *
207 * Used to check for read/write/execute permissions on a file.
208 * We use "fsuid" for this, letting us set arbitrary permissions
209 * for filesystem access without changing the "normal" uids which
210 * are used for other things.
211 *
212 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
213 * request cannot be satisfied (eg. requires blocking or too much complexity).
214 * It would then be called again in ref-walk mode.
215 */
216 int generic_permission(struct inode *inode, int mask, unsigned int flags,
217 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
218 {
219 int ret;
220
221 /*
222 * Do the basic POSIX ACL permission checks.
223 */
224 ret = acl_permission_check(inode, mask, flags, check_acl);
225 if (ret != -EACCES)
226 return ret;
227
228 /*
229 * Read/write DACs are always overridable.
230 * Executable DACs are overridable if at least one exec bit is set.
231 */
232 if (!(mask & MAY_EXEC) || execute_ok(inode))
233 if (capable(CAP_DAC_OVERRIDE))
234 return 0;
235
236 /*
237 * Searching includes executable on directories, else just read.
238 */
239 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
240 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
241 if (capable(CAP_DAC_READ_SEARCH))
242 return 0;
243
244 return -EACCES;
245 }
246
247 /**
248 * inode_permission - check for access rights to a given inode
249 * @inode: inode to check permission on
250 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
251 *
252 * Used to check for read/write/execute permissions on an inode.
253 * We use "fsuid" for this, letting us set arbitrary permissions
254 * for filesystem access without changing the "normal" uids which
255 * are used for other things.
256 */
257 int inode_permission(struct inode *inode, int mask)
258 {
259 int retval;
260
261 if (mask & MAY_WRITE) {
262 umode_t mode = inode->i_mode;
263
264 /*
265 * Nobody gets write access to a read-only fs.
266 */
267 if (IS_RDONLY(inode) &&
268 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
269 return -EROFS;
270
271 /*
272 * Nobody gets write access to an immutable file.
273 */
274 if (IS_IMMUTABLE(inode))
275 return -EACCES;
276 }
277
278 if (inode->i_op->permission)
279 retval = inode->i_op->permission(inode, mask, 0);
280 else
281 retval = generic_permission(inode, mask, 0,
282 inode->i_op->check_acl);
283
284 if (retval)
285 return retval;
286
287 retval = devcgroup_inode_permission(inode, mask);
288 if (retval)
289 return retval;
290
291 return security_inode_permission(inode, mask);
292 }
293
294 /**
295 * file_permission - check for additional access rights to a given file
296 * @file: file to check access rights for
297 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
298 *
299 * Used to check for read/write/execute permissions on an already opened
300 * file.
301 *
302 * Note:
303 * Do not use this function in new code. All access checks should
304 * be done using inode_permission().
305 */
306 int file_permission(struct file *file, int mask)
307 {
308 return inode_permission(file->f_path.dentry->d_inode, mask);
309 }
310
311 /*
312 * get_write_access() gets write permission for a file.
313 * put_write_access() releases this write permission.
314 * This is used for regular files.
315 * We cannot support write (and maybe mmap read-write shared) accesses and
316 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
317 * can have the following values:
318 * 0: no writers, no VM_DENYWRITE mappings
319 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
320 * > 0: (i_writecount) users are writing to the file.
321 *
322 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
323 * except for the cases where we don't hold i_writecount yet. Then we need to
324 * use {get,deny}_write_access() - these functions check the sign and refuse
325 * to do the change if sign is wrong. Exclusion between them is provided by
326 * the inode->i_lock spinlock.
327 */
328
329 int get_write_access(struct inode * inode)
330 {
331 spin_lock(&inode->i_lock);
332 if (atomic_read(&inode->i_writecount) < 0) {
333 spin_unlock(&inode->i_lock);
334 return -ETXTBSY;
335 }
336 atomic_inc(&inode->i_writecount);
337 spin_unlock(&inode->i_lock);
338
339 return 0;
340 }
341
342 int deny_write_access(struct file * file)
343 {
344 struct inode *inode = file->f_path.dentry->d_inode;
345
346 spin_lock(&inode->i_lock);
347 if (atomic_read(&inode->i_writecount) > 0) {
348 spin_unlock(&inode->i_lock);
349 return -ETXTBSY;
350 }
351 atomic_dec(&inode->i_writecount);
352 spin_unlock(&inode->i_lock);
353
354 return 0;
355 }
356
357 /**
358 * path_get - get a reference to a path
359 * @path: path to get the reference to
360 *
361 * Given a path increment the reference count to the dentry and the vfsmount.
362 */
363 void path_get(struct path *path)
364 {
365 mntget(path->mnt);
366 dget(path->dentry);
367 }
368 EXPORT_SYMBOL(path_get);
369
370 /**
371 * path_put - put a reference to a path
372 * @path: path to put the reference to
373 *
374 * Given a path decrement the reference count to the dentry and the vfsmount.
375 */
376 void path_put(struct path *path)
377 {
378 dput(path->dentry);
379 mntput(path->mnt);
380 }
381 EXPORT_SYMBOL(path_put);
382
383 /**
384 * nameidata_drop_rcu - drop this nameidata out of rcu-walk
385 * @nd: nameidata pathwalk data to drop
386 * Returns: 0 on success, -ECHILD on failure
387 *
388 * Path walking has 2 modes, rcu-walk and ref-walk (see
389 * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt
390 * to drop out of rcu-walk mode and take normal reference counts on dentries
391 * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take
392 * refcounts at the last known good point before rcu-walk got stuck, so
393 * ref-walk may continue from there. If this is not successful (eg. a seqcount
394 * has changed), then failure is returned and path walk restarts from the
395 * beginning in ref-walk mode.
396 *
397 * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into
398 * ref-walk. Must be called from rcu-walk context.
399 */
400 static int nameidata_drop_rcu(struct nameidata *nd)
401 {
402 struct fs_struct *fs = current->fs;
403 struct dentry *dentry = nd->path.dentry;
404
405 BUG_ON(!(nd->flags & LOOKUP_RCU));
406 if (nd->root.mnt) {
407 spin_lock(&fs->lock);
408 if (nd->root.mnt != fs->root.mnt ||
409 nd->root.dentry != fs->root.dentry)
410 goto err_root;
411 }
412 spin_lock(&dentry->d_lock);
413 if (!__d_rcu_to_refcount(dentry, nd->seq))
414 goto err;
415 BUG_ON(nd->inode != dentry->d_inode);
416 spin_unlock(&dentry->d_lock);
417 if (nd->root.mnt) {
418 path_get(&nd->root);
419 spin_unlock(&fs->lock);
420 }
421 mntget(nd->path.mnt);
422
423 rcu_read_unlock();
424 br_read_unlock(vfsmount_lock);
425 nd->flags &= ~LOOKUP_RCU;
426 return 0;
427 err:
428 spin_unlock(&dentry->d_lock);
429 err_root:
430 if (nd->root.mnt)
431 spin_unlock(&fs->lock);
432 return -ECHILD;
433 }
434
435 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
436 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd)
437 {
438 if (nd->flags & LOOKUP_RCU)
439 return nameidata_drop_rcu(nd);
440 return 0;
441 }
442
443 /**
444 * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk
445 * @nd: nameidata pathwalk data to drop
446 * @dentry: dentry to drop
447 * Returns: 0 on success, -ECHILD on failure
448 *
449 * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root,
450 * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on
451 * @nd. Must be called from rcu-walk context.
452 */
453 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry)
454 {
455 struct fs_struct *fs = current->fs;
456 struct dentry *parent = nd->path.dentry;
457
458 BUG_ON(!(nd->flags & LOOKUP_RCU));
459 if (nd->root.mnt) {
460 spin_lock(&fs->lock);
461 if (nd->root.mnt != fs->root.mnt ||
462 nd->root.dentry != fs->root.dentry)
463 goto err_root;
464 }
465 spin_lock(&parent->d_lock);
466 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
467 if (!__d_rcu_to_refcount(dentry, nd->seq))
468 goto err;
469 /*
470 * If the sequence check on the child dentry passed, then the child has
471 * not been removed from its parent. This means the parent dentry must
472 * be valid and able to take a reference at this point.
473 */
474 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
475 BUG_ON(!parent->d_count);
476 parent->d_count++;
477 spin_unlock(&dentry->d_lock);
478 spin_unlock(&parent->d_lock);
479 if (nd->root.mnt) {
480 path_get(&nd->root);
481 spin_unlock(&fs->lock);
482 }
483 mntget(nd->path.mnt);
484
485 rcu_read_unlock();
486 br_read_unlock(vfsmount_lock);
487 nd->flags &= ~LOOKUP_RCU;
488 return 0;
489 err:
490 spin_unlock(&dentry->d_lock);
491 spin_unlock(&parent->d_lock);
492 err_root:
493 if (nd->root.mnt)
494 spin_unlock(&fs->lock);
495 return -ECHILD;
496 }
497
498 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
499 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry)
500 {
501 if (nd->flags & LOOKUP_RCU)
502 return nameidata_dentry_drop_rcu(nd, dentry);
503 return 0;
504 }
505
506 /**
507 * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk
508 * @nd: nameidata pathwalk data to drop
509 * Returns: 0 on success, -ECHILD on failure
510 *
511 * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk.
512 * nd->path should be the final element of the lookup, so nd->root is discarded.
513 * Must be called from rcu-walk context.
514 */
515 static int nameidata_drop_rcu_last(struct nameidata *nd)
516 {
517 struct dentry *dentry = nd->path.dentry;
518
519 BUG_ON(!(nd->flags & LOOKUP_RCU));
520 nd->flags &= ~LOOKUP_RCU;
521 nd->root.mnt = NULL;
522 spin_lock(&dentry->d_lock);
523 if (!__d_rcu_to_refcount(dentry, nd->seq))
524 goto err_unlock;
525 BUG_ON(nd->inode != dentry->d_inode);
526 spin_unlock(&dentry->d_lock);
527
528 mntget(nd->path.mnt);
529
530 rcu_read_unlock();
531 br_read_unlock(vfsmount_lock);
532
533 return 0;
534
535 err_unlock:
536 spin_unlock(&dentry->d_lock);
537 rcu_read_unlock();
538 br_read_unlock(vfsmount_lock);
539 return -ECHILD;
540 }
541
542 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
543 static inline int nameidata_drop_rcu_last_maybe(struct nameidata *nd)
544 {
545 if (likely(nd->flags & LOOKUP_RCU))
546 return nameidata_drop_rcu_last(nd);
547 return 0;
548 }
549
550 /**
551 * release_open_intent - free up open intent resources
552 * @nd: pointer to nameidata
553 */
554 void release_open_intent(struct nameidata *nd)
555 {
556 struct file *file = nd->intent.open.file;
557
558 if (file && !IS_ERR(file)) {
559 if (file->f_path.dentry == NULL)
560 put_filp(file);
561 else
562 fput(file);
563 }
564 }
565
566 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
567 {
568 return dentry->d_op->d_revalidate(dentry, nd);
569 }
570
571 static struct dentry *
572 do_revalidate(struct dentry *dentry, struct nameidata *nd)
573 {
574 int status = d_revalidate(dentry, nd);
575 if (unlikely(status <= 0)) {
576 /*
577 * The dentry failed validation.
578 * If d_revalidate returned 0 attempt to invalidate
579 * the dentry otherwise d_revalidate is asking us
580 * to return a fail status.
581 */
582 if (status < 0) {
583 dput(dentry);
584 dentry = ERR_PTR(status);
585 } else if (!d_invalidate(dentry)) {
586 dput(dentry);
587 dentry = NULL;
588 }
589 }
590 return dentry;
591 }
592
593 static inline struct dentry *
594 do_revalidate_rcu(struct dentry *dentry, struct nameidata *nd)
595 {
596 int status = d_revalidate(dentry, nd);
597 if (likely(status > 0))
598 return dentry;
599 if (status == -ECHILD) {
600 if (nameidata_dentry_drop_rcu(nd, dentry))
601 return ERR_PTR(-ECHILD);
602 return do_revalidate(dentry, nd);
603 }
604 if (status < 0)
605 return ERR_PTR(status);
606 /* Don't d_invalidate in rcu-walk mode */
607 if (nameidata_dentry_drop_rcu(nd, dentry))
608 return ERR_PTR(-ECHILD);
609 if (!d_invalidate(dentry)) {
610 dput(dentry);
611 dentry = NULL;
612 }
613 return dentry;
614 }
615
616 static inline int need_reval_dot(struct dentry *dentry)
617 {
618 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
619 return 0;
620
621 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
622 return 0;
623
624 return 1;
625 }
626
627 /*
628 * force_reval_path - force revalidation of a dentry
629 *
630 * In some situations the path walking code will trust dentries without
631 * revalidating them. This causes problems for filesystems that depend on
632 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
633 * (which indicates that it's possible for the dentry to go stale), force
634 * a d_revalidate call before proceeding.
635 *
636 * Returns 0 if the revalidation was successful. If the revalidation fails,
637 * either return the error returned by d_revalidate or -ESTALE if the
638 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
639 * invalidate the dentry. It's up to the caller to handle putting references
640 * to the path if necessary.
641 */
642 static int
643 force_reval_path(struct path *path, struct nameidata *nd)
644 {
645 int status;
646 struct dentry *dentry = path->dentry;
647
648 /*
649 * only check on filesystems where it's possible for the dentry to
650 * become stale.
651 */
652 if (!need_reval_dot(dentry))
653 return 0;
654
655 status = d_revalidate(dentry, nd);
656 if (status > 0)
657 return 0;
658
659 if (!status) {
660 d_invalidate(dentry);
661 status = -ESTALE;
662 }
663 return status;
664 }
665
666 /*
667 * Short-cut version of permission(), for calling on directories
668 * during pathname resolution. Combines parts of permission()
669 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
670 *
671 * If appropriate, check DAC only. If not appropriate, or
672 * short-cut DAC fails, then call ->permission() to do more
673 * complete permission check.
674 */
675 static inline int exec_permission(struct inode *inode, unsigned int flags)
676 {
677 int ret;
678
679 if (inode->i_op->permission) {
680 ret = inode->i_op->permission(inode, MAY_EXEC, flags);
681 } else {
682 ret = acl_permission_check(inode, MAY_EXEC, flags,
683 inode->i_op->check_acl);
684 }
685 if (likely(!ret))
686 goto ok;
687 if (ret == -ECHILD)
688 return ret;
689
690 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
691 goto ok;
692
693 return ret;
694 ok:
695 return security_inode_exec_permission(inode, flags);
696 }
697
698 static __always_inline void set_root(struct nameidata *nd)
699 {
700 if (!nd->root.mnt)
701 get_fs_root(current->fs, &nd->root);
702 }
703
704 static int link_path_walk(const char *, struct nameidata *);
705
706 static __always_inline void set_root_rcu(struct nameidata *nd)
707 {
708 if (!nd->root.mnt) {
709 struct fs_struct *fs = current->fs;
710 unsigned seq;
711
712 do {
713 seq = read_seqcount_begin(&fs->seq);
714 nd->root = fs->root;
715 } while (read_seqcount_retry(&fs->seq, seq));
716 }
717 }
718
719 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
720 {
721 int ret;
722
723 if (IS_ERR(link))
724 goto fail;
725
726 if (*link == '/') {
727 set_root(nd);
728 path_put(&nd->path);
729 nd->path = nd->root;
730 path_get(&nd->root);
731 }
732 nd->inode = nd->path.dentry->d_inode;
733
734 ret = link_path_walk(link, nd);
735 return ret;
736 fail:
737 path_put(&nd->path);
738 return PTR_ERR(link);
739 }
740
741 static void path_put_conditional(struct path *path, struct nameidata *nd)
742 {
743 dput(path->dentry);
744 if (path->mnt != nd->path.mnt)
745 mntput(path->mnt);
746 }
747
748 static inline void path_to_nameidata(const struct path *path,
749 struct nameidata *nd)
750 {
751 if (!(nd->flags & LOOKUP_RCU)) {
752 dput(nd->path.dentry);
753 if (nd->path.mnt != path->mnt)
754 mntput(nd->path.mnt);
755 }
756 nd->path.mnt = path->mnt;
757 nd->path.dentry = path->dentry;
758 }
759
760 static __always_inline int
761 __do_follow_link(const struct path *link, struct nameidata *nd, void **p)
762 {
763 int error;
764 struct dentry *dentry = link->dentry;
765
766 BUG_ON(nd->flags & LOOKUP_RCU);
767
768 touch_atime(link->mnt, dentry);
769 nd_set_link(nd, NULL);
770
771 if (link->mnt == nd->path.mnt)
772 mntget(link->mnt);
773
774 nd->last_type = LAST_BIND;
775 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
776 error = PTR_ERR(*p);
777 if (!IS_ERR(*p)) {
778 char *s = nd_get_link(nd);
779 error = 0;
780 if (s)
781 error = __vfs_follow_link(nd, s);
782 else if (nd->last_type == LAST_BIND) {
783 error = force_reval_path(&nd->path, nd);
784 if (error)
785 path_put(&nd->path);
786 }
787 }
788 return error;
789 }
790
791 /*
792 * This limits recursive symlink follows to 8, while
793 * limiting consecutive symlinks to 40.
794 *
795 * Without that kind of total limit, nasty chains of consecutive
796 * symlinks can cause almost arbitrarily long lookups.
797 */
798 static inline int do_follow_link(struct inode *inode, struct path *path, struct nameidata *nd)
799 {
800 void *cookie;
801 int err = -ELOOP;
802
803 /* We drop rcu-walk here */
804 if (nameidata_dentry_drop_rcu_maybe(nd, path->dentry))
805 return -ECHILD;
806 BUG_ON(inode != path->dentry->d_inode);
807
808 if (current->link_count >= MAX_NESTED_LINKS)
809 goto loop;
810 if (current->total_link_count >= 40)
811 goto loop;
812 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
813 cond_resched();
814 err = security_inode_follow_link(path->dentry, nd);
815 if (err)
816 goto loop;
817 current->link_count++;
818 current->total_link_count++;
819 nd->depth++;
820 err = __do_follow_link(path, nd, &cookie);
821 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
822 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
823 path_put(path);
824 current->link_count--;
825 nd->depth--;
826 return err;
827 loop:
828 path_put_conditional(path, nd);
829 path_put(&nd->path);
830 return err;
831 }
832
833 static int follow_up_rcu(struct path *path)
834 {
835 struct vfsmount *parent;
836 struct dentry *mountpoint;
837
838 parent = path->mnt->mnt_parent;
839 if (parent == path->mnt)
840 return 0;
841 mountpoint = path->mnt->mnt_mountpoint;
842 path->dentry = mountpoint;
843 path->mnt = parent;
844 return 1;
845 }
846
847 int follow_up(struct path *path)
848 {
849 struct vfsmount *parent;
850 struct dentry *mountpoint;
851
852 br_read_lock(vfsmount_lock);
853 parent = path->mnt->mnt_parent;
854 if (parent == path->mnt) {
855 br_read_unlock(vfsmount_lock);
856 return 0;
857 }
858 mntget(parent);
859 mountpoint = dget(path->mnt->mnt_mountpoint);
860 br_read_unlock(vfsmount_lock);
861 dput(path->dentry);
862 path->dentry = mountpoint;
863 mntput(path->mnt);
864 path->mnt = parent;
865 return 1;
866 }
867
868 /*
869 * Perform an automount
870 * - return -EISDIR to tell follow_managed() to stop and return the path we
871 * were called with.
872 */
873 static int follow_automount(struct path *path, unsigned flags,
874 bool *need_mntput)
875 {
876 struct vfsmount *mnt;
877 int err;
878
879 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
880 return -EREMOTE;
881
882 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
883 * and this is the terminal part of the path.
884 */
885 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
886 return -EISDIR; /* we actually want to stop here */
887
888 /* We want to mount if someone is trying to open/create a file of any
889 * type under the mountpoint, wants to traverse through the mountpoint
890 * or wants to open the mounted directory.
891 *
892 * We don't want to mount if someone's just doing a stat and they've
893 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
894 * appended a '/' to the name.
895 */
896 if (!(flags & LOOKUP_FOLLOW) &&
897 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
898 LOOKUP_OPEN | LOOKUP_CREATE)))
899 return -EISDIR;
900
901 current->total_link_count++;
902 if (current->total_link_count >= 40)
903 return -ELOOP;
904
905 mnt = path->dentry->d_op->d_automount(path);
906 if (IS_ERR(mnt)) {
907 /*
908 * The filesystem is allowed to return -EISDIR here to indicate
909 * it doesn't want to automount. For instance, autofs would do
910 * this so that its userspace daemon can mount on this dentry.
911 *
912 * However, we can only permit this if it's a terminal point in
913 * the path being looked up; if it wasn't then the remainder of
914 * the path is inaccessible and we should say so.
915 */
916 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
917 return -EREMOTE;
918 return PTR_ERR(mnt);
919 }
920
921 if (!mnt) /* mount collision */
922 return 0;
923
924 err = finish_automount(mnt, path);
925
926 switch (err) {
927 case -EBUSY:
928 /* Someone else made a mount here whilst we were busy */
929 return 0;
930 case 0:
931 dput(path->dentry);
932 if (*need_mntput)
933 mntput(path->mnt);
934 path->mnt = mnt;
935 path->dentry = dget(mnt->mnt_root);
936 *need_mntput = true;
937 return 0;
938 default:
939 return err;
940 }
941
942 }
943
944 /*
945 * Handle a dentry that is managed in some way.
946 * - Flagged for transit management (autofs)
947 * - Flagged as mountpoint
948 * - Flagged as automount point
949 *
950 * This may only be called in refwalk mode.
951 *
952 * Serialization is taken care of in namespace.c
953 */
954 static int follow_managed(struct path *path, unsigned flags)
955 {
956 unsigned managed;
957 bool need_mntput = false;
958 int ret;
959
960 /* Given that we're not holding a lock here, we retain the value in a
961 * local variable for each dentry as we look at it so that we don't see
962 * the components of that value change under us */
963 while (managed = ACCESS_ONCE(path->dentry->d_flags),
964 managed &= DCACHE_MANAGED_DENTRY,
965 unlikely(managed != 0)) {
966 /* Allow the filesystem to manage the transit without i_mutex
967 * being held. */
968 if (managed & DCACHE_MANAGE_TRANSIT) {
969 BUG_ON(!path->dentry->d_op);
970 BUG_ON(!path->dentry->d_op->d_manage);
971 ret = path->dentry->d_op->d_manage(path->dentry,
972 false, false);
973 if (ret < 0)
974 return ret == -EISDIR ? 0 : ret;
975 }
976
977 /* Transit to a mounted filesystem. */
978 if (managed & DCACHE_MOUNTED) {
979 struct vfsmount *mounted = lookup_mnt(path);
980 if (mounted) {
981 dput(path->dentry);
982 if (need_mntput)
983 mntput(path->mnt);
984 path->mnt = mounted;
985 path->dentry = dget(mounted->mnt_root);
986 need_mntput = true;
987 continue;
988 }
989
990 /* Something is mounted on this dentry in another
991 * namespace and/or whatever was mounted there in this
992 * namespace got unmounted before we managed to get the
993 * vfsmount_lock */
994 }
995
996 /* Handle an automount point */
997 if (managed & DCACHE_NEED_AUTOMOUNT) {
998 ret = follow_automount(path, flags, &need_mntput);
999 if (ret < 0)
1000 return ret == -EISDIR ? 0 : ret;
1001 continue;
1002 }
1003
1004 /* We didn't change the current path point */
1005 break;
1006 }
1007 return 0;
1008 }
1009
1010 int follow_down_one(struct path *path)
1011 {
1012 struct vfsmount *mounted;
1013
1014 mounted = lookup_mnt(path);
1015 if (mounted) {
1016 dput(path->dentry);
1017 mntput(path->mnt);
1018 path->mnt = mounted;
1019 path->dentry = dget(mounted->mnt_root);
1020 return 1;
1021 }
1022 return 0;
1023 }
1024
1025 /*
1026 * Skip to top of mountpoint pile in rcuwalk mode. We abort the rcu-walk if we
1027 * meet a managed dentry and we're not walking to "..". True is returned to
1028 * continue, false to abort.
1029 */
1030 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1031 struct inode **inode, bool reverse_transit)
1032 {
1033 while (d_mountpoint(path->dentry)) {
1034 struct vfsmount *mounted;
1035 if (unlikely(path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) &&
1036 !reverse_transit &&
1037 path->dentry->d_op->d_manage(path->dentry, false, true) < 0)
1038 return false;
1039 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1040 if (!mounted)
1041 break;
1042 path->mnt = mounted;
1043 path->dentry = mounted->mnt_root;
1044 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1045 *inode = path->dentry->d_inode;
1046 }
1047
1048 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1049 return reverse_transit;
1050 return true;
1051 }
1052
1053 static int follow_dotdot_rcu(struct nameidata *nd)
1054 {
1055 struct inode *inode = nd->inode;
1056
1057 set_root_rcu(nd);
1058
1059 while (1) {
1060 if (nd->path.dentry == nd->root.dentry &&
1061 nd->path.mnt == nd->root.mnt) {
1062 break;
1063 }
1064 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1065 struct dentry *old = nd->path.dentry;
1066 struct dentry *parent = old->d_parent;
1067 unsigned seq;
1068
1069 seq = read_seqcount_begin(&parent->d_seq);
1070 if (read_seqcount_retry(&old->d_seq, nd->seq))
1071 return -ECHILD;
1072 inode = parent->d_inode;
1073 nd->path.dentry = parent;
1074 nd->seq = seq;
1075 break;
1076 }
1077 if (!follow_up_rcu(&nd->path))
1078 break;
1079 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1080 inode = nd->path.dentry->d_inode;
1081 }
1082 __follow_mount_rcu(nd, &nd->path, &inode, true);
1083 nd->inode = inode;
1084
1085 return 0;
1086 }
1087
1088 /*
1089 * Follow down to the covering mount currently visible to userspace. At each
1090 * point, the filesystem owning that dentry may be queried as to whether the
1091 * caller is permitted to proceed or not.
1092 *
1093 * Care must be taken as namespace_sem may be held (indicated by mounting_here
1094 * being true).
1095 */
1096 int follow_down(struct path *path, bool mounting_here)
1097 {
1098 unsigned managed;
1099 int ret;
1100
1101 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1102 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1103 /* Allow the filesystem to manage the transit without i_mutex
1104 * being held.
1105 *
1106 * We indicate to the filesystem if someone is trying to mount
1107 * something here. This gives autofs the chance to deny anyone
1108 * other than its daemon the right to mount on its
1109 * superstructure.
1110 *
1111 * The filesystem may sleep at this point.
1112 */
1113 if (managed & DCACHE_MANAGE_TRANSIT) {
1114 BUG_ON(!path->dentry->d_op);
1115 BUG_ON(!path->dentry->d_op->d_manage);
1116 ret = path->dentry->d_op->d_manage(
1117 path->dentry, mounting_here, false);
1118 if (ret < 0)
1119 return ret == -EISDIR ? 0 : ret;
1120 }
1121
1122 /* Transit to a mounted filesystem. */
1123 if (managed & DCACHE_MOUNTED) {
1124 struct vfsmount *mounted = lookup_mnt(path);
1125 if (!mounted)
1126 break;
1127 dput(path->dentry);
1128 mntput(path->mnt);
1129 path->mnt = mounted;
1130 path->dentry = dget(mounted->mnt_root);
1131 continue;
1132 }
1133
1134 /* Don't handle automount points here */
1135 break;
1136 }
1137 return 0;
1138 }
1139
1140 /*
1141 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1142 */
1143 static void follow_mount(struct path *path)
1144 {
1145 while (d_mountpoint(path->dentry)) {
1146 struct vfsmount *mounted = lookup_mnt(path);
1147 if (!mounted)
1148 break;
1149 dput(path->dentry);
1150 mntput(path->mnt);
1151 path->mnt = mounted;
1152 path->dentry = dget(mounted->mnt_root);
1153 }
1154 }
1155
1156 static void follow_dotdot(struct nameidata *nd)
1157 {
1158 set_root(nd);
1159
1160 while(1) {
1161 struct dentry *old = nd->path.dentry;
1162
1163 if (nd->path.dentry == nd->root.dentry &&
1164 nd->path.mnt == nd->root.mnt) {
1165 break;
1166 }
1167 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1168 /* rare case of legitimate dget_parent()... */
1169 nd->path.dentry = dget_parent(nd->path.dentry);
1170 dput(old);
1171 break;
1172 }
1173 if (!follow_up(&nd->path))
1174 break;
1175 }
1176 follow_mount(&nd->path);
1177 nd->inode = nd->path.dentry->d_inode;
1178 }
1179
1180 /*
1181 * Allocate a dentry with name and parent, and perform a parent
1182 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1183 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1184 * have verified that no child exists while under i_mutex.
1185 */
1186 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1187 struct qstr *name, struct nameidata *nd)
1188 {
1189 struct inode *inode = parent->d_inode;
1190 struct dentry *dentry;
1191 struct dentry *old;
1192
1193 /* Don't create child dentry for a dead directory. */
1194 if (unlikely(IS_DEADDIR(inode)))
1195 return ERR_PTR(-ENOENT);
1196
1197 dentry = d_alloc(parent, name);
1198 if (unlikely(!dentry))
1199 return ERR_PTR(-ENOMEM);
1200
1201 old = inode->i_op->lookup(inode, dentry, nd);
1202 if (unlikely(old)) {
1203 dput(dentry);
1204 dentry = old;
1205 }
1206 return dentry;
1207 }
1208
1209 /*
1210 * It's more convoluted than I'd like it to be, but... it's still fairly
1211 * small and for now I'd prefer to have fast path as straight as possible.
1212 * It _is_ time-critical.
1213 */
1214 static int do_lookup(struct nameidata *nd, struct qstr *name,
1215 struct path *path, struct inode **inode)
1216 {
1217 struct vfsmount *mnt = nd->path.mnt;
1218 struct dentry *dentry, *parent = nd->path.dentry;
1219 struct inode *dir;
1220 int err;
1221
1222 /*
1223 * See if the low-level filesystem might want
1224 * to use its own hash..
1225 */
1226 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1227 err = parent->d_op->d_hash(parent, nd->inode, name);
1228 if (err < 0)
1229 return err;
1230 }
1231
1232 /*
1233 * Rename seqlock is not required here because in the off chance
1234 * of a false negative due to a concurrent rename, we're going to
1235 * do the non-racy lookup, below.
1236 */
1237 if (nd->flags & LOOKUP_RCU) {
1238 unsigned seq;
1239
1240 *inode = nd->inode;
1241 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1242 if (!dentry) {
1243 if (nameidata_drop_rcu(nd))
1244 return -ECHILD;
1245 goto need_lookup;
1246 }
1247 /* Memory barrier in read_seqcount_begin of child is enough */
1248 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1249 return -ECHILD;
1250
1251 nd->seq = seq;
1252 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1253 dentry = do_revalidate_rcu(dentry, nd);
1254 if (!dentry)
1255 goto need_lookup;
1256 if (IS_ERR(dentry))
1257 goto fail;
1258 if (!(nd->flags & LOOKUP_RCU))
1259 goto done;
1260 }
1261 path->mnt = mnt;
1262 path->dentry = dentry;
1263 if (likely(__follow_mount_rcu(nd, path, inode, false)))
1264 return 0;
1265 if (nameidata_drop_rcu(nd))
1266 return -ECHILD;
1267 /* fallthru */
1268 }
1269 dentry = __d_lookup(parent, name);
1270 if (!dentry)
1271 goto need_lookup;
1272 found:
1273 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1274 dentry = do_revalidate(dentry, nd);
1275 if (!dentry)
1276 goto need_lookup;
1277 if (IS_ERR(dentry))
1278 goto fail;
1279 }
1280 done:
1281 path->mnt = mnt;
1282 path->dentry = dentry;
1283 err = follow_managed(path, nd->flags);
1284 if (unlikely(err < 0)) {
1285 path_put_conditional(path, nd);
1286 return err;
1287 }
1288 *inode = path->dentry->d_inode;
1289 return 0;
1290
1291 need_lookup:
1292 dir = parent->d_inode;
1293 BUG_ON(nd->inode != dir);
1294
1295 mutex_lock(&dir->i_mutex);
1296 /*
1297 * First re-do the cached lookup just in case it was created
1298 * while we waited for the directory semaphore, or the first
1299 * lookup failed due to an unrelated rename.
1300 *
1301 * This could use version numbering or similar to avoid unnecessary
1302 * cache lookups, but then we'd have to do the first lookup in the
1303 * non-racy way. However in the common case here, everything should
1304 * be hot in cache, so would it be a big win?
1305 */
1306 dentry = d_lookup(parent, name);
1307 if (likely(!dentry)) {
1308 dentry = d_alloc_and_lookup(parent, name, nd);
1309 mutex_unlock(&dir->i_mutex);
1310 if (IS_ERR(dentry))
1311 goto fail;
1312 goto done;
1313 }
1314 /*
1315 * Uhhuh! Nasty case: the cache was re-populated while
1316 * we waited on the semaphore. Need to revalidate.
1317 */
1318 mutex_unlock(&dir->i_mutex);
1319 goto found;
1320
1321 fail:
1322 return PTR_ERR(dentry);
1323 }
1324
1325 static inline int may_lookup(struct nameidata *nd)
1326 {
1327 if (nd->flags & LOOKUP_RCU) {
1328 int err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1329 if (err != -ECHILD)
1330 return err;
1331 if (nameidata_drop_rcu(nd))
1332 return -ECHILD;
1333 }
1334 return exec_permission(nd->inode, 0);
1335 }
1336
1337 /*
1338 * Name resolution.
1339 * This is the basic name resolution function, turning a pathname into
1340 * the final dentry. We expect 'base' to be positive and a directory.
1341 *
1342 * Returns 0 and nd will have valid dentry and mnt on success.
1343 * Returns error and drops reference to input namei data on failure.
1344 */
1345 static int link_path_walk(const char *name, struct nameidata *nd)
1346 {
1347 struct path next;
1348 int err;
1349 unsigned int lookup_flags = nd->flags;
1350
1351 while (*name=='/')
1352 name++;
1353 if (!*name)
1354 goto return_reval;
1355
1356 if (nd->depth)
1357 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
1358
1359 /* At this point we know we have a real path component. */
1360 for(;;) {
1361 struct inode *inode;
1362 unsigned long hash;
1363 struct qstr this;
1364 unsigned int c;
1365
1366 nd->flags |= LOOKUP_CONTINUE;
1367
1368 err = may_lookup(nd);
1369 if (err)
1370 break;
1371
1372 this.name = name;
1373 c = *(const unsigned char *)name;
1374
1375 hash = init_name_hash();
1376 do {
1377 name++;
1378 hash = partial_name_hash(c, hash);
1379 c = *(const unsigned char *)name;
1380 } while (c && (c != '/'));
1381 this.len = name - (const char *) this.name;
1382 this.hash = end_name_hash(hash);
1383
1384 /* remove trailing slashes? */
1385 if (!c)
1386 goto last_component;
1387 while (*++name == '/');
1388 if (!*name)
1389 goto last_with_slashes;
1390
1391 /*
1392 * "." and ".." are special - ".." especially so because it has
1393 * to be able to know about the current root directory and
1394 * parent relationships.
1395 */
1396 if (this.name[0] == '.') switch (this.len) {
1397 default:
1398 break;
1399 case 2:
1400 if (this.name[1] != '.')
1401 break;
1402 if (nd->flags & LOOKUP_RCU) {
1403 if (follow_dotdot_rcu(nd))
1404 return -ECHILD;
1405 } else
1406 follow_dotdot(nd);
1407 /* fallthrough */
1408 case 1:
1409 continue;
1410 }
1411 /* This does the actual lookups.. */
1412 err = do_lookup(nd, &this, &next, &inode);
1413 if (err)
1414 break;
1415 err = -ENOENT;
1416 if (!inode)
1417 goto out_dput;
1418
1419 if (inode->i_op->follow_link) {
1420 err = do_follow_link(inode, &next, nd);
1421 if (err)
1422 goto return_err;
1423 nd->inode = nd->path.dentry->d_inode;
1424 err = -ENOENT;
1425 if (!nd->inode)
1426 break;
1427 } else {
1428 path_to_nameidata(&next, nd);
1429 nd->inode = inode;
1430 }
1431 err = -ENOTDIR;
1432 if (!nd->inode->i_op->lookup)
1433 break;
1434 continue;
1435 /* here ends the main loop */
1436
1437 last_with_slashes:
1438 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1439 last_component:
1440 /* Clear LOOKUP_CONTINUE iff it was previously unset */
1441 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1442 if (lookup_flags & LOOKUP_PARENT)
1443 goto lookup_parent;
1444 if (this.name[0] == '.') switch (this.len) {
1445 default:
1446 break;
1447 case 2:
1448 if (this.name[1] != '.')
1449 break;
1450 if (nd->flags & LOOKUP_RCU) {
1451 if (follow_dotdot_rcu(nd))
1452 return -ECHILD;
1453 } else
1454 follow_dotdot(nd);
1455 /* fallthrough */
1456 case 1:
1457 goto return_reval;
1458 }
1459 err = do_lookup(nd, &this, &next, &inode);
1460 if (err)
1461 break;
1462 if (inode && unlikely(inode->i_op->follow_link) &&
1463 (lookup_flags & LOOKUP_FOLLOW)) {
1464 err = do_follow_link(inode, &next, nd);
1465 if (err)
1466 goto return_err;
1467 nd->inode = nd->path.dentry->d_inode;
1468 } else {
1469 path_to_nameidata(&next, nd);
1470 nd->inode = inode;
1471 }
1472 err = -ENOENT;
1473 if (!nd->inode)
1474 break;
1475 if (lookup_flags & LOOKUP_DIRECTORY) {
1476 err = -ENOTDIR;
1477 if (!nd->inode->i_op->lookup)
1478 break;
1479 }
1480 goto return_base;
1481 lookup_parent:
1482 nd->last = this;
1483 nd->last_type = LAST_NORM;
1484 if (this.name[0] != '.')
1485 goto return_base;
1486 if (this.len == 1)
1487 nd->last_type = LAST_DOT;
1488 else if (this.len == 2 && this.name[1] == '.')
1489 nd->last_type = LAST_DOTDOT;
1490 else
1491 goto return_base;
1492 return_reval:
1493 /*
1494 * We bypassed the ordinary revalidation routines.
1495 * We may need to check the cached dentry for staleness.
1496 */
1497 if (need_reval_dot(nd->path.dentry)) {
1498 if (nameidata_drop_rcu_last_maybe(nd))
1499 return -ECHILD;
1500 /* Note: we do not d_invalidate() */
1501 err = d_revalidate(nd->path.dentry, nd);
1502 if (!err)
1503 err = -ESTALE;
1504 if (err < 0)
1505 break;
1506 return 0;
1507 }
1508 return_base:
1509 if (nameidata_drop_rcu_last_maybe(nd))
1510 return -ECHILD;
1511 return 0;
1512 out_dput:
1513 if (!(nd->flags & LOOKUP_RCU))
1514 path_put_conditional(&next, nd);
1515 break;
1516 }
1517 if (!(nd->flags & LOOKUP_RCU))
1518 path_put(&nd->path);
1519 return_err:
1520 return err;
1521 }
1522
1523 static inline int path_walk_rcu(const char *name, struct nameidata *nd)
1524 {
1525 current->total_link_count = 0;
1526
1527 return link_path_walk(name, nd);
1528 }
1529
1530 static inline int path_walk_simple(const char *name, struct nameidata *nd)
1531 {
1532 current->total_link_count = 0;
1533
1534 return link_path_walk(name, nd);
1535 }
1536
1537 static int path_walk(const char *name, struct nameidata *nd)
1538 {
1539 struct path save = nd->path;
1540 int result;
1541
1542 current->total_link_count = 0;
1543
1544 /* make sure the stuff we saved doesn't go away */
1545 path_get(&save);
1546
1547 result = link_path_walk(name, nd);
1548 if (result == -ESTALE) {
1549 /* nd->path had been dropped */
1550 current->total_link_count = 0;
1551 nd->path = save;
1552 nd->inode = save.dentry->d_inode;
1553 path_get(&nd->path);
1554 nd->flags |= LOOKUP_REVAL;
1555 result = link_path_walk(name, nd);
1556 }
1557
1558 path_put(&save);
1559
1560 return result;
1561 }
1562
1563 static void path_finish_rcu(struct nameidata *nd)
1564 {
1565 if (nd->flags & LOOKUP_RCU) {
1566 /* RCU dangling. Cancel it. */
1567 nd->flags &= ~LOOKUP_RCU;
1568 nd->root.mnt = NULL;
1569 rcu_read_unlock();
1570 br_read_unlock(vfsmount_lock);
1571 }
1572 if (nd->file)
1573 fput(nd->file);
1574 }
1575
1576 static int path_init_rcu(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1577 {
1578 int retval = 0;
1579 int fput_needed;
1580 struct file *file;
1581
1582 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1583 nd->flags = flags | LOOKUP_RCU;
1584 nd->depth = 0;
1585 nd->root.mnt = NULL;
1586 nd->file = NULL;
1587
1588 if (*name=='/') {
1589 struct fs_struct *fs = current->fs;
1590 unsigned seq;
1591
1592 br_read_lock(vfsmount_lock);
1593 rcu_read_lock();
1594
1595 do {
1596 seq = read_seqcount_begin(&fs->seq);
1597 nd->root = fs->root;
1598 nd->path = nd->root;
1599 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1600 } while (read_seqcount_retry(&fs->seq, seq));
1601
1602 } else if (dfd == AT_FDCWD) {
1603 struct fs_struct *fs = current->fs;
1604 unsigned seq;
1605
1606 br_read_lock(vfsmount_lock);
1607 rcu_read_lock();
1608
1609 do {
1610 seq = read_seqcount_begin(&fs->seq);
1611 nd->path = fs->pwd;
1612 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1613 } while (read_seqcount_retry(&fs->seq, seq));
1614
1615 } else {
1616 struct dentry *dentry;
1617
1618 file = fget_light(dfd, &fput_needed);
1619 retval = -EBADF;
1620 if (!file)
1621 goto out_fail;
1622
1623 dentry = file->f_path.dentry;
1624
1625 retval = -ENOTDIR;
1626 if (!S_ISDIR(dentry->d_inode->i_mode))
1627 goto fput_fail;
1628
1629 retval = file_permission(file, MAY_EXEC);
1630 if (retval)
1631 goto fput_fail;
1632
1633 nd->path = file->f_path;
1634 if (fput_needed)
1635 nd->file = file;
1636
1637 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1638 br_read_lock(vfsmount_lock);
1639 rcu_read_lock();
1640 }
1641 nd->inode = nd->path.dentry->d_inode;
1642 return 0;
1643
1644 fput_fail:
1645 fput_light(file, fput_needed);
1646 out_fail:
1647 return retval;
1648 }
1649
1650 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1651 {
1652 int retval = 0;
1653 int fput_needed;
1654 struct file *file;
1655
1656 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1657 nd->flags = flags;
1658 nd->depth = 0;
1659 nd->root.mnt = NULL;
1660
1661 if (*name=='/') {
1662 set_root(nd);
1663 nd->path = nd->root;
1664 path_get(&nd->root);
1665 } else if (dfd == AT_FDCWD) {
1666 get_fs_pwd(current->fs, &nd->path);
1667 } else {
1668 struct dentry *dentry;
1669
1670 file = fget_light(dfd, &fput_needed);
1671 retval = -EBADF;
1672 if (!file)
1673 goto out_fail;
1674
1675 dentry = file->f_path.dentry;
1676
1677 retval = -ENOTDIR;
1678 if (!S_ISDIR(dentry->d_inode->i_mode))
1679 goto fput_fail;
1680
1681 retval = file_permission(file, MAY_EXEC);
1682 if (retval)
1683 goto fput_fail;
1684
1685 nd->path = file->f_path;
1686 path_get(&file->f_path);
1687
1688 fput_light(file, fput_needed);
1689 }
1690 nd->inode = nd->path.dentry->d_inode;
1691 return 0;
1692
1693 fput_fail:
1694 fput_light(file, fput_needed);
1695 out_fail:
1696 return retval;
1697 }
1698
1699 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1700 static int do_path_lookup(int dfd, const char *name,
1701 unsigned int flags, struct nameidata *nd)
1702 {
1703 int retval;
1704
1705 /*
1706 * Path walking is largely split up into 2 different synchronisation
1707 * schemes, rcu-walk and ref-walk (explained in
1708 * Documentation/filesystems/path-lookup.txt). These share much of the
1709 * path walk code, but some things particularly setup, cleanup, and
1710 * following mounts are sufficiently divergent that functions are
1711 * duplicated. Typically there is a function foo(), and its RCU
1712 * analogue, foo_rcu().
1713 *
1714 * -ECHILD is the error number of choice (just to avoid clashes) that
1715 * is returned if some aspect of an rcu-walk fails. Such an error must
1716 * be handled by restarting a traditional ref-walk (which will always
1717 * be able to complete).
1718 */
1719 retval = path_init_rcu(dfd, name, flags, nd);
1720 if (unlikely(retval))
1721 return retval;
1722 retval = path_walk_rcu(name, nd);
1723 path_finish_rcu(nd);
1724 if (nd->root.mnt) {
1725 path_put(&nd->root);
1726 nd->root.mnt = NULL;
1727 }
1728
1729 if (unlikely(retval == -ECHILD || retval == -ESTALE)) {
1730 /* slower, locked walk */
1731 if (retval == -ESTALE)
1732 flags |= LOOKUP_REVAL;
1733 retval = path_init(dfd, name, flags, nd);
1734 if (unlikely(retval))
1735 return retval;
1736 retval = path_walk(name, nd);
1737 if (nd->root.mnt) {
1738 path_put(&nd->root);
1739 nd->root.mnt = NULL;
1740 }
1741 }
1742
1743 if (likely(!retval)) {
1744 if (unlikely(!audit_dummy_context())) {
1745 if (nd->path.dentry && nd->inode)
1746 audit_inode(name, nd->path.dentry);
1747 }
1748 }
1749
1750 return retval;
1751 }
1752
1753 int kern_path_parent(const char *name, struct nameidata *nd)
1754 {
1755 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1756 }
1757
1758 int kern_path(const char *name, unsigned int flags, struct path *path)
1759 {
1760 struct nameidata nd;
1761 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1762 if (!res)
1763 *path = nd.path;
1764 return res;
1765 }
1766
1767 /**
1768 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1769 * @dentry: pointer to dentry of the base directory
1770 * @mnt: pointer to vfs mount of the base directory
1771 * @name: pointer to file name
1772 * @flags: lookup flags
1773 * @nd: pointer to nameidata
1774 */
1775 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1776 const char *name, unsigned int flags,
1777 struct nameidata *nd)
1778 {
1779 int retval;
1780
1781 /* same as do_path_lookup */
1782 nd->last_type = LAST_ROOT;
1783 nd->flags = flags;
1784 nd->depth = 0;
1785
1786 nd->path.dentry = dentry;
1787 nd->path.mnt = mnt;
1788 path_get(&nd->path);
1789 nd->root = nd->path;
1790 path_get(&nd->root);
1791 nd->inode = nd->path.dentry->d_inode;
1792
1793 retval = path_walk(name, nd);
1794 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1795 nd->inode))
1796 audit_inode(name, nd->path.dentry);
1797
1798 path_put(&nd->root);
1799 nd->root.mnt = NULL;
1800
1801 return retval;
1802 }
1803
1804 static struct dentry *__lookup_hash(struct qstr *name,
1805 struct dentry *base, struct nameidata *nd)
1806 {
1807 struct inode *inode = base->d_inode;
1808 struct dentry *dentry;
1809 int err;
1810
1811 err = exec_permission(inode, 0);
1812 if (err)
1813 return ERR_PTR(err);
1814
1815 /*
1816 * See if the low-level filesystem might want
1817 * to use its own hash..
1818 */
1819 if (base->d_flags & DCACHE_OP_HASH) {
1820 err = base->d_op->d_hash(base, inode, name);
1821 dentry = ERR_PTR(err);
1822 if (err < 0)
1823 goto out;
1824 }
1825
1826 /*
1827 * Don't bother with __d_lookup: callers are for creat as
1828 * well as unlink, so a lot of the time it would cost
1829 * a double lookup.
1830 */
1831 dentry = d_lookup(base, name);
1832
1833 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1834 dentry = do_revalidate(dentry, nd);
1835
1836 if (!dentry)
1837 dentry = d_alloc_and_lookup(base, name, nd);
1838 out:
1839 return dentry;
1840 }
1841
1842 /*
1843 * Restricted form of lookup. Doesn't follow links, single-component only,
1844 * needs parent already locked. Doesn't follow mounts.
1845 * SMP-safe.
1846 */
1847 static struct dentry *lookup_hash(struct nameidata *nd)
1848 {
1849 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1850 }
1851
1852 static int __lookup_one_len(const char *name, struct qstr *this,
1853 struct dentry *base, int len)
1854 {
1855 unsigned long hash;
1856 unsigned int c;
1857
1858 this->name = name;
1859 this->len = len;
1860 if (!len)
1861 return -EACCES;
1862
1863 hash = init_name_hash();
1864 while (len--) {
1865 c = *(const unsigned char *)name++;
1866 if (c == '/' || c == '\0')
1867 return -EACCES;
1868 hash = partial_name_hash(c, hash);
1869 }
1870 this->hash = end_name_hash(hash);
1871 return 0;
1872 }
1873
1874 /**
1875 * lookup_one_len - filesystem helper to lookup single pathname component
1876 * @name: pathname component to lookup
1877 * @base: base directory to lookup from
1878 * @len: maximum length @len should be interpreted to
1879 *
1880 * Note that this routine is purely a helper for filesystem usage and should
1881 * not be called by generic code. Also note that by using this function the
1882 * nameidata argument is passed to the filesystem methods and a filesystem
1883 * using this helper needs to be prepared for that.
1884 */
1885 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1886 {
1887 int err;
1888 struct qstr this;
1889
1890 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1891
1892 err = __lookup_one_len(name, &this, base, len);
1893 if (err)
1894 return ERR_PTR(err);
1895
1896 return __lookup_hash(&this, base, NULL);
1897 }
1898
1899 int user_path_at(int dfd, const char __user *name, unsigned flags,
1900 struct path *path)
1901 {
1902 struct nameidata nd;
1903 char *tmp = getname(name);
1904 int err = PTR_ERR(tmp);
1905 if (!IS_ERR(tmp)) {
1906
1907 BUG_ON(flags & LOOKUP_PARENT);
1908
1909 err = do_path_lookup(dfd, tmp, flags, &nd);
1910 putname(tmp);
1911 if (!err)
1912 *path = nd.path;
1913 }
1914 return err;
1915 }
1916
1917 static int user_path_parent(int dfd, const char __user *path,
1918 struct nameidata *nd, char **name)
1919 {
1920 char *s = getname(path);
1921 int error;
1922
1923 if (IS_ERR(s))
1924 return PTR_ERR(s);
1925
1926 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1927 if (error)
1928 putname(s);
1929 else
1930 *name = s;
1931
1932 return error;
1933 }
1934
1935 /*
1936 * It's inline, so penalty for filesystems that don't use sticky bit is
1937 * minimal.
1938 */
1939 static inline int check_sticky(struct inode *dir, struct inode *inode)
1940 {
1941 uid_t fsuid = current_fsuid();
1942
1943 if (!(dir->i_mode & S_ISVTX))
1944 return 0;
1945 if (inode->i_uid == fsuid)
1946 return 0;
1947 if (dir->i_uid == fsuid)
1948 return 0;
1949 return !capable(CAP_FOWNER);
1950 }
1951
1952 /*
1953 * Check whether we can remove a link victim from directory dir, check
1954 * whether the type of victim is right.
1955 * 1. We can't do it if dir is read-only (done in permission())
1956 * 2. We should have write and exec permissions on dir
1957 * 3. We can't remove anything from append-only dir
1958 * 4. We can't do anything with immutable dir (done in permission())
1959 * 5. If the sticky bit on dir is set we should either
1960 * a. be owner of dir, or
1961 * b. be owner of victim, or
1962 * c. have CAP_FOWNER capability
1963 * 6. If the victim is append-only or immutable we can't do antyhing with
1964 * links pointing to it.
1965 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1966 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1967 * 9. We can't remove a root or mountpoint.
1968 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1969 * nfs_async_unlink().
1970 */
1971 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1972 {
1973 int error;
1974
1975 if (!victim->d_inode)
1976 return -ENOENT;
1977
1978 BUG_ON(victim->d_parent->d_inode != dir);
1979 audit_inode_child(victim, dir);
1980
1981 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1982 if (error)
1983 return error;
1984 if (IS_APPEND(dir))
1985 return -EPERM;
1986 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1987 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1988 return -EPERM;
1989 if (isdir) {
1990 if (!S_ISDIR(victim->d_inode->i_mode))
1991 return -ENOTDIR;
1992 if (IS_ROOT(victim))
1993 return -EBUSY;
1994 } else if (S_ISDIR(victim->d_inode->i_mode))
1995 return -EISDIR;
1996 if (IS_DEADDIR(dir))
1997 return -ENOENT;
1998 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1999 return -EBUSY;
2000 return 0;
2001 }
2002
2003 /* Check whether we can create an object with dentry child in directory
2004 * dir.
2005 * 1. We can't do it if child already exists (open has special treatment for
2006 * this case, but since we are inlined it's OK)
2007 * 2. We can't do it if dir is read-only (done in permission())
2008 * 3. We should have write and exec permissions on dir
2009 * 4. We can't do it if dir is immutable (done in permission())
2010 */
2011 static inline int may_create(struct inode *dir, struct dentry *child)
2012 {
2013 if (child->d_inode)
2014 return -EEXIST;
2015 if (IS_DEADDIR(dir))
2016 return -ENOENT;
2017 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2018 }
2019
2020 /*
2021 * p1 and p2 should be directories on the same fs.
2022 */
2023 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2024 {
2025 struct dentry *p;
2026
2027 if (p1 == p2) {
2028 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2029 return NULL;
2030 }
2031
2032 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2033
2034 p = d_ancestor(p2, p1);
2035 if (p) {
2036 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2037 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2038 return p;
2039 }
2040
2041 p = d_ancestor(p1, p2);
2042 if (p) {
2043 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2044 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2045 return p;
2046 }
2047
2048 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2049 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2050 return NULL;
2051 }
2052
2053 void unlock_rename(struct dentry *p1, struct dentry *p2)
2054 {
2055 mutex_unlock(&p1->d_inode->i_mutex);
2056 if (p1 != p2) {
2057 mutex_unlock(&p2->d_inode->i_mutex);
2058 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2059 }
2060 }
2061
2062 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
2063 struct nameidata *nd)
2064 {
2065 int error = may_create(dir, dentry);
2066
2067 if (error)
2068 return error;
2069
2070 if (!dir->i_op->create)
2071 return -EACCES; /* shouldn't it be ENOSYS? */
2072 mode &= S_IALLUGO;
2073 mode |= S_IFREG;
2074 error = security_inode_create(dir, dentry, mode);
2075 if (error)
2076 return error;
2077 error = dir->i_op->create(dir, dentry, mode, nd);
2078 if (!error)
2079 fsnotify_create(dir, dentry);
2080 return error;
2081 }
2082
2083 int may_open(struct path *path, int acc_mode, int flag)
2084 {
2085 struct dentry *dentry = path->dentry;
2086 struct inode *inode = dentry->d_inode;
2087 int error;
2088
2089 if (!inode)
2090 return -ENOENT;
2091
2092 switch (inode->i_mode & S_IFMT) {
2093 case S_IFLNK:
2094 return -ELOOP;
2095 case S_IFDIR:
2096 if (acc_mode & MAY_WRITE)
2097 return -EISDIR;
2098 break;
2099 case S_IFBLK:
2100 case S_IFCHR:
2101 if (path->mnt->mnt_flags & MNT_NODEV)
2102 return -EACCES;
2103 /*FALLTHRU*/
2104 case S_IFIFO:
2105 case S_IFSOCK:
2106 flag &= ~O_TRUNC;
2107 break;
2108 }
2109
2110 error = inode_permission(inode, acc_mode);
2111 if (error)
2112 return error;
2113
2114 /*
2115 * An append-only file must be opened in append mode for writing.
2116 */
2117 if (IS_APPEND(inode)) {
2118 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2119 return -EPERM;
2120 if (flag & O_TRUNC)
2121 return -EPERM;
2122 }
2123
2124 /* O_NOATIME can only be set by the owner or superuser */
2125 if (flag & O_NOATIME && !is_owner_or_cap(inode))
2126 return -EPERM;
2127
2128 /*
2129 * Ensure there are no outstanding leases on the file.
2130 */
2131 return break_lease(inode, flag);
2132 }
2133
2134 static int handle_truncate(struct file *filp)
2135 {
2136 struct path *path = &filp->f_path;
2137 struct inode *inode = path->dentry->d_inode;
2138 int error = get_write_access(inode);
2139 if (error)
2140 return error;
2141 /*
2142 * Refuse to truncate files with mandatory locks held on them.
2143 */
2144 error = locks_verify_locked(inode);
2145 if (!error)
2146 error = security_path_truncate(path);
2147 if (!error) {
2148 error = do_truncate(path->dentry, 0,
2149 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2150 filp);
2151 }
2152 put_write_access(inode);
2153 return error;
2154 }
2155
2156 /*
2157 * Be careful about ever adding any more callers of this
2158 * function. Its flags must be in the namei format, not
2159 * what get passed to sys_open().
2160 */
2161 static int __open_namei_create(struct nameidata *nd, struct path *path,
2162 int open_flag, int mode)
2163 {
2164 int error;
2165 struct dentry *dir = nd->path.dentry;
2166
2167 if (!IS_POSIXACL(dir->d_inode))
2168 mode &= ~current_umask();
2169 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
2170 if (error)
2171 goto out_unlock;
2172 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
2173 out_unlock:
2174 mutex_unlock(&dir->d_inode->i_mutex);
2175 dput(nd->path.dentry);
2176 nd->path.dentry = path->dentry;
2177
2178 if (error)
2179 return error;
2180 /* Don't check for write permission, don't truncate */
2181 return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
2182 }
2183
2184 /*
2185 * Note that while the flag value (low two bits) for sys_open means:
2186 * 00 - read-only
2187 * 01 - write-only
2188 * 10 - read-write
2189 * 11 - special
2190 * it is changed into
2191 * 00 - no permissions needed
2192 * 01 - read-permission
2193 * 10 - write-permission
2194 * 11 - read-write
2195 * for the internal routines (ie open_namei()/follow_link() etc)
2196 * This is more logical, and also allows the 00 "no perm needed"
2197 * to be used for symlinks (where the permissions are checked
2198 * later).
2199 *
2200 */
2201 static inline int open_to_namei_flags(int flag)
2202 {
2203 if ((flag+1) & O_ACCMODE)
2204 flag++;
2205 return flag;
2206 }
2207
2208 static int open_will_truncate(int flag, struct inode *inode)
2209 {
2210 /*
2211 * We'll never write to the fs underlying
2212 * a device file.
2213 */
2214 if (special_file(inode->i_mode))
2215 return 0;
2216 return (flag & O_TRUNC);
2217 }
2218
2219 static struct file *finish_open(struct nameidata *nd,
2220 int open_flag, int acc_mode)
2221 {
2222 struct file *filp;
2223 int will_truncate;
2224 int error;
2225
2226 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
2227 if (will_truncate) {
2228 error = mnt_want_write(nd->path.mnt);
2229 if (error)
2230 goto exit;
2231 }
2232 error = may_open(&nd->path, acc_mode, open_flag);
2233 if (error) {
2234 if (will_truncate)
2235 mnt_drop_write(nd->path.mnt);
2236 goto exit;
2237 }
2238 filp = nameidata_to_filp(nd);
2239 if (!IS_ERR(filp)) {
2240 error = ima_file_check(filp, acc_mode);
2241 if (error) {
2242 fput(filp);
2243 filp = ERR_PTR(error);
2244 }
2245 }
2246 if (!IS_ERR(filp)) {
2247 if (will_truncate) {
2248 error = handle_truncate(filp);
2249 if (error) {
2250 fput(filp);
2251 filp = ERR_PTR(error);
2252 }
2253 }
2254 }
2255 /*
2256 * It is now safe to drop the mnt write
2257 * because the filp has had a write taken
2258 * on its behalf.
2259 */
2260 if (will_truncate)
2261 mnt_drop_write(nd->path.mnt);
2262 path_put(&nd->path);
2263 return filp;
2264
2265 exit:
2266 path_put(&nd->path);
2267 return ERR_PTR(error);
2268 }
2269
2270 /*
2271 * Handle O_CREAT case for do_filp_open
2272 */
2273 static struct file *do_last(struct nameidata *nd, struct path *path,
2274 int open_flag, int acc_mode,
2275 int mode, const char *pathname)
2276 {
2277 struct dentry *dir = nd->path.dentry;
2278 struct file *filp;
2279 int error = -EISDIR;
2280
2281 switch (nd->last_type) {
2282 case LAST_DOTDOT:
2283 follow_dotdot(nd);
2284 dir = nd->path.dentry;
2285 case LAST_DOT:
2286 if (need_reval_dot(dir)) {
2287 int status = d_revalidate(nd->path.dentry, nd);
2288 if (!status)
2289 status = -ESTALE;
2290 if (status < 0) {
2291 error = status;
2292 goto exit;
2293 }
2294 }
2295 /* fallthrough */
2296 case LAST_ROOT:
2297 goto exit;
2298 case LAST_BIND:
2299 audit_inode(pathname, dir);
2300 goto ok;
2301 }
2302
2303 /* trailing slashes? */
2304 if (nd->last.name[nd->last.len])
2305 goto exit;
2306
2307 mutex_lock(&dir->d_inode->i_mutex);
2308
2309 path->dentry = lookup_hash(nd);
2310 path->mnt = nd->path.mnt;
2311
2312 error = PTR_ERR(path->dentry);
2313 if (IS_ERR(path->dentry)) {
2314 mutex_unlock(&dir->d_inode->i_mutex);
2315 goto exit;
2316 }
2317
2318 if (IS_ERR(nd->intent.open.file)) {
2319 error = PTR_ERR(nd->intent.open.file);
2320 goto exit_mutex_unlock;
2321 }
2322
2323 /* Negative dentry, just create the file */
2324 if (!path->dentry->d_inode) {
2325 /*
2326 * This write is needed to ensure that a
2327 * ro->rw transition does not occur between
2328 * the time when the file is created and when
2329 * a permanent write count is taken through
2330 * the 'struct file' in nameidata_to_filp().
2331 */
2332 error = mnt_want_write(nd->path.mnt);
2333 if (error)
2334 goto exit_mutex_unlock;
2335 error = __open_namei_create(nd, path, open_flag, mode);
2336 if (error) {
2337 mnt_drop_write(nd->path.mnt);
2338 goto exit;
2339 }
2340 filp = nameidata_to_filp(nd);
2341 mnt_drop_write(nd->path.mnt);
2342 path_put(&nd->path);
2343 if (!IS_ERR(filp)) {
2344 error = ima_file_check(filp, acc_mode);
2345 if (error) {
2346 fput(filp);
2347 filp = ERR_PTR(error);
2348 }
2349 }
2350 return filp;
2351 }
2352
2353 /*
2354 * It already exists.
2355 */
2356 mutex_unlock(&dir->d_inode->i_mutex);
2357 audit_inode(pathname, path->dentry);
2358
2359 error = -EEXIST;
2360 if (open_flag & O_EXCL)
2361 goto exit_dput;
2362
2363 error = follow_managed(path, nd->flags);
2364 if (error < 0)
2365 goto exit_dput;
2366
2367 error = -ENOENT;
2368 if (!path->dentry->d_inode)
2369 goto exit_dput;
2370
2371 if (path->dentry->d_inode->i_op->follow_link)
2372 return NULL;
2373
2374 path_to_nameidata(path, nd);
2375 nd->inode = path->dentry->d_inode;
2376 error = -EISDIR;
2377 if (S_ISDIR(nd->inode->i_mode))
2378 goto exit;
2379 ok:
2380 filp = finish_open(nd, open_flag, acc_mode);
2381 return filp;
2382
2383 exit_mutex_unlock:
2384 mutex_unlock(&dir->d_inode->i_mutex);
2385 exit_dput:
2386 path_put_conditional(path, nd);
2387 exit:
2388 path_put(&nd->path);
2389 return ERR_PTR(error);
2390 }
2391
2392 /*
2393 * Note that the low bits of the passed in "open_flag"
2394 * are not the same as in the local variable "flag". See
2395 * open_to_namei_flags() for more details.
2396 */
2397 struct file *do_filp_open(int dfd, const char *pathname,
2398 int open_flag, int mode, int acc_mode)
2399 {
2400 struct file *filp;
2401 struct nameidata nd;
2402 int error;
2403 struct path path;
2404 int count = 0;
2405 int flag = open_to_namei_flags(open_flag);
2406 int flags;
2407
2408 if (!(open_flag & O_CREAT))
2409 mode = 0;
2410
2411 /* Must never be set by userspace */
2412 open_flag &= ~FMODE_NONOTIFY;
2413
2414 /*
2415 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
2416 * check for O_DSYNC if the need any syncing at all we enforce it's
2417 * always set instead of having to deal with possibly weird behaviour
2418 * for malicious applications setting only __O_SYNC.
2419 */
2420 if (open_flag & __O_SYNC)
2421 open_flag |= O_DSYNC;
2422
2423 if (!acc_mode)
2424 acc_mode = MAY_OPEN | ACC_MODE(open_flag);
2425
2426 /* O_TRUNC implies we need access checks for write permissions */
2427 if (open_flag & O_TRUNC)
2428 acc_mode |= MAY_WRITE;
2429
2430 /* Allow the LSM permission hook to distinguish append
2431 access from general write access. */
2432 if (open_flag & O_APPEND)
2433 acc_mode |= MAY_APPEND;
2434
2435 flags = LOOKUP_OPEN;
2436 if (open_flag & O_CREAT) {
2437 flags |= LOOKUP_CREATE;
2438 if (open_flag & O_EXCL)
2439 flags |= LOOKUP_EXCL;
2440 }
2441 if (open_flag & O_DIRECTORY)
2442 flags |= LOOKUP_DIRECTORY;
2443 if (!(open_flag & O_NOFOLLOW))
2444 flags |= LOOKUP_FOLLOW;
2445
2446 filp = get_empty_filp();
2447 if (!filp)
2448 return ERR_PTR(-ENFILE);
2449
2450 filp->f_flags = open_flag;
2451 nd.intent.open.file = filp;
2452 nd.intent.open.flags = flag;
2453 nd.intent.open.create_mode = mode;
2454
2455 if (open_flag & O_CREAT)
2456 goto creat;
2457
2458 /* !O_CREAT, simple open */
2459 error = do_path_lookup(dfd, pathname, flags, &nd);
2460 if (unlikely(error))
2461 goto out_filp2;
2462 error = -ELOOP;
2463 if (!(nd.flags & LOOKUP_FOLLOW)) {
2464 if (nd.inode->i_op->follow_link)
2465 goto out_path2;
2466 }
2467 error = -ENOTDIR;
2468 if (nd.flags & LOOKUP_DIRECTORY) {
2469 if (!nd.inode->i_op->lookup)
2470 goto out_path2;
2471 }
2472 audit_inode(pathname, nd.path.dentry);
2473 filp = finish_open(&nd, open_flag, acc_mode);
2474 out2:
2475 release_open_intent(&nd);
2476 return filp;
2477
2478 out_path2:
2479 path_put(&nd.path);
2480 out_filp2:
2481 filp = ERR_PTR(error);
2482 goto out2;
2483
2484 creat:
2485 /* OK, have to create the file. Find the parent. */
2486 error = path_init_rcu(dfd, pathname,
2487 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2488 if (error)
2489 goto out_filp;
2490 error = path_walk_rcu(pathname, &nd);
2491 path_finish_rcu(&nd);
2492 if (unlikely(error == -ECHILD || error == -ESTALE)) {
2493 /* slower, locked walk */
2494 if (error == -ESTALE) {
2495 reval:
2496 flags |= LOOKUP_REVAL;
2497 }
2498 error = path_init(dfd, pathname,
2499 LOOKUP_PARENT | (flags & LOOKUP_REVAL), &nd);
2500 if (error)
2501 goto out_filp;
2502
2503 error = path_walk_simple(pathname, &nd);
2504 }
2505 if (unlikely(error))
2506 goto out_filp;
2507 if (unlikely(!audit_dummy_context()))
2508 audit_inode(pathname, nd.path.dentry);
2509
2510 /*
2511 * We have the parent and last component.
2512 */
2513 nd.flags = flags;
2514 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2515 while (unlikely(!filp)) { /* trailing symlink */
2516 struct path link = path;
2517 struct inode *linki = link.dentry->d_inode;
2518 void *cookie;
2519 error = -ELOOP;
2520 if (!(nd.flags & LOOKUP_FOLLOW))
2521 goto exit_dput;
2522 if (count++ == 32)
2523 goto exit_dput;
2524 /*
2525 * This is subtle. Instead of calling do_follow_link() we do
2526 * the thing by hands. The reason is that this way we have zero
2527 * link_count and path_walk() (called from ->follow_link)
2528 * honoring LOOKUP_PARENT. After that we have the parent and
2529 * last component, i.e. we are in the same situation as after
2530 * the first path_walk(). Well, almost - if the last component
2531 * is normal we get its copy stored in nd->last.name and we will
2532 * have to putname() it when we are done. Procfs-like symlinks
2533 * just set LAST_BIND.
2534 */
2535 nd.flags |= LOOKUP_PARENT;
2536 error = security_inode_follow_link(link.dentry, &nd);
2537 if (error)
2538 goto exit_dput;
2539 error = __do_follow_link(&link, &nd, &cookie);
2540 if (unlikely(error)) {
2541 if (!IS_ERR(cookie) && linki->i_op->put_link)
2542 linki->i_op->put_link(link.dentry, &nd, cookie);
2543 /* nd.path had been dropped */
2544 nd.path = link;
2545 goto out_path;
2546 }
2547 nd.flags &= ~LOOKUP_PARENT;
2548 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
2549 if (linki->i_op->put_link)
2550 linki->i_op->put_link(link.dentry, &nd, cookie);
2551 path_put(&link);
2552 }
2553 out:
2554 if (nd.root.mnt)
2555 path_put(&nd.root);
2556 if (filp == ERR_PTR(-ESTALE) && !(flags & LOOKUP_REVAL))
2557 goto reval;
2558 release_open_intent(&nd);
2559 return filp;
2560
2561 exit_dput:
2562 path_put_conditional(&path, &nd);
2563 out_path:
2564 path_put(&nd.path);
2565 out_filp:
2566 filp = ERR_PTR(error);
2567 goto out;
2568 }
2569
2570 /**
2571 * filp_open - open file and return file pointer
2572 *
2573 * @filename: path to open
2574 * @flags: open flags as per the open(2) second argument
2575 * @mode: mode for the new file if O_CREAT is set, else ignored
2576 *
2577 * This is the helper to open a file from kernelspace if you really
2578 * have to. But in generally you should not do this, so please move
2579 * along, nothing to see here..
2580 */
2581 struct file *filp_open(const char *filename, int flags, int mode)
2582 {
2583 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
2584 }
2585 EXPORT_SYMBOL(filp_open);
2586
2587 /**
2588 * lookup_create - lookup a dentry, creating it if it doesn't exist
2589 * @nd: nameidata info
2590 * @is_dir: directory flag
2591 *
2592 * Simple function to lookup and return a dentry and create it
2593 * if it doesn't exist. Is SMP-safe.
2594 *
2595 * Returns with nd->path.dentry->d_inode->i_mutex locked.
2596 */
2597 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2598 {
2599 struct dentry *dentry = ERR_PTR(-EEXIST);
2600
2601 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2602 /*
2603 * Yucky last component or no last component at all?
2604 * (foo/., foo/.., /////)
2605 */
2606 if (nd->last_type != LAST_NORM)
2607 goto fail;
2608 nd->flags &= ~LOOKUP_PARENT;
2609 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2610 nd->intent.open.flags = O_EXCL;
2611
2612 /*
2613 * Do the final lookup.
2614 */
2615 dentry = lookup_hash(nd);
2616 if (IS_ERR(dentry))
2617 goto fail;
2618
2619 if (dentry->d_inode)
2620 goto eexist;
2621 /*
2622 * Special case - lookup gave negative, but... we had foo/bar/
2623 * From the vfs_mknod() POV we just have a negative dentry -
2624 * all is fine. Let's be bastards - you had / on the end, you've
2625 * been asking for (non-existent) directory. -ENOENT for you.
2626 */
2627 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2628 dput(dentry);
2629 dentry = ERR_PTR(-ENOENT);
2630 }
2631 return dentry;
2632 eexist:
2633 dput(dentry);
2634 dentry = ERR_PTR(-EEXIST);
2635 fail:
2636 return dentry;
2637 }
2638 EXPORT_SYMBOL_GPL(lookup_create);
2639
2640 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2641 {
2642 int error = may_create(dir, dentry);
2643
2644 if (error)
2645 return error;
2646
2647 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2648 return -EPERM;
2649
2650 if (!dir->i_op->mknod)
2651 return -EPERM;
2652
2653 error = devcgroup_inode_mknod(mode, dev);
2654 if (error)
2655 return error;
2656
2657 error = security_inode_mknod(dir, dentry, mode, dev);
2658 if (error)
2659 return error;
2660
2661 error = dir->i_op->mknod(dir, dentry, mode, dev);
2662 if (!error)
2663 fsnotify_create(dir, dentry);
2664 return error;
2665 }
2666
2667 static int may_mknod(mode_t mode)
2668 {
2669 switch (mode & S_IFMT) {
2670 case S_IFREG:
2671 case S_IFCHR:
2672 case S_IFBLK:
2673 case S_IFIFO:
2674 case S_IFSOCK:
2675 case 0: /* zero mode translates to S_IFREG */
2676 return 0;
2677 case S_IFDIR:
2678 return -EPERM;
2679 default:
2680 return -EINVAL;
2681 }
2682 }
2683
2684 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2685 unsigned, dev)
2686 {
2687 int error;
2688 char *tmp;
2689 struct dentry *dentry;
2690 struct nameidata nd;
2691
2692 if (S_ISDIR(mode))
2693 return -EPERM;
2694
2695 error = user_path_parent(dfd, filename, &nd, &tmp);
2696 if (error)
2697 return error;
2698
2699 dentry = lookup_create(&nd, 0);
2700 if (IS_ERR(dentry)) {
2701 error = PTR_ERR(dentry);
2702 goto out_unlock;
2703 }
2704 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2705 mode &= ~current_umask();
2706 error = may_mknod(mode);
2707 if (error)
2708 goto out_dput;
2709 error = mnt_want_write(nd.path.mnt);
2710 if (error)
2711 goto out_dput;
2712 error = security_path_mknod(&nd.path, dentry, mode, dev);
2713 if (error)
2714 goto out_drop_write;
2715 switch (mode & S_IFMT) {
2716 case 0: case S_IFREG:
2717 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2718 break;
2719 case S_IFCHR: case S_IFBLK:
2720 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2721 new_decode_dev(dev));
2722 break;
2723 case S_IFIFO: case S_IFSOCK:
2724 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2725 break;
2726 }
2727 out_drop_write:
2728 mnt_drop_write(nd.path.mnt);
2729 out_dput:
2730 dput(dentry);
2731 out_unlock:
2732 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2733 path_put(&nd.path);
2734 putname(tmp);
2735
2736 return error;
2737 }
2738
2739 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2740 {
2741 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2742 }
2743
2744 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2745 {
2746 int error = may_create(dir, dentry);
2747
2748 if (error)
2749 return error;
2750
2751 if (!dir->i_op->mkdir)
2752 return -EPERM;
2753
2754 mode &= (S_IRWXUGO|S_ISVTX);
2755 error = security_inode_mkdir(dir, dentry, mode);
2756 if (error)
2757 return error;
2758
2759 error = dir->i_op->mkdir(dir, dentry, mode);
2760 if (!error)
2761 fsnotify_mkdir(dir, dentry);
2762 return error;
2763 }
2764
2765 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2766 {
2767 int error = 0;
2768 char * tmp;
2769 struct dentry *dentry;
2770 struct nameidata nd;
2771
2772 error = user_path_parent(dfd, pathname, &nd, &tmp);
2773 if (error)
2774 goto out_err;
2775
2776 dentry = lookup_create(&nd, 1);
2777 error = PTR_ERR(dentry);
2778 if (IS_ERR(dentry))
2779 goto out_unlock;
2780
2781 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2782 mode &= ~current_umask();
2783 error = mnt_want_write(nd.path.mnt);
2784 if (error)
2785 goto out_dput;
2786 error = security_path_mkdir(&nd.path, dentry, mode);
2787 if (error)
2788 goto out_drop_write;
2789 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2790 out_drop_write:
2791 mnt_drop_write(nd.path.mnt);
2792 out_dput:
2793 dput(dentry);
2794 out_unlock:
2795 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2796 path_put(&nd.path);
2797 putname(tmp);
2798 out_err:
2799 return error;
2800 }
2801
2802 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2803 {
2804 return sys_mkdirat(AT_FDCWD, pathname, mode);
2805 }
2806
2807 /*
2808 * We try to drop the dentry early: we should have
2809 * a usage count of 2 if we're the only user of this
2810 * dentry, and if that is true (possibly after pruning
2811 * the dcache), then we drop the dentry now.
2812 *
2813 * A low-level filesystem can, if it choses, legally
2814 * do a
2815 *
2816 * if (!d_unhashed(dentry))
2817 * return -EBUSY;
2818 *
2819 * if it cannot handle the case of removing a directory
2820 * that is still in use by something else..
2821 */
2822 void dentry_unhash(struct dentry *dentry)
2823 {
2824 dget(dentry);
2825 shrink_dcache_parent(dentry);
2826 spin_lock(&dentry->d_lock);
2827 if (dentry->d_count == 2)
2828 __d_drop(dentry);
2829 spin_unlock(&dentry->d_lock);
2830 }
2831
2832 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2833 {
2834 int error = may_delete(dir, dentry, 1);
2835
2836 if (error)
2837 return error;
2838
2839 if (!dir->i_op->rmdir)
2840 return -EPERM;
2841
2842 mutex_lock(&dentry->d_inode->i_mutex);
2843 dentry_unhash(dentry);
2844 if (d_mountpoint(dentry))
2845 error = -EBUSY;
2846 else {
2847 error = security_inode_rmdir(dir, dentry);
2848 if (!error) {
2849 error = dir->i_op->rmdir(dir, dentry);
2850 if (!error) {
2851 dentry->d_inode->i_flags |= S_DEAD;
2852 dont_mount(dentry);
2853 }
2854 }
2855 }
2856 mutex_unlock(&dentry->d_inode->i_mutex);
2857 if (!error) {
2858 d_delete(dentry);
2859 }
2860 dput(dentry);
2861
2862 return error;
2863 }
2864
2865 static long do_rmdir(int dfd, const char __user *pathname)
2866 {
2867 int error = 0;
2868 char * name;
2869 struct dentry *dentry;
2870 struct nameidata nd;
2871
2872 error = user_path_parent(dfd, pathname, &nd, &name);
2873 if (error)
2874 return error;
2875
2876 switch(nd.last_type) {
2877 case LAST_DOTDOT:
2878 error = -ENOTEMPTY;
2879 goto exit1;
2880 case LAST_DOT:
2881 error = -EINVAL;
2882 goto exit1;
2883 case LAST_ROOT:
2884 error = -EBUSY;
2885 goto exit1;
2886 }
2887
2888 nd.flags &= ~LOOKUP_PARENT;
2889
2890 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2891 dentry = lookup_hash(&nd);
2892 error = PTR_ERR(dentry);
2893 if (IS_ERR(dentry))
2894 goto exit2;
2895 error = mnt_want_write(nd.path.mnt);
2896 if (error)
2897 goto exit3;
2898 error = security_path_rmdir(&nd.path, dentry);
2899 if (error)
2900 goto exit4;
2901 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2902 exit4:
2903 mnt_drop_write(nd.path.mnt);
2904 exit3:
2905 dput(dentry);
2906 exit2:
2907 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2908 exit1:
2909 path_put(&nd.path);
2910 putname(name);
2911 return error;
2912 }
2913
2914 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2915 {
2916 return do_rmdir(AT_FDCWD, pathname);
2917 }
2918
2919 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2920 {
2921 int error = may_delete(dir, dentry, 0);
2922
2923 if (error)
2924 return error;
2925
2926 if (!dir->i_op->unlink)
2927 return -EPERM;
2928
2929 mutex_lock(&dentry->d_inode->i_mutex);
2930 if (d_mountpoint(dentry))
2931 error = -EBUSY;
2932 else {
2933 error = security_inode_unlink(dir, dentry);
2934 if (!error) {
2935 error = dir->i_op->unlink(dir, dentry);
2936 if (!error)
2937 dont_mount(dentry);
2938 }
2939 }
2940 mutex_unlock(&dentry->d_inode->i_mutex);
2941
2942 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2943 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2944 fsnotify_link_count(dentry->d_inode);
2945 d_delete(dentry);
2946 }
2947
2948 return error;
2949 }
2950
2951 /*
2952 * Make sure that the actual truncation of the file will occur outside its
2953 * directory's i_mutex. Truncate can take a long time if there is a lot of
2954 * writeout happening, and we don't want to prevent access to the directory
2955 * while waiting on the I/O.
2956 */
2957 static long do_unlinkat(int dfd, const char __user *pathname)
2958 {
2959 int error;
2960 char *name;
2961 struct dentry *dentry;
2962 struct nameidata nd;
2963 struct inode *inode = NULL;
2964
2965 error = user_path_parent(dfd, pathname, &nd, &name);
2966 if (error)
2967 return error;
2968
2969 error = -EISDIR;
2970 if (nd.last_type != LAST_NORM)
2971 goto exit1;
2972
2973 nd.flags &= ~LOOKUP_PARENT;
2974
2975 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2976 dentry = lookup_hash(&nd);
2977 error = PTR_ERR(dentry);
2978 if (!IS_ERR(dentry)) {
2979 /* Why not before? Because we want correct error value */
2980 if (nd.last.name[nd.last.len])
2981 goto slashes;
2982 inode = dentry->d_inode;
2983 if (inode)
2984 ihold(inode);
2985 error = mnt_want_write(nd.path.mnt);
2986 if (error)
2987 goto exit2;
2988 error = security_path_unlink(&nd.path, dentry);
2989 if (error)
2990 goto exit3;
2991 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2992 exit3:
2993 mnt_drop_write(nd.path.mnt);
2994 exit2:
2995 dput(dentry);
2996 }
2997 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2998 if (inode)
2999 iput(inode); /* truncate the inode here */
3000 exit1:
3001 path_put(&nd.path);
3002 putname(name);
3003 return error;
3004
3005 slashes:
3006 error = !dentry->d_inode ? -ENOENT :
3007 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3008 goto exit2;
3009 }
3010
3011 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3012 {
3013 if ((flag & ~AT_REMOVEDIR) != 0)
3014 return -EINVAL;
3015
3016 if (flag & AT_REMOVEDIR)
3017 return do_rmdir(dfd, pathname);
3018
3019 return do_unlinkat(dfd, pathname);
3020 }
3021
3022 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3023 {
3024 return do_unlinkat(AT_FDCWD, pathname);
3025 }
3026
3027 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3028 {
3029 int error = may_create(dir, dentry);
3030
3031 if (error)
3032 return error;
3033
3034 if (!dir->i_op->symlink)
3035 return -EPERM;
3036
3037 error = security_inode_symlink(dir, dentry, oldname);
3038 if (error)
3039 return error;
3040
3041 error = dir->i_op->symlink(dir, dentry, oldname);
3042 if (!error)
3043 fsnotify_create(dir, dentry);
3044 return error;
3045 }
3046
3047 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3048 int, newdfd, const char __user *, newname)
3049 {
3050 int error;
3051 char *from;
3052 char *to;
3053 struct dentry *dentry;
3054 struct nameidata nd;
3055
3056 from = getname(oldname);
3057 if (IS_ERR(from))
3058 return PTR_ERR(from);
3059
3060 error = user_path_parent(newdfd, newname, &nd, &to);
3061 if (error)
3062 goto out_putname;
3063
3064 dentry = lookup_create(&nd, 0);
3065 error = PTR_ERR(dentry);
3066 if (IS_ERR(dentry))
3067 goto out_unlock;
3068
3069 error = mnt_want_write(nd.path.mnt);
3070 if (error)
3071 goto out_dput;
3072 error = security_path_symlink(&nd.path, dentry, from);
3073 if (error)
3074 goto out_drop_write;
3075 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
3076 out_drop_write:
3077 mnt_drop_write(nd.path.mnt);
3078 out_dput:
3079 dput(dentry);
3080 out_unlock:
3081 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3082 path_put(&nd.path);
3083 putname(to);
3084 out_putname:
3085 putname(from);
3086 return error;
3087 }
3088
3089 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3090 {
3091 return sys_symlinkat(oldname, AT_FDCWD, newname);
3092 }
3093
3094 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3095 {
3096 struct inode *inode = old_dentry->d_inode;
3097 int error;
3098
3099 if (!inode)
3100 return -ENOENT;
3101
3102 error = may_create(dir, new_dentry);
3103 if (error)
3104 return error;
3105
3106 if (dir->i_sb != inode->i_sb)
3107 return -EXDEV;
3108
3109 /*
3110 * A link to an append-only or immutable file cannot be created.
3111 */
3112 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3113 return -EPERM;
3114 if (!dir->i_op->link)
3115 return -EPERM;
3116 if (S_ISDIR(inode->i_mode))
3117 return -EPERM;
3118
3119 error = security_inode_link(old_dentry, dir, new_dentry);
3120 if (error)
3121 return error;
3122
3123 mutex_lock(&inode->i_mutex);
3124 error = dir->i_op->link(old_dentry, dir, new_dentry);
3125 mutex_unlock(&inode->i_mutex);
3126 if (!error)
3127 fsnotify_link(dir, inode, new_dentry);
3128 return error;
3129 }
3130
3131 /*
3132 * Hardlinks are often used in delicate situations. We avoid
3133 * security-related surprises by not following symlinks on the
3134 * newname. --KAB
3135 *
3136 * We don't follow them on the oldname either to be compatible
3137 * with linux 2.0, and to avoid hard-linking to directories
3138 * and other special files. --ADM
3139 */
3140 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3141 int, newdfd, const char __user *, newname, int, flags)
3142 {
3143 struct dentry *new_dentry;
3144 struct nameidata nd;
3145 struct path old_path;
3146 int error;
3147 char *to;
3148
3149 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
3150 return -EINVAL;
3151
3152 error = user_path_at(olddfd, oldname,
3153 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
3154 &old_path);
3155 if (error)
3156 return error;
3157
3158 error = user_path_parent(newdfd, newname, &nd, &to);
3159 if (error)
3160 goto out;
3161 error = -EXDEV;
3162 if (old_path.mnt != nd.path.mnt)
3163 goto out_release;
3164 new_dentry = lookup_create(&nd, 0);
3165 error = PTR_ERR(new_dentry);
3166 if (IS_ERR(new_dentry))
3167 goto out_unlock;
3168 error = mnt_want_write(nd.path.mnt);
3169 if (error)
3170 goto out_dput;
3171 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
3172 if (error)
3173 goto out_drop_write;
3174 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
3175 out_drop_write:
3176 mnt_drop_write(nd.path.mnt);
3177 out_dput:
3178 dput(new_dentry);
3179 out_unlock:
3180 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3181 out_release:
3182 path_put(&nd.path);
3183 putname(to);
3184 out:
3185 path_put(&old_path);
3186
3187 return error;
3188 }
3189
3190 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3191 {
3192 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3193 }
3194
3195 /*
3196 * The worst of all namespace operations - renaming directory. "Perverted"
3197 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3198 * Problems:
3199 * a) we can get into loop creation. Check is done in is_subdir().
3200 * b) race potential - two innocent renames can create a loop together.
3201 * That's where 4.4 screws up. Current fix: serialization on
3202 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3203 * story.
3204 * c) we have to lock _three_ objects - parents and victim (if it exists).
3205 * And that - after we got ->i_mutex on parents (until then we don't know
3206 * whether the target exists). Solution: try to be smart with locking
3207 * order for inodes. We rely on the fact that tree topology may change
3208 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3209 * move will be locked. Thus we can rank directories by the tree
3210 * (ancestors first) and rank all non-directories after them.
3211 * That works since everybody except rename does "lock parent, lookup,
3212 * lock child" and rename is under ->s_vfs_rename_mutex.
3213 * HOWEVER, it relies on the assumption that any object with ->lookup()
3214 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3215 * we'd better make sure that there's no link(2) for them.
3216 * d) some filesystems don't support opened-but-unlinked directories,
3217 * either because of layout or because they are not ready to deal with
3218 * all cases correctly. The latter will be fixed (taking this sort of
3219 * stuff into VFS), but the former is not going away. Solution: the same
3220 * trick as in rmdir().
3221 * e) conversion from fhandle to dentry may come in the wrong moment - when
3222 * we are removing the target. Solution: we will have to grab ->i_mutex
3223 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3224 * ->i_mutex on parents, which works but leads to some truly excessive
3225 * locking].
3226 */
3227 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3228 struct inode *new_dir, struct dentry *new_dentry)
3229 {
3230 int error = 0;
3231 struct inode *target;
3232
3233 /*
3234 * If we are going to change the parent - check write permissions,
3235 * we'll need to flip '..'.
3236 */
3237 if (new_dir != old_dir) {
3238 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3239 if (error)
3240 return error;
3241 }
3242
3243 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3244 if (error)
3245 return error;
3246
3247 target = new_dentry->d_inode;
3248 if (target)
3249 mutex_lock(&target->i_mutex);
3250 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3251 error = -EBUSY;
3252 else {
3253 if (target)
3254 dentry_unhash(new_dentry);
3255 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3256 }
3257 if (target) {
3258 if (!error) {
3259 target->i_flags |= S_DEAD;
3260 dont_mount(new_dentry);
3261 }
3262 mutex_unlock(&target->i_mutex);
3263 if (d_unhashed(new_dentry))
3264 d_rehash(new_dentry);
3265 dput(new_dentry);
3266 }
3267 if (!error)
3268 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3269 d_move(old_dentry,new_dentry);
3270 return error;
3271 }
3272
3273 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3274 struct inode *new_dir, struct dentry *new_dentry)
3275 {
3276 struct inode *target;
3277 int error;
3278
3279 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3280 if (error)
3281 return error;
3282
3283 dget(new_dentry);
3284 target = new_dentry->d_inode;
3285 if (target)
3286 mutex_lock(&target->i_mutex);
3287 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3288 error = -EBUSY;
3289 else
3290 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3291 if (!error) {
3292 if (target)
3293 dont_mount(new_dentry);
3294 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3295 d_move(old_dentry, new_dentry);
3296 }
3297 if (target)
3298 mutex_unlock(&target->i_mutex);
3299 dput(new_dentry);
3300 return error;
3301 }
3302
3303 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3304 struct inode *new_dir, struct dentry *new_dentry)
3305 {
3306 int error;
3307 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3308 const unsigned char *old_name;
3309
3310 if (old_dentry->d_inode == new_dentry->d_inode)
3311 return 0;
3312
3313 error = may_delete(old_dir, old_dentry, is_dir);
3314 if (error)
3315 return error;
3316
3317 if (!new_dentry->d_inode)
3318 error = may_create(new_dir, new_dentry);
3319 else
3320 error = may_delete(new_dir, new_dentry, is_dir);
3321 if (error)
3322 return error;
3323
3324 if (!old_dir->i_op->rename)
3325 return -EPERM;
3326
3327 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3328
3329 if (is_dir)
3330 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3331 else
3332 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3333 if (!error)
3334 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3335 new_dentry->d_inode, old_dentry);
3336 fsnotify_oldname_free(old_name);
3337
3338 return error;
3339 }
3340
3341 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3342 int, newdfd, const char __user *, newname)
3343 {
3344 struct dentry *old_dir, *new_dir;
3345 struct dentry *old_dentry, *new_dentry;
3346 struct dentry *trap;
3347 struct nameidata oldnd, newnd;
3348 char *from;
3349 char *to;
3350 int error;
3351
3352 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3353 if (error)
3354 goto exit;
3355
3356 error = user_path_parent(newdfd, newname, &newnd, &to);
3357 if (error)
3358 goto exit1;
3359
3360 error = -EXDEV;
3361 if (oldnd.path.mnt != newnd.path.mnt)
3362 goto exit2;
3363
3364 old_dir = oldnd.path.dentry;
3365 error = -EBUSY;
3366 if (oldnd.last_type != LAST_NORM)
3367 goto exit2;
3368
3369 new_dir = newnd.path.dentry;
3370 if (newnd.last_type != LAST_NORM)
3371 goto exit2;
3372
3373 oldnd.flags &= ~LOOKUP_PARENT;
3374 newnd.flags &= ~LOOKUP_PARENT;
3375 newnd.flags |= LOOKUP_RENAME_TARGET;
3376
3377 trap = lock_rename(new_dir, old_dir);
3378
3379 old_dentry = lookup_hash(&oldnd);
3380 error = PTR_ERR(old_dentry);
3381 if (IS_ERR(old_dentry))
3382 goto exit3;
3383 /* source must exist */
3384 error = -ENOENT;
3385 if (!old_dentry->d_inode)
3386 goto exit4;
3387 /* unless the source is a directory trailing slashes give -ENOTDIR */
3388 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3389 error = -ENOTDIR;
3390 if (oldnd.last.name[oldnd.last.len])
3391 goto exit4;
3392 if (newnd.last.name[newnd.last.len])
3393 goto exit4;
3394 }
3395 /* source should not be ancestor of target */
3396 error = -EINVAL;
3397 if (old_dentry == trap)
3398 goto exit4;
3399 new_dentry = lookup_hash(&newnd);
3400 error = PTR_ERR(new_dentry);
3401 if (IS_ERR(new_dentry))
3402 goto exit4;
3403 /* target should not be an ancestor of source */
3404 error = -ENOTEMPTY;
3405 if (new_dentry == trap)
3406 goto exit5;
3407
3408 error = mnt_want_write(oldnd.path.mnt);
3409 if (error)
3410 goto exit5;
3411 error = security_path_rename(&oldnd.path, old_dentry,
3412 &newnd.path, new_dentry);
3413 if (error)
3414 goto exit6;
3415 error = vfs_rename(old_dir->d_inode, old_dentry,
3416 new_dir->d_inode, new_dentry);
3417 exit6:
3418 mnt_drop_write(oldnd.path.mnt);
3419 exit5:
3420 dput(new_dentry);
3421 exit4:
3422 dput(old_dentry);
3423 exit3:
3424 unlock_rename(new_dir, old_dir);
3425 exit2:
3426 path_put(&newnd.path);
3427 putname(to);
3428 exit1:
3429 path_put(&oldnd.path);
3430 putname(from);
3431 exit:
3432 return error;
3433 }
3434
3435 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3436 {
3437 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3438 }
3439
3440 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3441 {
3442 int len;
3443
3444 len = PTR_ERR(link);
3445 if (IS_ERR(link))
3446 goto out;
3447
3448 len = strlen(link);
3449 if (len > (unsigned) buflen)
3450 len = buflen;
3451 if (copy_to_user(buffer, link, len))
3452 len = -EFAULT;
3453 out:
3454 return len;
3455 }
3456
3457 /*
3458 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3459 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3460 * using) it for any given inode is up to filesystem.
3461 */
3462 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3463 {
3464 struct nameidata nd;
3465 void *cookie;
3466 int res;
3467
3468 nd.depth = 0;
3469 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3470 if (IS_ERR(cookie))
3471 return PTR_ERR(cookie);
3472
3473 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3474 if (dentry->d_inode->i_op->put_link)
3475 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3476 return res;
3477 }
3478
3479 int vfs_follow_link(struct nameidata *nd, const char *link)
3480 {
3481 return __vfs_follow_link(nd, link);
3482 }
3483
3484 /* get the link contents into pagecache */
3485 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3486 {
3487 char *kaddr;
3488 struct page *page;
3489 struct address_space *mapping = dentry->d_inode->i_mapping;
3490 page = read_mapping_page(mapping, 0, NULL);
3491 if (IS_ERR(page))
3492 return (char*)page;
3493 *ppage = page;
3494 kaddr = kmap(page);
3495 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3496 return kaddr;
3497 }
3498
3499 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3500 {
3501 struct page *page = NULL;
3502 char *s = page_getlink(dentry, &page);
3503 int res = vfs_readlink(dentry,buffer,buflen,s);
3504 if (page) {
3505 kunmap(page);
3506 page_cache_release(page);
3507 }
3508 return res;
3509 }
3510
3511 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3512 {
3513 struct page *page = NULL;
3514 nd_set_link(nd, page_getlink(dentry, &page));
3515 return page;
3516 }
3517
3518 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3519 {
3520 struct page *page = cookie;
3521
3522 if (page) {
3523 kunmap(page);
3524 page_cache_release(page);
3525 }
3526 }
3527
3528 /*
3529 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3530 */
3531 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3532 {
3533 struct address_space *mapping = inode->i_mapping;
3534 struct page *page;
3535 void *fsdata;
3536 int err;
3537 char *kaddr;
3538 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3539 if (nofs)
3540 flags |= AOP_FLAG_NOFS;
3541
3542 retry:
3543 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3544 flags, &page, &fsdata);
3545 if (err)
3546 goto fail;
3547
3548 kaddr = kmap_atomic(page, KM_USER0);
3549 memcpy(kaddr, symname, len-1);
3550 kunmap_atomic(kaddr, KM_USER0);
3551
3552 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3553 page, fsdata);
3554 if (err < 0)
3555 goto fail;
3556 if (err < len-1)
3557 goto retry;
3558
3559 mark_inode_dirty(inode);
3560 return 0;
3561 fail:
3562 return err;
3563 }
3564
3565 int page_symlink(struct inode *inode, const char *symname, int len)
3566 {
3567 return __page_symlink(inode, symname, len,
3568 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3569 }
3570
3571 const struct inode_operations page_symlink_inode_operations = {
3572 .readlink = generic_readlink,
3573 .follow_link = page_follow_link_light,
3574 .put_link = page_put_link,
3575 };
3576
3577 EXPORT_SYMBOL(user_path_at);
3578 EXPORT_SYMBOL(follow_down_one);
3579 EXPORT_SYMBOL(follow_down);
3580 EXPORT_SYMBOL(follow_up);
3581 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3582 EXPORT_SYMBOL(getname);
3583 EXPORT_SYMBOL(lock_rename);
3584 EXPORT_SYMBOL(lookup_one_len);
3585 EXPORT_SYMBOL(page_follow_link_light);
3586 EXPORT_SYMBOL(page_put_link);
3587 EXPORT_SYMBOL(page_readlink);
3588 EXPORT_SYMBOL(__page_symlink);
3589 EXPORT_SYMBOL(page_symlink);
3590 EXPORT_SYMBOL(page_symlink_inode_operations);
3591 EXPORT_SYMBOL(kern_path_parent);
3592 EXPORT_SYMBOL(kern_path);
3593 EXPORT_SYMBOL(vfs_path_lookup);
3594 EXPORT_SYMBOL(inode_permission);
3595 EXPORT_SYMBOL(file_permission);
3596 EXPORT_SYMBOL(unlock_rename);
3597 EXPORT_SYMBOL(vfs_create);
3598 EXPORT_SYMBOL(vfs_follow_link);
3599 EXPORT_SYMBOL(vfs_link);
3600 EXPORT_SYMBOL(vfs_mkdir);
3601 EXPORT_SYMBOL(vfs_mknod);
3602 EXPORT_SYMBOL(generic_permission);
3603 EXPORT_SYMBOL(vfs_readlink);
3604 EXPORT_SYMBOL(vfs_rename);
3605 EXPORT_SYMBOL(vfs_rmdir);
3606 EXPORT_SYMBOL(vfs_symlink);
3607 EXPORT_SYMBOL(vfs_unlink);
3608 EXPORT_SYMBOL(dentry_unhash);
3609 EXPORT_SYMBOL(generic_readlink);