]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/namei.c
namei.c: remove utterly outdated comment
[mirror_ubuntu-bionic-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/smp_lock.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/namei.h>
35 #include <asm/namei.h>
36 #include <asm/uaccess.h>
37
38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
39
40 /* [Feb-1997 T. Schoebel-Theuer]
41 * Fundamental changes in the pathname lookup mechanisms (namei)
42 * were necessary because of omirr. The reason is that omirr needs
43 * to know the _real_ pathname, not the user-supplied one, in case
44 * of symlinks (and also when transname replacements occur).
45 *
46 * The new code replaces the old recursive symlink resolution with
47 * an iterative one (in case of non-nested symlink chains). It does
48 * this with calls to <fs>_follow_link().
49 * As a side effect, dir_namei(), _namei() and follow_link() are now
50 * replaced with a single function lookup_dentry() that can handle all
51 * the special cases of the former code.
52 *
53 * With the new dcache, the pathname is stored at each inode, at least as
54 * long as the refcount of the inode is positive. As a side effect, the
55 * size of the dcache depends on the inode cache and thus is dynamic.
56 *
57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58 * resolution to correspond with current state of the code.
59 *
60 * Note that the symlink resolution is not *completely* iterative.
61 * There is still a significant amount of tail- and mid- recursion in
62 * the algorithm. Also, note that <fs>_readlink() is not used in
63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64 * may return different results than <fs>_follow_link(). Many virtual
65 * filesystems (including /proc) exhibit this behavior.
66 */
67
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70 * and the name already exists in form of a symlink, try to create the new
71 * name indicated by the symlink. The old code always complained that the
72 * name already exists, due to not following the symlink even if its target
73 * is nonexistent. The new semantics affects also mknod() and link() when
74 * the name is a symlink pointing to a non-existant name.
75 *
76 * I don't know which semantics is the right one, since I have no access
77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79 * "old" one. Personally, I think the new semantics is much more logical.
80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81 * file does succeed in both HP-UX and SunOs, but not in Solaris
82 * and in the old Linux semantics.
83 */
84
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86 * semantics. See the comments in "open_namei" and "do_link" below.
87 *
88 * [10-Sep-98 Alan Modra] Another symlink change.
89 */
90
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92 * inside the path - always follow.
93 * in the last component in creation/removal/renaming - never follow.
94 * if LOOKUP_FOLLOW passed - follow.
95 * if the pathname has trailing slashes - follow.
96 * otherwise - don't follow.
97 * (applied in that order).
98 *
99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101 * During the 2.4 we need to fix the userland stuff depending on it -
102 * hopefully we will be able to get rid of that wart in 2.5. So far only
103 * XEmacs seems to be relying on it...
104 */
105 /*
106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
108 * any extra contention...
109 */
110
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
114 *
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
117 */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 int retval;
121 unsigned long len = PATH_MAX;
122
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
128 }
129
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
138 }
139
140 char * getname(const char __user * filename)
141 {
142 char *tmp, *result;
143
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
148
149 result = tmp;
150 if (retval < 0) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 audit_getname(result);
156 return result;
157 }
158
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
161 {
162 if (unlikely(!audit_dummy_context()))
163 audit_putname(name);
164 else
165 __putname(name);
166 }
167 EXPORT_SYMBOL(putname);
168 #endif
169
170
171 /**
172 * generic_permission - check for access rights on a Posix-like filesystem
173 * @inode: inode to check access rights for
174 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
175 * @check_acl: optional callback to check for Posix ACLs
176 *
177 * Used to check for read/write/execute permissions on a file.
178 * We use "fsuid" for this, letting us set arbitrary permissions
179 * for filesystem access without changing the "normal" uids which
180 * are used for other things..
181 */
182 int generic_permission(struct inode *inode, int mask,
183 int (*check_acl)(struct inode *inode, int mask))
184 {
185 umode_t mode = inode->i_mode;
186
187 if (current->fsuid == inode->i_uid)
188 mode >>= 6;
189 else {
190 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
191 int error = check_acl(inode, mask);
192 if (error == -EACCES)
193 goto check_capabilities;
194 else if (error != -EAGAIN)
195 return error;
196 }
197
198 if (in_group_p(inode->i_gid))
199 mode >>= 3;
200 }
201
202 /*
203 * If the DACs are ok we don't need any capability check.
204 */
205 if (((mode & mask & (MAY_READ|MAY_WRITE|MAY_EXEC)) == mask))
206 return 0;
207
208 check_capabilities:
209 /*
210 * Read/write DACs are always overridable.
211 * Executable DACs are overridable if at least one exec bit is set.
212 */
213 if (!(mask & MAY_EXEC) ||
214 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
215 if (capable(CAP_DAC_OVERRIDE))
216 return 0;
217
218 /*
219 * Searching includes executable on directories, else just read.
220 */
221 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
222 if (capable(CAP_DAC_READ_SEARCH))
223 return 0;
224
225 return -EACCES;
226 }
227
228 int permission(struct inode *inode, int mask, struct nameidata *nd)
229 {
230 umode_t mode = inode->i_mode;
231 int retval, submask;
232
233 if (mask & MAY_WRITE) {
234
235 /*
236 * Nobody gets write access to a read-only fs.
237 */
238 if (IS_RDONLY(inode) &&
239 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
240 return -EROFS;
241
242 /*
243 * Nobody gets write access to an immutable file.
244 */
245 if (IS_IMMUTABLE(inode))
246 return -EACCES;
247 }
248
249
250 /*
251 * MAY_EXEC on regular files requires special handling: We override
252 * filesystem execute permissions if the mode bits aren't set or
253 * the fs is mounted with the "noexec" flag.
254 */
255 if ((mask & MAY_EXEC) && S_ISREG(mode) && (!(mode & S_IXUGO) ||
256 (nd && nd->mnt && (nd->mnt->mnt_flags & MNT_NOEXEC))))
257 return -EACCES;
258
259 /* Ordinary permission routines do not understand MAY_APPEND. */
260 submask = mask & ~MAY_APPEND;
261 if (inode->i_op && inode->i_op->permission)
262 retval = inode->i_op->permission(inode, submask, nd);
263 else
264 retval = generic_permission(inode, submask, NULL);
265 if (retval)
266 return retval;
267
268 return security_inode_permission(inode, mask, nd);
269 }
270
271 /**
272 * vfs_permission - check for access rights to a given path
273 * @nd: lookup result that describes the path
274 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
275 *
276 * Used to check for read/write/execute permissions on a path.
277 * We use "fsuid" for this, letting us set arbitrary permissions
278 * for filesystem access without changing the "normal" uids which
279 * are used for other things.
280 */
281 int vfs_permission(struct nameidata *nd, int mask)
282 {
283 return permission(nd->dentry->d_inode, mask, nd);
284 }
285
286 /**
287 * file_permission - check for additional access rights to a given file
288 * @file: file to check access rights for
289 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
290 *
291 * Used to check for read/write/execute permissions on an already opened
292 * file.
293 *
294 * Note:
295 * Do not use this function in new code. All access checks should
296 * be done using vfs_permission().
297 */
298 int file_permission(struct file *file, int mask)
299 {
300 return permission(file->f_path.dentry->d_inode, mask, NULL);
301 }
302
303 /*
304 * get_write_access() gets write permission for a file.
305 * put_write_access() releases this write permission.
306 * This is used for regular files.
307 * We cannot support write (and maybe mmap read-write shared) accesses and
308 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
309 * can have the following values:
310 * 0: no writers, no VM_DENYWRITE mappings
311 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
312 * > 0: (i_writecount) users are writing to the file.
313 *
314 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
315 * except for the cases where we don't hold i_writecount yet. Then we need to
316 * use {get,deny}_write_access() - these functions check the sign and refuse
317 * to do the change if sign is wrong. Exclusion between them is provided by
318 * the inode->i_lock spinlock.
319 */
320
321 int get_write_access(struct inode * inode)
322 {
323 spin_lock(&inode->i_lock);
324 if (atomic_read(&inode->i_writecount) < 0) {
325 spin_unlock(&inode->i_lock);
326 return -ETXTBSY;
327 }
328 atomic_inc(&inode->i_writecount);
329 spin_unlock(&inode->i_lock);
330
331 return 0;
332 }
333
334 int deny_write_access(struct file * file)
335 {
336 struct inode *inode = file->f_path.dentry->d_inode;
337
338 spin_lock(&inode->i_lock);
339 if (atomic_read(&inode->i_writecount) > 0) {
340 spin_unlock(&inode->i_lock);
341 return -ETXTBSY;
342 }
343 atomic_dec(&inode->i_writecount);
344 spin_unlock(&inode->i_lock);
345
346 return 0;
347 }
348
349 void path_release(struct nameidata *nd)
350 {
351 dput(nd->dentry);
352 mntput(nd->mnt);
353 }
354
355 /*
356 * umount() mustn't call path_release()/mntput() as that would clear
357 * mnt_expiry_mark
358 */
359 void path_release_on_umount(struct nameidata *nd)
360 {
361 dput(nd->dentry);
362 mntput_no_expire(nd->mnt);
363 }
364
365 /**
366 * release_open_intent - free up open intent resources
367 * @nd: pointer to nameidata
368 */
369 void release_open_intent(struct nameidata *nd)
370 {
371 if (nd->intent.open.file->f_path.dentry == NULL)
372 put_filp(nd->intent.open.file);
373 else
374 fput(nd->intent.open.file);
375 }
376
377 static inline struct dentry *
378 do_revalidate(struct dentry *dentry, struct nameidata *nd)
379 {
380 int status = dentry->d_op->d_revalidate(dentry, nd);
381 if (unlikely(status <= 0)) {
382 /*
383 * The dentry failed validation.
384 * If d_revalidate returned 0 attempt to invalidate
385 * the dentry otherwise d_revalidate is asking us
386 * to return a fail status.
387 */
388 if (!status) {
389 if (!d_invalidate(dentry)) {
390 dput(dentry);
391 dentry = NULL;
392 }
393 } else {
394 dput(dentry);
395 dentry = ERR_PTR(status);
396 }
397 }
398 return dentry;
399 }
400
401 /*
402 * Internal lookup() using the new generic dcache.
403 * SMP-safe
404 */
405 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
406 {
407 struct dentry * dentry = __d_lookup(parent, name);
408
409 /* lockess __d_lookup may fail due to concurrent d_move()
410 * in some unrelated directory, so try with d_lookup
411 */
412 if (!dentry)
413 dentry = d_lookup(parent, name);
414
415 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
416 dentry = do_revalidate(dentry, nd);
417
418 return dentry;
419 }
420
421 /*
422 * Short-cut version of permission(), for calling by
423 * path_walk(), when dcache lock is held. Combines parts
424 * of permission() and generic_permission(), and tests ONLY for
425 * MAY_EXEC permission.
426 *
427 * If appropriate, check DAC only. If not appropriate, or
428 * short-cut DAC fails, then call permission() to do more
429 * complete permission check.
430 */
431 static int exec_permission_lite(struct inode *inode,
432 struct nameidata *nd)
433 {
434 umode_t mode = inode->i_mode;
435
436 if (inode->i_op && inode->i_op->permission)
437 return -EAGAIN;
438
439 if (current->fsuid == inode->i_uid)
440 mode >>= 6;
441 else if (in_group_p(inode->i_gid))
442 mode >>= 3;
443
444 if (mode & MAY_EXEC)
445 goto ok;
446
447 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
448 goto ok;
449
450 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
451 goto ok;
452
453 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
454 goto ok;
455
456 return -EACCES;
457 ok:
458 return security_inode_permission(inode, MAY_EXEC, nd);
459 }
460
461 /*
462 * This is called when everything else fails, and we actually have
463 * to go to the low-level filesystem to find out what we should do..
464 *
465 * We get the directory semaphore, and after getting that we also
466 * make sure that nobody added the entry to the dcache in the meantime..
467 * SMP-safe
468 */
469 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
470 {
471 struct dentry * result;
472 struct inode *dir = parent->d_inode;
473
474 mutex_lock(&dir->i_mutex);
475 /*
476 * First re-do the cached lookup just in case it was created
477 * while we waited for the directory semaphore..
478 *
479 * FIXME! This could use version numbering or similar to
480 * avoid unnecessary cache lookups.
481 *
482 * The "dcache_lock" is purely to protect the RCU list walker
483 * from concurrent renames at this point (we mustn't get false
484 * negatives from the RCU list walk here, unlike the optimistic
485 * fast walk).
486 *
487 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
488 */
489 result = d_lookup(parent, name);
490 if (!result) {
491 struct dentry * dentry = d_alloc(parent, name);
492 result = ERR_PTR(-ENOMEM);
493 if (dentry) {
494 result = dir->i_op->lookup(dir, dentry, nd);
495 if (result)
496 dput(dentry);
497 else
498 result = dentry;
499 }
500 mutex_unlock(&dir->i_mutex);
501 return result;
502 }
503
504 /*
505 * Uhhuh! Nasty case: the cache was re-populated while
506 * we waited on the semaphore. Need to revalidate.
507 */
508 mutex_unlock(&dir->i_mutex);
509 if (result->d_op && result->d_op->d_revalidate) {
510 result = do_revalidate(result, nd);
511 if (!result)
512 result = ERR_PTR(-ENOENT);
513 }
514 return result;
515 }
516
517 static int __emul_lookup_dentry(const char *, struct nameidata *);
518
519 /* SMP-safe */
520 static __always_inline int
521 walk_init_root(const char *name, struct nameidata *nd)
522 {
523 struct fs_struct *fs = current->fs;
524
525 read_lock(&fs->lock);
526 if (fs->altroot && !(nd->flags & LOOKUP_NOALT)) {
527 nd->mnt = mntget(fs->altrootmnt);
528 nd->dentry = dget(fs->altroot);
529 read_unlock(&fs->lock);
530 if (__emul_lookup_dentry(name,nd))
531 return 0;
532 read_lock(&fs->lock);
533 }
534 nd->mnt = mntget(fs->rootmnt);
535 nd->dentry = dget(fs->root);
536 read_unlock(&fs->lock);
537 return 1;
538 }
539
540 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
541 {
542 int res = 0;
543 char *name;
544 if (IS_ERR(link))
545 goto fail;
546
547 if (*link == '/') {
548 path_release(nd);
549 if (!walk_init_root(link, nd))
550 /* weird __emul_prefix() stuff did it */
551 goto out;
552 }
553 res = link_path_walk(link, nd);
554 out:
555 if (nd->depth || res || nd->last_type!=LAST_NORM)
556 return res;
557 /*
558 * If it is an iterative symlinks resolution in open_namei() we
559 * have to copy the last component. And all that crap because of
560 * bloody create() on broken symlinks. Furrfu...
561 */
562 name = __getname();
563 if (unlikely(!name)) {
564 path_release(nd);
565 return -ENOMEM;
566 }
567 strcpy(name, nd->last.name);
568 nd->last.name = name;
569 return 0;
570 fail:
571 path_release(nd);
572 return PTR_ERR(link);
573 }
574
575 static inline void dput_path(struct path *path, struct nameidata *nd)
576 {
577 dput(path->dentry);
578 if (path->mnt != nd->mnt)
579 mntput(path->mnt);
580 }
581
582 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
583 {
584 dput(nd->dentry);
585 if (nd->mnt != path->mnt)
586 mntput(nd->mnt);
587 nd->mnt = path->mnt;
588 nd->dentry = path->dentry;
589 }
590
591 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
592 {
593 int error;
594 void *cookie;
595 struct dentry *dentry = path->dentry;
596
597 touch_atime(path->mnt, dentry);
598 nd_set_link(nd, NULL);
599
600 if (path->mnt != nd->mnt) {
601 path_to_nameidata(path, nd);
602 dget(dentry);
603 }
604 mntget(path->mnt);
605 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
606 error = PTR_ERR(cookie);
607 if (!IS_ERR(cookie)) {
608 char *s = nd_get_link(nd);
609 error = 0;
610 if (s)
611 error = __vfs_follow_link(nd, s);
612 if (dentry->d_inode->i_op->put_link)
613 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
614 }
615 dput(dentry);
616 mntput(path->mnt);
617
618 return error;
619 }
620
621 /*
622 * This limits recursive symlink follows to 8, while
623 * limiting consecutive symlinks to 40.
624 *
625 * Without that kind of total limit, nasty chains of consecutive
626 * symlinks can cause almost arbitrarily long lookups.
627 */
628 static inline int do_follow_link(struct path *path, struct nameidata *nd)
629 {
630 int err = -ELOOP;
631 if (current->link_count >= MAX_NESTED_LINKS)
632 goto loop;
633 if (current->total_link_count >= 40)
634 goto loop;
635 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
636 cond_resched();
637 err = security_inode_follow_link(path->dentry, nd);
638 if (err)
639 goto loop;
640 current->link_count++;
641 current->total_link_count++;
642 nd->depth++;
643 err = __do_follow_link(path, nd);
644 current->link_count--;
645 nd->depth--;
646 return err;
647 loop:
648 dput_path(path, nd);
649 path_release(nd);
650 return err;
651 }
652
653 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
654 {
655 struct vfsmount *parent;
656 struct dentry *mountpoint;
657 spin_lock(&vfsmount_lock);
658 parent=(*mnt)->mnt_parent;
659 if (parent == *mnt) {
660 spin_unlock(&vfsmount_lock);
661 return 0;
662 }
663 mntget(parent);
664 mountpoint=dget((*mnt)->mnt_mountpoint);
665 spin_unlock(&vfsmount_lock);
666 dput(*dentry);
667 *dentry = mountpoint;
668 mntput(*mnt);
669 *mnt = parent;
670 return 1;
671 }
672
673 /* no need for dcache_lock, as serialization is taken care in
674 * namespace.c
675 */
676 static int __follow_mount(struct path *path)
677 {
678 int res = 0;
679 while (d_mountpoint(path->dentry)) {
680 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
681 if (!mounted)
682 break;
683 dput(path->dentry);
684 if (res)
685 mntput(path->mnt);
686 path->mnt = mounted;
687 path->dentry = dget(mounted->mnt_root);
688 res = 1;
689 }
690 return res;
691 }
692
693 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
694 {
695 while (d_mountpoint(*dentry)) {
696 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
697 if (!mounted)
698 break;
699 dput(*dentry);
700 mntput(*mnt);
701 *mnt = mounted;
702 *dentry = dget(mounted->mnt_root);
703 }
704 }
705
706 /* no need for dcache_lock, as serialization is taken care in
707 * namespace.c
708 */
709 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
710 {
711 struct vfsmount *mounted;
712
713 mounted = lookup_mnt(*mnt, *dentry);
714 if (mounted) {
715 dput(*dentry);
716 mntput(*mnt);
717 *mnt = mounted;
718 *dentry = dget(mounted->mnt_root);
719 return 1;
720 }
721 return 0;
722 }
723
724 static __always_inline void follow_dotdot(struct nameidata *nd)
725 {
726 struct fs_struct *fs = current->fs;
727
728 while(1) {
729 struct vfsmount *parent;
730 struct dentry *old = nd->dentry;
731
732 read_lock(&fs->lock);
733 if (nd->dentry == fs->root &&
734 nd->mnt == fs->rootmnt) {
735 read_unlock(&fs->lock);
736 break;
737 }
738 read_unlock(&fs->lock);
739 spin_lock(&dcache_lock);
740 if (nd->dentry != nd->mnt->mnt_root) {
741 nd->dentry = dget(nd->dentry->d_parent);
742 spin_unlock(&dcache_lock);
743 dput(old);
744 break;
745 }
746 spin_unlock(&dcache_lock);
747 spin_lock(&vfsmount_lock);
748 parent = nd->mnt->mnt_parent;
749 if (parent == nd->mnt) {
750 spin_unlock(&vfsmount_lock);
751 break;
752 }
753 mntget(parent);
754 nd->dentry = dget(nd->mnt->mnt_mountpoint);
755 spin_unlock(&vfsmount_lock);
756 dput(old);
757 mntput(nd->mnt);
758 nd->mnt = parent;
759 }
760 follow_mount(&nd->mnt, &nd->dentry);
761 }
762
763 /*
764 * It's more convoluted than I'd like it to be, but... it's still fairly
765 * small and for now I'd prefer to have fast path as straight as possible.
766 * It _is_ time-critical.
767 */
768 static int do_lookup(struct nameidata *nd, struct qstr *name,
769 struct path *path)
770 {
771 struct vfsmount *mnt = nd->mnt;
772 struct dentry *dentry = __d_lookup(nd->dentry, name);
773
774 if (!dentry)
775 goto need_lookup;
776 if (dentry->d_op && dentry->d_op->d_revalidate)
777 goto need_revalidate;
778 done:
779 path->mnt = mnt;
780 path->dentry = dentry;
781 __follow_mount(path);
782 return 0;
783
784 need_lookup:
785 dentry = real_lookup(nd->dentry, name, nd);
786 if (IS_ERR(dentry))
787 goto fail;
788 goto done;
789
790 need_revalidate:
791 dentry = do_revalidate(dentry, nd);
792 if (!dentry)
793 goto need_lookup;
794 if (IS_ERR(dentry))
795 goto fail;
796 goto done;
797
798 fail:
799 return PTR_ERR(dentry);
800 }
801
802 /*
803 * Name resolution.
804 * This is the basic name resolution function, turning a pathname into
805 * the final dentry. We expect 'base' to be positive and a directory.
806 *
807 * Returns 0 and nd will have valid dentry and mnt on success.
808 * Returns error and drops reference to input namei data on failure.
809 */
810 static fastcall int __link_path_walk(const char * name, struct nameidata *nd)
811 {
812 struct path next;
813 struct inode *inode;
814 int err;
815 unsigned int lookup_flags = nd->flags;
816
817 while (*name=='/')
818 name++;
819 if (!*name)
820 goto return_reval;
821
822 inode = nd->dentry->d_inode;
823 if (nd->depth)
824 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
825
826 /* At this point we know we have a real path component. */
827 for(;;) {
828 unsigned long hash;
829 struct qstr this;
830 unsigned int c;
831
832 nd->flags |= LOOKUP_CONTINUE;
833 err = exec_permission_lite(inode, nd);
834 if (err == -EAGAIN)
835 err = vfs_permission(nd, MAY_EXEC);
836 if (err)
837 break;
838
839 this.name = name;
840 c = *(const unsigned char *)name;
841
842 hash = init_name_hash();
843 do {
844 name++;
845 hash = partial_name_hash(c, hash);
846 c = *(const unsigned char *)name;
847 } while (c && (c != '/'));
848 this.len = name - (const char *) this.name;
849 this.hash = end_name_hash(hash);
850
851 /* remove trailing slashes? */
852 if (!c)
853 goto last_component;
854 while (*++name == '/');
855 if (!*name)
856 goto last_with_slashes;
857
858 /*
859 * "." and ".." are special - ".." especially so because it has
860 * to be able to know about the current root directory and
861 * parent relationships.
862 */
863 if (this.name[0] == '.') switch (this.len) {
864 default:
865 break;
866 case 2:
867 if (this.name[1] != '.')
868 break;
869 follow_dotdot(nd);
870 inode = nd->dentry->d_inode;
871 /* fallthrough */
872 case 1:
873 continue;
874 }
875 /*
876 * See if the low-level filesystem might want
877 * to use its own hash..
878 */
879 if (nd->dentry->d_op && nd->dentry->d_op->d_hash) {
880 err = nd->dentry->d_op->d_hash(nd->dentry, &this);
881 if (err < 0)
882 break;
883 }
884 /* This does the actual lookups.. */
885 err = do_lookup(nd, &this, &next);
886 if (err)
887 break;
888
889 err = -ENOENT;
890 inode = next.dentry->d_inode;
891 if (!inode)
892 goto out_dput;
893 err = -ENOTDIR;
894 if (!inode->i_op)
895 goto out_dput;
896
897 if (inode->i_op->follow_link) {
898 err = do_follow_link(&next, nd);
899 if (err)
900 goto return_err;
901 err = -ENOENT;
902 inode = nd->dentry->d_inode;
903 if (!inode)
904 break;
905 err = -ENOTDIR;
906 if (!inode->i_op)
907 break;
908 } else
909 path_to_nameidata(&next, nd);
910 err = -ENOTDIR;
911 if (!inode->i_op->lookup)
912 break;
913 continue;
914 /* here ends the main loop */
915
916 last_with_slashes:
917 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
918 last_component:
919 /* Clear LOOKUP_CONTINUE iff it was previously unset */
920 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
921 if (lookup_flags & LOOKUP_PARENT)
922 goto lookup_parent;
923 if (this.name[0] == '.') switch (this.len) {
924 default:
925 break;
926 case 2:
927 if (this.name[1] != '.')
928 break;
929 follow_dotdot(nd);
930 inode = nd->dentry->d_inode;
931 /* fallthrough */
932 case 1:
933 goto return_reval;
934 }
935 if (nd->dentry->d_op && nd->dentry->d_op->d_hash) {
936 err = nd->dentry->d_op->d_hash(nd->dentry, &this);
937 if (err < 0)
938 break;
939 }
940 err = do_lookup(nd, &this, &next);
941 if (err)
942 break;
943 inode = next.dentry->d_inode;
944 if ((lookup_flags & LOOKUP_FOLLOW)
945 && inode && inode->i_op && inode->i_op->follow_link) {
946 err = do_follow_link(&next, nd);
947 if (err)
948 goto return_err;
949 inode = nd->dentry->d_inode;
950 } else
951 path_to_nameidata(&next, nd);
952 err = -ENOENT;
953 if (!inode)
954 break;
955 if (lookup_flags & LOOKUP_DIRECTORY) {
956 err = -ENOTDIR;
957 if (!inode->i_op || !inode->i_op->lookup)
958 break;
959 }
960 goto return_base;
961 lookup_parent:
962 nd->last = this;
963 nd->last_type = LAST_NORM;
964 if (this.name[0] != '.')
965 goto return_base;
966 if (this.len == 1)
967 nd->last_type = LAST_DOT;
968 else if (this.len == 2 && this.name[1] == '.')
969 nd->last_type = LAST_DOTDOT;
970 else
971 goto return_base;
972 return_reval:
973 /*
974 * We bypassed the ordinary revalidation routines.
975 * We may need to check the cached dentry for staleness.
976 */
977 if (nd->dentry && nd->dentry->d_sb &&
978 (nd->dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
979 err = -ESTALE;
980 /* Note: we do not d_invalidate() */
981 if (!nd->dentry->d_op->d_revalidate(nd->dentry, nd))
982 break;
983 }
984 return_base:
985 return 0;
986 out_dput:
987 dput_path(&next, nd);
988 break;
989 }
990 path_release(nd);
991 return_err:
992 return err;
993 }
994
995 /*
996 * Wrapper to retry pathname resolution whenever the underlying
997 * file system returns an ESTALE.
998 *
999 * Retry the whole path once, forcing real lookup requests
1000 * instead of relying on the dcache.
1001 */
1002 int fastcall link_path_walk(const char *name, struct nameidata *nd)
1003 {
1004 struct nameidata save = *nd;
1005 int result;
1006
1007 /* make sure the stuff we saved doesn't go away */
1008 dget(save.dentry);
1009 mntget(save.mnt);
1010
1011 result = __link_path_walk(name, nd);
1012 if (result == -ESTALE) {
1013 *nd = save;
1014 dget(nd->dentry);
1015 mntget(nd->mnt);
1016 nd->flags |= LOOKUP_REVAL;
1017 result = __link_path_walk(name, nd);
1018 }
1019
1020 dput(save.dentry);
1021 mntput(save.mnt);
1022
1023 return result;
1024 }
1025
1026 int fastcall path_walk(const char * name, struct nameidata *nd)
1027 {
1028 current->total_link_count = 0;
1029 return link_path_walk(name, nd);
1030 }
1031
1032 /*
1033 * SMP-safe: Returns 1 and nd will have valid dentry and mnt, if
1034 * everything is done. Returns 0 and drops input nd, if lookup failed;
1035 */
1036 static int __emul_lookup_dentry(const char *name, struct nameidata *nd)
1037 {
1038 if (path_walk(name, nd))
1039 return 0; /* something went wrong... */
1040
1041 if (!nd->dentry->d_inode || S_ISDIR(nd->dentry->d_inode->i_mode)) {
1042 struct dentry *old_dentry = nd->dentry;
1043 struct vfsmount *old_mnt = nd->mnt;
1044 struct qstr last = nd->last;
1045 int last_type = nd->last_type;
1046 struct fs_struct *fs = current->fs;
1047
1048 /*
1049 * NAME was not found in alternate root or it's a directory.
1050 * Try to find it in the normal root:
1051 */
1052 nd->last_type = LAST_ROOT;
1053 read_lock(&fs->lock);
1054 nd->mnt = mntget(fs->rootmnt);
1055 nd->dentry = dget(fs->root);
1056 read_unlock(&fs->lock);
1057 if (path_walk(name, nd) == 0) {
1058 if (nd->dentry->d_inode) {
1059 dput(old_dentry);
1060 mntput(old_mnt);
1061 return 1;
1062 }
1063 path_release(nd);
1064 }
1065 nd->dentry = old_dentry;
1066 nd->mnt = old_mnt;
1067 nd->last = last;
1068 nd->last_type = last_type;
1069 }
1070 return 1;
1071 }
1072
1073 void set_fs_altroot(void)
1074 {
1075 char *emul = __emul_prefix();
1076 struct nameidata nd;
1077 struct vfsmount *mnt = NULL, *oldmnt;
1078 struct dentry *dentry = NULL, *olddentry;
1079 int err;
1080 struct fs_struct *fs = current->fs;
1081
1082 if (!emul)
1083 goto set_it;
1084 err = path_lookup(emul, LOOKUP_FOLLOW|LOOKUP_DIRECTORY|LOOKUP_NOALT, &nd);
1085 if (!err) {
1086 mnt = nd.mnt;
1087 dentry = nd.dentry;
1088 }
1089 set_it:
1090 write_lock(&fs->lock);
1091 oldmnt = fs->altrootmnt;
1092 olddentry = fs->altroot;
1093 fs->altrootmnt = mnt;
1094 fs->altroot = dentry;
1095 write_unlock(&fs->lock);
1096 if (olddentry) {
1097 dput(olddentry);
1098 mntput(oldmnt);
1099 }
1100 }
1101
1102 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1103 static int fastcall do_path_lookup(int dfd, const char *name,
1104 unsigned int flags, struct nameidata *nd)
1105 {
1106 int retval = 0;
1107 int fput_needed;
1108 struct file *file;
1109 struct fs_struct *fs = current->fs;
1110
1111 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1112 nd->flags = flags;
1113 nd->depth = 0;
1114
1115 if (*name=='/') {
1116 read_lock(&fs->lock);
1117 if (fs->altroot && !(nd->flags & LOOKUP_NOALT)) {
1118 nd->mnt = mntget(fs->altrootmnt);
1119 nd->dentry = dget(fs->altroot);
1120 read_unlock(&fs->lock);
1121 if (__emul_lookup_dentry(name,nd))
1122 goto out; /* found in altroot */
1123 read_lock(&fs->lock);
1124 }
1125 nd->mnt = mntget(fs->rootmnt);
1126 nd->dentry = dget(fs->root);
1127 read_unlock(&fs->lock);
1128 } else if (dfd == AT_FDCWD) {
1129 read_lock(&fs->lock);
1130 nd->mnt = mntget(fs->pwdmnt);
1131 nd->dentry = dget(fs->pwd);
1132 read_unlock(&fs->lock);
1133 } else {
1134 struct dentry *dentry;
1135
1136 file = fget_light(dfd, &fput_needed);
1137 retval = -EBADF;
1138 if (!file)
1139 goto out_fail;
1140
1141 dentry = file->f_path.dentry;
1142
1143 retval = -ENOTDIR;
1144 if (!S_ISDIR(dentry->d_inode->i_mode))
1145 goto fput_fail;
1146
1147 retval = file_permission(file, MAY_EXEC);
1148 if (retval)
1149 goto fput_fail;
1150
1151 nd->mnt = mntget(file->f_path.mnt);
1152 nd->dentry = dget(dentry);
1153
1154 fput_light(file, fput_needed);
1155 }
1156 current->total_link_count = 0;
1157 retval = link_path_walk(name, nd);
1158 out:
1159 if (likely(retval == 0)) {
1160 if (unlikely(!audit_dummy_context() && nd && nd->dentry &&
1161 nd->dentry->d_inode))
1162 audit_inode(name, nd->dentry->d_inode);
1163 }
1164 out_fail:
1165 return retval;
1166
1167 fput_fail:
1168 fput_light(file, fput_needed);
1169 goto out_fail;
1170 }
1171
1172 int fastcall path_lookup(const char *name, unsigned int flags,
1173 struct nameidata *nd)
1174 {
1175 return do_path_lookup(AT_FDCWD, name, flags, nd);
1176 }
1177
1178 static int __path_lookup_intent_open(int dfd, const char *name,
1179 unsigned int lookup_flags, struct nameidata *nd,
1180 int open_flags, int create_mode)
1181 {
1182 struct file *filp = get_empty_filp();
1183 int err;
1184
1185 if (filp == NULL)
1186 return -ENFILE;
1187 nd->intent.open.file = filp;
1188 nd->intent.open.flags = open_flags;
1189 nd->intent.open.create_mode = create_mode;
1190 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1191 if (IS_ERR(nd->intent.open.file)) {
1192 if (err == 0) {
1193 err = PTR_ERR(nd->intent.open.file);
1194 path_release(nd);
1195 }
1196 } else if (err != 0)
1197 release_open_intent(nd);
1198 return err;
1199 }
1200
1201 /**
1202 * path_lookup_open - lookup a file path with open intent
1203 * @dfd: the directory to use as base, or AT_FDCWD
1204 * @name: pointer to file name
1205 * @lookup_flags: lookup intent flags
1206 * @nd: pointer to nameidata
1207 * @open_flags: open intent flags
1208 */
1209 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1210 struct nameidata *nd, int open_flags)
1211 {
1212 return __path_lookup_intent_open(dfd, name, lookup_flags, nd,
1213 open_flags, 0);
1214 }
1215
1216 /**
1217 * path_lookup_create - lookup a file path with open + create intent
1218 * @dfd: the directory to use as base, or AT_FDCWD
1219 * @name: pointer to file name
1220 * @lookup_flags: lookup intent flags
1221 * @nd: pointer to nameidata
1222 * @open_flags: open intent flags
1223 * @create_mode: create intent flags
1224 */
1225 static int path_lookup_create(int dfd, const char *name,
1226 unsigned int lookup_flags, struct nameidata *nd,
1227 int open_flags, int create_mode)
1228 {
1229 return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE,
1230 nd, open_flags, create_mode);
1231 }
1232
1233 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags,
1234 struct nameidata *nd, int open_flags)
1235 {
1236 char *tmp = getname(name);
1237 int err = PTR_ERR(tmp);
1238
1239 if (!IS_ERR(tmp)) {
1240 err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0);
1241 putname(tmp);
1242 }
1243 return err;
1244 }
1245
1246 static inline struct dentry *__lookup_hash_kern(struct qstr *name, struct dentry *base, struct nameidata *nd)
1247 {
1248 struct dentry *dentry;
1249 struct inode *inode;
1250 int err;
1251
1252 inode = base->d_inode;
1253
1254 /*
1255 * See if the low-level filesystem might want
1256 * to use its own hash..
1257 */
1258 if (base->d_op && base->d_op->d_hash) {
1259 err = base->d_op->d_hash(base, name);
1260 dentry = ERR_PTR(err);
1261 if (err < 0)
1262 goto out;
1263 }
1264
1265 dentry = cached_lookup(base, name, nd);
1266 if (!dentry) {
1267 struct dentry *new = d_alloc(base, name);
1268 dentry = ERR_PTR(-ENOMEM);
1269 if (!new)
1270 goto out;
1271 dentry = inode->i_op->lookup(inode, new, nd);
1272 if (!dentry)
1273 dentry = new;
1274 else
1275 dput(new);
1276 }
1277 out:
1278 return dentry;
1279 }
1280
1281 /*
1282 * Restricted form of lookup. Doesn't follow links, single-component only,
1283 * needs parent already locked. Doesn't follow mounts.
1284 * SMP-safe.
1285 */
1286 static inline struct dentry * __lookup_hash(struct qstr *name, struct dentry *base, struct nameidata *nd)
1287 {
1288 struct dentry *dentry;
1289 struct inode *inode;
1290 int err;
1291
1292 inode = base->d_inode;
1293
1294 err = permission(inode, MAY_EXEC, nd);
1295 dentry = ERR_PTR(err);
1296 if (err)
1297 goto out;
1298
1299 dentry = __lookup_hash_kern(name, base, nd);
1300 out:
1301 return dentry;
1302 }
1303
1304 static struct dentry *lookup_hash(struct nameidata *nd)
1305 {
1306 return __lookup_hash(&nd->last, nd->dentry, nd);
1307 }
1308
1309 /* SMP-safe */
1310 static inline int __lookup_one_len(const char *name, struct qstr *this, struct dentry *base, int len)
1311 {
1312 unsigned long hash;
1313 unsigned int c;
1314
1315 this->name = name;
1316 this->len = len;
1317 if (!len)
1318 return -EACCES;
1319
1320 hash = init_name_hash();
1321 while (len--) {
1322 c = *(const unsigned char *)name++;
1323 if (c == '/' || c == '\0')
1324 return -EACCES;
1325 hash = partial_name_hash(c, hash);
1326 }
1327 this->hash = end_name_hash(hash);
1328 return 0;
1329 }
1330
1331 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1332 {
1333 int err;
1334 struct qstr this;
1335
1336 err = __lookup_one_len(name, &this, base, len);
1337 if (err)
1338 return ERR_PTR(err);
1339 return __lookup_hash(&this, base, NULL);
1340 }
1341
1342 struct dentry *lookup_one_len_kern(const char *name, struct dentry *base, int len)
1343 {
1344 int err;
1345 struct qstr this;
1346
1347 err = __lookup_one_len(name, &this, base, len);
1348 if (err)
1349 return ERR_PTR(err);
1350 return __lookup_hash_kern(&this, base, NULL);
1351 }
1352
1353 int fastcall __user_walk_fd(int dfd, const char __user *name, unsigned flags,
1354 struct nameidata *nd)
1355 {
1356 char *tmp = getname(name);
1357 int err = PTR_ERR(tmp);
1358
1359 if (!IS_ERR(tmp)) {
1360 err = do_path_lookup(dfd, tmp, flags, nd);
1361 putname(tmp);
1362 }
1363 return err;
1364 }
1365
1366 int fastcall __user_walk(const char __user *name, unsigned flags, struct nameidata *nd)
1367 {
1368 return __user_walk_fd(AT_FDCWD, name, flags, nd);
1369 }
1370
1371 /*
1372 * It's inline, so penalty for filesystems that don't use sticky bit is
1373 * minimal.
1374 */
1375 static inline int check_sticky(struct inode *dir, struct inode *inode)
1376 {
1377 if (!(dir->i_mode & S_ISVTX))
1378 return 0;
1379 if (inode->i_uid == current->fsuid)
1380 return 0;
1381 if (dir->i_uid == current->fsuid)
1382 return 0;
1383 return !capable(CAP_FOWNER);
1384 }
1385
1386 /*
1387 * Check whether we can remove a link victim from directory dir, check
1388 * whether the type of victim is right.
1389 * 1. We can't do it if dir is read-only (done in permission())
1390 * 2. We should have write and exec permissions on dir
1391 * 3. We can't remove anything from append-only dir
1392 * 4. We can't do anything with immutable dir (done in permission())
1393 * 5. If the sticky bit on dir is set we should either
1394 * a. be owner of dir, or
1395 * b. be owner of victim, or
1396 * c. have CAP_FOWNER capability
1397 * 6. If the victim is append-only or immutable we can't do antyhing with
1398 * links pointing to it.
1399 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1400 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1401 * 9. We can't remove a root or mountpoint.
1402 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1403 * nfs_async_unlink().
1404 */
1405 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1406 {
1407 int error;
1408
1409 if (!victim->d_inode)
1410 return -ENOENT;
1411
1412 BUG_ON(victim->d_parent->d_inode != dir);
1413 audit_inode_child(victim->d_name.name, victim->d_inode, dir);
1414
1415 error = permission(dir,MAY_WRITE | MAY_EXEC, NULL);
1416 if (error)
1417 return error;
1418 if (IS_APPEND(dir))
1419 return -EPERM;
1420 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1421 IS_IMMUTABLE(victim->d_inode))
1422 return -EPERM;
1423 if (isdir) {
1424 if (!S_ISDIR(victim->d_inode->i_mode))
1425 return -ENOTDIR;
1426 if (IS_ROOT(victim))
1427 return -EBUSY;
1428 } else if (S_ISDIR(victim->d_inode->i_mode))
1429 return -EISDIR;
1430 if (IS_DEADDIR(dir))
1431 return -ENOENT;
1432 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1433 return -EBUSY;
1434 return 0;
1435 }
1436
1437 /* Check whether we can create an object with dentry child in directory
1438 * dir.
1439 * 1. We can't do it if child already exists (open has special treatment for
1440 * this case, but since we are inlined it's OK)
1441 * 2. We can't do it if dir is read-only (done in permission())
1442 * 3. We should have write and exec permissions on dir
1443 * 4. We can't do it if dir is immutable (done in permission())
1444 */
1445 static inline int may_create(struct inode *dir, struct dentry *child,
1446 struct nameidata *nd)
1447 {
1448 if (child->d_inode)
1449 return -EEXIST;
1450 if (IS_DEADDIR(dir))
1451 return -ENOENT;
1452 return permission(dir,MAY_WRITE | MAY_EXEC, nd);
1453 }
1454
1455 /*
1456 * O_DIRECTORY translates into forcing a directory lookup.
1457 */
1458 static inline int lookup_flags(unsigned int f)
1459 {
1460 unsigned long retval = LOOKUP_FOLLOW;
1461
1462 if (f & O_NOFOLLOW)
1463 retval &= ~LOOKUP_FOLLOW;
1464
1465 if (f & O_DIRECTORY)
1466 retval |= LOOKUP_DIRECTORY;
1467
1468 return retval;
1469 }
1470
1471 /*
1472 * p1 and p2 should be directories on the same fs.
1473 */
1474 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1475 {
1476 struct dentry *p;
1477
1478 if (p1 == p2) {
1479 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1480 return NULL;
1481 }
1482
1483 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1484
1485 for (p = p1; p->d_parent != p; p = p->d_parent) {
1486 if (p->d_parent == p2) {
1487 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1488 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1489 return p;
1490 }
1491 }
1492
1493 for (p = p2; p->d_parent != p; p = p->d_parent) {
1494 if (p->d_parent == p1) {
1495 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1496 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1497 return p;
1498 }
1499 }
1500
1501 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1502 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1503 return NULL;
1504 }
1505
1506 void unlock_rename(struct dentry *p1, struct dentry *p2)
1507 {
1508 mutex_unlock(&p1->d_inode->i_mutex);
1509 if (p1 != p2) {
1510 mutex_unlock(&p2->d_inode->i_mutex);
1511 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1512 }
1513 }
1514
1515 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1516 struct nameidata *nd)
1517 {
1518 int error = may_create(dir, dentry, nd);
1519
1520 if (error)
1521 return error;
1522
1523 if (!dir->i_op || !dir->i_op->create)
1524 return -EACCES; /* shouldn't it be ENOSYS? */
1525 mode &= S_IALLUGO;
1526 mode |= S_IFREG;
1527 error = security_inode_create(dir, dentry, mode);
1528 if (error)
1529 return error;
1530 DQUOT_INIT(dir);
1531 error = dir->i_op->create(dir, dentry, mode, nd);
1532 if (!error)
1533 fsnotify_create(dir, dentry);
1534 return error;
1535 }
1536
1537 int may_open(struct nameidata *nd, int acc_mode, int flag)
1538 {
1539 struct dentry *dentry = nd->dentry;
1540 struct inode *inode = dentry->d_inode;
1541 int error;
1542
1543 if (!inode)
1544 return -ENOENT;
1545
1546 if (S_ISLNK(inode->i_mode))
1547 return -ELOOP;
1548
1549 if (S_ISDIR(inode->i_mode) && (flag & FMODE_WRITE))
1550 return -EISDIR;
1551
1552 error = vfs_permission(nd, acc_mode);
1553 if (error)
1554 return error;
1555
1556 /*
1557 * FIFO's, sockets and device files are special: they don't
1558 * actually live on the filesystem itself, and as such you
1559 * can write to them even if the filesystem is read-only.
1560 */
1561 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1562 flag &= ~O_TRUNC;
1563 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1564 if (nd->mnt->mnt_flags & MNT_NODEV)
1565 return -EACCES;
1566
1567 flag &= ~O_TRUNC;
1568 } else if (IS_RDONLY(inode) && (flag & FMODE_WRITE))
1569 return -EROFS;
1570 /*
1571 * An append-only file must be opened in append mode for writing.
1572 */
1573 if (IS_APPEND(inode)) {
1574 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1575 return -EPERM;
1576 if (flag & O_TRUNC)
1577 return -EPERM;
1578 }
1579
1580 /* O_NOATIME can only be set by the owner or superuser */
1581 if (flag & O_NOATIME)
1582 if (current->fsuid != inode->i_uid && !capable(CAP_FOWNER))
1583 return -EPERM;
1584
1585 /*
1586 * Ensure there are no outstanding leases on the file.
1587 */
1588 error = break_lease(inode, flag);
1589 if (error)
1590 return error;
1591
1592 if (flag & O_TRUNC) {
1593 error = get_write_access(inode);
1594 if (error)
1595 return error;
1596
1597 /*
1598 * Refuse to truncate files with mandatory locks held on them.
1599 */
1600 error = locks_verify_locked(inode);
1601 if (!error) {
1602 DQUOT_INIT(inode);
1603
1604 error = do_truncate(dentry, 0, ATTR_MTIME|ATTR_CTIME, NULL);
1605 }
1606 put_write_access(inode);
1607 if (error)
1608 return error;
1609 } else
1610 if (flag & FMODE_WRITE)
1611 DQUOT_INIT(inode);
1612
1613 return 0;
1614 }
1615
1616 static int open_namei_create(struct nameidata *nd, struct path *path,
1617 int flag, int mode)
1618 {
1619 int error;
1620 struct dentry *dir = nd->dentry;
1621
1622 if (!IS_POSIXACL(dir->d_inode))
1623 mode &= ~current->fs->umask;
1624 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1625 mutex_unlock(&dir->d_inode->i_mutex);
1626 dput(nd->dentry);
1627 nd->dentry = path->dentry;
1628 if (error)
1629 return error;
1630 /* Don't check for write permission, don't truncate */
1631 return may_open(nd, 0, flag & ~O_TRUNC);
1632 }
1633
1634 /*
1635 * open_namei()
1636 *
1637 * namei for open - this is in fact almost the whole open-routine.
1638 *
1639 * Note that the low bits of "flag" aren't the same as in the open
1640 * system call - they are 00 - no permissions needed
1641 * 01 - read permission needed
1642 * 10 - write permission needed
1643 * 11 - read/write permissions needed
1644 * which is a lot more logical, and also allows the "no perm" needed
1645 * for symlinks (where the permissions are checked later).
1646 * SMP-safe
1647 */
1648 int open_namei(int dfd, const char *pathname, int flag,
1649 int mode, struct nameidata *nd)
1650 {
1651 int acc_mode, error;
1652 struct path path;
1653 struct dentry *dir;
1654 int count = 0;
1655
1656 acc_mode = ACC_MODE(flag);
1657
1658 /* O_TRUNC implies we need access checks for write permissions */
1659 if (flag & O_TRUNC)
1660 acc_mode |= MAY_WRITE;
1661
1662 /* Allow the LSM permission hook to distinguish append
1663 access from general write access. */
1664 if (flag & O_APPEND)
1665 acc_mode |= MAY_APPEND;
1666
1667 /*
1668 * The simplest case - just a plain lookup.
1669 */
1670 if (!(flag & O_CREAT)) {
1671 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1672 nd, flag);
1673 if (error)
1674 return error;
1675 goto ok;
1676 }
1677
1678 /*
1679 * Create - we need to know the parent.
1680 */
1681 error = path_lookup_create(dfd,pathname,LOOKUP_PARENT,nd,flag,mode);
1682 if (error)
1683 return error;
1684
1685 /*
1686 * We have the parent and last component. First of all, check
1687 * that we are not asked to creat(2) an obvious directory - that
1688 * will not do.
1689 */
1690 error = -EISDIR;
1691 if (nd->last_type != LAST_NORM || nd->last.name[nd->last.len])
1692 goto exit;
1693
1694 dir = nd->dentry;
1695 nd->flags &= ~LOOKUP_PARENT;
1696 mutex_lock(&dir->d_inode->i_mutex);
1697 path.dentry = lookup_hash(nd);
1698 path.mnt = nd->mnt;
1699
1700 do_last:
1701 error = PTR_ERR(path.dentry);
1702 if (IS_ERR(path.dentry)) {
1703 mutex_unlock(&dir->d_inode->i_mutex);
1704 goto exit;
1705 }
1706
1707 if (IS_ERR(nd->intent.open.file)) {
1708 mutex_unlock(&dir->d_inode->i_mutex);
1709 error = PTR_ERR(nd->intent.open.file);
1710 goto exit_dput;
1711 }
1712
1713 /* Negative dentry, just create the file */
1714 if (!path.dentry->d_inode) {
1715 error = open_namei_create(nd, &path, flag, mode);
1716 if (error)
1717 goto exit;
1718 return 0;
1719 }
1720
1721 /*
1722 * It already exists.
1723 */
1724 mutex_unlock(&dir->d_inode->i_mutex);
1725 audit_inode_update(path.dentry->d_inode);
1726
1727 error = -EEXIST;
1728 if (flag & O_EXCL)
1729 goto exit_dput;
1730
1731 if (__follow_mount(&path)) {
1732 error = -ELOOP;
1733 if (flag & O_NOFOLLOW)
1734 goto exit_dput;
1735 }
1736
1737 error = -ENOENT;
1738 if (!path.dentry->d_inode)
1739 goto exit_dput;
1740 if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1741 goto do_link;
1742
1743 path_to_nameidata(&path, nd);
1744 error = -EISDIR;
1745 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1746 goto exit;
1747 ok:
1748 error = may_open(nd, acc_mode, flag);
1749 if (error)
1750 goto exit;
1751 return 0;
1752
1753 exit_dput:
1754 dput_path(&path, nd);
1755 exit:
1756 if (!IS_ERR(nd->intent.open.file))
1757 release_open_intent(nd);
1758 path_release(nd);
1759 return error;
1760
1761 do_link:
1762 error = -ELOOP;
1763 if (flag & O_NOFOLLOW)
1764 goto exit_dput;
1765 /*
1766 * This is subtle. Instead of calling do_follow_link() we do the
1767 * thing by hands. The reason is that this way we have zero link_count
1768 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1769 * After that we have the parent and last component, i.e.
1770 * we are in the same situation as after the first path_walk().
1771 * Well, almost - if the last component is normal we get its copy
1772 * stored in nd->last.name and we will have to putname() it when we
1773 * are done. Procfs-like symlinks just set LAST_BIND.
1774 */
1775 nd->flags |= LOOKUP_PARENT;
1776 error = security_inode_follow_link(path.dentry, nd);
1777 if (error)
1778 goto exit_dput;
1779 error = __do_follow_link(&path, nd);
1780 if (error) {
1781 /* Does someone understand code flow here? Or it is only
1782 * me so stupid? Anathema to whoever designed this non-sense
1783 * with "intent.open".
1784 */
1785 release_open_intent(nd);
1786 return error;
1787 }
1788 nd->flags &= ~LOOKUP_PARENT;
1789 if (nd->last_type == LAST_BIND)
1790 goto ok;
1791 error = -EISDIR;
1792 if (nd->last_type != LAST_NORM)
1793 goto exit;
1794 if (nd->last.name[nd->last.len]) {
1795 __putname(nd->last.name);
1796 goto exit;
1797 }
1798 error = -ELOOP;
1799 if (count++==32) {
1800 __putname(nd->last.name);
1801 goto exit;
1802 }
1803 dir = nd->dentry;
1804 mutex_lock(&dir->d_inode->i_mutex);
1805 path.dentry = lookup_hash(nd);
1806 path.mnt = nd->mnt;
1807 __putname(nd->last.name);
1808 goto do_last;
1809 }
1810
1811 /**
1812 * lookup_create - lookup a dentry, creating it if it doesn't exist
1813 * @nd: nameidata info
1814 * @is_dir: directory flag
1815 *
1816 * Simple function to lookup and return a dentry and create it
1817 * if it doesn't exist. Is SMP-safe.
1818 *
1819 * Returns with nd->dentry->d_inode->i_mutex locked.
1820 */
1821 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1822 {
1823 struct dentry *dentry = ERR_PTR(-EEXIST);
1824
1825 mutex_lock_nested(&nd->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1826 /*
1827 * Yucky last component or no last component at all?
1828 * (foo/., foo/.., /////)
1829 */
1830 if (nd->last_type != LAST_NORM)
1831 goto fail;
1832 nd->flags &= ~LOOKUP_PARENT;
1833 nd->flags |= LOOKUP_CREATE;
1834 nd->intent.open.flags = O_EXCL;
1835
1836 /*
1837 * Do the final lookup.
1838 */
1839 dentry = lookup_hash(nd);
1840 if (IS_ERR(dentry))
1841 goto fail;
1842
1843 /*
1844 * Special case - lookup gave negative, but... we had foo/bar/
1845 * From the vfs_mknod() POV we just have a negative dentry -
1846 * all is fine. Let's be bastards - you had / on the end, you've
1847 * been asking for (non-existent) directory. -ENOENT for you.
1848 */
1849 if (!is_dir && nd->last.name[nd->last.len] && !dentry->d_inode)
1850 goto enoent;
1851 return dentry;
1852 enoent:
1853 dput(dentry);
1854 dentry = ERR_PTR(-ENOENT);
1855 fail:
1856 return dentry;
1857 }
1858 EXPORT_SYMBOL_GPL(lookup_create);
1859
1860 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1861 {
1862 int error = may_create(dir, dentry, NULL);
1863
1864 if (error)
1865 return error;
1866
1867 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1868 return -EPERM;
1869
1870 if (!dir->i_op || !dir->i_op->mknod)
1871 return -EPERM;
1872
1873 error = security_inode_mknod(dir, dentry, mode, dev);
1874 if (error)
1875 return error;
1876
1877 DQUOT_INIT(dir);
1878 error = dir->i_op->mknod(dir, dentry, mode, dev);
1879 if (!error)
1880 fsnotify_create(dir, dentry);
1881 return error;
1882 }
1883
1884 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
1885 unsigned dev)
1886 {
1887 int error = 0;
1888 char * tmp;
1889 struct dentry * dentry;
1890 struct nameidata nd;
1891
1892 if (S_ISDIR(mode))
1893 return -EPERM;
1894 tmp = getname(filename);
1895 if (IS_ERR(tmp))
1896 return PTR_ERR(tmp);
1897
1898 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
1899 if (error)
1900 goto out;
1901 dentry = lookup_create(&nd, 0);
1902 error = PTR_ERR(dentry);
1903
1904 if (!IS_POSIXACL(nd.dentry->d_inode))
1905 mode &= ~current->fs->umask;
1906 if (!IS_ERR(dentry)) {
1907 switch (mode & S_IFMT) {
1908 case 0: case S_IFREG:
1909 error = vfs_create(nd.dentry->d_inode,dentry,mode,&nd);
1910 break;
1911 case S_IFCHR: case S_IFBLK:
1912 error = vfs_mknod(nd.dentry->d_inode,dentry,mode,
1913 new_decode_dev(dev));
1914 break;
1915 case S_IFIFO: case S_IFSOCK:
1916 error = vfs_mknod(nd.dentry->d_inode,dentry,mode,0);
1917 break;
1918 case S_IFDIR:
1919 error = -EPERM;
1920 break;
1921 default:
1922 error = -EINVAL;
1923 }
1924 dput(dentry);
1925 }
1926 mutex_unlock(&nd.dentry->d_inode->i_mutex);
1927 path_release(&nd);
1928 out:
1929 putname(tmp);
1930
1931 return error;
1932 }
1933
1934 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
1935 {
1936 return sys_mknodat(AT_FDCWD, filename, mode, dev);
1937 }
1938
1939 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1940 {
1941 int error = may_create(dir, dentry, NULL);
1942
1943 if (error)
1944 return error;
1945
1946 if (!dir->i_op || !dir->i_op->mkdir)
1947 return -EPERM;
1948
1949 mode &= (S_IRWXUGO|S_ISVTX);
1950 error = security_inode_mkdir(dir, dentry, mode);
1951 if (error)
1952 return error;
1953
1954 DQUOT_INIT(dir);
1955 error = dir->i_op->mkdir(dir, dentry, mode);
1956 if (!error)
1957 fsnotify_mkdir(dir, dentry);
1958 return error;
1959 }
1960
1961 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
1962 {
1963 int error = 0;
1964 char * tmp;
1965 struct dentry *dentry;
1966 struct nameidata nd;
1967
1968 tmp = getname(pathname);
1969 error = PTR_ERR(tmp);
1970 if (IS_ERR(tmp))
1971 goto out_err;
1972
1973 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
1974 if (error)
1975 goto out;
1976 dentry = lookup_create(&nd, 1);
1977 error = PTR_ERR(dentry);
1978 if (IS_ERR(dentry))
1979 goto out_unlock;
1980
1981 if (!IS_POSIXACL(nd.dentry->d_inode))
1982 mode &= ~current->fs->umask;
1983 error = vfs_mkdir(nd.dentry->d_inode, dentry, mode);
1984 dput(dentry);
1985 out_unlock:
1986 mutex_unlock(&nd.dentry->d_inode->i_mutex);
1987 path_release(&nd);
1988 out:
1989 putname(tmp);
1990 out_err:
1991 return error;
1992 }
1993
1994 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
1995 {
1996 return sys_mkdirat(AT_FDCWD, pathname, mode);
1997 }
1998
1999 /*
2000 * We try to drop the dentry early: we should have
2001 * a usage count of 2 if we're the only user of this
2002 * dentry, and if that is true (possibly after pruning
2003 * the dcache), then we drop the dentry now.
2004 *
2005 * A low-level filesystem can, if it choses, legally
2006 * do a
2007 *
2008 * if (!d_unhashed(dentry))
2009 * return -EBUSY;
2010 *
2011 * if it cannot handle the case of removing a directory
2012 * that is still in use by something else..
2013 */
2014 void dentry_unhash(struct dentry *dentry)
2015 {
2016 dget(dentry);
2017 shrink_dcache_parent(dentry);
2018 spin_lock(&dcache_lock);
2019 spin_lock(&dentry->d_lock);
2020 if (atomic_read(&dentry->d_count) == 2)
2021 __d_drop(dentry);
2022 spin_unlock(&dentry->d_lock);
2023 spin_unlock(&dcache_lock);
2024 }
2025
2026 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2027 {
2028 int error = may_delete(dir, dentry, 1);
2029
2030 if (error)
2031 return error;
2032
2033 if (!dir->i_op || !dir->i_op->rmdir)
2034 return -EPERM;
2035
2036 DQUOT_INIT(dir);
2037
2038 mutex_lock(&dentry->d_inode->i_mutex);
2039 dentry_unhash(dentry);
2040 if (d_mountpoint(dentry))
2041 error = -EBUSY;
2042 else {
2043 error = security_inode_rmdir(dir, dentry);
2044 if (!error) {
2045 error = dir->i_op->rmdir(dir, dentry);
2046 if (!error)
2047 dentry->d_inode->i_flags |= S_DEAD;
2048 }
2049 }
2050 mutex_unlock(&dentry->d_inode->i_mutex);
2051 if (!error) {
2052 d_delete(dentry);
2053 }
2054 dput(dentry);
2055
2056 return error;
2057 }
2058
2059 static long do_rmdir(int dfd, const char __user *pathname)
2060 {
2061 int error = 0;
2062 char * name;
2063 struct dentry *dentry;
2064 struct nameidata nd;
2065
2066 name = getname(pathname);
2067 if(IS_ERR(name))
2068 return PTR_ERR(name);
2069
2070 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2071 if (error)
2072 goto exit;
2073
2074 switch(nd.last_type) {
2075 case LAST_DOTDOT:
2076 error = -ENOTEMPTY;
2077 goto exit1;
2078 case LAST_DOT:
2079 error = -EINVAL;
2080 goto exit1;
2081 case LAST_ROOT:
2082 error = -EBUSY;
2083 goto exit1;
2084 }
2085 mutex_lock_nested(&nd.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2086 dentry = lookup_hash(&nd);
2087 error = PTR_ERR(dentry);
2088 if (IS_ERR(dentry))
2089 goto exit2;
2090 error = vfs_rmdir(nd.dentry->d_inode, dentry);
2091 dput(dentry);
2092 exit2:
2093 mutex_unlock(&nd.dentry->d_inode->i_mutex);
2094 exit1:
2095 path_release(&nd);
2096 exit:
2097 putname(name);
2098 return error;
2099 }
2100
2101 asmlinkage long sys_rmdir(const char __user *pathname)
2102 {
2103 return do_rmdir(AT_FDCWD, pathname);
2104 }
2105
2106 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2107 {
2108 int error = may_delete(dir, dentry, 0);
2109
2110 if (error)
2111 return error;
2112
2113 if (!dir->i_op || !dir->i_op->unlink)
2114 return -EPERM;
2115
2116 DQUOT_INIT(dir);
2117
2118 mutex_lock(&dentry->d_inode->i_mutex);
2119 if (d_mountpoint(dentry))
2120 error = -EBUSY;
2121 else {
2122 error = security_inode_unlink(dir, dentry);
2123 if (!error)
2124 error = dir->i_op->unlink(dir, dentry);
2125 }
2126 mutex_unlock(&dentry->d_inode->i_mutex);
2127
2128 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2129 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2130 d_delete(dentry);
2131 }
2132
2133 return error;
2134 }
2135
2136 /*
2137 * Make sure that the actual truncation of the file will occur outside its
2138 * directory's i_mutex. Truncate can take a long time if there is a lot of
2139 * writeout happening, and we don't want to prevent access to the directory
2140 * while waiting on the I/O.
2141 */
2142 static long do_unlinkat(int dfd, const char __user *pathname)
2143 {
2144 int error = 0;
2145 char * name;
2146 struct dentry *dentry;
2147 struct nameidata nd;
2148 struct inode *inode = NULL;
2149
2150 name = getname(pathname);
2151 if(IS_ERR(name))
2152 return PTR_ERR(name);
2153
2154 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2155 if (error)
2156 goto exit;
2157 error = -EISDIR;
2158 if (nd.last_type != LAST_NORM)
2159 goto exit1;
2160 mutex_lock_nested(&nd.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2161 dentry = lookup_hash(&nd);
2162 error = PTR_ERR(dentry);
2163 if (!IS_ERR(dentry)) {
2164 /* Why not before? Because we want correct error value */
2165 if (nd.last.name[nd.last.len])
2166 goto slashes;
2167 inode = dentry->d_inode;
2168 if (inode)
2169 atomic_inc(&inode->i_count);
2170 error = vfs_unlink(nd.dentry->d_inode, dentry);
2171 exit2:
2172 dput(dentry);
2173 }
2174 mutex_unlock(&nd.dentry->d_inode->i_mutex);
2175 if (inode)
2176 iput(inode); /* truncate the inode here */
2177 exit1:
2178 path_release(&nd);
2179 exit:
2180 putname(name);
2181 return error;
2182
2183 slashes:
2184 error = !dentry->d_inode ? -ENOENT :
2185 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2186 goto exit2;
2187 }
2188
2189 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2190 {
2191 if ((flag & ~AT_REMOVEDIR) != 0)
2192 return -EINVAL;
2193
2194 if (flag & AT_REMOVEDIR)
2195 return do_rmdir(dfd, pathname);
2196
2197 return do_unlinkat(dfd, pathname);
2198 }
2199
2200 asmlinkage long sys_unlink(const char __user *pathname)
2201 {
2202 return do_unlinkat(AT_FDCWD, pathname);
2203 }
2204
2205 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname, int mode)
2206 {
2207 int error = may_create(dir, dentry, NULL);
2208
2209 if (error)
2210 return error;
2211
2212 if (!dir->i_op || !dir->i_op->symlink)
2213 return -EPERM;
2214
2215 error = security_inode_symlink(dir, dentry, oldname);
2216 if (error)
2217 return error;
2218
2219 DQUOT_INIT(dir);
2220 error = dir->i_op->symlink(dir, dentry, oldname);
2221 if (!error)
2222 fsnotify_create(dir, dentry);
2223 return error;
2224 }
2225
2226 asmlinkage long sys_symlinkat(const char __user *oldname,
2227 int newdfd, const char __user *newname)
2228 {
2229 int error = 0;
2230 char * from;
2231 char * to;
2232 struct dentry *dentry;
2233 struct nameidata nd;
2234
2235 from = getname(oldname);
2236 if(IS_ERR(from))
2237 return PTR_ERR(from);
2238 to = getname(newname);
2239 error = PTR_ERR(to);
2240 if (IS_ERR(to))
2241 goto out_putname;
2242
2243 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2244 if (error)
2245 goto out;
2246 dentry = lookup_create(&nd, 0);
2247 error = PTR_ERR(dentry);
2248 if (IS_ERR(dentry))
2249 goto out_unlock;
2250
2251 error = vfs_symlink(nd.dentry->d_inode, dentry, from, S_IALLUGO);
2252 dput(dentry);
2253 out_unlock:
2254 mutex_unlock(&nd.dentry->d_inode->i_mutex);
2255 path_release(&nd);
2256 out:
2257 putname(to);
2258 out_putname:
2259 putname(from);
2260 return error;
2261 }
2262
2263 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2264 {
2265 return sys_symlinkat(oldname, AT_FDCWD, newname);
2266 }
2267
2268 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2269 {
2270 struct inode *inode = old_dentry->d_inode;
2271 int error;
2272
2273 if (!inode)
2274 return -ENOENT;
2275
2276 error = may_create(dir, new_dentry, NULL);
2277 if (error)
2278 return error;
2279
2280 if (dir->i_sb != inode->i_sb)
2281 return -EXDEV;
2282
2283 /*
2284 * A link to an append-only or immutable file cannot be created.
2285 */
2286 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2287 return -EPERM;
2288 if (!dir->i_op || !dir->i_op->link)
2289 return -EPERM;
2290 if (S_ISDIR(old_dentry->d_inode->i_mode))
2291 return -EPERM;
2292
2293 error = security_inode_link(old_dentry, dir, new_dentry);
2294 if (error)
2295 return error;
2296
2297 mutex_lock(&old_dentry->d_inode->i_mutex);
2298 DQUOT_INIT(dir);
2299 error = dir->i_op->link(old_dentry, dir, new_dentry);
2300 mutex_unlock(&old_dentry->d_inode->i_mutex);
2301 if (!error)
2302 fsnotify_create(dir, new_dentry);
2303 return error;
2304 }
2305
2306 /*
2307 * Hardlinks are often used in delicate situations. We avoid
2308 * security-related surprises by not following symlinks on the
2309 * newname. --KAB
2310 *
2311 * We don't follow them on the oldname either to be compatible
2312 * with linux 2.0, and to avoid hard-linking to directories
2313 * and other special files. --ADM
2314 */
2315 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2316 int newdfd, const char __user *newname,
2317 int flags)
2318 {
2319 struct dentry *new_dentry;
2320 struct nameidata nd, old_nd;
2321 int error;
2322 char * to;
2323
2324 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2325 return -EINVAL;
2326
2327 to = getname(newname);
2328 if (IS_ERR(to))
2329 return PTR_ERR(to);
2330
2331 error = __user_walk_fd(olddfd, oldname,
2332 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2333 &old_nd);
2334 if (error)
2335 goto exit;
2336 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2337 if (error)
2338 goto out;
2339 error = -EXDEV;
2340 if (old_nd.mnt != nd.mnt)
2341 goto out_release;
2342 new_dentry = lookup_create(&nd, 0);
2343 error = PTR_ERR(new_dentry);
2344 if (IS_ERR(new_dentry))
2345 goto out_unlock;
2346 error = vfs_link(old_nd.dentry, nd.dentry->d_inode, new_dentry);
2347 dput(new_dentry);
2348 out_unlock:
2349 mutex_unlock(&nd.dentry->d_inode->i_mutex);
2350 out_release:
2351 path_release(&nd);
2352 out:
2353 path_release(&old_nd);
2354 exit:
2355 putname(to);
2356
2357 return error;
2358 }
2359
2360 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2361 {
2362 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2363 }
2364
2365 /*
2366 * The worst of all namespace operations - renaming directory. "Perverted"
2367 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2368 * Problems:
2369 * a) we can get into loop creation. Check is done in is_subdir().
2370 * b) race potential - two innocent renames can create a loop together.
2371 * That's where 4.4 screws up. Current fix: serialization on
2372 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2373 * story.
2374 * c) we have to lock _three_ objects - parents and victim (if it exists).
2375 * And that - after we got ->i_mutex on parents (until then we don't know
2376 * whether the target exists). Solution: try to be smart with locking
2377 * order for inodes. We rely on the fact that tree topology may change
2378 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2379 * move will be locked. Thus we can rank directories by the tree
2380 * (ancestors first) and rank all non-directories after them.
2381 * That works since everybody except rename does "lock parent, lookup,
2382 * lock child" and rename is under ->s_vfs_rename_mutex.
2383 * HOWEVER, it relies on the assumption that any object with ->lookup()
2384 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2385 * we'd better make sure that there's no link(2) for them.
2386 * d) some filesystems don't support opened-but-unlinked directories,
2387 * either because of layout or because they are not ready to deal with
2388 * all cases correctly. The latter will be fixed (taking this sort of
2389 * stuff into VFS), but the former is not going away. Solution: the same
2390 * trick as in rmdir().
2391 * e) conversion from fhandle to dentry may come in the wrong moment - when
2392 * we are removing the target. Solution: we will have to grab ->i_mutex
2393 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2394 * ->i_mutex on parents, which works but leads to some truely excessive
2395 * locking].
2396 */
2397 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2398 struct inode *new_dir, struct dentry *new_dentry)
2399 {
2400 int error = 0;
2401 struct inode *target;
2402
2403 /*
2404 * If we are going to change the parent - check write permissions,
2405 * we'll need to flip '..'.
2406 */
2407 if (new_dir != old_dir) {
2408 error = permission(old_dentry->d_inode, MAY_WRITE, NULL);
2409 if (error)
2410 return error;
2411 }
2412
2413 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2414 if (error)
2415 return error;
2416
2417 target = new_dentry->d_inode;
2418 if (target) {
2419 mutex_lock(&target->i_mutex);
2420 dentry_unhash(new_dentry);
2421 }
2422 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2423 error = -EBUSY;
2424 else
2425 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2426 if (target) {
2427 if (!error)
2428 target->i_flags |= S_DEAD;
2429 mutex_unlock(&target->i_mutex);
2430 if (d_unhashed(new_dentry))
2431 d_rehash(new_dentry);
2432 dput(new_dentry);
2433 }
2434 if (!error)
2435 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2436 d_move(old_dentry,new_dentry);
2437 return error;
2438 }
2439
2440 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2441 struct inode *new_dir, struct dentry *new_dentry)
2442 {
2443 struct inode *target;
2444 int error;
2445
2446 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2447 if (error)
2448 return error;
2449
2450 dget(new_dentry);
2451 target = new_dentry->d_inode;
2452 if (target)
2453 mutex_lock(&target->i_mutex);
2454 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2455 error = -EBUSY;
2456 else
2457 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2458 if (!error) {
2459 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2460 d_move(old_dentry, new_dentry);
2461 }
2462 if (target)
2463 mutex_unlock(&target->i_mutex);
2464 dput(new_dentry);
2465 return error;
2466 }
2467
2468 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2469 struct inode *new_dir, struct dentry *new_dentry)
2470 {
2471 int error;
2472 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2473 const char *old_name;
2474
2475 if (old_dentry->d_inode == new_dentry->d_inode)
2476 return 0;
2477
2478 error = may_delete(old_dir, old_dentry, is_dir);
2479 if (error)
2480 return error;
2481
2482 if (!new_dentry->d_inode)
2483 error = may_create(new_dir, new_dentry, NULL);
2484 else
2485 error = may_delete(new_dir, new_dentry, is_dir);
2486 if (error)
2487 return error;
2488
2489 if (!old_dir->i_op || !old_dir->i_op->rename)
2490 return -EPERM;
2491
2492 DQUOT_INIT(old_dir);
2493 DQUOT_INIT(new_dir);
2494
2495 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2496
2497 if (is_dir)
2498 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2499 else
2500 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2501 if (!error) {
2502 const char *new_name = old_dentry->d_name.name;
2503 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2504 new_dentry->d_inode, old_dentry->d_inode);
2505 }
2506 fsnotify_oldname_free(old_name);
2507
2508 return error;
2509 }
2510
2511 static int do_rename(int olddfd, const char *oldname,
2512 int newdfd, const char *newname)
2513 {
2514 int error = 0;
2515 struct dentry * old_dir, * new_dir;
2516 struct dentry * old_dentry, *new_dentry;
2517 struct dentry * trap;
2518 struct nameidata oldnd, newnd;
2519
2520 error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd);
2521 if (error)
2522 goto exit;
2523
2524 error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd);
2525 if (error)
2526 goto exit1;
2527
2528 error = -EXDEV;
2529 if (oldnd.mnt != newnd.mnt)
2530 goto exit2;
2531
2532 old_dir = oldnd.dentry;
2533 error = -EBUSY;
2534 if (oldnd.last_type != LAST_NORM)
2535 goto exit2;
2536
2537 new_dir = newnd.dentry;
2538 if (newnd.last_type != LAST_NORM)
2539 goto exit2;
2540
2541 trap = lock_rename(new_dir, old_dir);
2542
2543 old_dentry = lookup_hash(&oldnd);
2544 error = PTR_ERR(old_dentry);
2545 if (IS_ERR(old_dentry))
2546 goto exit3;
2547 /* source must exist */
2548 error = -ENOENT;
2549 if (!old_dentry->d_inode)
2550 goto exit4;
2551 /* unless the source is a directory trailing slashes give -ENOTDIR */
2552 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2553 error = -ENOTDIR;
2554 if (oldnd.last.name[oldnd.last.len])
2555 goto exit4;
2556 if (newnd.last.name[newnd.last.len])
2557 goto exit4;
2558 }
2559 /* source should not be ancestor of target */
2560 error = -EINVAL;
2561 if (old_dentry == trap)
2562 goto exit4;
2563 new_dentry = lookup_hash(&newnd);
2564 error = PTR_ERR(new_dentry);
2565 if (IS_ERR(new_dentry))
2566 goto exit4;
2567 /* target should not be an ancestor of source */
2568 error = -ENOTEMPTY;
2569 if (new_dentry == trap)
2570 goto exit5;
2571
2572 error = vfs_rename(old_dir->d_inode, old_dentry,
2573 new_dir->d_inode, new_dentry);
2574 exit5:
2575 dput(new_dentry);
2576 exit4:
2577 dput(old_dentry);
2578 exit3:
2579 unlock_rename(new_dir, old_dir);
2580 exit2:
2581 path_release(&newnd);
2582 exit1:
2583 path_release(&oldnd);
2584 exit:
2585 return error;
2586 }
2587
2588 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2589 int newdfd, const char __user *newname)
2590 {
2591 int error;
2592 char * from;
2593 char * to;
2594
2595 from = getname(oldname);
2596 if(IS_ERR(from))
2597 return PTR_ERR(from);
2598 to = getname(newname);
2599 error = PTR_ERR(to);
2600 if (!IS_ERR(to)) {
2601 error = do_rename(olddfd, from, newdfd, to);
2602 putname(to);
2603 }
2604 putname(from);
2605 return error;
2606 }
2607
2608 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2609 {
2610 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2611 }
2612
2613 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2614 {
2615 int len;
2616
2617 len = PTR_ERR(link);
2618 if (IS_ERR(link))
2619 goto out;
2620
2621 len = strlen(link);
2622 if (len > (unsigned) buflen)
2623 len = buflen;
2624 if (copy_to_user(buffer, link, len))
2625 len = -EFAULT;
2626 out:
2627 return len;
2628 }
2629
2630 /*
2631 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2632 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2633 * using) it for any given inode is up to filesystem.
2634 */
2635 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2636 {
2637 struct nameidata nd;
2638 void *cookie;
2639
2640 nd.depth = 0;
2641 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2642 if (!IS_ERR(cookie)) {
2643 int res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2644 if (dentry->d_inode->i_op->put_link)
2645 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2646 cookie = ERR_PTR(res);
2647 }
2648 return PTR_ERR(cookie);
2649 }
2650
2651 int vfs_follow_link(struct nameidata *nd, const char *link)
2652 {
2653 return __vfs_follow_link(nd, link);
2654 }
2655
2656 /* get the link contents into pagecache */
2657 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2658 {
2659 struct page * page;
2660 struct address_space *mapping = dentry->d_inode->i_mapping;
2661 page = read_mapping_page(mapping, 0, NULL);
2662 if (IS_ERR(page))
2663 return (char*)page;
2664 *ppage = page;
2665 return kmap(page);
2666 }
2667
2668 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2669 {
2670 struct page *page = NULL;
2671 char *s = page_getlink(dentry, &page);
2672 int res = vfs_readlink(dentry,buffer,buflen,s);
2673 if (page) {
2674 kunmap(page);
2675 page_cache_release(page);
2676 }
2677 return res;
2678 }
2679
2680 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2681 {
2682 struct page *page = NULL;
2683 nd_set_link(nd, page_getlink(dentry, &page));
2684 return page;
2685 }
2686
2687 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2688 {
2689 struct page *page = cookie;
2690
2691 if (page) {
2692 kunmap(page);
2693 page_cache_release(page);
2694 }
2695 }
2696
2697 int __page_symlink(struct inode *inode, const char *symname, int len,
2698 gfp_t gfp_mask)
2699 {
2700 struct address_space *mapping = inode->i_mapping;
2701 struct page *page;
2702 int err;
2703 char *kaddr;
2704
2705 retry:
2706 err = -ENOMEM;
2707 page = find_or_create_page(mapping, 0, gfp_mask);
2708 if (!page)
2709 goto fail;
2710 err = mapping->a_ops->prepare_write(NULL, page, 0, len-1);
2711 if (err == AOP_TRUNCATED_PAGE) {
2712 page_cache_release(page);
2713 goto retry;
2714 }
2715 if (err)
2716 goto fail_map;
2717 kaddr = kmap_atomic(page, KM_USER0);
2718 memcpy(kaddr, symname, len-1);
2719 kunmap_atomic(kaddr, KM_USER0);
2720 err = mapping->a_ops->commit_write(NULL, page, 0, len-1);
2721 if (err == AOP_TRUNCATED_PAGE) {
2722 page_cache_release(page);
2723 goto retry;
2724 }
2725 if (err)
2726 goto fail_map;
2727 /*
2728 * Notice that we are _not_ going to block here - end of page is
2729 * unmapped, so this will only try to map the rest of page, see
2730 * that it is unmapped (typically even will not look into inode -
2731 * ->i_size will be enough for everything) and zero it out.
2732 * OTOH it's obviously correct and should make the page up-to-date.
2733 */
2734 if (!PageUptodate(page)) {
2735 err = mapping->a_ops->readpage(NULL, page);
2736 if (err != AOP_TRUNCATED_PAGE)
2737 wait_on_page_locked(page);
2738 } else {
2739 unlock_page(page);
2740 }
2741 page_cache_release(page);
2742 if (err < 0)
2743 goto fail;
2744 mark_inode_dirty(inode);
2745 return 0;
2746 fail_map:
2747 unlock_page(page);
2748 page_cache_release(page);
2749 fail:
2750 return err;
2751 }
2752
2753 int page_symlink(struct inode *inode, const char *symname, int len)
2754 {
2755 return __page_symlink(inode, symname, len,
2756 mapping_gfp_mask(inode->i_mapping));
2757 }
2758
2759 const struct inode_operations page_symlink_inode_operations = {
2760 .readlink = generic_readlink,
2761 .follow_link = page_follow_link_light,
2762 .put_link = page_put_link,
2763 };
2764
2765 EXPORT_SYMBOL(__user_walk);
2766 EXPORT_SYMBOL(__user_walk_fd);
2767 EXPORT_SYMBOL(follow_down);
2768 EXPORT_SYMBOL(follow_up);
2769 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2770 EXPORT_SYMBOL(getname);
2771 EXPORT_SYMBOL(lock_rename);
2772 EXPORT_SYMBOL(lookup_one_len);
2773 EXPORT_SYMBOL(page_follow_link_light);
2774 EXPORT_SYMBOL(page_put_link);
2775 EXPORT_SYMBOL(page_readlink);
2776 EXPORT_SYMBOL(__page_symlink);
2777 EXPORT_SYMBOL(page_symlink);
2778 EXPORT_SYMBOL(page_symlink_inode_operations);
2779 EXPORT_SYMBOL(path_lookup);
2780 EXPORT_SYMBOL(path_release);
2781 EXPORT_SYMBOL(path_walk);
2782 EXPORT_SYMBOL(permission);
2783 EXPORT_SYMBOL(vfs_permission);
2784 EXPORT_SYMBOL(file_permission);
2785 EXPORT_SYMBOL(unlock_rename);
2786 EXPORT_SYMBOL(vfs_create);
2787 EXPORT_SYMBOL(vfs_follow_link);
2788 EXPORT_SYMBOL(vfs_link);
2789 EXPORT_SYMBOL(vfs_mkdir);
2790 EXPORT_SYMBOL(vfs_mknod);
2791 EXPORT_SYMBOL(generic_permission);
2792 EXPORT_SYMBOL(vfs_readlink);
2793 EXPORT_SYMBOL(vfs_rename);
2794 EXPORT_SYMBOL(vfs_rmdir);
2795 EXPORT_SYMBOL(vfs_symlink);
2796 EXPORT_SYMBOL(vfs_unlink);
2797 EXPORT_SYMBOL(dentry_unhash);
2798 EXPORT_SYMBOL(generic_readlink);