]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/namei.c
Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[mirror_ubuntu-hirsute-kernel.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /* [Feb-1997 T. Schoebel-Theuer]
47 * Fundamental changes in the pathname lookup mechanisms (namei)
48 * were necessary because of omirr. The reason is that omirr needs
49 * to know the _real_ pathname, not the user-supplied one, in case
50 * of symlinks (and also when transname replacements occur).
51 *
52 * The new code replaces the old recursive symlink resolution with
53 * an iterative one (in case of non-nested symlink chains). It does
54 * this with calls to <fs>_follow_link().
55 * As a side effect, dir_namei(), _namei() and follow_link() are now
56 * replaced with a single function lookup_dentry() that can handle all
57 * the special cases of the former code.
58 *
59 * With the new dcache, the pathname is stored at each inode, at least as
60 * long as the refcount of the inode is positive. As a side effect, the
61 * size of the dcache depends on the inode cache and thus is dynamic.
62 *
63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64 * resolution to correspond with current state of the code.
65 *
66 * Note that the symlink resolution is not *completely* iterative.
67 * There is still a significant amount of tail- and mid- recursion in
68 * the algorithm. Also, note that <fs>_readlink() is not used in
69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70 * may return different results than <fs>_follow_link(). Many virtual
71 * filesystems (including /proc) exhibit this behavior.
72 */
73
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76 * and the name already exists in form of a symlink, try to create the new
77 * name indicated by the symlink. The old code always complained that the
78 * name already exists, due to not following the symlink even if its target
79 * is nonexistent. The new semantics affects also mknod() and link() when
80 * the name is a symlink pointing to a non-existent name.
81 *
82 * I don't know which semantics is the right one, since I have no access
83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85 * "old" one. Personally, I think the new semantics is much more logical.
86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87 * file does succeed in both HP-UX and SunOs, but not in Solaris
88 * and in the old Linux semantics.
89 */
90
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92 * semantics. See the comments in "open_namei" and "do_link" below.
93 *
94 * [10-Sep-98 Alan Modra] Another symlink change.
95 */
96
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98 * inside the path - always follow.
99 * in the last component in creation/removal/renaming - never follow.
100 * if LOOKUP_FOLLOW passed - follow.
101 * if the pathname has trailing slashes - follow.
102 * otherwise - don't follow.
103 * (applied in that order).
104 *
105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107 * During the 2.4 we need to fix the userland stuff depending on it -
108 * hopefully we will be able to get rid of that wart in 2.5. So far only
109 * XEmacs seems to be relying on it...
110 */
111 /*
112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
114 * any extra contention...
115 */
116
117 /* In order to reduce some races, while at the same time doing additional
118 * checking and hopefully speeding things up, we copy filenames to the
119 * kernel data space before using them..
120 *
121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122 * PATH_MAX includes the nul terminator --RR.
123 */
124
125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
126
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130 struct filename *result;
131 char *kname;
132 int len;
133
134 result = audit_reusename(filename);
135 if (result)
136 return result;
137
138 result = __getname();
139 if (unlikely(!result))
140 return ERR_PTR(-ENOMEM);
141
142 /*
143 * First, try to embed the struct filename inside the names_cache
144 * allocation
145 */
146 kname = (char *)result->iname;
147 result->name = kname;
148
149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 if (unlikely(len < 0)) {
151 __putname(result);
152 return ERR_PTR(len);
153 }
154
155 /*
156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 * separate struct filename so we can dedicate the entire
158 * names_cache allocation for the pathname, and re-do the copy from
159 * userland.
160 */
161 if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 const size_t size = offsetof(struct filename, iname[1]);
163 kname = (char *)result;
164
165 /*
166 * size is chosen that way we to guarantee that
167 * result->iname[0] is within the same object and that
168 * kname can't be equal to result->iname, no matter what.
169 */
170 result = kzalloc(size, GFP_KERNEL);
171 if (unlikely(!result)) {
172 __putname(kname);
173 return ERR_PTR(-ENOMEM);
174 }
175 result->name = kname;
176 len = strncpy_from_user(kname, filename, PATH_MAX);
177 if (unlikely(len < 0)) {
178 __putname(kname);
179 kfree(result);
180 return ERR_PTR(len);
181 }
182 if (unlikely(len == PATH_MAX)) {
183 __putname(kname);
184 kfree(result);
185 return ERR_PTR(-ENAMETOOLONG);
186 }
187 }
188
189 result->refcnt = 1;
190 /* The empty path is special. */
191 if (unlikely(!len)) {
192 if (empty)
193 *empty = 1;
194 if (!(flags & LOOKUP_EMPTY)) {
195 putname(result);
196 return ERR_PTR(-ENOENT);
197 }
198 }
199
200 result->uptr = filename;
201 result->aname = NULL;
202 audit_getname(result);
203 return result;
204 }
205
206 struct filename *
207 getname(const char __user * filename)
208 {
209 return getname_flags(filename, 0, NULL);
210 }
211
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215 struct filename *result;
216 int len = strlen(filename) + 1;
217
218 result = __getname();
219 if (unlikely(!result))
220 return ERR_PTR(-ENOMEM);
221
222 if (len <= EMBEDDED_NAME_MAX) {
223 result->name = (char *)result->iname;
224 } else if (len <= PATH_MAX) {
225 const size_t size = offsetof(struct filename, iname[1]);
226 struct filename *tmp;
227
228 tmp = kmalloc(size, GFP_KERNEL);
229 if (unlikely(!tmp)) {
230 __putname(result);
231 return ERR_PTR(-ENOMEM);
232 }
233 tmp->name = (char *)result;
234 result = tmp;
235 } else {
236 __putname(result);
237 return ERR_PTR(-ENAMETOOLONG);
238 }
239 memcpy((char *)result->name, filename, len);
240 result->uptr = NULL;
241 result->aname = NULL;
242 result->refcnt = 1;
243 audit_getname(result);
244
245 return result;
246 }
247
248 void putname(struct filename *name)
249 {
250 BUG_ON(name->refcnt <= 0);
251
252 if (--name->refcnt > 0)
253 return;
254
255 if (name->name != name->iname) {
256 __putname(name->name);
257 kfree(name);
258 } else
259 __putname(name);
260 }
261
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265 struct posix_acl *acl;
266
267 if (mask & MAY_NOT_BLOCK) {
268 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 if (!acl)
270 return -EAGAIN;
271 /* no ->get_acl() calls in RCU mode... */
272 if (is_uncached_acl(acl))
273 return -ECHILD;
274 return posix_acl_permission(inode, acl, mask);
275 }
276
277 acl = get_acl(inode, ACL_TYPE_ACCESS);
278 if (IS_ERR(acl))
279 return PTR_ERR(acl);
280 if (acl) {
281 int error = posix_acl_permission(inode, acl, mask);
282 posix_acl_release(acl);
283 return error;
284 }
285 #endif
286
287 return -EAGAIN;
288 }
289
290 /*
291 * This does the basic UNIX permission checking.
292 *
293 * Note that the POSIX ACL check cares about the MAY_NOT_BLOCK bit,
294 * for RCU walking.
295 */
296 static int acl_permission_check(struct inode *inode, int mask)
297 {
298 unsigned int mode = inode->i_mode;
299
300 /* Are we the owner? If so, ACL's don't matter */
301 if (likely(uid_eq(current_fsuid(), inode->i_uid))) {
302 mask &= 7;
303 mode >>= 6;
304 return (mask & ~mode) ? -EACCES : 0;
305 }
306
307 /* Do we have ACL's? */
308 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
309 int error = check_acl(inode, mask);
310 if (error != -EAGAIN)
311 return error;
312 }
313
314 /* Only RWX matters for group/other mode bits */
315 mask &= 7;
316
317 /*
318 * Are the group permissions different from
319 * the other permissions in the bits we care
320 * about? Need to check group ownership if so.
321 */
322 if (mask & (mode ^ (mode >> 3))) {
323 if (in_group_p(inode->i_gid))
324 mode >>= 3;
325 }
326
327 /* Bits in 'mode' clear that we require? */
328 return (mask & ~mode) ? -EACCES : 0;
329 }
330
331 /**
332 * generic_permission - check for access rights on a Posix-like filesystem
333 * @inode: inode to check access rights for
334 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
335 * %MAY_NOT_BLOCK ...)
336 *
337 * Used to check for read/write/execute permissions on a file.
338 * We use "fsuid" for this, letting us set arbitrary permissions
339 * for filesystem access without changing the "normal" uids which
340 * are used for other things.
341 *
342 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
343 * request cannot be satisfied (eg. requires blocking or too much complexity).
344 * It would then be called again in ref-walk mode.
345 */
346 int generic_permission(struct inode *inode, int mask)
347 {
348 int ret;
349
350 /*
351 * Do the basic permission checks.
352 */
353 ret = acl_permission_check(inode, mask);
354 if (ret != -EACCES)
355 return ret;
356
357 if (S_ISDIR(inode->i_mode)) {
358 /* DACs are overridable for directories */
359 if (!(mask & MAY_WRITE))
360 if (capable_wrt_inode_uidgid(inode,
361 CAP_DAC_READ_SEARCH))
362 return 0;
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
364 return 0;
365 return -EACCES;
366 }
367
368 /*
369 * Searching includes executable on directories, else just read.
370 */
371 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
372 if (mask == MAY_READ)
373 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
374 return 0;
375 /*
376 * Read/write DACs are always overridable.
377 * Executable DACs are overridable when there is
378 * at least one exec bit set.
379 */
380 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
381 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
382 return 0;
383
384 return -EACCES;
385 }
386 EXPORT_SYMBOL(generic_permission);
387
388 /*
389 * We _really_ want to just do "generic_permission()" without
390 * even looking at the inode->i_op values. So we keep a cache
391 * flag in inode->i_opflags, that says "this has not special
392 * permission function, use the fast case".
393 */
394 static inline int do_inode_permission(struct inode *inode, int mask)
395 {
396 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
397 if (likely(inode->i_op->permission))
398 return inode->i_op->permission(inode, mask);
399
400 /* This gets set once for the inode lifetime */
401 spin_lock(&inode->i_lock);
402 inode->i_opflags |= IOP_FASTPERM;
403 spin_unlock(&inode->i_lock);
404 }
405 return generic_permission(inode, mask);
406 }
407
408 /**
409 * sb_permission - Check superblock-level permissions
410 * @sb: Superblock of inode to check permission on
411 * @inode: Inode to check permission on
412 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
413 *
414 * Separate out file-system wide checks from inode-specific permission checks.
415 */
416 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
417 {
418 if (unlikely(mask & MAY_WRITE)) {
419 umode_t mode = inode->i_mode;
420
421 /* Nobody gets write access to a read-only fs. */
422 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
423 return -EROFS;
424 }
425 return 0;
426 }
427
428 /**
429 * inode_permission - Check for access rights to a given inode
430 * @inode: Inode to check permission on
431 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
432 *
433 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
434 * this, letting us set arbitrary permissions for filesystem access without
435 * changing the "normal" UIDs which are used for other things.
436 *
437 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
438 */
439 int inode_permission(struct inode *inode, int mask)
440 {
441 int retval;
442
443 retval = sb_permission(inode->i_sb, inode, mask);
444 if (retval)
445 return retval;
446
447 if (unlikely(mask & MAY_WRITE)) {
448 /*
449 * Nobody gets write access to an immutable file.
450 */
451 if (IS_IMMUTABLE(inode))
452 return -EPERM;
453
454 /*
455 * Updating mtime will likely cause i_uid and i_gid to be
456 * written back improperly if their true value is unknown
457 * to the vfs.
458 */
459 if (HAS_UNMAPPED_ID(inode))
460 return -EACCES;
461 }
462
463 retval = do_inode_permission(inode, mask);
464 if (retval)
465 return retval;
466
467 retval = devcgroup_inode_permission(inode, mask);
468 if (retval)
469 return retval;
470
471 return security_inode_permission(inode, mask);
472 }
473 EXPORT_SYMBOL(inode_permission);
474
475 /**
476 * path_get - get a reference to a path
477 * @path: path to get the reference to
478 *
479 * Given a path increment the reference count to the dentry and the vfsmount.
480 */
481 void path_get(const struct path *path)
482 {
483 mntget(path->mnt);
484 dget(path->dentry);
485 }
486 EXPORT_SYMBOL(path_get);
487
488 /**
489 * path_put - put a reference to a path
490 * @path: path to put the reference to
491 *
492 * Given a path decrement the reference count to the dentry and the vfsmount.
493 */
494 void path_put(const struct path *path)
495 {
496 dput(path->dentry);
497 mntput(path->mnt);
498 }
499 EXPORT_SYMBOL(path_put);
500
501 #define EMBEDDED_LEVELS 2
502 struct nameidata {
503 struct path path;
504 struct qstr last;
505 struct path root;
506 struct inode *inode; /* path.dentry.d_inode */
507 unsigned int flags;
508 unsigned seq, m_seq, r_seq;
509 int last_type;
510 unsigned depth;
511 int total_link_count;
512 struct saved {
513 struct path link;
514 struct delayed_call done;
515 const char *name;
516 unsigned seq;
517 } *stack, internal[EMBEDDED_LEVELS];
518 struct filename *name;
519 struct nameidata *saved;
520 unsigned root_seq;
521 int dfd;
522 kuid_t dir_uid;
523 umode_t dir_mode;
524 } __randomize_layout;
525
526 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
527 {
528 struct nameidata *old = current->nameidata;
529 p->stack = p->internal;
530 p->dfd = dfd;
531 p->name = name;
532 p->total_link_count = old ? old->total_link_count : 0;
533 p->saved = old;
534 current->nameidata = p;
535 }
536
537 static void restore_nameidata(void)
538 {
539 struct nameidata *now = current->nameidata, *old = now->saved;
540
541 current->nameidata = old;
542 if (old)
543 old->total_link_count = now->total_link_count;
544 if (now->stack != now->internal)
545 kfree(now->stack);
546 }
547
548 static bool nd_alloc_stack(struct nameidata *nd)
549 {
550 struct saved *p;
551
552 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
553 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
554 if (unlikely(!p))
555 return false;
556 memcpy(p, nd->internal, sizeof(nd->internal));
557 nd->stack = p;
558 return true;
559 }
560
561 /**
562 * path_connected - Verify that a dentry is below mnt.mnt_root
563 *
564 * Rename can sometimes move a file or directory outside of a bind
565 * mount, path_connected allows those cases to be detected.
566 */
567 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
568 {
569 struct super_block *sb = mnt->mnt_sb;
570
571 /* Bind mounts can have disconnected paths */
572 if (mnt->mnt_root == sb->s_root)
573 return true;
574
575 return is_subdir(dentry, mnt->mnt_root);
576 }
577
578 static void drop_links(struct nameidata *nd)
579 {
580 int i = nd->depth;
581 while (i--) {
582 struct saved *last = nd->stack + i;
583 do_delayed_call(&last->done);
584 clear_delayed_call(&last->done);
585 }
586 }
587
588 static void terminate_walk(struct nameidata *nd)
589 {
590 drop_links(nd);
591 if (!(nd->flags & LOOKUP_RCU)) {
592 int i;
593 path_put(&nd->path);
594 for (i = 0; i < nd->depth; i++)
595 path_put(&nd->stack[i].link);
596 if (nd->flags & LOOKUP_ROOT_GRABBED) {
597 path_put(&nd->root);
598 nd->flags &= ~LOOKUP_ROOT_GRABBED;
599 }
600 } else {
601 nd->flags &= ~LOOKUP_RCU;
602 rcu_read_unlock();
603 }
604 nd->depth = 0;
605 }
606
607 /* path_put is needed afterwards regardless of success or failure */
608 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
609 {
610 int res = __legitimize_mnt(path->mnt, mseq);
611 if (unlikely(res)) {
612 if (res > 0)
613 path->mnt = NULL;
614 path->dentry = NULL;
615 return false;
616 }
617 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
618 path->dentry = NULL;
619 return false;
620 }
621 return !read_seqcount_retry(&path->dentry->d_seq, seq);
622 }
623
624 static inline bool legitimize_path(struct nameidata *nd,
625 struct path *path, unsigned seq)
626 {
627 return __legitimize_path(path, seq, nd->m_seq);
628 }
629
630 static bool legitimize_links(struct nameidata *nd)
631 {
632 int i;
633 for (i = 0; i < nd->depth; i++) {
634 struct saved *last = nd->stack + i;
635 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
636 drop_links(nd);
637 nd->depth = i + 1;
638 return false;
639 }
640 }
641 return true;
642 }
643
644 static bool legitimize_root(struct nameidata *nd)
645 {
646 /*
647 * For scoped-lookups (where nd->root has been zeroed), we need to
648 * restart the whole lookup from scratch -- because set_root() is wrong
649 * for these lookups (nd->dfd is the root, not the filesystem root).
650 */
651 if (!nd->root.mnt && (nd->flags & LOOKUP_IS_SCOPED))
652 return false;
653 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
654 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
655 return true;
656 nd->flags |= LOOKUP_ROOT_GRABBED;
657 return legitimize_path(nd, &nd->root, nd->root_seq);
658 }
659
660 /*
661 * Path walking has 2 modes, rcu-walk and ref-walk (see
662 * Documentation/filesystems/path-lookup.txt). In situations when we can't
663 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
664 * normal reference counts on dentries and vfsmounts to transition to ref-walk
665 * mode. Refcounts are grabbed at the last known good point before rcu-walk
666 * got stuck, so ref-walk may continue from there. If this is not successful
667 * (eg. a seqcount has changed), then failure is returned and it's up to caller
668 * to restart the path walk from the beginning in ref-walk mode.
669 */
670
671 /**
672 * unlazy_walk - try to switch to ref-walk mode.
673 * @nd: nameidata pathwalk data
674 * Returns: 0 on success, -ECHILD on failure
675 *
676 * unlazy_walk attempts to legitimize the current nd->path and nd->root
677 * for ref-walk mode.
678 * Must be called from rcu-walk context.
679 * Nothing should touch nameidata between unlazy_walk() failure and
680 * terminate_walk().
681 */
682 static int unlazy_walk(struct nameidata *nd)
683 {
684 struct dentry *parent = nd->path.dentry;
685
686 BUG_ON(!(nd->flags & LOOKUP_RCU));
687
688 nd->flags &= ~LOOKUP_RCU;
689 if (unlikely(!legitimize_links(nd)))
690 goto out1;
691 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
692 goto out;
693 if (unlikely(!legitimize_root(nd)))
694 goto out;
695 rcu_read_unlock();
696 BUG_ON(nd->inode != parent->d_inode);
697 return 0;
698
699 out1:
700 nd->path.mnt = NULL;
701 nd->path.dentry = NULL;
702 out:
703 rcu_read_unlock();
704 return -ECHILD;
705 }
706
707 /**
708 * unlazy_child - try to switch to ref-walk mode.
709 * @nd: nameidata pathwalk data
710 * @dentry: child of nd->path.dentry
711 * @seq: seq number to check dentry against
712 * Returns: 0 on success, -ECHILD on failure
713 *
714 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
715 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
716 * @nd. Must be called from rcu-walk context.
717 * Nothing should touch nameidata between unlazy_child() failure and
718 * terminate_walk().
719 */
720 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
721 {
722 BUG_ON(!(nd->flags & LOOKUP_RCU));
723
724 nd->flags &= ~LOOKUP_RCU;
725 if (unlikely(!legitimize_links(nd)))
726 goto out2;
727 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
728 goto out2;
729 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
730 goto out1;
731
732 /*
733 * We need to move both the parent and the dentry from the RCU domain
734 * to be properly refcounted. And the sequence number in the dentry
735 * validates *both* dentry counters, since we checked the sequence
736 * number of the parent after we got the child sequence number. So we
737 * know the parent must still be valid if the child sequence number is
738 */
739 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
740 goto out;
741 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
742 goto out_dput;
743 /*
744 * Sequence counts matched. Now make sure that the root is
745 * still valid and get it if required.
746 */
747 if (unlikely(!legitimize_root(nd)))
748 goto out_dput;
749 rcu_read_unlock();
750 return 0;
751
752 out2:
753 nd->path.mnt = NULL;
754 out1:
755 nd->path.dentry = NULL;
756 out:
757 rcu_read_unlock();
758 return -ECHILD;
759 out_dput:
760 rcu_read_unlock();
761 dput(dentry);
762 return -ECHILD;
763 }
764
765 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
766 {
767 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
768 return dentry->d_op->d_revalidate(dentry, flags);
769 else
770 return 1;
771 }
772
773 /**
774 * complete_walk - successful completion of path walk
775 * @nd: pointer nameidata
776 *
777 * If we had been in RCU mode, drop out of it and legitimize nd->path.
778 * Revalidate the final result, unless we'd already done that during
779 * the path walk or the filesystem doesn't ask for it. Return 0 on
780 * success, -error on failure. In case of failure caller does not
781 * need to drop nd->path.
782 */
783 static int complete_walk(struct nameidata *nd)
784 {
785 struct dentry *dentry = nd->path.dentry;
786 int status;
787
788 if (nd->flags & LOOKUP_RCU) {
789 /*
790 * We don't want to zero nd->root for scoped-lookups or
791 * externally-managed nd->root.
792 */
793 if (!(nd->flags & (LOOKUP_ROOT | LOOKUP_IS_SCOPED)))
794 nd->root.mnt = NULL;
795 if (unlikely(unlazy_walk(nd)))
796 return -ECHILD;
797 }
798
799 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
800 /*
801 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
802 * ever step outside the root during lookup" and should already
803 * be guaranteed by the rest of namei, we want to avoid a namei
804 * BUG resulting in userspace being given a path that was not
805 * scoped within the root at some point during the lookup.
806 *
807 * So, do a final sanity-check to make sure that in the
808 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
809 * we won't silently return an fd completely outside of the
810 * requested root to userspace.
811 *
812 * Userspace could move the path outside the root after this
813 * check, but as discussed elsewhere this is not a concern (the
814 * resolved file was inside the root at some point).
815 */
816 if (!path_is_under(&nd->path, &nd->root))
817 return -EXDEV;
818 }
819
820 if (likely(!(nd->flags & LOOKUP_JUMPED)))
821 return 0;
822
823 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
824 return 0;
825
826 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
827 if (status > 0)
828 return 0;
829
830 if (!status)
831 status = -ESTALE;
832
833 return status;
834 }
835
836 static int set_root(struct nameidata *nd)
837 {
838 struct fs_struct *fs = current->fs;
839
840 /*
841 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
842 * still have to ensure it doesn't happen because it will cause a breakout
843 * from the dirfd.
844 */
845 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
846 return -ENOTRECOVERABLE;
847
848 if (nd->flags & LOOKUP_RCU) {
849 unsigned seq;
850
851 do {
852 seq = read_seqcount_begin(&fs->seq);
853 nd->root = fs->root;
854 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
855 } while (read_seqcount_retry(&fs->seq, seq));
856 } else {
857 get_fs_root(fs, &nd->root);
858 nd->flags |= LOOKUP_ROOT_GRABBED;
859 }
860 return 0;
861 }
862
863 static int nd_jump_root(struct nameidata *nd)
864 {
865 if (unlikely(nd->flags & LOOKUP_BENEATH))
866 return -EXDEV;
867 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
868 /* Absolute path arguments to path_init() are allowed. */
869 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
870 return -EXDEV;
871 }
872 if (!nd->root.mnt) {
873 int error = set_root(nd);
874 if (error)
875 return error;
876 }
877 if (nd->flags & LOOKUP_RCU) {
878 struct dentry *d;
879 nd->path = nd->root;
880 d = nd->path.dentry;
881 nd->inode = d->d_inode;
882 nd->seq = nd->root_seq;
883 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
884 return -ECHILD;
885 } else {
886 path_put(&nd->path);
887 nd->path = nd->root;
888 path_get(&nd->path);
889 nd->inode = nd->path.dentry->d_inode;
890 }
891 nd->flags |= LOOKUP_JUMPED;
892 return 0;
893 }
894
895 /*
896 * Helper to directly jump to a known parsed path from ->get_link,
897 * caller must have taken a reference to path beforehand.
898 */
899 int nd_jump_link(struct path *path)
900 {
901 int error = -ELOOP;
902 struct nameidata *nd = current->nameidata;
903
904 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
905 goto err;
906
907 error = -EXDEV;
908 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
909 if (nd->path.mnt != path->mnt)
910 goto err;
911 }
912 /* Not currently safe for scoped-lookups. */
913 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
914 goto err;
915
916 path_put(&nd->path);
917 nd->path = *path;
918 nd->inode = nd->path.dentry->d_inode;
919 nd->flags |= LOOKUP_JUMPED;
920 return 0;
921
922 err:
923 path_put(path);
924 return error;
925 }
926
927 static inline void put_link(struct nameidata *nd)
928 {
929 struct saved *last = nd->stack + --nd->depth;
930 do_delayed_call(&last->done);
931 if (!(nd->flags & LOOKUP_RCU))
932 path_put(&last->link);
933 }
934
935 int sysctl_protected_symlinks __read_mostly = 0;
936 int sysctl_protected_hardlinks __read_mostly = 0;
937 int sysctl_protected_fifos __read_mostly;
938 int sysctl_protected_regular __read_mostly;
939
940 /**
941 * may_follow_link - Check symlink following for unsafe situations
942 * @nd: nameidata pathwalk data
943 *
944 * In the case of the sysctl_protected_symlinks sysctl being enabled,
945 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
946 * in a sticky world-writable directory. This is to protect privileged
947 * processes from failing races against path names that may change out
948 * from under them by way of other users creating malicious symlinks.
949 * It will permit symlinks to be followed only when outside a sticky
950 * world-writable directory, or when the uid of the symlink and follower
951 * match, or when the directory owner matches the symlink's owner.
952 *
953 * Returns 0 if following the symlink is allowed, -ve on error.
954 */
955 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
956 {
957 if (!sysctl_protected_symlinks)
958 return 0;
959
960 /* Allowed if owner and follower match. */
961 if (uid_eq(current_cred()->fsuid, inode->i_uid))
962 return 0;
963
964 /* Allowed if parent directory not sticky and world-writable. */
965 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
966 return 0;
967
968 /* Allowed if parent directory and link owner match. */
969 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, inode->i_uid))
970 return 0;
971
972 if (nd->flags & LOOKUP_RCU)
973 return -ECHILD;
974
975 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
976 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
977 return -EACCES;
978 }
979
980 /**
981 * safe_hardlink_source - Check for safe hardlink conditions
982 * @inode: the source inode to hardlink from
983 *
984 * Return false if at least one of the following conditions:
985 * - inode is not a regular file
986 * - inode is setuid
987 * - inode is setgid and group-exec
988 * - access failure for read and write
989 *
990 * Otherwise returns true.
991 */
992 static bool safe_hardlink_source(struct inode *inode)
993 {
994 umode_t mode = inode->i_mode;
995
996 /* Special files should not get pinned to the filesystem. */
997 if (!S_ISREG(mode))
998 return false;
999
1000 /* Setuid files should not get pinned to the filesystem. */
1001 if (mode & S_ISUID)
1002 return false;
1003
1004 /* Executable setgid files should not get pinned to the filesystem. */
1005 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1006 return false;
1007
1008 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1009 if (inode_permission(inode, MAY_READ | MAY_WRITE))
1010 return false;
1011
1012 return true;
1013 }
1014
1015 /**
1016 * may_linkat - Check permissions for creating a hardlink
1017 * @link: the source to hardlink from
1018 *
1019 * Block hardlink when all of:
1020 * - sysctl_protected_hardlinks enabled
1021 * - fsuid does not match inode
1022 * - hardlink source is unsafe (see safe_hardlink_source() above)
1023 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1024 *
1025 * Returns 0 if successful, -ve on error.
1026 */
1027 int may_linkat(struct path *link)
1028 {
1029 struct inode *inode = link->dentry->d_inode;
1030
1031 /* Inode writeback is not safe when the uid or gid are invalid. */
1032 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
1033 return -EOVERFLOW;
1034
1035 if (!sysctl_protected_hardlinks)
1036 return 0;
1037
1038 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1039 * otherwise, it must be a safe source.
1040 */
1041 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1042 return 0;
1043
1044 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1045 return -EPERM;
1046 }
1047
1048 /**
1049 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1050 * should be allowed, or not, on files that already
1051 * exist.
1052 * @dir_mode: mode bits of directory
1053 * @dir_uid: owner of directory
1054 * @inode: the inode of the file to open
1055 *
1056 * Block an O_CREAT open of a FIFO (or a regular file) when:
1057 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1058 * - the file already exists
1059 * - we are in a sticky directory
1060 * - we don't own the file
1061 * - the owner of the directory doesn't own the file
1062 * - the directory is world writable
1063 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1064 * the directory doesn't have to be world writable: being group writable will
1065 * be enough.
1066 *
1067 * Returns 0 if the open is allowed, -ve on error.
1068 */
1069 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1070 struct inode * const inode)
1071 {
1072 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1073 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1074 likely(!(dir_mode & S_ISVTX)) ||
1075 uid_eq(inode->i_uid, dir_uid) ||
1076 uid_eq(current_fsuid(), inode->i_uid))
1077 return 0;
1078
1079 if (likely(dir_mode & 0002) ||
1080 (dir_mode & 0020 &&
1081 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1082 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1083 const char *operation = S_ISFIFO(inode->i_mode) ?
1084 "sticky_create_fifo" :
1085 "sticky_create_regular";
1086 audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1087 return -EACCES;
1088 }
1089 return 0;
1090 }
1091
1092 /*
1093 * follow_up - Find the mountpoint of path's vfsmount
1094 *
1095 * Given a path, find the mountpoint of its source file system.
1096 * Replace @path with the path of the mountpoint in the parent mount.
1097 * Up is towards /.
1098 *
1099 * Return 1 if we went up a level and 0 if we were already at the
1100 * root.
1101 */
1102 int follow_up(struct path *path)
1103 {
1104 struct mount *mnt = real_mount(path->mnt);
1105 struct mount *parent;
1106 struct dentry *mountpoint;
1107
1108 read_seqlock_excl(&mount_lock);
1109 parent = mnt->mnt_parent;
1110 if (parent == mnt) {
1111 read_sequnlock_excl(&mount_lock);
1112 return 0;
1113 }
1114 mntget(&parent->mnt);
1115 mountpoint = dget(mnt->mnt_mountpoint);
1116 read_sequnlock_excl(&mount_lock);
1117 dput(path->dentry);
1118 path->dentry = mountpoint;
1119 mntput(path->mnt);
1120 path->mnt = &parent->mnt;
1121 return 1;
1122 }
1123 EXPORT_SYMBOL(follow_up);
1124
1125 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1126 struct path *path, unsigned *seqp)
1127 {
1128 while (mnt_has_parent(m)) {
1129 struct dentry *mountpoint = m->mnt_mountpoint;
1130
1131 m = m->mnt_parent;
1132 if (unlikely(root->dentry == mountpoint &&
1133 root->mnt == &m->mnt))
1134 break;
1135 if (mountpoint != m->mnt.mnt_root) {
1136 path->mnt = &m->mnt;
1137 path->dentry = mountpoint;
1138 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1139 return true;
1140 }
1141 }
1142 return false;
1143 }
1144
1145 static bool choose_mountpoint(struct mount *m, const struct path *root,
1146 struct path *path)
1147 {
1148 bool found;
1149
1150 rcu_read_lock();
1151 while (1) {
1152 unsigned seq, mseq = read_seqbegin(&mount_lock);
1153
1154 found = choose_mountpoint_rcu(m, root, path, &seq);
1155 if (unlikely(!found)) {
1156 if (!read_seqretry(&mount_lock, mseq))
1157 break;
1158 } else {
1159 if (likely(__legitimize_path(path, seq, mseq)))
1160 break;
1161 rcu_read_unlock();
1162 path_put(path);
1163 rcu_read_lock();
1164 }
1165 }
1166 rcu_read_unlock();
1167 return found;
1168 }
1169
1170 /*
1171 * Perform an automount
1172 * - return -EISDIR to tell follow_managed() to stop and return the path we
1173 * were called with.
1174 */
1175 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1176 {
1177 struct dentry *dentry = path->dentry;
1178
1179 /* We don't want to mount if someone's just doing a stat -
1180 * unless they're stat'ing a directory and appended a '/' to
1181 * the name.
1182 *
1183 * We do, however, want to mount if someone wants to open or
1184 * create a file of any type under the mountpoint, wants to
1185 * traverse through the mountpoint or wants to open the
1186 * mounted directory. Also, autofs may mark negative dentries
1187 * as being automount points. These will need the attentions
1188 * of the daemon to instantiate them before they can be used.
1189 */
1190 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1191 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1192 dentry->d_inode)
1193 return -EISDIR;
1194
1195 if (count && (*count)++ >= MAXSYMLINKS)
1196 return -ELOOP;
1197
1198 return finish_automount(dentry->d_op->d_automount(path), path);
1199 }
1200
1201 /*
1202 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1203 * dentries are pinned but not locked here, so negative dentry can go
1204 * positive right under us. Use of smp_load_acquire() provides a barrier
1205 * sufficient for ->d_inode and ->d_flags consistency.
1206 */
1207 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1208 int *count, unsigned lookup_flags)
1209 {
1210 struct vfsmount *mnt = path->mnt;
1211 bool need_mntput = false;
1212 int ret = 0;
1213
1214 while (flags & DCACHE_MANAGED_DENTRY) {
1215 /* Allow the filesystem to manage the transit without i_mutex
1216 * being held. */
1217 if (flags & DCACHE_MANAGE_TRANSIT) {
1218 ret = path->dentry->d_op->d_manage(path, false);
1219 flags = smp_load_acquire(&path->dentry->d_flags);
1220 if (ret < 0)
1221 break;
1222 }
1223
1224 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1225 struct vfsmount *mounted = lookup_mnt(path);
1226 if (mounted) { // ... in our namespace
1227 dput(path->dentry);
1228 if (need_mntput)
1229 mntput(path->mnt);
1230 path->mnt = mounted;
1231 path->dentry = dget(mounted->mnt_root);
1232 // here we know it's positive
1233 flags = path->dentry->d_flags;
1234 need_mntput = true;
1235 continue;
1236 }
1237 }
1238
1239 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1240 break;
1241
1242 // uncovered automount point
1243 ret = follow_automount(path, count, lookup_flags);
1244 flags = smp_load_acquire(&path->dentry->d_flags);
1245 if (ret < 0)
1246 break;
1247 }
1248
1249 if (ret == -EISDIR)
1250 ret = 0;
1251 // possible if you race with several mount --move
1252 if (need_mntput && path->mnt == mnt)
1253 mntput(path->mnt);
1254 if (!ret && unlikely(d_flags_negative(flags)))
1255 ret = -ENOENT;
1256 *jumped = need_mntput;
1257 return ret;
1258 }
1259
1260 static inline int traverse_mounts(struct path *path, bool *jumped,
1261 int *count, unsigned lookup_flags)
1262 {
1263 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1264
1265 /* fastpath */
1266 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1267 *jumped = false;
1268 if (unlikely(d_flags_negative(flags)))
1269 return -ENOENT;
1270 return 0;
1271 }
1272 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1273 }
1274
1275 int follow_down_one(struct path *path)
1276 {
1277 struct vfsmount *mounted;
1278
1279 mounted = lookup_mnt(path);
1280 if (mounted) {
1281 dput(path->dentry);
1282 mntput(path->mnt);
1283 path->mnt = mounted;
1284 path->dentry = dget(mounted->mnt_root);
1285 return 1;
1286 }
1287 return 0;
1288 }
1289 EXPORT_SYMBOL(follow_down_one);
1290
1291 /*
1292 * Follow down to the covering mount currently visible to userspace. At each
1293 * point, the filesystem owning that dentry may be queried as to whether the
1294 * caller is permitted to proceed or not.
1295 */
1296 int follow_down(struct path *path)
1297 {
1298 struct vfsmount *mnt = path->mnt;
1299 bool jumped;
1300 int ret = traverse_mounts(path, &jumped, NULL, 0);
1301
1302 if (path->mnt != mnt)
1303 mntput(mnt);
1304 return ret;
1305 }
1306 EXPORT_SYMBOL(follow_down);
1307
1308 /*
1309 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1310 * we meet a managed dentry that would need blocking.
1311 */
1312 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1313 struct inode **inode, unsigned *seqp)
1314 {
1315 struct dentry *dentry = path->dentry;
1316 unsigned int flags = dentry->d_flags;
1317
1318 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1319 return true;
1320
1321 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1322 return false;
1323
1324 for (;;) {
1325 /*
1326 * Don't forget we might have a non-mountpoint managed dentry
1327 * that wants to block transit.
1328 */
1329 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1330 int res = dentry->d_op->d_manage(path, true);
1331 if (res)
1332 return res == -EISDIR;
1333 flags = dentry->d_flags;
1334 }
1335
1336 if (flags & DCACHE_MOUNTED) {
1337 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1338 if (mounted) {
1339 path->mnt = &mounted->mnt;
1340 dentry = path->dentry = mounted->mnt.mnt_root;
1341 nd->flags |= LOOKUP_JUMPED;
1342 *seqp = read_seqcount_begin(&dentry->d_seq);
1343 *inode = dentry->d_inode;
1344 /*
1345 * We don't need to re-check ->d_seq after this
1346 * ->d_inode read - there will be an RCU delay
1347 * between mount hash removal and ->mnt_root
1348 * becoming unpinned.
1349 */
1350 flags = dentry->d_flags;
1351 continue;
1352 }
1353 if (read_seqretry(&mount_lock, nd->m_seq))
1354 return false;
1355 }
1356 return !(flags & DCACHE_NEED_AUTOMOUNT);
1357 }
1358 }
1359
1360 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1361 struct path *path, struct inode **inode,
1362 unsigned int *seqp)
1363 {
1364 bool jumped;
1365 int ret;
1366
1367 path->mnt = nd->path.mnt;
1368 path->dentry = dentry;
1369 if (nd->flags & LOOKUP_RCU) {
1370 unsigned int seq = *seqp;
1371 if (unlikely(!*inode))
1372 return -ENOENT;
1373 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1374 return 0;
1375 if (unlazy_child(nd, dentry, seq))
1376 return -ECHILD;
1377 // *path might've been clobbered by __follow_mount_rcu()
1378 path->mnt = nd->path.mnt;
1379 path->dentry = dentry;
1380 }
1381 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1382 if (jumped) {
1383 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1384 ret = -EXDEV;
1385 else
1386 nd->flags |= LOOKUP_JUMPED;
1387 }
1388 if (unlikely(ret)) {
1389 dput(path->dentry);
1390 if (path->mnt != nd->path.mnt)
1391 mntput(path->mnt);
1392 } else {
1393 *inode = d_backing_inode(path->dentry);
1394 *seqp = 0; /* out of RCU mode, so the value doesn't matter */
1395 }
1396 return ret;
1397 }
1398
1399 /*
1400 * This looks up the name in dcache and possibly revalidates the found dentry.
1401 * NULL is returned if the dentry does not exist in the cache.
1402 */
1403 static struct dentry *lookup_dcache(const struct qstr *name,
1404 struct dentry *dir,
1405 unsigned int flags)
1406 {
1407 struct dentry *dentry = d_lookup(dir, name);
1408 if (dentry) {
1409 int error = d_revalidate(dentry, flags);
1410 if (unlikely(error <= 0)) {
1411 if (!error)
1412 d_invalidate(dentry);
1413 dput(dentry);
1414 return ERR_PTR(error);
1415 }
1416 }
1417 return dentry;
1418 }
1419
1420 /*
1421 * Parent directory has inode locked exclusive. This is one
1422 * and only case when ->lookup() gets called on non in-lookup
1423 * dentries - as the matter of fact, this only gets called
1424 * when directory is guaranteed to have no in-lookup children
1425 * at all.
1426 */
1427 static struct dentry *__lookup_hash(const struct qstr *name,
1428 struct dentry *base, unsigned int flags)
1429 {
1430 struct dentry *dentry = lookup_dcache(name, base, flags);
1431 struct dentry *old;
1432 struct inode *dir = base->d_inode;
1433
1434 if (dentry)
1435 return dentry;
1436
1437 /* Don't create child dentry for a dead directory. */
1438 if (unlikely(IS_DEADDIR(dir)))
1439 return ERR_PTR(-ENOENT);
1440
1441 dentry = d_alloc(base, name);
1442 if (unlikely(!dentry))
1443 return ERR_PTR(-ENOMEM);
1444
1445 old = dir->i_op->lookup(dir, dentry, flags);
1446 if (unlikely(old)) {
1447 dput(dentry);
1448 dentry = old;
1449 }
1450 return dentry;
1451 }
1452
1453 static struct dentry *lookup_fast(struct nameidata *nd,
1454 struct inode **inode,
1455 unsigned *seqp)
1456 {
1457 struct dentry *dentry, *parent = nd->path.dentry;
1458 int status = 1;
1459
1460 /*
1461 * Rename seqlock is not required here because in the off chance
1462 * of a false negative due to a concurrent rename, the caller is
1463 * going to fall back to non-racy lookup.
1464 */
1465 if (nd->flags & LOOKUP_RCU) {
1466 unsigned seq;
1467 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1468 if (unlikely(!dentry)) {
1469 if (unlazy_walk(nd))
1470 return ERR_PTR(-ECHILD);
1471 return NULL;
1472 }
1473
1474 /*
1475 * This sequence count validates that the inode matches
1476 * the dentry name information from lookup.
1477 */
1478 *inode = d_backing_inode(dentry);
1479 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1480 return ERR_PTR(-ECHILD);
1481
1482 /*
1483 * This sequence count validates that the parent had no
1484 * changes while we did the lookup of the dentry above.
1485 *
1486 * The memory barrier in read_seqcount_begin of child is
1487 * enough, we can use __read_seqcount_retry here.
1488 */
1489 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1490 return ERR_PTR(-ECHILD);
1491
1492 *seqp = seq;
1493 status = d_revalidate(dentry, nd->flags);
1494 if (likely(status > 0))
1495 return dentry;
1496 if (unlazy_child(nd, dentry, seq))
1497 return ERR_PTR(-ECHILD);
1498 if (unlikely(status == -ECHILD))
1499 /* we'd been told to redo it in non-rcu mode */
1500 status = d_revalidate(dentry, nd->flags);
1501 } else {
1502 dentry = __d_lookup(parent, &nd->last);
1503 if (unlikely(!dentry))
1504 return NULL;
1505 status = d_revalidate(dentry, nd->flags);
1506 }
1507 if (unlikely(status <= 0)) {
1508 if (!status)
1509 d_invalidate(dentry);
1510 dput(dentry);
1511 return ERR_PTR(status);
1512 }
1513 return dentry;
1514 }
1515
1516 /* Fast lookup failed, do it the slow way */
1517 static struct dentry *__lookup_slow(const struct qstr *name,
1518 struct dentry *dir,
1519 unsigned int flags)
1520 {
1521 struct dentry *dentry, *old;
1522 struct inode *inode = dir->d_inode;
1523 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1524
1525 /* Don't go there if it's already dead */
1526 if (unlikely(IS_DEADDIR(inode)))
1527 return ERR_PTR(-ENOENT);
1528 again:
1529 dentry = d_alloc_parallel(dir, name, &wq);
1530 if (IS_ERR(dentry))
1531 return dentry;
1532 if (unlikely(!d_in_lookup(dentry))) {
1533 int error = d_revalidate(dentry, flags);
1534 if (unlikely(error <= 0)) {
1535 if (!error) {
1536 d_invalidate(dentry);
1537 dput(dentry);
1538 goto again;
1539 }
1540 dput(dentry);
1541 dentry = ERR_PTR(error);
1542 }
1543 } else {
1544 old = inode->i_op->lookup(inode, dentry, flags);
1545 d_lookup_done(dentry);
1546 if (unlikely(old)) {
1547 dput(dentry);
1548 dentry = old;
1549 }
1550 }
1551 return dentry;
1552 }
1553
1554 static struct dentry *lookup_slow(const struct qstr *name,
1555 struct dentry *dir,
1556 unsigned int flags)
1557 {
1558 struct inode *inode = dir->d_inode;
1559 struct dentry *res;
1560 inode_lock_shared(inode);
1561 res = __lookup_slow(name, dir, flags);
1562 inode_unlock_shared(inode);
1563 return res;
1564 }
1565
1566 static inline int may_lookup(struct nameidata *nd)
1567 {
1568 if (nd->flags & LOOKUP_RCU) {
1569 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1570 if (err != -ECHILD)
1571 return err;
1572 if (unlazy_walk(nd))
1573 return -ECHILD;
1574 }
1575 return inode_permission(nd->inode, MAY_EXEC);
1576 }
1577
1578 static int reserve_stack(struct nameidata *nd, struct path *link, unsigned seq)
1579 {
1580 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1581 return -ELOOP;
1582
1583 if (likely(nd->depth != EMBEDDED_LEVELS))
1584 return 0;
1585 if (likely(nd->stack != nd->internal))
1586 return 0;
1587 if (likely(nd_alloc_stack(nd)))
1588 return 0;
1589
1590 if (nd->flags & LOOKUP_RCU) {
1591 // we need to grab link before we do unlazy. And we can't skip
1592 // unlazy even if we fail to grab the link - cleanup needs it
1593 bool grabbed_link = legitimize_path(nd, link, seq);
1594
1595 if (unlazy_walk(nd) != 0 || !grabbed_link)
1596 return -ECHILD;
1597
1598 if (nd_alloc_stack(nd))
1599 return 0;
1600 }
1601 return -ENOMEM;
1602 }
1603
1604 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1605
1606 static const char *pick_link(struct nameidata *nd, struct path *link,
1607 struct inode *inode, unsigned seq, int flags)
1608 {
1609 struct saved *last;
1610 const char *res;
1611 int error = reserve_stack(nd, link, seq);
1612
1613 if (unlikely(error)) {
1614 if (!(nd->flags & LOOKUP_RCU))
1615 path_put(link);
1616 return ERR_PTR(error);
1617 }
1618 last = nd->stack + nd->depth++;
1619 last->link = *link;
1620 clear_delayed_call(&last->done);
1621 last->seq = seq;
1622
1623 if (flags & WALK_TRAILING) {
1624 error = may_follow_link(nd, inode);
1625 if (unlikely(error))
1626 return ERR_PTR(error);
1627 }
1628
1629 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1630 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1631 return ERR_PTR(-ELOOP);
1632
1633 if (!(nd->flags & LOOKUP_RCU)) {
1634 touch_atime(&last->link);
1635 cond_resched();
1636 } else if (atime_needs_update(&last->link, inode)) {
1637 if (unlikely(unlazy_walk(nd)))
1638 return ERR_PTR(-ECHILD);
1639 touch_atime(&last->link);
1640 }
1641
1642 error = security_inode_follow_link(link->dentry, inode,
1643 nd->flags & LOOKUP_RCU);
1644 if (unlikely(error))
1645 return ERR_PTR(error);
1646
1647 res = READ_ONCE(inode->i_link);
1648 if (!res) {
1649 const char * (*get)(struct dentry *, struct inode *,
1650 struct delayed_call *);
1651 get = inode->i_op->get_link;
1652 if (nd->flags & LOOKUP_RCU) {
1653 res = get(NULL, inode, &last->done);
1654 if (res == ERR_PTR(-ECHILD)) {
1655 if (unlikely(unlazy_walk(nd)))
1656 return ERR_PTR(-ECHILD);
1657 res = get(link->dentry, inode, &last->done);
1658 }
1659 } else {
1660 res = get(link->dentry, inode, &last->done);
1661 }
1662 if (!res)
1663 goto all_done;
1664 if (IS_ERR(res))
1665 return res;
1666 }
1667 if (*res == '/') {
1668 error = nd_jump_root(nd);
1669 if (unlikely(error))
1670 return ERR_PTR(error);
1671 while (unlikely(*++res == '/'))
1672 ;
1673 }
1674 if (*res)
1675 return res;
1676 all_done: // pure jump
1677 put_link(nd);
1678 return NULL;
1679 }
1680
1681 /*
1682 * Do we need to follow links? We _really_ want to be able
1683 * to do this check without having to look at inode->i_op,
1684 * so we keep a cache of "no, this doesn't need follow_link"
1685 * for the common case.
1686 */
1687 static const char *step_into(struct nameidata *nd, int flags,
1688 struct dentry *dentry, struct inode *inode, unsigned seq)
1689 {
1690 struct path path;
1691 int err = handle_mounts(nd, dentry, &path, &inode, &seq);
1692
1693 if (err < 0)
1694 return ERR_PTR(err);
1695 if (likely(!d_is_symlink(path.dentry)) ||
1696 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1697 (flags & WALK_NOFOLLOW)) {
1698 /* not a symlink or should not follow */
1699 if (!(nd->flags & LOOKUP_RCU)) {
1700 dput(nd->path.dentry);
1701 if (nd->path.mnt != path.mnt)
1702 mntput(nd->path.mnt);
1703 }
1704 nd->path = path;
1705 nd->inode = inode;
1706 nd->seq = seq;
1707 return NULL;
1708 }
1709 if (nd->flags & LOOKUP_RCU) {
1710 /* make sure that d_is_symlink above matches inode */
1711 if (read_seqcount_retry(&path.dentry->d_seq, seq))
1712 return ERR_PTR(-ECHILD);
1713 } else {
1714 if (path.mnt == nd->path.mnt)
1715 mntget(path.mnt);
1716 }
1717 return pick_link(nd, &path, inode, seq, flags);
1718 }
1719
1720 static struct dentry *follow_dotdot_rcu(struct nameidata *nd,
1721 struct inode **inodep,
1722 unsigned *seqp)
1723 {
1724 struct dentry *parent, *old;
1725
1726 if (path_equal(&nd->path, &nd->root))
1727 goto in_root;
1728 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1729 struct path path;
1730 unsigned seq;
1731 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1732 &nd->root, &path, &seq))
1733 goto in_root;
1734 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1735 return ERR_PTR(-ECHILD);
1736 nd->path = path;
1737 nd->inode = path.dentry->d_inode;
1738 nd->seq = seq;
1739 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1740 return ERR_PTR(-ECHILD);
1741 /* we know that mountpoint was pinned */
1742 }
1743 old = nd->path.dentry;
1744 parent = old->d_parent;
1745 *inodep = parent->d_inode;
1746 *seqp = read_seqcount_begin(&parent->d_seq);
1747 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1748 return ERR_PTR(-ECHILD);
1749 if (unlikely(!path_connected(nd->path.mnt, parent)))
1750 return ERR_PTR(-ECHILD);
1751 return parent;
1752 in_root:
1753 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1754 return ERR_PTR(-ECHILD);
1755 if (unlikely(nd->flags & LOOKUP_BENEATH))
1756 return ERR_PTR(-ECHILD);
1757 return NULL;
1758 }
1759
1760 static struct dentry *follow_dotdot(struct nameidata *nd,
1761 struct inode **inodep,
1762 unsigned *seqp)
1763 {
1764 struct dentry *parent;
1765
1766 if (path_equal(&nd->path, &nd->root))
1767 goto in_root;
1768 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1769 struct path path;
1770
1771 if (!choose_mountpoint(real_mount(nd->path.mnt),
1772 &nd->root, &path))
1773 goto in_root;
1774 path_put(&nd->path);
1775 nd->path = path;
1776 nd->inode = path.dentry->d_inode;
1777 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1778 return ERR_PTR(-EXDEV);
1779 }
1780 /* rare case of legitimate dget_parent()... */
1781 parent = dget_parent(nd->path.dentry);
1782 if (unlikely(!path_connected(nd->path.mnt, parent))) {
1783 dput(parent);
1784 return ERR_PTR(-ENOENT);
1785 }
1786 *seqp = 0;
1787 *inodep = parent->d_inode;
1788 return parent;
1789
1790 in_root:
1791 if (unlikely(nd->flags & LOOKUP_BENEATH))
1792 return ERR_PTR(-EXDEV);
1793 dget(nd->path.dentry);
1794 return NULL;
1795 }
1796
1797 static const char *handle_dots(struct nameidata *nd, int type)
1798 {
1799 if (type == LAST_DOTDOT) {
1800 const char *error = NULL;
1801 struct dentry *parent;
1802 struct inode *inode;
1803 unsigned seq;
1804
1805 if (!nd->root.mnt) {
1806 error = ERR_PTR(set_root(nd));
1807 if (error)
1808 return error;
1809 }
1810 if (nd->flags & LOOKUP_RCU)
1811 parent = follow_dotdot_rcu(nd, &inode, &seq);
1812 else
1813 parent = follow_dotdot(nd, &inode, &seq);
1814 if (IS_ERR(parent))
1815 return ERR_CAST(parent);
1816 if (unlikely(!parent))
1817 error = step_into(nd, WALK_NOFOLLOW,
1818 nd->path.dentry, nd->inode, nd->seq);
1819 else
1820 error = step_into(nd, WALK_NOFOLLOW,
1821 parent, inode, seq);
1822 if (unlikely(error))
1823 return error;
1824
1825 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1826 /*
1827 * If there was a racing rename or mount along our
1828 * path, then we can't be sure that ".." hasn't jumped
1829 * above nd->root (and so userspace should retry or use
1830 * some fallback).
1831 */
1832 smp_rmb();
1833 if (unlikely(__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq)))
1834 return ERR_PTR(-EAGAIN);
1835 if (unlikely(__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq)))
1836 return ERR_PTR(-EAGAIN);
1837 }
1838 }
1839 return NULL;
1840 }
1841
1842 static const char *walk_component(struct nameidata *nd, int flags)
1843 {
1844 struct dentry *dentry;
1845 struct inode *inode;
1846 unsigned seq;
1847 /*
1848 * "." and ".." are special - ".." especially so because it has
1849 * to be able to know about the current root directory and
1850 * parent relationships.
1851 */
1852 if (unlikely(nd->last_type != LAST_NORM)) {
1853 if (!(flags & WALK_MORE) && nd->depth)
1854 put_link(nd);
1855 return handle_dots(nd, nd->last_type);
1856 }
1857 dentry = lookup_fast(nd, &inode, &seq);
1858 if (IS_ERR(dentry))
1859 return ERR_CAST(dentry);
1860 if (unlikely(!dentry)) {
1861 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1862 if (IS_ERR(dentry))
1863 return ERR_CAST(dentry);
1864 }
1865 if (!(flags & WALK_MORE) && nd->depth)
1866 put_link(nd);
1867 return step_into(nd, flags, dentry, inode, seq);
1868 }
1869
1870 /*
1871 * We can do the critical dentry name comparison and hashing
1872 * operations one word at a time, but we are limited to:
1873 *
1874 * - Architectures with fast unaligned word accesses. We could
1875 * do a "get_unaligned()" if this helps and is sufficiently
1876 * fast.
1877 *
1878 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1879 * do not trap on the (extremely unlikely) case of a page
1880 * crossing operation.
1881 *
1882 * - Furthermore, we need an efficient 64-bit compile for the
1883 * 64-bit case in order to generate the "number of bytes in
1884 * the final mask". Again, that could be replaced with a
1885 * efficient population count instruction or similar.
1886 */
1887 #ifdef CONFIG_DCACHE_WORD_ACCESS
1888
1889 #include <asm/word-at-a-time.h>
1890
1891 #ifdef HASH_MIX
1892
1893 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1894
1895 #elif defined(CONFIG_64BIT)
1896 /*
1897 * Register pressure in the mixing function is an issue, particularly
1898 * on 32-bit x86, but almost any function requires one state value and
1899 * one temporary. Instead, use a function designed for two state values
1900 * and no temporaries.
1901 *
1902 * This function cannot create a collision in only two iterations, so
1903 * we have two iterations to achieve avalanche. In those two iterations,
1904 * we have six layers of mixing, which is enough to spread one bit's
1905 * influence out to 2^6 = 64 state bits.
1906 *
1907 * Rotate constants are scored by considering either 64 one-bit input
1908 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1909 * probability of that delta causing a change to each of the 128 output
1910 * bits, using a sample of random initial states.
1911 *
1912 * The Shannon entropy of the computed probabilities is then summed
1913 * to produce a score. Ideally, any input change has a 50% chance of
1914 * toggling any given output bit.
1915 *
1916 * Mixing scores (in bits) for (12,45):
1917 * Input delta: 1-bit 2-bit
1918 * 1 round: 713.3 42542.6
1919 * 2 rounds: 2753.7 140389.8
1920 * 3 rounds: 5954.1 233458.2
1921 * 4 rounds: 7862.6 256672.2
1922 * Perfect: 8192 258048
1923 * (64*128) (64*63/2 * 128)
1924 */
1925 #define HASH_MIX(x, y, a) \
1926 ( x ^= (a), \
1927 y ^= x, x = rol64(x,12),\
1928 x += y, y = rol64(y,45),\
1929 y *= 9 )
1930
1931 /*
1932 * Fold two longs into one 32-bit hash value. This must be fast, but
1933 * latency isn't quite as critical, as there is a fair bit of additional
1934 * work done before the hash value is used.
1935 */
1936 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1937 {
1938 y ^= x * GOLDEN_RATIO_64;
1939 y *= GOLDEN_RATIO_64;
1940 return y >> 32;
1941 }
1942
1943 #else /* 32-bit case */
1944
1945 /*
1946 * Mixing scores (in bits) for (7,20):
1947 * Input delta: 1-bit 2-bit
1948 * 1 round: 330.3 9201.6
1949 * 2 rounds: 1246.4 25475.4
1950 * 3 rounds: 1907.1 31295.1
1951 * 4 rounds: 2042.3 31718.6
1952 * Perfect: 2048 31744
1953 * (32*64) (32*31/2 * 64)
1954 */
1955 #define HASH_MIX(x, y, a) \
1956 ( x ^= (a), \
1957 y ^= x, x = rol32(x, 7),\
1958 x += y, y = rol32(y,20),\
1959 y *= 9 )
1960
1961 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1962 {
1963 /* Use arch-optimized multiply if one exists */
1964 return __hash_32(y ^ __hash_32(x));
1965 }
1966
1967 #endif
1968
1969 /*
1970 * Return the hash of a string of known length. This is carfully
1971 * designed to match hash_name(), which is the more critical function.
1972 * In particular, we must end by hashing a final word containing 0..7
1973 * payload bytes, to match the way that hash_name() iterates until it
1974 * finds the delimiter after the name.
1975 */
1976 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1977 {
1978 unsigned long a, x = 0, y = (unsigned long)salt;
1979
1980 for (;;) {
1981 if (!len)
1982 goto done;
1983 a = load_unaligned_zeropad(name);
1984 if (len < sizeof(unsigned long))
1985 break;
1986 HASH_MIX(x, y, a);
1987 name += sizeof(unsigned long);
1988 len -= sizeof(unsigned long);
1989 }
1990 x ^= a & bytemask_from_count(len);
1991 done:
1992 return fold_hash(x, y);
1993 }
1994 EXPORT_SYMBOL(full_name_hash);
1995
1996 /* Return the "hash_len" (hash and length) of a null-terminated string */
1997 u64 hashlen_string(const void *salt, const char *name)
1998 {
1999 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2000 unsigned long adata, mask, len;
2001 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2002
2003 len = 0;
2004 goto inside;
2005
2006 do {
2007 HASH_MIX(x, y, a);
2008 len += sizeof(unsigned long);
2009 inside:
2010 a = load_unaligned_zeropad(name+len);
2011 } while (!has_zero(a, &adata, &constants));
2012
2013 adata = prep_zero_mask(a, adata, &constants);
2014 mask = create_zero_mask(adata);
2015 x ^= a & zero_bytemask(mask);
2016
2017 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2018 }
2019 EXPORT_SYMBOL(hashlen_string);
2020
2021 /*
2022 * Calculate the length and hash of the path component, and
2023 * return the "hash_len" as the result.
2024 */
2025 static inline u64 hash_name(const void *salt, const char *name)
2026 {
2027 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2028 unsigned long adata, bdata, mask, len;
2029 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2030
2031 len = 0;
2032 goto inside;
2033
2034 do {
2035 HASH_MIX(x, y, a);
2036 len += sizeof(unsigned long);
2037 inside:
2038 a = load_unaligned_zeropad(name+len);
2039 b = a ^ REPEAT_BYTE('/');
2040 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2041
2042 adata = prep_zero_mask(a, adata, &constants);
2043 bdata = prep_zero_mask(b, bdata, &constants);
2044 mask = create_zero_mask(adata | bdata);
2045 x ^= a & zero_bytemask(mask);
2046
2047 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2048 }
2049
2050 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2051
2052 /* Return the hash of a string of known length */
2053 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2054 {
2055 unsigned long hash = init_name_hash(salt);
2056 while (len--)
2057 hash = partial_name_hash((unsigned char)*name++, hash);
2058 return end_name_hash(hash);
2059 }
2060 EXPORT_SYMBOL(full_name_hash);
2061
2062 /* Return the "hash_len" (hash and length) of a null-terminated string */
2063 u64 hashlen_string(const void *salt, const char *name)
2064 {
2065 unsigned long hash = init_name_hash(salt);
2066 unsigned long len = 0, c;
2067
2068 c = (unsigned char)*name;
2069 while (c) {
2070 len++;
2071 hash = partial_name_hash(c, hash);
2072 c = (unsigned char)name[len];
2073 }
2074 return hashlen_create(end_name_hash(hash), len);
2075 }
2076 EXPORT_SYMBOL(hashlen_string);
2077
2078 /*
2079 * We know there's a real path component here of at least
2080 * one character.
2081 */
2082 static inline u64 hash_name(const void *salt, const char *name)
2083 {
2084 unsigned long hash = init_name_hash(salt);
2085 unsigned long len = 0, c;
2086
2087 c = (unsigned char)*name;
2088 do {
2089 len++;
2090 hash = partial_name_hash(c, hash);
2091 c = (unsigned char)name[len];
2092 } while (c && c != '/');
2093 return hashlen_create(end_name_hash(hash), len);
2094 }
2095
2096 #endif
2097
2098 /*
2099 * Name resolution.
2100 * This is the basic name resolution function, turning a pathname into
2101 * the final dentry. We expect 'base' to be positive and a directory.
2102 *
2103 * Returns 0 and nd will have valid dentry and mnt on success.
2104 * Returns error and drops reference to input namei data on failure.
2105 */
2106 static int link_path_walk(const char *name, struct nameidata *nd)
2107 {
2108 int depth = 0; // depth <= nd->depth
2109 int err;
2110
2111 nd->last_type = LAST_ROOT;
2112 nd->flags |= LOOKUP_PARENT;
2113 if (IS_ERR(name))
2114 return PTR_ERR(name);
2115 while (*name=='/')
2116 name++;
2117 if (!*name)
2118 return 0;
2119
2120 /* At this point we know we have a real path component. */
2121 for(;;) {
2122 const char *link;
2123 u64 hash_len;
2124 int type;
2125
2126 err = may_lookup(nd);
2127 if (err)
2128 return err;
2129
2130 hash_len = hash_name(nd->path.dentry, name);
2131
2132 type = LAST_NORM;
2133 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2134 case 2:
2135 if (name[1] == '.') {
2136 type = LAST_DOTDOT;
2137 nd->flags |= LOOKUP_JUMPED;
2138 }
2139 break;
2140 case 1:
2141 type = LAST_DOT;
2142 }
2143 if (likely(type == LAST_NORM)) {
2144 struct dentry *parent = nd->path.dentry;
2145 nd->flags &= ~LOOKUP_JUMPED;
2146 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2147 struct qstr this = { { .hash_len = hash_len }, .name = name };
2148 err = parent->d_op->d_hash(parent, &this);
2149 if (err < 0)
2150 return err;
2151 hash_len = this.hash_len;
2152 name = this.name;
2153 }
2154 }
2155
2156 nd->last.hash_len = hash_len;
2157 nd->last.name = name;
2158 nd->last_type = type;
2159
2160 name += hashlen_len(hash_len);
2161 if (!*name)
2162 goto OK;
2163 /*
2164 * If it wasn't NUL, we know it was '/'. Skip that
2165 * slash, and continue until no more slashes.
2166 */
2167 do {
2168 name++;
2169 } while (unlikely(*name == '/'));
2170 if (unlikely(!*name)) {
2171 OK:
2172 /* pathname or trailing symlink, done */
2173 if (!depth) {
2174 nd->dir_uid = nd->inode->i_uid;
2175 nd->dir_mode = nd->inode->i_mode;
2176 nd->flags &= ~LOOKUP_PARENT;
2177 return 0;
2178 }
2179 /* last component of nested symlink */
2180 name = nd->stack[--depth].name;
2181 link = walk_component(nd, 0);
2182 } else {
2183 /* not the last component */
2184 link = walk_component(nd, WALK_MORE);
2185 }
2186 if (unlikely(link)) {
2187 if (IS_ERR(link))
2188 return PTR_ERR(link);
2189 /* a symlink to follow */
2190 nd->stack[depth++].name = name;
2191 name = link;
2192 continue;
2193 }
2194 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2195 if (nd->flags & LOOKUP_RCU) {
2196 if (unlazy_walk(nd))
2197 return -ECHILD;
2198 }
2199 return -ENOTDIR;
2200 }
2201 }
2202 }
2203
2204 /* must be paired with terminate_walk() */
2205 static const char *path_init(struct nameidata *nd, unsigned flags)
2206 {
2207 int error;
2208 const char *s = nd->name->name;
2209
2210 if (!*s)
2211 flags &= ~LOOKUP_RCU;
2212 if (flags & LOOKUP_RCU)
2213 rcu_read_lock();
2214
2215 nd->flags = flags | LOOKUP_JUMPED;
2216 nd->depth = 0;
2217
2218 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2219 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2220 smp_rmb();
2221
2222 if (flags & LOOKUP_ROOT) {
2223 struct dentry *root = nd->root.dentry;
2224 struct inode *inode = root->d_inode;
2225 if (*s && unlikely(!d_can_lookup(root)))
2226 return ERR_PTR(-ENOTDIR);
2227 nd->path = nd->root;
2228 nd->inode = inode;
2229 if (flags & LOOKUP_RCU) {
2230 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2231 nd->root_seq = nd->seq;
2232 } else {
2233 path_get(&nd->path);
2234 }
2235 return s;
2236 }
2237
2238 nd->root.mnt = NULL;
2239 nd->path.mnt = NULL;
2240 nd->path.dentry = NULL;
2241
2242 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2243 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2244 error = nd_jump_root(nd);
2245 if (unlikely(error))
2246 return ERR_PTR(error);
2247 return s;
2248 }
2249
2250 /* Relative pathname -- get the starting-point it is relative to. */
2251 if (nd->dfd == AT_FDCWD) {
2252 if (flags & LOOKUP_RCU) {
2253 struct fs_struct *fs = current->fs;
2254 unsigned seq;
2255
2256 do {
2257 seq = read_seqcount_begin(&fs->seq);
2258 nd->path = fs->pwd;
2259 nd->inode = nd->path.dentry->d_inode;
2260 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2261 } while (read_seqcount_retry(&fs->seq, seq));
2262 } else {
2263 get_fs_pwd(current->fs, &nd->path);
2264 nd->inode = nd->path.dentry->d_inode;
2265 }
2266 } else {
2267 /* Caller must check execute permissions on the starting path component */
2268 struct fd f = fdget_raw(nd->dfd);
2269 struct dentry *dentry;
2270
2271 if (!f.file)
2272 return ERR_PTR(-EBADF);
2273
2274 dentry = f.file->f_path.dentry;
2275
2276 if (*s && unlikely(!d_can_lookup(dentry))) {
2277 fdput(f);
2278 return ERR_PTR(-ENOTDIR);
2279 }
2280
2281 nd->path = f.file->f_path;
2282 if (flags & LOOKUP_RCU) {
2283 nd->inode = nd->path.dentry->d_inode;
2284 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2285 } else {
2286 path_get(&nd->path);
2287 nd->inode = nd->path.dentry->d_inode;
2288 }
2289 fdput(f);
2290 }
2291
2292 /* For scoped-lookups we need to set the root to the dirfd as well. */
2293 if (flags & LOOKUP_IS_SCOPED) {
2294 nd->root = nd->path;
2295 if (flags & LOOKUP_RCU) {
2296 nd->root_seq = nd->seq;
2297 } else {
2298 path_get(&nd->root);
2299 nd->flags |= LOOKUP_ROOT_GRABBED;
2300 }
2301 }
2302 return s;
2303 }
2304
2305 static inline const char *lookup_last(struct nameidata *nd)
2306 {
2307 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2308 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2309
2310 return walk_component(nd, WALK_TRAILING);
2311 }
2312
2313 static int handle_lookup_down(struct nameidata *nd)
2314 {
2315 if (!(nd->flags & LOOKUP_RCU))
2316 dget(nd->path.dentry);
2317 return PTR_ERR(step_into(nd, WALK_NOFOLLOW,
2318 nd->path.dentry, nd->inode, nd->seq));
2319 }
2320
2321 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2322 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2323 {
2324 const char *s = path_init(nd, flags);
2325 int err;
2326
2327 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2328 err = handle_lookup_down(nd);
2329 if (unlikely(err < 0))
2330 s = ERR_PTR(err);
2331 }
2332
2333 while (!(err = link_path_walk(s, nd)) &&
2334 (s = lookup_last(nd)) != NULL)
2335 ;
2336 if (!err)
2337 err = complete_walk(nd);
2338
2339 if (!err && nd->flags & LOOKUP_DIRECTORY)
2340 if (!d_can_lookup(nd->path.dentry))
2341 err = -ENOTDIR;
2342 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2343 err = handle_lookup_down(nd);
2344 nd->flags &= ~LOOKUP_JUMPED; // no d_weak_revalidate(), please...
2345 }
2346 if (!err) {
2347 *path = nd->path;
2348 nd->path.mnt = NULL;
2349 nd->path.dentry = NULL;
2350 }
2351 terminate_walk(nd);
2352 return err;
2353 }
2354
2355 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2356 struct path *path, struct path *root)
2357 {
2358 int retval;
2359 struct nameidata nd;
2360 if (IS_ERR(name))
2361 return PTR_ERR(name);
2362 if (unlikely(root)) {
2363 nd.root = *root;
2364 flags |= LOOKUP_ROOT;
2365 }
2366 set_nameidata(&nd, dfd, name);
2367 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2368 if (unlikely(retval == -ECHILD))
2369 retval = path_lookupat(&nd, flags, path);
2370 if (unlikely(retval == -ESTALE))
2371 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2372
2373 if (likely(!retval))
2374 audit_inode(name, path->dentry,
2375 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2376 restore_nameidata();
2377 putname(name);
2378 return retval;
2379 }
2380
2381 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2382 static int path_parentat(struct nameidata *nd, unsigned flags,
2383 struct path *parent)
2384 {
2385 const char *s = path_init(nd, flags);
2386 int err = link_path_walk(s, nd);
2387 if (!err)
2388 err = complete_walk(nd);
2389 if (!err) {
2390 *parent = nd->path;
2391 nd->path.mnt = NULL;
2392 nd->path.dentry = NULL;
2393 }
2394 terminate_walk(nd);
2395 return err;
2396 }
2397
2398 static struct filename *filename_parentat(int dfd, struct filename *name,
2399 unsigned int flags, struct path *parent,
2400 struct qstr *last, int *type)
2401 {
2402 int retval;
2403 struct nameidata nd;
2404
2405 if (IS_ERR(name))
2406 return name;
2407 set_nameidata(&nd, dfd, name);
2408 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2409 if (unlikely(retval == -ECHILD))
2410 retval = path_parentat(&nd, flags, parent);
2411 if (unlikely(retval == -ESTALE))
2412 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2413 if (likely(!retval)) {
2414 *last = nd.last;
2415 *type = nd.last_type;
2416 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2417 } else {
2418 putname(name);
2419 name = ERR_PTR(retval);
2420 }
2421 restore_nameidata();
2422 return name;
2423 }
2424
2425 /* does lookup, returns the object with parent locked */
2426 struct dentry *kern_path_locked(const char *name, struct path *path)
2427 {
2428 struct filename *filename;
2429 struct dentry *d;
2430 struct qstr last;
2431 int type;
2432
2433 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2434 &last, &type);
2435 if (IS_ERR(filename))
2436 return ERR_CAST(filename);
2437 if (unlikely(type != LAST_NORM)) {
2438 path_put(path);
2439 putname(filename);
2440 return ERR_PTR(-EINVAL);
2441 }
2442 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2443 d = __lookup_hash(&last, path->dentry, 0);
2444 if (IS_ERR(d)) {
2445 inode_unlock(path->dentry->d_inode);
2446 path_put(path);
2447 }
2448 putname(filename);
2449 return d;
2450 }
2451
2452 int kern_path(const char *name, unsigned int flags, struct path *path)
2453 {
2454 return filename_lookup(AT_FDCWD, getname_kernel(name),
2455 flags, path, NULL);
2456 }
2457 EXPORT_SYMBOL(kern_path);
2458
2459 /**
2460 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2461 * @dentry: pointer to dentry of the base directory
2462 * @mnt: pointer to vfs mount of the base directory
2463 * @name: pointer to file name
2464 * @flags: lookup flags
2465 * @path: pointer to struct path to fill
2466 */
2467 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2468 const char *name, unsigned int flags,
2469 struct path *path)
2470 {
2471 struct path root = {.mnt = mnt, .dentry = dentry};
2472 /* the first argument of filename_lookup() is ignored with root */
2473 return filename_lookup(AT_FDCWD, getname_kernel(name),
2474 flags , path, &root);
2475 }
2476 EXPORT_SYMBOL(vfs_path_lookup);
2477
2478 static int lookup_one_len_common(const char *name, struct dentry *base,
2479 int len, struct qstr *this)
2480 {
2481 this->name = name;
2482 this->len = len;
2483 this->hash = full_name_hash(base, name, len);
2484 if (!len)
2485 return -EACCES;
2486
2487 if (unlikely(name[0] == '.')) {
2488 if (len < 2 || (len == 2 && name[1] == '.'))
2489 return -EACCES;
2490 }
2491
2492 while (len--) {
2493 unsigned int c = *(const unsigned char *)name++;
2494 if (c == '/' || c == '\0')
2495 return -EACCES;
2496 }
2497 /*
2498 * See if the low-level filesystem might want
2499 * to use its own hash..
2500 */
2501 if (base->d_flags & DCACHE_OP_HASH) {
2502 int err = base->d_op->d_hash(base, this);
2503 if (err < 0)
2504 return err;
2505 }
2506
2507 return inode_permission(base->d_inode, MAY_EXEC);
2508 }
2509
2510 /**
2511 * try_lookup_one_len - filesystem helper to lookup single pathname component
2512 * @name: pathname component to lookup
2513 * @base: base directory to lookup from
2514 * @len: maximum length @len should be interpreted to
2515 *
2516 * Look up a dentry by name in the dcache, returning NULL if it does not
2517 * currently exist. The function does not try to create a dentry.
2518 *
2519 * Note that this routine is purely a helper for filesystem usage and should
2520 * not be called by generic code.
2521 *
2522 * The caller must hold base->i_mutex.
2523 */
2524 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2525 {
2526 struct qstr this;
2527 int err;
2528
2529 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2530
2531 err = lookup_one_len_common(name, base, len, &this);
2532 if (err)
2533 return ERR_PTR(err);
2534
2535 return lookup_dcache(&this, base, 0);
2536 }
2537 EXPORT_SYMBOL(try_lookup_one_len);
2538
2539 /**
2540 * lookup_one_len - filesystem helper to lookup single pathname component
2541 * @name: pathname component to lookup
2542 * @base: base directory to lookup from
2543 * @len: maximum length @len should be interpreted to
2544 *
2545 * Note that this routine is purely a helper for filesystem usage and should
2546 * not be called by generic code.
2547 *
2548 * The caller must hold base->i_mutex.
2549 */
2550 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2551 {
2552 struct dentry *dentry;
2553 struct qstr this;
2554 int err;
2555
2556 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2557
2558 err = lookup_one_len_common(name, base, len, &this);
2559 if (err)
2560 return ERR_PTR(err);
2561
2562 dentry = lookup_dcache(&this, base, 0);
2563 return dentry ? dentry : __lookup_slow(&this, base, 0);
2564 }
2565 EXPORT_SYMBOL(lookup_one_len);
2566
2567 /**
2568 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2569 * @name: pathname component to lookup
2570 * @base: base directory to lookup from
2571 * @len: maximum length @len should be interpreted to
2572 *
2573 * Note that this routine is purely a helper for filesystem usage and should
2574 * not be called by generic code.
2575 *
2576 * Unlike lookup_one_len, it should be called without the parent
2577 * i_mutex held, and will take the i_mutex itself if necessary.
2578 */
2579 struct dentry *lookup_one_len_unlocked(const char *name,
2580 struct dentry *base, int len)
2581 {
2582 struct qstr this;
2583 int err;
2584 struct dentry *ret;
2585
2586 err = lookup_one_len_common(name, base, len, &this);
2587 if (err)
2588 return ERR_PTR(err);
2589
2590 ret = lookup_dcache(&this, base, 0);
2591 if (!ret)
2592 ret = lookup_slow(&this, base, 0);
2593 return ret;
2594 }
2595 EXPORT_SYMBOL(lookup_one_len_unlocked);
2596
2597 /*
2598 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2599 * on negatives. Returns known positive or ERR_PTR(); that's what
2600 * most of the users want. Note that pinned negative with unlocked parent
2601 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2602 * need to be very careful; pinned positives have ->d_inode stable, so
2603 * this one avoids such problems.
2604 */
2605 struct dentry *lookup_positive_unlocked(const char *name,
2606 struct dentry *base, int len)
2607 {
2608 struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2609 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2610 dput(ret);
2611 ret = ERR_PTR(-ENOENT);
2612 }
2613 return ret;
2614 }
2615 EXPORT_SYMBOL(lookup_positive_unlocked);
2616
2617 #ifdef CONFIG_UNIX98_PTYS
2618 int path_pts(struct path *path)
2619 {
2620 /* Find something mounted on "pts" in the same directory as
2621 * the input path.
2622 */
2623 struct dentry *parent = dget_parent(path->dentry);
2624 struct dentry *child;
2625 struct qstr this = QSTR_INIT("pts", 3);
2626
2627 if (unlikely(!path_connected(path->mnt, parent))) {
2628 dput(parent);
2629 return -ENOENT;
2630 }
2631 dput(path->dentry);
2632 path->dentry = parent;
2633 child = d_hash_and_lookup(parent, &this);
2634 if (!child)
2635 return -ENOENT;
2636
2637 path->dentry = child;
2638 dput(parent);
2639 follow_down(path);
2640 return 0;
2641 }
2642 #endif
2643
2644 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2645 struct path *path, int *empty)
2646 {
2647 return filename_lookup(dfd, getname_flags(name, flags, empty),
2648 flags, path, NULL);
2649 }
2650 EXPORT_SYMBOL(user_path_at_empty);
2651
2652 int __check_sticky(struct inode *dir, struct inode *inode)
2653 {
2654 kuid_t fsuid = current_fsuid();
2655
2656 if (uid_eq(inode->i_uid, fsuid))
2657 return 0;
2658 if (uid_eq(dir->i_uid, fsuid))
2659 return 0;
2660 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2661 }
2662 EXPORT_SYMBOL(__check_sticky);
2663
2664 /*
2665 * Check whether we can remove a link victim from directory dir, check
2666 * whether the type of victim is right.
2667 * 1. We can't do it if dir is read-only (done in permission())
2668 * 2. We should have write and exec permissions on dir
2669 * 3. We can't remove anything from append-only dir
2670 * 4. We can't do anything with immutable dir (done in permission())
2671 * 5. If the sticky bit on dir is set we should either
2672 * a. be owner of dir, or
2673 * b. be owner of victim, or
2674 * c. have CAP_FOWNER capability
2675 * 6. If the victim is append-only or immutable we can't do antyhing with
2676 * links pointing to it.
2677 * 7. If the victim has an unknown uid or gid we can't change the inode.
2678 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2679 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2680 * 10. We can't remove a root or mountpoint.
2681 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2682 * nfs_async_unlink().
2683 */
2684 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2685 {
2686 struct inode *inode = d_backing_inode(victim);
2687 int error;
2688
2689 if (d_is_negative(victim))
2690 return -ENOENT;
2691 BUG_ON(!inode);
2692
2693 BUG_ON(victim->d_parent->d_inode != dir);
2694
2695 /* Inode writeback is not safe when the uid or gid are invalid. */
2696 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2697 return -EOVERFLOW;
2698
2699 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2700
2701 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2702 if (error)
2703 return error;
2704 if (IS_APPEND(dir))
2705 return -EPERM;
2706
2707 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2708 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2709 return -EPERM;
2710 if (isdir) {
2711 if (!d_is_dir(victim))
2712 return -ENOTDIR;
2713 if (IS_ROOT(victim))
2714 return -EBUSY;
2715 } else if (d_is_dir(victim))
2716 return -EISDIR;
2717 if (IS_DEADDIR(dir))
2718 return -ENOENT;
2719 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2720 return -EBUSY;
2721 return 0;
2722 }
2723
2724 /* Check whether we can create an object with dentry child in directory
2725 * dir.
2726 * 1. We can't do it if child already exists (open has special treatment for
2727 * this case, but since we are inlined it's OK)
2728 * 2. We can't do it if dir is read-only (done in permission())
2729 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2730 * 4. We should have write and exec permissions on dir
2731 * 5. We can't do it if dir is immutable (done in permission())
2732 */
2733 static inline int may_create(struct inode *dir, struct dentry *child)
2734 {
2735 struct user_namespace *s_user_ns;
2736 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2737 if (child->d_inode)
2738 return -EEXIST;
2739 if (IS_DEADDIR(dir))
2740 return -ENOENT;
2741 s_user_ns = dir->i_sb->s_user_ns;
2742 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2743 !kgid_has_mapping(s_user_ns, current_fsgid()))
2744 return -EOVERFLOW;
2745 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2746 }
2747
2748 /*
2749 * p1 and p2 should be directories on the same fs.
2750 */
2751 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2752 {
2753 struct dentry *p;
2754
2755 if (p1 == p2) {
2756 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2757 return NULL;
2758 }
2759
2760 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2761
2762 p = d_ancestor(p2, p1);
2763 if (p) {
2764 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2765 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2766 return p;
2767 }
2768
2769 p = d_ancestor(p1, p2);
2770 if (p) {
2771 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2772 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2773 return p;
2774 }
2775
2776 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2777 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2778 return NULL;
2779 }
2780 EXPORT_SYMBOL(lock_rename);
2781
2782 void unlock_rename(struct dentry *p1, struct dentry *p2)
2783 {
2784 inode_unlock(p1->d_inode);
2785 if (p1 != p2) {
2786 inode_unlock(p2->d_inode);
2787 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2788 }
2789 }
2790 EXPORT_SYMBOL(unlock_rename);
2791
2792 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2793 bool want_excl)
2794 {
2795 int error = may_create(dir, dentry);
2796 if (error)
2797 return error;
2798
2799 if (!dir->i_op->create)
2800 return -EACCES; /* shouldn't it be ENOSYS? */
2801 mode &= S_IALLUGO;
2802 mode |= S_IFREG;
2803 error = security_inode_create(dir, dentry, mode);
2804 if (error)
2805 return error;
2806 error = dir->i_op->create(dir, dentry, mode, want_excl);
2807 if (!error)
2808 fsnotify_create(dir, dentry);
2809 return error;
2810 }
2811 EXPORT_SYMBOL(vfs_create);
2812
2813 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2814 int (*f)(struct dentry *, umode_t, void *),
2815 void *arg)
2816 {
2817 struct inode *dir = dentry->d_parent->d_inode;
2818 int error = may_create(dir, dentry);
2819 if (error)
2820 return error;
2821
2822 mode &= S_IALLUGO;
2823 mode |= S_IFREG;
2824 error = security_inode_create(dir, dentry, mode);
2825 if (error)
2826 return error;
2827 error = f(dentry, mode, arg);
2828 if (!error)
2829 fsnotify_create(dir, dentry);
2830 return error;
2831 }
2832 EXPORT_SYMBOL(vfs_mkobj);
2833
2834 bool may_open_dev(const struct path *path)
2835 {
2836 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2837 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2838 }
2839
2840 static int may_open(const struct path *path, int acc_mode, int flag)
2841 {
2842 struct dentry *dentry = path->dentry;
2843 struct inode *inode = dentry->d_inode;
2844 int error;
2845
2846 if (!inode)
2847 return -ENOENT;
2848
2849 switch (inode->i_mode & S_IFMT) {
2850 case S_IFLNK:
2851 return -ELOOP;
2852 case S_IFDIR:
2853 if (acc_mode & MAY_WRITE)
2854 return -EISDIR;
2855 if (acc_mode & MAY_EXEC)
2856 return -EACCES;
2857 break;
2858 case S_IFBLK:
2859 case S_IFCHR:
2860 if (!may_open_dev(path))
2861 return -EACCES;
2862 fallthrough;
2863 case S_IFIFO:
2864 case S_IFSOCK:
2865 if (acc_mode & MAY_EXEC)
2866 return -EACCES;
2867 flag &= ~O_TRUNC;
2868 break;
2869 case S_IFREG:
2870 if ((acc_mode & MAY_EXEC) && path_noexec(path))
2871 return -EACCES;
2872 break;
2873 }
2874
2875 error = inode_permission(inode, MAY_OPEN | acc_mode);
2876 if (error)
2877 return error;
2878
2879 /*
2880 * An append-only file must be opened in append mode for writing.
2881 */
2882 if (IS_APPEND(inode)) {
2883 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2884 return -EPERM;
2885 if (flag & O_TRUNC)
2886 return -EPERM;
2887 }
2888
2889 /* O_NOATIME can only be set by the owner or superuser */
2890 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2891 return -EPERM;
2892
2893 return 0;
2894 }
2895
2896 static int handle_truncate(struct file *filp)
2897 {
2898 const struct path *path = &filp->f_path;
2899 struct inode *inode = path->dentry->d_inode;
2900 int error = get_write_access(inode);
2901 if (error)
2902 return error;
2903 /*
2904 * Refuse to truncate files with mandatory locks held on them.
2905 */
2906 error = locks_verify_locked(filp);
2907 if (!error)
2908 error = security_path_truncate(path);
2909 if (!error) {
2910 error = do_truncate(path->dentry, 0,
2911 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2912 filp);
2913 }
2914 put_write_access(inode);
2915 return error;
2916 }
2917
2918 static inline int open_to_namei_flags(int flag)
2919 {
2920 if ((flag & O_ACCMODE) == 3)
2921 flag--;
2922 return flag;
2923 }
2924
2925 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2926 {
2927 struct user_namespace *s_user_ns;
2928 int error = security_path_mknod(dir, dentry, mode, 0);
2929 if (error)
2930 return error;
2931
2932 s_user_ns = dir->dentry->d_sb->s_user_ns;
2933 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2934 !kgid_has_mapping(s_user_ns, current_fsgid()))
2935 return -EOVERFLOW;
2936
2937 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2938 if (error)
2939 return error;
2940
2941 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2942 }
2943
2944 /*
2945 * Attempt to atomically look up, create and open a file from a negative
2946 * dentry.
2947 *
2948 * Returns 0 if successful. The file will have been created and attached to
2949 * @file by the filesystem calling finish_open().
2950 *
2951 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
2952 * be set. The caller will need to perform the open themselves. @path will
2953 * have been updated to point to the new dentry. This may be negative.
2954 *
2955 * Returns an error code otherwise.
2956 */
2957 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
2958 struct file *file,
2959 int open_flag, umode_t mode)
2960 {
2961 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2962 struct inode *dir = nd->path.dentry->d_inode;
2963 int error;
2964
2965 if (nd->flags & LOOKUP_DIRECTORY)
2966 open_flag |= O_DIRECTORY;
2967
2968 file->f_path.dentry = DENTRY_NOT_SET;
2969 file->f_path.mnt = nd->path.mnt;
2970 error = dir->i_op->atomic_open(dir, dentry, file,
2971 open_to_namei_flags(open_flag), mode);
2972 d_lookup_done(dentry);
2973 if (!error) {
2974 if (file->f_mode & FMODE_OPENED) {
2975 if (unlikely(dentry != file->f_path.dentry)) {
2976 dput(dentry);
2977 dentry = dget(file->f_path.dentry);
2978 }
2979 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2980 error = -EIO;
2981 } else {
2982 if (file->f_path.dentry) {
2983 dput(dentry);
2984 dentry = file->f_path.dentry;
2985 }
2986 if (unlikely(d_is_negative(dentry)))
2987 error = -ENOENT;
2988 }
2989 }
2990 if (error) {
2991 dput(dentry);
2992 dentry = ERR_PTR(error);
2993 }
2994 return dentry;
2995 }
2996
2997 /*
2998 * Look up and maybe create and open the last component.
2999 *
3000 * Must be called with parent locked (exclusive in O_CREAT case).
3001 *
3002 * Returns 0 on success, that is, if
3003 * the file was successfully atomically created (if necessary) and opened, or
3004 * the file was not completely opened at this time, though lookups and
3005 * creations were performed.
3006 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3007 * In the latter case dentry returned in @path might be negative if O_CREAT
3008 * hadn't been specified.
3009 *
3010 * An error code is returned on failure.
3011 */
3012 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3013 const struct open_flags *op,
3014 bool got_write)
3015 {
3016 struct dentry *dir = nd->path.dentry;
3017 struct inode *dir_inode = dir->d_inode;
3018 int open_flag = op->open_flag;
3019 struct dentry *dentry;
3020 int error, create_error = 0;
3021 umode_t mode = op->mode;
3022 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3023
3024 if (unlikely(IS_DEADDIR(dir_inode)))
3025 return ERR_PTR(-ENOENT);
3026
3027 file->f_mode &= ~FMODE_CREATED;
3028 dentry = d_lookup(dir, &nd->last);
3029 for (;;) {
3030 if (!dentry) {
3031 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3032 if (IS_ERR(dentry))
3033 return dentry;
3034 }
3035 if (d_in_lookup(dentry))
3036 break;
3037
3038 error = d_revalidate(dentry, nd->flags);
3039 if (likely(error > 0))
3040 break;
3041 if (error)
3042 goto out_dput;
3043 d_invalidate(dentry);
3044 dput(dentry);
3045 dentry = NULL;
3046 }
3047 if (dentry->d_inode) {
3048 /* Cached positive dentry: will open in f_op->open */
3049 return dentry;
3050 }
3051
3052 /*
3053 * Checking write permission is tricky, bacuse we don't know if we are
3054 * going to actually need it: O_CREAT opens should work as long as the
3055 * file exists. But checking existence breaks atomicity. The trick is
3056 * to check access and if not granted clear O_CREAT from the flags.
3057 *
3058 * Another problem is returing the "right" error value (e.g. for an
3059 * O_EXCL open we want to return EEXIST not EROFS).
3060 */
3061 if (unlikely(!got_write))
3062 open_flag &= ~O_TRUNC;
3063 if (open_flag & O_CREAT) {
3064 if (open_flag & O_EXCL)
3065 open_flag &= ~O_TRUNC;
3066 if (!IS_POSIXACL(dir->d_inode))
3067 mode &= ~current_umask();
3068 if (likely(got_write))
3069 create_error = may_o_create(&nd->path, dentry, mode);
3070 else
3071 create_error = -EROFS;
3072 }
3073 if (create_error)
3074 open_flag &= ~O_CREAT;
3075 if (dir_inode->i_op->atomic_open) {
3076 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3077 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3078 dentry = ERR_PTR(create_error);
3079 return dentry;
3080 }
3081
3082 if (d_in_lookup(dentry)) {
3083 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3084 nd->flags);
3085 d_lookup_done(dentry);
3086 if (unlikely(res)) {
3087 if (IS_ERR(res)) {
3088 error = PTR_ERR(res);
3089 goto out_dput;
3090 }
3091 dput(dentry);
3092 dentry = res;
3093 }
3094 }
3095
3096 /* Negative dentry, just create the file */
3097 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3098 file->f_mode |= FMODE_CREATED;
3099 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3100 if (!dir_inode->i_op->create) {
3101 error = -EACCES;
3102 goto out_dput;
3103 }
3104 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3105 open_flag & O_EXCL);
3106 if (error)
3107 goto out_dput;
3108 }
3109 if (unlikely(create_error) && !dentry->d_inode) {
3110 error = create_error;
3111 goto out_dput;
3112 }
3113 return dentry;
3114
3115 out_dput:
3116 dput(dentry);
3117 return ERR_PTR(error);
3118 }
3119
3120 static const char *open_last_lookups(struct nameidata *nd,
3121 struct file *file, const struct open_flags *op)
3122 {
3123 struct dentry *dir = nd->path.dentry;
3124 int open_flag = op->open_flag;
3125 bool got_write = false;
3126 unsigned seq;
3127 struct inode *inode;
3128 struct dentry *dentry;
3129 const char *res;
3130 int error;
3131
3132 nd->flags |= op->intent;
3133
3134 if (nd->last_type != LAST_NORM) {
3135 if (nd->depth)
3136 put_link(nd);
3137 return handle_dots(nd, nd->last_type);
3138 }
3139
3140 if (!(open_flag & O_CREAT)) {
3141 if (nd->last.name[nd->last.len])
3142 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3143 /* we _can_ be in RCU mode here */
3144 dentry = lookup_fast(nd, &inode, &seq);
3145 if (IS_ERR(dentry))
3146 return ERR_CAST(dentry);
3147 if (likely(dentry))
3148 goto finish_lookup;
3149
3150 BUG_ON(nd->flags & LOOKUP_RCU);
3151 } else {
3152 /* create side of things */
3153 if (nd->flags & LOOKUP_RCU) {
3154 error = unlazy_walk(nd);
3155 if (unlikely(error))
3156 return ERR_PTR(error);
3157 }
3158 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3159 /* trailing slashes? */
3160 if (unlikely(nd->last.name[nd->last.len]))
3161 return ERR_PTR(-EISDIR);
3162 }
3163
3164 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3165 error = mnt_want_write(nd->path.mnt);
3166 if (!error)
3167 got_write = true;
3168 /*
3169 * do _not_ fail yet - we might not need that or fail with
3170 * a different error; let lookup_open() decide; we'll be
3171 * dropping this one anyway.
3172 */
3173 }
3174 if (open_flag & O_CREAT)
3175 inode_lock(dir->d_inode);
3176 else
3177 inode_lock_shared(dir->d_inode);
3178 dentry = lookup_open(nd, file, op, got_write);
3179 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3180 fsnotify_create(dir->d_inode, dentry);
3181 if (open_flag & O_CREAT)
3182 inode_unlock(dir->d_inode);
3183 else
3184 inode_unlock_shared(dir->d_inode);
3185
3186 if (got_write)
3187 mnt_drop_write(nd->path.mnt);
3188
3189 if (IS_ERR(dentry))
3190 return ERR_CAST(dentry);
3191
3192 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3193 dput(nd->path.dentry);
3194 nd->path.dentry = dentry;
3195 return NULL;
3196 }
3197
3198 finish_lookup:
3199 if (nd->depth)
3200 put_link(nd);
3201 res = step_into(nd, WALK_TRAILING, dentry, inode, seq);
3202 if (unlikely(res))
3203 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3204 return res;
3205 }
3206
3207 /*
3208 * Handle the last step of open()
3209 */
3210 static int do_open(struct nameidata *nd,
3211 struct file *file, const struct open_flags *op)
3212 {
3213 int open_flag = op->open_flag;
3214 bool do_truncate;
3215 int acc_mode;
3216 int error;
3217
3218 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3219 error = complete_walk(nd);
3220 if (error)
3221 return error;
3222 }
3223 if (!(file->f_mode & FMODE_CREATED))
3224 audit_inode(nd->name, nd->path.dentry, 0);
3225 if (open_flag & O_CREAT) {
3226 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3227 return -EEXIST;
3228 if (d_is_dir(nd->path.dentry))
3229 return -EISDIR;
3230 error = may_create_in_sticky(nd->dir_mode, nd->dir_uid,
3231 d_backing_inode(nd->path.dentry));
3232 if (unlikely(error))
3233 return error;
3234 }
3235 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3236 return -ENOTDIR;
3237
3238 do_truncate = false;
3239 acc_mode = op->acc_mode;
3240 if (file->f_mode & FMODE_CREATED) {
3241 /* Don't check for write permission, don't truncate */
3242 open_flag &= ~O_TRUNC;
3243 acc_mode = 0;
3244 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3245 error = mnt_want_write(nd->path.mnt);
3246 if (error)
3247 return error;
3248 do_truncate = true;
3249 }
3250 error = may_open(&nd->path, acc_mode, open_flag);
3251 if (!error && !(file->f_mode & FMODE_OPENED))
3252 error = vfs_open(&nd->path, file);
3253 if (!error)
3254 error = ima_file_check(file, op->acc_mode);
3255 if (!error && do_truncate)
3256 error = handle_truncate(file);
3257 if (unlikely(error > 0)) {
3258 WARN_ON(1);
3259 error = -EINVAL;
3260 }
3261 if (do_truncate)
3262 mnt_drop_write(nd->path.mnt);
3263 return error;
3264 }
3265
3266 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3267 {
3268 struct dentry *child = NULL;
3269 struct inode *dir = dentry->d_inode;
3270 struct inode *inode;
3271 int error;
3272
3273 /* we want directory to be writable */
3274 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3275 if (error)
3276 goto out_err;
3277 error = -EOPNOTSUPP;
3278 if (!dir->i_op->tmpfile)
3279 goto out_err;
3280 error = -ENOMEM;
3281 child = d_alloc(dentry, &slash_name);
3282 if (unlikely(!child))
3283 goto out_err;
3284 error = dir->i_op->tmpfile(dir, child, mode);
3285 if (error)
3286 goto out_err;
3287 error = -ENOENT;
3288 inode = child->d_inode;
3289 if (unlikely(!inode))
3290 goto out_err;
3291 if (!(open_flag & O_EXCL)) {
3292 spin_lock(&inode->i_lock);
3293 inode->i_state |= I_LINKABLE;
3294 spin_unlock(&inode->i_lock);
3295 }
3296 ima_post_create_tmpfile(inode);
3297 return child;
3298
3299 out_err:
3300 dput(child);
3301 return ERR_PTR(error);
3302 }
3303 EXPORT_SYMBOL(vfs_tmpfile);
3304
3305 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3306 const struct open_flags *op,
3307 struct file *file)
3308 {
3309 struct dentry *child;
3310 struct path path;
3311 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3312 if (unlikely(error))
3313 return error;
3314 error = mnt_want_write(path.mnt);
3315 if (unlikely(error))
3316 goto out;
3317 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3318 error = PTR_ERR(child);
3319 if (IS_ERR(child))
3320 goto out2;
3321 dput(path.dentry);
3322 path.dentry = child;
3323 audit_inode(nd->name, child, 0);
3324 /* Don't check for other permissions, the inode was just created */
3325 error = may_open(&path, 0, op->open_flag);
3326 if (error)
3327 goto out2;
3328 file->f_path.mnt = path.mnt;
3329 error = finish_open(file, child, NULL);
3330 out2:
3331 mnt_drop_write(path.mnt);
3332 out:
3333 path_put(&path);
3334 return error;
3335 }
3336
3337 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3338 {
3339 struct path path;
3340 int error = path_lookupat(nd, flags, &path);
3341 if (!error) {
3342 audit_inode(nd->name, path.dentry, 0);
3343 error = vfs_open(&path, file);
3344 path_put(&path);
3345 }
3346 return error;
3347 }
3348
3349 static struct file *path_openat(struct nameidata *nd,
3350 const struct open_flags *op, unsigned flags)
3351 {
3352 struct file *file;
3353 int error;
3354
3355 file = alloc_empty_file(op->open_flag, current_cred());
3356 if (IS_ERR(file))
3357 return file;
3358
3359 if (unlikely(file->f_flags & __O_TMPFILE)) {
3360 error = do_tmpfile(nd, flags, op, file);
3361 } else if (unlikely(file->f_flags & O_PATH)) {
3362 error = do_o_path(nd, flags, file);
3363 } else {
3364 const char *s = path_init(nd, flags);
3365 while (!(error = link_path_walk(s, nd)) &&
3366 (s = open_last_lookups(nd, file, op)) != NULL)
3367 ;
3368 if (!error)
3369 error = do_open(nd, file, op);
3370 terminate_walk(nd);
3371 }
3372 if (likely(!error)) {
3373 if (likely(file->f_mode & FMODE_OPENED))
3374 return file;
3375 WARN_ON(1);
3376 error = -EINVAL;
3377 }
3378 fput(file);
3379 if (error == -EOPENSTALE) {
3380 if (flags & LOOKUP_RCU)
3381 error = -ECHILD;
3382 else
3383 error = -ESTALE;
3384 }
3385 return ERR_PTR(error);
3386 }
3387
3388 struct file *do_filp_open(int dfd, struct filename *pathname,
3389 const struct open_flags *op)
3390 {
3391 struct nameidata nd;
3392 int flags = op->lookup_flags;
3393 struct file *filp;
3394
3395 set_nameidata(&nd, dfd, pathname);
3396 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3397 if (unlikely(filp == ERR_PTR(-ECHILD)))
3398 filp = path_openat(&nd, op, flags);
3399 if (unlikely(filp == ERR_PTR(-ESTALE)))
3400 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3401 restore_nameidata();
3402 return filp;
3403 }
3404
3405 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3406 const char *name, const struct open_flags *op)
3407 {
3408 struct nameidata nd;
3409 struct file *file;
3410 struct filename *filename;
3411 int flags = op->lookup_flags | LOOKUP_ROOT;
3412
3413 nd.root.mnt = mnt;
3414 nd.root.dentry = dentry;
3415
3416 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3417 return ERR_PTR(-ELOOP);
3418
3419 filename = getname_kernel(name);
3420 if (IS_ERR(filename))
3421 return ERR_CAST(filename);
3422
3423 set_nameidata(&nd, -1, filename);
3424 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3425 if (unlikely(file == ERR_PTR(-ECHILD)))
3426 file = path_openat(&nd, op, flags);
3427 if (unlikely(file == ERR_PTR(-ESTALE)))
3428 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3429 restore_nameidata();
3430 putname(filename);
3431 return file;
3432 }
3433
3434 static struct dentry *filename_create(int dfd, struct filename *name,
3435 struct path *path, unsigned int lookup_flags)
3436 {
3437 struct dentry *dentry = ERR_PTR(-EEXIST);
3438 struct qstr last;
3439 int type;
3440 int err2;
3441 int error;
3442 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3443
3444 /*
3445 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3446 * other flags passed in are ignored!
3447 */
3448 lookup_flags &= LOOKUP_REVAL;
3449
3450 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3451 if (IS_ERR(name))
3452 return ERR_CAST(name);
3453
3454 /*
3455 * Yucky last component or no last component at all?
3456 * (foo/., foo/.., /////)
3457 */
3458 if (unlikely(type != LAST_NORM))
3459 goto out;
3460
3461 /* don't fail immediately if it's r/o, at least try to report other errors */
3462 err2 = mnt_want_write(path->mnt);
3463 /*
3464 * Do the final lookup.
3465 */
3466 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3467 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3468 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3469 if (IS_ERR(dentry))
3470 goto unlock;
3471
3472 error = -EEXIST;
3473 if (d_is_positive(dentry))
3474 goto fail;
3475
3476 /*
3477 * Special case - lookup gave negative, but... we had foo/bar/
3478 * From the vfs_mknod() POV we just have a negative dentry -
3479 * all is fine. Let's be bastards - you had / on the end, you've
3480 * been asking for (non-existent) directory. -ENOENT for you.
3481 */
3482 if (unlikely(!is_dir && last.name[last.len])) {
3483 error = -ENOENT;
3484 goto fail;
3485 }
3486 if (unlikely(err2)) {
3487 error = err2;
3488 goto fail;
3489 }
3490 putname(name);
3491 return dentry;
3492 fail:
3493 dput(dentry);
3494 dentry = ERR_PTR(error);
3495 unlock:
3496 inode_unlock(path->dentry->d_inode);
3497 if (!err2)
3498 mnt_drop_write(path->mnt);
3499 out:
3500 path_put(path);
3501 putname(name);
3502 return dentry;
3503 }
3504
3505 struct dentry *kern_path_create(int dfd, const char *pathname,
3506 struct path *path, unsigned int lookup_flags)
3507 {
3508 return filename_create(dfd, getname_kernel(pathname),
3509 path, lookup_flags);
3510 }
3511 EXPORT_SYMBOL(kern_path_create);
3512
3513 void done_path_create(struct path *path, struct dentry *dentry)
3514 {
3515 dput(dentry);
3516 inode_unlock(path->dentry->d_inode);
3517 mnt_drop_write(path->mnt);
3518 path_put(path);
3519 }
3520 EXPORT_SYMBOL(done_path_create);
3521
3522 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3523 struct path *path, unsigned int lookup_flags)
3524 {
3525 return filename_create(dfd, getname(pathname), path, lookup_flags);
3526 }
3527 EXPORT_SYMBOL(user_path_create);
3528
3529 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3530 {
3531 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3532 int error = may_create(dir, dentry);
3533
3534 if (error)
3535 return error;
3536
3537 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3538 !capable(CAP_MKNOD))
3539 return -EPERM;
3540
3541 if (!dir->i_op->mknod)
3542 return -EPERM;
3543
3544 error = devcgroup_inode_mknod(mode, dev);
3545 if (error)
3546 return error;
3547
3548 error = security_inode_mknod(dir, dentry, mode, dev);
3549 if (error)
3550 return error;
3551
3552 error = dir->i_op->mknod(dir, dentry, mode, dev);
3553 if (!error)
3554 fsnotify_create(dir, dentry);
3555 return error;
3556 }
3557 EXPORT_SYMBOL(vfs_mknod);
3558
3559 static int may_mknod(umode_t mode)
3560 {
3561 switch (mode & S_IFMT) {
3562 case S_IFREG:
3563 case S_IFCHR:
3564 case S_IFBLK:
3565 case S_IFIFO:
3566 case S_IFSOCK:
3567 case 0: /* zero mode translates to S_IFREG */
3568 return 0;
3569 case S_IFDIR:
3570 return -EPERM;
3571 default:
3572 return -EINVAL;
3573 }
3574 }
3575
3576 static long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3577 unsigned int dev)
3578 {
3579 struct dentry *dentry;
3580 struct path path;
3581 int error;
3582 unsigned int lookup_flags = 0;
3583
3584 error = may_mknod(mode);
3585 if (error)
3586 return error;
3587 retry:
3588 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3589 if (IS_ERR(dentry))
3590 return PTR_ERR(dentry);
3591
3592 if (!IS_POSIXACL(path.dentry->d_inode))
3593 mode &= ~current_umask();
3594 error = security_path_mknod(&path, dentry, mode, dev);
3595 if (error)
3596 goto out;
3597 switch (mode & S_IFMT) {
3598 case 0: case S_IFREG:
3599 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3600 if (!error)
3601 ima_post_path_mknod(dentry);
3602 break;
3603 case S_IFCHR: case S_IFBLK:
3604 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3605 new_decode_dev(dev));
3606 break;
3607 case S_IFIFO: case S_IFSOCK:
3608 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3609 break;
3610 }
3611 out:
3612 done_path_create(&path, dentry);
3613 if (retry_estale(error, lookup_flags)) {
3614 lookup_flags |= LOOKUP_REVAL;
3615 goto retry;
3616 }
3617 return error;
3618 }
3619
3620 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3621 unsigned int, dev)
3622 {
3623 return do_mknodat(dfd, filename, mode, dev);
3624 }
3625
3626 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3627 {
3628 return do_mknodat(AT_FDCWD, filename, mode, dev);
3629 }
3630
3631 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3632 {
3633 int error = may_create(dir, dentry);
3634 unsigned max_links = dir->i_sb->s_max_links;
3635
3636 if (error)
3637 return error;
3638
3639 if (!dir->i_op->mkdir)
3640 return -EPERM;
3641
3642 mode &= (S_IRWXUGO|S_ISVTX);
3643 error = security_inode_mkdir(dir, dentry, mode);
3644 if (error)
3645 return error;
3646
3647 if (max_links && dir->i_nlink >= max_links)
3648 return -EMLINK;
3649
3650 error = dir->i_op->mkdir(dir, dentry, mode);
3651 if (!error)
3652 fsnotify_mkdir(dir, dentry);
3653 return error;
3654 }
3655 EXPORT_SYMBOL(vfs_mkdir);
3656
3657 static long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3658 {
3659 struct dentry *dentry;
3660 struct path path;
3661 int error;
3662 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3663
3664 retry:
3665 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3666 if (IS_ERR(dentry))
3667 return PTR_ERR(dentry);
3668
3669 if (!IS_POSIXACL(path.dentry->d_inode))
3670 mode &= ~current_umask();
3671 error = security_path_mkdir(&path, dentry, mode);
3672 if (!error)
3673 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3674 done_path_create(&path, dentry);
3675 if (retry_estale(error, lookup_flags)) {
3676 lookup_flags |= LOOKUP_REVAL;
3677 goto retry;
3678 }
3679 return error;
3680 }
3681
3682 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3683 {
3684 return do_mkdirat(dfd, pathname, mode);
3685 }
3686
3687 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3688 {
3689 return do_mkdirat(AT_FDCWD, pathname, mode);
3690 }
3691
3692 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3693 {
3694 int error = may_delete(dir, dentry, 1);
3695
3696 if (error)
3697 return error;
3698
3699 if (!dir->i_op->rmdir)
3700 return -EPERM;
3701
3702 dget(dentry);
3703 inode_lock(dentry->d_inode);
3704
3705 error = -EBUSY;
3706 if (is_local_mountpoint(dentry))
3707 goto out;
3708
3709 error = security_inode_rmdir(dir, dentry);
3710 if (error)
3711 goto out;
3712
3713 error = dir->i_op->rmdir(dir, dentry);
3714 if (error)
3715 goto out;
3716
3717 shrink_dcache_parent(dentry);
3718 dentry->d_inode->i_flags |= S_DEAD;
3719 dont_mount(dentry);
3720 detach_mounts(dentry);
3721 fsnotify_rmdir(dir, dentry);
3722
3723 out:
3724 inode_unlock(dentry->d_inode);
3725 dput(dentry);
3726 if (!error)
3727 d_delete(dentry);
3728 return error;
3729 }
3730 EXPORT_SYMBOL(vfs_rmdir);
3731
3732 long do_rmdir(int dfd, struct filename *name)
3733 {
3734 int error = 0;
3735 struct dentry *dentry;
3736 struct path path;
3737 struct qstr last;
3738 int type;
3739 unsigned int lookup_flags = 0;
3740 retry:
3741 name = filename_parentat(dfd, name, lookup_flags,
3742 &path, &last, &type);
3743 if (IS_ERR(name))
3744 return PTR_ERR(name);
3745
3746 switch (type) {
3747 case LAST_DOTDOT:
3748 error = -ENOTEMPTY;
3749 goto exit1;
3750 case LAST_DOT:
3751 error = -EINVAL;
3752 goto exit1;
3753 case LAST_ROOT:
3754 error = -EBUSY;
3755 goto exit1;
3756 }
3757
3758 error = mnt_want_write(path.mnt);
3759 if (error)
3760 goto exit1;
3761
3762 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3763 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3764 error = PTR_ERR(dentry);
3765 if (IS_ERR(dentry))
3766 goto exit2;
3767 if (!dentry->d_inode) {
3768 error = -ENOENT;
3769 goto exit3;
3770 }
3771 error = security_path_rmdir(&path, dentry);
3772 if (error)
3773 goto exit3;
3774 error = vfs_rmdir(path.dentry->d_inode, dentry);
3775 exit3:
3776 dput(dentry);
3777 exit2:
3778 inode_unlock(path.dentry->d_inode);
3779 mnt_drop_write(path.mnt);
3780 exit1:
3781 path_put(&path);
3782 if (retry_estale(error, lookup_flags)) {
3783 lookup_flags |= LOOKUP_REVAL;
3784 goto retry;
3785 }
3786 putname(name);
3787 return error;
3788 }
3789
3790 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3791 {
3792 return do_rmdir(AT_FDCWD, getname(pathname));
3793 }
3794
3795 /**
3796 * vfs_unlink - unlink a filesystem object
3797 * @dir: parent directory
3798 * @dentry: victim
3799 * @delegated_inode: returns victim inode, if the inode is delegated.
3800 *
3801 * The caller must hold dir->i_mutex.
3802 *
3803 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3804 * return a reference to the inode in delegated_inode. The caller
3805 * should then break the delegation on that inode and retry. Because
3806 * breaking a delegation may take a long time, the caller should drop
3807 * dir->i_mutex before doing so.
3808 *
3809 * Alternatively, a caller may pass NULL for delegated_inode. This may
3810 * be appropriate for callers that expect the underlying filesystem not
3811 * to be NFS exported.
3812 */
3813 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3814 {
3815 struct inode *target = dentry->d_inode;
3816 int error = may_delete(dir, dentry, 0);
3817
3818 if (error)
3819 return error;
3820
3821 if (!dir->i_op->unlink)
3822 return -EPERM;
3823
3824 inode_lock(target);
3825 if (is_local_mountpoint(dentry))
3826 error = -EBUSY;
3827 else {
3828 error = security_inode_unlink(dir, dentry);
3829 if (!error) {
3830 error = try_break_deleg(target, delegated_inode);
3831 if (error)
3832 goto out;
3833 error = dir->i_op->unlink(dir, dentry);
3834 if (!error) {
3835 dont_mount(dentry);
3836 detach_mounts(dentry);
3837 fsnotify_unlink(dir, dentry);
3838 }
3839 }
3840 }
3841 out:
3842 inode_unlock(target);
3843
3844 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3845 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3846 fsnotify_link_count(target);
3847 d_delete(dentry);
3848 }
3849
3850 return error;
3851 }
3852 EXPORT_SYMBOL(vfs_unlink);
3853
3854 /*
3855 * Make sure that the actual truncation of the file will occur outside its
3856 * directory's i_mutex. Truncate can take a long time if there is a lot of
3857 * writeout happening, and we don't want to prevent access to the directory
3858 * while waiting on the I/O.
3859 */
3860 long do_unlinkat(int dfd, struct filename *name)
3861 {
3862 int error;
3863 struct dentry *dentry;
3864 struct path path;
3865 struct qstr last;
3866 int type;
3867 struct inode *inode = NULL;
3868 struct inode *delegated_inode = NULL;
3869 unsigned int lookup_flags = 0;
3870 retry:
3871 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
3872 if (IS_ERR(name))
3873 return PTR_ERR(name);
3874
3875 error = -EISDIR;
3876 if (type != LAST_NORM)
3877 goto exit1;
3878
3879 error = mnt_want_write(path.mnt);
3880 if (error)
3881 goto exit1;
3882 retry_deleg:
3883 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3884 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3885 error = PTR_ERR(dentry);
3886 if (!IS_ERR(dentry)) {
3887 /* Why not before? Because we want correct error value */
3888 if (last.name[last.len])
3889 goto slashes;
3890 inode = dentry->d_inode;
3891 if (d_is_negative(dentry))
3892 goto slashes;
3893 ihold(inode);
3894 error = security_path_unlink(&path, dentry);
3895 if (error)
3896 goto exit2;
3897 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3898 exit2:
3899 dput(dentry);
3900 }
3901 inode_unlock(path.dentry->d_inode);
3902 if (inode)
3903 iput(inode); /* truncate the inode here */
3904 inode = NULL;
3905 if (delegated_inode) {
3906 error = break_deleg_wait(&delegated_inode);
3907 if (!error)
3908 goto retry_deleg;
3909 }
3910 mnt_drop_write(path.mnt);
3911 exit1:
3912 path_put(&path);
3913 if (retry_estale(error, lookup_flags)) {
3914 lookup_flags |= LOOKUP_REVAL;
3915 inode = NULL;
3916 goto retry;
3917 }
3918 putname(name);
3919 return error;
3920
3921 slashes:
3922 if (d_is_negative(dentry))
3923 error = -ENOENT;
3924 else if (d_is_dir(dentry))
3925 error = -EISDIR;
3926 else
3927 error = -ENOTDIR;
3928 goto exit2;
3929 }
3930
3931 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3932 {
3933 if ((flag & ~AT_REMOVEDIR) != 0)
3934 return -EINVAL;
3935
3936 if (flag & AT_REMOVEDIR)
3937 return do_rmdir(dfd, getname(pathname));
3938 return do_unlinkat(dfd, getname(pathname));
3939 }
3940
3941 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3942 {
3943 return do_unlinkat(AT_FDCWD, getname(pathname));
3944 }
3945
3946 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3947 {
3948 int error = may_create(dir, dentry);
3949
3950 if (error)
3951 return error;
3952
3953 if (!dir->i_op->symlink)
3954 return -EPERM;
3955
3956 error = security_inode_symlink(dir, dentry, oldname);
3957 if (error)
3958 return error;
3959
3960 error = dir->i_op->symlink(dir, dentry, oldname);
3961 if (!error)
3962 fsnotify_create(dir, dentry);
3963 return error;
3964 }
3965 EXPORT_SYMBOL(vfs_symlink);
3966
3967 static long do_symlinkat(const char __user *oldname, int newdfd,
3968 const char __user *newname)
3969 {
3970 int error;
3971 struct filename *from;
3972 struct dentry *dentry;
3973 struct path path;
3974 unsigned int lookup_flags = 0;
3975
3976 from = getname(oldname);
3977 if (IS_ERR(from))
3978 return PTR_ERR(from);
3979 retry:
3980 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3981 error = PTR_ERR(dentry);
3982 if (IS_ERR(dentry))
3983 goto out_putname;
3984
3985 error = security_path_symlink(&path, dentry, from->name);
3986 if (!error)
3987 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3988 done_path_create(&path, dentry);
3989 if (retry_estale(error, lookup_flags)) {
3990 lookup_flags |= LOOKUP_REVAL;
3991 goto retry;
3992 }
3993 out_putname:
3994 putname(from);
3995 return error;
3996 }
3997
3998 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3999 int, newdfd, const char __user *, newname)
4000 {
4001 return do_symlinkat(oldname, newdfd, newname);
4002 }
4003
4004 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4005 {
4006 return do_symlinkat(oldname, AT_FDCWD, newname);
4007 }
4008
4009 /**
4010 * vfs_link - create a new link
4011 * @old_dentry: object to be linked
4012 * @dir: new parent
4013 * @new_dentry: where to create the new link
4014 * @delegated_inode: returns inode needing a delegation break
4015 *
4016 * The caller must hold dir->i_mutex
4017 *
4018 * If vfs_link discovers a delegation on the to-be-linked file in need
4019 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4020 * inode in delegated_inode. The caller should then break the delegation
4021 * and retry. Because breaking a delegation may take a long time, the
4022 * caller should drop the i_mutex before doing so.
4023 *
4024 * Alternatively, a caller may pass NULL for delegated_inode. This may
4025 * be appropriate for callers that expect the underlying filesystem not
4026 * to be NFS exported.
4027 */
4028 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4029 {
4030 struct inode *inode = old_dentry->d_inode;
4031 unsigned max_links = dir->i_sb->s_max_links;
4032 int error;
4033
4034 if (!inode)
4035 return -ENOENT;
4036
4037 error = may_create(dir, new_dentry);
4038 if (error)
4039 return error;
4040
4041 if (dir->i_sb != inode->i_sb)
4042 return -EXDEV;
4043
4044 /*
4045 * A link to an append-only or immutable file cannot be created.
4046 */
4047 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4048 return -EPERM;
4049 /*
4050 * Updating the link count will likely cause i_uid and i_gid to
4051 * be writen back improperly if their true value is unknown to
4052 * the vfs.
4053 */
4054 if (HAS_UNMAPPED_ID(inode))
4055 return -EPERM;
4056 if (!dir->i_op->link)
4057 return -EPERM;
4058 if (S_ISDIR(inode->i_mode))
4059 return -EPERM;
4060
4061 error = security_inode_link(old_dentry, dir, new_dentry);
4062 if (error)
4063 return error;
4064
4065 inode_lock(inode);
4066 /* Make sure we don't allow creating hardlink to an unlinked file */
4067 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4068 error = -ENOENT;
4069 else if (max_links && inode->i_nlink >= max_links)
4070 error = -EMLINK;
4071 else {
4072 error = try_break_deleg(inode, delegated_inode);
4073 if (!error)
4074 error = dir->i_op->link(old_dentry, dir, new_dentry);
4075 }
4076
4077 if (!error && (inode->i_state & I_LINKABLE)) {
4078 spin_lock(&inode->i_lock);
4079 inode->i_state &= ~I_LINKABLE;
4080 spin_unlock(&inode->i_lock);
4081 }
4082 inode_unlock(inode);
4083 if (!error)
4084 fsnotify_link(dir, inode, new_dentry);
4085 return error;
4086 }
4087 EXPORT_SYMBOL(vfs_link);
4088
4089 /*
4090 * Hardlinks are often used in delicate situations. We avoid
4091 * security-related surprises by not following symlinks on the
4092 * newname. --KAB
4093 *
4094 * We don't follow them on the oldname either to be compatible
4095 * with linux 2.0, and to avoid hard-linking to directories
4096 * and other special files. --ADM
4097 */
4098 static int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4099 const char __user *newname, int flags)
4100 {
4101 struct dentry *new_dentry;
4102 struct path old_path, new_path;
4103 struct inode *delegated_inode = NULL;
4104 int how = 0;
4105 int error;
4106
4107 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4108 return -EINVAL;
4109 /*
4110 * To use null names we require CAP_DAC_READ_SEARCH
4111 * This ensures that not everyone will be able to create
4112 * handlink using the passed filedescriptor.
4113 */
4114 if (flags & AT_EMPTY_PATH) {
4115 if (!capable(CAP_DAC_READ_SEARCH))
4116 return -ENOENT;
4117 how = LOOKUP_EMPTY;
4118 }
4119
4120 if (flags & AT_SYMLINK_FOLLOW)
4121 how |= LOOKUP_FOLLOW;
4122 retry:
4123 error = user_path_at(olddfd, oldname, how, &old_path);
4124 if (error)
4125 return error;
4126
4127 new_dentry = user_path_create(newdfd, newname, &new_path,
4128 (how & LOOKUP_REVAL));
4129 error = PTR_ERR(new_dentry);
4130 if (IS_ERR(new_dentry))
4131 goto out;
4132
4133 error = -EXDEV;
4134 if (old_path.mnt != new_path.mnt)
4135 goto out_dput;
4136 error = may_linkat(&old_path);
4137 if (unlikely(error))
4138 goto out_dput;
4139 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4140 if (error)
4141 goto out_dput;
4142 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4143 out_dput:
4144 done_path_create(&new_path, new_dentry);
4145 if (delegated_inode) {
4146 error = break_deleg_wait(&delegated_inode);
4147 if (!error) {
4148 path_put(&old_path);
4149 goto retry;
4150 }
4151 }
4152 if (retry_estale(error, how)) {
4153 path_put(&old_path);
4154 how |= LOOKUP_REVAL;
4155 goto retry;
4156 }
4157 out:
4158 path_put(&old_path);
4159
4160 return error;
4161 }
4162
4163 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4164 int, newdfd, const char __user *, newname, int, flags)
4165 {
4166 return do_linkat(olddfd, oldname, newdfd, newname, flags);
4167 }
4168
4169 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4170 {
4171 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4172 }
4173
4174 /**
4175 * vfs_rename - rename a filesystem object
4176 * @old_dir: parent of source
4177 * @old_dentry: source
4178 * @new_dir: parent of destination
4179 * @new_dentry: destination
4180 * @delegated_inode: returns an inode needing a delegation break
4181 * @flags: rename flags
4182 *
4183 * The caller must hold multiple mutexes--see lock_rename()).
4184 *
4185 * If vfs_rename discovers a delegation in need of breaking at either
4186 * the source or destination, it will return -EWOULDBLOCK and return a
4187 * reference to the inode in delegated_inode. The caller should then
4188 * break the delegation and retry. Because breaking a delegation may
4189 * take a long time, the caller should drop all locks before doing
4190 * so.
4191 *
4192 * Alternatively, a caller may pass NULL for delegated_inode. This may
4193 * be appropriate for callers that expect the underlying filesystem not
4194 * to be NFS exported.
4195 *
4196 * The worst of all namespace operations - renaming directory. "Perverted"
4197 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4198 * Problems:
4199 *
4200 * a) we can get into loop creation.
4201 * b) race potential - two innocent renames can create a loop together.
4202 * That's where 4.4 screws up. Current fix: serialization on
4203 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4204 * story.
4205 * c) we have to lock _four_ objects - parents and victim (if it exists),
4206 * and source (if it is not a directory).
4207 * And that - after we got ->i_mutex on parents (until then we don't know
4208 * whether the target exists). Solution: try to be smart with locking
4209 * order for inodes. We rely on the fact that tree topology may change
4210 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4211 * move will be locked. Thus we can rank directories by the tree
4212 * (ancestors first) and rank all non-directories after them.
4213 * That works since everybody except rename does "lock parent, lookup,
4214 * lock child" and rename is under ->s_vfs_rename_mutex.
4215 * HOWEVER, it relies on the assumption that any object with ->lookup()
4216 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4217 * we'd better make sure that there's no link(2) for them.
4218 * d) conversion from fhandle to dentry may come in the wrong moment - when
4219 * we are removing the target. Solution: we will have to grab ->i_mutex
4220 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4221 * ->i_mutex on parents, which works but leads to some truly excessive
4222 * locking].
4223 */
4224 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4225 struct inode *new_dir, struct dentry *new_dentry,
4226 struct inode **delegated_inode, unsigned int flags)
4227 {
4228 int error;
4229 bool is_dir = d_is_dir(old_dentry);
4230 struct inode *source = old_dentry->d_inode;
4231 struct inode *target = new_dentry->d_inode;
4232 bool new_is_dir = false;
4233 unsigned max_links = new_dir->i_sb->s_max_links;
4234 struct name_snapshot old_name;
4235
4236 if (source == target)
4237 return 0;
4238
4239 error = may_delete(old_dir, old_dentry, is_dir);
4240 if (error)
4241 return error;
4242
4243 if (!target) {
4244 error = may_create(new_dir, new_dentry);
4245 } else {
4246 new_is_dir = d_is_dir(new_dentry);
4247
4248 if (!(flags & RENAME_EXCHANGE))
4249 error = may_delete(new_dir, new_dentry, is_dir);
4250 else
4251 error = may_delete(new_dir, new_dentry, new_is_dir);
4252 }
4253 if (error)
4254 return error;
4255
4256 if (!old_dir->i_op->rename)
4257 return -EPERM;
4258
4259 /*
4260 * If we are going to change the parent - check write permissions,
4261 * we'll need to flip '..'.
4262 */
4263 if (new_dir != old_dir) {
4264 if (is_dir) {
4265 error = inode_permission(source, MAY_WRITE);
4266 if (error)
4267 return error;
4268 }
4269 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4270 error = inode_permission(target, MAY_WRITE);
4271 if (error)
4272 return error;
4273 }
4274 }
4275
4276 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4277 flags);
4278 if (error)
4279 return error;
4280
4281 take_dentry_name_snapshot(&old_name, old_dentry);
4282 dget(new_dentry);
4283 if (!is_dir || (flags & RENAME_EXCHANGE))
4284 lock_two_nondirectories(source, target);
4285 else if (target)
4286 inode_lock(target);
4287
4288 error = -EBUSY;
4289 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4290 goto out;
4291
4292 if (max_links && new_dir != old_dir) {
4293 error = -EMLINK;
4294 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4295 goto out;
4296 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4297 old_dir->i_nlink >= max_links)
4298 goto out;
4299 }
4300 if (!is_dir) {
4301 error = try_break_deleg(source, delegated_inode);
4302 if (error)
4303 goto out;
4304 }
4305 if (target && !new_is_dir) {
4306 error = try_break_deleg(target, delegated_inode);
4307 if (error)
4308 goto out;
4309 }
4310 error = old_dir->i_op->rename(old_dir, old_dentry,
4311 new_dir, new_dentry, flags);
4312 if (error)
4313 goto out;
4314
4315 if (!(flags & RENAME_EXCHANGE) && target) {
4316 if (is_dir) {
4317 shrink_dcache_parent(new_dentry);
4318 target->i_flags |= S_DEAD;
4319 }
4320 dont_mount(new_dentry);
4321 detach_mounts(new_dentry);
4322 }
4323 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4324 if (!(flags & RENAME_EXCHANGE))
4325 d_move(old_dentry, new_dentry);
4326 else
4327 d_exchange(old_dentry, new_dentry);
4328 }
4329 out:
4330 if (!is_dir || (flags & RENAME_EXCHANGE))
4331 unlock_two_nondirectories(source, target);
4332 else if (target)
4333 inode_unlock(target);
4334 dput(new_dentry);
4335 if (!error) {
4336 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4337 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4338 if (flags & RENAME_EXCHANGE) {
4339 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4340 new_is_dir, NULL, new_dentry);
4341 }
4342 }
4343 release_dentry_name_snapshot(&old_name);
4344
4345 return error;
4346 }
4347 EXPORT_SYMBOL(vfs_rename);
4348
4349 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4350 struct filename *to, unsigned int flags)
4351 {
4352 struct dentry *old_dentry, *new_dentry;
4353 struct dentry *trap;
4354 struct path old_path, new_path;
4355 struct qstr old_last, new_last;
4356 int old_type, new_type;
4357 struct inode *delegated_inode = NULL;
4358 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4359 bool should_retry = false;
4360 int error = -EINVAL;
4361
4362 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4363 goto put_both;
4364
4365 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4366 (flags & RENAME_EXCHANGE))
4367 goto put_both;
4368
4369 if (flags & RENAME_EXCHANGE)
4370 target_flags = 0;
4371
4372 retry:
4373 from = filename_parentat(olddfd, from, lookup_flags, &old_path,
4374 &old_last, &old_type);
4375 if (IS_ERR(from)) {
4376 error = PTR_ERR(from);
4377 goto put_new;
4378 }
4379
4380 to = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4381 &new_type);
4382 if (IS_ERR(to)) {
4383 error = PTR_ERR(to);
4384 goto exit1;
4385 }
4386
4387 error = -EXDEV;
4388 if (old_path.mnt != new_path.mnt)
4389 goto exit2;
4390
4391 error = -EBUSY;
4392 if (old_type != LAST_NORM)
4393 goto exit2;
4394
4395 if (flags & RENAME_NOREPLACE)
4396 error = -EEXIST;
4397 if (new_type != LAST_NORM)
4398 goto exit2;
4399
4400 error = mnt_want_write(old_path.mnt);
4401 if (error)
4402 goto exit2;
4403
4404 retry_deleg:
4405 trap = lock_rename(new_path.dentry, old_path.dentry);
4406
4407 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4408 error = PTR_ERR(old_dentry);
4409 if (IS_ERR(old_dentry))
4410 goto exit3;
4411 /* source must exist */
4412 error = -ENOENT;
4413 if (d_is_negative(old_dentry))
4414 goto exit4;
4415 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4416 error = PTR_ERR(new_dentry);
4417 if (IS_ERR(new_dentry))
4418 goto exit4;
4419 error = -EEXIST;
4420 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4421 goto exit5;
4422 if (flags & RENAME_EXCHANGE) {
4423 error = -ENOENT;
4424 if (d_is_negative(new_dentry))
4425 goto exit5;
4426
4427 if (!d_is_dir(new_dentry)) {
4428 error = -ENOTDIR;
4429 if (new_last.name[new_last.len])
4430 goto exit5;
4431 }
4432 }
4433 /* unless the source is a directory trailing slashes give -ENOTDIR */
4434 if (!d_is_dir(old_dentry)) {
4435 error = -ENOTDIR;
4436 if (old_last.name[old_last.len])
4437 goto exit5;
4438 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4439 goto exit5;
4440 }
4441 /* source should not be ancestor of target */
4442 error = -EINVAL;
4443 if (old_dentry == trap)
4444 goto exit5;
4445 /* target should not be an ancestor of source */
4446 if (!(flags & RENAME_EXCHANGE))
4447 error = -ENOTEMPTY;
4448 if (new_dentry == trap)
4449 goto exit5;
4450
4451 error = security_path_rename(&old_path, old_dentry,
4452 &new_path, new_dentry, flags);
4453 if (error)
4454 goto exit5;
4455 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4456 new_path.dentry->d_inode, new_dentry,
4457 &delegated_inode, flags);
4458 exit5:
4459 dput(new_dentry);
4460 exit4:
4461 dput(old_dentry);
4462 exit3:
4463 unlock_rename(new_path.dentry, old_path.dentry);
4464 if (delegated_inode) {
4465 error = break_deleg_wait(&delegated_inode);
4466 if (!error)
4467 goto retry_deleg;
4468 }
4469 mnt_drop_write(old_path.mnt);
4470 exit2:
4471 if (retry_estale(error, lookup_flags))
4472 should_retry = true;
4473 path_put(&new_path);
4474 exit1:
4475 path_put(&old_path);
4476 if (should_retry) {
4477 should_retry = false;
4478 lookup_flags |= LOOKUP_REVAL;
4479 goto retry;
4480 }
4481 put_both:
4482 if (!IS_ERR(from))
4483 putname(from);
4484 put_new:
4485 if (!IS_ERR(to))
4486 putname(to);
4487 return error;
4488 }
4489
4490 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4491 int, newdfd, const char __user *, newname, unsigned int, flags)
4492 {
4493 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4494 flags);
4495 }
4496
4497 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4498 int, newdfd, const char __user *, newname)
4499 {
4500 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4501 0);
4502 }
4503
4504 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4505 {
4506 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4507 getname(newname), 0);
4508 }
4509
4510 int readlink_copy(char __user *buffer, int buflen, const char *link)
4511 {
4512 int len = PTR_ERR(link);
4513 if (IS_ERR(link))
4514 goto out;
4515
4516 len = strlen(link);
4517 if (len > (unsigned) buflen)
4518 len = buflen;
4519 if (copy_to_user(buffer, link, len))
4520 len = -EFAULT;
4521 out:
4522 return len;
4523 }
4524
4525 /**
4526 * vfs_readlink - copy symlink body into userspace buffer
4527 * @dentry: dentry on which to get symbolic link
4528 * @buffer: user memory pointer
4529 * @buflen: size of buffer
4530 *
4531 * Does not touch atime. That's up to the caller if necessary
4532 *
4533 * Does not call security hook.
4534 */
4535 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4536 {
4537 struct inode *inode = d_inode(dentry);
4538 DEFINE_DELAYED_CALL(done);
4539 const char *link;
4540 int res;
4541
4542 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4543 if (unlikely(inode->i_op->readlink))
4544 return inode->i_op->readlink(dentry, buffer, buflen);
4545
4546 if (!d_is_symlink(dentry))
4547 return -EINVAL;
4548
4549 spin_lock(&inode->i_lock);
4550 inode->i_opflags |= IOP_DEFAULT_READLINK;
4551 spin_unlock(&inode->i_lock);
4552 }
4553
4554 link = READ_ONCE(inode->i_link);
4555 if (!link) {
4556 link = inode->i_op->get_link(dentry, inode, &done);
4557 if (IS_ERR(link))
4558 return PTR_ERR(link);
4559 }
4560 res = readlink_copy(buffer, buflen, link);
4561 do_delayed_call(&done);
4562 return res;
4563 }
4564 EXPORT_SYMBOL(vfs_readlink);
4565
4566 /**
4567 * vfs_get_link - get symlink body
4568 * @dentry: dentry on which to get symbolic link
4569 * @done: caller needs to free returned data with this
4570 *
4571 * Calls security hook and i_op->get_link() on the supplied inode.
4572 *
4573 * It does not touch atime. That's up to the caller if necessary.
4574 *
4575 * Does not work on "special" symlinks like /proc/$$/fd/N
4576 */
4577 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4578 {
4579 const char *res = ERR_PTR(-EINVAL);
4580 struct inode *inode = d_inode(dentry);
4581
4582 if (d_is_symlink(dentry)) {
4583 res = ERR_PTR(security_inode_readlink(dentry));
4584 if (!res)
4585 res = inode->i_op->get_link(dentry, inode, done);
4586 }
4587 return res;
4588 }
4589 EXPORT_SYMBOL(vfs_get_link);
4590
4591 /* get the link contents into pagecache */
4592 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4593 struct delayed_call *callback)
4594 {
4595 char *kaddr;
4596 struct page *page;
4597 struct address_space *mapping = inode->i_mapping;
4598
4599 if (!dentry) {
4600 page = find_get_page(mapping, 0);
4601 if (!page)
4602 return ERR_PTR(-ECHILD);
4603 if (!PageUptodate(page)) {
4604 put_page(page);
4605 return ERR_PTR(-ECHILD);
4606 }
4607 } else {
4608 page = read_mapping_page(mapping, 0, NULL);
4609 if (IS_ERR(page))
4610 return (char*)page;
4611 }
4612 set_delayed_call(callback, page_put_link, page);
4613 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4614 kaddr = page_address(page);
4615 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4616 return kaddr;
4617 }
4618
4619 EXPORT_SYMBOL(page_get_link);
4620
4621 void page_put_link(void *arg)
4622 {
4623 put_page(arg);
4624 }
4625 EXPORT_SYMBOL(page_put_link);
4626
4627 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4628 {
4629 DEFINE_DELAYED_CALL(done);
4630 int res = readlink_copy(buffer, buflen,
4631 page_get_link(dentry, d_inode(dentry),
4632 &done));
4633 do_delayed_call(&done);
4634 return res;
4635 }
4636 EXPORT_SYMBOL(page_readlink);
4637
4638 /*
4639 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4640 */
4641 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4642 {
4643 struct address_space *mapping = inode->i_mapping;
4644 struct page *page;
4645 void *fsdata;
4646 int err;
4647 unsigned int flags = 0;
4648 if (nofs)
4649 flags |= AOP_FLAG_NOFS;
4650
4651 retry:
4652 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4653 flags, &page, &fsdata);
4654 if (err)
4655 goto fail;
4656
4657 memcpy(page_address(page), symname, len-1);
4658
4659 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4660 page, fsdata);
4661 if (err < 0)
4662 goto fail;
4663 if (err < len-1)
4664 goto retry;
4665
4666 mark_inode_dirty(inode);
4667 return 0;
4668 fail:
4669 return err;
4670 }
4671 EXPORT_SYMBOL(__page_symlink);
4672
4673 int page_symlink(struct inode *inode, const char *symname, int len)
4674 {
4675 return __page_symlink(inode, symname, len,
4676 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4677 }
4678 EXPORT_SYMBOL(page_symlink);
4679
4680 const struct inode_operations page_symlink_inode_operations = {
4681 .get_link = page_get_link,
4682 };
4683 EXPORT_SYMBOL(page_symlink_inode_operations);