]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namei.c
Merge tag 'md/4.2' of git://neil.brown.name/md
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 struct path path;
498 struct qstr last;
499 struct path root;
500 struct inode *inode; /* path.dentry.d_inode */
501 unsigned int flags;
502 unsigned seq, m_seq;
503 int last_type;
504 unsigned depth;
505 int total_link_count;
506 struct saved {
507 struct path link;
508 void *cookie;
509 const char *name;
510 struct inode *inode;
511 unsigned seq;
512 } *stack, internal[EMBEDDED_LEVELS];
513 struct filename *name;
514 struct nameidata *saved;
515 unsigned root_seq;
516 int dfd;
517 };
518
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521 struct nameidata *old = current->nameidata;
522 p->stack = p->internal;
523 p->dfd = dfd;
524 p->name = name;
525 p->total_link_count = old ? old->total_link_count : 0;
526 p->saved = old;
527 current->nameidata = p;
528 }
529
530 static void restore_nameidata(void)
531 {
532 struct nameidata *now = current->nameidata, *old = now->saved;
533
534 current->nameidata = old;
535 if (old)
536 old->total_link_count = now->total_link_count;
537 if (now->stack != now->internal) {
538 kfree(now->stack);
539 now->stack = now->internal;
540 }
541 }
542
543 static int __nd_alloc_stack(struct nameidata *nd)
544 {
545 struct saved *p;
546
547 if (nd->flags & LOOKUP_RCU) {
548 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
549 GFP_ATOMIC);
550 if (unlikely(!p))
551 return -ECHILD;
552 } else {
553 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
554 GFP_KERNEL);
555 if (unlikely(!p))
556 return -ENOMEM;
557 }
558 memcpy(p, nd->internal, sizeof(nd->internal));
559 nd->stack = p;
560 return 0;
561 }
562
563 static inline int nd_alloc_stack(struct nameidata *nd)
564 {
565 if (likely(nd->depth != EMBEDDED_LEVELS))
566 return 0;
567 if (likely(nd->stack != nd->internal))
568 return 0;
569 return __nd_alloc_stack(nd);
570 }
571
572 static void drop_links(struct nameidata *nd)
573 {
574 int i = nd->depth;
575 while (i--) {
576 struct saved *last = nd->stack + i;
577 struct inode *inode = last->inode;
578 if (last->cookie && inode->i_op->put_link) {
579 inode->i_op->put_link(inode, last->cookie);
580 last->cookie = NULL;
581 }
582 }
583 }
584
585 static void terminate_walk(struct nameidata *nd)
586 {
587 drop_links(nd);
588 if (!(nd->flags & LOOKUP_RCU)) {
589 int i;
590 path_put(&nd->path);
591 for (i = 0; i < nd->depth; i++)
592 path_put(&nd->stack[i].link);
593 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
594 path_put(&nd->root);
595 nd->root.mnt = NULL;
596 }
597 } else {
598 nd->flags &= ~LOOKUP_RCU;
599 if (!(nd->flags & LOOKUP_ROOT))
600 nd->root.mnt = NULL;
601 rcu_read_unlock();
602 }
603 nd->depth = 0;
604 }
605
606 /* path_put is needed afterwards regardless of success or failure */
607 static bool legitimize_path(struct nameidata *nd,
608 struct path *path, unsigned seq)
609 {
610 int res = __legitimize_mnt(path->mnt, nd->m_seq);
611 if (unlikely(res)) {
612 if (res > 0)
613 path->mnt = NULL;
614 path->dentry = NULL;
615 return false;
616 }
617 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
618 path->dentry = NULL;
619 return false;
620 }
621 return !read_seqcount_retry(&path->dentry->d_seq, seq);
622 }
623
624 static bool legitimize_links(struct nameidata *nd)
625 {
626 int i;
627 for (i = 0; i < nd->depth; i++) {
628 struct saved *last = nd->stack + i;
629 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
630 drop_links(nd);
631 nd->depth = i + 1;
632 return false;
633 }
634 }
635 return true;
636 }
637
638 /*
639 * Path walking has 2 modes, rcu-walk and ref-walk (see
640 * Documentation/filesystems/path-lookup.txt). In situations when we can't
641 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
642 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
643 * mode. Refcounts are grabbed at the last known good point before rcu-walk
644 * got stuck, so ref-walk may continue from there. If this is not successful
645 * (eg. a seqcount has changed), then failure is returned and it's up to caller
646 * to restart the path walk from the beginning in ref-walk mode.
647 */
648
649 /**
650 * unlazy_walk - try to switch to ref-walk mode.
651 * @nd: nameidata pathwalk data
652 * @dentry: child of nd->path.dentry or NULL
653 * @seq: seq number to check dentry against
654 * Returns: 0 on success, -ECHILD on failure
655 *
656 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
657 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
658 * @nd or NULL. Must be called from rcu-walk context.
659 * Nothing should touch nameidata between unlazy_walk() failure and
660 * terminate_walk().
661 */
662 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
663 {
664 struct dentry *parent = nd->path.dentry;
665
666 BUG_ON(!(nd->flags & LOOKUP_RCU));
667
668 nd->flags &= ~LOOKUP_RCU;
669 if (unlikely(!legitimize_links(nd)))
670 goto out2;
671 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
672 goto out2;
673 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
674 goto out1;
675
676 /*
677 * For a negative lookup, the lookup sequence point is the parents
678 * sequence point, and it only needs to revalidate the parent dentry.
679 *
680 * For a positive lookup, we need to move both the parent and the
681 * dentry from the RCU domain to be properly refcounted. And the
682 * sequence number in the dentry validates *both* dentry counters,
683 * since we checked the sequence number of the parent after we got
684 * the child sequence number. So we know the parent must still
685 * be valid if the child sequence number is still valid.
686 */
687 if (!dentry) {
688 if (read_seqcount_retry(&parent->d_seq, nd->seq))
689 goto out;
690 BUG_ON(nd->inode != parent->d_inode);
691 } else {
692 if (!lockref_get_not_dead(&dentry->d_lockref))
693 goto out;
694 if (read_seqcount_retry(&dentry->d_seq, seq))
695 goto drop_dentry;
696 }
697
698 /*
699 * Sequence counts matched. Now make sure that the root is
700 * still valid and get it if required.
701 */
702 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
703 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
704 rcu_read_unlock();
705 dput(dentry);
706 return -ECHILD;
707 }
708 }
709
710 rcu_read_unlock();
711 return 0;
712
713 drop_dentry:
714 rcu_read_unlock();
715 dput(dentry);
716 goto drop_root_mnt;
717 out2:
718 nd->path.mnt = NULL;
719 out1:
720 nd->path.dentry = NULL;
721 out:
722 rcu_read_unlock();
723 drop_root_mnt:
724 if (!(nd->flags & LOOKUP_ROOT))
725 nd->root.mnt = NULL;
726 return -ECHILD;
727 }
728
729 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
730 {
731 if (unlikely(!legitimize_path(nd, link, seq))) {
732 drop_links(nd);
733 nd->depth = 0;
734 nd->flags &= ~LOOKUP_RCU;
735 nd->path.mnt = NULL;
736 nd->path.dentry = NULL;
737 if (!(nd->flags & LOOKUP_ROOT))
738 nd->root.mnt = NULL;
739 rcu_read_unlock();
740 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
741 return 0;
742 }
743 path_put(link);
744 return -ECHILD;
745 }
746
747 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
748 {
749 return dentry->d_op->d_revalidate(dentry, flags);
750 }
751
752 /**
753 * complete_walk - successful completion of path walk
754 * @nd: pointer nameidata
755 *
756 * If we had been in RCU mode, drop out of it and legitimize nd->path.
757 * Revalidate the final result, unless we'd already done that during
758 * the path walk or the filesystem doesn't ask for it. Return 0 on
759 * success, -error on failure. In case of failure caller does not
760 * need to drop nd->path.
761 */
762 static int complete_walk(struct nameidata *nd)
763 {
764 struct dentry *dentry = nd->path.dentry;
765 int status;
766
767 if (nd->flags & LOOKUP_RCU) {
768 if (!(nd->flags & LOOKUP_ROOT))
769 nd->root.mnt = NULL;
770 if (unlikely(unlazy_walk(nd, NULL, 0)))
771 return -ECHILD;
772 }
773
774 if (likely(!(nd->flags & LOOKUP_JUMPED)))
775 return 0;
776
777 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
778 return 0;
779
780 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
781 if (status > 0)
782 return 0;
783
784 if (!status)
785 status = -ESTALE;
786
787 return status;
788 }
789
790 static void set_root(struct nameidata *nd)
791 {
792 get_fs_root(current->fs, &nd->root);
793 }
794
795 static unsigned set_root_rcu(struct nameidata *nd)
796 {
797 struct fs_struct *fs = current->fs;
798 unsigned seq;
799
800 do {
801 seq = read_seqcount_begin(&fs->seq);
802 nd->root = fs->root;
803 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
804 } while (read_seqcount_retry(&fs->seq, seq));
805 return nd->root_seq;
806 }
807
808 static void path_put_conditional(struct path *path, struct nameidata *nd)
809 {
810 dput(path->dentry);
811 if (path->mnt != nd->path.mnt)
812 mntput(path->mnt);
813 }
814
815 static inline void path_to_nameidata(const struct path *path,
816 struct nameidata *nd)
817 {
818 if (!(nd->flags & LOOKUP_RCU)) {
819 dput(nd->path.dentry);
820 if (nd->path.mnt != path->mnt)
821 mntput(nd->path.mnt);
822 }
823 nd->path.mnt = path->mnt;
824 nd->path.dentry = path->dentry;
825 }
826
827 /*
828 * Helper to directly jump to a known parsed path from ->follow_link,
829 * caller must have taken a reference to path beforehand.
830 */
831 void nd_jump_link(struct path *path)
832 {
833 struct nameidata *nd = current->nameidata;
834 path_put(&nd->path);
835
836 nd->path = *path;
837 nd->inode = nd->path.dentry->d_inode;
838 nd->flags |= LOOKUP_JUMPED;
839 }
840
841 static inline void put_link(struct nameidata *nd)
842 {
843 struct saved *last = nd->stack + --nd->depth;
844 struct inode *inode = last->inode;
845 if (last->cookie && inode->i_op->put_link)
846 inode->i_op->put_link(inode, last->cookie);
847 if (!(nd->flags & LOOKUP_RCU))
848 path_put(&last->link);
849 }
850
851 int sysctl_protected_symlinks __read_mostly = 0;
852 int sysctl_protected_hardlinks __read_mostly = 0;
853
854 /**
855 * may_follow_link - Check symlink following for unsafe situations
856 * @nd: nameidata pathwalk data
857 *
858 * In the case of the sysctl_protected_symlinks sysctl being enabled,
859 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
860 * in a sticky world-writable directory. This is to protect privileged
861 * processes from failing races against path names that may change out
862 * from under them by way of other users creating malicious symlinks.
863 * It will permit symlinks to be followed only when outside a sticky
864 * world-writable directory, or when the uid of the symlink and follower
865 * match, or when the directory owner matches the symlink's owner.
866 *
867 * Returns 0 if following the symlink is allowed, -ve on error.
868 */
869 static inline int may_follow_link(struct nameidata *nd)
870 {
871 const struct inode *inode;
872 const struct inode *parent;
873
874 if (!sysctl_protected_symlinks)
875 return 0;
876
877 /* Allowed if owner and follower match. */
878 inode = nd->stack[0].inode;
879 if (uid_eq(current_cred()->fsuid, inode->i_uid))
880 return 0;
881
882 /* Allowed if parent directory not sticky and world-writable. */
883 parent = nd->path.dentry->d_inode;
884 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
885 return 0;
886
887 /* Allowed if parent directory and link owner match. */
888 if (uid_eq(parent->i_uid, inode->i_uid))
889 return 0;
890
891 if (nd->flags & LOOKUP_RCU)
892 return -ECHILD;
893
894 audit_log_link_denied("follow_link", &nd->stack[0].link);
895 return -EACCES;
896 }
897
898 /**
899 * safe_hardlink_source - Check for safe hardlink conditions
900 * @inode: the source inode to hardlink from
901 *
902 * Return false if at least one of the following conditions:
903 * - inode is not a regular file
904 * - inode is setuid
905 * - inode is setgid and group-exec
906 * - access failure for read and write
907 *
908 * Otherwise returns true.
909 */
910 static bool safe_hardlink_source(struct inode *inode)
911 {
912 umode_t mode = inode->i_mode;
913
914 /* Special files should not get pinned to the filesystem. */
915 if (!S_ISREG(mode))
916 return false;
917
918 /* Setuid files should not get pinned to the filesystem. */
919 if (mode & S_ISUID)
920 return false;
921
922 /* Executable setgid files should not get pinned to the filesystem. */
923 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
924 return false;
925
926 /* Hardlinking to unreadable or unwritable sources is dangerous. */
927 if (inode_permission(inode, MAY_READ | MAY_WRITE))
928 return false;
929
930 return true;
931 }
932
933 /**
934 * may_linkat - Check permissions for creating a hardlink
935 * @link: the source to hardlink from
936 *
937 * Block hardlink when all of:
938 * - sysctl_protected_hardlinks enabled
939 * - fsuid does not match inode
940 * - hardlink source is unsafe (see safe_hardlink_source() above)
941 * - not CAP_FOWNER
942 *
943 * Returns 0 if successful, -ve on error.
944 */
945 static int may_linkat(struct path *link)
946 {
947 const struct cred *cred;
948 struct inode *inode;
949
950 if (!sysctl_protected_hardlinks)
951 return 0;
952
953 cred = current_cred();
954 inode = link->dentry->d_inode;
955
956 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
957 * otherwise, it must be a safe source.
958 */
959 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
960 capable(CAP_FOWNER))
961 return 0;
962
963 audit_log_link_denied("linkat", link);
964 return -EPERM;
965 }
966
967 static __always_inline
968 const char *get_link(struct nameidata *nd)
969 {
970 struct saved *last = nd->stack + nd->depth - 1;
971 struct dentry *dentry = last->link.dentry;
972 struct inode *inode = last->inode;
973 int error;
974 const char *res;
975
976 if (!(nd->flags & LOOKUP_RCU)) {
977 touch_atime(&last->link);
978 cond_resched();
979 } else if (atime_needs_update(&last->link, inode)) {
980 if (unlikely(unlazy_walk(nd, NULL, 0)))
981 return ERR_PTR(-ECHILD);
982 touch_atime(&last->link);
983 }
984
985 error = security_inode_follow_link(dentry, inode,
986 nd->flags & LOOKUP_RCU);
987 if (unlikely(error))
988 return ERR_PTR(error);
989
990 nd->last_type = LAST_BIND;
991 res = inode->i_link;
992 if (!res) {
993 if (nd->flags & LOOKUP_RCU) {
994 if (unlikely(unlazy_walk(nd, NULL, 0)))
995 return ERR_PTR(-ECHILD);
996 }
997 res = inode->i_op->follow_link(dentry, &last->cookie);
998 if (IS_ERR_OR_NULL(res)) {
999 last->cookie = NULL;
1000 return res;
1001 }
1002 }
1003 if (*res == '/') {
1004 if (nd->flags & LOOKUP_RCU) {
1005 struct dentry *d;
1006 if (!nd->root.mnt)
1007 set_root_rcu(nd);
1008 nd->path = nd->root;
1009 d = nd->path.dentry;
1010 nd->inode = d->d_inode;
1011 nd->seq = nd->root_seq;
1012 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
1013 return ERR_PTR(-ECHILD);
1014 } else {
1015 if (!nd->root.mnt)
1016 set_root(nd);
1017 path_put(&nd->path);
1018 nd->path = nd->root;
1019 path_get(&nd->root);
1020 nd->inode = nd->path.dentry->d_inode;
1021 }
1022 nd->flags |= LOOKUP_JUMPED;
1023 while (unlikely(*++res == '/'))
1024 ;
1025 }
1026 if (!*res)
1027 res = NULL;
1028 return res;
1029 }
1030
1031 /*
1032 * follow_up - Find the mountpoint of path's vfsmount
1033 *
1034 * Given a path, find the mountpoint of its source file system.
1035 * Replace @path with the path of the mountpoint in the parent mount.
1036 * Up is towards /.
1037 *
1038 * Return 1 if we went up a level and 0 if we were already at the
1039 * root.
1040 */
1041 int follow_up(struct path *path)
1042 {
1043 struct mount *mnt = real_mount(path->mnt);
1044 struct mount *parent;
1045 struct dentry *mountpoint;
1046
1047 read_seqlock_excl(&mount_lock);
1048 parent = mnt->mnt_parent;
1049 if (parent == mnt) {
1050 read_sequnlock_excl(&mount_lock);
1051 return 0;
1052 }
1053 mntget(&parent->mnt);
1054 mountpoint = dget(mnt->mnt_mountpoint);
1055 read_sequnlock_excl(&mount_lock);
1056 dput(path->dentry);
1057 path->dentry = mountpoint;
1058 mntput(path->mnt);
1059 path->mnt = &parent->mnt;
1060 return 1;
1061 }
1062 EXPORT_SYMBOL(follow_up);
1063
1064 /*
1065 * Perform an automount
1066 * - return -EISDIR to tell follow_managed() to stop and return the path we
1067 * were called with.
1068 */
1069 static int follow_automount(struct path *path, struct nameidata *nd,
1070 bool *need_mntput)
1071 {
1072 struct vfsmount *mnt;
1073 int err;
1074
1075 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1076 return -EREMOTE;
1077
1078 /* We don't want to mount if someone's just doing a stat -
1079 * unless they're stat'ing a directory and appended a '/' to
1080 * the name.
1081 *
1082 * We do, however, want to mount if someone wants to open or
1083 * create a file of any type under the mountpoint, wants to
1084 * traverse through the mountpoint or wants to open the
1085 * mounted directory. Also, autofs may mark negative dentries
1086 * as being automount points. These will need the attentions
1087 * of the daemon to instantiate them before they can be used.
1088 */
1089 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1090 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1091 path->dentry->d_inode)
1092 return -EISDIR;
1093
1094 nd->total_link_count++;
1095 if (nd->total_link_count >= 40)
1096 return -ELOOP;
1097
1098 mnt = path->dentry->d_op->d_automount(path);
1099 if (IS_ERR(mnt)) {
1100 /*
1101 * The filesystem is allowed to return -EISDIR here to indicate
1102 * it doesn't want to automount. For instance, autofs would do
1103 * this so that its userspace daemon can mount on this dentry.
1104 *
1105 * However, we can only permit this if it's a terminal point in
1106 * the path being looked up; if it wasn't then the remainder of
1107 * the path is inaccessible and we should say so.
1108 */
1109 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1110 return -EREMOTE;
1111 return PTR_ERR(mnt);
1112 }
1113
1114 if (!mnt) /* mount collision */
1115 return 0;
1116
1117 if (!*need_mntput) {
1118 /* lock_mount() may release path->mnt on error */
1119 mntget(path->mnt);
1120 *need_mntput = true;
1121 }
1122 err = finish_automount(mnt, path);
1123
1124 switch (err) {
1125 case -EBUSY:
1126 /* Someone else made a mount here whilst we were busy */
1127 return 0;
1128 case 0:
1129 path_put(path);
1130 path->mnt = mnt;
1131 path->dentry = dget(mnt->mnt_root);
1132 return 0;
1133 default:
1134 return err;
1135 }
1136
1137 }
1138
1139 /*
1140 * Handle a dentry that is managed in some way.
1141 * - Flagged for transit management (autofs)
1142 * - Flagged as mountpoint
1143 * - Flagged as automount point
1144 *
1145 * This may only be called in refwalk mode.
1146 *
1147 * Serialization is taken care of in namespace.c
1148 */
1149 static int follow_managed(struct path *path, struct nameidata *nd)
1150 {
1151 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1152 unsigned managed;
1153 bool need_mntput = false;
1154 int ret = 0;
1155
1156 /* Given that we're not holding a lock here, we retain the value in a
1157 * local variable for each dentry as we look at it so that we don't see
1158 * the components of that value change under us */
1159 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1160 managed &= DCACHE_MANAGED_DENTRY,
1161 unlikely(managed != 0)) {
1162 /* Allow the filesystem to manage the transit without i_mutex
1163 * being held. */
1164 if (managed & DCACHE_MANAGE_TRANSIT) {
1165 BUG_ON(!path->dentry->d_op);
1166 BUG_ON(!path->dentry->d_op->d_manage);
1167 ret = path->dentry->d_op->d_manage(path->dentry, false);
1168 if (ret < 0)
1169 break;
1170 }
1171
1172 /* Transit to a mounted filesystem. */
1173 if (managed & DCACHE_MOUNTED) {
1174 struct vfsmount *mounted = lookup_mnt(path);
1175 if (mounted) {
1176 dput(path->dentry);
1177 if (need_mntput)
1178 mntput(path->mnt);
1179 path->mnt = mounted;
1180 path->dentry = dget(mounted->mnt_root);
1181 need_mntput = true;
1182 continue;
1183 }
1184
1185 /* Something is mounted on this dentry in another
1186 * namespace and/or whatever was mounted there in this
1187 * namespace got unmounted before lookup_mnt() could
1188 * get it */
1189 }
1190
1191 /* Handle an automount point */
1192 if (managed & DCACHE_NEED_AUTOMOUNT) {
1193 ret = follow_automount(path, nd, &need_mntput);
1194 if (ret < 0)
1195 break;
1196 continue;
1197 }
1198
1199 /* We didn't change the current path point */
1200 break;
1201 }
1202
1203 if (need_mntput && path->mnt == mnt)
1204 mntput(path->mnt);
1205 if (ret == -EISDIR)
1206 ret = 0;
1207 if (need_mntput)
1208 nd->flags |= LOOKUP_JUMPED;
1209 if (unlikely(ret < 0))
1210 path_put_conditional(path, nd);
1211 return ret;
1212 }
1213
1214 int follow_down_one(struct path *path)
1215 {
1216 struct vfsmount *mounted;
1217
1218 mounted = lookup_mnt(path);
1219 if (mounted) {
1220 dput(path->dentry);
1221 mntput(path->mnt);
1222 path->mnt = mounted;
1223 path->dentry = dget(mounted->mnt_root);
1224 return 1;
1225 }
1226 return 0;
1227 }
1228 EXPORT_SYMBOL(follow_down_one);
1229
1230 static inline int managed_dentry_rcu(struct dentry *dentry)
1231 {
1232 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1233 dentry->d_op->d_manage(dentry, true) : 0;
1234 }
1235
1236 /*
1237 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1238 * we meet a managed dentry that would need blocking.
1239 */
1240 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1241 struct inode **inode, unsigned *seqp)
1242 {
1243 for (;;) {
1244 struct mount *mounted;
1245 /*
1246 * Don't forget we might have a non-mountpoint managed dentry
1247 * that wants to block transit.
1248 */
1249 switch (managed_dentry_rcu(path->dentry)) {
1250 case -ECHILD:
1251 default:
1252 return false;
1253 case -EISDIR:
1254 return true;
1255 case 0:
1256 break;
1257 }
1258
1259 if (!d_mountpoint(path->dentry))
1260 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1261
1262 mounted = __lookup_mnt(path->mnt, path->dentry);
1263 if (!mounted)
1264 break;
1265 path->mnt = &mounted->mnt;
1266 path->dentry = mounted->mnt.mnt_root;
1267 nd->flags |= LOOKUP_JUMPED;
1268 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1269 /*
1270 * Update the inode too. We don't need to re-check the
1271 * dentry sequence number here after this d_inode read,
1272 * because a mount-point is always pinned.
1273 */
1274 *inode = path->dentry->d_inode;
1275 }
1276 return !read_seqretry(&mount_lock, nd->m_seq) &&
1277 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1278 }
1279
1280 static int follow_dotdot_rcu(struct nameidata *nd)
1281 {
1282 struct inode *inode = nd->inode;
1283 if (!nd->root.mnt)
1284 set_root_rcu(nd);
1285
1286 while (1) {
1287 if (path_equal(&nd->path, &nd->root))
1288 break;
1289 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1290 struct dentry *old = nd->path.dentry;
1291 struct dentry *parent = old->d_parent;
1292 unsigned seq;
1293
1294 inode = parent->d_inode;
1295 seq = read_seqcount_begin(&parent->d_seq);
1296 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1297 return -ECHILD;
1298 nd->path.dentry = parent;
1299 nd->seq = seq;
1300 break;
1301 } else {
1302 struct mount *mnt = real_mount(nd->path.mnt);
1303 struct mount *mparent = mnt->mnt_parent;
1304 struct dentry *mountpoint = mnt->mnt_mountpoint;
1305 struct inode *inode2 = mountpoint->d_inode;
1306 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1307 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1308 return -ECHILD;
1309 if (&mparent->mnt == nd->path.mnt)
1310 break;
1311 /* we know that mountpoint was pinned */
1312 nd->path.dentry = mountpoint;
1313 nd->path.mnt = &mparent->mnt;
1314 inode = inode2;
1315 nd->seq = seq;
1316 }
1317 }
1318 while (unlikely(d_mountpoint(nd->path.dentry))) {
1319 struct mount *mounted;
1320 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1321 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1322 return -ECHILD;
1323 if (!mounted)
1324 break;
1325 nd->path.mnt = &mounted->mnt;
1326 nd->path.dentry = mounted->mnt.mnt_root;
1327 inode = nd->path.dentry->d_inode;
1328 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1329 }
1330 nd->inode = inode;
1331 return 0;
1332 }
1333
1334 /*
1335 * Follow down to the covering mount currently visible to userspace. At each
1336 * point, the filesystem owning that dentry may be queried as to whether the
1337 * caller is permitted to proceed or not.
1338 */
1339 int follow_down(struct path *path)
1340 {
1341 unsigned managed;
1342 int ret;
1343
1344 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1345 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1346 /* Allow the filesystem to manage the transit without i_mutex
1347 * being held.
1348 *
1349 * We indicate to the filesystem if someone is trying to mount
1350 * something here. This gives autofs the chance to deny anyone
1351 * other than its daemon the right to mount on its
1352 * superstructure.
1353 *
1354 * The filesystem may sleep at this point.
1355 */
1356 if (managed & DCACHE_MANAGE_TRANSIT) {
1357 BUG_ON(!path->dentry->d_op);
1358 BUG_ON(!path->dentry->d_op->d_manage);
1359 ret = path->dentry->d_op->d_manage(
1360 path->dentry, false);
1361 if (ret < 0)
1362 return ret == -EISDIR ? 0 : ret;
1363 }
1364
1365 /* Transit to a mounted filesystem. */
1366 if (managed & DCACHE_MOUNTED) {
1367 struct vfsmount *mounted = lookup_mnt(path);
1368 if (!mounted)
1369 break;
1370 dput(path->dentry);
1371 mntput(path->mnt);
1372 path->mnt = mounted;
1373 path->dentry = dget(mounted->mnt_root);
1374 continue;
1375 }
1376
1377 /* Don't handle automount points here */
1378 break;
1379 }
1380 return 0;
1381 }
1382 EXPORT_SYMBOL(follow_down);
1383
1384 /*
1385 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1386 */
1387 static void follow_mount(struct path *path)
1388 {
1389 while (d_mountpoint(path->dentry)) {
1390 struct vfsmount *mounted = lookup_mnt(path);
1391 if (!mounted)
1392 break;
1393 dput(path->dentry);
1394 mntput(path->mnt);
1395 path->mnt = mounted;
1396 path->dentry = dget(mounted->mnt_root);
1397 }
1398 }
1399
1400 static void follow_dotdot(struct nameidata *nd)
1401 {
1402 if (!nd->root.mnt)
1403 set_root(nd);
1404
1405 while(1) {
1406 struct dentry *old = nd->path.dentry;
1407
1408 if (nd->path.dentry == nd->root.dentry &&
1409 nd->path.mnt == nd->root.mnt) {
1410 break;
1411 }
1412 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1413 /* rare case of legitimate dget_parent()... */
1414 nd->path.dentry = dget_parent(nd->path.dentry);
1415 dput(old);
1416 break;
1417 }
1418 if (!follow_up(&nd->path))
1419 break;
1420 }
1421 follow_mount(&nd->path);
1422 nd->inode = nd->path.dentry->d_inode;
1423 }
1424
1425 /*
1426 * This looks up the name in dcache, possibly revalidates the old dentry and
1427 * allocates a new one if not found or not valid. In the need_lookup argument
1428 * returns whether i_op->lookup is necessary.
1429 *
1430 * dir->d_inode->i_mutex must be held
1431 */
1432 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1433 unsigned int flags, bool *need_lookup)
1434 {
1435 struct dentry *dentry;
1436 int error;
1437
1438 *need_lookup = false;
1439 dentry = d_lookup(dir, name);
1440 if (dentry) {
1441 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1442 error = d_revalidate(dentry, flags);
1443 if (unlikely(error <= 0)) {
1444 if (error < 0) {
1445 dput(dentry);
1446 return ERR_PTR(error);
1447 } else {
1448 d_invalidate(dentry);
1449 dput(dentry);
1450 dentry = NULL;
1451 }
1452 }
1453 }
1454 }
1455
1456 if (!dentry) {
1457 dentry = d_alloc(dir, name);
1458 if (unlikely(!dentry))
1459 return ERR_PTR(-ENOMEM);
1460
1461 *need_lookup = true;
1462 }
1463 return dentry;
1464 }
1465
1466 /*
1467 * Call i_op->lookup on the dentry. The dentry must be negative and
1468 * unhashed.
1469 *
1470 * dir->d_inode->i_mutex must be held
1471 */
1472 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1473 unsigned int flags)
1474 {
1475 struct dentry *old;
1476
1477 /* Don't create child dentry for a dead directory. */
1478 if (unlikely(IS_DEADDIR(dir))) {
1479 dput(dentry);
1480 return ERR_PTR(-ENOENT);
1481 }
1482
1483 old = dir->i_op->lookup(dir, dentry, flags);
1484 if (unlikely(old)) {
1485 dput(dentry);
1486 dentry = old;
1487 }
1488 return dentry;
1489 }
1490
1491 static struct dentry *__lookup_hash(struct qstr *name,
1492 struct dentry *base, unsigned int flags)
1493 {
1494 bool need_lookup;
1495 struct dentry *dentry;
1496
1497 dentry = lookup_dcache(name, base, flags, &need_lookup);
1498 if (!need_lookup)
1499 return dentry;
1500
1501 return lookup_real(base->d_inode, dentry, flags);
1502 }
1503
1504 /*
1505 * It's more convoluted than I'd like it to be, but... it's still fairly
1506 * small and for now I'd prefer to have fast path as straight as possible.
1507 * It _is_ time-critical.
1508 */
1509 static int lookup_fast(struct nameidata *nd,
1510 struct path *path, struct inode **inode,
1511 unsigned *seqp)
1512 {
1513 struct vfsmount *mnt = nd->path.mnt;
1514 struct dentry *dentry, *parent = nd->path.dentry;
1515 int need_reval = 1;
1516 int status = 1;
1517 int err;
1518
1519 /*
1520 * Rename seqlock is not required here because in the off chance
1521 * of a false negative due to a concurrent rename, we're going to
1522 * do the non-racy lookup, below.
1523 */
1524 if (nd->flags & LOOKUP_RCU) {
1525 unsigned seq;
1526 bool negative;
1527 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1528 if (!dentry)
1529 goto unlazy;
1530
1531 /*
1532 * This sequence count validates that the inode matches
1533 * the dentry name information from lookup.
1534 */
1535 *inode = d_backing_inode(dentry);
1536 negative = d_is_negative(dentry);
1537 if (read_seqcount_retry(&dentry->d_seq, seq))
1538 return -ECHILD;
1539 if (negative)
1540 return -ENOENT;
1541
1542 /*
1543 * This sequence count validates that the parent had no
1544 * changes while we did the lookup of the dentry above.
1545 *
1546 * The memory barrier in read_seqcount_begin of child is
1547 * enough, we can use __read_seqcount_retry here.
1548 */
1549 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1550 return -ECHILD;
1551
1552 *seqp = seq;
1553 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1554 status = d_revalidate(dentry, nd->flags);
1555 if (unlikely(status <= 0)) {
1556 if (status != -ECHILD)
1557 need_reval = 0;
1558 goto unlazy;
1559 }
1560 }
1561 path->mnt = mnt;
1562 path->dentry = dentry;
1563 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1564 return 0;
1565 unlazy:
1566 if (unlazy_walk(nd, dentry, seq))
1567 return -ECHILD;
1568 } else {
1569 dentry = __d_lookup(parent, &nd->last);
1570 }
1571
1572 if (unlikely(!dentry))
1573 goto need_lookup;
1574
1575 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1576 status = d_revalidate(dentry, nd->flags);
1577 if (unlikely(status <= 0)) {
1578 if (status < 0) {
1579 dput(dentry);
1580 return status;
1581 }
1582 d_invalidate(dentry);
1583 dput(dentry);
1584 goto need_lookup;
1585 }
1586
1587 if (unlikely(d_is_negative(dentry))) {
1588 dput(dentry);
1589 return -ENOENT;
1590 }
1591 path->mnt = mnt;
1592 path->dentry = dentry;
1593 err = follow_managed(path, nd);
1594 if (likely(!err))
1595 *inode = d_backing_inode(path->dentry);
1596 return err;
1597
1598 need_lookup:
1599 return 1;
1600 }
1601
1602 /* Fast lookup failed, do it the slow way */
1603 static int lookup_slow(struct nameidata *nd, struct path *path)
1604 {
1605 struct dentry *dentry, *parent;
1606
1607 parent = nd->path.dentry;
1608 BUG_ON(nd->inode != parent->d_inode);
1609
1610 mutex_lock(&parent->d_inode->i_mutex);
1611 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1612 mutex_unlock(&parent->d_inode->i_mutex);
1613 if (IS_ERR(dentry))
1614 return PTR_ERR(dentry);
1615 path->mnt = nd->path.mnt;
1616 path->dentry = dentry;
1617 return follow_managed(path, nd);
1618 }
1619
1620 static inline int may_lookup(struct nameidata *nd)
1621 {
1622 if (nd->flags & LOOKUP_RCU) {
1623 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1624 if (err != -ECHILD)
1625 return err;
1626 if (unlazy_walk(nd, NULL, 0))
1627 return -ECHILD;
1628 }
1629 return inode_permission(nd->inode, MAY_EXEC);
1630 }
1631
1632 static inline int handle_dots(struct nameidata *nd, int type)
1633 {
1634 if (type == LAST_DOTDOT) {
1635 if (nd->flags & LOOKUP_RCU) {
1636 return follow_dotdot_rcu(nd);
1637 } else
1638 follow_dotdot(nd);
1639 }
1640 return 0;
1641 }
1642
1643 static int pick_link(struct nameidata *nd, struct path *link,
1644 struct inode *inode, unsigned seq)
1645 {
1646 int error;
1647 struct saved *last;
1648 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1649 path_to_nameidata(link, nd);
1650 return -ELOOP;
1651 }
1652 if (!(nd->flags & LOOKUP_RCU)) {
1653 if (link->mnt == nd->path.mnt)
1654 mntget(link->mnt);
1655 }
1656 error = nd_alloc_stack(nd);
1657 if (unlikely(error)) {
1658 if (error == -ECHILD) {
1659 if (unlikely(unlazy_link(nd, link, seq)))
1660 return -ECHILD;
1661 error = nd_alloc_stack(nd);
1662 }
1663 if (error) {
1664 path_put(link);
1665 return error;
1666 }
1667 }
1668
1669 last = nd->stack + nd->depth++;
1670 last->link = *link;
1671 last->cookie = NULL;
1672 last->inode = inode;
1673 last->seq = seq;
1674 return 1;
1675 }
1676
1677 /*
1678 * Do we need to follow links? We _really_ want to be able
1679 * to do this check without having to look at inode->i_op,
1680 * so we keep a cache of "no, this doesn't need follow_link"
1681 * for the common case.
1682 */
1683 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1684 int follow,
1685 struct inode *inode, unsigned seq)
1686 {
1687 if (likely(!d_is_symlink(link->dentry)))
1688 return 0;
1689 if (!follow)
1690 return 0;
1691 return pick_link(nd, link, inode, seq);
1692 }
1693
1694 enum {WALK_GET = 1, WALK_PUT = 2};
1695
1696 static int walk_component(struct nameidata *nd, int flags)
1697 {
1698 struct path path;
1699 struct inode *inode;
1700 unsigned seq;
1701 int err;
1702 /*
1703 * "." and ".." are special - ".." especially so because it has
1704 * to be able to know about the current root directory and
1705 * parent relationships.
1706 */
1707 if (unlikely(nd->last_type != LAST_NORM)) {
1708 err = handle_dots(nd, nd->last_type);
1709 if (flags & WALK_PUT)
1710 put_link(nd);
1711 return err;
1712 }
1713 err = lookup_fast(nd, &path, &inode, &seq);
1714 if (unlikely(err)) {
1715 if (err < 0)
1716 return err;
1717
1718 err = lookup_slow(nd, &path);
1719 if (err < 0)
1720 return err;
1721
1722 inode = d_backing_inode(path.dentry);
1723 seq = 0; /* we are already out of RCU mode */
1724 err = -ENOENT;
1725 if (d_is_negative(path.dentry))
1726 goto out_path_put;
1727 }
1728
1729 if (flags & WALK_PUT)
1730 put_link(nd);
1731 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1732 if (unlikely(err))
1733 return err;
1734 path_to_nameidata(&path, nd);
1735 nd->inode = inode;
1736 nd->seq = seq;
1737 return 0;
1738
1739 out_path_put:
1740 path_to_nameidata(&path, nd);
1741 return err;
1742 }
1743
1744 /*
1745 * We can do the critical dentry name comparison and hashing
1746 * operations one word at a time, but we are limited to:
1747 *
1748 * - Architectures with fast unaligned word accesses. We could
1749 * do a "get_unaligned()" if this helps and is sufficiently
1750 * fast.
1751 *
1752 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1753 * do not trap on the (extremely unlikely) case of a page
1754 * crossing operation.
1755 *
1756 * - Furthermore, we need an efficient 64-bit compile for the
1757 * 64-bit case in order to generate the "number of bytes in
1758 * the final mask". Again, that could be replaced with a
1759 * efficient population count instruction or similar.
1760 */
1761 #ifdef CONFIG_DCACHE_WORD_ACCESS
1762
1763 #include <asm/word-at-a-time.h>
1764
1765 #ifdef CONFIG_64BIT
1766
1767 static inline unsigned int fold_hash(unsigned long hash)
1768 {
1769 return hash_64(hash, 32);
1770 }
1771
1772 #else /* 32-bit case */
1773
1774 #define fold_hash(x) (x)
1775
1776 #endif
1777
1778 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1779 {
1780 unsigned long a, mask;
1781 unsigned long hash = 0;
1782
1783 for (;;) {
1784 a = load_unaligned_zeropad(name);
1785 if (len < sizeof(unsigned long))
1786 break;
1787 hash += a;
1788 hash *= 9;
1789 name += sizeof(unsigned long);
1790 len -= sizeof(unsigned long);
1791 if (!len)
1792 goto done;
1793 }
1794 mask = bytemask_from_count(len);
1795 hash += mask & a;
1796 done:
1797 return fold_hash(hash);
1798 }
1799 EXPORT_SYMBOL(full_name_hash);
1800
1801 /*
1802 * Calculate the length and hash of the path component, and
1803 * return the "hash_len" as the result.
1804 */
1805 static inline u64 hash_name(const char *name)
1806 {
1807 unsigned long a, b, adata, bdata, mask, hash, len;
1808 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1809
1810 hash = a = 0;
1811 len = -sizeof(unsigned long);
1812 do {
1813 hash = (hash + a) * 9;
1814 len += sizeof(unsigned long);
1815 a = load_unaligned_zeropad(name+len);
1816 b = a ^ REPEAT_BYTE('/');
1817 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1818
1819 adata = prep_zero_mask(a, adata, &constants);
1820 bdata = prep_zero_mask(b, bdata, &constants);
1821
1822 mask = create_zero_mask(adata | bdata);
1823
1824 hash += a & zero_bytemask(mask);
1825 len += find_zero(mask);
1826 return hashlen_create(fold_hash(hash), len);
1827 }
1828
1829 #else
1830
1831 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1832 {
1833 unsigned long hash = init_name_hash();
1834 while (len--)
1835 hash = partial_name_hash(*name++, hash);
1836 return end_name_hash(hash);
1837 }
1838 EXPORT_SYMBOL(full_name_hash);
1839
1840 /*
1841 * We know there's a real path component here of at least
1842 * one character.
1843 */
1844 static inline u64 hash_name(const char *name)
1845 {
1846 unsigned long hash = init_name_hash();
1847 unsigned long len = 0, c;
1848
1849 c = (unsigned char)*name;
1850 do {
1851 len++;
1852 hash = partial_name_hash(c, hash);
1853 c = (unsigned char)name[len];
1854 } while (c && c != '/');
1855 return hashlen_create(end_name_hash(hash), len);
1856 }
1857
1858 #endif
1859
1860 /*
1861 * Name resolution.
1862 * This is the basic name resolution function, turning a pathname into
1863 * the final dentry. We expect 'base' to be positive and a directory.
1864 *
1865 * Returns 0 and nd will have valid dentry and mnt on success.
1866 * Returns error and drops reference to input namei data on failure.
1867 */
1868 static int link_path_walk(const char *name, struct nameidata *nd)
1869 {
1870 int err;
1871
1872 while (*name=='/')
1873 name++;
1874 if (!*name)
1875 return 0;
1876
1877 /* At this point we know we have a real path component. */
1878 for(;;) {
1879 u64 hash_len;
1880 int type;
1881
1882 err = may_lookup(nd);
1883 if (err)
1884 return err;
1885
1886 hash_len = hash_name(name);
1887
1888 type = LAST_NORM;
1889 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1890 case 2:
1891 if (name[1] == '.') {
1892 type = LAST_DOTDOT;
1893 nd->flags |= LOOKUP_JUMPED;
1894 }
1895 break;
1896 case 1:
1897 type = LAST_DOT;
1898 }
1899 if (likely(type == LAST_NORM)) {
1900 struct dentry *parent = nd->path.dentry;
1901 nd->flags &= ~LOOKUP_JUMPED;
1902 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1903 struct qstr this = { { .hash_len = hash_len }, .name = name };
1904 err = parent->d_op->d_hash(parent, &this);
1905 if (err < 0)
1906 return err;
1907 hash_len = this.hash_len;
1908 name = this.name;
1909 }
1910 }
1911
1912 nd->last.hash_len = hash_len;
1913 nd->last.name = name;
1914 nd->last_type = type;
1915
1916 name += hashlen_len(hash_len);
1917 if (!*name)
1918 goto OK;
1919 /*
1920 * If it wasn't NUL, we know it was '/'. Skip that
1921 * slash, and continue until no more slashes.
1922 */
1923 do {
1924 name++;
1925 } while (unlikely(*name == '/'));
1926 if (unlikely(!*name)) {
1927 OK:
1928 /* pathname body, done */
1929 if (!nd->depth)
1930 return 0;
1931 name = nd->stack[nd->depth - 1].name;
1932 /* trailing symlink, done */
1933 if (!name)
1934 return 0;
1935 /* last component of nested symlink */
1936 err = walk_component(nd, WALK_GET | WALK_PUT);
1937 } else {
1938 err = walk_component(nd, WALK_GET);
1939 }
1940 if (err < 0)
1941 return err;
1942
1943 if (err) {
1944 const char *s = get_link(nd);
1945
1946 if (unlikely(IS_ERR(s)))
1947 return PTR_ERR(s);
1948 err = 0;
1949 if (unlikely(!s)) {
1950 /* jumped */
1951 put_link(nd);
1952 } else {
1953 nd->stack[nd->depth - 1].name = name;
1954 name = s;
1955 continue;
1956 }
1957 }
1958 if (unlikely(!d_can_lookup(nd->path.dentry)))
1959 return -ENOTDIR;
1960 }
1961 }
1962
1963 static const char *path_init(struct nameidata *nd, unsigned flags)
1964 {
1965 int retval = 0;
1966 const char *s = nd->name->name;
1967
1968 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1969 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1970 nd->depth = 0;
1971 nd->total_link_count = 0;
1972 if (flags & LOOKUP_ROOT) {
1973 struct dentry *root = nd->root.dentry;
1974 struct inode *inode = root->d_inode;
1975 if (*s) {
1976 if (!d_can_lookup(root))
1977 return ERR_PTR(-ENOTDIR);
1978 retval = inode_permission(inode, MAY_EXEC);
1979 if (retval)
1980 return ERR_PTR(retval);
1981 }
1982 nd->path = nd->root;
1983 nd->inode = inode;
1984 if (flags & LOOKUP_RCU) {
1985 rcu_read_lock();
1986 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1987 nd->root_seq = nd->seq;
1988 nd->m_seq = read_seqbegin(&mount_lock);
1989 } else {
1990 path_get(&nd->path);
1991 }
1992 return s;
1993 }
1994
1995 nd->root.mnt = NULL;
1996
1997 nd->m_seq = read_seqbegin(&mount_lock);
1998 if (*s == '/') {
1999 if (flags & LOOKUP_RCU) {
2000 rcu_read_lock();
2001 nd->seq = set_root_rcu(nd);
2002 } else {
2003 set_root(nd);
2004 path_get(&nd->root);
2005 }
2006 nd->path = nd->root;
2007 } else if (nd->dfd == AT_FDCWD) {
2008 if (flags & LOOKUP_RCU) {
2009 struct fs_struct *fs = current->fs;
2010 unsigned seq;
2011
2012 rcu_read_lock();
2013
2014 do {
2015 seq = read_seqcount_begin(&fs->seq);
2016 nd->path = fs->pwd;
2017 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2018 } while (read_seqcount_retry(&fs->seq, seq));
2019 } else {
2020 get_fs_pwd(current->fs, &nd->path);
2021 }
2022 } else {
2023 /* Caller must check execute permissions on the starting path component */
2024 struct fd f = fdget_raw(nd->dfd);
2025 struct dentry *dentry;
2026
2027 if (!f.file)
2028 return ERR_PTR(-EBADF);
2029
2030 dentry = f.file->f_path.dentry;
2031
2032 if (*s) {
2033 if (!d_can_lookup(dentry)) {
2034 fdput(f);
2035 return ERR_PTR(-ENOTDIR);
2036 }
2037 }
2038
2039 nd->path = f.file->f_path;
2040 if (flags & LOOKUP_RCU) {
2041 rcu_read_lock();
2042 nd->inode = nd->path.dentry->d_inode;
2043 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2044 } else {
2045 path_get(&nd->path);
2046 nd->inode = nd->path.dentry->d_inode;
2047 }
2048 fdput(f);
2049 return s;
2050 }
2051
2052 nd->inode = nd->path.dentry->d_inode;
2053 if (!(flags & LOOKUP_RCU))
2054 return s;
2055 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
2056 return s;
2057 if (!(nd->flags & LOOKUP_ROOT))
2058 nd->root.mnt = NULL;
2059 rcu_read_unlock();
2060 return ERR_PTR(-ECHILD);
2061 }
2062
2063 static const char *trailing_symlink(struct nameidata *nd)
2064 {
2065 const char *s;
2066 int error = may_follow_link(nd);
2067 if (unlikely(error))
2068 return ERR_PTR(error);
2069 nd->flags |= LOOKUP_PARENT;
2070 nd->stack[0].name = NULL;
2071 s = get_link(nd);
2072 return s ? s : "";
2073 }
2074
2075 static inline int lookup_last(struct nameidata *nd)
2076 {
2077 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2078 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2079
2080 nd->flags &= ~LOOKUP_PARENT;
2081 return walk_component(nd,
2082 nd->flags & LOOKUP_FOLLOW
2083 ? nd->depth
2084 ? WALK_PUT | WALK_GET
2085 : WALK_GET
2086 : 0);
2087 }
2088
2089 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2090 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2091 {
2092 const char *s = path_init(nd, flags);
2093 int err;
2094
2095 if (IS_ERR(s))
2096 return PTR_ERR(s);
2097 while (!(err = link_path_walk(s, nd))
2098 && ((err = lookup_last(nd)) > 0)) {
2099 s = trailing_symlink(nd);
2100 if (IS_ERR(s)) {
2101 err = PTR_ERR(s);
2102 break;
2103 }
2104 }
2105 if (!err)
2106 err = complete_walk(nd);
2107
2108 if (!err && nd->flags & LOOKUP_DIRECTORY)
2109 if (!d_can_lookup(nd->path.dentry))
2110 err = -ENOTDIR;
2111 if (!err) {
2112 *path = nd->path;
2113 nd->path.mnt = NULL;
2114 nd->path.dentry = NULL;
2115 }
2116 terminate_walk(nd);
2117 return err;
2118 }
2119
2120 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2121 struct path *path, struct path *root)
2122 {
2123 int retval;
2124 struct nameidata nd;
2125 if (IS_ERR(name))
2126 return PTR_ERR(name);
2127 if (unlikely(root)) {
2128 nd.root = *root;
2129 flags |= LOOKUP_ROOT;
2130 }
2131 set_nameidata(&nd, dfd, name);
2132 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2133 if (unlikely(retval == -ECHILD))
2134 retval = path_lookupat(&nd, flags, path);
2135 if (unlikely(retval == -ESTALE))
2136 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2137
2138 if (likely(!retval))
2139 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2140 restore_nameidata();
2141 putname(name);
2142 return retval;
2143 }
2144
2145 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2146 static int path_parentat(struct nameidata *nd, unsigned flags,
2147 struct path *parent)
2148 {
2149 const char *s = path_init(nd, flags);
2150 int err;
2151 if (IS_ERR(s))
2152 return PTR_ERR(s);
2153 err = link_path_walk(s, nd);
2154 if (!err)
2155 err = complete_walk(nd);
2156 if (!err) {
2157 *parent = nd->path;
2158 nd->path.mnt = NULL;
2159 nd->path.dentry = NULL;
2160 }
2161 terminate_walk(nd);
2162 return err;
2163 }
2164
2165 static struct filename *filename_parentat(int dfd, struct filename *name,
2166 unsigned int flags, struct path *parent,
2167 struct qstr *last, int *type)
2168 {
2169 int retval;
2170 struct nameidata nd;
2171
2172 if (IS_ERR(name))
2173 return name;
2174 set_nameidata(&nd, dfd, name);
2175 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2176 if (unlikely(retval == -ECHILD))
2177 retval = path_parentat(&nd, flags, parent);
2178 if (unlikely(retval == -ESTALE))
2179 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2180 if (likely(!retval)) {
2181 *last = nd.last;
2182 *type = nd.last_type;
2183 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2184 } else {
2185 putname(name);
2186 name = ERR_PTR(retval);
2187 }
2188 restore_nameidata();
2189 return name;
2190 }
2191
2192 /* does lookup, returns the object with parent locked */
2193 struct dentry *kern_path_locked(const char *name, struct path *path)
2194 {
2195 struct filename *filename;
2196 struct dentry *d;
2197 struct qstr last;
2198 int type;
2199
2200 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2201 &last, &type);
2202 if (IS_ERR(filename))
2203 return ERR_CAST(filename);
2204 if (unlikely(type != LAST_NORM)) {
2205 path_put(path);
2206 putname(filename);
2207 return ERR_PTR(-EINVAL);
2208 }
2209 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2210 d = __lookup_hash(&last, path->dentry, 0);
2211 if (IS_ERR(d)) {
2212 mutex_unlock(&path->dentry->d_inode->i_mutex);
2213 path_put(path);
2214 }
2215 putname(filename);
2216 return d;
2217 }
2218
2219 int kern_path(const char *name, unsigned int flags, struct path *path)
2220 {
2221 return filename_lookup(AT_FDCWD, getname_kernel(name),
2222 flags, path, NULL);
2223 }
2224 EXPORT_SYMBOL(kern_path);
2225
2226 /**
2227 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2228 * @dentry: pointer to dentry of the base directory
2229 * @mnt: pointer to vfs mount of the base directory
2230 * @name: pointer to file name
2231 * @flags: lookup flags
2232 * @path: pointer to struct path to fill
2233 */
2234 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2235 const char *name, unsigned int flags,
2236 struct path *path)
2237 {
2238 struct path root = {.mnt = mnt, .dentry = dentry};
2239 /* the first argument of filename_lookup() is ignored with root */
2240 return filename_lookup(AT_FDCWD, getname_kernel(name),
2241 flags , path, &root);
2242 }
2243 EXPORT_SYMBOL(vfs_path_lookup);
2244
2245 /**
2246 * lookup_one_len - filesystem helper to lookup single pathname component
2247 * @name: pathname component to lookup
2248 * @base: base directory to lookup from
2249 * @len: maximum length @len should be interpreted to
2250 *
2251 * Note that this routine is purely a helper for filesystem usage and should
2252 * not be called by generic code.
2253 */
2254 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2255 {
2256 struct qstr this;
2257 unsigned int c;
2258 int err;
2259
2260 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2261
2262 this.name = name;
2263 this.len = len;
2264 this.hash = full_name_hash(name, len);
2265 if (!len)
2266 return ERR_PTR(-EACCES);
2267
2268 if (unlikely(name[0] == '.')) {
2269 if (len < 2 || (len == 2 && name[1] == '.'))
2270 return ERR_PTR(-EACCES);
2271 }
2272
2273 while (len--) {
2274 c = *(const unsigned char *)name++;
2275 if (c == '/' || c == '\0')
2276 return ERR_PTR(-EACCES);
2277 }
2278 /*
2279 * See if the low-level filesystem might want
2280 * to use its own hash..
2281 */
2282 if (base->d_flags & DCACHE_OP_HASH) {
2283 int err = base->d_op->d_hash(base, &this);
2284 if (err < 0)
2285 return ERR_PTR(err);
2286 }
2287
2288 err = inode_permission(base->d_inode, MAY_EXEC);
2289 if (err)
2290 return ERR_PTR(err);
2291
2292 return __lookup_hash(&this, base, 0);
2293 }
2294 EXPORT_SYMBOL(lookup_one_len);
2295
2296 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2297 struct path *path, int *empty)
2298 {
2299 return filename_lookup(dfd, getname_flags(name, flags, empty),
2300 flags, path, NULL);
2301 }
2302 EXPORT_SYMBOL(user_path_at_empty);
2303
2304 /*
2305 * NB: most callers don't do anything directly with the reference to the
2306 * to struct filename, but the nd->last pointer points into the name string
2307 * allocated by getname. So we must hold the reference to it until all
2308 * path-walking is complete.
2309 */
2310 static inline struct filename *
2311 user_path_parent(int dfd, const char __user *path,
2312 struct path *parent,
2313 struct qstr *last,
2314 int *type,
2315 unsigned int flags)
2316 {
2317 /* only LOOKUP_REVAL is allowed in extra flags */
2318 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2319 parent, last, type);
2320 }
2321
2322 /**
2323 * mountpoint_last - look up last component for umount
2324 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2325 * @path: pointer to container for result
2326 *
2327 * This is a special lookup_last function just for umount. In this case, we
2328 * need to resolve the path without doing any revalidation.
2329 *
2330 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2331 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2332 * in almost all cases, this lookup will be served out of the dcache. The only
2333 * cases where it won't are if nd->last refers to a symlink or the path is
2334 * bogus and it doesn't exist.
2335 *
2336 * Returns:
2337 * -error: if there was an error during lookup. This includes -ENOENT if the
2338 * lookup found a negative dentry. The nd->path reference will also be
2339 * put in this case.
2340 *
2341 * 0: if we successfully resolved nd->path and found it to not to be a
2342 * symlink that needs to be followed. "path" will also be populated.
2343 * The nd->path reference will also be put.
2344 *
2345 * 1: if we successfully resolved nd->last and found it to be a symlink
2346 * that needs to be followed. "path" will be populated with the path
2347 * to the link, and nd->path will *not* be put.
2348 */
2349 static int
2350 mountpoint_last(struct nameidata *nd, struct path *path)
2351 {
2352 int error = 0;
2353 struct dentry *dentry;
2354 struct dentry *dir = nd->path.dentry;
2355
2356 /* If we're in rcuwalk, drop out of it to handle last component */
2357 if (nd->flags & LOOKUP_RCU) {
2358 if (unlazy_walk(nd, NULL, 0))
2359 return -ECHILD;
2360 }
2361
2362 nd->flags &= ~LOOKUP_PARENT;
2363
2364 if (unlikely(nd->last_type != LAST_NORM)) {
2365 error = handle_dots(nd, nd->last_type);
2366 if (error)
2367 return error;
2368 dentry = dget(nd->path.dentry);
2369 goto done;
2370 }
2371
2372 mutex_lock(&dir->d_inode->i_mutex);
2373 dentry = d_lookup(dir, &nd->last);
2374 if (!dentry) {
2375 /*
2376 * No cached dentry. Mounted dentries are pinned in the cache,
2377 * so that means that this dentry is probably a symlink or the
2378 * path doesn't actually point to a mounted dentry.
2379 */
2380 dentry = d_alloc(dir, &nd->last);
2381 if (!dentry) {
2382 mutex_unlock(&dir->d_inode->i_mutex);
2383 return -ENOMEM;
2384 }
2385 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2386 if (IS_ERR(dentry)) {
2387 mutex_unlock(&dir->d_inode->i_mutex);
2388 return PTR_ERR(dentry);
2389 }
2390 }
2391 mutex_unlock(&dir->d_inode->i_mutex);
2392
2393 done:
2394 if (d_is_negative(dentry)) {
2395 dput(dentry);
2396 return -ENOENT;
2397 }
2398 if (nd->depth)
2399 put_link(nd);
2400 path->dentry = dentry;
2401 path->mnt = nd->path.mnt;
2402 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2403 d_backing_inode(dentry), 0);
2404 if (unlikely(error))
2405 return error;
2406 mntget(path->mnt);
2407 follow_mount(path);
2408 return 0;
2409 }
2410
2411 /**
2412 * path_mountpoint - look up a path to be umounted
2413 * @nameidata: lookup context
2414 * @flags: lookup flags
2415 * @path: pointer to container for result
2416 *
2417 * Look up the given name, but don't attempt to revalidate the last component.
2418 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2419 */
2420 static int
2421 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2422 {
2423 const char *s = path_init(nd, flags);
2424 int err;
2425 if (IS_ERR(s))
2426 return PTR_ERR(s);
2427 while (!(err = link_path_walk(s, nd)) &&
2428 (err = mountpoint_last(nd, path)) > 0) {
2429 s = trailing_symlink(nd);
2430 if (IS_ERR(s)) {
2431 err = PTR_ERR(s);
2432 break;
2433 }
2434 }
2435 terminate_walk(nd);
2436 return err;
2437 }
2438
2439 static int
2440 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2441 unsigned int flags)
2442 {
2443 struct nameidata nd;
2444 int error;
2445 if (IS_ERR(name))
2446 return PTR_ERR(name);
2447 set_nameidata(&nd, dfd, name);
2448 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2449 if (unlikely(error == -ECHILD))
2450 error = path_mountpoint(&nd, flags, path);
2451 if (unlikely(error == -ESTALE))
2452 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2453 if (likely(!error))
2454 audit_inode(name, path->dentry, 0);
2455 restore_nameidata();
2456 putname(name);
2457 return error;
2458 }
2459
2460 /**
2461 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2462 * @dfd: directory file descriptor
2463 * @name: pathname from userland
2464 * @flags: lookup flags
2465 * @path: pointer to container to hold result
2466 *
2467 * A umount is a special case for path walking. We're not actually interested
2468 * in the inode in this situation, and ESTALE errors can be a problem. We
2469 * simply want track down the dentry and vfsmount attached at the mountpoint
2470 * and avoid revalidating the last component.
2471 *
2472 * Returns 0 and populates "path" on success.
2473 */
2474 int
2475 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2476 struct path *path)
2477 {
2478 return filename_mountpoint(dfd, getname(name), path, flags);
2479 }
2480
2481 int
2482 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2483 unsigned int flags)
2484 {
2485 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2486 }
2487 EXPORT_SYMBOL(kern_path_mountpoint);
2488
2489 int __check_sticky(struct inode *dir, struct inode *inode)
2490 {
2491 kuid_t fsuid = current_fsuid();
2492
2493 if (uid_eq(inode->i_uid, fsuid))
2494 return 0;
2495 if (uid_eq(dir->i_uid, fsuid))
2496 return 0;
2497 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2498 }
2499 EXPORT_SYMBOL(__check_sticky);
2500
2501 /*
2502 * Check whether we can remove a link victim from directory dir, check
2503 * whether the type of victim is right.
2504 * 1. We can't do it if dir is read-only (done in permission())
2505 * 2. We should have write and exec permissions on dir
2506 * 3. We can't remove anything from append-only dir
2507 * 4. We can't do anything with immutable dir (done in permission())
2508 * 5. If the sticky bit on dir is set we should either
2509 * a. be owner of dir, or
2510 * b. be owner of victim, or
2511 * c. have CAP_FOWNER capability
2512 * 6. If the victim is append-only or immutable we can't do antyhing with
2513 * links pointing to it.
2514 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2515 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2516 * 9. We can't remove a root or mountpoint.
2517 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2518 * nfs_async_unlink().
2519 */
2520 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2521 {
2522 struct inode *inode = d_backing_inode(victim);
2523 int error;
2524
2525 if (d_is_negative(victim))
2526 return -ENOENT;
2527 BUG_ON(!inode);
2528
2529 BUG_ON(victim->d_parent->d_inode != dir);
2530 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2531
2532 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2533 if (error)
2534 return error;
2535 if (IS_APPEND(dir))
2536 return -EPERM;
2537
2538 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2539 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2540 return -EPERM;
2541 if (isdir) {
2542 if (!d_is_dir(victim))
2543 return -ENOTDIR;
2544 if (IS_ROOT(victim))
2545 return -EBUSY;
2546 } else if (d_is_dir(victim))
2547 return -EISDIR;
2548 if (IS_DEADDIR(dir))
2549 return -ENOENT;
2550 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2551 return -EBUSY;
2552 return 0;
2553 }
2554
2555 /* Check whether we can create an object with dentry child in directory
2556 * dir.
2557 * 1. We can't do it if child already exists (open has special treatment for
2558 * this case, but since we are inlined it's OK)
2559 * 2. We can't do it if dir is read-only (done in permission())
2560 * 3. We should have write and exec permissions on dir
2561 * 4. We can't do it if dir is immutable (done in permission())
2562 */
2563 static inline int may_create(struct inode *dir, struct dentry *child)
2564 {
2565 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2566 if (child->d_inode)
2567 return -EEXIST;
2568 if (IS_DEADDIR(dir))
2569 return -ENOENT;
2570 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2571 }
2572
2573 /*
2574 * p1 and p2 should be directories on the same fs.
2575 */
2576 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2577 {
2578 struct dentry *p;
2579
2580 if (p1 == p2) {
2581 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2582 return NULL;
2583 }
2584
2585 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2586
2587 p = d_ancestor(p2, p1);
2588 if (p) {
2589 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2590 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2591 return p;
2592 }
2593
2594 p = d_ancestor(p1, p2);
2595 if (p) {
2596 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2597 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2598 return p;
2599 }
2600
2601 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2602 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2603 return NULL;
2604 }
2605 EXPORT_SYMBOL(lock_rename);
2606
2607 void unlock_rename(struct dentry *p1, struct dentry *p2)
2608 {
2609 mutex_unlock(&p1->d_inode->i_mutex);
2610 if (p1 != p2) {
2611 mutex_unlock(&p2->d_inode->i_mutex);
2612 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2613 }
2614 }
2615 EXPORT_SYMBOL(unlock_rename);
2616
2617 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2618 bool want_excl)
2619 {
2620 int error = may_create(dir, dentry);
2621 if (error)
2622 return error;
2623
2624 if (!dir->i_op->create)
2625 return -EACCES; /* shouldn't it be ENOSYS? */
2626 mode &= S_IALLUGO;
2627 mode |= S_IFREG;
2628 error = security_inode_create(dir, dentry, mode);
2629 if (error)
2630 return error;
2631 error = dir->i_op->create(dir, dentry, mode, want_excl);
2632 if (!error)
2633 fsnotify_create(dir, dentry);
2634 return error;
2635 }
2636 EXPORT_SYMBOL(vfs_create);
2637
2638 static int may_open(struct path *path, int acc_mode, int flag)
2639 {
2640 struct dentry *dentry = path->dentry;
2641 struct inode *inode = dentry->d_inode;
2642 int error;
2643
2644 /* O_PATH? */
2645 if (!acc_mode)
2646 return 0;
2647
2648 if (!inode)
2649 return -ENOENT;
2650
2651 switch (inode->i_mode & S_IFMT) {
2652 case S_IFLNK:
2653 return -ELOOP;
2654 case S_IFDIR:
2655 if (acc_mode & MAY_WRITE)
2656 return -EISDIR;
2657 break;
2658 case S_IFBLK:
2659 case S_IFCHR:
2660 if (path->mnt->mnt_flags & MNT_NODEV)
2661 return -EACCES;
2662 /*FALLTHRU*/
2663 case S_IFIFO:
2664 case S_IFSOCK:
2665 flag &= ~O_TRUNC;
2666 break;
2667 }
2668
2669 error = inode_permission(inode, acc_mode);
2670 if (error)
2671 return error;
2672
2673 /*
2674 * An append-only file must be opened in append mode for writing.
2675 */
2676 if (IS_APPEND(inode)) {
2677 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2678 return -EPERM;
2679 if (flag & O_TRUNC)
2680 return -EPERM;
2681 }
2682
2683 /* O_NOATIME can only be set by the owner or superuser */
2684 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2685 return -EPERM;
2686
2687 return 0;
2688 }
2689
2690 static int handle_truncate(struct file *filp)
2691 {
2692 struct path *path = &filp->f_path;
2693 struct inode *inode = path->dentry->d_inode;
2694 int error = get_write_access(inode);
2695 if (error)
2696 return error;
2697 /*
2698 * Refuse to truncate files with mandatory locks held on them.
2699 */
2700 error = locks_verify_locked(filp);
2701 if (!error)
2702 error = security_path_truncate(path);
2703 if (!error) {
2704 error = do_truncate(path->dentry, 0,
2705 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2706 filp);
2707 }
2708 put_write_access(inode);
2709 return error;
2710 }
2711
2712 static inline int open_to_namei_flags(int flag)
2713 {
2714 if ((flag & O_ACCMODE) == 3)
2715 flag--;
2716 return flag;
2717 }
2718
2719 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2720 {
2721 int error = security_path_mknod(dir, dentry, mode, 0);
2722 if (error)
2723 return error;
2724
2725 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2726 if (error)
2727 return error;
2728
2729 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2730 }
2731
2732 /*
2733 * Attempt to atomically look up, create and open a file from a negative
2734 * dentry.
2735 *
2736 * Returns 0 if successful. The file will have been created and attached to
2737 * @file by the filesystem calling finish_open().
2738 *
2739 * Returns 1 if the file was looked up only or didn't need creating. The
2740 * caller will need to perform the open themselves. @path will have been
2741 * updated to point to the new dentry. This may be negative.
2742 *
2743 * Returns an error code otherwise.
2744 */
2745 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2746 struct path *path, struct file *file,
2747 const struct open_flags *op,
2748 bool got_write, bool need_lookup,
2749 int *opened)
2750 {
2751 struct inode *dir = nd->path.dentry->d_inode;
2752 unsigned open_flag = open_to_namei_flags(op->open_flag);
2753 umode_t mode;
2754 int error;
2755 int acc_mode;
2756 int create_error = 0;
2757 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2758 bool excl;
2759
2760 BUG_ON(dentry->d_inode);
2761
2762 /* Don't create child dentry for a dead directory. */
2763 if (unlikely(IS_DEADDIR(dir))) {
2764 error = -ENOENT;
2765 goto out;
2766 }
2767
2768 mode = op->mode;
2769 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2770 mode &= ~current_umask();
2771
2772 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2773 if (excl)
2774 open_flag &= ~O_TRUNC;
2775
2776 /*
2777 * Checking write permission is tricky, bacuse we don't know if we are
2778 * going to actually need it: O_CREAT opens should work as long as the
2779 * file exists. But checking existence breaks atomicity. The trick is
2780 * to check access and if not granted clear O_CREAT from the flags.
2781 *
2782 * Another problem is returing the "right" error value (e.g. for an
2783 * O_EXCL open we want to return EEXIST not EROFS).
2784 */
2785 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2786 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2787 if (!(open_flag & O_CREAT)) {
2788 /*
2789 * No O_CREATE -> atomicity not a requirement -> fall
2790 * back to lookup + open
2791 */
2792 goto no_open;
2793 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2794 /* Fall back and fail with the right error */
2795 create_error = -EROFS;
2796 goto no_open;
2797 } else {
2798 /* No side effects, safe to clear O_CREAT */
2799 create_error = -EROFS;
2800 open_flag &= ~O_CREAT;
2801 }
2802 }
2803
2804 if (open_flag & O_CREAT) {
2805 error = may_o_create(&nd->path, dentry, mode);
2806 if (error) {
2807 create_error = error;
2808 if (open_flag & O_EXCL)
2809 goto no_open;
2810 open_flag &= ~O_CREAT;
2811 }
2812 }
2813
2814 if (nd->flags & LOOKUP_DIRECTORY)
2815 open_flag |= O_DIRECTORY;
2816
2817 file->f_path.dentry = DENTRY_NOT_SET;
2818 file->f_path.mnt = nd->path.mnt;
2819 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2820 opened);
2821 if (error < 0) {
2822 if (create_error && error == -ENOENT)
2823 error = create_error;
2824 goto out;
2825 }
2826
2827 if (error) { /* returned 1, that is */
2828 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2829 error = -EIO;
2830 goto out;
2831 }
2832 if (file->f_path.dentry) {
2833 dput(dentry);
2834 dentry = file->f_path.dentry;
2835 }
2836 if (*opened & FILE_CREATED)
2837 fsnotify_create(dir, dentry);
2838 if (!dentry->d_inode) {
2839 WARN_ON(*opened & FILE_CREATED);
2840 if (create_error) {
2841 error = create_error;
2842 goto out;
2843 }
2844 } else {
2845 if (excl && !(*opened & FILE_CREATED)) {
2846 error = -EEXIST;
2847 goto out;
2848 }
2849 }
2850 goto looked_up;
2851 }
2852
2853 /*
2854 * We didn't have the inode before the open, so check open permission
2855 * here.
2856 */
2857 acc_mode = op->acc_mode;
2858 if (*opened & FILE_CREATED) {
2859 WARN_ON(!(open_flag & O_CREAT));
2860 fsnotify_create(dir, dentry);
2861 acc_mode = MAY_OPEN;
2862 }
2863 error = may_open(&file->f_path, acc_mode, open_flag);
2864 if (error)
2865 fput(file);
2866
2867 out:
2868 dput(dentry);
2869 return error;
2870
2871 no_open:
2872 if (need_lookup) {
2873 dentry = lookup_real(dir, dentry, nd->flags);
2874 if (IS_ERR(dentry))
2875 return PTR_ERR(dentry);
2876
2877 if (create_error) {
2878 int open_flag = op->open_flag;
2879
2880 error = create_error;
2881 if ((open_flag & O_EXCL)) {
2882 if (!dentry->d_inode)
2883 goto out;
2884 } else if (!dentry->d_inode) {
2885 goto out;
2886 } else if ((open_flag & O_TRUNC) &&
2887 d_is_reg(dentry)) {
2888 goto out;
2889 }
2890 /* will fail later, go on to get the right error */
2891 }
2892 }
2893 looked_up:
2894 path->dentry = dentry;
2895 path->mnt = nd->path.mnt;
2896 return 1;
2897 }
2898
2899 /*
2900 * Look up and maybe create and open the last component.
2901 *
2902 * Must be called with i_mutex held on parent.
2903 *
2904 * Returns 0 if the file was successfully atomically created (if necessary) and
2905 * opened. In this case the file will be returned attached to @file.
2906 *
2907 * Returns 1 if the file was not completely opened at this time, though lookups
2908 * and creations will have been performed and the dentry returned in @path will
2909 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2910 * specified then a negative dentry may be returned.
2911 *
2912 * An error code is returned otherwise.
2913 *
2914 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2915 * cleared otherwise prior to returning.
2916 */
2917 static int lookup_open(struct nameidata *nd, struct path *path,
2918 struct file *file,
2919 const struct open_flags *op,
2920 bool got_write, int *opened)
2921 {
2922 struct dentry *dir = nd->path.dentry;
2923 struct inode *dir_inode = dir->d_inode;
2924 struct dentry *dentry;
2925 int error;
2926 bool need_lookup;
2927
2928 *opened &= ~FILE_CREATED;
2929 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2930 if (IS_ERR(dentry))
2931 return PTR_ERR(dentry);
2932
2933 /* Cached positive dentry: will open in f_op->open */
2934 if (!need_lookup && dentry->d_inode)
2935 goto out_no_open;
2936
2937 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2938 return atomic_open(nd, dentry, path, file, op, got_write,
2939 need_lookup, opened);
2940 }
2941
2942 if (need_lookup) {
2943 BUG_ON(dentry->d_inode);
2944
2945 dentry = lookup_real(dir_inode, dentry, nd->flags);
2946 if (IS_ERR(dentry))
2947 return PTR_ERR(dentry);
2948 }
2949
2950 /* Negative dentry, just create the file */
2951 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2952 umode_t mode = op->mode;
2953 if (!IS_POSIXACL(dir->d_inode))
2954 mode &= ~current_umask();
2955 /*
2956 * This write is needed to ensure that a
2957 * rw->ro transition does not occur between
2958 * the time when the file is created and when
2959 * a permanent write count is taken through
2960 * the 'struct file' in finish_open().
2961 */
2962 if (!got_write) {
2963 error = -EROFS;
2964 goto out_dput;
2965 }
2966 *opened |= FILE_CREATED;
2967 error = security_path_mknod(&nd->path, dentry, mode, 0);
2968 if (error)
2969 goto out_dput;
2970 error = vfs_create(dir->d_inode, dentry, mode,
2971 nd->flags & LOOKUP_EXCL);
2972 if (error)
2973 goto out_dput;
2974 }
2975 out_no_open:
2976 path->dentry = dentry;
2977 path->mnt = nd->path.mnt;
2978 return 1;
2979
2980 out_dput:
2981 dput(dentry);
2982 return error;
2983 }
2984
2985 /*
2986 * Handle the last step of open()
2987 */
2988 static int do_last(struct nameidata *nd,
2989 struct file *file, const struct open_flags *op,
2990 int *opened)
2991 {
2992 struct dentry *dir = nd->path.dentry;
2993 int open_flag = op->open_flag;
2994 bool will_truncate = (open_flag & O_TRUNC) != 0;
2995 bool got_write = false;
2996 int acc_mode = op->acc_mode;
2997 unsigned seq;
2998 struct inode *inode;
2999 struct path save_parent = { .dentry = NULL, .mnt = NULL };
3000 struct path path;
3001 bool retried = false;
3002 int error;
3003
3004 nd->flags &= ~LOOKUP_PARENT;
3005 nd->flags |= op->intent;
3006
3007 if (nd->last_type != LAST_NORM) {
3008 error = handle_dots(nd, nd->last_type);
3009 if (unlikely(error))
3010 return error;
3011 goto finish_open;
3012 }
3013
3014 if (!(open_flag & O_CREAT)) {
3015 if (nd->last.name[nd->last.len])
3016 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3017 /* we _can_ be in RCU mode here */
3018 error = lookup_fast(nd, &path, &inode, &seq);
3019 if (likely(!error))
3020 goto finish_lookup;
3021
3022 if (error < 0)
3023 return error;
3024
3025 BUG_ON(nd->inode != dir->d_inode);
3026 } else {
3027 /* create side of things */
3028 /*
3029 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3030 * has been cleared when we got to the last component we are
3031 * about to look up
3032 */
3033 error = complete_walk(nd);
3034 if (error)
3035 return error;
3036
3037 audit_inode(nd->name, dir, LOOKUP_PARENT);
3038 /* trailing slashes? */
3039 if (unlikely(nd->last.name[nd->last.len]))
3040 return -EISDIR;
3041 }
3042
3043 retry_lookup:
3044 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3045 error = mnt_want_write(nd->path.mnt);
3046 if (!error)
3047 got_write = true;
3048 /*
3049 * do _not_ fail yet - we might not need that or fail with
3050 * a different error; let lookup_open() decide; we'll be
3051 * dropping this one anyway.
3052 */
3053 }
3054 mutex_lock(&dir->d_inode->i_mutex);
3055 error = lookup_open(nd, &path, file, op, got_write, opened);
3056 mutex_unlock(&dir->d_inode->i_mutex);
3057
3058 if (error <= 0) {
3059 if (error)
3060 goto out;
3061
3062 if ((*opened & FILE_CREATED) ||
3063 !S_ISREG(file_inode(file)->i_mode))
3064 will_truncate = false;
3065
3066 audit_inode(nd->name, file->f_path.dentry, 0);
3067 goto opened;
3068 }
3069
3070 if (*opened & FILE_CREATED) {
3071 /* Don't check for write permission, don't truncate */
3072 open_flag &= ~O_TRUNC;
3073 will_truncate = false;
3074 acc_mode = MAY_OPEN;
3075 path_to_nameidata(&path, nd);
3076 goto finish_open_created;
3077 }
3078
3079 /*
3080 * create/update audit record if it already exists.
3081 */
3082 if (d_is_positive(path.dentry))
3083 audit_inode(nd->name, path.dentry, 0);
3084
3085 /*
3086 * If atomic_open() acquired write access it is dropped now due to
3087 * possible mount and symlink following (this might be optimized away if
3088 * necessary...)
3089 */
3090 if (got_write) {
3091 mnt_drop_write(nd->path.mnt);
3092 got_write = false;
3093 }
3094
3095 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3096 path_to_nameidata(&path, nd);
3097 return -EEXIST;
3098 }
3099
3100 error = follow_managed(&path, nd);
3101 if (unlikely(error < 0))
3102 return error;
3103
3104 BUG_ON(nd->flags & LOOKUP_RCU);
3105 inode = d_backing_inode(path.dentry);
3106 seq = 0; /* out of RCU mode, so the value doesn't matter */
3107 if (unlikely(d_is_negative(path.dentry))) {
3108 path_to_nameidata(&path, nd);
3109 return -ENOENT;
3110 }
3111 finish_lookup:
3112 if (nd->depth)
3113 put_link(nd);
3114 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3115 inode, seq);
3116 if (unlikely(error))
3117 return error;
3118
3119 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3120 path_to_nameidata(&path, nd);
3121 return -ELOOP;
3122 }
3123
3124 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3125 path_to_nameidata(&path, nd);
3126 } else {
3127 save_parent.dentry = nd->path.dentry;
3128 save_parent.mnt = mntget(path.mnt);
3129 nd->path.dentry = path.dentry;
3130
3131 }
3132 nd->inode = inode;
3133 nd->seq = seq;
3134 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3135 finish_open:
3136 error = complete_walk(nd);
3137 if (error) {
3138 path_put(&save_parent);
3139 return error;
3140 }
3141 audit_inode(nd->name, nd->path.dentry, 0);
3142 error = -EISDIR;
3143 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3144 goto out;
3145 error = -ENOTDIR;
3146 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3147 goto out;
3148 if (!d_is_reg(nd->path.dentry))
3149 will_truncate = false;
3150
3151 if (will_truncate) {
3152 error = mnt_want_write(nd->path.mnt);
3153 if (error)
3154 goto out;
3155 got_write = true;
3156 }
3157 finish_open_created:
3158 error = may_open(&nd->path, acc_mode, open_flag);
3159 if (error)
3160 goto out;
3161
3162 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3163 error = vfs_open(&nd->path, file, current_cred());
3164 if (!error) {
3165 *opened |= FILE_OPENED;
3166 } else {
3167 if (error == -EOPENSTALE)
3168 goto stale_open;
3169 goto out;
3170 }
3171 opened:
3172 error = open_check_o_direct(file);
3173 if (error)
3174 goto exit_fput;
3175 error = ima_file_check(file, op->acc_mode, *opened);
3176 if (error)
3177 goto exit_fput;
3178
3179 if (will_truncate) {
3180 error = handle_truncate(file);
3181 if (error)
3182 goto exit_fput;
3183 }
3184 out:
3185 if (got_write)
3186 mnt_drop_write(nd->path.mnt);
3187 path_put(&save_parent);
3188 return error;
3189
3190 exit_fput:
3191 fput(file);
3192 goto out;
3193
3194 stale_open:
3195 /* If no saved parent or already retried then can't retry */
3196 if (!save_parent.dentry || retried)
3197 goto out;
3198
3199 BUG_ON(save_parent.dentry != dir);
3200 path_put(&nd->path);
3201 nd->path = save_parent;
3202 nd->inode = dir->d_inode;
3203 save_parent.mnt = NULL;
3204 save_parent.dentry = NULL;
3205 if (got_write) {
3206 mnt_drop_write(nd->path.mnt);
3207 got_write = false;
3208 }
3209 retried = true;
3210 goto retry_lookup;
3211 }
3212
3213 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3214 const struct open_flags *op,
3215 struct file *file, int *opened)
3216 {
3217 static const struct qstr name = QSTR_INIT("/", 1);
3218 struct dentry *child;
3219 struct inode *dir;
3220 struct path path;
3221 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3222 if (unlikely(error))
3223 return error;
3224 error = mnt_want_write(path.mnt);
3225 if (unlikely(error))
3226 goto out;
3227 dir = path.dentry->d_inode;
3228 /* we want directory to be writable */
3229 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3230 if (error)
3231 goto out2;
3232 if (!dir->i_op->tmpfile) {
3233 error = -EOPNOTSUPP;
3234 goto out2;
3235 }
3236 child = d_alloc(path.dentry, &name);
3237 if (unlikely(!child)) {
3238 error = -ENOMEM;
3239 goto out2;
3240 }
3241 dput(path.dentry);
3242 path.dentry = child;
3243 error = dir->i_op->tmpfile(dir, child, op->mode);
3244 if (error)
3245 goto out2;
3246 audit_inode(nd->name, child, 0);
3247 /* Don't check for other permissions, the inode was just created */
3248 error = may_open(&path, MAY_OPEN, op->open_flag);
3249 if (error)
3250 goto out2;
3251 file->f_path.mnt = path.mnt;
3252 error = finish_open(file, child, NULL, opened);
3253 if (error)
3254 goto out2;
3255 error = open_check_o_direct(file);
3256 if (error) {
3257 fput(file);
3258 } else if (!(op->open_flag & O_EXCL)) {
3259 struct inode *inode = file_inode(file);
3260 spin_lock(&inode->i_lock);
3261 inode->i_state |= I_LINKABLE;
3262 spin_unlock(&inode->i_lock);
3263 }
3264 out2:
3265 mnt_drop_write(path.mnt);
3266 out:
3267 path_put(&path);
3268 return error;
3269 }
3270
3271 static struct file *path_openat(struct nameidata *nd,
3272 const struct open_flags *op, unsigned flags)
3273 {
3274 const char *s;
3275 struct file *file;
3276 int opened = 0;
3277 int error;
3278
3279 file = get_empty_filp();
3280 if (IS_ERR(file))
3281 return file;
3282
3283 file->f_flags = op->open_flag;
3284
3285 if (unlikely(file->f_flags & __O_TMPFILE)) {
3286 error = do_tmpfile(nd, flags, op, file, &opened);
3287 goto out2;
3288 }
3289
3290 s = path_init(nd, flags);
3291 if (IS_ERR(s)) {
3292 put_filp(file);
3293 return ERR_CAST(s);
3294 }
3295 while (!(error = link_path_walk(s, nd)) &&
3296 (error = do_last(nd, file, op, &opened)) > 0) {
3297 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3298 s = trailing_symlink(nd);
3299 if (IS_ERR(s)) {
3300 error = PTR_ERR(s);
3301 break;
3302 }
3303 }
3304 terminate_walk(nd);
3305 out2:
3306 if (!(opened & FILE_OPENED)) {
3307 BUG_ON(!error);
3308 put_filp(file);
3309 }
3310 if (unlikely(error)) {
3311 if (error == -EOPENSTALE) {
3312 if (flags & LOOKUP_RCU)
3313 error = -ECHILD;
3314 else
3315 error = -ESTALE;
3316 }
3317 file = ERR_PTR(error);
3318 }
3319 return file;
3320 }
3321
3322 struct file *do_filp_open(int dfd, struct filename *pathname,
3323 const struct open_flags *op)
3324 {
3325 struct nameidata nd;
3326 int flags = op->lookup_flags;
3327 struct file *filp;
3328
3329 set_nameidata(&nd, dfd, pathname);
3330 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3331 if (unlikely(filp == ERR_PTR(-ECHILD)))
3332 filp = path_openat(&nd, op, flags);
3333 if (unlikely(filp == ERR_PTR(-ESTALE)))
3334 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3335 restore_nameidata();
3336 return filp;
3337 }
3338
3339 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3340 const char *name, const struct open_flags *op)
3341 {
3342 struct nameidata nd;
3343 struct file *file;
3344 struct filename *filename;
3345 int flags = op->lookup_flags | LOOKUP_ROOT;
3346
3347 nd.root.mnt = mnt;
3348 nd.root.dentry = dentry;
3349
3350 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3351 return ERR_PTR(-ELOOP);
3352
3353 filename = getname_kernel(name);
3354 if (unlikely(IS_ERR(filename)))
3355 return ERR_CAST(filename);
3356
3357 set_nameidata(&nd, -1, filename);
3358 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3359 if (unlikely(file == ERR_PTR(-ECHILD)))
3360 file = path_openat(&nd, op, flags);
3361 if (unlikely(file == ERR_PTR(-ESTALE)))
3362 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3363 restore_nameidata();
3364 putname(filename);
3365 return file;
3366 }
3367
3368 static struct dentry *filename_create(int dfd, struct filename *name,
3369 struct path *path, unsigned int lookup_flags)
3370 {
3371 struct dentry *dentry = ERR_PTR(-EEXIST);
3372 struct qstr last;
3373 int type;
3374 int err2;
3375 int error;
3376 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3377
3378 /*
3379 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3380 * other flags passed in are ignored!
3381 */
3382 lookup_flags &= LOOKUP_REVAL;
3383
3384 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3385 if (IS_ERR(name))
3386 return ERR_CAST(name);
3387
3388 /*
3389 * Yucky last component or no last component at all?
3390 * (foo/., foo/.., /////)
3391 */
3392 if (unlikely(type != LAST_NORM))
3393 goto out;
3394
3395 /* don't fail immediately if it's r/o, at least try to report other errors */
3396 err2 = mnt_want_write(path->mnt);
3397 /*
3398 * Do the final lookup.
3399 */
3400 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3401 mutex_lock_nested(&path->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3402 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3403 if (IS_ERR(dentry))
3404 goto unlock;
3405
3406 error = -EEXIST;
3407 if (d_is_positive(dentry))
3408 goto fail;
3409
3410 /*
3411 * Special case - lookup gave negative, but... we had foo/bar/
3412 * From the vfs_mknod() POV we just have a negative dentry -
3413 * all is fine. Let's be bastards - you had / on the end, you've
3414 * been asking for (non-existent) directory. -ENOENT for you.
3415 */
3416 if (unlikely(!is_dir && last.name[last.len])) {
3417 error = -ENOENT;
3418 goto fail;
3419 }
3420 if (unlikely(err2)) {
3421 error = err2;
3422 goto fail;
3423 }
3424 putname(name);
3425 return dentry;
3426 fail:
3427 dput(dentry);
3428 dentry = ERR_PTR(error);
3429 unlock:
3430 mutex_unlock(&path->dentry->d_inode->i_mutex);
3431 if (!err2)
3432 mnt_drop_write(path->mnt);
3433 out:
3434 path_put(path);
3435 putname(name);
3436 return dentry;
3437 }
3438
3439 struct dentry *kern_path_create(int dfd, const char *pathname,
3440 struct path *path, unsigned int lookup_flags)
3441 {
3442 return filename_create(dfd, getname_kernel(pathname),
3443 path, lookup_flags);
3444 }
3445 EXPORT_SYMBOL(kern_path_create);
3446
3447 void done_path_create(struct path *path, struct dentry *dentry)
3448 {
3449 dput(dentry);
3450 mutex_unlock(&path->dentry->d_inode->i_mutex);
3451 mnt_drop_write(path->mnt);
3452 path_put(path);
3453 }
3454 EXPORT_SYMBOL(done_path_create);
3455
3456 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3457 struct path *path, unsigned int lookup_flags)
3458 {
3459 return filename_create(dfd, getname(pathname), path, lookup_flags);
3460 }
3461 EXPORT_SYMBOL(user_path_create);
3462
3463 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3464 {
3465 int error = may_create(dir, dentry);
3466
3467 if (error)
3468 return error;
3469
3470 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3471 return -EPERM;
3472
3473 if (!dir->i_op->mknod)
3474 return -EPERM;
3475
3476 error = devcgroup_inode_mknod(mode, dev);
3477 if (error)
3478 return error;
3479
3480 error = security_inode_mknod(dir, dentry, mode, dev);
3481 if (error)
3482 return error;
3483
3484 error = dir->i_op->mknod(dir, dentry, mode, dev);
3485 if (!error)
3486 fsnotify_create(dir, dentry);
3487 return error;
3488 }
3489 EXPORT_SYMBOL(vfs_mknod);
3490
3491 static int may_mknod(umode_t mode)
3492 {
3493 switch (mode & S_IFMT) {
3494 case S_IFREG:
3495 case S_IFCHR:
3496 case S_IFBLK:
3497 case S_IFIFO:
3498 case S_IFSOCK:
3499 case 0: /* zero mode translates to S_IFREG */
3500 return 0;
3501 case S_IFDIR:
3502 return -EPERM;
3503 default:
3504 return -EINVAL;
3505 }
3506 }
3507
3508 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3509 unsigned, dev)
3510 {
3511 struct dentry *dentry;
3512 struct path path;
3513 int error;
3514 unsigned int lookup_flags = 0;
3515
3516 error = may_mknod(mode);
3517 if (error)
3518 return error;
3519 retry:
3520 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3521 if (IS_ERR(dentry))
3522 return PTR_ERR(dentry);
3523
3524 if (!IS_POSIXACL(path.dentry->d_inode))
3525 mode &= ~current_umask();
3526 error = security_path_mknod(&path, dentry, mode, dev);
3527 if (error)
3528 goto out;
3529 switch (mode & S_IFMT) {
3530 case 0: case S_IFREG:
3531 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3532 break;
3533 case S_IFCHR: case S_IFBLK:
3534 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3535 new_decode_dev(dev));
3536 break;
3537 case S_IFIFO: case S_IFSOCK:
3538 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3539 break;
3540 }
3541 out:
3542 done_path_create(&path, dentry);
3543 if (retry_estale(error, lookup_flags)) {
3544 lookup_flags |= LOOKUP_REVAL;
3545 goto retry;
3546 }
3547 return error;
3548 }
3549
3550 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3551 {
3552 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3553 }
3554
3555 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3556 {
3557 int error = may_create(dir, dentry);
3558 unsigned max_links = dir->i_sb->s_max_links;
3559
3560 if (error)
3561 return error;
3562
3563 if (!dir->i_op->mkdir)
3564 return -EPERM;
3565
3566 mode &= (S_IRWXUGO|S_ISVTX);
3567 error = security_inode_mkdir(dir, dentry, mode);
3568 if (error)
3569 return error;
3570
3571 if (max_links && dir->i_nlink >= max_links)
3572 return -EMLINK;
3573
3574 error = dir->i_op->mkdir(dir, dentry, mode);
3575 if (!error)
3576 fsnotify_mkdir(dir, dentry);
3577 return error;
3578 }
3579 EXPORT_SYMBOL(vfs_mkdir);
3580
3581 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3582 {
3583 struct dentry *dentry;
3584 struct path path;
3585 int error;
3586 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3587
3588 retry:
3589 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3590 if (IS_ERR(dentry))
3591 return PTR_ERR(dentry);
3592
3593 if (!IS_POSIXACL(path.dentry->d_inode))
3594 mode &= ~current_umask();
3595 error = security_path_mkdir(&path, dentry, mode);
3596 if (!error)
3597 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3598 done_path_create(&path, dentry);
3599 if (retry_estale(error, lookup_flags)) {
3600 lookup_flags |= LOOKUP_REVAL;
3601 goto retry;
3602 }
3603 return error;
3604 }
3605
3606 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3607 {
3608 return sys_mkdirat(AT_FDCWD, pathname, mode);
3609 }
3610
3611 /*
3612 * The dentry_unhash() helper will try to drop the dentry early: we
3613 * should have a usage count of 1 if we're the only user of this
3614 * dentry, and if that is true (possibly after pruning the dcache),
3615 * then we drop the dentry now.
3616 *
3617 * A low-level filesystem can, if it choses, legally
3618 * do a
3619 *
3620 * if (!d_unhashed(dentry))
3621 * return -EBUSY;
3622 *
3623 * if it cannot handle the case of removing a directory
3624 * that is still in use by something else..
3625 */
3626 void dentry_unhash(struct dentry *dentry)
3627 {
3628 shrink_dcache_parent(dentry);
3629 spin_lock(&dentry->d_lock);
3630 if (dentry->d_lockref.count == 1)
3631 __d_drop(dentry);
3632 spin_unlock(&dentry->d_lock);
3633 }
3634 EXPORT_SYMBOL(dentry_unhash);
3635
3636 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3637 {
3638 int error = may_delete(dir, dentry, 1);
3639
3640 if (error)
3641 return error;
3642
3643 if (!dir->i_op->rmdir)
3644 return -EPERM;
3645
3646 dget(dentry);
3647 mutex_lock(&dentry->d_inode->i_mutex);
3648
3649 error = -EBUSY;
3650 if (is_local_mountpoint(dentry))
3651 goto out;
3652
3653 error = security_inode_rmdir(dir, dentry);
3654 if (error)
3655 goto out;
3656
3657 shrink_dcache_parent(dentry);
3658 error = dir->i_op->rmdir(dir, dentry);
3659 if (error)
3660 goto out;
3661
3662 dentry->d_inode->i_flags |= S_DEAD;
3663 dont_mount(dentry);
3664 detach_mounts(dentry);
3665
3666 out:
3667 mutex_unlock(&dentry->d_inode->i_mutex);
3668 dput(dentry);
3669 if (!error)
3670 d_delete(dentry);
3671 return error;
3672 }
3673 EXPORT_SYMBOL(vfs_rmdir);
3674
3675 static long do_rmdir(int dfd, const char __user *pathname)
3676 {
3677 int error = 0;
3678 struct filename *name;
3679 struct dentry *dentry;
3680 struct path path;
3681 struct qstr last;
3682 int type;
3683 unsigned int lookup_flags = 0;
3684 retry:
3685 name = user_path_parent(dfd, pathname,
3686 &path, &last, &type, lookup_flags);
3687 if (IS_ERR(name))
3688 return PTR_ERR(name);
3689
3690 switch (type) {
3691 case LAST_DOTDOT:
3692 error = -ENOTEMPTY;
3693 goto exit1;
3694 case LAST_DOT:
3695 error = -EINVAL;
3696 goto exit1;
3697 case LAST_ROOT:
3698 error = -EBUSY;
3699 goto exit1;
3700 }
3701
3702 error = mnt_want_write(path.mnt);
3703 if (error)
3704 goto exit1;
3705
3706 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3707 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3708 error = PTR_ERR(dentry);
3709 if (IS_ERR(dentry))
3710 goto exit2;
3711 if (!dentry->d_inode) {
3712 error = -ENOENT;
3713 goto exit3;
3714 }
3715 error = security_path_rmdir(&path, dentry);
3716 if (error)
3717 goto exit3;
3718 error = vfs_rmdir(path.dentry->d_inode, dentry);
3719 exit3:
3720 dput(dentry);
3721 exit2:
3722 mutex_unlock(&path.dentry->d_inode->i_mutex);
3723 mnt_drop_write(path.mnt);
3724 exit1:
3725 path_put(&path);
3726 putname(name);
3727 if (retry_estale(error, lookup_flags)) {
3728 lookup_flags |= LOOKUP_REVAL;
3729 goto retry;
3730 }
3731 return error;
3732 }
3733
3734 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3735 {
3736 return do_rmdir(AT_FDCWD, pathname);
3737 }
3738
3739 /**
3740 * vfs_unlink - unlink a filesystem object
3741 * @dir: parent directory
3742 * @dentry: victim
3743 * @delegated_inode: returns victim inode, if the inode is delegated.
3744 *
3745 * The caller must hold dir->i_mutex.
3746 *
3747 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3748 * return a reference to the inode in delegated_inode. The caller
3749 * should then break the delegation on that inode and retry. Because
3750 * breaking a delegation may take a long time, the caller should drop
3751 * dir->i_mutex before doing so.
3752 *
3753 * Alternatively, a caller may pass NULL for delegated_inode. This may
3754 * be appropriate for callers that expect the underlying filesystem not
3755 * to be NFS exported.
3756 */
3757 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3758 {
3759 struct inode *target = dentry->d_inode;
3760 int error = may_delete(dir, dentry, 0);
3761
3762 if (error)
3763 return error;
3764
3765 if (!dir->i_op->unlink)
3766 return -EPERM;
3767
3768 mutex_lock(&target->i_mutex);
3769 if (is_local_mountpoint(dentry))
3770 error = -EBUSY;
3771 else {
3772 error = security_inode_unlink(dir, dentry);
3773 if (!error) {
3774 error = try_break_deleg(target, delegated_inode);
3775 if (error)
3776 goto out;
3777 error = dir->i_op->unlink(dir, dentry);
3778 if (!error) {
3779 dont_mount(dentry);
3780 detach_mounts(dentry);
3781 }
3782 }
3783 }
3784 out:
3785 mutex_unlock(&target->i_mutex);
3786
3787 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3788 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3789 fsnotify_link_count(target);
3790 d_delete(dentry);
3791 }
3792
3793 return error;
3794 }
3795 EXPORT_SYMBOL(vfs_unlink);
3796
3797 /*
3798 * Make sure that the actual truncation of the file will occur outside its
3799 * directory's i_mutex. Truncate can take a long time if there is a lot of
3800 * writeout happening, and we don't want to prevent access to the directory
3801 * while waiting on the I/O.
3802 */
3803 static long do_unlinkat(int dfd, const char __user *pathname)
3804 {
3805 int error;
3806 struct filename *name;
3807 struct dentry *dentry;
3808 struct path path;
3809 struct qstr last;
3810 int type;
3811 struct inode *inode = NULL;
3812 struct inode *delegated_inode = NULL;
3813 unsigned int lookup_flags = 0;
3814 retry:
3815 name = user_path_parent(dfd, pathname,
3816 &path, &last, &type, lookup_flags);
3817 if (IS_ERR(name))
3818 return PTR_ERR(name);
3819
3820 error = -EISDIR;
3821 if (type != LAST_NORM)
3822 goto exit1;
3823
3824 error = mnt_want_write(path.mnt);
3825 if (error)
3826 goto exit1;
3827 retry_deleg:
3828 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3829 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3830 error = PTR_ERR(dentry);
3831 if (!IS_ERR(dentry)) {
3832 /* Why not before? Because we want correct error value */
3833 if (last.name[last.len])
3834 goto slashes;
3835 inode = dentry->d_inode;
3836 if (d_is_negative(dentry))
3837 goto slashes;
3838 ihold(inode);
3839 error = security_path_unlink(&path, dentry);
3840 if (error)
3841 goto exit2;
3842 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3843 exit2:
3844 dput(dentry);
3845 }
3846 mutex_unlock(&path.dentry->d_inode->i_mutex);
3847 if (inode)
3848 iput(inode); /* truncate the inode here */
3849 inode = NULL;
3850 if (delegated_inode) {
3851 error = break_deleg_wait(&delegated_inode);
3852 if (!error)
3853 goto retry_deleg;
3854 }
3855 mnt_drop_write(path.mnt);
3856 exit1:
3857 path_put(&path);
3858 putname(name);
3859 if (retry_estale(error, lookup_flags)) {
3860 lookup_flags |= LOOKUP_REVAL;
3861 inode = NULL;
3862 goto retry;
3863 }
3864 return error;
3865
3866 slashes:
3867 if (d_is_negative(dentry))
3868 error = -ENOENT;
3869 else if (d_is_dir(dentry))
3870 error = -EISDIR;
3871 else
3872 error = -ENOTDIR;
3873 goto exit2;
3874 }
3875
3876 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3877 {
3878 if ((flag & ~AT_REMOVEDIR) != 0)
3879 return -EINVAL;
3880
3881 if (flag & AT_REMOVEDIR)
3882 return do_rmdir(dfd, pathname);
3883
3884 return do_unlinkat(dfd, pathname);
3885 }
3886
3887 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3888 {
3889 return do_unlinkat(AT_FDCWD, pathname);
3890 }
3891
3892 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3893 {
3894 int error = may_create(dir, dentry);
3895
3896 if (error)
3897 return error;
3898
3899 if (!dir->i_op->symlink)
3900 return -EPERM;
3901
3902 error = security_inode_symlink(dir, dentry, oldname);
3903 if (error)
3904 return error;
3905
3906 error = dir->i_op->symlink(dir, dentry, oldname);
3907 if (!error)
3908 fsnotify_create(dir, dentry);
3909 return error;
3910 }
3911 EXPORT_SYMBOL(vfs_symlink);
3912
3913 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3914 int, newdfd, const char __user *, newname)
3915 {
3916 int error;
3917 struct filename *from;
3918 struct dentry *dentry;
3919 struct path path;
3920 unsigned int lookup_flags = 0;
3921
3922 from = getname(oldname);
3923 if (IS_ERR(from))
3924 return PTR_ERR(from);
3925 retry:
3926 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3927 error = PTR_ERR(dentry);
3928 if (IS_ERR(dentry))
3929 goto out_putname;
3930
3931 error = security_path_symlink(&path, dentry, from->name);
3932 if (!error)
3933 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3934 done_path_create(&path, dentry);
3935 if (retry_estale(error, lookup_flags)) {
3936 lookup_flags |= LOOKUP_REVAL;
3937 goto retry;
3938 }
3939 out_putname:
3940 putname(from);
3941 return error;
3942 }
3943
3944 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3945 {
3946 return sys_symlinkat(oldname, AT_FDCWD, newname);
3947 }
3948
3949 /**
3950 * vfs_link - create a new link
3951 * @old_dentry: object to be linked
3952 * @dir: new parent
3953 * @new_dentry: where to create the new link
3954 * @delegated_inode: returns inode needing a delegation break
3955 *
3956 * The caller must hold dir->i_mutex
3957 *
3958 * If vfs_link discovers a delegation on the to-be-linked file in need
3959 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3960 * inode in delegated_inode. The caller should then break the delegation
3961 * and retry. Because breaking a delegation may take a long time, the
3962 * caller should drop the i_mutex before doing so.
3963 *
3964 * Alternatively, a caller may pass NULL for delegated_inode. This may
3965 * be appropriate for callers that expect the underlying filesystem not
3966 * to be NFS exported.
3967 */
3968 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3969 {
3970 struct inode *inode = old_dentry->d_inode;
3971 unsigned max_links = dir->i_sb->s_max_links;
3972 int error;
3973
3974 if (!inode)
3975 return -ENOENT;
3976
3977 error = may_create(dir, new_dentry);
3978 if (error)
3979 return error;
3980
3981 if (dir->i_sb != inode->i_sb)
3982 return -EXDEV;
3983
3984 /*
3985 * A link to an append-only or immutable file cannot be created.
3986 */
3987 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3988 return -EPERM;
3989 if (!dir->i_op->link)
3990 return -EPERM;
3991 if (S_ISDIR(inode->i_mode))
3992 return -EPERM;
3993
3994 error = security_inode_link(old_dentry, dir, new_dentry);
3995 if (error)
3996 return error;
3997
3998 mutex_lock(&inode->i_mutex);
3999 /* Make sure we don't allow creating hardlink to an unlinked file */
4000 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4001 error = -ENOENT;
4002 else if (max_links && inode->i_nlink >= max_links)
4003 error = -EMLINK;
4004 else {
4005 error = try_break_deleg(inode, delegated_inode);
4006 if (!error)
4007 error = dir->i_op->link(old_dentry, dir, new_dentry);
4008 }
4009
4010 if (!error && (inode->i_state & I_LINKABLE)) {
4011 spin_lock(&inode->i_lock);
4012 inode->i_state &= ~I_LINKABLE;
4013 spin_unlock(&inode->i_lock);
4014 }
4015 mutex_unlock(&inode->i_mutex);
4016 if (!error)
4017 fsnotify_link(dir, inode, new_dentry);
4018 return error;
4019 }
4020 EXPORT_SYMBOL(vfs_link);
4021
4022 /*
4023 * Hardlinks are often used in delicate situations. We avoid
4024 * security-related surprises by not following symlinks on the
4025 * newname. --KAB
4026 *
4027 * We don't follow them on the oldname either to be compatible
4028 * with linux 2.0, and to avoid hard-linking to directories
4029 * and other special files. --ADM
4030 */
4031 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4032 int, newdfd, const char __user *, newname, int, flags)
4033 {
4034 struct dentry *new_dentry;
4035 struct path old_path, new_path;
4036 struct inode *delegated_inode = NULL;
4037 int how = 0;
4038 int error;
4039
4040 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4041 return -EINVAL;
4042 /*
4043 * To use null names we require CAP_DAC_READ_SEARCH
4044 * This ensures that not everyone will be able to create
4045 * handlink using the passed filedescriptor.
4046 */
4047 if (flags & AT_EMPTY_PATH) {
4048 if (!capable(CAP_DAC_READ_SEARCH))
4049 return -ENOENT;
4050 how = LOOKUP_EMPTY;
4051 }
4052
4053 if (flags & AT_SYMLINK_FOLLOW)
4054 how |= LOOKUP_FOLLOW;
4055 retry:
4056 error = user_path_at(olddfd, oldname, how, &old_path);
4057 if (error)
4058 return error;
4059
4060 new_dentry = user_path_create(newdfd, newname, &new_path,
4061 (how & LOOKUP_REVAL));
4062 error = PTR_ERR(new_dentry);
4063 if (IS_ERR(new_dentry))
4064 goto out;
4065
4066 error = -EXDEV;
4067 if (old_path.mnt != new_path.mnt)
4068 goto out_dput;
4069 error = may_linkat(&old_path);
4070 if (unlikely(error))
4071 goto out_dput;
4072 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4073 if (error)
4074 goto out_dput;
4075 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4076 out_dput:
4077 done_path_create(&new_path, new_dentry);
4078 if (delegated_inode) {
4079 error = break_deleg_wait(&delegated_inode);
4080 if (!error) {
4081 path_put(&old_path);
4082 goto retry;
4083 }
4084 }
4085 if (retry_estale(error, how)) {
4086 path_put(&old_path);
4087 how |= LOOKUP_REVAL;
4088 goto retry;
4089 }
4090 out:
4091 path_put(&old_path);
4092
4093 return error;
4094 }
4095
4096 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4097 {
4098 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4099 }
4100
4101 /**
4102 * vfs_rename - rename a filesystem object
4103 * @old_dir: parent of source
4104 * @old_dentry: source
4105 * @new_dir: parent of destination
4106 * @new_dentry: destination
4107 * @delegated_inode: returns an inode needing a delegation break
4108 * @flags: rename flags
4109 *
4110 * The caller must hold multiple mutexes--see lock_rename()).
4111 *
4112 * If vfs_rename discovers a delegation in need of breaking at either
4113 * the source or destination, it will return -EWOULDBLOCK and return a
4114 * reference to the inode in delegated_inode. The caller should then
4115 * break the delegation and retry. Because breaking a delegation may
4116 * take a long time, the caller should drop all locks before doing
4117 * so.
4118 *
4119 * Alternatively, a caller may pass NULL for delegated_inode. This may
4120 * be appropriate for callers that expect the underlying filesystem not
4121 * to be NFS exported.
4122 *
4123 * The worst of all namespace operations - renaming directory. "Perverted"
4124 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4125 * Problems:
4126 * a) we can get into loop creation.
4127 * b) race potential - two innocent renames can create a loop together.
4128 * That's where 4.4 screws up. Current fix: serialization on
4129 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4130 * story.
4131 * c) we have to lock _four_ objects - parents and victim (if it exists),
4132 * and source (if it is not a directory).
4133 * And that - after we got ->i_mutex on parents (until then we don't know
4134 * whether the target exists). Solution: try to be smart with locking
4135 * order for inodes. We rely on the fact that tree topology may change
4136 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4137 * move will be locked. Thus we can rank directories by the tree
4138 * (ancestors first) and rank all non-directories after them.
4139 * That works since everybody except rename does "lock parent, lookup,
4140 * lock child" and rename is under ->s_vfs_rename_mutex.
4141 * HOWEVER, it relies on the assumption that any object with ->lookup()
4142 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4143 * we'd better make sure that there's no link(2) for them.
4144 * d) conversion from fhandle to dentry may come in the wrong moment - when
4145 * we are removing the target. Solution: we will have to grab ->i_mutex
4146 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4147 * ->i_mutex on parents, which works but leads to some truly excessive
4148 * locking].
4149 */
4150 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4151 struct inode *new_dir, struct dentry *new_dentry,
4152 struct inode **delegated_inode, unsigned int flags)
4153 {
4154 int error;
4155 bool is_dir = d_is_dir(old_dentry);
4156 const unsigned char *old_name;
4157 struct inode *source = old_dentry->d_inode;
4158 struct inode *target = new_dentry->d_inode;
4159 bool new_is_dir = false;
4160 unsigned max_links = new_dir->i_sb->s_max_links;
4161
4162 if (source == target)
4163 return 0;
4164
4165 error = may_delete(old_dir, old_dentry, is_dir);
4166 if (error)
4167 return error;
4168
4169 if (!target) {
4170 error = may_create(new_dir, new_dentry);
4171 } else {
4172 new_is_dir = d_is_dir(new_dentry);
4173
4174 if (!(flags & RENAME_EXCHANGE))
4175 error = may_delete(new_dir, new_dentry, is_dir);
4176 else
4177 error = may_delete(new_dir, new_dentry, new_is_dir);
4178 }
4179 if (error)
4180 return error;
4181
4182 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4183 return -EPERM;
4184
4185 if (flags && !old_dir->i_op->rename2)
4186 return -EINVAL;
4187
4188 /*
4189 * If we are going to change the parent - check write permissions,
4190 * we'll need to flip '..'.
4191 */
4192 if (new_dir != old_dir) {
4193 if (is_dir) {
4194 error = inode_permission(source, MAY_WRITE);
4195 if (error)
4196 return error;
4197 }
4198 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4199 error = inode_permission(target, MAY_WRITE);
4200 if (error)
4201 return error;
4202 }
4203 }
4204
4205 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4206 flags);
4207 if (error)
4208 return error;
4209
4210 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4211 dget(new_dentry);
4212 if (!is_dir || (flags & RENAME_EXCHANGE))
4213 lock_two_nondirectories(source, target);
4214 else if (target)
4215 mutex_lock(&target->i_mutex);
4216
4217 error = -EBUSY;
4218 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4219 goto out;
4220
4221 if (max_links && new_dir != old_dir) {
4222 error = -EMLINK;
4223 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4224 goto out;
4225 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4226 old_dir->i_nlink >= max_links)
4227 goto out;
4228 }
4229 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4230 shrink_dcache_parent(new_dentry);
4231 if (!is_dir) {
4232 error = try_break_deleg(source, delegated_inode);
4233 if (error)
4234 goto out;
4235 }
4236 if (target && !new_is_dir) {
4237 error = try_break_deleg(target, delegated_inode);
4238 if (error)
4239 goto out;
4240 }
4241 if (!old_dir->i_op->rename2) {
4242 error = old_dir->i_op->rename(old_dir, old_dentry,
4243 new_dir, new_dentry);
4244 } else {
4245 WARN_ON(old_dir->i_op->rename != NULL);
4246 error = old_dir->i_op->rename2(old_dir, old_dentry,
4247 new_dir, new_dentry, flags);
4248 }
4249 if (error)
4250 goto out;
4251
4252 if (!(flags & RENAME_EXCHANGE) && target) {
4253 if (is_dir)
4254 target->i_flags |= S_DEAD;
4255 dont_mount(new_dentry);
4256 detach_mounts(new_dentry);
4257 }
4258 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4259 if (!(flags & RENAME_EXCHANGE))
4260 d_move(old_dentry, new_dentry);
4261 else
4262 d_exchange(old_dentry, new_dentry);
4263 }
4264 out:
4265 if (!is_dir || (flags & RENAME_EXCHANGE))
4266 unlock_two_nondirectories(source, target);
4267 else if (target)
4268 mutex_unlock(&target->i_mutex);
4269 dput(new_dentry);
4270 if (!error) {
4271 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4272 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4273 if (flags & RENAME_EXCHANGE) {
4274 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4275 new_is_dir, NULL, new_dentry);
4276 }
4277 }
4278 fsnotify_oldname_free(old_name);
4279
4280 return error;
4281 }
4282 EXPORT_SYMBOL(vfs_rename);
4283
4284 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4285 int, newdfd, const char __user *, newname, unsigned int, flags)
4286 {
4287 struct dentry *old_dentry, *new_dentry;
4288 struct dentry *trap;
4289 struct path old_path, new_path;
4290 struct qstr old_last, new_last;
4291 int old_type, new_type;
4292 struct inode *delegated_inode = NULL;
4293 struct filename *from;
4294 struct filename *to;
4295 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4296 bool should_retry = false;
4297 int error;
4298
4299 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4300 return -EINVAL;
4301
4302 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4303 (flags & RENAME_EXCHANGE))
4304 return -EINVAL;
4305
4306 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4307 return -EPERM;
4308
4309 if (flags & RENAME_EXCHANGE)
4310 target_flags = 0;
4311
4312 retry:
4313 from = user_path_parent(olddfd, oldname,
4314 &old_path, &old_last, &old_type, lookup_flags);
4315 if (IS_ERR(from)) {
4316 error = PTR_ERR(from);
4317 goto exit;
4318 }
4319
4320 to = user_path_parent(newdfd, newname,
4321 &new_path, &new_last, &new_type, lookup_flags);
4322 if (IS_ERR(to)) {
4323 error = PTR_ERR(to);
4324 goto exit1;
4325 }
4326
4327 error = -EXDEV;
4328 if (old_path.mnt != new_path.mnt)
4329 goto exit2;
4330
4331 error = -EBUSY;
4332 if (old_type != LAST_NORM)
4333 goto exit2;
4334
4335 if (flags & RENAME_NOREPLACE)
4336 error = -EEXIST;
4337 if (new_type != LAST_NORM)
4338 goto exit2;
4339
4340 error = mnt_want_write(old_path.mnt);
4341 if (error)
4342 goto exit2;
4343
4344 retry_deleg:
4345 trap = lock_rename(new_path.dentry, old_path.dentry);
4346
4347 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4348 error = PTR_ERR(old_dentry);
4349 if (IS_ERR(old_dentry))
4350 goto exit3;
4351 /* source must exist */
4352 error = -ENOENT;
4353 if (d_is_negative(old_dentry))
4354 goto exit4;
4355 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4356 error = PTR_ERR(new_dentry);
4357 if (IS_ERR(new_dentry))
4358 goto exit4;
4359 error = -EEXIST;
4360 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4361 goto exit5;
4362 if (flags & RENAME_EXCHANGE) {
4363 error = -ENOENT;
4364 if (d_is_negative(new_dentry))
4365 goto exit5;
4366
4367 if (!d_is_dir(new_dentry)) {
4368 error = -ENOTDIR;
4369 if (new_last.name[new_last.len])
4370 goto exit5;
4371 }
4372 }
4373 /* unless the source is a directory trailing slashes give -ENOTDIR */
4374 if (!d_is_dir(old_dentry)) {
4375 error = -ENOTDIR;
4376 if (old_last.name[old_last.len])
4377 goto exit5;
4378 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4379 goto exit5;
4380 }
4381 /* source should not be ancestor of target */
4382 error = -EINVAL;
4383 if (old_dentry == trap)
4384 goto exit5;
4385 /* target should not be an ancestor of source */
4386 if (!(flags & RENAME_EXCHANGE))
4387 error = -ENOTEMPTY;
4388 if (new_dentry == trap)
4389 goto exit5;
4390
4391 error = security_path_rename(&old_path, old_dentry,
4392 &new_path, new_dentry, flags);
4393 if (error)
4394 goto exit5;
4395 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4396 new_path.dentry->d_inode, new_dentry,
4397 &delegated_inode, flags);
4398 exit5:
4399 dput(new_dentry);
4400 exit4:
4401 dput(old_dentry);
4402 exit3:
4403 unlock_rename(new_path.dentry, old_path.dentry);
4404 if (delegated_inode) {
4405 error = break_deleg_wait(&delegated_inode);
4406 if (!error)
4407 goto retry_deleg;
4408 }
4409 mnt_drop_write(old_path.mnt);
4410 exit2:
4411 if (retry_estale(error, lookup_flags))
4412 should_retry = true;
4413 path_put(&new_path);
4414 putname(to);
4415 exit1:
4416 path_put(&old_path);
4417 putname(from);
4418 if (should_retry) {
4419 should_retry = false;
4420 lookup_flags |= LOOKUP_REVAL;
4421 goto retry;
4422 }
4423 exit:
4424 return error;
4425 }
4426
4427 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4428 int, newdfd, const char __user *, newname)
4429 {
4430 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4431 }
4432
4433 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4434 {
4435 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4436 }
4437
4438 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4439 {
4440 int error = may_create(dir, dentry);
4441 if (error)
4442 return error;
4443
4444 if (!dir->i_op->mknod)
4445 return -EPERM;
4446
4447 return dir->i_op->mknod(dir, dentry,
4448 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4449 }
4450 EXPORT_SYMBOL(vfs_whiteout);
4451
4452 int readlink_copy(char __user *buffer, int buflen, const char *link)
4453 {
4454 int len = PTR_ERR(link);
4455 if (IS_ERR(link))
4456 goto out;
4457
4458 len = strlen(link);
4459 if (len > (unsigned) buflen)
4460 len = buflen;
4461 if (copy_to_user(buffer, link, len))
4462 len = -EFAULT;
4463 out:
4464 return len;
4465 }
4466 EXPORT_SYMBOL(readlink_copy);
4467
4468 /*
4469 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4470 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4471 * using) it for any given inode is up to filesystem.
4472 */
4473 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4474 {
4475 void *cookie;
4476 struct inode *inode = d_inode(dentry);
4477 const char *link = inode->i_link;
4478 int res;
4479
4480 if (!link) {
4481 link = inode->i_op->follow_link(dentry, &cookie);
4482 if (IS_ERR(link))
4483 return PTR_ERR(link);
4484 }
4485 res = readlink_copy(buffer, buflen, link);
4486 if (inode->i_op->put_link)
4487 inode->i_op->put_link(inode, cookie);
4488 return res;
4489 }
4490 EXPORT_SYMBOL(generic_readlink);
4491
4492 /* get the link contents into pagecache */
4493 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4494 {
4495 char *kaddr;
4496 struct page *page;
4497 struct address_space *mapping = dentry->d_inode->i_mapping;
4498 page = read_mapping_page(mapping, 0, NULL);
4499 if (IS_ERR(page))
4500 return (char*)page;
4501 *ppage = page;
4502 kaddr = kmap(page);
4503 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4504 return kaddr;
4505 }
4506
4507 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4508 {
4509 struct page *page = NULL;
4510 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4511 if (page) {
4512 kunmap(page);
4513 page_cache_release(page);
4514 }
4515 return res;
4516 }
4517 EXPORT_SYMBOL(page_readlink);
4518
4519 const char *page_follow_link_light(struct dentry *dentry, void **cookie)
4520 {
4521 struct page *page = NULL;
4522 char *res = page_getlink(dentry, &page);
4523 if (!IS_ERR(res))
4524 *cookie = page;
4525 return res;
4526 }
4527 EXPORT_SYMBOL(page_follow_link_light);
4528
4529 void page_put_link(struct inode *unused, void *cookie)
4530 {
4531 struct page *page = cookie;
4532 kunmap(page);
4533 page_cache_release(page);
4534 }
4535 EXPORT_SYMBOL(page_put_link);
4536
4537 /*
4538 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4539 */
4540 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4541 {
4542 struct address_space *mapping = inode->i_mapping;
4543 struct page *page;
4544 void *fsdata;
4545 int err;
4546 char *kaddr;
4547 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4548 if (nofs)
4549 flags |= AOP_FLAG_NOFS;
4550
4551 retry:
4552 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4553 flags, &page, &fsdata);
4554 if (err)
4555 goto fail;
4556
4557 kaddr = kmap_atomic(page);
4558 memcpy(kaddr, symname, len-1);
4559 kunmap_atomic(kaddr);
4560
4561 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4562 page, fsdata);
4563 if (err < 0)
4564 goto fail;
4565 if (err < len-1)
4566 goto retry;
4567
4568 mark_inode_dirty(inode);
4569 return 0;
4570 fail:
4571 return err;
4572 }
4573 EXPORT_SYMBOL(__page_symlink);
4574
4575 int page_symlink(struct inode *inode, const char *symname, int len)
4576 {
4577 return __page_symlink(inode, symname, len,
4578 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4579 }
4580 EXPORT_SYMBOL(page_symlink);
4581
4582 const struct inode_operations page_symlink_inode_operations = {
4583 .readlink = generic_readlink,
4584 .follow_link = page_follow_link_light,
4585 .put_link = page_put_link,
4586 };
4587 EXPORT_SYMBOL(page_symlink_inode_operations);