]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namei.c
Merge git://git.infradead.org/~dwmw2/ideapad-2.6
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
36
37 #include "internal.h"
38
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
44 *
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
51 *
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
55 *
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
58 *
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
65 */
66
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existant name.
74 *
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
82 */
83
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
86 *
87 * [10-Sep-98 Alan Modra] Another symlink change.
88 */
89
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
97 *
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
103 */
104 /*
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
108 */
109
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
113 *
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
116 */
117 static int do_getname(const char __user *filename, char *page)
118 {
119 int retval;
120 unsigned long len = PATH_MAX;
121
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
127 }
128
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
137 }
138
139 char * getname(const char __user * filename)
140 {
141 char *tmp, *result;
142
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
147
148 result = tmp;
149 if (retval < 0) {
150 __putname(tmp);
151 result = ERR_PTR(retval);
152 }
153 }
154 audit_getname(result);
155 return result;
156 }
157
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168
169 /*
170 * This does basic POSIX ACL permission checking
171 */
172 static int acl_permission_check(struct inode *inode, int mask,
173 int (*check_acl)(struct inode *inode, int mask))
174 {
175 umode_t mode = inode->i_mode;
176
177 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
178
179 if (current_fsuid() == inode->i_uid)
180 mode >>= 6;
181 else {
182 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
183 int error = check_acl(inode, mask);
184 if (error != -EAGAIN)
185 return error;
186 }
187
188 if (in_group_p(inode->i_gid))
189 mode >>= 3;
190 }
191
192 /*
193 * If the DACs are ok we don't need any capability check.
194 */
195 if ((mask & ~mode) == 0)
196 return 0;
197 return -EACCES;
198 }
199
200 /**
201 * generic_permission - check for access rights on a Posix-like filesystem
202 * @inode: inode to check access rights for
203 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
204 * @check_acl: optional callback to check for Posix ACLs
205 *
206 * Used to check for read/write/execute permissions on a file.
207 * We use "fsuid" for this, letting us set arbitrary permissions
208 * for filesystem access without changing the "normal" uids which
209 * are used for other things..
210 */
211 int generic_permission(struct inode *inode, int mask,
212 int (*check_acl)(struct inode *inode, int mask))
213 {
214 int ret;
215
216 /*
217 * Do the basic POSIX ACL permission checks.
218 */
219 ret = acl_permission_check(inode, mask, check_acl);
220 if (ret != -EACCES)
221 return ret;
222
223 /*
224 * Read/write DACs are always overridable.
225 * Executable DACs are overridable if at least one exec bit is set.
226 */
227 if (!(mask & MAY_EXEC) || execute_ok(inode))
228 if (capable(CAP_DAC_OVERRIDE))
229 return 0;
230
231 /*
232 * Searching includes executable on directories, else just read.
233 */
234 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
235 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
236 if (capable(CAP_DAC_READ_SEARCH))
237 return 0;
238
239 return -EACCES;
240 }
241
242 /**
243 * inode_permission - check for access rights to a given inode
244 * @inode: inode to check permission on
245 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
246 *
247 * Used to check for read/write/execute permissions on an inode.
248 * We use "fsuid" for this, letting us set arbitrary permissions
249 * for filesystem access without changing the "normal" uids which
250 * are used for other things.
251 */
252 int inode_permission(struct inode *inode, int mask)
253 {
254 int retval;
255
256 if (mask & MAY_WRITE) {
257 umode_t mode = inode->i_mode;
258
259 /*
260 * Nobody gets write access to a read-only fs.
261 */
262 if (IS_RDONLY(inode) &&
263 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
264 return -EROFS;
265
266 /*
267 * Nobody gets write access to an immutable file.
268 */
269 if (IS_IMMUTABLE(inode))
270 return -EACCES;
271 }
272
273 if (inode->i_op->permission)
274 retval = inode->i_op->permission(inode, mask);
275 else
276 retval = generic_permission(inode, mask, inode->i_op->check_acl);
277
278 if (retval)
279 return retval;
280
281 retval = devcgroup_inode_permission(inode, mask);
282 if (retval)
283 return retval;
284
285 return security_inode_permission(inode, mask);
286 }
287
288 /**
289 * file_permission - check for additional access rights to a given file
290 * @file: file to check access rights for
291 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
292 *
293 * Used to check for read/write/execute permissions on an already opened
294 * file.
295 *
296 * Note:
297 * Do not use this function in new code. All access checks should
298 * be done using inode_permission().
299 */
300 int file_permission(struct file *file, int mask)
301 {
302 return inode_permission(file->f_path.dentry->d_inode, mask);
303 }
304
305 /*
306 * get_write_access() gets write permission for a file.
307 * put_write_access() releases this write permission.
308 * This is used for regular files.
309 * We cannot support write (and maybe mmap read-write shared) accesses and
310 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
311 * can have the following values:
312 * 0: no writers, no VM_DENYWRITE mappings
313 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
314 * > 0: (i_writecount) users are writing to the file.
315 *
316 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
317 * except for the cases where we don't hold i_writecount yet. Then we need to
318 * use {get,deny}_write_access() - these functions check the sign and refuse
319 * to do the change if sign is wrong. Exclusion between them is provided by
320 * the inode->i_lock spinlock.
321 */
322
323 int get_write_access(struct inode * inode)
324 {
325 spin_lock(&inode->i_lock);
326 if (atomic_read(&inode->i_writecount) < 0) {
327 spin_unlock(&inode->i_lock);
328 return -ETXTBSY;
329 }
330 atomic_inc(&inode->i_writecount);
331 spin_unlock(&inode->i_lock);
332
333 return 0;
334 }
335
336 int deny_write_access(struct file * file)
337 {
338 struct inode *inode = file->f_path.dentry->d_inode;
339
340 spin_lock(&inode->i_lock);
341 if (atomic_read(&inode->i_writecount) > 0) {
342 spin_unlock(&inode->i_lock);
343 return -ETXTBSY;
344 }
345 atomic_dec(&inode->i_writecount);
346 spin_unlock(&inode->i_lock);
347
348 return 0;
349 }
350
351 /**
352 * path_get - get a reference to a path
353 * @path: path to get the reference to
354 *
355 * Given a path increment the reference count to the dentry and the vfsmount.
356 */
357 void path_get(struct path *path)
358 {
359 mntget(path->mnt);
360 dget(path->dentry);
361 }
362 EXPORT_SYMBOL(path_get);
363
364 /**
365 * path_put - put a reference to a path
366 * @path: path to put the reference to
367 *
368 * Given a path decrement the reference count to the dentry and the vfsmount.
369 */
370 void path_put(struct path *path)
371 {
372 dput(path->dentry);
373 mntput(path->mnt);
374 }
375 EXPORT_SYMBOL(path_put);
376
377 /**
378 * release_open_intent - free up open intent resources
379 * @nd: pointer to nameidata
380 */
381 void release_open_intent(struct nameidata *nd)
382 {
383 if (nd->intent.open.file->f_path.dentry == NULL)
384 put_filp(nd->intent.open.file);
385 else
386 fput(nd->intent.open.file);
387 }
388
389 static inline struct dentry *
390 do_revalidate(struct dentry *dentry, struct nameidata *nd)
391 {
392 int status = dentry->d_op->d_revalidate(dentry, nd);
393 if (unlikely(status <= 0)) {
394 /*
395 * The dentry failed validation.
396 * If d_revalidate returned 0 attempt to invalidate
397 * the dentry otherwise d_revalidate is asking us
398 * to return a fail status.
399 */
400 if (!status) {
401 if (!d_invalidate(dentry)) {
402 dput(dentry);
403 dentry = NULL;
404 }
405 } else {
406 dput(dentry);
407 dentry = ERR_PTR(status);
408 }
409 }
410 return dentry;
411 }
412
413 /*
414 * force_reval_path - force revalidation of a dentry
415 *
416 * In some situations the path walking code will trust dentries without
417 * revalidating them. This causes problems for filesystems that depend on
418 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
419 * (which indicates that it's possible for the dentry to go stale), force
420 * a d_revalidate call before proceeding.
421 *
422 * Returns 0 if the revalidation was successful. If the revalidation fails,
423 * either return the error returned by d_revalidate or -ESTALE if the
424 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
425 * invalidate the dentry. It's up to the caller to handle putting references
426 * to the path if necessary.
427 */
428 static int
429 force_reval_path(struct path *path, struct nameidata *nd)
430 {
431 int status;
432 struct dentry *dentry = path->dentry;
433
434 /*
435 * only check on filesystems where it's possible for the dentry to
436 * become stale. It's assumed that if this flag is set then the
437 * d_revalidate op will also be defined.
438 */
439 if (!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))
440 return 0;
441
442 status = dentry->d_op->d_revalidate(dentry, nd);
443 if (status > 0)
444 return 0;
445
446 if (!status) {
447 d_invalidate(dentry);
448 status = -ESTALE;
449 }
450 return status;
451 }
452
453 /*
454 * Short-cut version of permission(), for calling on directories
455 * during pathname resolution. Combines parts of permission()
456 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
457 *
458 * If appropriate, check DAC only. If not appropriate, or
459 * short-cut DAC fails, then call ->permission() to do more
460 * complete permission check.
461 */
462 static int exec_permission(struct inode *inode)
463 {
464 int ret;
465
466 if (inode->i_op->permission) {
467 ret = inode->i_op->permission(inode, MAY_EXEC);
468 if (!ret)
469 goto ok;
470 return ret;
471 }
472 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
473 if (!ret)
474 goto ok;
475
476 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
477 goto ok;
478
479 return ret;
480 ok:
481 return security_inode_permission(inode, MAY_EXEC);
482 }
483
484 static __always_inline void set_root(struct nameidata *nd)
485 {
486 if (!nd->root.mnt)
487 get_fs_root(current->fs, &nd->root);
488 }
489
490 static int link_path_walk(const char *, struct nameidata *);
491
492 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
493 {
494 if (IS_ERR(link))
495 goto fail;
496
497 if (*link == '/') {
498 set_root(nd);
499 path_put(&nd->path);
500 nd->path = nd->root;
501 path_get(&nd->root);
502 }
503
504 return link_path_walk(link, nd);
505 fail:
506 path_put(&nd->path);
507 return PTR_ERR(link);
508 }
509
510 static void path_put_conditional(struct path *path, struct nameidata *nd)
511 {
512 dput(path->dentry);
513 if (path->mnt != nd->path.mnt)
514 mntput(path->mnt);
515 }
516
517 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
518 {
519 dput(nd->path.dentry);
520 if (nd->path.mnt != path->mnt) {
521 mntput(nd->path.mnt);
522 nd->path.mnt = path->mnt;
523 }
524 nd->path.dentry = path->dentry;
525 }
526
527 static __always_inline int
528 __do_follow_link(struct path *path, struct nameidata *nd, void **p)
529 {
530 int error;
531 struct dentry *dentry = path->dentry;
532
533 touch_atime(path->mnt, dentry);
534 nd_set_link(nd, NULL);
535
536 if (path->mnt != nd->path.mnt) {
537 path_to_nameidata(path, nd);
538 dget(dentry);
539 }
540 mntget(path->mnt);
541 nd->last_type = LAST_BIND;
542 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
543 error = PTR_ERR(*p);
544 if (!IS_ERR(*p)) {
545 char *s = nd_get_link(nd);
546 error = 0;
547 if (s)
548 error = __vfs_follow_link(nd, s);
549 else if (nd->last_type == LAST_BIND) {
550 error = force_reval_path(&nd->path, nd);
551 if (error)
552 path_put(&nd->path);
553 }
554 }
555 return error;
556 }
557
558 /*
559 * This limits recursive symlink follows to 8, while
560 * limiting consecutive symlinks to 40.
561 *
562 * Without that kind of total limit, nasty chains of consecutive
563 * symlinks can cause almost arbitrarily long lookups.
564 */
565 static inline int do_follow_link(struct path *path, struct nameidata *nd)
566 {
567 void *cookie;
568 int err = -ELOOP;
569 if (current->link_count >= MAX_NESTED_LINKS)
570 goto loop;
571 if (current->total_link_count >= 40)
572 goto loop;
573 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
574 cond_resched();
575 err = security_inode_follow_link(path->dentry, nd);
576 if (err)
577 goto loop;
578 current->link_count++;
579 current->total_link_count++;
580 nd->depth++;
581 err = __do_follow_link(path, nd, &cookie);
582 if (!IS_ERR(cookie) && path->dentry->d_inode->i_op->put_link)
583 path->dentry->d_inode->i_op->put_link(path->dentry, nd, cookie);
584 path_put(path);
585 current->link_count--;
586 nd->depth--;
587 return err;
588 loop:
589 path_put_conditional(path, nd);
590 path_put(&nd->path);
591 return err;
592 }
593
594 int follow_up(struct path *path)
595 {
596 struct vfsmount *parent;
597 struct dentry *mountpoint;
598 spin_lock(&vfsmount_lock);
599 parent = path->mnt->mnt_parent;
600 if (parent == path->mnt) {
601 spin_unlock(&vfsmount_lock);
602 return 0;
603 }
604 mntget(parent);
605 mountpoint = dget(path->mnt->mnt_mountpoint);
606 spin_unlock(&vfsmount_lock);
607 dput(path->dentry);
608 path->dentry = mountpoint;
609 mntput(path->mnt);
610 path->mnt = parent;
611 return 1;
612 }
613
614 /* no need for dcache_lock, as serialization is taken care in
615 * namespace.c
616 */
617 static int __follow_mount(struct path *path)
618 {
619 int res = 0;
620 while (d_mountpoint(path->dentry)) {
621 struct vfsmount *mounted = lookup_mnt(path);
622 if (!mounted)
623 break;
624 dput(path->dentry);
625 if (res)
626 mntput(path->mnt);
627 path->mnt = mounted;
628 path->dentry = dget(mounted->mnt_root);
629 res = 1;
630 }
631 return res;
632 }
633
634 static void follow_mount(struct path *path)
635 {
636 while (d_mountpoint(path->dentry)) {
637 struct vfsmount *mounted = lookup_mnt(path);
638 if (!mounted)
639 break;
640 dput(path->dentry);
641 mntput(path->mnt);
642 path->mnt = mounted;
643 path->dentry = dget(mounted->mnt_root);
644 }
645 }
646
647 /* no need for dcache_lock, as serialization is taken care in
648 * namespace.c
649 */
650 int follow_down(struct path *path)
651 {
652 struct vfsmount *mounted;
653
654 mounted = lookup_mnt(path);
655 if (mounted) {
656 dput(path->dentry);
657 mntput(path->mnt);
658 path->mnt = mounted;
659 path->dentry = dget(mounted->mnt_root);
660 return 1;
661 }
662 return 0;
663 }
664
665 static __always_inline void follow_dotdot(struct nameidata *nd)
666 {
667 set_root(nd);
668
669 while(1) {
670 struct dentry *old = nd->path.dentry;
671
672 if (nd->path.dentry == nd->root.dentry &&
673 nd->path.mnt == nd->root.mnt) {
674 break;
675 }
676 if (nd->path.dentry != nd->path.mnt->mnt_root) {
677 /* rare case of legitimate dget_parent()... */
678 nd->path.dentry = dget_parent(nd->path.dentry);
679 dput(old);
680 break;
681 }
682 if (!follow_up(&nd->path))
683 break;
684 }
685 follow_mount(&nd->path);
686 }
687
688 /*
689 * It's more convoluted than I'd like it to be, but... it's still fairly
690 * small and for now I'd prefer to have fast path as straight as possible.
691 * It _is_ time-critical.
692 */
693 static int do_lookup(struct nameidata *nd, struct qstr *name,
694 struct path *path)
695 {
696 struct vfsmount *mnt = nd->path.mnt;
697 struct dentry *dentry, *parent;
698 struct inode *dir;
699 /*
700 * See if the low-level filesystem might want
701 * to use its own hash..
702 */
703 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
704 int err = nd->path.dentry->d_op->d_hash(nd->path.dentry, name);
705 if (err < 0)
706 return err;
707 }
708
709 dentry = __d_lookup(nd->path.dentry, name);
710 if (!dentry)
711 goto need_lookup;
712 if (dentry->d_op && dentry->d_op->d_revalidate)
713 goto need_revalidate;
714 done:
715 path->mnt = mnt;
716 path->dentry = dentry;
717 __follow_mount(path);
718 return 0;
719
720 need_lookup:
721 parent = nd->path.dentry;
722 dir = parent->d_inode;
723
724 mutex_lock(&dir->i_mutex);
725 /*
726 * First re-do the cached lookup just in case it was created
727 * while we waited for the directory semaphore..
728 *
729 * FIXME! This could use version numbering or similar to
730 * avoid unnecessary cache lookups.
731 *
732 * The "dcache_lock" is purely to protect the RCU list walker
733 * from concurrent renames at this point (we mustn't get false
734 * negatives from the RCU list walk here, unlike the optimistic
735 * fast walk).
736 *
737 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
738 */
739 dentry = d_lookup(parent, name);
740 if (!dentry) {
741 struct dentry *new;
742
743 /* Don't create child dentry for a dead directory. */
744 dentry = ERR_PTR(-ENOENT);
745 if (IS_DEADDIR(dir))
746 goto out_unlock;
747
748 new = d_alloc(parent, name);
749 dentry = ERR_PTR(-ENOMEM);
750 if (new) {
751 dentry = dir->i_op->lookup(dir, new, nd);
752 if (dentry)
753 dput(new);
754 else
755 dentry = new;
756 }
757 out_unlock:
758 mutex_unlock(&dir->i_mutex);
759 if (IS_ERR(dentry))
760 goto fail;
761 goto done;
762 }
763
764 /*
765 * Uhhuh! Nasty case: the cache was re-populated while
766 * we waited on the semaphore. Need to revalidate.
767 */
768 mutex_unlock(&dir->i_mutex);
769 if (dentry->d_op && dentry->d_op->d_revalidate) {
770 dentry = do_revalidate(dentry, nd);
771 if (!dentry)
772 dentry = ERR_PTR(-ENOENT);
773 }
774 if (IS_ERR(dentry))
775 goto fail;
776 goto done;
777
778 need_revalidate:
779 dentry = do_revalidate(dentry, nd);
780 if (!dentry)
781 goto need_lookup;
782 if (IS_ERR(dentry))
783 goto fail;
784 goto done;
785
786 fail:
787 return PTR_ERR(dentry);
788 }
789
790 /*
791 * This is a temporary kludge to deal with "automount" symlinks; proper
792 * solution is to trigger them on follow_mount(), so that do_lookup()
793 * would DTRT. To be killed before 2.6.34-final.
794 */
795 static inline int follow_on_final(struct inode *inode, unsigned lookup_flags)
796 {
797 return inode && unlikely(inode->i_op->follow_link) &&
798 ((lookup_flags & LOOKUP_FOLLOW) || S_ISDIR(inode->i_mode));
799 }
800
801 /*
802 * Name resolution.
803 * This is the basic name resolution function, turning a pathname into
804 * the final dentry. We expect 'base' to be positive and a directory.
805 *
806 * Returns 0 and nd will have valid dentry and mnt on success.
807 * Returns error and drops reference to input namei data on failure.
808 */
809 static int link_path_walk(const char *name, struct nameidata *nd)
810 {
811 struct path next;
812 struct inode *inode;
813 int err;
814 unsigned int lookup_flags = nd->flags;
815
816 while (*name=='/')
817 name++;
818 if (!*name)
819 goto return_reval;
820
821 inode = nd->path.dentry->d_inode;
822 if (nd->depth)
823 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
824
825 /* At this point we know we have a real path component. */
826 for(;;) {
827 unsigned long hash;
828 struct qstr this;
829 unsigned int c;
830
831 nd->flags |= LOOKUP_CONTINUE;
832 err = exec_permission(inode);
833 if (err)
834 break;
835
836 this.name = name;
837 c = *(const unsigned char *)name;
838
839 hash = init_name_hash();
840 do {
841 name++;
842 hash = partial_name_hash(c, hash);
843 c = *(const unsigned char *)name;
844 } while (c && (c != '/'));
845 this.len = name - (const char *) this.name;
846 this.hash = end_name_hash(hash);
847
848 /* remove trailing slashes? */
849 if (!c)
850 goto last_component;
851 while (*++name == '/');
852 if (!*name)
853 goto last_with_slashes;
854
855 /*
856 * "." and ".." are special - ".." especially so because it has
857 * to be able to know about the current root directory and
858 * parent relationships.
859 */
860 if (this.name[0] == '.') switch (this.len) {
861 default:
862 break;
863 case 2:
864 if (this.name[1] != '.')
865 break;
866 follow_dotdot(nd);
867 inode = nd->path.dentry->d_inode;
868 /* fallthrough */
869 case 1:
870 continue;
871 }
872 /* This does the actual lookups.. */
873 err = do_lookup(nd, &this, &next);
874 if (err)
875 break;
876
877 err = -ENOENT;
878 inode = next.dentry->d_inode;
879 if (!inode)
880 goto out_dput;
881
882 if (inode->i_op->follow_link) {
883 err = do_follow_link(&next, nd);
884 if (err)
885 goto return_err;
886 err = -ENOENT;
887 inode = nd->path.dentry->d_inode;
888 if (!inode)
889 break;
890 } else
891 path_to_nameidata(&next, nd);
892 err = -ENOTDIR;
893 if (!inode->i_op->lookup)
894 break;
895 continue;
896 /* here ends the main loop */
897
898 last_with_slashes:
899 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
900 last_component:
901 /* Clear LOOKUP_CONTINUE iff it was previously unset */
902 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
903 if (lookup_flags & LOOKUP_PARENT)
904 goto lookup_parent;
905 if (this.name[0] == '.') switch (this.len) {
906 default:
907 break;
908 case 2:
909 if (this.name[1] != '.')
910 break;
911 follow_dotdot(nd);
912 inode = nd->path.dentry->d_inode;
913 /* fallthrough */
914 case 1:
915 goto return_reval;
916 }
917 err = do_lookup(nd, &this, &next);
918 if (err)
919 break;
920 inode = next.dentry->d_inode;
921 if (follow_on_final(inode, lookup_flags)) {
922 err = do_follow_link(&next, nd);
923 if (err)
924 goto return_err;
925 inode = nd->path.dentry->d_inode;
926 } else
927 path_to_nameidata(&next, nd);
928 err = -ENOENT;
929 if (!inode)
930 break;
931 if (lookup_flags & LOOKUP_DIRECTORY) {
932 err = -ENOTDIR;
933 if (!inode->i_op->lookup)
934 break;
935 }
936 goto return_base;
937 lookup_parent:
938 nd->last = this;
939 nd->last_type = LAST_NORM;
940 if (this.name[0] != '.')
941 goto return_base;
942 if (this.len == 1)
943 nd->last_type = LAST_DOT;
944 else if (this.len == 2 && this.name[1] == '.')
945 nd->last_type = LAST_DOTDOT;
946 else
947 goto return_base;
948 return_reval:
949 /*
950 * We bypassed the ordinary revalidation routines.
951 * We may need to check the cached dentry for staleness.
952 */
953 if (nd->path.dentry && nd->path.dentry->d_sb &&
954 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
955 err = -ESTALE;
956 /* Note: we do not d_invalidate() */
957 if (!nd->path.dentry->d_op->d_revalidate(
958 nd->path.dentry, nd))
959 break;
960 }
961 return_base:
962 return 0;
963 out_dput:
964 path_put_conditional(&next, nd);
965 break;
966 }
967 path_put(&nd->path);
968 return_err:
969 return err;
970 }
971
972 static int path_walk(const char *name, struct nameidata *nd)
973 {
974 struct path save = nd->path;
975 int result;
976
977 current->total_link_count = 0;
978
979 /* make sure the stuff we saved doesn't go away */
980 path_get(&save);
981
982 result = link_path_walk(name, nd);
983 if (result == -ESTALE) {
984 /* nd->path had been dropped */
985 current->total_link_count = 0;
986 nd->path = save;
987 path_get(&nd->path);
988 nd->flags |= LOOKUP_REVAL;
989 result = link_path_walk(name, nd);
990 }
991
992 path_put(&save);
993
994 return result;
995 }
996
997 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
998 {
999 int retval = 0;
1000 int fput_needed;
1001 struct file *file;
1002
1003 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1004 nd->flags = flags;
1005 nd->depth = 0;
1006 nd->root.mnt = NULL;
1007
1008 if (*name=='/') {
1009 set_root(nd);
1010 nd->path = nd->root;
1011 path_get(&nd->root);
1012 } else if (dfd == AT_FDCWD) {
1013 get_fs_pwd(current->fs, &nd->path);
1014 } else {
1015 struct dentry *dentry;
1016
1017 file = fget_light(dfd, &fput_needed);
1018 retval = -EBADF;
1019 if (!file)
1020 goto out_fail;
1021
1022 dentry = file->f_path.dentry;
1023
1024 retval = -ENOTDIR;
1025 if (!S_ISDIR(dentry->d_inode->i_mode))
1026 goto fput_fail;
1027
1028 retval = file_permission(file, MAY_EXEC);
1029 if (retval)
1030 goto fput_fail;
1031
1032 nd->path = file->f_path;
1033 path_get(&file->f_path);
1034
1035 fput_light(file, fput_needed);
1036 }
1037 return 0;
1038
1039 fput_fail:
1040 fput_light(file, fput_needed);
1041 out_fail:
1042 return retval;
1043 }
1044
1045 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1046 static int do_path_lookup(int dfd, const char *name,
1047 unsigned int flags, struct nameidata *nd)
1048 {
1049 int retval = path_init(dfd, name, flags, nd);
1050 if (!retval)
1051 retval = path_walk(name, nd);
1052 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1053 nd->path.dentry->d_inode))
1054 audit_inode(name, nd->path.dentry);
1055 if (nd->root.mnt) {
1056 path_put(&nd->root);
1057 nd->root.mnt = NULL;
1058 }
1059 return retval;
1060 }
1061
1062 int path_lookup(const char *name, unsigned int flags,
1063 struct nameidata *nd)
1064 {
1065 return do_path_lookup(AT_FDCWD, name, flags, nd);
1066 }
1067
1068 int kern_path(const char *name, unsigned int flags, struct path *path)
1069 {
1070 struct nameidata nd;
1071 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1072 if (!res)
1073 *path = nd.path;
1074 return res;
1075 }
1076
1077 /**
1078 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1079 * @dentry: pointer to dentry of the base directory
1080 * @mnt: pointer to vfs mount of the base directory
1081 * @name: pointer to file name
1082 * @flags: lookup flags
1083 * @nd: pointer to nameidata
1084 */
1085 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1086 const char *name, unsigned int flags,
1087 struct nameidata *nd)
1088 {
1089 int retval;
1090
1091 /* same as do_path_lookup */
1092 nd->last_type = LAST_ROOT;
1093 nd->flags = flags;
1094 nd->depth = 0;
1095
1096 nd->path.dentry = dentry;
1097 nd->path.mnt = mnt;
1098 path_get(&nd->path);
1099 nd->root = nd->path;
1100 path_get(&nd->root);
1101
1102 retval = path_walk(name, nd);
1103 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1104 nd->path.dentry->d_inode))
1105 audit_inode(name, nd->path.dentry);
1106
1107 path_put(&nd->root);
1108 nd->root.mnt = NULL;
1109
1110 return retval;
1111 }
1112
1113 static struct dentry *__lookup_hash(struct qstr *name,
1114 struct dentry *base, struct nameidata *nd)
1115 {
1116 struct dentry *dentry;
1117 struct inode *inode;
1118 int err;
1119
1120 inode = base->d_inode;
1121
1122 /*
1123 * See if the low-level filesystem might want
1124 * to use its own hash..
1125 */
1126 if (base->d_op && base->d_op->d_hash) {
1127 err = base->d_op->d_hash(base, name);
1128 dentry = ERR_PTR(err);
1129 if (err < 0)
1130 goto out;
1131 }
1132
1133 dentry = __d_lookup(base, name);
1134
1135 /* lockess __d_lookup may fail due to concurrent d_move()
1136 * in some unrelated directory, so try with d_lookup
1137 */
1138 if (!dentry)
1139 dentry = d_lookup(base, name);
1140
1141 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
1142 dentry = do_revalidate(dentry, nd);
1143
1144 if (!dentry) {
1145 struct dentry *new;
1146
1147 /* Don't create child dentry for a dead directory. */
1148 dentry = ERR_PTR(-ENOENT);
1149 if (IS_DEADDIR(inode))
1150 goto out;
1151
1152 new = d_alloc(base, name);
1153 dentry = ERR_PTR(-ENOMEM);
1154 if (!new)
1155 goto out;
1156 dentry = inode->i_op->lookup(inode, new, nd);
1157 if (!dentry)
1158 dentry = new;
1159 else
1160 dput(new);
1161 }
1162 out:
1163 return dentry;
1164 }
1165
1166 /*
1167 * Restricted form of lookup. Doesn't follow links, single-component only,
1168 * needs parent already locked. Doesn't follow mounts.
1169 * SMP-safe.
1170 */
1171 static struct dentry *lookup_hash(struct nameidata *nd)
1172 {
1173 int err;
1174
1175 err = exec_permission(nd->path.dentry->d_inode);
1176 if (err)
1177 return ERR_PTR(err);
1178 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1179 }
1180
1181 static int __lookup_one_len(const char *name, struct qstr *this,
1182 struct dentry *base, int len)
1183 {
1184 unsigned long hash;
1185 unsigned int c;
1186
1187 this->name = name;
1188 this->len = len;
1189 if (!len)
1190 return -EACCES;
1191
1192 hash = init_name_hash();
1193 while (len--) {
1194 c = *(const unsigned char *)name++;
1195 if (c == '/' || c == '\0')
1196 return -EACCES;
1197 hash = partial_name_hash(c, hash);
1198 }
1199 this->hash = end_name_hash(hash);
1200 return 0;
1201 }
1202
1203 /**
1204 * lookup_one_len - filesystem helper to lookup single pathname component
1205 * @name: pathname component to lookup
1206 * @base: base directory to lookup from
1207 * @len: maximum length @len should be interpreted to
1208 *
1209 * Note that this routine is purely a helper for filesystem usage and should
1210 * not be called by generic code. Also note that by using this function the
1211 * nameidata argument is passed to the filesystem methods and a filesystem
1212 * using this helper needs to be prepared for that.
1213 */
1214 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1215 {
1216 int err;
1217 struct qstr this;
1218
1219 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1220
1221 err = __lookup_one_len(name, &this, base, len);
1222 if (err)
1223 return ERR_PTR(err);
1224
1225 err = exec_permission(base->d_inode);
1226 if (err)
1227 return ERR_PTR(err);
1228 return __lookup_hash(&this, base, NULL);
1229 }
1230
1231 int user_path_at(int dfd, const char __user *name, unsigned flags,
1232 struct path *path)
1233 {
1234 struct nameidata nd;
1235 char *tmp = getname(name);
1236 int err = PTR_ERR(tmp);
1237 if (!IS_ERR(tmp)) {
1238
1239 BUG_ON(flags & LOOKUP_PARENT);
1240
1241 err = do_path_lookup(dfd, tmp, flags, &nd);
1242 putname(tmp);
1243 if (!err)
1244 *path = nd.path;
1245 }
1246 return err;
1247 }
1248
1249 static int user_path_parent(int dfd, const char __user *path,
1250 struct nameidata *nd, char **name)
1251 {
1252 char *s = getname(path);
1253 int error;
1254
1255 if (IS_ERR(s))
1256 return PTR_ERR(s);
1257
1258 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1259 if (error)
1260 putname(s);
1261 else
1262 *name = s;
1263
1264 return error;
1265 }
1266
1267 /*
1268 * It's inline, so penalty for filesystems that don't use sticky bit is
1269 * minimal.
1270 */
1271 static inline int check_sticky(struct inode *dir, struct inode *inode)
1272 {
1273 uid_t fsuid = current_fsuid();
1274
1275 if (!(dir->i_mode & S_ISVTX))
1276 return 0;
1277 if (inode->i_uid == fsuid)
1278 return 0;
1279 if (dir->i_uid == fsuid)
1280 return 0;
1281 return !capable(CAP_FOWNER);
1282 }
1283
1284 /*
1285 * Check whether we can remove a link victim from directory dir, check
1286 * whether the type of victim is right.
1287 * 1. We can't do it if dir is read-only (done in permission())
1288 * 2. We should have write and exec permissions on dir
1289 * 3. We can't remove anything from append-only dir
1290 * 4. We can't do anything with immutable dir (done in permission())
1291 * 5. If the sticky bit on dir is set we should either
1292 * a. be owner of dir, or
1293 * b. be owner of victim, or
1294 * c. have CAP_FOWNER capability
1295 * 6. If the victim is append-only or immutable we can't do antyhing with
1296 * links pointing to it.
1297 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1298 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1299 * 9. We can't remove a root or mountpoint.
1300 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1301 * nfs_async_unlink().
1302 */
1303 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1304 {
1305 int error;
1306
1307 if (!victim->d_inode)
1308 return -ENOENT;
1309
1310 BUG_ON(victim->d_parent->d_inode != dir);
1311 audit_inode_child(victim, dir);
1312
1313 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1314 if (error)
1315 return error;
1316 if (IS_APPEND(dir))
1317 return -EPERM;
1318 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1319 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1320 return -EPERM;
1321 if (isdir) {
1322 if (!S_ISDIR(victim->d_inode->i_mode))
1323 return -ENOTDIR;
1324 if (IS_ROOT(victim))
1325 return -EBUSY;
1326 } else if (S_ISDIR(victim->d_inode->i_mode))
1327 return -EISDIR;
1328 if (IS_DEADDIR(dir))
1329 return -ENOENT;
1330 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1331 return -EBUSY;
1332 return 0;
1333 }
1334
1335 /* Check whether we can create an object with dentry child in directory
1336 * dir.
1337 * 1. We can't do it if child already exists (open has special treatment for
1338 * this case, but since we are inlined it's OK)
1339 * 2. We can't do it if dir is read-only (done in permission())
1340 * 3. We should have write and exec permissions on dir
1341 * 4. We can't do it if dir is immutable (done in permission())
1342 */
1343 static inline int may_create(struct inode *dir, struct dentry *child)
1344 {
1345 if (child->d_inode)
1346 return -EEXIST;
1347 if (IS_DEADDIR(dir))
1348 return -ENOENT;
1349 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1350 }
1351
1352 /*
1353 * p1 and p2 should be directories on the same fs.
1354 */
1355 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1356 {
1357 struct dentry *p;
1358
1359 if (p1 == p2) {
1360 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1361 return NULL;
1362 }
1363
1364 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1365
1366 p = d_ancestor(p2, p1);
1367 if (p) {
1368 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1369 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1370 return p;
1371 }
1372
1373 p = d_ancestor(p1, p2);
1374 if (p) {
1375 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1376 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1377 return p;
1378 }
1379
1380 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1381 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1382 return NULL;
1383 }
1384
1385 void unlock_rename(struct dentry *p1, struct dentry *p2)
1386 {
1387 mutex_unlock(&p1->d_inode->i_mutex);
1388 if (p1 != p2) {
1389 mutex_unlock(&p2->d_inode->i_mutex);
1390 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1391 }
1392 }
1393
1394 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1395 struct nameidata *nd)
1396 {
1397 int error = may_create(dir, dentry);
1398
1399 if (error)
1400 return error;
1401
1402 if (!dir->i_op->create)
1403 return -EACCES; /* shouldn't it be ENOSYS? */
1404 mode &= S_IALLUGO;
1405 mode |= S_IFREG;
1406 error = security_inode_create(dir, dentry, mode);
1407 if (error)
1408 return error;
1409 error = dir->i_op->create(dir, dentry, mode, nd);
1410 if (!error)
1411 fsnotify_create(dir, dentry);
1412 return error;
1413 }
1414
1415 int may_open(struct path *path, int acc_mode, int flag)
1416 {
1417 struct dentry *dentry = path->dentry;
1418 struct inode *inode = dentry->d_inode;
1419 int error;
1420
1421 if (!inode)
1422 return -ENOENT;
1423
1424 switch (inode->i_mode & S_IFMT) {
1425 case S_IFLNK:
1426 return -ELOOP;
1427 case S_IFDIR:
1428 if (acc_mode & MAY_WRITE)
1429 return -EISDIR;
1430 break;
1431 case S_IFBLK:
1432 case S_IFCHR:
1433 if (path->mnt->mnt_flags & MNT_NODEV)
1434 return -EACCES;
1435 /*FALLTHRU*/
1436 case S_IFIFO:
1437 case S_IFSOCK:
1438 flag &= ~O_TRUNC;
1439 break;
1440 }
1441
1442 error = inode_permission(inode, acc_mode);
1443 if (error)
1444 return error;
1445
1446 /*
1447 * An append-only file must be opened in append mode for writing.
1448 */
1449 if (IS_APPEND(inode)) {
1450 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
1451 return -EPERM;
1452 if (flag & O_TRUNC)
1453 return -EPERM;
1454 }
1455
1456 /* O_NOATIME can only be set by the owner or superuser */
1457 if (flag & O_NOATIME && !is_owner_or_cap(inode))
1458 return -EPERM;
1459
1460 /*
1461 * Ensure there are no outstanding leases on the file.
1462 */
1463 return break_lease(inode, flag);
1464 }
1465
1466 static int handle_truncate(struct path *path)
1467 {
1468 struct inode *inode = path->dentry->d_inode;
1469 int error = get_write_access(inode);
1470 if (error)
1471 return error;
1472 /*
1473 * Refuse to truncate files with mandatory locks held on them.
1474 */
1475 error = locks_verify_locked(inode);
1476 if (!error)
1477 error = security_path_truncate(path);
1478 if (!error) {
1479 error = do_truncate(path->dentry, 0,
1480 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1481 NULL);
1482 }
1483 put_write_access(inode);
1484 return error;
1485 }
1486
1487 /*
1488 * Be careful about ever adding any more callers of this
1489 * function. Its flags must be in the namei format, not
1490 * what get passed to sys_open().
1491 */
1492 static int __open_namei_create(struct nameidata *nd, struct path *path,
1493 int open_flag, int mode)
1494 {
1495 int error;
1496 struct dentry *dir = nd->path.dentry;
1497
1498 if (!IS_POSIXACL(dir->d_inode))
1499 mode &= ~current_umask();
1500 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1501 if (error)
1502 goto out_unlock;
1503 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1504 out_unlock:
1505 mutex_unlock(&dir->d_inode->i_mutex);
1506 dput(nd->path.dentry);
1507 nd->path.dentry = path->dentry;
1508 if (error)
1509 return error;
1510 /* Don't check for write permission, don't truncate */
1511 return may_open(&nd->path, 0, open_flag & ~O_TRUNC);
1512 }
1513
1514 /*
1515 * Note that while the flag value (low two bits) for sys_open means:
1516 * 00 - read-only
1517 * 01 - write-only
1518 * 10 - read-write
1519 * 11 - special
1520 * it is changed into
1521 * 00 - no permissions needed
1522 * 01 - read-permission
1523 * 10 - write-permission
1524 * 11 - read-write
1525 * for the internal routines (ie open_namei()/follow_link() etc)
1526 * This is more logical, and also allows the 00 "no perm needed"
1527 * to be used for symlinks (where the permissions are checked
1528 * later).
1529 *
1530 */
1531 static inline int open_to_namei_flags(int flag)
1532 {
1533 if ((flag+1) & O_ACCMODE)
1534 flag++;
1535 return flag;
1536 }
1537
1538 static int open_will_truncate(int flag, struct inode *inode)
1539 {
1540 /*
1541 * We'll never write to the fs underlying
1542 * a device file.
1543 */
1544 if (special_file(inode->i_mode))
1545 return 0;
1546 return (flag & O_TRUNC);
1547 }
1548
1549 static struct file *finish_open(struct nameidata *nd,
1550 int open_flag, int acc_mode)
1551 {
1552 struct file *filp;
1553 int will_truncate;
1554 int error;
1555
1556 will_truncate = open_will_truncate(open_flag, nd->path.dentry->d_inode);
1557 if (will_truncate) {
1558 error = mnt_want_write(nd->path.mnt);
1559 if (error)
1560 goto exit;
1561 }
1562 error = may_open(&nd->path, acc_mode, open_flag);
1563 if (error) {
1564 if (will_truncate)
1565 mnt_drop_write(nd->path.mnt);
1566 goto exit;
1567 }
1568 filp = nameidata_to_filp(nd);
1569 if (!IS_ERR(filp)) {
1570 error = ima_file_check(filp, acc_mode);
1571 if (error) {
1572 fput(filp);
1573 filp = ERR_PTR(error);
1574 }
1575 }
1576 if (!IS_ERR(filp)) {
1577 if (will_truncate) {
1578 error = handle_truncate(&nd->path);
1579 if (error) {
1580 fput(filp);
1581 filp = ERR_PTR(error);
1582 }
1583 }
1584 }
1585 /*
1586 * It is now safe to drop the mnt write
1587 * because the filp has had a write taken
1588 * on its behalf.
1589 */
1590 if (will_truncate)
1591 mnt_drop_write(nd->path.mnt);
1592 return filp;
1593
1594 exit:
1595 if (!IS_ERR(nd->intent.open.file))
1596 release_open_intent(nd);
1597 path_put(&nd->path);
1598 return ERR_PTR(error);
1599 }
1600
1601 static struct file *do_last(struct nameidata *nd, struct path *path,
1602 int open_flag, int acc_mode,
1603 int mode, const char *pathname)
1604 {
1605 struct dentry *dir = nd->path.dentry;
1606 struct file *filp;
1607 int error = -EISDIR;
1608
1609 switch (nd->last_type) {
1610 case LAST_DOTDOT:
1611 follow_dotdot(nd);
1612 dir = nd->path.dentry;
1613 case LAST_DOT:
1614 if (nd->path.mnt->mnt_sb->s_type->fs_flags & FS_REVAL_DOT) {
1615 if (!dir->d_op->d_revalidate(dir, nd)) {
1616 error = -ESTALE;
1617 goto exit;
1618 }
1619 }
1620 /* fallthrough */
1621 case LAST_ROOT:
1622 if (open_flag & O_CREAT)
1623 goto exit;
1624 /* fallthrough */
1625 case LAST_BIND:
1626 audit_inode(pathname, dir);
1627 goto ok;
1628 }
1629
1630 /* trailing slashes? */
1631 if (nd->last.name[nd->last.len]) {
1632 if (open_flag & O_CREAT)
1633 goto exit;
1634 nd->flags |= LOOKUP_DIRECTORY | LOOKUP_FOLLOW;
1635 }
1636
1637 /* just plain open? */
1638 if (!(open_flag & O_CREAT)) {
1639 error = do_lookup(nd, &nd->last, path);
1640 if (error)
1641 goto exit;
1642 error = -ENOENT;
1643 if (!path->dentry->d_inode)
1644 goto exit_dput;
1645 if (path->dentry->d_inode->i_op->follow_link)
1646 return NULL;
1647 error = -ENOTDIR;
1648 if (nd->flags & LOOKUP_DIRECTORY) {
1649 if (!path->dentry->d_inode->i_op->lookup)
1650 goto exit_dput;
1651 }
1652 path_to_nameidata(path, nd);
1653 audit_inode(pathname, nd->path.dentry);
1654 goto ok;
1655 }
1656
1657 /* OK, it's O_CREAT */
1658 mutex_lock(&dir->d_inode->i_mutex);
1659
1660 path->dentry = lookup_hash(nd);
1661 path->mnt = nd->path.mnt;
1662
1663 error = PTR_ERR(path->dentry);
1664 if (IS_ERR(path->dentry)) {
1665 mutex_unlock(&dir->d_inode->i_mutex);
1666 goto exit;
1667 }
1668
1669 if (IS_ERR(nd->intent.open.file)) {
1670 error = PTR_ERR(nd->intent.open.file);
1671 goto exit_mutex_unlock;
1672 }
1673
1674 /* Negative dentry, just create the file */
1675 if (!path->dentry->d_inode) {
1676 /*
1677 * This write is needed to ensure that a
1678 * ro->rw transition does not occur between
1679 * the time when the file is created and when
1680 * a permanent write count is taken through
1681 * the 'struct file' in nameidata_to_filp().
1682 */
1683 error = mnt_want_write(nd->path.mnt);
1684 if (error)
1685 goto exit_mutex_unlock;
1686 error = __open_namei_create(nd, path, open_flag, mode);
1687 if (error) {
1688 mnt_drop_write(nd->path.mnt);
1689 goto exit;
1690 }
1691 filp = nameidata_to_filp(nd);
1692 mnt_drop_write(nd->path.mnt);
1693 if (!IS_ERR(filp)) {
1694 error = ima_file_check(filp, acc_mode);
1695 if (error) {
1696 fput(filp);
1697 filp = ERR_PTR(error);
1698 }
1699 }
1700 return filp;
1701 }
1702
1703 /*
1704 * It already exists.
1705 */
1706 mutex_unlock(&dir->d_inode->i_mutex);
1707 audit_inode(pathname, path->dentry);
1708
1709 error = -EEXIST;
1710 if (open_flag & O_EXCL)
1711 goto exit_dput;
1712
1713 if (__follow_mount(path)) {
1714 error = -ELOOP;
1715 if (open_flag & O_NOFOLLOW)
1716 goto exit_dput;
1717 }
1718
1719 error = -ENOENT;
1720 if (!path->dentry->d_inode)
1721 goto exit_dput;
1722
1723 if (path->dentry->d_inode->i_op->follow_link)
1724 return NULL;
1725
1726 path_to_nameidata(path, nd);
1727 error = -EISDIR;
1728 if (S_ISDIR(path->dentry->d_inode->i_mode))
1729 goto exit;
1730 ok:
1731 filp = finish_open(nd, open_flag, acc_mode);
1732 return filp;
1733
1734 exit_mutex_unlock:
1735 mutex_unlock(&dir->d_inode->i_mutex);
1736 exit_dput:
1737 path_put_conditional(path, nd);
1738 exit:
1739 if (!IS_ERR(nd->intent.open.file))
1740 release_open_intent(nd);
1741 path_put(&nd->path);
1742 return ERR_PTR(error);
1743 }
1744
1745 /*
1746 * Note that the low bits of the passed in "open_flag"
1747 * are not the same as in the local variable "flag". See
1748 * open_to_namei_flags() for more details.
1749 */
1750 struct file *do_filp_open(int dfd, const char *pathname,
1751 int open_flag, int mode, int acc_mode)
1752 {
1753 struct file *filp;
1754 struct nameidata nd;
1755 int error;
1756 struct path path;
1757 int count = 0;
1758 int flag = open_to_namei_flags(open_flag);
1759 int force_reval = 0;
1760
1761 if (!(open_flag & O_CREAT))
1762 mode = 0;
1763
1764 /*
1765 * O_SYNC is implemented as __O_SYNC|O_DSYNC. As many places only
1766 * check for O_DSYNC if the need any syncing at all we enforce it's
1767 * always set instead of having to deal with possibly weird behaviour
1768 * for malicious applications setting only __O_SYNC.
1769 */
1770 if (open_flag & __O_SYNC)
1771 open_flag |= O_DSYNC;
1772
1773 if (!acc_mode)
1774 acc_mode = MAY_OPEN | ACC_MODE(open_flag);
1775
1776 /* O_TRUNC implies we need access checks for write permissions */
1777 if (open_flag & O_TRUNC)
1778 acc_mode |= MAY_WRITE;
1779
1780 /* Allow the LSM permission hook to distinguish append
1781 access from general write access. */
1782 if (open_flag & O_APPEND)
1783 acc_mode |= MAY_APPEND;
1784
1785 /* find the parent */
1786 reval:
1787 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1788 if (error)
1789 return ERR_PTR(error);
1790 if (force_reval)
1791 nd.flags |= LOOKUP_REVAL;
1792
1793 current->total_link_count = 0;
1794 error = link_path_walk(pathname, &nd);
1795 if (error) {
1796 filp = ERR_PTR(error);
1797 goto out;
1798 }
1799 if (unlikely(!audit_dummy_context()) && (open_flag & O_CREAT))
1800 audit_inode(pathname, nd.path.dentry);
1801
1802 /*
1803 * We have the parent and last component.
1804 */
1805
1806 error = -ENFILE;
1807 filp = get_empty_filp();
1808 if (filp == NULL)
1809 goto exit_parent;
1810 nd.intent.open.file = filp;
1811 filp->f_flags = open_flag;
1812 nd.intent.open.flags = flag;
1813 nd.intent.open.create_mode = mode;
1814 nd.flags &= ~LOOKUP_PARENT;
1815 nd.flags |= LOOKUP_OPEN;
1816 if (open_flag & O_CREAT) {
1817 nd.flags |= LOOKUP_CREATE;
1818 if (open_flag & O_EXCL)
1819 nd.flags |= LOOKUP_EXCL;
1820 }
1821 if (open_flag & O_DIRECTORY)
1822 nd.flags |= LOOKUP_DIRECTORY;
1823 if (!(open_flag & O_NOFOLLOW))
1824 nd.flags |= LOOKUP_FOLLOW;
1825 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1826 while (unlikely(!filp)) { /* trailing symlink */
1827 struct path holder;
1828 struct inode *inode = path.dentry->d_inode;
1829 void *cookie;
1830 error = -ELOOP;
1831 /* S_ISDIR part is a temporary automount kludge */
1832 if (!(nd.flags & LOOKUP_FOLLOW) && !S_ISDIR(inode->i_mode))
1833 goto exit_dput;
1834 if (count++ == 32)
1835 goto exit_dput;
1836 /*
1837 * This is subtle. Instead of calling do_follow_link() we do
1838 * the thing by hands. The reason is that this way we have zero
1839 * link_count and path_walk() (called from ->follow_link)
1840 * honoring LOOKUP_PARENT. After that we have the parent and
1841 * last component, i.e. we are in the same situation as after
1842 * the first path_walk(). Well, almost - if the last component
1843 * is normal we get its copy stored in nd->last.name and we will
1844 * have to putname() it when we are done. Procfs-like symlinks
1845 * just set LAST_BIND.
1846 */
1847 nd.flags |= LOOKUP_PARENT;
1848 error = security_inode_follow_link(path.dentry, &nd);
1849 if (error)
1850 goto exit_dput;
1851 error = __do_follow_link(&path, &nd, &cookie);
1852 if (unlikely(error)) {
1853 /* nd.path had been dropped */
1854 if (!IS_ERR(cookie) && inode->i_op->put_link)
1855 inode->i_op->put_link(path.dentry, &nd, cookie);
1856 path_put(&path);
1857 release_open_intent(&nd);
1858 filp = ERR_PTR(error);
1859 goto out;
1860 }
1861 holder = path;
1862 nd.flags &= ~LOOKUP_PARENT;
1863 filp = do_last(&nd, &path, open_flag, acc_mode, mode, pathname);
1864 if (inode->i_op->put_link)
1865 inode->i_op->put_link(holder.dentry, &nd, cookie);
1866 path_put(&holder);
1867 }
1868 out:
1869 if (nd.root.mnt)
1870 path_put(&nd.root);
1871 if (filp == ERR_PTR(-ESTALE) && !force_reval) {
1872 force_reval = 1;
1873 goto reval;
1874 }
1875 return filp;
1876
1877 exit_dput:
1878 path_put_conditional(&path, &nd);
1879 if (!IS_ERR(nd.intent.open.file))
1880 release_open_intent(&nd);
1881 exit_parent:
1882 path_put(&nd.path);
1883 filp = ERR_PTR(error);
1884 goto out;
1885 }
1886
1887 /**
1888 * filp_open - open file and return file pointer
1889 *
1890 * @filename: path to open
1891 * @flags: open flags as per the open(2) second argument
1892 * @mode: mode for the new file if O_CREAT is set, else ignored
1893 *
1894 * This is the helper to open a file from kernelspace if you really
1895 * have to. But in generally you should not do this, so please move
1896 * along, nothing to see here..
1897 */
1898 struct file *filp_open(const char *filename, int flags, int mode)
1899 {
1900 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1901 }
1902 EXPORT_SYMBOL(filp_open);
1903
1904 /**
1905 * lookup_create - lookup a dentry, creating it if it doesn't exist
1906 * @nd: nameidata info
1907 * @is_dir: directory flag
1908 *
1909 * Simple function to lookup and return a dentry and create it
1910 * if it doesn't exist. Is SMP-safe.
1911 *
1912 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1913 */
1914 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1915 {
1916 struct dentry *dentry = ERR_PTR(-EEXIST);
1917
1918 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1919 /*
1920 * Yucky last component or no last component at all?
1921 * (foo/., foo/.., /////)
1922 */
1923 if (nd->last_type != LAST_NORM)
1924 goto fail;
1925 nd->flags &= ~LOOKUP_PARENT;
1926 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1927 nd->intent.open.flags = O_EXCL;
1928
1929 /*
1930 * Do the final lookup.
1931 */
1932 dentry = lookup_hash(nd);
1933 if (IS_ERR(dentry))
1934 goto fail;
1935
1936 if (dentry->d_inode)
1937 goto eexist;
1938 /*
1939 * Special case - lookup gave negative, but... we had foo/bar/
1940 * From the vfs_mknod() POV we just have a negative dentry -
1941 * all is fine. Let's be bastards - you had / on the end, you've
1942 * been asking for (non-existent) directory. -ENOENT for you.
1943 */
1944 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1945 dput(dentry);
1946 dentry = ERR_PTR(-ENOENT);
1947 }
1948 return dentry;
1949 eexist:
1950 dput(dentry);
1951 dentry = ERR_PTR(-EEXIST);
1952 fail:
1953 return dentry;
1954 }
1955 EXPORT_SYMBOL_GPL(lookup_create);
1956
1957 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1958 {
1959 int error = may_create(dir, dentry);
1960
1961 if (error)
1962 return error;
1963
1964 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1965 return -EPERM;
1966
1967 if (!dir->i_op->mknod)
1968 return -EPERM;
1969
1970 error = devcgroup_inode_mknod(mode, dev);
1971 if (error)
1972 return error;
1973
1974 error = security_inode_mknod(dir, dentry, mode, dev);
1975 if (error)
1976 return error;
1977
1978 error = dir->i_op->mknod(dir, dentry, mode, dev);
1979 if (!error)
1980 fsnotify_create(dir, dentry);
1981 return error;
1982 }
1983
1984 static int may_mknod(mode_t mode)
1985 {
1986 switch (mode & S_IFMT) {
1987 case S_IFREG:
1988 case S_IFCHR:
1989 case S_IFBLK:
1990 case S_IFIFO:
1991 case S_IFSOCK:
1992 case 0: /* zero mode translates to S_IFREG */
1993 return 0;
1994 case S_IFDIR:
1995 return -EPERM;
1996 default:
1997 return -EINVAL;
1998 }
1999 }
2000
2001 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2002 unsigned, dev)
2003 {
2004 int error;
2005 char *tmp;
2006 struct dentry *dentry;
2007 struct nameidata nd;
2008
2009 if (S_ISDIR(mode))
2010 return -EPERM;
2011
2012 error = user_path_parent(dfd, filename, &nd, &tmp);
2013 if (error)
2014 return error;
2015
2016 dentry = lookup_create(&nd, 0);
2017 if (IS_ERR(dentry)) {
2018 error = PTR_ERR(dentry);
2019 goto out_unlock;
2020 }
2021 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2022 mode &= ~current_umask();
2023 error = may_mknod(mode);
2024 if (error)
2025 goto out_dput;
2026 error = mnt_want_write(nd.path.mnt);
2027 if (error)
2028 goto out_dput;
2029 error = security_path_mknod(&nd.path, dentry, mode, dev);
2030 if (error)
2031 goto out_drop_write;
2032 switch (mode & S_IFMT) {
2033 case 0: case S_IFREG:
2034 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2035 break;
2036 case S_IFCHR: case S_IFBLK:
2037 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2038 new_decode_dev(dev));
2039 break;
2040 case S_IFIFO: case S_IFSOCK:
2041 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2042 break;
2043 }
2044 out_drop_write:
2045 mnt_drop_write(nd.path.mnt);
2046 out_dput:
2047 dput(dentry);
2048 out_unlock:
2049 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2050 path_put(&nd.path);
2051 putname(tmp);
2052
2053 return error;
2054 }
2055
2056 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2057 {
2058 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2059 }
2060
2061 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2062 {
2063 int error = may_create(dir, dentry);
2064
2065 if (error)
2066 return error;
2067
2068 if (!dir->i_op->mkdir)
2069 return -EPERM;
2070
2071 mode &= (S_IRWXUGO|S_ISVTX);
2072 error = security_inode_mkdir(dir, dentry, mode);
2073 if (error)
2074 return error;
2075
2076 error = dir->i_op->mkdir(dir, dentry, mode);
2077 if (!error)
2078 fsnotify_mkdir(dir, dentry);
2079 return error;
2080 }
2081
2082 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2083 {
2084 int error = 0;
2085 char * tmp;
2086 struct dentry *dentry;
2087 struct nameidata nd;
2088
2089 error = user_path_parent(dfd, pathname, &nd, &tmp);
2090 if (error)
2091 goto out_err;
2092
2093 dentry = lookup_create(&nd, 1);
2094 error = PTR_ERR(dentry);
2095 if (IS_ERR(dentry))
2096 goto out_unlock;
2097
2098 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2099 mode &= ~current_umask();
2100 error = mnt_want_write(nd.path.mnt);
2101 if (error)
2102 goto out_dput;
2103 error = security_path_mkdir(&nd.path, dentry, mode);
2104 if (error)
2105 goto out_drop_write;
2106 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2107 out_drop_write:
2108 mnt_drop_write(nd.path.mnt);
2109 out_dput:
2110 dput(dentry);
2111 out_unlock:
2112 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2113 path_put(&nd.path);
2114 putname(tmp);
2115 out_err:
2116 return error;
2117 }
2118
2119 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2120 {
2121 return sys_mkdirat(AT_FDCWD, pathname, mode);
2122 }
2123
2124 /*
2125 * We try to drop the dentry early: we should have
2126 * a usage count of 2 if we're the only user of this
2127 * dentry, and if that is true (possibly after pruning
2128 * the dcache), then we drop the dentry now.
2129 *
2130 * A low-level filesystem can, if it choses, legally
2131 * do a
2132 *
2133 * if (!d_unhashed(dentry))
2134 * return -EBUSY;
2135 *
2136 * if it cannot handle the case of removing a directory
2137 * that is still in use by something else..
2138 */
2139 void dentry_unhash(struct dentry *dentry)
2140 {
2141 dget(dentry);
2142 shrink_dcache_parent(dentry);
2143 spin_lock(&dcache_lock);
2144 spin_lock(&dentry->d_lock);
2145 if (atomic_read(&dentry->d_count) == 2)
2146 __d_drop(dentry);
2147 spin_unlock(&dentry->d_lock);
2148 spin_unlock(&dcache_lock);
2149 }
2150
2151 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2152 {
2153 int error = may_delete(dir, dentry, 1);
2154
2155 if (error)
2156 return error;
2157
2158 if (!dir->i_op->rmdir)
2159 return -EPERM;
2160
2161 mutex_lock(&dentry->d_inode->i_mutex);
2162 dentry_unhash(dentry);
2163 if (d_mountpoint(dentry))
2164 error = -EBUSY;
2165 else {
2166 error = security_inode_rmdir(dir, dentry);
2167 if (!error) {
2168 error = dir->i_op->rmdir(dir, dentry);
2169 if (!error) {
2170 dentry->d_inode->i_flags |= S_DEAD;
2171 dont_mount(dentry);
2172 }
2173 }
2174 }
2175 mutex_unlock(&dentry->d_inode->i_mutex);
2176 if (!error) {
2177 d_delete(dentry);
2178 }
2179 dput(dentry);
2180
2181 return error;
2182 }
2183
2184 static long do_rmdir(int dfd, const char __user *pathname)
2185 {
2186 int error = 0;
2187 char * name;
2188 struct dentry *dentry;
2189 struct nameidata nd;
2190
2191 error = user_path_parent(dfd, pathname, &nd, &name);
2192 if (error)
2193 return error;
2194
2195 switch(nd.last_type) {
2196 case LAST_DOTDOT:
2197 error = -ENOTEMPTY;
2198 goto exit1;
2199 case LAST_DOT:
2200 error = -EINVAL;
2201 goto exit1;
2202 case LAST_ROOT:
2203 error = -EBUSY;
2204 goto exit1;
2205 }
2206
2207 nd.flags &= ~LOOKUP_PARENT;
2208
2209 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2210 dentry = lookup_hash(&nd);
2211 error = PTR_ERR(dentry);
2212 if (IS_ERR(dentry))
2213 goto exit2;
2214 error = mnt_want_write(nd.path.mnt);
2215 if (error)
2216 goto exit3;
2217 error = security_path_rmdir(&nd.path, dentry);
2218 if (error)
2219 goto exit4;
2220 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2221 exit4:
2222 mnt_drop_write(nd.path.mnt);
2223 exit3:
2224 dput(dentry);
2225 exit2:
2226 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2227 exit1:
2228 path_put(&nd.path);
2229 putname(name);
2230 return error;
2231 }
2232
2233 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2234 {
2235 return do_rmdir(AT_FDCWD, pathname);
2236 }
2237
2238 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2239 {
2240 int error = may_delete(dir, dentry, 0);
2241
2242 if (error)
2243 return error;
2244
2245 if (!dir->i_op->unlink)
2246 return -EPERM;
2247
2248 mutex_lock(&dentry->d_inode->i_mutex);
2249 if (d_mountpoint(dentry))
2250 error = -EBUSY;
2251 else {
2252 error = security_inode_unlink(dir, dentry);
2253 if (!error) {
2254 error = dir->i_op->unlink(dir, dentry);
2255 if (!error)
2256 dont_mount(dentry);
2257 }
2258 }
2259 mutex_unlock(&dentry->d_inode->i_mutex);
2260
2261 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2262 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2263 fsnotify_link_count(dentry->d_inode);
2264 d_delete(dentry);
2265 }
2266
2267 return error;
2268 }
2269
2270 /*
2271 * Make sure that the actual truncation of the file will occur outside its
2272 * directory's i_mutex. Truncate can take a long time if there is a lot of
2273 * writeout happening, and we don't want to prevent access to the directory
2274 * while waiting on the I/O.
2275 */
2276 static long do_unlinkat(int dfd, const char __user *pathname)
2277 {
2278 int error;
2279 char *name;
2280 struct dentry *dentry;
2281 struct nameidata nd;
2282 struct inode *inode = NULL;
2283
2284 error = user_path_parent(dfd, pathname, &nd, &name);
2285 if (error)
2286 return error;
2287
2288 error = -EISDIR;
2289 if (nd.last_type != LAST_NORM)
2290 goto exit1;
2291
2292 nd.flags &= ~LOOKUP_PARENT;
2293
2294 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2295 dentry = lookup_hash(&nd);
2296 error = PTR_ERR(dentry);
2297 if (!IS_ERR(dentry)) {
2298 /* Why not before? Because we want correct error value */
2299 if (nd.last.name[nd.last.len])
2300 goto slashes;
2301 inode = dentry->d_inode;
2302 if (inode)
2303 atomic_inc(&inode->i_count);
2304 error = mnt_want_write(nd.path.mnt);
2305 if (error)
2306 goto exit2;
2307 error = security_path_unlink(&nd.path, dentry);
2308 if (error)
2309 goto exit3;
2310 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2311 exit3:
2312 mnt_drop_write(nd.path.mnt);
2313 exit2:
2314 dput(dentry);
2315 }
2316 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2317 if (inode)
2318 iput(inode); /* truncate the inode here */
2319 exit1:
2320 path_put(&nd.path);
2321 putname(name);
2322 return error;
2323
2324 slashes:
2325 error = !dentry->d_inode ? -ENOENT :
2326 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2327 goto exit2;
2328 }
2329
2330 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2331 {
2332 if ((flag & ~AT_REMOVEDIR) != 0)
2333 return -EINVAL;
2334
2335 if (flag & AT_REMOVEDIR)
2336 return do_rmdir(dfd, pathname);
2337
2338 return do_unlinkat(dfd, pathname);
2339 }
2340
2341 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2342 {
2343 return do_unlinkat(AT_FDCWD, pathname);
2344 }
2345
2346 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2347 {
2348 int error = may_create(dir, dentry);
2349
2350 if (error)
2351 return error;
2352
2353 if (!dir->i_op->symlink)
2354 return -EPERM;
2355
2356 error = security_inode_symlink(dir, dentry, oldname);
2357 if (error)
2358 return error;
2359
2360 error = dir->i_op->symlink(dir, dentry, oldname);
2361 if (!error)
2362 fsnotify_create(dir, dentry);
2363 return error;
2364 }
2365
2366 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2367 int, newdfd, const char __user *, newname)
2368 {
2369 int error;
2370 char *from;
2371 char *to;
2372 struct dentry *dentry;
2373 struct nameidata nd;
2374
2375 from = getname(oldname);
2376 if (IS_ERR(from))
2377 return PTR_ERR(from);
2378
2379 error = user_path_parent(newdfd, newname, &nd, &to);
2380 if (error)
2381 goto out_putname;
2382
2383 dentry = lookup_create(&nd, 0);
2384 error = PTR_ERR(dentry);
2385 if (IS_ERR(dentry))
2386 goto out_unlock;
2387
2388 error = mnt_want_write(nd.path.mnt);
2389 if (error)
2390 goto out_dput;
2391 error = security_path_symlink(&nd.path, dentry, from);
2392 if (error)
2393 goto out_drop_write;
2394 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2395 out_drop_write:
2396 mnt_drop_write(nd.path.mnt);
2397 out_dput:
2398 dput(dentry);
2399 out_unlock:
2400 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2401 path_put(&nd.path);
2402 putname(to);
2403 out_putname:
2404 putname(from);
2405 return error;
2406 }
2407
2408 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2409 {
2410 return sys_symlinkat(oldname, AT_FDCWD, newname);
2411 }
2412
2413 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2414 {
2415 struct inode *inode = old_dentry->d_inode;
2416 int error;
2417
2418 if (!inode)
2419 return -ENOENT;
2420
2421 error = may_create(dir, new_dentry);
2422 if (error)
2423 return error;
2424
2425 if (dir->i_sb != inode->i_sb)
2426 return -EXDEV;
2427
2428 /*
2429 * A link to an append-only or immutable file cannot be created.
2430 */
2431 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2432 return -EPERM;
2433 if (!dir->i_op->link)
2434 return -EPERM;
2435 if (S_ISDIR(inode->i_mode))
2436 return -EPERM;
2437
2438 error = security_inode_link(old_dentry, dir, new_dentry);
2439 if (error)
2440 return error;
2441
2442 mutex_lock(&inode->i_mutex);
2443 error = dir->i_op->link(old_dentry, dir, new_dentry);
2444 mutex_unlock(&inode->i_mutex);
2445 if (!error)
2446 fsnotify_link(dir, inode, new_dentry);
2447 return error;
2448 }
2449
2450 /*
2451 * Hardlinks are often used in delicate situations. We avoid
2452 * security-related surprises by not following symlinks on the
2453 * newname. --KAB
2454 *
2455 * We don't follow them on the oldname either to be compatible
2456 * with linux 2.0, and to avoid hard-linking to directories
2457 * and other special files. --ADM
2458 */
2459 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2460 int, newdfd, const char __user *, newname, int, flags)
2461 {
2462 struct dentry *new_dentry;
2463 struct nameidata nd;
2464 struct path old_path;
2465 int error;
2466 char *to;
2467
2468 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2469 return -EINVAL;
2470
2471 error = user_path_at(olddfd, oldname,
2472 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2473 &old_path);
2474 if (error)
2475 return error;
2476
2477 error = user_path_parent(newdfd, newname, &nd, &to);
2478 if (error)
2479 goto out;
2480 error = -EXDEV;
2481 if (old_path.mnt != nd.path.mnt)
2482 goto out_release;
2483 new_dentry = lookup_create(&nd, 0);
2484 error = PTR_ERR(new_dentry);
2485 if (IS_ERR(new_dentry))
2486 goto out_unlock;
2487 error = mnt_want_write(nd.path.mnt);
2488 if (error)
2489 goto out_dput;
2490 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2491 if (error)
2492 goto out_drop_write;
2493 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2494 out_drop_write:
2495 mnt_drop_write(nd.path.mnt);
2496 out_dput:
2497 dput(new_dentry);
2498 out_unlock:
2499 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2500 out_release:
2501 path_put(&nd.path);
2502 putname(to);
2503 out:
2504 path_put(&old_path);
2505
2506 return error;
2507 }
2508
2509 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2510 {
2511 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2512 }
2513
2514 /*
2515 * The worst of all namespace operations - renaming directory. "Perverted"
2516 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2517 * Problems:
2518 * a) we can get into loop creation. Check is done in is_subdir().
2519 * b) race potential - two innocent renames can create a loop together.
2520 * That's where 4.4 screws up. Current fix: serialization on
2521 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2522 * story.
2523 * c) we have to lock _three_ objects - parents and victim (if it exists).
2524 * And that - after we got ->i_mutex on parents (until then we don't know
2525 * whether the target exists). Solution: try to be smart with locking
2526 * order for inodes. We rely on the fact that tree topology may change
2527 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2528 * move will be locked. Thus we can rank directories by the tree
2529 * (ancestors first) and rank all non-directories after them.
2530 * That works since everybody except rename does "lock parent, lookup,
2531 * lock child" and rename is under ->s_vfs_rename_mutex.
2532 * HOWEVER, it relies on the assumption that any object with ->lookup()
2533 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2534 * we'd better make sure that there's no link(2) for them.
2535 * d) some filesystems don't support opened-but-unlinked directories,
2536 * either because of layout or because they are not ready to deal with
2537 * all cases correctly. The latter will be fixed (taking this sort of
2538 * stuff into VFS), but the former is not going away. Solution: the same
2539 * trick as in rmdir().
2540 * e) conversion from fhandle to dentry may come in the wrong moment - when
2541 * we are removing the target. Solution: we will have to grab ->i_mutex
2542 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2543 * ->i_mutex on parents, which works but leads to some truly excessive
2544 * locking].
2545 */
2546 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2547 struct inode *new_dir, struct dentry *new_dentry)
2548 {
2549 int error = 0;
2550 struct inode *target;
2551
2552 /*
2553 * If we are going to change the parent - check write permissions,
2554 * we'll need to flip '..'.
2555 */
2556 if (new_dir != old_dir) {
2557 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2558 if (error)
2559 return error;
2560 }
2561
2562 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2563 if (error)
2564 return error;
2565
2566 target = new_dentry->d_inode;
2567 if (target)
2568 mutex_lock(&target->i_mutex);
2569 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2570 error = -EBUSY;
2571 else {
2572 if (target)
2573 dentry_unhash(new_dentry);
2574 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2575 }
2576 if (target) {
2577 if (!error) {
2578 target->i_flags |= S_DEAD;
2579 dont_mount(new_dentry);
2580 }
2581 mutex_unlock(&target->i_mutex);
2582 if (d_unhashed(new_dentry))
2583 d_rehash(new_dentry);
2584 dput(new_dentry);
2585 }
2586 if (!error)
2587 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2588 d_move(old_dentry,new_dentry);
2589 return error;
2590 }
2591
2592 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2593 struct inode *new_dir, struct dentry *new_dentry)
2594 {
2595 struct inode *target;
2596 int error;
2597
2598 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2599 if (error)
2600 return error;
2601
2602 dget(new_dentry);
2603 target = new_dentry->d_inode;
2604 if (target)
2605 mutex_lock(&target->i_mutex);
2606 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2607 error = -EBUSY;
2608 else
2609 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2610 if (!error) {
2611 if (target)
2612 dont_mount(new_dentry);
2613 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2614 d_move(old_dentry, new_dentry);
2615 }
2616 if (target)
2617 mutex_unlock(&target->i_mutex);
2618 dput(new_dentry);
2619 return error;
2620 }
2621
2622 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2623 struct inode *new_dir, struct dentry *new_dentry)
2624 {
2625 int error;
2626 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2627 const unsigned char *old_name;
2628
2629 if (old_dentry->d_inode == new_dentry->d_inode)
2630 return 0;
2631
2632 error = may_delete(old_dir, old_dentry, is_dir);
2633 if (error)
2634 return error;
2635
2636 if (!new_dentry->d_inode)
2637 error = may_create(new_dir, new_dentry);
2638 else
2639 error = may_delete(new_dir, new_dentry, is_dir);
2640 if (error)
2641 return error;
2642
2643 if (!old_dir->i_op->rename)
2644 return -EPERM;
2645
2646 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2647
2648 if (is_dir)
2649 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2650 else
2651 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2652 if (!error)
2653 fsnotify_move(old_dir, new_dir, old_name, is_dir,
2654 new_dentry->d_inode, old_dentry);
2655 fsnotify_oldname_free(old_name);
2656
2657 return error;
2658 }
2659
2660 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2661 int, newdfd, const char __user *, newname)
2662 {
2663 struct dentry *old_dir, *new_dir;
2664 struct dentry *old_dentry, *new_dentry;
2665 struct dentry *trap;
2666 struct nameidata oldnd, newnd;
2667 char *from;
2668 char *to;
2669 int error;
2670
2671 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2672 if (error)
2673 goto exit;
2674
2675 error = user_path_parent(newdfd, newname, &newnd, &to);
2676 if (error)
2677 goto exit1;
2678
2679 error = -EXDEV;
2680 if (oldnd.path.mnt != newnd.path.mnt)
2681 goto exit2;
2682
2683 old_dir = oldnd.path.dentry;
2684 error = -EBUSY;
2685 if (oldnd.last_type != LAST_NORM)
2686 goto exit2;
2687
2688 new_dir = newnd.path.dentry;
2689 if (newnd.last_type != LAST_NORM)
2690 goto exit2;
2691
2692 oldnd.flags &= ~LOOKUP_PARENT;
2693 newnd.flags &= ~LOOKUP_PARENT;
2694 newnd.flags |= LOOKUP_RENAME_TARGET;
2695
2696 trap = lock_rename(new_dir, old_dir);
2697
2698 old_dentry = lookup_hash(&oldnd);
2699 error = PTR_ERR(old_dentry);
2700 if (IS_ERR(old_dentry))
2701 goto exit3;
2702 /* source must exist */
2703 error = -ENOENT;
2704 if (!old_dentry->d_inode)
2705 goto exit4;
2706 /* unless the source is a directory trailing slashes give -ENOTDIR */
2707 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2708 error = -ENOTDIR;
2709 if (oldnd.last.name[oldnd.last.len])
2710 goto exit4;
2711 if (newnd.last.name[newnd.last.len])
2712 goto exit4;
2713 }
2714 /* source should not be ancestor of target */
2715 error = -EINVAL;
2716 if (old_dentry == trap)
2717 goto exit4;
2718 new_dentry = lookup_hash(&newnd);
2719 error = PTR_ERR(new_dentry);
2720 if (IS_ERR(new_dentry))
2721 goto exit4;
2722 /* target should not be an ancestor of source */
2723 error = -ENOTEMPTY;
2724 if (new_dentry == trap)
2725 goto exit5;
2726
2727 error = mnt_want_write(oldnd.path.mnt);
2728 if (error)
2729 goto exit5;
2730 error = security_path_rename(&oldnd.path, old_dentry,
2731 &newnd.path, new_dentry);
2732 if (error)
2733 goto exit6;
2734 error = vfs_rename(old_dir->d_inode, old_dentry,
2735 new_dir->d_inode, new_dentry);
2736 exit6:
2737 mnt_drop_write(oldnd.path.mnt);
2738 exit5:
2739 dput(new_dentry);
2740 exit4:
2741 dput(old_dentry);
2742 exit3:
2743 unlock_rename(new_dir, old_dir);
2744 exit2:
2745 path_put(&newnd.path);
2746 putname(to);
2747 exit1:
2748 path_put(&oldnd.path);
2749 putname(from);
2750 exit:
2751 return error;
2752 }
2753
2754 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2755 {
2756 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2757 }
2758
2759 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2760 {
2761 int len;
2762
2763 len = PTR_ERR(link);
2764 if (IS_ERR(link))
2765 goto out;
2766
2767 len = strlen(link);
2768 if (len > (unsigned) buflen)
2769 len = buflen;
2770 if (copy_to_user(buffer, link, len))
2771 len = -EFAULT;
2772 out:
2773 return len;
2774 }
2775
2776 /*
2777 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2778 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2779 * using) it for any given inode is up to filesystem.
2780 */
2781 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2782 {
2783 struct nameidata nd;
2784 void *cookie;
2785 int res;
2786
2787 nd.depth = 0;
2788 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2789 if (IS_ERR(cookie))
2790 return PTR_ERR(cookie);
2791
2792 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2793 if (dentry->d_inode->i_op->put_link)
2794 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2795 return res;
2796 }
2797
2798 int vfs_follow_link(struct nameidata *nd, const char *link)
2799 {
2800 return __vfs_follow_link(nd, link);
2801 }
2802
2803 /* get the link contents into pagecache */
2804 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2805 {
2806 char *kaddr;
2807 struct page *page;
2808 struct address_space *mapping = dentry->d_inode->i_mapping;
2809 page = read_mapping_page(mapping, 0, NULL);
2810 if (IS_ERR(page))
2811 return (char*)page;
2812 *ppage = page;
2813 kaddr = kmap(page);
2814 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2815 return kaddr;
2816 }
2817
2818 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2819 {
2820 struct page *page = NULL;
2821 char *s = page_getlink(dentry, &page);
2822 int res = vfs_readlink(dentry,buffer,buflen,s);
2823 if (page) {
2824 kunmap(page);
2825 page_cache_release(page);
2826 }
2827 return res;
2828 }
2829
2830 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2831 {
2832 struct page *page = NULL;
2833 nd_set_link(nd, page_getlink(dentry, &page));
2834 return page;
2835 }
2836
2837 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2838 {
2839 struct page *page = cookie;
2840
2841 if (page) {
2842 kunmap(page);
2843 page_cache_release(page);
2844 }
2845 }
2846
2847 /*
2848 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2849 */
2850 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2851 {
2852 struct address_space *mapping = inode->i_mapping;
2853 struct page *page;
2854 void *fsdata;
2855 int err;
2856 char *kaddr;
2857 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2858 if (nofs)
2859 flags |= AOP_FLAG_NOFS;
2860
2861 retry:
2862 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2863 flags, &page, &fsdata);
2864 if (err)
2865 goto fail;
2866
2867 kaddr = kmap_atomic(page, KM_USER0);
2868 memcpy(kaddr, symname, len-1);
2869 kunmap_atomic(kaddr, KM_USER0);
2870
2871 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2872 page, fsdata);
2873 if (err < 0)
2874 goto fail;
2875 if (err < len-1)
2876 goto retry;
2877
2878 mark_inode_dirty(inode);
2879 return 0;
2880 fail:
2881 return err;
2882 }
2883
2884 int page_symlink(struct inode *inode, const char *symname, int len)
2885 {
2886 return __page_symlink(inode, symname, len,
2887 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2888 }
2889
2890 const struct inode_operations page_symlink_inode_operations = {
2891 .readlink = generic_readlink,
2892 .follow_link = page_follow_link_light,
2893 .put_link = page_put_link,
2894 };
2895
2896 EXPORT_SYMBOL(user_path_at);
2897 EXPORT_SYMBOL(follow_down);
2898 EXPORT_SYMBOL(follow_up);
2899 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2900 EXPORT_SYMBOL(getname);
2901 EXPORT_SYMBOL(lock_rename);
2902 EXPORT_SYMBOL(lookup_one_len);
2903 EXPORT_SYMBOL(page_follow_link_light);
2904 EXPORT_SYMBOL(page_put_link);
2905 EXPORT_SYMBOL(page_readlink);
2906 EXPORT_SYMBOL(__page_symlink);
2907 EXPORT_SYMBOL(page_symlink);
2908 EXPORT_SYMBOL(page_symlink_inode_operations);
2909 EXPORT_SYMBOL(path_lookup);
2910 EXPORT_SYMBOL(kern_path);
2911 EXPORT_SYMBOL(vfs_path_lookup);
2912 EXPORT_SYMBOL(inode_permission);
2913 EXPORT_SYMBOL(file_permission);
2914 EXPORT_SYMBOL(unlock_rename);
2915 EXPORT_SYMBOL(vfs_create);
2916 EXPORT_SYMBOL(vfs_follow_link);
2917 EXPORT_SYMBOL(vfs_link);
2918 EXPORT_SYMBOL(vfs_mkdir);
2919 EXPORT_SYMBOL(vfs_mknod);
2920 EXPORT_SYMBOL(generic_permission);
2921 EXPORT_SYMBOL(vfs_readlink);
2922 EXPORT_SYMBOL(vfs_rename);
2923 EXPORT_SYMBOL(vfs_rmdir);
2924 EXPORT_SYMBOL(vfs_symlink);
2925 EXPORT_SYMBOL(vfs_unlink);
2926 EXPORT_SYMBOL(dentry_unhash);
2927 EXPORT_SYMBOL(generic_readlink);