]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/namei.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-bionic-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 static char *getname_flags(const char __user *filename, int flags, int *empty)
121 {
122 char *result = __getname(), *err;
123 int len;
124
125 if (unlikely(!result))
126 return ERR_PTR(-ENOMEM);
127
128 len = strncpy_from_user(result, filename, PATH_MAX);
129 err = ERR_PTR(len);
130 if (unlikely(len < 0))
131 goto error;
132
133 /* The empty path is special. */
134 if (unlikely(!len)) {
135 if (empty)
136 *empty = 1;
137 err = ERR_PTR(-ENOENT);
138 if (!(flags & LOOKUP_EMPTY))
139 goto error;
140 }
141
142 err = ERR_PTR(-ENAMETOOLONG);
143 if (likely(len < PATH_MAX)) {
144 audit_getname(result);
145 return result;
146 }
147
148 error:
149 __putname(result);
150 return err;
151 }
152
153 char *getname(const char __user * filename)
154 {
155 return getname_flags(filename, 0, NULL);
156 }
157
158 #ifdef CONFIG_AUDITSYSCALL
159 void putname(const char *name)
160 {
161 if (unlikely(!audit_dummy_context()))
162 audit_putname(name);
163 else
164 __putname(name);
165 }
166 EXPORT_SYMBOL(putname);
167 #endif
168
169 static int check_acl(struct inode *inode, int mask)
170 {
171 #ifdef CONFIG_FS_POSIX_ACL
172 struct posix_acl *acl;
173
174 if (mask & MAY_NOT_BLOCK) {
175 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
176 if (!acl)
177 return -EAGAIN;
178 /* no ->get_acl() calls in RCU mode... */
179 if (acl == ACL_NOT_CACHED)
180 return -ECHILD;
181 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
182 }
183
184 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
185
186 /*
187 * A filesystem can force a ACL callback by just never filling the
188 * ACL cache. But normally you'd fill the cache either at inode
189 * instantiation time, or on the first ->get_acl call.
190 *
191 * If the filesystem doesn't have a get_acl() function at all, we'll
192 * just create the negative cache entry.
193 */
194 if (acl == ACL_NOT_CACHED) {
195 if (inode->i_op->get_acl) {
196 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
197 if (IS_ERR(acl))
198 return PTR_ERR(acl);
199 } else {
200 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
201 return -EAGAIN;
202 }
203 }
204
205 if (acl) {
206 int error = posix_acl_permission(inode, acl, mask);
207 posix_acl_release(acl);
208 return error;
209 }
210 #endif
211
212 return -EAGAIN;
213 }
214
215 /*
216 * This does the basic permission checking
217 */
218 static int acl_permission_check(struct inode *inode, int mask)
219 {
220 unsigned int mode = inode->i_mode;
221
222 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
223 mode >>= 6;
224 else {
225 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
226 int error = check_acl(inode, mask);
227 if (error != -EAGAIN)
228 return error;
229 }
230
231 if (in_group_p(inode->i_gid))
232 mode >>= 3;
233 }
234
235 /*
236 * If the DACs are ok we don't need any capability check.
237 */
238 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
239 return 0;
240 return -EACCES;
241 }
242
243 /**
244 * generic_permission - check for access rights on a Posix-like filesystem
245 * @inode: inode to check access rights for
246 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
247 *
248 * Used to check for read/write/execute permissions on a file.
249 * We use "fsuid" for this, letting us set arbitrary permissions
250 * for filesystem access without changing the "normal" uids which
251 * are used for other things.
252 *
253 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
254 * request cannot be satisfied (eg. requires blocking or too much complexity).
255 * It would then be called again in ref-walk mode.
256 */
257 int generic_permission(struct inode *inode, int mask)
258 {
259 int ret;
260
261 /*
262 * Do the basic permission checks.
263 */
264 ret = acl_permission_check(inode, mask);
265 if (ret != -EACCES)
266 return ret;
267
268 if (S_ISDIR(inode->i_mode)) {
269 /* DACs are overridable for directories */
270 if (inode_capable(inode, CAP_DAC_OVERRIDE))
271 return 0;
272 if (!(mask & MAY_WRITE))
273 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
274 return 0;
275 return -EACCES;
276 }
277 /*
278 * Read/write DACs are always overridable.
279 * Executable DACs are overridable when there is
280 * at least one exec bit set.
281 */
282 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
283 if (inode_capable(inode, CAP_DAC_OVERRIDE))
284 return 0;
285
286 /*
287 * Searching includes executable on directories, else just read.
288 */
289 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
290 if (mask == MAY_READ)
291 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
292 return 0;
293
294 return -EACCES;
295 }
296
297 /*
298 * We _really_ want to just do "generic_permission()" without
299 * even looking at the inode->i_op values. So we keep a cache
300 * flag in inode->i_opflags, that says "this has not special
301 * permission function, use the fast case".
302 */
303 static inline int do_inode_permission(struct inode *inode, int mask)
304 {
305 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
306 if (likely(inode->i_op->permission))
307 return inode->i_op->permission(inode, mask);
308
309 /* This gets set once for the inode lifetime */
310 spin_lock(&inode->i_lock);
311 inode->i_opflags |= IOP_FASTPERM;
312 spin_unlock(&inode->i_lock);
313 }
314 return generic_permission(inode, mask);
315 }
316
317 /**
318 * __inode_permission - Check for access rights to a given inode
319 * @inode: Inode to check permission on
320 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
321 *
322 * Check for read/write/execute permissions on an inode.
323 *
324 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
325 *
326 * This does not check for a read-only file system. You probably want
327 * inode_permission().
328 */
329 int __inode_permission(struct inode *inode, int mask)
330 {
331 int retval;
332
333 if (unlikely(mask & MAY_WRITE)) {
334 /*
335 * Nobody gets write access to an immutable file.
336 */
337 if (IS_IMMUTABLE(inode))
338 return -EACCES;
339 }
340
341 retval = do_inode_permission(inode, mask);
342 if (retval)
343 return retval;
344
345 retval = devcgroup_inode_permission(inode, mask);
346 if (retval)
347 return retval;
348
349 return security_inode_permission(inode, mask);
350 }
351
352 /**
353 * sb_permission - Check superblock-level permissions
354 * @sb: Superblock of inode to check permission on
355 * @inode: Inode to check permission on
356 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
357 *
358 * Separate out file-system wide checks from inode-specific permission checks.
359 */
360 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
361 {
362 if (unlikely(mask & MAY_WRITE)) {
363 umode_t mode = inode->i_mode;
364
365 /* Nobody gets write access to a read-only fs. */
366 if ((sb->s_flags & MS_RDONLY) &&
367 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
368 return -EROFS;
369 }
370 return 0;
371 }
372
373 /**
374 * inode_permission - Check for access rights to a given inode
375 * @inode: Inode to check permission on
376 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
377 *
378 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
379 * this, letting us set arbitrary permissions for filesystem access without
380 * changing the "normal" UIDs which are used for other things.
381 *
382 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
383 */
384 int inode_permission(struct inode *inode, int mask)
385 {
386 int retval;
387
388 retval = sb_permission(inode->i_sb, inode, mask);
389 if (retval)
390 return retval;
391 return __inode_permission(inode, mask);
392 }
393
394 /**
395 * path_get - get a reference to a path
396 * @path: path to get the reference to
397 *
398 * Given a path increment the reference count to the dentry and the vfsmount.
399 */
400 void path_get(struct path *path)
401 {
402 mntget(path->mnt);
403 dget(path->dentry);
404 }
405 EXPORT_SYMBOL(path_get);
406
407 /**
408 * path_put - put a reference to a path
409 * @path: path to put the reference to
410 *
411 * Given a path decrement the reference count to the dentry and the vfsmount.
412 */
413 void path_put(struct path *path)
414 {
415 dput(path->dentry);
416 mntput(path->mnt);
417 }
418 EXPORT_SYMBOL(path_put);
419
420 /*
421 * Path walking has 2 modes, rcu-walk and ref-walk (see
422 * Documentation/filesystems/path-lookup.txt). In situations when we can't
423 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
424 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
425 * mode. Refcounts are grabbed at the last known good point before rcu-walk
426 * got stuck, so ref-walk may continue from there. If this is not successful
427 * (eg. a seqcount has changed), then failure is returned and it's up to caller
428 * to restart the path walk from the beginning in ref-walk mode.
429 */
430
431 static inline void lock_rcu_walk(void)
432 {
433 br_read_lock(&vfsmount_lock);
434 rcu_read_lock();
435 }
436
437 static inline void unlock_rcu_walk(void)
438 {
439 rcu_read_unlock();
440 br_read_unlock(&vfsmount_lock);
441 }
442
443 /**
444 * unlazy_walk - try to switch to ref-walk mode.
445 * @nd: nameidata pathwalk data
446 * @dentry: child of nd->path.dentry or NULL
447 * Returns: 0 on success, -ECHILD on failure
448 *
449 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
450 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
451 * @nd or NULL. Must be called from rcu-walk context.
452 */
453 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
454 {
455 struct fs_struct *fs = current->fs;
456 struct dentry *parent = nd->path.dentry;
457 int want_root = 0;
458
459 BUG_ON(!(nd->flags & LOOKUP_RCU));
460 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
461 want_root = 1;
462 spin_lock(&fs->lock);
463 if (nd->root.mnt != fs->root.mnt ||
464 nd->root.dentry != fs->root.dentry)
465 goto err_root;
466 }
467 spin_lock(&parent->d_lock);
468 if (!dentry) {
469 if (!__d_rcu_to_refcount(parent, nd->seq))
470 goto err_parent;
471 BUG_ON(nd->inode != parent->d_inode);
472 } else {
473 if (dentry->d_parent != parent)
474 goto err_parent;
475 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
476 if (!__d_rcu_to_refcount(dentry, nd->seq))
477 goto err_child;
478 /*
479 * If the sequence check on the child dentry passed, then
480 * the child has not been removed from its parent. This
481 * means the parent dentry must be valid and able to take
482 * a reference at this point.
483 */
484 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
485 BUG_ON(!parent->d_count);
486 parent->d_count++;
487 spin_unlock(&dentry->d_lock);
488 }
489 spin_unlock(&parent->d_lock);
490 if (want_root) {
491 path_get(&nd->root);
492 spin_unlock(&fs->lock);
493 }
494 mntget(nd->path.mnt);
495
496 unlock_rcu_walk();
497 nd->flags &= ~LOOKUP_RCU;
498 return 0;
499
500 err_child:
501 spin_unlock(&dentry->d_lock);
502 err_parent:
503 spin_unlock(&parent->d_lock);
504 err_root:
505 if (want_root)
506 spin_unlock(&fs->lock);
507 return -ECHILD;
508 }
509
510 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
511 {
512 return dentry->d_op->d_revalidate(dentry, flags);
513 }
514
515 /**
516 * complete_walk - successful completion of path walk
517 * @nd: pointer nameidata
518 *
519 * If we had been in RCU mode, drop out of it and legitimize nd->path.
520 * Revalidate the final result, unless we'd already done that during
521 * the path walk or the filesystem doesn't ask for it. Return 0 on
522 * success, -error on failure. In case of failure caller does not
523 * need to drop nd->path.
524 */
525 static int complete_walk(struct nameidata *nd)
526 {
527 struct dentry *dentry = nd->path.dentry;
528 int status;
529
530 if (nd->flags & LOOKUP_RCU) {
531 nd->flags &= ~LOOKUP_RCU;
532 if (!(nd->flags & LOOKUP_ROOT))
533 nd->root.mnt = NULL;
534 spin_lock(&dentry->d_lock);
535 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
536 spin_unlock(&dentry->d_lock);
537 unlock_rcu_walk();
538 return -ECHILD;
539 }
540 BUG_ON(nd->inode != dentry->d_inode);
541 spin_unlock(&dentry->d_lock);
542 mntget(nd->path.mnt);
543 unlock_rcu_walk();
544 }
545
546 if (likely(!(nd->flags & LOOKUP_JUMPED)))
547 return 0;
548
549 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
550 return 0;
551
552 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
553 return 0;
554
555 /* Note: we do not d_invalidate() */
556 status = d_revalidate(dentry, nd->flags);
557 if (status > 0)
558 return 0;
559
560 if (!status)
561 status = -ESTALE;
562
563 path_put(&nd->path);
564 return status;
565 }
566
567 static __always_inline void set_root(struct nameidata *nd)
568 {
569 if (!nd->root.mnt)
570 get_fs_root(current->fs, &nd->root);
571 }
572
573 static int link_path_walk(const char *, struct nameidata *);
574
575 static __always_inline void set_root_rcu(struct nameidata *nd)
576 {
577 if (!nd->root.mnt) {
578 struct fs_struct *fs = current->fs;
579 unsigned seq;
580
581 do {
582 seq = read_seqcount_begin(&fs->seq);
583 nd->root = fs->root;
584 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
585 } while (read_seqcount_retry(&fs->seq, seq));
586 }
587 }
588
589 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
590 {
591 int ret;
592
593 if (IS_ERR(link))
594 goto fail;
595
596 if (*link == '/') {
597 set_root(nd);
598 path_put(&nd->path);
599 nd->path = nd->root;
600 path_get(&nd->root);
601 nd->flags |= LOOKUP_JUMPED;
602 }
603 nd->inode = nd->path.dentry->d_inode;
604
605 ret = link_path_walk(link, nd);
606 return ret;
607 fail:
608 path_put(&nd->path);
609 return PTR_ERR(link);
610 }
611
612 static void path_put_conditional(struct path *path, struct nameidata *nd)
613 {
614 dput(path->dentry);
615 if (path->mnt != nd->path.mnt)
616 mntput(path->mnt);
617 }
618
619 static inline void path_to_nameidata(const struct path *path,
620 struct nameidata *nd)
621 {
622 if (!(nd->flags & LOOKUP_RCU)) {
623 dput(nd->path.dentry);
624 if (nd->path.mnt != path->mnt)
625 mntput(nd->path.mnt);
626 }
627 nd->path.mnt = path->mnt;
628 nd->path.dentry = path->dentry;
629 }
630
631 /*
632 * Helper to directly jump to a known parsed path from ->follow_link,
633 * caller must have taken a reference to path beforehand.
634 */
635 void nd_jump_link(struct nameidata *nd, struct path *path)
636 {
637 path_put(&nd->path);
638
639 nd->path = *path;
640 nd->inode = nd->path.dentry->d_inode;
641 nd->flags |= LOOKUP_JUMPED;
642
643 BUG_ON(nd->inode->i_op->follow_link);
644 }
645
646 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
647 {
648 struct inode *inode = link->dentry->d_inode;
649 if (inode->i_op->put_link)
650 inode->i_op->put_link(link->dentry, nd, cookie);
651 path_put(link);
652 }
653
654 int sysctl_protected_symlinks __read_mostly = 1;
655 int sysctl_protected_hardlinks __read_mostly = 1;
656
657 /**
658 * may_follow_link - Check symlink following for unsafe situations
659 * @link: The path of the symlink
660 * @nd: nameidata pathwalk data
661 *
662 * In the case of the sysctl_protected_symlinks sysctl being enabled,
663 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
664 * in a sticky world-writable directory. This is to protect privileged
665 * processes from failing races against path names that may change out
666 * from under them by way of other users creating malicious symlinks.
667 * It will permit symlinks to be followed only when outside a sticky
668 * world-writable directory, or when the uid of the symlink and follower
669 * match, or when the directory owner matches the symlink's owner.
670 *
671 * Returns 0 if following the symlink is allowed, -ve on error.
672 */
673 static inline int may_follow_link(struct path *link, struct nameidata *nd)
674 {
675 const struct inode *inode;
676 const struct inode *parent;
677
678 if (!sysctl_protected_symlinks)
679 return 0;
680
681 /* Allowed if owner and follower match. */
682 inode = link->dentry->d_inode;
683 if (uid_eq(current_cred()->fsuid, inode->i_uid))
684 return 0;
685
686 /* Allowed if parent directory not sticky and world-writable. */
687 parent = nd->path.dentry->d_inode;
688 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
689 return 0;
690
691 /* Allowed if parent directory and link owner match. */
692 if (uid_eq(parent->i_uid, inode->i_uid))
693 return 0;
694
695 audit_log_link_denied("follow_link", link);
696 path_put_conditional(link, nd);
697 path_put(&nd->path);
698 return -EACCES;
699 }
700
701 /**
702 * safe_hardlink_source - Check for safe hardlink conditions
703 * @inode: the source inode to hardlink from
704 *
705 * Return false if at least one of the following conditions:
706 * - inode is not a regular file
707 * - inode is setuid
708 * - inode is setgid and group-exec
709 * - access failure for read and write
710 *
711 * Otherwise returns true.
712 */
713 static bool safe_hardlink_source(struct inode *inode)
714 {
715 umode_t mode = inode->i_mode;
716
717 /* Special files should not get pinned to the filesystem. */
718 if (!S_ISREG(mode))
719 return false;
720
721 /* Setuid files should not get pinned to the filesystem. */
722 if (mode & S_ISUID)
723 return false;
724
725 /* Executable setgid files should not get pinned to the filesystem. */
726 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
727 return false;
728
729 /* Hardlinking to unreadable or unwritable sources is dangerous. */
730 if (inode_permission(inode, MAY_READ | MAY_WRITE))
731 return false;
732
733 return true;
734 }
735
736 /**
737 * may_linkat - Check permissions for creating a hardlink
738 * @link: the source to hardlink from
739 *
740 * Block hardlink when all of:
741 * - sysctl_protected_hardlinks enabled
742 * - fsuid does not match inode
743 * - hardlink source is unsafe (see safe_hardlink_source() above)
744 * - not CAP_FOWNER
745 *
746 * Returns 0 if successful, -ve on error.
747 */
748 static int may_linkat(struct path *link)
749 {
750 const struct cred *cred;
751 struct inode *inode;
752
753 if (!sysctl_protected_hardlinks)
754 return 0;
755
756 cred = current_cred();
757 inode = link->dentry->d_inode;
758
759 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
760 * otherwise, it must be a safe source.
761 */
762 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
763 capable(CAP_FOWNER))
764 return 0;
765
766 audit_log_link_denied("linkat", link);
767 return -EPERM;
768 }
769
770 static __always_inline int
771 follow_link(struct path *link, struct nameidata *nd, void **p)
772 {
773 struct dentry *dentry = link->dentry;
774 int error;
775 char *s;
776
777 BUG_ON(nd->flags & LOOKUP_RCU);
778
779 if (link->mnt == nd->path.mnt)
780 mntget(link->mnt);
781
782 error = -ELOOP;
783 if (unlikely(current->total_link_count >= 40))
784 goto out_put_nd_path;
785
786 cond_resched();
787 current->total_link_count++;
788
789 touch_atime(link);
790 nd_set_link(nd, NULL);
791
792 error = security_inode_follow_link(link->dentry, nd);
793 if (error)
794 goto out_put_nd_path;
795
796 nd->last_type = LAST_BIND;
797 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
798 error = PTR_ERR(*p);
799 if (IS_ERR(*p))
800 goto out_put_nd_path;
801
802 error = 0;
803 s = nd_get_link(nd);
804 if (s) {
805 error = __vfs_follow_link(nd, s);
806 if (unlikely(error))
807 put_link(nd, link, *p);
808 }
809
810 return error;
811
812 out_put_nd_path:
813 *p = NULL;
814 path_put(&nd->path);
815 path_put(link);
816 return error;
817 }
818
819 static int follow_up_rcu(struct path *path)
820 {
821 struct mount *mnt = real_mount(path->mnt);
822 struct mount *parent;
823 struct dentry *mountpoint;
824
825 parent = mnt->mnt_parent;
826 if (&parent->mnt == path->mnt)
827 return 0;
828 mountpoint = mnt->mnt_mountpoint;
829 path->dentry = mountpoint;
830 path->mnt = &parent->mnt;
831 return 1;
832 }
833
834 /*
835 * follow_up - Find the mountpoint of path's vfsmount
836 *
837 * Given a path, find the mountpoint of its source file system.
838 * Replace @path with the path of the mountpoint in the parent mount.
839 * Up is towards /.
840 *
841 * Return 1 if we went up a level and 0 if we were already at the
842 * root.
843 */
844 int follow_up(struct path *path)
845 {
846 struct mount *mnt = real_mount(path->mnt);
847 struct mount *parent;
848 struct dentry *mountpoint;
849
850 br_read_lock(&vfsmount_lock);
851 parent = mnt->mnt_parent;
852 if (parent == mnt) {
853 br_read_unlock(&vfsmount_lock);
854 return 0;
855 }
856 mntget(&parent->mnt);
857 mountpoint = dget(mnt->mnt_mountpoint);
858 br_read_unlock(&vfsmount_lock);
859 dput(path->dentry);
860 path->dentry = mountpoint;
861 mntput(path->mnt);
862 path->mnt = &parent->mnt;
863 return 1;
864 }
865
866 /*
867 * Perform an automount
868 * - return -EISDIR to tell follow_managed() to stop and return the path we
869 * were called with.
870 */
871 static int follow_automount(struct path *path, unsigned flags,
872 bool *need_mntput)
873 {
874 struct vfsmount *mnt;
875 int err;
876
877 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
878 return -EREMOTE;
879
880 /* We don't want to mount if someone's just doing a stat -
881 * unless they're stat'ing a directory and appended a '/' to
882 * the name.
883 *
884 * We do, however, want to mount if someone wants to open or
885 * create a file of any type under the mountpoint, wants to
886 * traverse through the mountpoint or wants to open the
887 * mounted directory. Also, autofs may mark negative dentries
888 * as being automount points. These will need the attentions
889 * of the daemon to instantiate them before they can be used.
890 */
891 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
892 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
893 path->dentry->d_inode)
894 return -EISDIR;
895
896 current->total_link_count++;
897 if (current->total_link_count >= 40)
898 return -ELOOP;
899
900 mnt = path->dentry->d_op->d_automount(path);
901 if (IS_ERR(mnt)) {
902 /*
903 * The filesystem is allowed to return -EISDIR here to indicate
904 * it doesn't want to automount. For instance, autofs would do
905 * this so that its userspace daemon can mount on this dentry.
906 *
907 * However, we can only permit this if it's a terminal point in
908 * the path being looked up; if it wasn't then the remainder of
909 * the path is inaccessible and we should say so.
910 */
911 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
912 return -EREMOTE;
913 return PTR_ERR(mnt);
914 }
915
916 if (!mnt) /* mount collision */
917 return 0;
918
919 if (!*need_mntput) {
920 /* lock_mount() may release path->mnt on error */
921 mntget(path->mnt);
922 *need_mntput = true;
923 }
924 err = finish_automount(mnt, path);
925
926 switch (err) {
927 case -EBUSY:
928 /* Someone else made a mount here whilst we were busy */
929 return 0;
930 case 0:
931 path_put(path);
932 path->mnt = mnt;
933 path->dentry = dget(mnt->mnt_root);
934 return 0;
935 default:
936 return err;
937 }
938
939 }
940
941 /*
942 * Handle a dentry that is managed in some way.
943 * - Flagged for transit management (autofs)
944 * - Flagged as mountpoint
945 * - Flagged as automount point
946 *
947 * This may only be called in refwalk mode.
948 *
949 * Serialization is taken care of in namespace.c
950 */
951 static int follow_managed(struct path *path, unsigned flags)
952 {
953 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
954 unsigned managed;
955 bool need_mntput = false;
956 int ret = 0;
957
958 /* Given that we're not holding a lock here, we retain the value in a
959 * local variable for each dentry as we look at it so that we don't see
960 * the components of that value change under us */
961 while (managed = ACCESS_ONCE(path->dentry->d_flags),
962 managed &= DCACHE_MANAGED_DENTRY,
963 unlikely(managed != 0)) {
964 /* Allow the filesystem to manage the transit without i_mutex
965 * being held. */
966 if (managed & DCACHE_MANAGE_TRANSIT) {
967 BUG_ON(!path->dentry->d_op);
968 BUG_ON(!path->dentry->d_op->d_manage);
969 ret = path->dentry->d_op->d_manage(path->dentry, false);
970 if (ret < 0)
971 break;
972 }
973
974 /* Transit to a mounted filesystem. */
975 if (managed & DCACHE_MOUNTED) {
976 struct vfsmount *mounted = lookup_mnt(path);
977 if (mounted) {
978 dput(path->dentry);
979 if (need_mntput)
980 mntput(path->mnt);
981 path->mnt = mounted;
982 path->dentry = dget(mounted->mnt_root);
983 need_mntput = true;
984 continue;
985 }
986
987 /* Something is mounted on this dentry in another
988 * namespace and/or whatever was mounted there in this
989 * namespace got unmounted before we managed to get the
990 * vfsmount_lock */
991 }
992
993 /* Handle an automount point */
994 if (managed & DCACHE_NEED_AUTOMOUNT) {
995 ret = follow_automount(path, flags, &need_mntput);
996 if (ret < 0)
997 break;
998 continue;
999 }
1000
1001 /* We didn't change the current path point */
1002 break;
1003 }
1004
1005 if (need_mntput && path->mnt == mnt)
1006 mntput(path->mnt);
1007 if (ret == -EISDIR)
1008 ret = 0;
1009 return ret < 0 ? ret : need_mntput;
1010 }
1011
1012 int follow_down_one(struct path *path)
1013 {
1014 struct vfsmount *mounted;
1015
1016 mounted = lookup_mnt(path);
1017 if (mounted) {
1018 dput(path->dentry);
1019 mntput(path->mnt);
1020 path->mnt = mounted;
1021 path->dentry = dget(mounted->mnt_root);
1022 return 1;
1023 }
1024 return 0;
1025 }
1026
1027 static inline bool managed_dentry_might_block(struct dentry *dentry)
1028 {
1029 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1030 dentry->d_op->d_manage(dentry, true) < 0);
1031 }
1032
1033 /*
1034 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1035 * we meet a managed dentry that would need blocking.
1036 */
1037 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1038 struct inode **inode)
1039 {
1040 for (;;) {
1041 struct mount *mounted;
1042 /*
1043 * Don't forget we might have a non-mountpoint managed dentry
1044 * that wants to block transit.
1045 */
1046 if (unlikely(managed_dentry_might_block(path->dentry)))
1047 return false;
1048
1049 if (!d_mountpoint(path->dentry))
1050 break;
1051
1052 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1053 if (!mounted)
1054 break;
1055 path->mnt = &mounted->mnt;
1056 path->dentry = mounted->mnt.mnt_root;
1057 nd->flags |= LOOKUP_JUMPED;
1058 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1059 /*
1060 * Update the inode too. We don't need to re-check the
1061 * dentry sequence number here after this d_inode read,
1062 * because a mount-point is always pinned.
1063 */
1064 *inode = path->dentry->d_inode;
1065 }
1066 return true;
1067 }
1068
1069 static void follow_mount_rcu(struct nameidata *nd)
1070 {
1071 while (d_mountpoint(nd->path.dentry)) {
1072 struct mount *mounted;
1073 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1074 if (!mounted)
1075 break;
1076 nd->path.mnt = &mounted->mnt;
1077 nd->path.dentry = mounted->mnt.mnt_root;
1078 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1079 }
1080 }
1081
1082 static int follow_dotdot_rcu(struct nameidata *nd)
1083 {
1084 set_root_rcu(nd);
1085
1086 while (1) {
1087 if (nd->path.dentry == nd->root.dentry &&
1088 nd->path.mnt == nd->root.mnt) {
1089 break;
1090 }
1091 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1092 struct dentry *old = nd->path.dentry;
1093 struct dentry *parent = old->d_parent;
1094 unsigned seq;
1095
1096 seq = read_seqcount_begin(&parent->d_seq);
1097 if (read_seqcount_retry(&old->d_seq, nd->seq))
1098 goto failed;
1099 nd->path.dentry = parent;
1100 nd->seq = seq;
1101 break;
1102 }
1103 if (!follow_up_rcu(&nd->path))
1104 break;
1105 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1106 }
1107 follow_mount_rcu(nd);
1108 nd->inode = nd->path.dentry->d_inode;
1109 return 0;
1110
1111 failed:
1112 nd->flags &= ~LOOKUP_RCU;
1113 if (!(nd->flags & LOOKUP_ROOT))
1114 nd->root.mnt = NULL;
1115 unlock_rcu_walk();
1116 return -ECHILD;
1117 }
1118
1119 /*
1120 * Follow down to the covering mount currently visible to userspace. At each
1121 * point, the filesystem owning that dentry may be queried as to whether the
1122 * caller is permitted to proceed or not.
1123 */
1124 int follow_down(struct path *path)
1125 {
1126 unsigned managed;
1127 int ret;
1128
1129 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1130 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1131 /* Allow the filesystem to manage the transit without i_mutex
1132 * being held.
1133 *
1134 * We indicate to the filesystem if someone is trying to mount
1135 * something here. This gives autofs the chance to deny anyone
1136 * other than its daemon the right to mount on its
1137 * superstructure.
1138 *
1139 * The filesystem may sleep at this point.
1140 */
1141 if (managed & DCACHE_MANAGE_TRANSIT) {
1142 BUG_ON(!path->dentry->d_op);
1143 BUG_ON(!path->dentry->d_op->d_manage);
1144 ret = path->dentry->d_op->d_manage(
1145 path->dentry, false);
1146 if (ret < 0)
1147 return ret == -EISDIR ? 0 : ret;
1148 }
1149
1150 /* Transit to a mounted filesystem. */
1151 if (managed & DCACHE_MOUNTED) {
1152 struct vfsmount *mounted = lookup_mnt(path);
1153 if (!mounted)
1154 break;
1155 dput(path->dentry);
1156 mntput(path->mnt);
1157 path->mnt = mounted;
1158 path->dentry = dget(mounted->mnt_root);
1159 continue;
1160 }
1161
1162 /* Don't handle automount points here */
1163 break;
1164 }
1165 return 0;
1166 }
1167
1168 /*
1169 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1170 */
1171 static void follow_mount(struct path *path)
1172 {
1173 while (d_mountpoint(path->dentry)) {
1174 struct vfsmount *mounted = lookup_mnt(path);
1175 if (!mounted)
1176 break;
1177 dput(path->dentry);
1178 mntput(path->mnt);
1179 path->mnt = mounted;
1180 path->dentry = dget(mounted->mnt_root);
1181 }
1182 }
1183
1184 static void follow_dotdot(struct nameidata *nd)
1185 {
1186 set_root(nd);
1187
1188 while(1) {
1189 struct dentry *old = nd->path.dentry;
1190
1191 if (nd->path.dentry == nd->root.dentry &&
1192 nd->path.mnt == nd->root.mnt) {
1193 break;
1194 }
1195 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1196 /* rare case of legitimate dget_parent()... */
1197 nd->path.dentry = dget_parent(nd->path.dentry);
1198 dput(old);
1199 break;
1200 }
1201 if (!follow_up(&nd->path))
1202 break;
1203 }
1204 follow_mount(&nd->path);
1205 nd->inode = nd->path.dentry->d_inode;
1206 }
1207
1208 /*
1209 * This looks up the name in dcache, possibly revalidates the old dentry and
1210 * allocates a new one if not found or not valid. In the need_lookup argument
1211 * returns whether i_op->lookup is necessary.
1212 *
1213 * dir->d_inode->i_mutex must be held
1214 */
1215 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1216 unsigned int flags, bool *need_lookup)
1217 {
1218 struct dentry *dentry;
1219 int error;
1220
1221 *need_lookup = false;
1222 dentry = d_lookup(dir, name);
1223 if (dentry) {
1224 if (d_need_lookup(dentry)) {
1225 *need_lookup = true;
1226 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1227 error = d_revalidate(dentry, flags);
1228 if (unlikely(error <= 0)) {
1229 if (error < 0) {
1230 dput(dentry);
1231 return ERR_PTR(error);
1232 } else if (!d_invalidate(dentry)) {
1233 dput(dentry);
1234 dentry = NULL;
1235 }
1236 }
1237 }
1238 }
1239
1240 if (!dentry) {
1241 dentry = d_alloc(dir, name);
1242 if (unlikely(!dentry))
1243 return ERR_PTR(-ENOMEM);
1244
1245 *need_lookup = true;
1246 }
1247 return dentry;
1248 }
1249
1250 /*
1251 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1252 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1253 *
1254 * dir->d_inode->i_mutex must be held
1255 */
1256 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1257 unsigned int flags)
1258 {
1259 struct dentry *old;
1260
1261 /* Don't create child dentry for a dead directory. */
1262 if (unlikely(IS_DEADDIR(dir))) {
1263 dput(dentry);
1264 return ERR_PTR(-ENOENT);
1265 }
1266
1267 old = dir->i_op->lookup(dir, dentry, flags);
1268 if (unlikely(old)) {
1269 dput(dentry);
1270 dentry = old;
1271 }
1272 return dentry;
1273 }
1274
1275 static struct dentry *__lookup_hash(struct qstr *name,
1276 struct dentry *base, unsigned int flags)
1277 {
1278 bool need_lookup;
1279 struct dentry *dentry;
1280
1281 dentry = lookup_dcache(name, base, flags, &need_lookup);
1282 if (!need_lookup)
1283 return dentry;
1284
1285 return lookup_real(base->d_inode, dentry, flags);
1286 }
1287
1288 /*
1289 * It's more convoluted than I'd like it to be, but... it's still fairly
1290 * small and for now I'd prefer to have fast path as straight as possible.
1291 * It _is_ time-critical.
1292 */
1293 static int lookup_fast(struct nameidata *nd, struct qstr *name,
1294 struct path *path, struct inode **inode)
1295 {
1296 struct vfsmount *mnt = nd->path.mnt;
1297 struct dentry *dentry, *parent = nd->path.dentry;
1298 int need_reval = 1;
1299 int status = 1;
1300 int err;
1301
1302 /*
1303 * Rename seqlock is not required here because in the off chance
1304 * of a false negative due to a concurrent rename, we're going to
1305 * do the non-racy lookup, below.
1306 */
1307 if (nd->flags & LOOKUP_RCU) {
1308 unsigned seq;
1309 dentry = __d_lookup_rcu(parent, name, &seq, nd->inode);
1310 if (!dentry)
1311 goto unlazy;
1312
1313 /*
1314 * This sequence count validates that the inode matches
1315 * the dentry name information from lookup.
1316 */
1317 *inode = dentry->d_inode;
1318 if (read_seqcount_retry(&dentry->d_seq, seq))
1319 return -ECHILD;
1320
1321 /*
1322 * This sequence count validates that the parent had no
1323 * changes while we did the lookup of the dentry above.
1324 *
1325 * The memory barrier in read_seqcount_begin of child is
1326 * enough, we can use __read_seqcount_retry here.
1327 */
1328 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1329 return -ECHILD;
1330 nd->seq = seq;
1331
1332 if (unlikely(d_need_lookup(dentry)))
1333 goto unlazy;
1334 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1335 status = d_revalidate(dentry, nd->flags);
1336 if (unlikely(status <= 0)) {
1337 if (status != -ECHILD)
1338 need_reval = 0;
1339 goto unlazy;
1340 }
1341 }
1342 path->mnt = mnt;
1343 path->dentry = dentry;
1344 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1345 goto unlazy;
1346 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1347 goto unlazy;
1348 return 0;
1349 unlazy:
1350 if (unlazy_walk(nd, dentry))
1351 return -ECHILD;
1352 } else {
1353 dentry = __d_lookup(parent, name);
1354 }
1355
1356 if (unlikely(!dentry))
1357 goto need_lookup;
1358
1359 if (unlikely(d_need_lookup(dentry))) {
1360 dput(dentry);
1361 goto need_lookup;
1362 }
1363
1364 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1365 status = d_revalidate(dentry, nd->flags);
1366 if (unlikely(status <= 0)) {
1367 if (status < 0) {
1368 dput(dentry);
1369 return status;
1370 }
1371 if (!d_invalidate(dentry)) {
1372 dput(dentry);
1373 goto need_lookup;
1374 }
1375 }
1376
1377 path->mnt = mnt;
1378 path->dentry = dentry;
1379 err = follow_managed(path, nd->flags);
1380 if (unlikely(err < 0)) {
1381 path_put_conditional(path, nd);
1382 return err;
1383 }
1384 if (err)
1385 nd->flags |= LOOKUP_JUMPED;
1386 *inode = path->dentry->d_inode;
1387 return 0;
1388
1389 need_lookup:
1390 return 1;
1391 }
1392
1393 /* Fast lookup failed, do it the slow way */
1394 static int lookup_slow(struct nameidata *nd, struct qstr *name,
1395 struct path *path)
1396 {
1397 struct dentry *dentry, *parent;
1398 int err;
1399
1400 parent = nd->path.dentry;
1401 BUG_ON(nd->inode != parent->d_inode);
1402
1403 mutex_lock(&parent->d_inode->i_mutex);
1404 dentry = __lookup_hash(name, parent, nd->flags);
1405 mutex_unlock(&parent->d_inode->i_mutex);
1406 if (IS_ERR(dentry))
1407 return PTR_ERR(dentry);
1408 path->mnt = nd->path.mnt;
1409 path->dentry = dentry;
1410 err = follow_managed(path, nd->flags);
1411 if (unlikely(err < 0)) {
1412 path_put_conditional(path, nd);
1413 return err;
1414 }
1415 if (err)
1416 nd->flags |= LOOKUP_JUMPED;
1417 return 0;
1418 }
1419
1420 static inline int may_lookup(struct nameidata *nd)
1421 {
1422 if (nd->flags & LOOKUP_RCU) {
1423 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1424 if (err != -ECHILD)
1425 return err;
1426 if (unlazy_walk(nd, NULL))
1427 return -ECHILD;
1428 }
1429 return inode_permission(nd->inode, MAY_EXEC);
1430 }
1431
1432 static inline int handle_dots(struct nameidata *nd, int type)
1433 {
1434 if (type == LAST_DOTDOT) {
1435 if (nd->flags & LOOKUP_RCU) {
1436 if (follow_dotdot_rcu(nd))
1437 return -ECHILD;
1438 } else
1439 follow_dotdot(nd);
1440 }
1441 return 0;
1442 }
1443
1444 static void terminate_walk(struct nameidata *nd)
1445 {
1446 if (!(nd->flags & LOOKUP_RCU)) {
1447 path_put(&nd->path);
1448 } else {
1449 nd->flags &= ~LOOKUP_RCU;
1450 if (!(nd->flags & LOOKUP_ROOT))
1451 nd->root.mnt = NULL;
1452 unlock_rcu_walk();
1453 }
1454 }
1455
1456 /*
1457 * Do we need to follow links? We _really_ want to be able
1458 * to do this check without having to look at inode->i_op,
1459 * so we keep a cache of "no, this doesn't need follow_link"
1460 * for the common case.
1461 */
1462 static inline int should_follow_link(struct inode *inode, int follow)
1463 {
1464 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1465 if (likely(inode->i_op->follow_link))
1466 return follow;
1467
1468 /* This gets set once for the inode lifetime */
1469 spin_lock(&inode->i_lock);
1470 inode->i_opflags |= IOP_NOFOLLOW;
1471 spin_unlock(&inode->i_lock);
1472 }
1473 return 0;
1474 }
1475
1476 static inline int walk_component(struct nameidata *nd, struct path *path,
1477 struct qstr *name, int type, int follow)
1478 {
1479 struct inode *inode;
1480 int err;
1481 /*
1482 * "." and ".." are special - ".." especially so because it has
1483 * to be able to know about the current root directory and
1484 * parent relationships.
1485 */
1486 if (unlikely(type != LAST_NORM))
1487 return handle_dots(nd, type);
1488 err = lookup_fast(nd, name, path, &inode);
1489 if (unlikely(err)) {
1490 if (err < 0)
1491 goto out_err;
1492
1493 err = lookup_slow(nd, name, path);
1494 if (err < 0)
1495 goto out_err;
1496
1497 inode = path->dentry->d_inode;
1498 }
1499 err = -ENOENT;
1500 if (!inode)
1501 goto out_path_put;
1502
1503 if (should_follow_link(inode, follow)) {
1504 if (nd->flags & LOOKUP_RCU) {
1505 if (unlikely(unlazy_walk(nd, path->dentry))) {
1506 err = -ECHILD;
1507 goto out_err;
1508 }
1509 }
1510 BUG_ON(inode != path->dentry->d_inode);
1511 return 1;
1512 }
1513 path_to_nameidata(path, nd);
1514 nd->inode = inode;
1515 return 0;
1516
1517 out_path_put:
1518 path_to_nameidata(path, nd);
1519 out_err:
1520 terminate_walk(nd);
1521 return err;
1522 }
1523
1524 /*
1525 * This limits recursive symlink follows to 8, while
1526 * limiting consecutive symlinks to 40.
1527 *
1528 * Without that kind of total limit, nasty chains of consecutive
1529 * symlinks can cause almost arbitrarily long lookups.
1530 */
1531 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1532 {
1533 int res;
1534
1535 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1536 path_put_conditional(path, nd);
1537 path_put(&nd->path);
1538 return -ELOOP;
1539 }
1540 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1541
1542 nd->depth++;
1543 current->link_count++;
1544
1545 do {
1546 struct path link = *path;
1547 void *cookie;
1548
1549 res = follow_link(&link, nd, &cookie);
1550 if (res)
1551 break;
1552 res = walk_component(nd, path, &nd->last,
1553 nd->last_type, LOOKUP_FOLLOW);
1554 put_link(nd, &link, cookie);
1555 } while (res > 0);
1556
1557 current->link_count--;
1558 nd->depth--;
1559 return res;
1560 }
1561
1562 /*
1563 * We really don't want to look at inode->i_op->lookup
1564 * when we don't have to. So we keep a cache bit in
1565 * the inode ->i_opflags field that says "yes, we can
1566 * do lookup on this inode".
1567 */
1568 static inline int can_lookup(struct inode *inode)
1569 {
1570 if (likely(inode->i_opflags & IOP_LOOKUP))
1571 return 1;
1572 if (likely(!inode->i_op->lookup))
1573 return 0;
1574
1575 /* We do this once for the lifetime of the inode */
1576 spin_lock(&inode->i_lock);
1577 inode->i_opflags |= IOP_LOOKUP;
1578 spin_unlock(&inode->i_lock);
1579 return 1;
1580 }
1581
1582 /*
1583 * We can do the critical dentry name comparison and hashing
1584 * operations one word at a time, but we are limited to:
1585 *
1586 * - Architectures with fast unaligned word accesses. We could
1587 * do a "get_unaligned()" if this helps and is sufficiently
1588 * fast.
1589 *
1590 * - Little-endian machines (so that we can generate the mask
1591 * of low bytes efficiently). Again, we *could* do a byte
1592 * swapping load on big-endian architectures if that is not
1593 * expensive enough to make the optimization worthless.
1594 *
1595 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1596 * do not trap on the (extremely unlikely) case of a page
1597 * crossing operation.
1598 *
1599 * - Furthermore, we need an efficient 64-bit compile for the
1600 * 64-bit case in order to generate the "number of bytes in
1601 * the final mask". Again, that could be replaced with a
1602 * efficient population count instruction or similar.
1603 */
1604 #ifdef CONFIG_DCACHE_WORD_ACCESS
1605
1606 #include <asm/word-at-a-time.h>
1607
1608 #ifdef CONFIG_64BIT
1609
1610 static inline unsigned int fold_hash(unsigned long hash)
1611 {
1612 hash += hash >> (8*sizeof(int));
1613 return hash;
1614 }
1615
1616 #else /* 32-bit case */
1617
1618 #define fold_hash(x) (x)
1619
1620 #endif
1621
1622 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1623 {
1624 unsigned long a, mask;
1625 unsigned long hash = 0;
1626
1627 for (;;) {
1628 a = load_unaligned_zeropad(name);
1629 if (len < sizeof(unsigned long))
1630 break;
1631 hash += a;
1632 hash *= 9;
1633 name += sizeof(unsigned long);
1634 len -= sizeof(unsigned long);
1635 if (!len)
1636 goto done;
1637 }
1638 mask = ~(~0ul << len*8);
1639 hash += mask & a;
1640 done:
1641 return fold_hash(hash);
1642 }
1643 EXPORT_SYMBOL(full_name_hash);
1644
1645 /*
1646 * Calculate the length and hash of the path component, and
1647 * return the length of the component;
1648 */
1649 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1650 {
1651 unsigned long a, b, adata, bdata, mask, hash, len;
1652 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1653
1654 hash = a = 0;
1655 len = -sizeof(unsigned long);
1656 do {
1657 hash = (hash + a) * 9;
1658 len += sizeof(unsigned long);
1659 a = load_unaligned_zeropad(name+len);
1660 b = a ^ REPEAT_BYTE('/');
1661 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1662
1663 adata = prep_zero_mask(a, adata, &constants);
1664 bdata = prep_zero_mask(b, bdata, &constants);
1665
1666 mask = create_zero_mask(adata | bdata);
1667
1668 hash += a & zero_bytemask(mask);
1669 *hashp = fold_hash(hash);
1670
1671 return len + find_zero(mask);
1672 }
1673
1674 #else
1675
1676 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1677 {
1678 unsigned long hash = init_name_hash();
1679 while (len--)
1680 hash = partial_name_hash(*name++, hash);
1681 return end_name_hash(hash);
1682 }
1683 EXPORT_SYMBOL(full_name_hash);
1684
1685 /*
1686 * We know there's a real path component here of at least
1687 * one character.
1688 */
1689 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1690 {
1691 unsigned long hash = init_name_hash();
1692 unsigned long len = 0, c;
1693
1694 c = (unsigned char)*name;
1695 do {
1696 len++;
1697 hash = partial_name_hash(c, hash);
1698 c = (unsigned char)name[len];
1699 } while (c && c != '/');
1700 *hashp = end_name_hash(hash);
1701 return len;
1702 }
1703
1704 #endif
1705
1706 /*
1707 * Name resolution.
1708 * This is the basic name resolution function, turning a pathname into
1709 * the final dentry. We expect 'base' to be positive and a directory.
1710 *
1711 * Returns 0 and nd will have valid dentry and mnt on success.
1712 * Returns error and drops reference to input namei data on failure.
1713 */
1714 static int link_path_walk(const char *name, struct nameidata *nd)
1715 {
1716 struct path next;
1717 int err;
1718
1719 while (*name=='/')
1720 name++;
1721 if (!*name)
1722 return 0;
1723
1724 /* At this point we know we have a real path component. */
1725 for(;;) {
1726 struct qstr this;
1727 long len;
1728 int type;
1729
1730 err = may_lookup(nd);
1731 if (err)
1732 break;
1733
1734 len = hash_name(name, &this.hash);
1735 this.name = name;
1736 this.len = len;
1737
1738 type = LAST_NORM;
1739 if (name[0] == '.') switch (len) {
1740 case 2:
1741 if (name[1] == '.') {
1742 type = LAST_DOTDOT;
1743 nd->flags |= LOOKUP_JUMPED;
1744 }
1745 break;
1746 case 1:
1747 type = LAST_DOT;
1748 }
1749 if (likely(type == LAST_NORM)) {
1750 struct dentry *parent = nd->path.dentry;
1751 nd->flags &= ~LOOKUP_JUMPED;
1752 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1753 err = parent->d_op->d_hash(parent, nd->inode,
1754 &this);
1755 if (err < 0)
1756 break;
1757 }
1758 }
1759
1760 if (!name[len])
1761 goto last_component;
1762 /*
1763 * If it wasn't NUL, we know it was '/'. Skip that
1764 * slash, and continue until no more slashes.
1765 */
1766 do {
1767 len++;
1768 } while (unlikely(name[len] == '/'));
1769 if (!name[len])
1770 goto last_component;
1771 name += len;
1772
1773 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1774 if (err < 0)
1775 return err;
1776
1777 if (err) {
1778 err = nested_symlink(&next, nd);
1779 if (err)
1780 return err;
1781 }
1782 if (can_lookup(nd->inode))
1783 continue;
1784 err = -ENOTDIR;
1785 break;
1786 /* here ends the main loop */
1787
1788 last_component:
1789 nd->last = this;
1790 nd->last_type = type;
1791 return 0;
1792 }
1793 terminate_walk(nd);
1794 return err;
1795 }
1796
1797 static int path_init(int dfd, const char *name, unsigned int flags,
1798 struct nameidata *nd, struct file **fp)
1799 {
1800 int retval = 0;
1801
1802 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1803 nd->flags = flags | LOOKUP_JUMPED;
1804 nd->depth = 0;
1805 if (flags & LOOKUP_ROOT) {
1806 struct inode *inode = nd->root.dentry->d_inode;
1807 if (*name) {
1808 if (!inode->i_op->lookup)
1809 return -ENOTDIR;
1810 retval = inode_permission(inode, MAY_EXEC);
1811 if (retval)
1812 return retval;
1813 }
1814 nd->path = nd->root;
1815 nd->inode = inode;
1816 if (flags & LOOKUP_RCU) {
1817 lock_rcu_walk();
1818 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1819 } else {
1820 path_get(&nd->path);
1821 }
1822 return 0;
1823 }
1824
1825 nd->root.mnt = NULL;
1826
1827 if (*name=='/') {
1828 if (flags & LOOKUP_RCU) {
1829 lock_rcu_walk();
1830 set_root_rcu(nd);
1831 } else {
1832 set_root(nd);
1833 path_get(&nd->root);
1834 }
1835 nd->path = nd->root;
1836 } else if (dfd == AT_FDCWD) {
1837 if (flags & LOOKUP_RCU) {
1838 struct fs_struct *fs = current->fs;
1839 unsigned seq;
1840
1841 lock_rcu_walk();
1842
1843 do {
1844 seq = read_seqcount_begin(&fs->seq);
1845 nd->path = fs->pwd;
1846 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1847 } while (read_seqcount_retry(&fs->seq, seq));
1848 } else {
1849 get_fs_pwd(current->fs, &nd->path);
1850 }
1851 } else {
1852 struct fd f = fdget_raw(dfd);
1853 struct dentry *dentry;
1854
1855 if (!f.file)
1856 return -EBADF;
1857
1858 dentry = f.file->f_path.dentry;
1859
1860 if (*name) {
1861 if (!S_ISDIR(dentry->d_inode->i_mode)) {
1862 fdput(f);
1863 return -ENOTDIR;
1864 }
1865
1866 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1867 if (retval) {
1868 fdput(f);
1869 return retval;
1870 }
1871 }
1872
1873 nd->path = f.file->f_path;
1874 if (flags & LOOKUP_RCU) {
1875 if (f.need_put)
1876 *fp = f.file;
1877 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1878 lock_rcu_walk();
1879 } else {
1880 path_get(&nd->path);
1881 fdput(f);
1882 }
1883 }
1884
1885 nd->inode = nd->path.dentry->d_inode;
1886 return 0;
1887 }
1888
1889 static inline int lookup_last(struct nameidata *nd, struct path *path)
1890 {
1891 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1892 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1893
1894 nd->flags &= ~LOOKUP_PARENT;
1895 return walk_component(nd, path, &nd->last, nd->last_type,
1896 nd->flags & LOOKUP_FOLLOW);
1897 }
1898
1899 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1900 static int path_lookupat(int dfd, const char *name,
1901 unsigned int flags, struct nameidata *nd)
1902 {
1903 struct file *base = NULL;
1904 struct path path;
1905 int err;
1906
1907 /*
1908 * Path walking is largely split up into 2 different synchronisation
1909 * schemes, rcu-walk and ref-walk (explained in
1910 * Documentation/filesystems/path-lookup.txt). These share much of the
1911 * path walk code, but some things particularly setup, cleanup, and
1912 * following mounts are sufficiently divergent that functions are
1913 * duplicated. Typically there is a function foo(), and its RCU
1914 * analogue, foo_rcu().
1915 *
1916 * -ECHILD is the error number of choice (just to avoid clashes) that
1917 * is returned if some aspect of an rcu-walk fails. Such an error must
1918 * be handled by restarting a traditional ref-walk (which will always
1919 * be able to complete).
1920 */
1921 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1922
1923 if (unlikely(err))
1924 return err;
1925
1926 current->total_link_count = 0;
1927 err = link_path_walk(name, nd);
1928
1929 if (!err && !(flags & LOOKUP_PARENT)) {
1930 err = lookup_last(nd, &path);
1931 while (err > 0) {
1932 void *cookie;
1933 struct path link = path;
1934 err = may_follow_link(&link, nd);
1935 if (unlikely(err))
1936 break;
1937 nd->flags |= LOOKUP_PARENT;
1938 err = follow_link(&link, nd, &cookie);
1939 if (err)
1940 break;
1941 err = lookup_last(nd, &path);
1942 put_link(nd, &link, cookie);
1943 }
1944 }
1945
1946 if (!err)
1947 err = complete_walk(nd);
1948
1949 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1950 if (!nd->inode->i_op->lookup) {
1951 path_put(&nd->path);
1952 err = -ENOTDIR;
1953 }
1954 }
1955
1956 if (base)
1957 fput(base);
1958
1959 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1960 path_put(&nd->root);
1961 nd->root.mnt = NULL;
1962 }
1963 return err;
1964 }
1965
1966 static int do_path_lookup(int dfd, const char *name,
1967 unsigned int flags, struct nameidata *nd)
1968 {
1969 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1970 if (unlikely(retval == -ECHILD))
1971 retval = path_lookupat(dfd, name, flags, nd);
1972 if (unlikely(retval == -ESTALE))
1973 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1974
1975 if (likely(!retval)) {
1976 if (unlikely(!audit_dummy_context())) {
1977 if (nd->path.dentry && nd->inode)
1978 audit_inode(name, nd->path.dentry);
1979 }
1980 }
1981 return retval;
1982 }
1983
1984 /* does lookup, returns the object with parent locked */
1985 struct dentry *kern_path_locked(const char *name, struct path *path)
1986 {
1987 struct nameidata nd;
1988 struct dentry *d;
1989 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
1990 if (err)
1991 return ERR_PTR(err);
1992 if (nd.last_type != LAST_NORM) {
1993 path_put(&nd.path);
1994 return ERR_PTR(-EINVAL);
1995 }
1996 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1997 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
1998 if (IS_ERR(d)) {
1999 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2000 path_put(&nd.path);
2001 return d;
2002 }
2003 *path = nd.path;
2004 return d;
2005 }
2006
2007 int kern_path(const char *name, unsigned int flags, struct path *path)
2008 {
2009 struct nameidata nd;
2010 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2011 if (!res)
2012 *path = nd.path;
2013 return res;
2014 }
2015
2016 /**
2017 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2018 * @dentry: pointer to dentry of the base directory
2019 * @mnt: pointer to vfs mount of the base directory
2020 * @name: pointer to file name
2021 * @flags: lookup flags
2022 * @path: pointer to struct path to fill
2023 */
2024 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2025 const char *name, unsigned int flags,
2026 struct path *path)
2027 {
2028 struct nameidata nd;
2029 int err;
2030 nd.root.dentry = dentry;
2031 nd.root.mnt = mnt;
2032 BUG_ON(flags & LOOKUP_PARENT);
2033 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2034 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2035 if (!err)
2036 *path = nd.path;
2037 return err;
2038 }
2039
2040 /*
2041 * Restricted form of lookup. Doesn't follow links, single-component only,
2042 * needs parent already locked. Doesn't follow mounts.
2043 * SMP-safe.
2044 */
2045 static struct dentry *lookup_hash(struct nameidata *nd)
2046 {
2047 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2048 }
2049
2050 /**
2051 * lookup_one_len - filesystem helper to lookup single pathname component
2052 * @name: pathname component to lookup
2053 * @base: base directory to lookup from
2054 * @len: maximum length @len should be interpreted to
2055 *
2056 * Note that this routine is purely a helper for filesystem usage and should
2057 * not be called by generic code. Also note that by using this function the
2058 * nameidata argument is passed to the filesystem methods and a filesystem
2059 * using this helper needs to be prepared for that.
2060 */
2061 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2062 {
2063 struct qstr this;
2064 unsigned int c;
2065 int err;
2066
2067 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2068
2069 this.name = name;
2070 this.len = len;
2071 this.hash = full_name_hash(name, len);
2072 if (!len)
2073 return ERR_PTR(-EACCES);
2074
2075 while (len--) {
2076 c = *(const unsigned char *)name++;
2077 if (c == '/' || c == '\0')
2078 return ERR_PTR(-EACCES);
2079 }
2080 /*
2081 * See if the low-level filesystem might want
2082 * to use its own hash..
2083 */
2084 if (base->d_flags & DCACHE_OP_HASH) {
2085 int err = base->d_op->d_hash(base, base->d_inode, &this);
2086 if (err < 0)
2087 return ERR_PTR(err);
2088 }
2089
2090 err = inode_permission(base->d_inode, MAY_EXEC);
2091 if (err)
2092 return ERR_PTR(err);
2093
2094 return __lookup_hash(&this, base, 0);
2095 }
2096
2097 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2098 struct path *path, int *empty)
2099 {
2100 struct nameidata nd;
2101 char *tmp = getname_flags(name, flags, empty);
2102 int err = PTR_ERR(tmp);
2103 if (!IS_ERR(tmp)) {
2104
2105 BUG_ON(flags & LOOKUP_PARENT);
2106
2107 err = do_path_lookup(dfd, tmp, flags, &nd);
2108 putname(tmp);
2109 if (!err)
2110 *path = nd.path;
2111 }
2112 return err;
2113 }
2114
2115 int user_path_at(int dfd, const char __user *name, unsigned flags,
2116 struct path *path)
2117 {
2118 return user_path_at_empty(dfd, name, flags, path, NULL);
2119 }
2120
2121 static int user_path_parent(int dfd, const char __user *path,
2122 struct nameidata *nd, char **name)
2123 {
2124 char *s = getname(path);
2125 int error;
2126
2127 if (IS_ERR(s))
2128 return PTR_ERR(s);
2129
2130 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
2131 if (error)
2132 putname(s);
2133 else
2134 *name = s;
2135
2136 return error;
2137 }
2138
2139 /*
2140 * It's inline, so penalty for filesystems that don't use sticky bit is
2141 * minimal.
2142 */
2143 static inline int check_sticky(struct inode *dir, struct inode *inode)
2144 {
2145 kuid_t fsuid = current_fsuid();
2146
2147 if (!(dir->i_mode & S_ISVTX))
2148 return 0;
2149 if (uid_eq(inode->i_uid, fsuid))
2150 return 0;
2151 if (uid_eq(dir->i_uid, fsuid))
2152 return 0;
2153 return !inode_capable(inode, CAP_FOWNER);
2154 }
2155
2156 /*
2157 * Check whether we can remove a link victim from directory dir, check
2158 * whether the type of victim is right.
2159 * 1. We can't do it if dir is read-only (done in permission())
2160 * 2. We should have write and exec permissions on dir
2161 * 3. We can't remove anything from append-only dir
2162 * 4. We can't do anything with immutable dir (done in permission())
2163 * 5. If the sticky bit on dir is set we should either
2164 * a. be owner of dir, or
2165 * b. be owner of victim, or
2166 * c. have CAP_FOWNER capability
2167 * 6. If the victim is append-only or immutable we can't do antyhing with
2168 * links pointing to it.
2169 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2170 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2171 * 9. We can't remove a root or mountpoint.
2172 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2173 * nfs_async_unlink().
2174 */
2175 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2176 {
2177 int error;
2178
2179 if (!victim->d_inode)
2180 return -ENOENT;
2181
2182 BUG_ON(victim->d_parent->d_inode != dir);
2183 audit_inode_child(victim, dir);
2184
2185 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2186 if (error)
2187 return error;
2188 if (IS_APPEND(dir))
2189 return -EPERM;
2190 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2191 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2192 return -EPERM;
2193 if (isdir) {
2194 if (!S_ISDIR(victim->d_inode->i_mode))
2195 return -ENOTDIR;
2196 if (IS_ROOT(victim))
2197 return -EBUSY;
2198 } else if (S_ISDIR(victim->d_inode->i_mode))
2199 return -EISDIR;
2200 if (IS_DEADDIR(dir))
2201 return -ENOENT;
2202 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2203 return -EBUSY;
2204 return 0;
2205 }
2206
2207 /* Check whether we can create an object with dentry child in directory
2208 * dir.
2209 * 1. We can't do it if child already exists (open has special treatment for
2210 * this case, but since we are inlined it's OK)
2211 * 2. We can't do it if dir is read-only (done in permission())
2212 * 3. We should have write and exec permissions on dir
2213 * 4. We can't do it if dir is immutable (done in permission())
2214 */
2215 static inline int may_create(struct inode *dir, struct dentry *child)
2216 {
2217 if (child->d_inode)
2218 return -EEXIST;
2219 if (IS_DEADDIR(dir))
2220 return -ENOENT;
2221 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2222 }
2223
2224 /*
2225 * p1 and p2 should be directories on the same fs.
2226 */
2227 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2228 {
2229 struct dentry *p;
2230
2231 if (p1 == p2) {
2232 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2233 return NULL;
2234 }
2235
2236 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2237
2238 p = d_ancestor(p2, p1);
2239 if (p) {
2240 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2241 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2242 return p;
2243 }
2244
2245 p = d_ancestor(p1, p2);
2246 if (p) {
2247 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2248 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2249 return p;
2250 }
2251
2252 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2253 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2254 return NULL;
2255 }
2256
2257 void unlock_rename(struct dentry *p1, struct dentry *p2)
2258 {
2259 mutex_unlock(&p1->d_inode->i_mutex);
2260 if (p1 != p2) {
2261 mutex_unlock(&p2->d_inode->i_mutex);
2262 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2263 }
2264 }
2265
2266 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2267 bool want_excl)
2268 {
2269 int error = may_create(dir, dentry);
2270 if (error)
2271 return error;
2272
2273 if (!dir->i_op->create)
2274 return -EACCES; /* shouldn't it be ENOSYS? */
2275 mode &= S_IALLUGO;
2276 mode |= S_IFREG;
2277 error = security_inode_create(dir, dentry, mode);
2278 if (error)
2279 return error;
2280 error = dir->i_op->create(dir, dentry, mode, want_excl);
2281 if (!error)
2282 fsnotify_create(dir, dentry);
2283 return error;
2284 }
2285
2286 static int may_open(struct path *path, int acc_mode, int flag)
2287 {
2288 struct dentry *dentry = path->dentry;
2289 struct inode *inode = dentry->d_inode;
2290 int error;
2291
2292 /* O_PATH? */
2293 if (!acc_mode)
2294 return 0;
2295
2296 if (!inode)
2297 return -ENOENT;
2298
2299 switch (inode->i_mode & S_IFMT) {
2300 case S_IFLNK:
2301 return -ELOOP;
2302 case S_IFDIR:
2303 if (acc_mode & MAY_WRITE)
2304 return -EISDIR;
2305 break;
2306 case S_IFBLK:
2307 case S_IFCHR:
2308 if (path->mnt->mnt_flags & MNT_NODEV)
2309 return -EACCES;
2310 /*FALLTHRU*/
2311 case S_IFIFO:
2312 case S_IFSOCK:
2313 flag &= ~O_TRUNC;
2314 break;
2315 }
2316
2317 error = inode_permission(inode, acc_mode);
2318 if (error)
2319 return error;
2320
2321 /*
2322 * An append-only file must be opened in append mode for writing.
2323 */
2324 if (IS_APPEND(inode)) {
2325 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2326 return -EPERM;
2327 if (flag & O_TRUNC)
2328 return -EPERM;
2329 }
2330
2331 /* O_NOATIME can only be set by the owner or superuser */
2332 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2333 return -EPERM;
2334
2335 return 0;
2336 }
2337
2338 static int handle_truncate(struct file *filp)
2339 {
2340 struct path *path = &filp->f_path;
2341 struct inode *inode = path->dentry->d_inode;
2342 int error = get_write_access(inode);
2343 if (error)
2344 return error;
2345 /*
2346 * Refuse to truncate files with mandatory locks held on them.
2347 */
2348 error = locks_verify_locked(inode);
2349 if (!error)
2350 error = security_path_truncate(path);
2351 if (!error) {
2352 error = do_truncate(path->dentry, 0,
2353 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2354 filp);
2355 }
2356 put_write_access(inode);
2357 return error;
2358 }
2359
2360 static inline int open_to_namei_flags(int flag)
2361 {
2362 if ((flag & O_ACCMODE) == 3)
2363 flag--;
2364 return flag;
2365 }
2366
2367 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2368 {
2369 int error = security_path_mknod(dir, dentry, mode, 0);
2370 if (error)
2371 return error;
2372
2373 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2374 if (error)
2375 return error;
2376
2377 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2378 }
2379
2380 /*
2381 * Attempt to atomically look up, create and open a file from a negative
2382 * dentry.
2383 *
2384 * Returns 0 if successful. The file will have been created and attached to
2385 * @file by the filesystem calling finish_open().
2386 *
2387 * Returns 1 if the file was looked up only or didn't need creating. The
2388 * caller will need to perform the open themselves. @path will have been
2389 * updated to point to the new dentry. This may be negative.
2390 *
2391 * Returns an error code otherwise.
2392 */
2393 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2394 struct path *path, struct file *file,
2395 const struct open_flags *op,
2396 bool got_write, bool need_lookup,
2397 int *opened)
2398 {
2399 struct inode *dir = nd->path.dentry->d_inode;
2400 unsigned open_flag = open_to_namei_flags(op->open_flag);
2401 umode_t mode;
2402 int error;
2403 int acc_mode;
2404 int create_error = 0;
2405 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2406
2407 BUG_ON(dentry->d_inode);
2408
2409 /* Don't create child dentry for a dead directory. */
2410 if (unlikely(IS_DEADDIR(dir))) {
2411 error = -ENOENT;
2412 goto out;
2413 }
2414
2415 mode = op->mode;
2416 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2417 mode &= ~current_umask();
2418
2419 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2420 open_flag &= ~O_TRUNC;
2421 *opened |= FILE_CREATED;
2422 }
2423
2424 /*
2425 * Checking write permission is tricky, bacuse we don't know if we are
2426 * going to actually need it: O_CREAT opens should work as long as the
2427 * file exists. But checking existence breaks atomicity. The trick is
2428 * to check access and if not granted clear O_CREAT from the flags.
2429 *
2430 * Another problem is returing the "right" error value (e.g. for an
2431 * O_EXCL open we want to return EEXIST not EROFS).
2432 */
2433 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2434 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2435 if (!(open_flag & O_CREAT)) {
2436 /*
2437 * No O_CREATE -> atomicity not a requirement -> fall
2438 * back to lookup + open
2439 */
2440 goto no_open;
2441 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2442 /* Fall back and fail with the right error */
2443 create_error = -EROFS;
2444 goto no_open;
2445 } else {
2446 /* No side effects, safe to clear O_CREAT */
2447 create_error = -EROFS;
2448 open_flag &= ~O_CREAT;
2449 }
2450 }
2451
2452 if (open_flag & O_CREAT) {
2453 error = may_o_create(&nd->path, dentry, mode);
2454 if (error) {
2455 create_error = error;
2456 if (open_flag & O_EXCL)
2457 goto no_open;
2458 open_flag &= ~O_CREAT;
2459 }
2460 }
2461
2462 if (nd->flags & LOOKUP_DIRECTORY)
2463 open_flag |= O_DIRECTORY;
2464
2465 file->f_path.dentry = DENTRY_NOT_SET;
2466 file->f_path.mnt = nd->path.mnt;
2467 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2468 opened);
2469 if (error < 0) {
2470 if (create_error && error == -ENOENT)
2471 error = create_error;
2472 goto out;
2473 }
2474
2475 acc_mode = op->acc_mode;
2476 if (*opened & FILE_CREATED) {
2477 fsnotify_create(dir, dentry);
2478 acc_mode = MAY_OPEN;
2479 }
2480
2481 if (error) { /* returned 1, that is */
2482 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2483 error = -EIO;
2484 goto out;
2485 }
2486 if (file->f_path.dentry) {
2487 dput(dentry);
2488 dentry = file->f_path.dentry;
2489 }
2490 if (create_error && dentry->d_inode == NULL) {
2491 error = create_error;
2492 goto out;
2493 }
2494 goto looked_up;
2495 }
2496
2497 /*
2498 * We didn't have the inode before the open, so check open permission
2499 * here.
2500 */
2501 error = may_open(&file->f_path, acc_mode, open_flag);
2502 if (error)
2503 fput(file);
2504
2505 out:
2506 dput(dentry);
2507 return error;
2508
2509 no_open:
2510 if (need_lookup) {
2511 dentry = lookup_real(dir, dentry, nd->flags);
2512 if (IS_ERR(dentry))
2513 return PTR_ERR(dentry);
2514
2515 if (create_error) {
2516 int open_flag = op->open_flag;
2517
2518 error = create_error;
2519 if ((open_flag & O_EXCL)) {
2520 if (!dentry->d_inode)
2521 goto out;
2522 } else if (!dentry->d_inode) {
2523 goto out;
2524 } else if ((open_flag & O_TRUNC) &&
2525 S_ISREG(dentry->d_inode->i_mode)) {
2526 goto out;
2527 }
2528 /* will fail later, go on to get the right error */
2529 }
2530 }
2531 looked_up:
2532 path->dentry = dentry;
2533 path->mnt = nd->path.mnt;
2534 return 1;
2535 }
2536
2537 /*
2538 * Look up and maybe create and open the last component.
2539 *
2540 * Must be called with i_mutex held on parent.
2541 *
2542 * Returns 0 if the file was successfully atomically created (if necessary) and
2543 * opened. In this case the file will be returned attached to @file.
2544 *
2545 * Returns 1 if the file was not completely opened at this time, though lookups
2546 * and creations will have been performed and the dentry returned in @path will
2547 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2548 * specified then a negative dentry may be returned.
2549 *
2550 * An error code is returned otherwise.
2551 *
2552 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2553 * cleared otherwise prior to returning.
2554 */
2555 static int lookup_open(struct nameidata *nd, struct path *path,
2556 struct file *file,
2557 const struct open_flags *op,
2558 bool got_write, int *opened)
2559 {
2560 struct dentry *dir = nd->path.dentry;
2561 struct inode *dir_inode = dir->d_inode;
2562 struct dentry *dentry;
2563 int error;
2564 bool need_lookup;
2565
2566 *opened &= ~FILE_CREATED;
2567 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2568 if (IS_ERR(dentry))
2569 return PTR_ERR(dentry);
2570
2571 /* Cached positive dentry: will open in f_op->open */
2572 if (!need_lookup && dentry->d_inode)
2573 goto out_no_open;
2574
2575 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2576 return atomic_open(nd, dentry, path, file, op, got_write,
2577 need_lookup, opened);
2578 }
2579
2580 if (need_lookup) {
2581 BUG_ON(dentry->d_inode);
2582
2583 dentry = lookup_real(dir_inode, dentry, nd->flags);
2584 if (IS_ERR(dentry))
2585 return PTR_ERR(dentry);
2586 }
2587
2588 /* Negative dentry, just create the file */
2589 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2590 umode_t mode = op->mode;
2591 if (!IS_POSIXACL(dir->d_inode))
2592 mode &= ~current_umask();
2593 /*
2594 * This write is needed to ensure that a
2595 * rw->ro transition does not occur between
2596 * the time when the file is created and when
2597 * a permanent write count is taken through
2598 * the 'struct file' in finish_open().
2599 */
2600 if (!got_write) {
2601 error = -EROFS;
2602 goto out_dput;
2603 }
2604 *opened |= FILE_CREATED;
2605 error = security_path_mknod(&nd->path, dentry, mode, 0);
2606 if (error)
2607 goto out_dput;
2608 error = vfs_create(dir->d_inode, dentry, mode,
2609 nd->flags & LOOKUP_EXCL);
2610 if (error)
2611 goto out_dput;
2612 }
2613 out_no_open:
2614 path->dentry = dentry;
2615 path->mnt = nd->path.mnt;
2616 return 1;
2617
2618 out_dput:
2619 dput(dentry);
2620 return error;
2621 }
2622
2623 /*
2624 * Handle the last step of open()
2625 */
2626 static int do_last(struct nameidata *nd, struct path *path,
2627 struct file *file, const struct open_flags *op,
2628 int *opened, const char *pathname)
2629 {
2630 struct dentry *dir = nd->path.dentry;
2631 int open_flag = op->open_flag;
2632 bool will_truncate = (open_flag & O_TRUNC) != 0;
2633 bool got_write = false;
2634 int acc_mode = op->acc_mode;
2635 struct inode *inode;
2636 bool symlink_ok = false;
2637 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2638 bool retried = false;
2639 int error;
2640
2641 nd->flags &= ~LOOKUP_PARENT;
2642 nd->flags |= op->intent;
2643
2644 switch (nd->last_type) {
2645 case LAST_DOTDOT:
2646 case LAST_DOT:
2647 error = handle_dots(nd, nd->last_type);
2648 if (error)
2649 return error;
2650 /* fallthrough */
2651 case LAST_ROOT:
2652 error = complete_walk(nd);
2653 if (error)
2654 return error;
2655 audit_inode(pathname, nd->path.dentry);
2656 if (open_flag & O_CREAT) {
2657 error = -EISDIR;
2658 goto out;
2659 }
2660 goto finish_open;
2661 case LAST_BIND:
2662 error = complete_walk(nd);
2663 if (error)
2664 return error;
2665 audit_inode(pathname, dir);
2666 goto finish_open;
2667 }
2668
2669 if (!(open_flag & O_CREAT)) {
2670 if (nd->last.name[nd->last.len])
2671 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2672 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2673 symlink_ok = true;
2674 /* we _can_ be in RCU mode here */
2675 error = lookup_fast(nd, &nd->last, path, &inode);
2676 if (likely(!error))
2677 goto finish_lookup;
2678
2679 if (error < 0)
2680 goto out;
2681
2682 BUG_ON(nd->inode != dir->d_inode);
2683 } else {
2684 /* create side of things */
2685 /*
2686 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2687 * has been cleared when we got to the last component we are
2688 * about to look up
2689 */
2690 error = complete_walk(nd);
2691 if (error)
2692 return error;
2693
2694 audit_inode(pathname, dir);
2695 error = -EISDIR;
2696 /* trailing slashes? */
2697 if (nd->last.name[nd->last.len])
2698 goto out;
2699 }
2700
2701 retry_lookup:
2702 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2703 error = mnt_want_write(nd->path.mnt);
2704 if (!error)
2705 got_write = true;
2706 /*
2707 * do _not_ fail yet - we might not need that or fail with
2708 * a different error; let lookup_open() decide; we'll be
2709 * dropping this one anyway.
2710 */
2711 }
2712 mutex_lock(&dir->d_inode->i_mutex);
2713 error = lookup_open(nd, path, file, op, got_write, opened);
2714 mutex_unlock(&dir->d_inode->i_mutex);
2715
2716 if (error <= 0) {
2717 if (error)
2718 goto out;
2719
2720 if ((*opened & FILE_CREATED) ||
2721 !S_ISREG(file->f_path.dentry->d_inode->i_mode))
2722 will_truncate = false;
2723
2724 audit_inode(pathname, file->f_path.dentry);
2725 goto opened;
2726 }
2727
2728 if (*opened & FILE_CREATED) {
2729 /* Don't check for write permission, don't truncate */
2730 open_flag &= ~O_TRUNC;
2731 will_truncate = false;
2732 acc_mode = MAY_OPEN;
2733 path_to_nameidata(path, nd);
2734 goto finish_open_created;
2735 }
2736
2737 /*
2738 * create/update audit record if it already exists.
2739 */
2740 if (path->dentry->d_inode)
2741 audit_inode(pathname, path->dentry);
2742
2743 /*
2744 * If atomic_open() acquired write access it is dropped now due to
2745 * possible mount and symlink following (this might be optimized away if
2746 * necessary...)
2747 */
2748 if (got_write) {
2749 mnt_drop_write(nd->path.mnt);
2750 got_write = false;
2751 }
2752
2753 error = -EEXIST;
2754 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2755 goto exit_dput;
2756
2757 error = follow_managed(path, nd->flags);
2758 if (error < 0)
2759 goto exit_dput;
2760
2761 if (error)
2762 nd->flags |= LOOKUP_JUMPED;
2763
2764 BUG_ON(nd->flags & LOOKUP_RCU);
2765 inode = path->dentry->d_inode;
2766 finish_lookup:
2767 /* we _can_ be in RCU mode here */
2768 error = -ENOENT;
2769 if (!inode) {
2770 path_to_nameidata(path, nd);
2771 goto out;
2772 }
2773
2774 if (should_follow_link(inode, !symlink_ok)) {
2775 if (nd->flags & LOOKUP_RCU) {
2776 if (unlikely(unlazy_walk(nd, path->dentry))) {
2777 error = -ECHILD;
2778 goto out;
2779 }
2780 }
2781 BUG_ON(inode != path->dentry->d_inode);
2782 return 1;
2783 }
2784
2785 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
2786 path_to_nameidata(path, nd);
2787 } else {
2788 save_parent.dentry = nd->path.dentry;
2789 save_parent.mnt = mntget(path->mnt);
2790 nd->path.dentry = path->dentry;
2791
2792 }
2793 nd->inode = inode;
2794 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2795 error = complete_walk(nd);
2796 if (error) {
2797 path_put(&save_parent);
2798 return error;
2799 }
2800 error = -EISDIR;
2801 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
2802 goto out;
2803 error = -ENOTDIR;
2804 if ((nd->flags & LOOKUP_DIRECTORY) && !nd->inode->i_op->lookup)
2805 goto out;
2806 audit_inode(pathname, nd->path.dentry);
2807 finish_open:
2808 if (!S_ISREG(nd->inode->i_mode))
2809 will_truncate = false;
2810
2811 if (will_truncate) {
2812 error = mnt_want_write(nd->path.mnt);
2813 if (error)
2814 goto out;
2815 got_write = true;
2816 }
2817 finish_open_created:
2818 error = may_open(&nd->path, acc_mode, open_flag);
2819 if (error)
2820 goto out;
2821 file->f_path.mnt = nd->path.mnt;
2822 error = finish_open(file, nd->path.dentry, NULL, opened);
2823 if (error) {
2824 if (error == -EOPENSTALE)
2825 goto stale_open;
2826 goto out;
2827 }
2828 opened:
2829 error = open_check_o_direct(file);
2830 if (error)
2831 goto exit_fput;
2832 error = ima_file_check(file, op->acc_mode);
2833 if (error)
2834 goto exit_fput;
2835
2836 if (will_truncate) {
2837 error = handle_truncate(file);
2838 if (error)
2839 goto exit_fput;
2840 }
2841 out:
2842 if (got_write)
2843 mnt_drop_write(nd->path.mnt);
2844 path_put(&save_parent);
2845 terminate_walk(nd);
2846 return error;
2847
2848 exit_dput:
2849 path_put_conditional(path, nd);
2850 goto out;
2851 exit_fput:
2852 fput(file);
2853 goto out;
2854
2855 stale_open:
2856 /* If no saved parent or already retried then can't retry */
2857 if (!save_parent.dentry || retried)
2858 goto out;
2859
2860 BUG_ON(save_parent.dentry != dir);
2861 path_put(&nd->path);
2862 nd->path = save_parent;
2863 nd->inode = dir->d_inode;
2864 save_parent.mnt = NULL;
2865 save_parent.dentry = NULL;
2866 if (got_write) {
2867 mnt_drop_write(nd->path.mnt);
2868 got_write = false;
2869 }
2870 retried = true;
2871 goto retry_lookup;
2872 }
2873
2874 static struct file *path_openat(int dfd, const char *pathname,
2875 struct nameidata *nd, const struct open_flags *op, int flags)
2876 {
2877 struct file *base = NULL;
2878 struct file *file;
2879 struct path path;
2880 int opened = 0;
2881 int error;
2882
2883 file = get_empty_filp();
2884 if (!file)
2885 return ERR_PTR(-ENFILE);
2886
2887 file->f_flags = op->open_flag;
2888
2889 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2890 if (unlikely(error))
2891 goto out;
2892
2893 current->total_link_count = 0;
2894 error = link_path_walk(pathname, nd);
2895 if (unlikely(error))
2896 goto out;
2897
2898 error = do_last(nd, &path, file, op, &opened, pathname);
2899 while (unlikely(error > 0)) { /* trailing symlink */
2900 struct path link = path;
2901 void *cookie;
2902 if (!(nd->flags & LOOKUP_FOLLOW)) {
2903 path_put_conditional(&path, nd);
2904 path_put(&nd->path);
2905 error = -ELOOP;
2906 break;
2907 }
2908 error = may_follow_link(&link, nd);
2909 if (unlikely(error))
2910 break;
2911 nd->flags |= LOOKUP_PARENT;
2912 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2913 error = follow_link(&link, nd, &cookie);
2914 if (unlikely(error))
2915 break;
2916 error = do_last(nd, &path, file, op, &opened, pathname);
2917 put_link(nd, &link, cookie);
2918 }
2919 out:
2920 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2921 path_put(&nd->root);
2922 if (base)
2923 fput(base);
2924 if (!(opened & FILE_OPENED)) {
2925 BUG_ON(!error);
2926 put_filp(file);
2927 }
2928 if (unlikely(error)) {
2929 if (error == -EOPENSTALE) {
2930 if (flags & LOOKUP_RCU)
2931 error = -ECHILD;
2932 else
2933 error = -ESTALE;
2934 }
2935 file = ERR_PTR(error);
2936 }
2937 return file;
2938 }
2939
2940 struct file *do_filp_open(int dfd, const char *pathname,
2941 const struct open_flags *op, int flags)
2942 {
2943 struct nameidata nd;
2944 struct file *filp;
2945
2946 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2947 if (unlikely(filp == ERR_PTR(-ECHILD)))
2948 filp = path_openat(dfd, pathname, &nd, op, flags);
2949 if (unlikely(filp == ERR_PTR(-ESTALE)))
2950 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2951 return filp;
2952 }
2953
2954 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2955 const char *name, const struct open_flags *op, int flags)
2956 {
2957 struct nameidata nd;
2958 struct file *file;
2959
2960 nd.root.mnt = mnt;
2961 nd.root.dentry = dentry;
2962
2963 flags |= LOOKUP_ROOT;
2964
2965 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2966 return ERR_PTR(-ELOOP);
2967
2968 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2969 if (unlikely(file == ERR_PTR(-ECHILD)))
2970 file = path_openat(-1, name, &nd, op, flags);
2971 if (unlikely(file == ERR_PTR(-ESTALE)))
2972 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2973 return file;
2974 }
2975
2976 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2977 {
2978 struct dentry *dentry = ERR_PTR(-EEXIST);
2979 struct nameidata nd;
2980 int err2;
2981 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2982 if (error)
2983 return ERR_PTR(error);
2984
2985 /*
2986 * Yucky last component or no last component at all?
2987 * (foo/., foo/.., /////)
2988 */
2989 if (nd.last_type != LAST_NORM)
2990 goto out;
2991 nd.flags &= ~LOOKUP_PARENT;
2992 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2993
2994 /* don't fail immediately if it's r/o, at least try to report other errors */
2995 err2 = mnt_want_write(nd.path.mnt);
2996 /*
2997 * Do the final lookup.
2998 */
2999 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3000 dentry = lookup_hash(&nd);
3001 if (IS_ERR(dentry))
3002 goto unlock;
3003
3004 error = -EEXIST;
3005 if (dentry->d_inode)
3006 goto fail;
3007 /*
3008 * Special case - lookup gave negative, but... we had foo/bar/
3009 * From the vfs_mknod() POV we just have a negative dentry -
3010 * all is fine. Let's be bastards - you had / on the end, you've
3011 * been asking for (non-existent) directory. -ENOENT for you.
3012 */
3013 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3014 error = -ENOENT;
3015 goto fail;
3016 }
3017 if (unlikely(err2)) {
3018 error = err2;
3019 goto fail;
3020 }
3021 *path = nd.path;
3022 return dentry;
3023 fail:
3024 dput(dentry);
3025 dentry = ERR_PTR(error);
3026 unlock:
3027 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3028 if (!err2)
3029 mnt_drop_write(nd.path.mnt);
3030 out:
3031 path_put(&nd.path);
3032 return dentry;
3033 }
3034 EXPORT_SYMBOL(kern_path_create);
3035
3036 void done_path_create(struct path *path, struct dentry *dentry)
3037 {
3038 dput(dentry);
3039 mutex_unlock(&path->dentry->d_inode->i_mutex);
3040 mnt_drop_write(path->mnt);
3041 path_put(path);
3042 }
3043 EXPORT_SYMBOL(done_path_create);
3044
3045 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
3046 {
3047 char *tmp = getname(pathname);
3048 struct dentry *res;
3049 if (IS_ERR(tmp))
3050 return ERR_CAST(tmp);
3051 res = kern_path_create(dfd, tmp, path, is_dir);
3052 putname(tmp);
3053 return res;
3054 }
3055 EXPORT_SYMBOL(user_path_create);
3056
3057 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3058 {
3059 int error = may_create(dir, dentry);
3060
3061 if (error)
3062 return error;
3063
3064 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3065 return -EPERM;
3066
3067 if (!dir->i_op->mknod)
3068 return -EPERM;
3069
3070 error = devcgroup_inode_mknod(mode, dev);
3071 if (error)
3072 return error;
3073
3074 error = security_inode_mknod(dir, dentry, mode, dev);
3075 if (error)
3076 return error;
3077
3078 error = dir->i_op->mknod(dir, dentry, mode, dev);
3079 if (!error)
3080 fsnotify_create(dir, dentry);
3081 return error;
3082 }
3083
3084 static int may_mknod(umode_t mode)
3085 {
3086 switch (mode & S_IFMT) {
3087 case S_IFREG:
3088 case S_IFCHR:
3089 case S_IFBLK:
3090 case S_IFIFO:
3091 case S_IFSOCK:
3092 case 0: /* zero mode translates to S_IFREG */
3093 return 0;
3094 case S_IFDIR:
3095 return -EPERM;
3096 default:
3097 return -EINVAL;
3098 }
3099 }
3100
3101 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3102 unsigned, dev)
3103 {
3104 struct dentry *dentry;
3105 struct path path;
3106 int error;
3107
3108 error = may_mknod(mode);
3109 if (error)
3110 return error;
3111
3112 dentry = user_path_create(dfd, filename, &path, 0);
3113 if (IS_ERR(dentry))
3114 return PTR_ERR(dentry);
3115
3116 if (!IS_POSIXACL(path.dentry->d_inode))
3117 mode &= ~current_umask();
3118 error = security_path_mknod(&path, dentry, mode, dev);
3119 if (error)
3120 goto out;
3121 switch (mode & S_IFMT) {
3122 case 0: case S_IFREG:
3123 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3124 break;
3125 case S_IFCHR: case S_IFBLK:
3126 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3127 new_decode_dev(dev));
3128 break;
3129 case S_IFIFO: case S_IFSOCK:
3130 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3131 break;
3132 }
3133 out:
3134 done_path_create(&path, dentry);
3135 return error;
3136 }
3137
3138 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3139 {
3140 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3141 }
3142
3143 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3144 {
3145 int error = may_create(dir, dentry);
3146 unsigned max_links = dir->i_sb->s_max_links;
3147
3148 if (error)
3149 return error;
3150
3151 if (!dir->i_op->mkdir)
3152 return -EPERM;
3153
3154 mode &= (S_IRWXUGO|S_ISVTX);
3155 error = security_inode_mkdir(dir, dentry, mode);
3156 if (error)
3157 return error;
3158
3159 if (max_links && dir->i_nlink >= max_links)
3160 return -EMLINK;
3161
3162 error = dir->i_op->mkdir(dir, dentry, mode);
3163 if (!error)
3164 fsnotify_mkdir(dir, dentry);
3165 return error;
3166 }
3167
3168 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3169 {
3170 struct dentry *dentry;
3171 struct path path;
3172 int error;
3173
3174 dentry = user_path_create(dfd, pathname, &path, 1);
3175 if (IS_ERR(dentry))
3176 return PTR_ERR(dentry);
3177
3178 if (!IS_POSIXACL(path.dentry->d_inode))
3179 mode &= ~current_umask();
3180 error = security_path_mkdir(&path, dentry, mode);
3181 if (!error)
3182 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3183 done_path_create(&path, dentry);
3184 return error;
3185 }
3186
3187 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3188 {
3189 return sys_mkdirat(AT_FDCWD, pathname, mode);
3190 }
3191
3192 /*
3193 * The dentry_unhash() helper will try to drop the dentry early: we
3194 * should have a usage count of 1 if we're the only user of this
3195 * dentry, and if that is true (possibly after pruning the dcache),
3196 * then we drop the dentry now.
3197 *
3198 * A low-level filesystem can, if it choses, legally
3199 * do a
3200 *
3201 * if (!d_unhashed(dentry))
3202 * return -EBUSY;
3203 *
3204 * if it cannot handle the case of removing a directory
3205 * that is still in use by something else..
3206 */
3207 void dentry_unhash(struct dentry *dentry)
3208 {
3209 shrink_dcache_parent(dentry);
3210 spin_lock(&dentry->d_lock);
3211 if (dentry->d_count == 1)
3212 __d_drop(dentry);
3213 spin_unlock(&dentry->d_lock);
3214 }
3215
3216 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3217 {
3218 int error = may_delete(dir, dentry, 1);
3219
3220 if (error)
3221 return error;
3222
3223 if (!dir->i_op->rmdir)
3224 return -EPERM;
3225
3226 dget(dentry);
3227 mutex_lock(&dentry->d_inode->i_mutex);
3228
3229 error = -EBUSY;
3230 if (d_mountpoint(dentry))
3231 goto out;
3232
3233 error = security_inode_rmdir(dir, dentry);
3234 if (error)
3235 goto out;
3236
3237 shrink_dcache_parent(dentry);
3238 error = dir->i_op->rmdir(dir, dentry);
3239 if (error)
3240 goto out;
3241
3242 dentry->d_inode->i_flags |= S_DEAD;
3243 dont_mount(dentry);
3244
3245 out:
3246 mutex_unlock(&dentry->d_inode->i_mutex);
3247 dput(dentry);
3248 if (!error)
3249 d_delete(dentry);
3250 return error;
3251 }
3252
3253 static long do_rmdir(int dfd, const char __user *pathname)
3254 {
3255 int error = 0;
3256 char * name;
3257 struct dentry *dentry;
3258 struct nameidata nd;
3259
3260 error = user_path_parent(dfd, pathname, &nd, &name);
3261 if (error)
3262 return error;
3263
3264 switch(nd.last_type) {
3265 case LAST_DOTDOT:
3266 error = -ENOTEMPTY;
3267 goto exit1;
3268 case LAST_DOT:
3269 error = -EINVAL;
3270 goto exit1;
3271 case LAST_ROOT:
3272 error = -EBUSY;
3273 goto exit1;
3274 }
3275
3276 nd.flags &= ~LOOKUP_PARENT;
3277 error = mnt_want_write(nd.path.mnt);
3278 if (error)
3279 goto exit1;
3280
3281 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3282 dentry = lookup_hash(&nd);
3283 error = PTR_ERR(dentry);
3284 if (IS_ERR(dentry))
3285 goto exit2;
3286 if (!dentry->d_inode) {
3287 error = -ENOENT;
3288 goto exit3;
3289 }
3290 error = security_path_rmdir(&nd.path, dentry);
3291 if (error)
3292 goto exit3;
3293 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3294 exit3:
3295 dput(dentry);
3296 exit2:
3297 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3298 mnt_drop_write(nd.path.mnt);
3299 exit1:
3300 path_put(&nd.path);
3301 putname(name);
3302 return error;
3303 }
3304
3305 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3306 {
3307 return do_rmdir(AT_FDCWD, pathname);
3308 }
3309
3310 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3311 {
3312 int error = may_delete(dir, dentry, 0);
3313
3314 if (error)
3315 return error;
3316
3317 if (!dir->i_op->unlink)
3318 return -EPERM;
3319
3320 mutex_lock(&dentry->d_inode->i_mutex);
3321 if (d_mountpoint(dentry))
3322 error = -EBUSY;
3323 else {
3324 error = security_inode_unlink(dir, dentry);
3325 if (!error) {
3326 error = dir->i_op->unlink(dir, dentry);
3327 if (!error)
3328 dont_mount(dentry);
3329 }
3330 }
3331 mutex_unlock(&dentry->d_inode->i_mutex);
3332
3333 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3334 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3335 fsnotify_link_count(dentry->d_inode);
3336 d_delete(dentry);
3337 }
3338
3339 return error;
3340 }
3341
3342 /*
3343 * Make sure that the actual truncation of the file will occur outside its
3344 * directory's i_mutex. Truncate can take a long time if there is a lot of
3345 * writeout happening, and we don't want to prevent access to the directory
3346 * while waiting on the I/O.
3347 */
3348 static long do_unlinkat(int dfd, const char __user *pathname)
3349 {
3350 int error;
3351 char *name;
3352 struct dentry *dentry;
3353 struct nameidata nd;
3354 struct inode *inode = NULL;
3355
3356 error = user_path_parent(dfd, pathname, &nd, &name);
3357 if (error)
3358 return error;
3359
3360 error = -EISDIR;
3361 if (nd.last_type != LAST_NORM)
3362 goto exit1;
3363
3364 nd.flags &= ~LOOKUP_PARENT;
3365 error = mnt_want_write(nd.path.mnt);
3366 if (error)
3367 goto exit1;
3368
3369 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3370 dentry = lookup_hash(&nd);
3371 error = PTR_ERR(dentry);
3372 if (!IS_ERR(dentry)) {
3373 /* Why not before? Because we want correct error value */
3374 if (nd.last.name[nd.last.len])
3375 goto slashes;
3376 inode = dentry->d_inode;
3377 if (!inode)
3378 goto slashes;
3379 ihold(inode);
3380 error = security_path_unlink(&nd.path, dentry);
3381 if (error)
3382 goto exit2;
3383 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3384 exit2:
3385 dput(dentry);
3386 }
3387 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3388 if (inode)
3389 iput(inode); /* truncate the inode here */
3390 mnt_drop_write(nd.path.mnt);
3391 exit1:
3392 path_put(&nd.path);
3393 putname(name);
3394 return error;
3395
3396 slashes:
3397 error = !dentry->d_inode ? -ENOENT :
3398 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3399 goto exit2;
3400 }
3401
3402 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3403 {
3404 if ((flag & ~AT_REMOVEDIR) != 0)
3405 return -EINVAL;
3406
3407 if (flag & AT_REMOVEDIR)
3408 return do_rmdir(dfd, pathname);
3409
3410 return do_unlinkat(dfd, pathname);
3411 }
3412
3413 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3414 {
3415 return do_unlinkat(AT_FDCWD, pathname);
3416 }
3417
3418 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3419 {
3420 int error = may_create(dir, dentry);
3421
3422 if (error)
3423 return error;
3424
3425 if (!dir->i_op->symlink)
3426 return -EPERM;
3427
3428 error = security_inode_symlink(dir, dentry, oldname);
3429 if (error)
3430 return error;
3431
3432 error = dir->i_op->symlink(dir, dentry, oldname);
3433 if (!error)
3434 fsnotify_create(dir, dentry);
3435 return error;
3436 }
3437
3438 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3439 int, newdfd, const char __user *, newname)
3440 {
3441 int error;
3442 char *from;
3443 struct dentry *dentry;
3444 struct path path;
3445
3446 from = getname(oldname);
3447 if (IS_ERR(from))
3448 return PTR_ERR(from);
3449
3450 dentry = user_path_create(newdfd, newname, &path, 0);
3451 error = PTR_ERR(dentry);
3452 if (IS_ERR(dentry))
3453 goto out_putname;
3454
3455 error = security_path_symlink(&path, dentry, from);
3456 if (!error)
3457 error = vfs_symlink(path.dentry->d_inode, dentry, from);
3458 done_path_create(&path, dentry);
3459 out_putname:
3460 putname(from);
3461 return error;
3462 }
3463
3464 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3465 {
3466 return sys_symlinkat(oldname, AT_FDCWD, newname);
3467 }
3468
3469 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3470 {
3471 struct inode *inode = old_dentry->d_inode;
3472 unsigned max_links = dir->i_sb->s_max_links;
3473 int error;
3474
3475 if (!inode)
3476 return -ENOENT;
3477
3478 error = may_create(dir, new_dentry);
3479 if (error)
3480 return error;
3481
3482 if (dir->i_sb != inode->i_sb)
3483 return -EXDEV;
3484
3485 /*
3486 * A link to an append-only or immutable file cannot be created.
3487 */
3488 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3489 return -EPERM;
3490 if (!dir->i_op->link)
3491 return -EPERM;
3492 if (S_ISDIR(inode->i_mode))
3493 return -EPERM;
3494
3495 error = security_inode_link(old_dentry, dir, new_dentry);
3496 if (error)
3497 return error;
3498
3499 mutex_lock(&inode->i_mutex);
3500 /* Make sure we don't allow creating hardlink to an unlinked file */
3501 if (inode->i_nlink == 0)
3502 error = -ENOENT;
3503 else if (max_links && inode->i_nlink >= max_links)
3504 error = -EMLINK;
3505 else
3506 error = dir->i_op->link(old_dentry, dir, new_dentry);
3507 mutex_unlock(&inode->i_mutex);
3508 if (!error)
3509 fsnotify_link(dir, inode, new_dentry);
3510 return error;
3511 }
3512
3513 /*
3514 * Hardlinks are often used in delicate situations. We avoid
3515 * security-related surprises by not following symlinks on the
3516 * newname. --KAB
3517 *
3518 * We don't follow them on the oldname either to be compatible
3519 * with linux 2.0, and to avoid hard-linking to directories
3520 * and other special files. --ADM
3521 */
3522 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3523 int, newdfd, const char __user *, newname, int, flags)
3524 {
3525 struct dentry *new_dentry;
3526 struct path old_path, new_path;
3527 int how = 0;
3528 int error;
3529
3530 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3531 return -EINVAL;
3532 /*
3533 * To use null names we require CAP_DAC_READ_SEARCH
3534 * This ensures that not everyone will be able to create
3535 * handlink using the passed filedescriptor.
3536 */
3537 if (flags & AT_EMPTY_PATH) {
3538 if (!capable(CAP_DAC_READ_SEARCH))
3539 return -ENOENT;
3540 how = LOOKUP_EMPTY;
3541 }
3542
3543 if (flags & AT_SYMLINK_FOLLOW)
3544 how |= LOOKUP_FOLLOW;
3545
3546 error = user_path_at(olddfd, oldname, how, &old_path);
3547 if (error)
3548 return error;
3549
3550 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3551 error = PTR_ERR(new_dentry);
3552 if (IS_ERR(new_dentry))
3553 goto out;
3554
3555 error = -EXDEV;
3556 if (old_path.mnt != new_path.mnt)
3557 goto out_dput;
3558 error = may_linkat(&old_path);
3559 if (unlikely(error))
3560 goto out_dput;
3561 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3562 if (error)
3563 goto out_dput;
3564 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3565 out_dput:
3566 done_path_create(&new_path, new_dentry);
3567 out:
3568 path_put(&old_path);
3569
3570 return error;
3571 }
3572
3573 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3574 {
3575 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3576 }
3577
3578 /*
3579 * The worst of all namespace operations - renaming directory. "Perverted"
3580 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3581 * Problems:
3582 * a) we can get into loop creation. Check is done in is_subdir().
3583 * b) race potential - two innocent renames can create a loop together.
3584 * That's where 4.4 screws up. Current fix: serialization on
3585 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3586 * story.
3587 * c) we have to lock _three_ objects - parents and victim (if it exists).
3588 * And that - after we got ->i_mutex on parents (until then we don't know
3589 * whether the target exists). Solution: try to be smart with locking
3590 * order for inodes. We rely on the fact that tree topology may change
3591 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3592 * move will be locked. Thus we can rank directories by the tree
3593 * (ancestors first) and rank all non-directories after them.
3594 * That works since everybody except rename does "lock parent, lookup,
3595 * lock child" and rename is under ->s_vfs_rename_mutex.
3596 * HOWEVER, it relies on the assumption that any object with ->lookup()
3597 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3598 * we'd better make sure that there's no link(2) for them.
3599 * d) conversion from fhandle to dentry may come in the wrong moment - when
3600 * we are removing the target. Solution: we will have to grab ->i_mutex
3601 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3602 * ->i_mutex on parents, which works but leads to some truly excessive
3603 * locking].
3604 */
3605 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3606 struct inode *new_dir, struct dentry *new_dentry)
3607 {
3608 int error = 0;
3609 struct inode *target = new_dentry->d_inode;
3610 unsigned max_links = new_dir->i_sb->s_max_links;
3611
3612 /*
3613 * If we are going to change the parent - check write permissions,
3614 * we'll need to flip '..'.
3615 */
3616 if (new_dir != old_dir) {
3617 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3618 if (error)
3619 return error;
3620 }
3621
3622 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3623 if (error)
3624 return error;
3625
3626 dget(new_dentry);
3627 if (target)
3628 mutex_lock(&target->i_mutex);
3629
3630 error = -EBUSY;
3631 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3632 goto out;
3633
3634 error = -EMLINK;
3635 if (max_links && !target && new_dir != old_dir &&
3636 new_dir->i_nlink >= max_links)
3637 goto out;
3638
3639 if (target)
3640 shrink_dcache_parent(new_dentry);
3641 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3642 if (error)
3643 goto out;
3644
3645 if (target) {
3646 target->i_flags |= S_DEAD;
3647 dont_mount(new_dentry);
3648 }
3649 out:
3650 if (target)
3651 mutex_unlock(&target->i_mutex);
3652 dput(new_dentry);
3653 if (!error)
3654 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3655 d_move(old_dentry,new_dentry);
3656 return error;
3657 }
3658
3659 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3660 struct inode *new_dir, struct dentry *new_dentry)
3661 {
3662 struct inode *target = new_dentry->d_inode;
3663 int error;
3664
3665 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3666 if (error)
3667 return error;
3668
3669 dget(new_dentry);
3670 if (target)
3671 mutex_lock(&target->i_mutex);
3672
3673 error = -EBUSY;
3674 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3675 goto out;
3676
3677 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3678 if (error)
3679 goto out;
3680
3681 if (target)
3682 dont_mount(new_dentry);
3683 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3684 d_move(old_dentry, new_dentry);
3685 out:
3686 if (target)
3687 mutex_unlock(&target->i_mutex);
3688 dput(new_dentry);
3689 return error;
3690 }
3691
3692 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3693 struct inode *new_dir, struct dentry *new_dentry)
3694 {
3695 int error;
3696 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3697 const unsigned char *old_name;
3698
3699 if (old_dentry->d_inode == new_dentry->d_inode)
3700 return 0;
3701
3702 error = may_delete(old_dir, old_dentry, is_dir);
3703 if (error)
3704 return error;
3705
3706 if (!new_dentry->d_inode)
3707 error = may_create(new_dir, new_dentry);
3708 else
3709 error = may_delete(new_dir, new_dentry, is_dir);
3710 if (error)
3711 return error;
3712
3713 if (!old_dir->i_op->rename)
3714 return -EPERM;
3715
3716 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3717
3718 if (is_dir)
3719 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3720 else
3721 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3722 if (!error)
3723 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3724 new_dentry->d_inode, old_dentry);
3725 fsnotify_oldname_free(old_name);
3726
3727 return error;
3728 }
3729
3730 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3731 int, newdfd, const char __user *, newname)
3732 {
3733 struct dentry *old_dir, *new_dir;
3734 struct dentry *old_dentry, *new_dentry;
3735 struct dentry *trap;
3736 struct nameidata oldnd, newnd;
3737 char *from;
3738 char *to;
3739 int error;
3740
3741 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3742 if (error)
3743 goto exit;
3744
3745 error = user_path_parent(newdfd, newname, &newnd, &to);
3746 if (error)
3747 goto exit1;
3748
3749 error = -EXDEV;
3750 if (oldnd.path.mnt != newnd.path.mnt)
3751 goto exit2;
3752
3753 old_dir = oldnd.path.dentry;
3754 error = -EBUSY;
3755 if (oldnd.last_type != LAST_NORM)
3756 goto exit2;
3757
3758 new_dir = newnd.path.dentry;
3759 if (newnd.last_type != LAST_NORM)
3760 goto exit2;
3761
3762 error = mnt_want_write(oldnd.path.mnt);
3763 if (error)
3764 goto exit2;
3765
3766 oldnd.flags &= ~LOOKUP_PARENT;
3767 newnd.flags &= ~LOOKUP_PARENT;
3768 newnd.flags |= LOOKUP_RENAME_TARGET;
3769
3770 trap = lock_rename(new_dir, old_dir);
3771
3772 old_dentry = lookup_hash(&oldnd);
3773 error = PTR_ERR(old_dentry);
3774 if (IS_ERR(old_dentry))
3775 goto exit3;
3776 /* source must exist */
3777 error = -ENOENT;
3778 if (!old_dentry->d_inode)
3779 goto exit4;
3780 /* unless the source is a directory trailing slashes give -ENOTDIR */
3781 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3782 error = -ENOTDIR;
3783 if (oldnd.last.name[oldnd.last.len])
3784 goto exit4;
3785 if (newnd.last.name[newnd.last.len])
3786 goto exit4;
3787 }
3788 /* source should not be ancestor of target */
3789 error = -EINVAL;
3790 if (old_dentry == trap)
3791 goto exit4;
3792 new_dentry = lookup_hash(&newnd);
3793 error = PTR_ERR(new_dentry);
3794 if (IS_ERR(new_dentry))
3795 goto exit4;
3796 /* target should not be an ancestor of source */
3797 error = -ENOTEMPTY;
3798 if (new_dentry == trap)
3799 goto exit5;
3800
3801 error = security_path_rename(&oldnd.path, old_dentry,
3802 &newnd.path, new_dentry);
3803 if (error)
3804 goto exit5;
3805 error = vfs_rename(old_dir->d_inode, old_dentry,
3806 new_dir->d_inode, new_dentry);
3807 exit5:
3808 dput(new_dentry);
3809 exit4:
3810 dput(old_dentry);
3811 exit3:
3812 unlock_rename(new_dir, old_dir);
3813 mnt_drop_write(oldnd.path.mnt);
3814 exit2:
3815 path_put(&newnd.path);
3816 putname(to);
3817 exit1:
3818 path_put(&oldnd.path);
3819 putname(from);
3820 exit:
3821 return error;
3822 }
3823
3824 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3825 {
3826 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3827 }
3828
3829 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3830 {
3831 int len;
3832
3833 len = PTR_ERR(link);
3834 if (IS_ERR(link))
3835 goto out;
3836
3837 len = strlen(link);
3838 if (len > (unsigned) buflen)
3839 len = buflen;
3840 if (copy_to_user(buffer, link, len))
3841 len = -EFAULT;
3842 out:
3843 return len;
3844 }
3845
3846 /*
3847 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3848 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3849 * using) it for any given inode is up to filesystem.
3850 */
3851 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3852 {
3853 struct nameidata nd;
3854 void *cookie;
3855 int res;
3856
3857 nd.depth = 0;
3858 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3859 if (IS_ERR(cookie))
3860 return PTR_ERR(cookie);
3861
3862 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3863 if (dentry->d_inode->i_op->put_link)
3864 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3865 return res;
3866 }
3867
3868 int vfs_follow_link(struct nameidata *nd, const char *link)
3869 {
3870 return __vfs_follow_link(nd, link);
3871 }
3872
3873 /* get the link contents into pagecache */
3874 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3875 {
3876 char *kaddr;
3877 struct page *page;
3878 struct address_space *mapping = dentry->d_inode->i_mapping;
3879 page = read_mapping_page(mapping, 0, NULL);
3880 if (IS_ERR(page))
3881 return (char*)page;
3882 *ppage = page;
3883 kaddr = kmap(page);
3884 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3885 return kaddr;
3886 }
3887
3888 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3889 {
3890 struct page *page = NULL;
3891 char *s = page_getlink(dentry, &page);
3892 int res = vfs_readlink(dentry,buffer,buflen,s);
3893 if (page) {
3894 kunmap(page);
3895 page_cache_release(page);
3896 }
3897 return res;
3898 }
3899
3900 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3901 {
3902 struct page *page = NULL;
3903 nd_set_link(nd, page_getlink(dentry, &page));
3904 return page;
3905 }
3906
3907 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3908 {
3909 struct page *page = cookie;
3910
3911 if (page) {
3912 kunmap(page);
3913 page_cache_release(page);
3914 }
3915 }
3916
3917 /*
3918 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3919 */
3920 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3921 {
3922 struct address_space *mapping = inode->i_mapping;
3923 struct page *page;
3924 void *fsdata;
3925 int err;
3926 char *kaddr;
3927 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3928 if (nofs)
3929 flags |= AOP_FLAG_NOFS;
3930
3931 retry:
3932 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3933 flags, &page, &fsdata);
3934 if (err)
3935 goto fail;
3936
3937 kaddr = kmap_atomic(page);
3938 memcpy(kaddr, symname, len-1);
3939 kunmap_atomic(kaddr);
3940
3941 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3942 page, fsdata);
3943 if (err < 0)
3944 goto fail;
3945 if (err < len-1)
3946 goto retry;
3947
3948 mark_inode_dirty(inode);
3949 return 0;
3950 fail:
3951 return err;
3952 }
3953
3954 int page_symlink(struct inode *inode, const char *symname, int len)
3955 {
3956 return __page_symlink(inode, symname, len,
3957 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3958 }
3959
3960 const struct inode_operations page_symlink_inode_operations = {
3961 .readlink = generic_readlink,
3962 .follow_link = page_follow_link_light,
3963 .put_link = page_put_link,
3964 };
3965
3966 EXPORT_SYMBOL(user_path_at);
3967 EXPORT_SYMBOL(follow_down_one);
3968 EXPORT_SYMBOL(follow_down);
3969 EXPORT_SYMBOL(follow_up);
3970 EXPORT_SYMBOL(get_write_access); /* nfsd */
3971 EXPORT_SYMBOL(getname);
3972 EXPORT_SYMBOL(lock_rename);
3973 EXPORT_SYMBOL(lookup_one_len);
3974 EXPORT_SYMBOL(page_follow_link_light);
3975 EXPORT_SYMBOL(page_put_link);
3976 EXPORT_SYMBOL(page_readlink);
3977 EXPORT_SYMBOL(__page_symlink);
3978 EXPORT_SYMBOL(page_symlink);
3979 EXPORT_SYMBOL(page_symlink_inode_operations);
3980 EXPORT_SYMBOL(kern_path);
3981 EXPORT_SYMBOL(vfs_path_lookup);
3982 EXPORT_SYMBOL(inode_permission);
3983 EXPORT_SYMBOL(unlock_rename);
3984 EXPORT_SYMBOL(vfs_create);
3985 EXPORT_SYMBOL(vfs_follow_link);
3986 EXPORT_SYMBOL(vfs_link);
3987 EXPORT_SYMBOL(vfs_mkdir);
3988 EXPORT_SYMBOL(vfs_mknod);
3989 EXPORT_SYMBOL(generic_permission);
3990 EXPORT_SYMBOL(vfs_readlink);
3991 EXPORT_SYMBOL(vfs_rename);
3992 EXPORT_SYMBOL(vfs_rmdir);
3993 EXPORT_SYMBOL(vfs_symlink);
3994 EXPORT_SYMBOL(vfs_unlink);
3995 EXPORT_SYMBOL(dentry_unhash);
3996 EXPORT_SYMBOL(generic_readlink);