]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namei.c
Merge tag 'mac80211-for-davem-2015-01-23' of git://git.kernel.org/pub/scm/linux/kerne...
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121 void final_putname(struct filename *name)
122 {
123 if (name->separate) {
124 __putname(name->name);
125 kfree(name);
126 } else {
127 __putname(name);
128 }
129 }
130
131 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
132
133 struct filename *
134 getname_flags(const char __user *filename, int flags, int *empty)
135 {
136 struct filename *result, *err;
137 int len;
138 long max;
139 char *kname;
140
141 result = audit_reusename(filename);
142 if (result)
143 return result;
144
145 result = __getname();
146 if (unlikely(!result))
147 return ERR_PTR(-ENOMEM);
148
149 /*
150 * First, try to embed the struct filename inside the names_cache
151 * allocation
152 */
153 kname = (char *)result + sizeof(*result);
154 result->name = kname;
155 result->separate = false;
156 max = EMBEDDED_NAME_MAX;
157
158 recopy:
159 len = strncpy_from_user(kname, filename, max);
160 if (unlikely(len < 0)) {
161 err = ERR_PTR(len);
162 goto error;
163 }
164
165 /*
166 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
167 * separate struct filename so we can dedicate the entire
168 * names_cache allocation for the pathname, and re-do the copy from
169 * userland.
170 */
171 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
172 kname = (char *)result;
173
174 result = kzalloc(sizeof(*result), GFP_KERNEL);
175 if (!result) {
176 err = ERR_PTR(-ENOMEM);
177 result = (struct filename *)kname;
178 goto error;
179 }
180 result->name = kname;
181 result->separate = true;
182 max = PATH_MAX;
183 goto recopy;
184 }
185
186 /* The empty path is special. */
187 if (unlikely(!len)) {
188 if (empty)
189 *empty = 1;
190 err = ERR_PTR(-ENOENT);
191 if (!(flags & LOOKUP_EMPTY))
192 goto error;
193 }
194
195 err = ERR_PTR(-ENAMETOOLONG);
196 if (unlikely(len >= PATH_MAX))
197 goto error;
198
199 result->uptr = filename;
200 result->aname = NULL;
201 audit_getname(result);
202 return result;
203
204 error:
205 final_putname(result);
206 return err;
207 }
208
209 struct filename *
210 getname(const char __user * filename)
211 {
212 return getname_flags(filename, 0, NULL);
213 }
214
215 /*
216 * The "getname_kernel()" interface doesn't do pathnames longer
217 * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user.
218 */
219 struct filename *
220 getname_kernel(const char * filename)
221 {
222 struct filename *result;
223 char *kname;
224 int len;
225
226 len = strlen(filename);
227 if (len >= EMBEDDED_NAME_MAX)
228 return ERR_PTR(-ENAMETOOLONG);
229
230 result = __getname();
231 if (unlikely(!result))
232 return ERR_PTR(-ENOMEM);
233
234 kname = (char *)result + sizeof(*result);
235 result->name = kname;
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->separate = false;
239
240 strlcpy(kname, filename, EMBEDDED_NAME_MAX);
241 return result;
242 }
243
244 #ifdef CONFIG_AUDITSYSCALL
245 void putname(struct filename *name)
246 {
247 if (unlikely(!audit_dummy_context()))
248 return audit_putname(name);
249 final_putname(name);
250 }
251 #endif
252
253 static int check_acl(struct inode *inode, int mask)
254 {
255 #ifdef CONFIG_FS_POSIX_ACL
256 struct posix_acl *acl;
257
258 if (mask & MAY_NOT_BLOCK) {
259 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
260 if (!acl)
261 return -EAGAIN;
262 /* no ->get_acl() calls in RCU mode... */
263 if (acl == ACL_NOT_CACHED)
264 return -ECHILD;
265 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
266 }
267
268 acl = get_acl(inode, ACL_TYPE_ACCESS);
269 if (IS_ERR(acl))
270 return PTR_ERR(acl);
271 if (acl) {
272 int error = posix_acl_permission(inode, acl, mask);
273 posix_acl_release(acl);
274 return error;
275 }
276 #endif
277
278 return -EAGAIN;
279 }
280
281 /*
282 * This does the basic permission checking
283 */
284 static int acl_permission_check(struct inode *inode, int mask)
285 {
286 unsigned int mode = inode->i_mode;
287
288 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
289 mode >>= 6;
290 else {
291 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
292 int error = check_acl(inode, mask);
293 if (error != -EAGAIN)
294 return error;
295 }
296
297 if (in_group_p(inode->i_gid))
298 mode >>= 3;
299 }
300
301 /*
302 * If the DACs are ok we don't need any capability check.
303 */
304 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
305 return 0;
306 return -EACCES;
307 }
308
309 /**
310 * generic_permission - check for access rights on a Posix-like filesystem
311 * @inode: inode to check access rights for
312 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
313 *
314 * Used to check for read/write/execute permissions on a file.
315 * We use "fsuid" for this, letting us set arbitrary permissions
316 * for filesystem access without changing the "normal" uids which
317 * are used for other things.
318 *
319 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
320 * request cannot be satisfied (eg. requires blocking or too much complexity).
321 * It would then be called again in ref-walk mode.
322 */
323 int generic_permission(struct inode *inode, int mask)
324 {
325 int ret;
326
327 /*
328 * Do the basic permission checks.
329 */
330 ret = acl_permission_check(inode, mask);
331 if (ret != -EACCES)
332 return ret;
333
334 if (S_ISDIR(inode->i_mode)) {
335 /* DACs are overridable for directories */
336 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
337 return 0;
338 if (!(mask & MAY_WRITE))
339 if (capable_wrt_inode_uidgid(inode,
340 CAP_DAC_READ_SEARCH))
341 return 0;
342 return -EACCES;
343 }
344 /*
345 * Read/write DACs are always overridable.
346 * Executable DACs are overridable when there is
347 * at least one exec bit set.
348 */
349 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
350 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
351 return 0;
352
353 /*
354 * Searching includes executable on directories, else just read.
355 */
356 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
357 if (mask == MAY_READ)
358 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
359 return 0;
360
361 return -EACCES;
362 }
363 EXPORT_SYMBOL(generic_permission);
364
365 /*
366 * We _really_ want to just do "generic_permission()" without
367 * even looking at the inode->i_op values. So we keep a cache
368 * flag in inode->i_opflags, that says "this has not special
369 * permission function, use the fast case".
370 */
371 static inline int do_inode_permission(struct inode *inode, int mask)
372 {
373 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
374 if (likely(inode->i_op->permission))
375 return inode->i_op->permission(inode, mask);
376
377 /* This gets set once for the inode lifetime */
378 spin_lock(&inode->i_lock);
379 inode->i_opflags |= IOP_FASTPERM;
380 spin_unlock(&inode->i_lock);
381 }
382 return generic_permission(inode, mask);
383 }
384
385 /**
386 * __inode_permission - Check for access rights to a given inode
387 * @inode: Inode to check permission on
388 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
389 *
390 * Check for read/write/execute permissions on an inode.
391 *
392 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
393 *
394 * This does not check for a read-only file system. You probably want
395 * inode_permission().
396 */
397 int __inode_permission(struct inode *inode, int mask)
398 {
399 int retval;
400
401 if (unlikely(mask & MAY_WRITE)) {
402 /*
403 * Nobody gets write access to an immutable file.
404 */
405 if (IS_IMMUTABLE(inode))
406 return -EACCES;
407 }
408
409 retval = do_inode_permission(inode, mask);
410 if (retval)
411 return retval;
412
413 retval = devcgroup_inode_permission(inode, mask);
414 if (retval)
415 return retval;
416
417 return security_inode_permission(inode, mask);
418 }
419 EXPORT_SYMBOL(__inode_permission);
420
421 /**
422 * sb_permission - Check superblock-level permissions
423 * @sb: Superblock of inode to check permission on
424 * @inode: Inode to check permission on
425 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
426 *
427 * Separate out file-system wide checks from inode-specific permission checks.
428 */
429 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
430 {
431 if (unlikely(mask & MAY_WRITE)) {
432 umode_t mode = inode->i_mode;
433
434 /* Nobody gets write access to a read-only fs. */
435 if ((sb->s_flags & MS_RDONLY) &&
436 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
437 return -EROFS;
438 }
439 return 0;
440 }
441
442 /**
443 * inode_permission - Check for access rights to a given inode
444 * @inode: Inode to check permission on
445 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
446 *
447 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
448 * this, letting us set arbitrary permissions for filesystem access without
449 * changing the "normal" UIDs which are used for other things.
450 *
451 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
452 */
453 int inode_permission(struct inode *inode, int mask)
454 {
455 int retval;
456
457 retval = sb_permission(inode->i_sb, inode, mask);
458 if (retval)
459 return retval;
460 return __inode_permission(inode, mask);
461 }
462 EXPORT_SYMBOL(inode_permission);
463
464 /**
465 * path_get - get a reference to a path
466 * @path: path to get the reference to
467 *
468 * Given a path increment the reference count to the dentry and the vfsmount.
469 */
470 void path_get(const struct path *path)
471 {
472 mntget(path->mnt);
473 dget(path->dentry);
474 }
475 EXPORT_SYMBOL(path_get);
476
477 /**
478 * path_put - put a reference to a path
479 * @path: path to put the reference to
480 *
481 * Given a path decrement the reference count to the dentry and the vfsmount.
482 */
483 void path_put(const struct path *path)
484 {
485 dput(path->dentry);
486 mntput(path->mnt);
487 }
488 EXPORT_SYMBOL(path_put);
489
490 struct nameidata {
491 struct path path;
492 struct qstr last;
493 struct path root;
494 struct inode *inode; /* path.dentry.d_inode */
495 unsigned int flags;
496 unsigned seq, m_seq;
497 int last_type;
498 unsigned depth;
499 struct file *base;
500 char *saved_names[MAX_NESTED_LINKS + 1];
501 };
502
503 /*
504 * Path walking has 2 modes, rcu-walk and ref-walk (see
505 * Documentation/filesystems/path-lookup.txt). In situations when we can't
506 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
507 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
508 * mode. Refcounts are grabbed at the last known good point before rcu-walk
509 * got stuck, so ref-walk may continue from there. If this is not successful
510 * (eg. a seqcount has changed), then failure is returned and it's up to caller
511 * to restart the path walk from the beginning in ref-walk mode.
512 */
513
514 /**
515 * unlazy_walk - try to switch to ref-walk mode.
516 * @nd: nameidata pathwalk data
517 * @dentry: child of nd->path.dentry or NULL
518 * Returns: 0 on success, -ECHILD on failure
519 *
520 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
521 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
522 * @nd or NULL. Must be called from rcu-walk context.
523 */
524 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
525 {
526 struct fs_struct *fs = current->fs;
527 struct dentry *parent = nd->path.dentry;
528
529 BUG_ON(!(nd->flags & LOOKUP_RCU));
530
531 /*
532 * After legitimizing the bastards, terminate_walk()
533 * will do the right thing for non-RCU mode, and all our
534 * subsequent exit cases should rcu_read_unlock()
535 * before returning. Do vfsmount first; if dentry
536 * can't be legitimized, just set nd->path.dentry to NULL
537 * and rely on dput(NULL) being a no-op.
538 */
539 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
540 return -ECHILD;
541 nd->flags &= ~LOOKUP_RCU;
542
543 if (!lockref_get_not_dead(&parent->d_lockref)) {
544 nd->path.dentry = NULL;
545 goto out;
546 }
547
548 /*
549 * For a negative lookup, the lookup sequence point is the parents
550 * sequence point, and it only needs to revalidate the parent dentry.
551 *
552 * For a positive lookup, we need to move both the parent and the
553 * dentry from the RCU domain to be properly refcounted. And the
554 * sequence number in the dentry validates *both* dentry counters,
555 * since we checked the sequence number of the parent after we got
556 * the child sequence number. So we know the parent must still
557 * be valid if the child sequence number is still valid.
558 */
559 if (!dentry) {
560 if (read_seqcount_retry(&parent->d_seq, nd->seq))
561 goto out;
562 BUG_ON(nd->inode != parent->d_inode);
563 } else {
564 if (!lockref_get_not_dead(&dentry->d_lockref))
565 goto out;
566 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
567 goto drop_dentry;
568 }
569
570 /*
571 * Sequence counts matched. Now make sure that the root is
572 * still valid and get it if required.
573 */
574 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
575 spin_lock(&fs->lock);
576 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
577 goto unlock_and_drop_dentry;
578 path_get(&nd->root);
579 spin_unlock(&fs->lock);
580 }
581
582 rcu_read_unlock();
583 return 0;
584
585 unlock_and_drop_dentry:
586 spin_unlock(&fs->lock);
587 drop_dentry:
588 rcu_read_unlock();
589 dput(dentry);
590 goto drop_root_mnt;
591 out:
592 rcu_read_unlock();
593 drop_root_mnt:
594 if (!(nd->flags & LOOKUP_ROOT))
595 nd->root.mnt = NULL;
596 return -ECHILD;
597 }
598
599 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
600 {
601 return dentry->d_op->d_revalidate(dentry, flags);
602 }
603
604 /**
605 * complete_walk - successful completion of path walk
606 * @nd: pointer nameidata
607 *
608 * If we had been in RCU mode, drop out of it and legitimize nd->path.
609 * Revalidate the final result, unless we'd already done that during
610 * the path walk or the filesystem doesn't ask for it. Return 0 on
611 * success, -error on failure. In case of failure caller does not
612 * need to drop nd->path.
613 */
614 static int complete_walk(struct nameidata *nd)
615 {
616 struct dentry *dentry = nd->path.dentry;
617 int status;
618
619 if (nd->flags & LOOKUP_RCU) {
620 nd->flags &= ~LOOKUP_RCU;
621 if (!(nd->flags & LOOKUP_ROOT))
622 nd->root.mnt = NULL;
623
624 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
625 rcu_read_unlock();
626 return -ECHILD;
627 }
628 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
629 rcu_read_unlock();
630 mntput(nd->path.mnt);
631 return -ECHILD;
632 }
633 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
634 rcu_read_unlock();
635 dput(dentry);
636 mntput(nd->path.mnt);
637 return -ECHILD;
638 }
639 rcu_read_unlock();
640 }
641
642 if (likely(!(nd->flags & LOOKUP_JUMPED)))
643 return 0;
644
645 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
646 return 0;
647
648 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
649 if (status > 0)
650 return 0;
651
652 if (!status)
653 status = -ESTALE;
654
655 path_put(&nd->path);
656 return status;
657 }
658
659 static __always_inline void set_root(struct nameidata *nd)
660 {
661 get_fs_root(current->fs, &nd->root);
662 }
663
664 static int link_path_walk(const char *, struct nameidata *);
665
666 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
667 {
668 struct fs_struct *fs = current->fs;
669 unsigned seq, res;
670
671 do {
672 seq = read_seqcount_begin(&fs->seq);
673 nd->root = fs->root;
674 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
675 } while (read_seqcount_retry(&fs->seq, seq));
676 return res;
677 }
678
679 static void path_put_conditional(struct path *path, struct nameidata *nd)
680 {
681 dput(path->dentry);
682 if (path->mnt != nd->path.mnt)
683 mntput(path->mnt);
684 }
685
686 static inline void path_to_nameidata(const struct path *path,
687 struct nameidata *nd)
688 {
689 if (!(nd->flags & LOOKUP_RCU)) {
690 dput(nd->path.dentry);
691 if (nd->path.mnt != path->mnt)
692 mntput(nd->path.mnt);
693 }
694 nd->path.mnt = path->mnt;
695 nd->path.dentry = path->dentry;
696 }
697
698 /*
699 * Helper to directly jump to a known parsed path from ->follow_link,
700 * caller must have taken a reference to path beforehand.
701 */
702 void nd_jump_link(struct nameidata *nd, struct path *path)
703 {
704 path_put(&nd->path);
705
706 nd->path = *path;
707 nd->inode = nd->path.dentry->d_inode;
708 nd->flags |= LOOKUP_JUMPED;
709 }
710
711 void nd_set_link(struct nameidata *nd, char *path)
712 {
713 nd->saved_names[nd->depth] = path;
714 }
715 EXPORT_SYMBOL(nd_set_link);
716
717 char *nd_get_link(struct nameidata *nd)
718 {
719 return nd->saved_names[nd->depth];
720 }
721 EXPORT_SYMBOL(nd_get_link);
722
723 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
724 {
725 struct inode *inode = link->dentry->d_inode;
726 if (inode->i_op->put_link)
727 inode->i_op->put_link(link->dentry, nd, cookie);
728 path_put(link);
729 }
730
731 int sysctl_protected_symlinks __read_mostly = 0;
732 int sysctl_protected_hardlinks __read_mostly = 0;
733
734 /**
735 * may_follow_link - Check symlink following for unsafe situations
736 * @link: The path of the symlink
737 * @nd: nameidata pathwalk data
738 *
739 * In the case of the sysctl_protected_symlinks sysctl being enabled,
740 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
741 * in a sticky world-writable directory. This is to protect privileged
742 * processes from failing races against path names that may change out
743 * from under them by way of other users creating malicious symlinks.
744 * It will permit symlinks to be followed only when outside a sticky
745 * world-writable directory, or when the uid of the symlink and follower
746 * match, or when the directory owner matches the symlink's owner.
747 *
748 * Returns 0 if following the symlink is allowed, -ve on error.
749 */
750 static inline int may_follow_link(struct path *link, struct nameidata *nd)
751 {
752 const struct inode *inode;
753 const struct inode *parent;
754
755 if (!sysctl_protected_symlinks)
756 return 0;
757
758 /* Allowed if owner and follower match. */
759 inode = link->dentry->d_inode;
760 if (uid_eq(current_cred()->fsuid, inode->i_uid))
761 return 0;
762
763 /* Allowed if parent directory not sticky and world-writable. */
764 parent = nd->path.dentry->d_inode;
765 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
766 return 0;
767
768 /* Allowed if parent directory and link owner match. */
769 if (uid_eq(parent->i_uid, inode->i_uid))
770 return 0;
771
772 audit_log_link_denied("follow_link", link);
773 path_put_conditional(link, nd);
774 path_put(&nd->path);
775 return -EACCES;
776 }
777
778 /**
779 * safe_hardlink_source - Check for safe hardlink conditions
780 * @inode: the source inode to hardlink from
781 *
782 * Return false if at least one of the following conditions:
783 * - inode is not a regular file
784 * - inode is setuid
785 * - inode is setgid and group-exec
786 * - access failure for read and write
787 *
788 * Otherwise returns true.
789 */
790 static bool safe_hardlink_source(struct inode *inode)
791 {
792 umode_t mode = inode->i_mode;
793
794 /* Special files should not get pinned to the filesystem. */
795 if (!S_ISREG(mode))
796 return false;
797
798 /* Setuid files should not get pinned to the filesystem. */
799 if (mode & S_ISUID)
800 return false;
801
802 /* Executable setgid files should not get pinned to the filesystem. */
803 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
804 return false;
805
806 /* Hardlinking to unreadable or unwritable sources is dangerous. */
807 if (inode_permission(inode, MAY_READ | MAY_WRITE))
808 return false;
809
810 return true;
811 }
812
813 /**
814 * may_linkat - Check permissions for creating a hardlink
815 * @link: the source to hardlink from
816 *
817 * Block hardlink when all of:
818 * - sysctl_protected_hardlinks enabled
819 * - fsuid does not match inode
820 * - hardlink source is unsafe (see safe_hardlink_source() above)
821 * - not CAP_FOWNER
822 *
823 * Returns 0 if successful, -ve on error.
824 */
825 static int may_linkat(struct path *link)
826 {
827 const struct cred *cred;
828 struct inode *inode;
829
830 if (!sysctl_protected_hardlinks)
831 return 0;
832
833 cred = current_cred();
834 inode = link->dentry->d_inode;
835
836 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
837 * otherwise, it must be a safe source.
838 */
839 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
840 capable(CAP_FOWNER))
841 return 0;
842
843 audit_log_link_denied("linkat", link);
844 return -EPERM;
845 }
846
847 static __always_inline int
848 follow_link(struct path *link, struct nameidata *nd, void **p)
849 {
850 struct dentry *dentry = link->dentry;
851 int error;
852 char *s;
853
854 BUG_ON(nd->flags & LOOKUP_RCU);
855
856 if (link->mnt == nd->path.mnt)
857 mntget(link->mnt);
858
859 error = -ELOOP;
860 if (unlikely(current->total_link_count >= 40))
861 goto out_put_nd_path;
862
863 cond_resched();
864 current->total_link_count++;
865
866 touch_atime(link);
867 nd_set_link(nd, NULL);
868
869 error = security_inode_follow_link(link->dentry, nd);
870 if (error)
871 goto out_put_nd_path;
872
873 nd->last_type = LAST_BIND;
874 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
875 error = PTR_ERR(*p);
876 if (IS_ERR(*p))
877 goto out_put_nd_path;
878
879 error = 0;
880 s = nd_get_link(nd);
881 if (s) {
882 if (unlikely(IS_ERR(s))) {
883 path_put(&nd->path);
884 put_link(nd, link, *p);
885 return PTR_ERR(s);
886 }
887 if (*s == '/') {
888 if (!nd->root.mnt)
889 set_root(nd);
890 path_put(&nd->path);
891 nd->path = nd->root;
892 path_get(&nd->root);
893 nd->flags |= LOOKUP_JUMPED;
894 }
895 nd->inode = nd->path.dentry->d_inode;
896 error = link_path_walk(s, nd);
897 if (unlikely(error))
898 put_link(nd, link, *p);
899 }
900
901 return error;
902
903 out_put_nd_path:
904 *p = NULL;
905 path_put(&nd->path);
906 path_put(link);
907 return error;
908 }
909
910 static int follow_up_rcu(struct path *path)
911 {
912 struct mount *mnt = real_mount(path->mnt);
913 struct mount *parent;
914 struct dentry *mountpoint;
915
916 parent = mnt->mnt_parent;
917 if (&parent->mnt == path->mnt)
918 return 0;
919 mountpoint = mnt->mnt_mountpoint;
920 path->dentry = mountpoint;
921 path->mnt = &parent->mnt;
922 return 1;
923 }
924
925 /*
926 * follow_up - Find the mountpoint of path's vfsmount
927 *
928 * Given a path, find the mountpoint of its source file system.
929 * Replace @path with the path of the mountpoint in the parent mount.
930 * Up is towards /.
931 *
932 * Return 1 if we went up a level and 0 if we were already at the
933 * root.
934 */
935 int follow_up(struct path *path)
936 {
937 struct mount *mnt = real_mount(path->mnt);
938 struct mount *parent;
939 struct dentry *mountpoint;
940
941 read_seqlock_excl(&mount_lock);
942 parent = mnt->mnt_parent;
943 if (parent == mnt) {
944 read_sequnlock_excl(&mount_lock);
945 return 0;
946 }
947 mntget(&parent->mnt);
948 mountpoint = dget(mnt->mnt_mountpoint);
949 read_sequnlock_excl(&mount_lock);
950 dput(path->dentry);
951 path->dentry = mountpoint;
952 mntput(path->mnt);
953 path->mnt = &parent->mnt;
954 return 1;
955 }
956 EXPORT_SYMBOL(follow_up);
957
958 /*
959 * Perform an automount
960 * - return -EISDIR to tell follow_managed() to stop and return the path we
961 * were called with.
962 */
963 static int follow_automount(struct path *path, unsigned flags,
964 bool *need_mntput)
965 {
966 struct vfsmount *mnt;
967 int err;
968
969 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
970 return -EREMOTE;
971
972 /* We don't want to mount if someone's just doing a stat -
973 * unless they're stat'ing a directory and appended a '/' to
974 * the name.
975 *
976 * We do, however, want to mount if someone wants to open or
977 * create a file of any type under the mountpoint, wants to
978 * traverse through the mountpoint or wants to open the
979 * mounted directory. Also, autofs may mark negative dentries
980 * as being automount points. These will need the attentions
981 * of the daemon to instantiate them before they can be used.
982 */
983 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
984 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
985 path->dentry->d_inode)
986 return -EISDIR;
987
988 current->total_link_count++;
989 if (current->total_link_count >= 40)
990 return -ELOOP;
991
992 mnt = path->dentry->d_op->d_automount(path);
993 if (IS_ERR(mnt)) {
994 /*
995 * The filesystem is allowed to return -EISDIR here to indicate
996 * it doesn't want to automount. For instance, autofs would do
997 * this so that its userspace daemon can mount on this dentry.
998 *
999 * However, we can only permit this if it's a terminal point in
1000 * the path being looked up; if it wasn't then the remainder of
1001 * the path is inaccessible and we should say so.
1002 */
1003 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
1004 return -EREMOTE;
1005 return PTR_ERR(mnt);
1006 }
1007
1008 if (!mnt) /* mount collision */
1009 return 0;
1010
1011 if (!*need_mntput) {
1012 /* lock_mount() may release path->mnt on error */
1013 mntget(path->mnt);
1014 *need_mntput = true;
1015 }
1016 err = finish_automount(mnt, path);
1017
1018 switch (err) {
1019 case -EBUSY:
1020 /* Someone else made a mount here whilst we were busy */
1021 return 0;
1022 case 0:
1023 path_put(path);
1024 path->mnt = mnt;
1025 path->dentry = dget(mnt->mnt_root);
1026 return 0;
1027 default:
1028 return err;
1029 }
1030
1031 }
1032
1033 /*
1034 * Handle a dentry that is managed in some way.
1035 * - Flagged for transit management (autofs)
1036 * - Flagged as mountpoint
1037 * - Flagged as automount point
1038 *
1039 * This may only be called in refwalk mode.
1040 *
1041 * Serialization is taken care of in namespace.c
1042 */
1043 static int follow_managed(struct path *path, unsigned flags)
1044 {
1045 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1046 unsigned managed;
1047 bool need_mntput = false;
1048 int ret = 0;
1049
1050 /* Given that we're not holding a lock here, we retain the value in a
1051 * local variable for each dentry as we look at it so that we don't see
1052 * the components of that value change under us */
1053 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1054 managed &= DCACHE_MANAGED_DENTRY,
1055 unlikely(managed != 0)) {
1056 /* Allow the filesystem to manage the transit without i_mutex
1057 * being held. */
1058 if (managed & DCACHE_MANAGE_TRANSIT) {
1059 BUG_ON(!path->dentry->d_op);
1060 BUG_ON(!path->dentry->d_op->d_manage);
1061 ret = path->dentry->d_op->d_manage(path->dentry, false);
1062 if (ret < 0)
1063 break;
1064 }
1065
1066 /* Transit to a mounted filesystem. */
1067 if (managed & DCACHE_MOUNTED) {
1068 struct vfsmount *mounted = lookup_mnt(path);
1069 if (mounted) {
1070 dput(path->dentry);
1071 if (need_mntput)
1072 mntput(path->mnt);
1073 path->mnt = mounted;
1074 path->dentry = dget(mounted->mnt_root);
1075 need_mntput = true;
1076 continue;
1077 }
1078
1079 /* Something is mounted on this dentry in another
1080 * namespace and/or whatever was mounted there in this
1081 * namespace got unmounted before lookup_mnt() could
1082 * get it */
1083 }
1084
1085 /* Handle an automount point */
1086 if (managed & DCACHE_NEED_AUTOMOUNT) {
1087 ret = follow_automount(path, flags, &need_mntput);
1088 if (ret < 0)
1089 break;
1090 continue;
1091 }
1092
1093 /* We didn't change the current path point */
1094 break;
1095 }
1096
1097 if (need_mntput && path->mnt == mnt)
1098 mntput(path->mnt);
1099 if (ret == -EISDIR)
1100 ret = 0;
1101 return ret < 0 ? ret : need_mntput;
1102 }
1103
1104 int follow_down_one(struct path *path)
1105 {
1106 struct vfsmount *mounted;
1107
1108 mounted = lookup_mnt(path);
1109 if (mounted) {
1110 dput(path->dentry);
1111 mntput(path->mnt);
1112 path->mnt = mounted;
1113 path->dentry = dget(mounted->mnt_root);
1114 return 1;
1115 }
1116 return 0;
1117 }
1118 EXPORT_SYMBOL(follow_down_one);
1119
1120 static inline int managed_dentry_rcu(struct dentry *dentry)
1121 {
1122 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1123 dentry->d_op->d_manage(dentry, true) : 0;
1124 }
1125
1126 /*
1127 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1128 * we meet a managed dentry that would need blocking.
1129 */
1130 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1131 struct inode **inode)
1132 {
1133 for (;;) {
1134 struct mount *mounted;
1135 /*
1136 * Don't forget we might have a non-mountpoint managed dentry
1137 * that wants to block transit.
1138 */
1139 switch (managed_dentry_rcu(path->dentry)) {
1140 case -ECHILD:
1141 default:
1142 return false;
1143 case -EISDIR:
1144 return true;
1145 case 0:
1146 break;
1147 }
1148
1149 if (!d_mountpoint(path->dentry))
1150 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1151
1152 mounted = __lookup_mnt(path->mnt, path->dentry);
1153 if (!mounted)
1154 break;
1155 path->mnt = &mounted->mnt;
1156 path->dentry = mounted->mnt.mnt_root;
1157 nd->flags |= LOOKUP_JUMPED;
1158 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1159 /*
1160 * Update the inode too. We don't need to re-check the
1161 * dentry sequence number here after this d_inode read,
1162 * because a mount-point is always pinned.
1163 */
1164 *inode = path->dentry->d_inode;
1165 }
1166 return !read_seqretry(&mount_lock, nd->m_seq) &&
1167 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1168 }
1169
1170 static int follow_dotdot_rcu(struct nameidata *nd)
1171 {
1172 struct inode *inode = nd->inode;
1173 if (!nd->root.mnt)
1174 set_root_rcu(nd);
1175
1176 while (1) {
1177 if (nd->path.dentry == nd->root.dentry &&
1178 nd->path.mnt == nd->root.mnt) {
1179 break;
1180 }
1181 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1182 struct dentry *old = nd->path.dentry;
1183 struct dentry *parent = old->d_parent;
1184 unsigned seq;
1185
1186 inode = parent->d_inode;
1187 seq = read_seqcount_begin(&parent->d_seq);
1188 if (read_seqcount_retry(&old->d_seq, nd->seq))
1189 goto failed;
1190 nd->path.dentry = parent;
1191 nd->seq = seq;
1192 break;
1193 }
1194 if (!follow_up_rcu(&nd->path))
1195 break;
1196 inode = nd->path.dentry->d_inode;
1197 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1198 }
1199 while (d_mountpoint(nd->path.dentry)) {
1200 struct mount *mounted;
1201 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1202 if (!mounted)
1203 break;
1204 nd->path.mnt = &mounted->mnt;
1205 nd->path.dentry = mounted->mnt.mnt_root;
1206 inode = nd->path.dentry->d_inode;
1207 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1208 if (read_seqretry(&mount_lock, nd->m_seq))
1209 goto failed;
1210 }
1211 nd->inode = inode;
1212 return 0;
1213
1214 failed:
1215 nd->flags &= ~LOOKUP_RCU;
1216 if (!(nd->flags & LOOKUP_ROOT))
1217 nd->root.mnt = NULL;
1218 rcu_read_unlock();
1219 return -ECHILD;
1220 }
1221
1222 /*
1223 * Follow down to the covering mount currently visible to userspace. At each
1224 * point, the filesystem owning that dentry may be queried as to whether the
1225 * caller is permitted to proceed or not.
1226 */
1227 int follow_down(struct path *path)
1228 {
1229 unsigned managed;
1230 int ret;
1231
1232 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1233 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1234 /* Allow the filesystem to manage the transit without i_mutex
1235 * being held.
1236 *
1237 * We indicate to the filesystem if someone is trying to mount
1238 * something here. This gives autofs the chance to deny anyone
1239 * other than its daemon the right to mount on its
1240 * superstructure.
1241 *
1242 * The filesystem may sleep at this point.
1243 */
1244 if (managed & DCACHE_MANAGE_TRANSIT) {
1245 BUG_ON(!path->dentry->d_op);
1246 BUG_ON(!path->dentry->d_op->d_manage);
1247 ret = path->dentry->d_op->d_manage(
1248 path->dentry, false);
1249 if (ret < 0)
1250 return ret == -EISDIR ? 0 : ret;
1251 }
1252
1253 /* Transit to a mounted filesystem. */
1254 if (managed & DCACHE_MOUNTED) {
1255 struct vfsmount *mounted = lookup_mnt(path);
1256 if (!mounted)
1257 break;
1258 dput(path->dentry);
1259 mntput(path->mnt);
1260 path->mnt = mounted;
1261 path->dentry = dget(mounted->mnt_root);
1262 continue;
1263 }
1264
1265 /* Don't handle automount points here */
1266 break;
1267 }
1268 return 0;
1269 }
1270 EXPORT_SYMBOL(follow_down);
1271
1272 /*
1273 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1274 */
1275 static void follow_mount(struct path *path)
1276 {
1277 while (d_mountpoint(path->dentry)) {
1278 struct vfsmount *mounted = lookup_mnt(path);
1279 if (!mounted)
1280 break;
1281 dput(path->dentry);
1282 mntput(path->mnt);
1283 path->mnt = mounted;
1284 path->dentry = dget(mounted->mnt_root);
1285 }
1286 }
1287
1288 static void follow_dotdot(struct nameidata *nd)
1289 {
1290 if (!nd->root.mnt)
1291 set_root(nd);
1292
1293 while(1) {
1294 struct dentry *old = nd->path.dentry;
1295
1296 if (nd->path.dentry == nd->root.dentry &&
1297 nd->path.mnt == nd->root.mnt) {
1298 break;
1299 }
1300 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1301 /* rare case of legitimate dget_parent()... */
1302 nd->path.dentry = dget_parent(nd->path.dentry);
1303 dput(old);
1304 break;
1305 }
1306 if (!follow_up(&nd->path))
1307 break;
1308 }
1309 follow_mount(&nd->path);
1310 nd->inode = nd->path.dentry->d_inode;
1311 }
1312
1313 /*
1314 * This looks up the name in dcache, possibly revalidates the old dentry and
1315 * allocates a new one if not found or not valid. In the need_lookup argument
1316 * returns whether i_op->lookup is necessary.
1317 *
1318 * dir->d_inode->i_mutex must be held
1319 */
1320 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1321 unsigned int flags, bool *need_lookup)
1322 {
1323 struct dentry *dentry;
1324 int error;
1325
1326 *need_lookup = false;
1327 dentry = d_lookup(dir, name);
1328 if (dentry) {
1329 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1330 error = d_revalidate(dentry, flags);
1331 if (unlikely(error <= 0)) {
1332 if (error < 0) {
1333 dput(dentry);
1334 return ERR_PTR(error);
1335 } else {
1336 d_invalidate(dentry);
1337 dput(dentry);
1338 dentry = NULL;
1339 }
1340 }
1341 }
1342 }
1343
1344 if (!dentry) {
1345 dentry = d_alloc(dir, name);
1346 if (unlikely(!dentry))
1347 return ERR_PTR(-ENOMEM);
1348
1349 *need_lookup = true;
1350 }
1351 return dentry;
1352 }
1353
1354 /*
1355 * Call i_op->lookup on the dentry. The dentry must be negative and
1356 * unhashed.
1357 *
1358 * dir->d_inode->i_mutex must be held
1359 */
1360 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1361 unsigned int flags)
1362 {
1363 struct dentry *old;
1364
1365 /* Don't create child dentry for a dead directory. */
1366 if (unlikely(IS_DEADDIR(dir))) {
1367 dput(dentry);
1368 return ERR_PTR(-ENOENT);
1369 }
1370
1371 old = dir->i_op->lookup(dir, dentry, flags);
1372 if (unlikely(old)) {
1373 dput(dentry);
1374 dentry = old;
1375 }
1376 return dentry;
1377 }
1378
1379 static struct dentry *__lookup_hash(struct qstr *name,
1380 struct dentry *base, unsigned int flags)
1381 {
1382 bool need_lookup;
1383 struct dentry *dentry;
1384
1385 dentry = lookup_dcache(name, base, flags, &need_lookup);
1386 if (!need_lookup)
1387 return dentry;
1388
1389 return lookup_real(base->d_inode, dentry, flags);
1390 }
1391
1392 /*
1393 * It's more convoluted than I'd like it to be, but... it's still fairly
1394 * small and for now I'd prefer to have fast path as straight as possible.
1395 * It _is_ time-critical.
1396 */
1397 static int lookup_fast(struct nameidata *nd,
1398 struct path *path, struct inode **inode)
1399 {
1400 struct vfsmount *mnt = nd->path.mnt;
1401 struct dentry *dentry, *parent = nd->path.dentry;
1402 int need_reval = 1;
1403 int status = 1;
1404 int err;
1405
1406 /*
1407 * Rename seqlock is not required here because in the off chance
1408 * of a false negative due to a concurrent rename, we're going to
1409 * do the non-racy lookup, below.
1410 */
1411 if (nd->flags & LOOKUP_RCU) {
1412 unsigned seq;
1413 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1414 if (!dentry)
1415 goto unlazy;
1416
1417 /*
1418 * This sequence count validates that the inode matches
1419 * the dentry name information from lookup.
1420 */
1421 *inode = dentry->d_inode;
1422 if (read_seqcount_retry(&dentry->d_seq, seq))
1423 return -ECHILD;
1424
1425 /*
1426 * This sequence count validates that the parent had no
1427 * changes while we did the lookup of the dentry above.
1428 *
1429 * The memory barrier in read_seqcount_begin of child is
1430 * enough, we can use __read_seqcount_retry here.
1431 */
1432 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1433 return -ECHILD;
1434 nd->seq = seq;
1435
1436 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1437 status = d_revalidate(dentry, nd->flags);
1438 if (unlikely(status <= 0)) {
1439 if (status != -ECHILD)
1440 need_reval = 0;
1441 goto unlazy;
1442 }
1443 }
1444 path->mnt = mnt;
1445 path->dentry = dentry;
1446 if (likely(__follow_mount_rcu(nd, path, inode)))
1447 return 0;
1448 unlazy:
1449 if (unlazy_walk(nd, dentry))
1450 return -ECHILD;
1451 } else {
1452 dentry = __d_lookup(parent, &nd->last);
1453 }
1454
1455 if (unlikely(!dentry))
1456 goto need_lookup;
1457
1458 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1459 status = d_revalidate(dentry, nd->flags);
1460 if (unlikely(status <= 0)) {
1461 if (status < 0) {
1462 dput(dentry);
1463 return status;
1464 }
1465 d_invalidate(dentry);
1466 dput(dentry);
1467 goto need_lookup;
1468 }
1469
1470 path->mnt = mnt;
1471 path->dentry = dentry;
1472 err = follow_managed(path, nd->flags);
1473 if (unlikely(err < 0)) {
1474 path_put_conditional(path, nd);
1475 return err;
1476 }
1477 if (err)
1478 nd->flags |= LOOKUP_JUMPED;
1479 *inode = path->dentry->d_inode;
1480 return 0;
1481
1482 need_lookup:
1483 return 1;
1484 }
1485
1486 /* Fast lookup failed, do it the slow way */
1487 static int lookup_slow(struct nameidata *nd, struct path *path)
1488 {
1489 struct dentry *dentry, *parent;
1490 int err;
1491
1492 parent = nd->path.dentry;
1493 BUG_ON(nd->inode != parent->d_inode);
1494
1495 mutex_lock(&parent->d_inode->i_mutex);
1496 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1497 mutex_unlock(&parent->d_inode->i_mutex);
1498 if (IS_ERR(dentry))
1499 return PTR_ERR(dentry);
1500 path->mnt = nd->path.mnt;
1501 path->dentry = dentry;
1502 err = follow_managed(path, nd->flags);
1503 if (unlikely(err < 0)) {
1504 path_put_conditional(path, nd);
1505 return err;
1506 }
1507 if (err)
1508 nd->flags |= LOOKUP_JUMPED;
1509 return 0;
1510 }
1511
1512 static inline int may_lookup(struct nameidata *nd)
1513 {
1514 if (nd->flags & LOOKUP_RCU) {
1515 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1516 if (err != -ECHILD)
1517 return err;
1518 if (unlazy_walk(nd, NULL))
1519 return -ECHILD;
1520 }
1521 return inode_permission(nd->inode, MAY_EXEC);
1522 }
1523
1524 static inline int handle_dots(struct nameidata *nd, int type)
1525 {
1526 if (type == LAST_DOTDOT) {
1527 if (nd->flags & LOOKUP_RCU) {
1528 if (follow_dotdot_rcu(nd))
1529 return -ECHILD;
1530 } else
1531 follow_dotdot(nd);
1532 }
1533 return 0;
1534 }
1535
1536 static void terminate_walk(struct nameidata *nd)
1537 {
1538 if (!(nd->flags & LOOKUP_RCU)) {
1539 path_put(&nd->path);
1540 } else {
1541 nd->flags &= ~LOOKUP_RCU;
1542 if (!(nd->flags & LOOKUP_ROOT))
1543 nd->root.mnt = NULL;
1544 rcu_read_unlock();
1545 }
1546 }
1547
1548 /*
1549 * Do we need to follow links? We _really_ want to be able
1550 * to do this check without having to look at inode->i_op,
1551 * so we keep a cache of "no, this doesn't need follow_link"
1552 * for the common case.
1553 */
1554 static inline int should_follow_link(struct dentry *dentry, int follow)
1555 {
1556 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1557 }
1558
1559 static inline int walk_component(struct nameidata *nd, struct path *path,
1560 int follow)
1561 {
1562 struct inode *inode;
1563 int err;
1564 /*
1565 * "." and ".." are special - ".." especially so because it has
1566 * to be able to know about the current root directory and
1567 * parent relationships.
1568 */
1569 if (unlikely(nd->last_type != LAST_NORM))
1570 return handle_dots(nd, nd->last_type);
1571 err = lookup_fast(nd, path, &inode);
1572 if (unlikely(err)) {
1573 if (err < 0)
1574 goto out_err;
1575
1576 err = lookup_slow(nd, path);
1577 if (err < 0)
1578 goto out_err;
1579
1580 inode = path->dentry->d_inode;
1581 }
1582 err = -ENOENT;
1583 if (!inode || d_is_negative(path->dentry))
1584 goto out_path_put;
1585
1586 if (should_follow_link(path->dentry, follow)) {
1587 if (nd->flags & LOOKUP_RCU) {
1588 if (unlikely(unlazy_walk(nd, path->dentry))) {
1589 err = -ECHILD;
1590 goto out_err;
1591 }
1592 }
1593 BUG_ON(inode != path->dentry->d_inode);
1594 return 1;
1595 }
1596 path_to_nameidata(path, nd);
1597 nd->inode = inode;
1598 return 0;
1599
1600 out_path_put:
1601 path_to_nameidata(path, nd);
1602 out_err:
1603 terminate_walk(nd);
1604 return err;
1605 }
1606
1607 /*
1608 * This limits recursive symlink follows to 8, while
1609 * limiting consecutive symlinks to 40.
1610 *
1611 * Without that kind of total limit, nasty chains of consecutive
1612 * symlinks can cause almost arbitrarily long lookups.
1613 */
1614 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1615 {
1616 int res;
1617
1618 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1619 path_put_conditional(path, nd);
1620 path_put(&nd->path);
1621 return -ELOOP;
1622 }
1623 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1624
1625 nd->depth++;
1626 current->link_count++;
1627
1628 do {
1629 struct path link = *path;
1630 void *cookie;
1631
1632 res = follow_link(&link, nd, &cookie);
1633 if (res)
1634 break;
1635 res = walk_component(nd, path, LOOKUP_FOLLOW);
1636 put_link(nd, &link, cookie);
1637 } while (res > 0);
1638
1639 current->link_count--;
1640 nd->depth--;
1641 return res;
1642 }
1643
1644 /*
1645 * We can do the critical dentry name comparison and hashing
1646 * operations one word at a time, but we are limited to:
1647 *
1648 * - Architectures with fast unaligned word accesses. We could
1649 * do a "get_unaligned()" if this helps and is sufficiently
1650 * fast.
1651 *
1652 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1653 * do not trap on the (extremely unlikely) case of a page
1654 * crossing operation.
1655 *
1656 * - Furthermore, we need an efficient 64-bit compile for the
1657 * 64-bit case in order to generate the "number of bytes in
1658 * the final mask". Again, that could be replaced with a
1659 * efficient population count instruction or similar.
1660 */
1661 #ifdef CONFIG_DCACHE_WORD_ACCESS
1662
1663 #include <asm/word-at-a-time.h>
1664
1665 #ifdef CONFIG_64BIT
1666
1667 static inline unsigned int fold_hash(unsigned long hash)
1668 {
1669 return hash_64(hash, 32);
1670 }
1671
1672 #else /* 32-bit case */
1673
1674 #define fold_hash(x) (x)
1675
1676 #endif
1677
1678 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1679 {
1680 unsigned long a, mask;
1681 unsigned long hash = 0;
1682
1683 for (;;) {
1684 a = load_unaligned_zeropad(name);
1685 if (len < sizeof(unsigned long))
1686 break;
1687 hash += a;
1688 hash *= 9;
1689 name += sizeof(unsigned long);
1690 len -= sizeof(unsigned long);
1691 if (!len)
1692 goto done;
1693 }
1694 mask = bytemask_from_count(len);
1695 hash += mask & a;
1696 done:
1697 return fold_hash(hash);
1698 }
1699 EXPORT_SYMBOL(full_name_hash);
1700
1701 /*
1702 * Calculate the length and hash of the path component, and
1703 * return the "hash_len" as the result.
1704 */
1705 static inline u64 hash_name(const char *name)
1706 {
1707 unsigned long a, b, adata, bdata, mask, hash, len;
1708 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1709
1710 hash = a = 0;
1711 len = -sizeof(unsigned long);
1712 do {
1713 hash = (hash + a) * 9;
1714 len += sizeof(unsigned long);
1715 a = load_unaligned_zeropad(name+len);
1716 b = a ^ REPEAT_BYTE('/');
1717 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1718
1719 adata = prep_zero_mask(a, adata, &constants);
1720 bdata = prep_zero_mask(b, bdata, &constants);
1721
1722 mask = create_zero_mask(adata | bdata);
1723
1724 hash += a & zero_bytemask(mask);
1725 len += find_zero(mask);
1726 return hashlen_create(fold_hash(hash), len);
1727 }
1728
1729 #else
1730
1731 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1732 {
1733 unsigned long hash = init_name_hash();
1734 while (len--)
1735 hash = partial_name_hash(*name++, hash);
1736 return end_name_hash(hash);
1737 }
1738 EXPORT_SYMBOL(full_name_hash);
1739
1740 /*
1741 * We know there's a real path component here of at least
1742 * one character.
1743 */
1744 static inline u64 hash_name(const char *name)
1745 {
1746 unsigned long hash = init_name_hash();
1747 unsigned long len = 0, c;
1748
1749 c = (unsigned char)*name;
1750 do {
1751 len++;
1752 hash = partial_name_hash(c, hash);
1753 c = (unsigned char)name[len];
1754 } while (c && c != '/');
1755 return hashlen_create(end_name_hash(hash), len);
1756 }
1757
1758 #endif
1759
1760 /*
1761 * Name resolution.
1762 * This is the basic name resolution function, turning a pathname into
1763 * the final dentry. We expect 'base' to be positive and a directory.
1764 *
1765 * Returns 0 and nd will have valid dentry and mnt on success.
1766 * Returns error and drops reference to input namei data on failure.
1767 */
1768 static int link_path_walk(const char *name, struct nameidata *nd)
1769 {
1770 struct path next;
1771 int err;
1772
1773 while (*name=='/')
1774 name++;
1775 if (!*name)
1776 return 0;
1777
1778 /* At this point we know we have a real path component. */
1779 for(;;) {
1780 u64 hash_len;
1781 int type;
1782
1783 err = may_lookup(nd);
1784 if (err)
1785 break;
1786
1787 hash_len = hash_name(name);
1788
1789 type = LAST_NORM;
1790 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1791 case 2:
1792 if (name[1] == '.') {
1793 type = LAST_DOTDOT;
1794 nd->flags |= LOOKUP_JUMPED;
1795 }
1796 break;
1797 case 1:
1798 type = LAST_DOT;
1799 }
1800 if (likely(type == LAST_NORM)) {
1801 struct dentry *parent = nd->path.dentry;
1802 nd->flags &= ~LOOKUP_JUMPED;
1803 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1804 struct qstr this = { { .hash_len = hash_len }, .name = name };
1805 err = parent->d_op->d_hash(parent, &this);
1806 if (err < 0)
1807 break;
1808 hash_len = this.hash_len;
1809 name = this.name;
1810 }
1811 }
1812
1813 nd->last.hash_len = hash_len;
1814 nd->last.name = name;
1815 nd->last_type = type;
1816
1817 name += hashlen_len(hash_len);
1818 if (!*name)
1819 return 0;
1820 /*
1821 * If it wasn't NUL, we know it was '/'. Skip that
1822 * slash, and continue until no more slashes.
1823 */
1824 do {
1825 name++;
1826 } while (unlikely(*name == '/'));
1827 if (!*name)
1828 return 0;
1829
1830 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1831 if (err < 0)
1832 return err;
1833
1834 if (err) {
1835 err = nested_symlink(&next, nd);
1836 if (err)
1837 return err;
1838 }
1839 if (!d_can_lookup(nd->path.dentry)) {
1840 err = -ENOTDIR;
1841 break;
1842 }
1843 }
1844 terminate_walk(nd);
1845 return err;
1846 }
1847
1848 static int path_init(int dfd, const char *name, unsigned int flags,
1849 struct nameidata *nd)
1850 {
1851 int retval = 0;
1852
1853 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1854 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1855 nd->depth = 0;
1856 nd->base = NULL;
1857 if (flags & LOOKUP_ROOT) {
1858 struct dentry *root = nd->root.dentry;
1859 struct inode *inode = root->d_inode;
1860 if (*name) {
1861 if (!d_can_lookup(root))
1862 return -ENOTDIR;
1863 retval = inode_permission(inode, MAY_EXEC);
1864 if (retval)
1865 return retval;
1866 }
1867 nd->path = nd->root;
1868 nd->inode = inode;
1869 if (flags & LOOKUP_RCU) {
1870 rcu_read_lock();
1871 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1872 nd->m_seq = read_seqbegin(&mount_lock);
1873 } else {
1874 path_get(&nd->path);
1875 }
1876 goto done;
1877 }
1878
1879 nd->root.mnt = NULL;
1880
1881 nd->m_seq = read_seqbegin(&mount_lock);
1882 if (*name=='/') {
1883 if (flags & LOOKUP_RCU) {
1884 rcu_read_lock();
1885 nd->seq = set_root_rcu(nd);
1886 } else {
1887 set_root(nd);
1888 path_get(&nd->root);
1889 }
1890 nd->path = nd->root;
1891 } else if (dfd == AT_FDCWD) {
1892 if (flags & LOOKUP_RCU) {
1893 struct fs_struct *fs = current->fs;
1894 unsigned seq;
1895
1896 rcu_read_lock();
1897
1898 do {
1899 seq = read_seqcount_begin(&fs->seq);
1900 nd->path = fs->pwd;
1901 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1902 } while (read_seqcount_retry(&fs->seq, seq));
1903 } else {
1904 get_fs_pwd(current->fs, &nd->path);
1905 }
1906 } else {
1907 /* Caller must check execute permissions on the starting path component */
1908 struct fd f = fdget_raw(dfd);
1909 struct dentry *dentry;
1910
1911 if (!f.file)
1912 return -EBADF;
1913
1914 dentry = f.file->f_path.dentry;
1915
1916 if (*name) {
1917 if (!d_can_lookup(dentry)) {
1918 fdput(f);
1919 return -ENOTDIR;
1920 }
1921 }
1922
1923 nd->path = f.file->f_path;
1924 if (flags & LOOKUP_RCU) {
1925 if (f.flags & FDPUT_FPUT)
1926 nd->base = f.file;
1927 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1928 rcu_read_lock();
1929 } else {
1930 path_get(&nd->path);
1931 fdput(f);
1932 }
1933 }
1934
1935 nd->inode = nd->path.dentry->d_inode;
1936 if (!(flags & LOOKUP_RCU))
1937 goto done;
1938 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1939 goto done;
1940 if (!(nd->flags & LOOKUP_ROOT))
1941 nd->root.mnt = NULL;
1942 rcu_read_unlock();
1943 return -ECHILD;
1944 done:
1945 current->total_link_count = 0;
1946 return link_path_walk(name, nd);
1947 }
1948
1949 static void path_cleanup(struct nameidata *nd)
1950 {
1951 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1952 path_put(&nd->root);
1953 nd->root.mnt = NULL;
1954 }
1955 if (unlikely(nd->base))
1956 fput(nd->base);
1957 }
1958
1959 static inline int lookup_last(struct nameidata *nd, struct path *path)
1960 {
1961 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1962 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1963
1964 nd->flags &= ~LOOKUP_PARENT;
1965 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1966 }
1967
1968 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1969 static int path_lookupat(int dfd, const char *name,
1970 unsigned int flags, struct nameidata *nd)
1971 {
1972 struct path path;
1973 int err;
1974
1975 /*
1976 * Path walking is largely split up into 2 different synchronisation
1977 * schemes, rcu-walk and ref-walk (explained in
1978 * Documentation/filesystems/path-lookup.txt). These share much of the
1979 * path walk code, but some things particularly setup, cleanup, and
1980 * following mounts are sufficiently divergent that functions are
1981 * duplicated. Typically there is a function foo(), and its RCU
1982 * analogue, foo_rcu().
1983 *
1984 * -ECHILD is the error number of choice (just to avoid clashes) that
1985 * is returned if some aspect of an rcu-walk fails. Such an error must
1986 * be handled by restarting a traditional ref-walk (which will always
1987 * be able to complete).
1988 */
1989 err = path_init(dfd, name, flags, nd);
1990 if (!err && !(flags & LOOKUP_PARENT)) {
1991 err = lookup_last(nd, &path);
1992 while (err > 0) {
1993 void *cookie;
1994 struct path link = path;
1995 err = may_follow_link(&link, nd);
1996 if (unlikely(err))
1997 break;
1998 nd->flags |= LOOKUP_PARENT;
1999 err = follow_link(&link, nd, &cookie);
2000 if (err)
2001 break;
2002 err = lookup_last(nd, &path);
2003 put_link(nd, &link, cookie);
2004 }
2005 }
2006
2007 if (!err)
2008 err = complete_walk(nd);
2009
2010 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2011 if (!d_can_lookup(nd->path.dentry)) {
2012 path_put(&nd->path);
2013 err = -ENOTDIR;
2014 }
2015 }
2016
2017 path_cleanup(nd);
2018 return err;
2019 }
2020
2021 static int filename_lookup(int dfd, struct filename *name,
2022 unsigned int flags, struct nameidata *nd)
2023 {
2024 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2025 if (unlikely(retval == -ECHILD))
2026 retval = path_lookupat(dfd, name->name, flags, nd);
2027 if (unlikely(retval == -ESTALE))
2028 retval = path_lookupat(dfd, name->name,
2029 flags | LOOKUP_REVAL, nd);
2030
2031 if (likely(!retval))
2032 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2033 return retval;
2034 }
2035
2036 static int do_path_lookup(int dfd, const char *name,
2037 unsigned int flags, struct nameidata *nd)
2038 {
2039 struct filename filename = { .name = name };
2040
2041 return filename_lookup(dfd, &filename, flags, nd);
2042 }
2043
2044 /* does lookup, returns the object with parent locked */
2045 struct dentry *kern_path_locked(const char *name, struct path *path)
2046 {
2047 struct nameidata nd;
2048 struct dentry *d;
2049 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2050 if (err)
2051 return ERR_PTR(err);
2052 if (nd.last_type != LAST_NORM) {
2053 path_put(&nd.path);
2054 return ERR_PTR(-EINVAL);
2055 }
2056 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2057 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2058 if (IS_ERR(d)) {
2059 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2060 path_put(&nd.path);
2061 return d;
2062 }
2063 *path = nd.path;
2064 return d;
2065 }
2066
2067 int kern_path(const char *name, unsigned int flags, struct path *path)
2068 {
2069 struct nameidata nd;
2070 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2071 if (!res)
2072 *path = nd.path;
2073 return res;
2074 }
2075 EXPORT_SYMBOL(kern_path);
2076
2077 /**
2078 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2079 * @dentry: pointer to dentry of the base directory
2080 * @mnt: pointer to vfs mount of the base directory
2081 * @name: pointer to file name
2082 * @flags: lookup flags
2083 * @path: pointer to struct path to fill
2084 */
2085 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2086 const char *name, unsigned int flags,
2087 struct path *path)
2088 {
2089 struct nameidata nd;
2090 int err;
2091 nd.root.dentry = dentry;
2092 nd.root.mnt = mnt;
2093 BUG_ON(flags & LOOKUP_PARENT);
2094 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2095 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2096 if (!err)
2097 *path = nd.path;
2098 return err;
2099 }
2100 EXPORT_SYMBOL(vfs_path_lookup);
2101
2102 /*
2103 * Restricted form of lookup. Doesn't follow links, single-component only,
2104 * needs parent already locked. Doesn't follow mounts.
2105 * SMP-safe.
2106 */
2107 static struct dentry *lookup_hash(struct nameidata *nd)
2108 {
2109 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2110 }
2111
2112 /**
2113 * lookup_one_len - filesystem helper to lookup single pathname component
2114 * @name: pathname component to lookup
2115 * @base: base directory to lookup from
2116 * @len: maximum length @len should be interpreted to
2117 *
2118 * Note that this routine is purely a helper for filesystem usage and should
2119 * not be called by generic code. Also note that by using this function the
2120 * nameidata argument is passed to the filesystem methods and a filesystem
2121 * using this helper needs to be prepared for that.
2122 */
2123 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2124 {
2125 struct qstr this;
2126 unsigned int c;
2127 int err;
2128
2129 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2130
2131 this.name = name;
2132 this.len = len;
2133 this.hash = full_name_hash(name, len);
2134 if (!len)
2135 return ERR_PTR(-EACCES);
2136
2137 if (unlikely(name[0] == '.')) {
2138 if (len < 2 || (len == 2 && name[1] == '.'))
2139 return ERR_PTR(-EACCES);
2140 }
2141
2142 while (len--) {
2143 c = *(const unsigned char *)name++;
2144 if (c == '/' || c == '\0')
2145 return ERR_PTR(-EACCES);
2146 }
2147 /*
2148 * See if the low-level filesystem might want
2149 * to use its own hash..
2150 */
2151 if (base->d_flags & DCACHE_OP_HASH) {
2152 int err = base->d_op->d_hash(base, &this);
2153 if (err < 0)
2154 return ERR_PTR(err);
2155 }
2156
2157 err = inode_permission(base->d_inode, MAY_EXEC);
2158 if (err)
2159 return ERR_PTR(err);
2160
2161 return __lookup_hash(&this, base, 0);
2162 }
2163 EXPORT_SYMBOL(lookup_one_len);
2164
2165 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2166 struct path *path, int *empty)
2167 {
2168 struct nameidata nd;
2169 struct filename *tmp = getname_flags(name, flags, empty);
2170 int err = PTR_ERR(tmp);
2171 if (!IS_ERR(tmp)) {
2172
2173 BUG_ON(flags & LOOKUP_PARENT);
2174
2175 err = filename_lookup(dfd, tmp, flags, &nd);
2176 putname(tmp);
2177 if (!err)
2178 *path = nd.path;
2179 }
2180 return err;
2181 }
2182
2183 int user_path_at(int dfd, const char __user *name, unsigned flags,
2184 struct path *path)
2185 {
2186 return user_path_at_empty(dfd, name, flags, path, NULL);
2187 }
2188 EXPORT_SYMBOL(user_path_at);
2189
2190 /*
2191 * NB: most callers don't do anything directly with the reference to the
2192 * to struct filename, but the nd->last pointer points into the name string
2193 * allocated by getname. So we must hold the reference to it until all
2194 * path-walking is complete.
2195 */
2196 static struct filename *
2197 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2198 unsigned int flags)
2199 {
2200 struct filename *s = getname(path);
2201 int error;
2202
2203 /* only LOOKUP_REVAL is allowed in extra flags */
2204 flags &= LOOKUP_REVAL;
2205
2206 if (IS_ERR(s))
2207 return s;
2208
2209 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2210 if (error) {
2211 putname(s);
2212 return ERR_PTR(error);
2213 }
2214
2215 return s;
2216 }
2217
2218 /**
2219 * mountpoint_last - look up last component for umount
2220 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2221 * @path: pointer to container for result
2222 *
2223 * This is a special lookup_last function just for umount. In this case, we
2224 * need to resolve the path without doing any revalidation.
2225 *
2226 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2227 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2228 * in almost all cases, this lookup will be served out of the dcache. The only
2229 * cases where it won't are if nd->last refers to a symlink or the path is
2230 * bogus and it doesn't exist.
2231 *
2232 * Returns:
2233 * -error: if there was an error during lookup. This includes -ENOENT if the
2234 * lookup found a negative dentry. The nd->path reference will also be
2235 * put in this case.
2236 *
2237 * 0: if we successfully resolved nd->path and found it to not to be a
2238 * symlink that needs to be followed. "path" will also be populated.
2239 * The nd->path reference will also be put.
2240 *
2241 * 1: if we successfully resolved nd->last and found it to be a symlink
2242 * that needs to be followed. "path" will be populated with the path
2243 * to the link, and nd->path will *not* be put.
2244 */
2245 static int
2246 mountpoint_last(struct nameidata *nd, struct path *path)
2247 {
2248 int error = 0;
2249 struct dentry *dentry;
2250 struct dentry *dir = nd->path.dentry;
2251
2252 /* If we're in rcuwalk, drop out of it to handle last component */
2253 if (nd->flags & LOOKUP_RCU) {
2254 if (unlazy_walk(nd, NULL)) {
2255 error = -ECHILD;
2256 goto out;
2257 }
2258 }
2259
2260 nd->flags &= ~LOOKUP_PARENT;
2261
2262 if (unlikely(nd->last_type != LAST_NORM)) {
2263 error = handle_dots(nd, nd->last_type);
2264 if (error)
2265 goto out;
2266 dentry = dget(nd->path.dentry);
2267 goto done;
2268 }
2269
2270 mutex_lock(&dir->d_inode->i_mutex);
2271 dentry = d_lookup(dir, &nd->last);
2272 if (!dentry) {
2273 /*
2274 * No cached dentry. Mounted dentries are pinned in the cache,
2275 * so that means that this dentry is probably a symlink or the
2276 * path doesn't actually point to a mounted dentry.
2277 */
2278 dentry = d_alloc(dir, &nd->last);
2279 if (!dentry) {
2280 error = -ENOMEM;
2281 mutex_unlock(&dir->d_inode->i_mutex);
2282 goto out;
2283 }
2284 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2285 error = PTR_ERR(dentry);
2286 if (IS_ERR(dentry)) {
2287 mutex_unlock(&dir->d_inode->i_mutex);
2288 goto out;
2289 }
2290 }
2291 mutex_unlock(&dir->d_inode->i_mutex);
2292
2293 done:
2294 if (!dentry->d_inode || d_is_negative(dentry)) {
2295 error = -ENOENT;
2296 dput(dentry);
2297 goto out;
2298 }
2299 path->dentry = dentry;
2300 path->mnt = nd->path.mnt;
2301 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2302 return 1;
2303 mntget(path->mnt);
2304 follow_mount(path);
2305 error = 0;
2306 out:
2307 terminate_walk(nd);
2308 return error;
2309 }
2310
2311 /**
2312 * path_mountpoint - look up a path to be umounted
2313 * @dfd: directory file descriptor to start walk from
2314 * @name: full pathname to walk
2315 * @path: pointer to container for result
2316 * @flags: lookup flags
2317 *
2318 * Look up the given name, but don't attempt to revalidate the last component.
2319 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2320 */
2321 static int
2322 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2323 {
2324 struct nameidata nd;
2325 int err;
2326
2327 err = path_init(dfd, name, flags, &nd);
2328 if (unlikely(err))
2329 goto out;
2330
2331 err = mountpoint_last(&nd, path);
2332 while (err > 0) {
2333 void *cookie;
2334 struct path link = *path;
2335 err = may_follow_link(&link, &nd);
2336 if (unlikely(err))
2337 break;
2338 nd.flags |= LOOKUP_PARENT;
2339 err = follow_link(&link, &nd, &cookie);
2340 if (err)
2341 break;
2342 err = mountpoint_last(&nd, path);
2343 put_link(&nd, &link, cookie);
2344 }
2345 out:
2346 path_cleanup(&nd);
2347 return err;
2348 }
2349
2350 static int
2351 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2352 unsigned int flags)
2353 {
2354 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2355 if (unlikely(error == -ECHILD))
2356 error = path_mountpoint(dfd, s->name, path, flags);
2357 if (unlikely(error == -ESTALE))
2358 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2359 if (likely(!error))
2360 audit_inode(s, path->dentry, 0);
2361 return error;
2362 }
2363
2364 /**
2365 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2366 * @dfd: directory file descriptor
2367 * @name: pathname from userland
2368 * @flags: lookup flags
2369 * @path: pointer to container to hold result
2370 *
2371 * A umount is a special case for path walking. We're not actually interested
2372 * in the inode in this situation, and ESTALE errors can be a problem. We
2373 * simply want track down the dentry and vfsmount attached at the mountpoint
2374 * and avoid revalidating the last component.
2375 *
2376 * Returns 0 and populates "path" on success.
2377 */
2378 int
2379 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2380 struct path *path)
2381 {
2382 struct filename *s = getname(name);
2383 int error;
2384 if (IS_ERR(s))
2385 return PTR_ERR(s);
2386 error = filename_mountpoint(dfd, s, path, flags);
2387 putname(s);
2388 return error;
2389 }
2390
2391 int
2392 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2393 unsigned int flags)
2394 {
2395 struct filename s = {.name = name};
2396 return filename_mountpoint(dfd, &s, path, flags);
2397 }
2398 EXPORT_SYMBOL(kern_path_mountpoint);
2399
2400 int __check_sticky(struct inode *dir, struct inode *inode)
2401 {
2402 kuid_t fsuid = current_fsuid();
2403
2404 if (uid_eq(inode->i_uid, fsuid))
2405 return 0;
2406 if (uid_eq(dir->i_uid, fsuid))
2407 return 0;
2408 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2409 }
2410 EXPORT_SYMBOL(__check_sticky);
2411
2412 /*
2413 * Check whether we can remove a link victim from directory dir, check
2414 * whether the type of victim is right.
2415 * 1. We can't do it if dir is read-only (done in permission())
2416 * 2. We should have write and exec permissions on dir
2417 * 3. We can't remove anything from append-only dir
2418 * 4. We can't do anything with immutable dir (done in permission())
2419 * 5. If the sticky bit on dir is set we should either
2420 * a. be owner of dir, or
2421 * b. be owner of victim, or
2422 * c. have CAP_FOWNER capability
2423 * 6. If the victim is append-only or immutable we can't do antyhing with
2424 * links pointing to it.
2425 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2426 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2427 * 9. We can't remove a root or mountpoint.
2428 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2429 * nfs_async_unlink().
2430 */
2431 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2432 {
2433 struct inode *inode = victim->d_inode;
2434 int error;
2435
2436 if (d_is_negative(victim))
2437 return -ENOENT;
2438 BUG_ON(!inode);
2439
2440 BUG_ON(victim->d_parent->d_inode != dir);
2441 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2442
2443 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2444 if (error)
2445 return error;
2446 if (IS_APPEND(dir))
2447 return -EPERM;
2448
2449 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2450 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2451 return -EPERM;
2452 if (isdir) {
2453 if (!d_is_dir(victim))
2454 return -ENOTDIR;
2455 if (IS_ROOT(victim))
2456 return -EBUSY;
2457 } else if (d_is_dir(victim))
2458 return -EISDIR;
2459 if (IS_DEADDIR(dir))
2460 return -ENOENT;
2461 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2462 return -EBUSY;
2463 return 0;
2464 }
2465
2466 /* Check whether we can create an object with dentry child in directory
2467 * dir.
2468 * 1. We can't do it if child already exists (open has special treatment for
2469 * this case, but since we are inlined it's OK)
2470 * 2. We can't do it if dir is read-only (done in permission())
2471 * 3. We should have write and exec permissions on dir
2472 * 4. We can't do it if dir is immutable (done in permission())
2473 */
2474 static inline int may_create(struct inode *dir, struct dentry *child)
2475 {
2476 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2477 if (child->d_inode)
2478 return -EEXIST;
2479 if (IS_DEADDIR(dir))
2480 return -ENOENT;
2481 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2482 }
2483
2484 /*
2485 * p1 and p2 should be directories on the same fs.
2486 */
2487 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2488 {
2489 struct dentry *p;
2490
2491 if (p1 == p2) {
2492 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2493 return NULL;
2494 }
2495
2496 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2497
2498 p = d_ancestor(p2, p1);
2499 if (p) {
2500 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2501 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2502 return p;
2503 }
2504
2505 p = d_ancestor(p1, p2);
2506 if (p) {
2507 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2508 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2509 return p;
2510 }
2511
2512 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2513 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2514 return NULL;
2515 }
2516 EXPORT_SYMBOL(lock_rename);
2517
2518 void unlock_rename(struct dentry *p1, struct dentry *p2)
2519 {
2520 mutex_unlock(&p1->d_inode->i_mutex);
2521 if (p1 != p2) {
2522 mutex_unlock(&p2->d_inode->i_mutex);
2523 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2524 }
2525 }
2526 EXPORT_SYMBOL(unlock_rename);
2527
2528 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2529 bool want_excl)
2530 {
2531 int error = may_create(dir, dentry);
2532 if (error)
2533 return error;
2534
2535 if (!dir->i_op->create)
2536 return -EACCES; /* shouldn't it be ENOSYS? */
2537 mode &= S_IALLUGO;
2538 mode |= S_IFREG;
2539 error = security_inode_create(dir, dentry, mode);
2540 if (error)
2541 return error;
2542 error = dir->i_op->create(dir, dentry, mode, want_excl);
2543 if (!error)
2544 fsnotify_create(dir, dentry);
2545 return error;
2546 }
2547 EXPORT_SYMBOL(vfs_create);
2548
2549 static int may_open(struct path *path, int acc_mode, int flag)
2550 {
2551 struct dentry *dentry = path->dentry;
2552 struct inode *inode = dentry->d_inode;
2553 int error;
2554
2555 /* O_PATH? */
2556 if (!acc_mode)
2557 return 0;
2558
2559 if (!inode)
2560 return -ENOENT;
2561
2562 switch (inode->i_mode & S_IFMT) {
2563 case S_IFLNK:
2564 return -ELOOP;
2565 case S_IFDIR:
2566 if (acc_mode & MAY_WRITE)
2567 return -EISDIR;
2568 break;
2569 case S_IFBLK:
2570 case S_IFCHR:
2571 if (path->mnt->mnt_flags & MNT_NODEV)
2572 return -EACCES;
2573 /*FALLTHRU*/
2574 case S_IFIFO:
2575 case S_IFSOCK:
2576 flag &= ~O_TRUNC;
2577 break;
2578 }
2579
2580 error = inode_permission(inode, acc_mode);
2581 if (error)
2582 return error;
2583
2584 /*
2585 * An append-only file must be opened in append mode for writing.
2586 */
2587 if (IS_APPEND(inode)) {
2588 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2589 return -EPERM;
2590 if (flag & O_TRUNC)
2591 return -EPERM;
2592 }
2593
2594 /* O_NOATIME can only be set by the owner or superuser */
2595 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2596 return -EPERM;
2597
2598 return 0;
2599 }
2600
2601 static int handle_truncate(struct file *filp)
2602 {
2603 struct path *path = &filp->f_path;
2604 struct inode *inode = path->dentry->d_inode;
2605 int error = get_write_access(inode);
2606 if (error)
2607 return error;
2608 /*
2609 * Refuse to truncate files with mandatory locks held on them.
2610 */
2611 error = locks_verify_locked(filp);
2612 if (!error)
2613 error = security_path_truncate(path);
2614 if (!error) {
2615 error = do_truncate(path->dentry, 0,
2616 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2617 filp);
2618 }
2619 put_write_access(inode);
2620 return error;
2621 }
2622
2623 static inline int open_to_namei_flags(int flag)
2624 {
2625 if ((flag & O_ACCMODE) == 3)
2626 flag--;
2627 return flag;
2628 }
2629
2630 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2631 {
2632 int error = security_path_mknod(dir, dentry, mode, 0);
2633 if (error)
2634 return error;
2635
2636 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2637 if (error)
2638 return error;
2639
2640 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2641 }
2642
2643 /*
2644 * Attempt to atomically look up, create and open a file from a negative
2645 * dentry.
2646 *
2647 * Returns 0 if successful. The file will have been created and attached to
2648 * @file by the filesystem calling finish_open().
2649 *
2650 * Returns 1 if the file was looked up only or didn't need creating. The
2651 * caller will need to perform the open themselves. @path will have been
2652 * updated to point to the new dentry. This may be negative.
2653 *
2654 * Returns an error code otherwise.
2655 */
2656 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2657 struct path *path, struct file *file,
2658 const struct open_flags *op,
2659 bool got_write, bool need_lookup,
2660 int *opened)
2661 {
2662 struct inode *dir = nd->path.dentry->d_inode;
2663 unsigned open_flag = open_to_namei_flags(op->open_flag);
2664 umode_t mode;
2665 int error;
2666 int acc_mode;
2667 int create_error = 0;
2668 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2669 bool excl;
2670
2671 BUG_ON(dentry->d_inode);
2672
2673 /* Don't create child dentry for a dead directory. */
2674 if (unlikely(IS_DEADDIR(dir))) {
2675 error = -ENOENT;
2676 goto out;
2677 }
2678
2679 mode = op->mode;
2680 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2681 mode &= ~current_umask();
2682
2683 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2684 if (excl)
2685 open_flag &= ~O_TRUNC;
2686
2687 /*
2688 * Checking write permission is tricky, bacuse we don't know if we are
2689 * going to actually need it: O_CREAT opens should work as long as the
2690 * file exists. But checking existence breaks atomicity. The trick is
2691 * to check access and if not granted clear O_CREAT from the flags.
2692 *
2693 * Another problem is returing the "right" error value (e.g. for an
2694 * O_EXCL open we want to return EEXIST not EROFS).
2695 */
2696 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2697 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2698 if (!(open_flag & O_CREAT)) {
2699 /*
2700 * No O_CREATE -> atomicity not a requirement -> fall
2701 * back to lookup + open
2702 */
2703 goto no_open;
2704 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2705 /* Fall back and fail with the right error */
2706 create_error = -EROFS;
2707 goto no_open;
2708 } else {
2709 /* No side effects, safe to clear O_CREAT */
2710 create_error = -EROFS;
2711 open_flag &= ~O_CREAT;
2712 }
2713 }
2714
2715 if (open_flag & O_CREAT) {
2716 error = may_o_create(&nd->path, dentry, mode);
2717 if (error) {
2718 create_error = error;
2719 if (open_flag & O_EXCL)
2720 goto no_open;
2721 open_flag &= ~O_CREAT;
2722 }
2723 }
2724
2725 if (nd->flags & LOOKUP_DIRECTORY)
2726 open_flag |= O_DIRECTORY;
2727
2728 file->f_path.dentry = DENTRY_NOT_SET;
2729 file->f_path.mnt = nd->path.mnt;
2730 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2731 opened);
2732 if (error < 0) {
2733 if (create_error && error == -ENOENT)
2734 error = create_error;
2735 goto out;
2736 }
2737
2738 if (error) { /* returned 1, that is */
2739 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2740 error = -EIO;
2741 goto out;
2742 }
2743 if (file->f_path.dentry) {
2744 dput(dentry);
2745 dentry = file->f_path.dentry;
2746 }
2747 if (*opened & FILE_CREATED)
2748 fsnotify_create(dir, dentry);
2749 if (!dentry->d_inode) {
2750 WARN_ON(*opened & FILE_CREATED);
2751 if (create_error) {
2752 error = create_error;
2753 goto out;
2754 }
2755 } else {
2756 if (excl && !(*opened & FILE_CREATED)) {
2757 error = -EEXIST;
2758 goto out;
2759 }
2760 }
2761 goto looked_up;
2762 }
2763
2764 /*
2765 * We didn't have the inode before the open, so check open permission
2766 * here.
2767 */
2768 acc_mode = op->acc_mode;
2769 if (*opened & FILE_CREATED) {
2770 WARN_ON(!(open_flag & O_CREAT));
2771 fsnotify_create(dir, dentry);
2772 acc_mode = MAY_OPEN;
2773 }
2774 error = may_open(&file->f_path, acc_mode, open_flag);
2775 if (error)
2776 fput(file);
2777
2778 out:
2779 dput(dentry);
2780 return error;
2781
2782 no_open:
2783 if (need_lookup) {
2784 dentry = lookup_real(dir, dentry, nd->flags);
2785 if (IS_ERR(dentry))
2786 return PTR_ERR(dentry);
2787
2788 if (create_error) {
2789 int open_flag = op->open_flag;
2790
2791 error = create_error;
2792 if ((open_flag & O_EXCL)) {
2793 if (!dentry->d_inode)
2794 goto out;
2795 } else if (!dentry->d_inode) {
2796 goto out;
2797 } else if ((open_flag & O_TRUNC) &&
2798 S_ISREG(dentry->d_inode->i_mode)) {
2799 goto out;
2800 }
2801 /* will fail later, go on to get the right error */
2802 }
2803 }
2804 looked_up:
2805 path->dentry = dentry;
2806 path->mnt = nd->path.mnt;
2807 return 1;
2808 }
2809
2810 /*
2811 * Look up and maybe create and open the last component.
2812 *
2813 * Must be called with i_mutex held on parent.
2814 *
2815 * Returns 0 if the file was successfully atomically created (if necessary) and
2816 * opened. In this case the file will be returned attached to @file.
2817 *
2818 * Returns 1 if the file was not completely opened at this time, though lookups
2819 * and creations will have been performed and the dentry returned in @path will
2820 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2821 * specified then a negative dentry may be returned.
2822 *
2823 * An error code is returned otherwise.
2824 *
2825 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2826 * cleared otherwise prior to returning.
2827 */
2828 static int lookup_open(struct nameidata *nd, struct path *path,
2829 struct file *file,
2830 const struct open_flags *op,
2831 bool got_write, int *opened)
2832 {
2833 struct dentry *dir = nd->path.dentry;
2834 struct inode *dir_inode = dir->d_inode;
2835 struct dentry *dentry;
2836 int error;
2837 bool need_lookup;
2838
2839 *opened &= ~FILE_CREATED;
2840 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2841 if (IS_ERR(dentry))
2842 return PTR_ERR(dentry);
2843
2844 /* Cached positive dentry: will open in f_op->open */
2845 if (!need_lookup && dentry->d_inode)
2846 goto out_no_open;
2847
2848 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2849 return atomic_open(nd, dentry, path, file, op, got_write,
2850 need_lookup, opened);
2851 }
2852
2853 if (need_lookup) {
2854 BUG_ON(dentry->d_inode);
2855
2856 dentry = lookup_real(dir_inode, dentry, nd->flags);
2857 if (IS_ERR(dentry))
2858 return PTR_ERR(dentry);
2859 }
2860
2861 /* Negative dentry, just create the file */
2862 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2863 umode_t mode = op->mode;
2864 if (!IS_POSIXACL(dir->d_inode))
2865 mode &= ~current_umask();
2866 /*
2867 * This write is needed to ensure that a
2868 * rw->ro transition does not occur between
2869 * the time when the file is created and when
2870 * a permanent write count is taken through
2871 * the 'struct file' in finish_open().
2872 */
2873 if (!got_write) {
2874 error = -EROFS;
2875 goto out_dput;
2876 }
2877 *opened |= FILE_CREATED;
2878 error = security_path_mknod(&nd->path, dentry, mode, 0);
2879 if (error)
2880 goto out_dput;
2881 error = vfs_create(dir->d_inode, dentry, mode,
2882 nd->flags & LOOKUP_EXCL);
2883 if (error)
2884 goto out_dput;
2885 }
2886 out_no_open:
2887 path->dentry = dentry;
2888 path->mnt = nd->path.mnt;
2889 return 1;
2890
2891 out_dput:
2892 dput(dentry);
2893 return error;
2894 }
2895
2896 /*
2897 * Handle the last step of open()
2898 */
2899 static int do_last(struct nameidata *nd, struct path *path,
2900 struct file *file, const struct open_flags *op,
2901 int *opened, struct filename *name)
2902 {
2903 struct dentry *dir = nd->path.dentry;
2904 int open_flag = op->open_flag;
2905 bool will_truncate = (open_flag & O_TRUNC) != 0;
2906 bool got_write = false;
2907 int acc_mode = op->acc_mode;
2908 struct inode *inode;
2909 bool symlink_ok = false;
2910 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2911 bool retried = false;
2912 int error;
2913
2914 nd->flags &= ~LOOKUP_PARENT;
2915 nd->flags |= op->intent;
2916
2917 if (nd->last_type != LAST_NORM) {
2918 error = handle_dots(nd, nd->last_type);
2919 if (error)
2920 return error;
2921 goto finish_open;
2922 }
2923
2924 if (!(open_flag & O_CREAT)) {
2925 if (nd->last.name[nd->last.len])
2926 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2927 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2928 symlink_ok = true;
2929 /* we _can_ be in RCU mode here */
2930 error = lookup_fast(nd, path, &inode);
2931 if (likely(!error))
2932 goto finish_lookup;
2933
2934 if (error < 0)
2935 goto out;
2936
2937 BUG_ON(nd->inode != dir->d_inode);
2938 } else {
2939 /* create side of things */
2940 /*
2941 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2942 * has been cleared when we got to the last component we are
2943 * about to look up
2944 */
2945 error = complete_walk(nd);
2946 if (error)
2947 return error;
2948
2949 audit_inode(name, dir, LOOKUP_PARENT);
2950 error = -EISDIR;
2951 /* trailing slashes? */
2952 if (nd->last.name[nd->last.len])
2953 goto out;
2954 }
2955
2956 retry_lookup:
2957 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2958 error = mnt_want_write(nd->path.mnt);
2959 if (!error)
2960 got_write = true;
2961 /*
2962 * do _not_ fail yet - we might not need that or fail with
2963 * a different error; let lookup_open() decide; we'll be
2964 * dropping this one anyway.
2965 */
2966 }
2967 mutex_lock(&dir->d_inode->i_mutex);
2968 error = lookup_open(nd, path, file, op, got_write, opened);
2969 mutex_unlock(&dir->d_inode->i_mutex);
2970
2971 if (error <= 0) {
2972 if (error)
2973 goto out;
2974
2975 if ((*opened & FILE_CREATED) ||
2976 !S_ISREG(file_inode(file)->i_mode))
2977 will_truncate = false;
2978
2979 audit_inode(name, file->f_path.dentry, 0);
2980 goto opened;
2981 }
2982
2983 if (*opened & FILE_CREATED) {
2984 /* Don't check for write permission, don't truncate */
2985 open_flag &= ~O_TRUNC;
2986 will_truncate = false;
2987 acc_mode = MAY_OPEN;
2988 path_to_nameidata(path, nd);
2989 goto finish_open_created;
2990 }
2991
2992 /*
2993 * create/update audit record if it already exists.
2994 */
2995 if (d_is_positive(path->dentry))
2996 audit_inode(name, path->dentry, 0);
2997
2998 /*
2999 * If atomic_open() acquired write access it is dropped now due to
3000 * possible mount and symlink following (this might be optimized away if
3001 * necessary...)
3002 */
3003 if (got_write) {
3004 mnt_drop_write(nd->path.mnt);
3005 got_write = false;
3006 }
3007
3008 error = -EEXIST;
3009 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3010 goto exit_dput;
3011
3012 error = follow_managed(path, nd->flags);
3013 if (error < 0)
3014 goto exit_dput;
3015
3016 if (error)
3017 nd->flags |= LOOKUP_JUMPED;
3018
3019 BUG_ON(nd->flags & LOOKUP_RCU);
3020 inode = path->dentry->d_inode;
3021 finish_lookup:
3022 /* we _can_ be in RCU mode here */
3023 error = -ENOENT;
3024 if (!inode || d_is_negative(path->dentry)) {
3025 path_to_nameidata(path, nd);
3026 goto out;
3027 }
3028
3029 if (should_follow_link(path->dentry, !symlink_ok)) {
3030 if (nd->flags & LOOKUP_RCU) {
3031 if (unlikely(unlazy_walk(nd, path->dentry))) {
3032 error = -ECHILD;
3033 goto out;
3034 }
3035 }
3036 BUG_ON(inode != path->dentry->d_inode);
3037 return 1;
3038 }
3039
3040 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3041 path_to_nameidata(path, nd);
3042 } else {
3043 save_parent.dentry = nd->path.dentry;
3044 save_parent.mnt = mntget(path->mnt);
3045 nd->path.dentry = path->dentry;
3046
3047 }
3048 nd->inode = inode;
3049 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3050 finish_open:
3051 error = complete_walk(nd);
3052 if (error) {
3053 path_put(&save_parent);
3054 return error;
3055 }
3056 audit_inode(name, nd->path.dentry, 0);
3057 error = -EISDIR;
3058 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3059 goto out;
3060 error = -ENOTDIR;
3061 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3062 goto out;
3063 if (!S_ISREG(nd->inode->i_mode))
3064 will_truncate = false;
3065
3066 if (will_truncate) {
3067 error = mnt_want_write(nd->path.mnt);
3068 if (error)
3069 goto out;
3070 got_write = true;
3071 }
3072 finish_open_created:
3073 error = may_open(&nd->path, acc_mode, open_flag);
3074 if (error)
3075 goto out;
3076
3077 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3078 error = vfs_open(&nd->path, file, current_cred());
3079 if (!error) {
3080 *opened |= FILE_OPENED;
3081 } else {
3082 if (error == -EOPENSTALE)
3083 goto stale_open;
3084 goto out;
3085 }
3086 opened:
3087 error = open_check_o_direct(file);
3088 if (error)
3089 goto exit_fput;
3090 error = ima_file_check(file, op->acc_mode, *opened);
3091 if (error)
3092 goto exit_fput;
3093
3094 if (will_truncate) {
3095 error = handle_truncate(file);
3096 if (error)
3097 goto exit_fput;
3098 }
3099 out:
3100 if (got_write)
3101 mnt_drop_write(nd->path.mnt);
3102 path_put(&save_parent);
3103 terminate_walk(nd);
3104 return error;
3105
3106 exit_dput:
3107 path_put_conditional(path, nd);
3108 goto out;
3109 exit_fput:
3110 fput(file);
3111 goto out;
3112
3113 stale_open:
3114 /* If no saved parent or already retried then can't retry */
3115 if (!save_parent.dentry || retried)
3116 goto out;
3117
3118 BUG_ON(save_parent.dentry != dir);
3119 path_put(&nd->path);
3120 nd->path = save_parent;
3121 nd->inode = dir->d_inode;
3122 save_parent.mnt = NULL;
3123 save_parent.dentry = NULL;
3124 if (got_write) {
3125 mnt_drop_write(nd->path.mnt);
3126 got_write = false;
3127 }
3128 retried = true;
3129 goto retry_lookup;
3130 }
3131
3132 static int do_tmpfile(int dfd, struct filename *pathname,
3133 struct nameidata *nd, int flags,
3134 const struct open_flags *op,
3135 struct file *file, int *opened)
3136 {
3137 static const struct qstr name = QSTR_INIT("/", 1);
3138 struct dentry *dentry, *child;
3139 struct inode *dir;
3140 int error = path_lookupat(dfd, pathname->name,
3141 flags | LOOKUP_DIRECTORY, nd);
3142 if (unlikely(error))
3143 return error;
3144 error = mnt_want_write(nd->path.mnt);
3145 if (unlikely(error))
3146 goto out;
3147 /* we want directory to be writable */
3148 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3149 if (error)
3150 goto out2;
3151 dentry = nd->path.dentry;
3152 dir = dentry->d_inode;
3153 if (!dir->i_op->tmpfile) {
3154 error = -EOPNOTSUPP;
3155 goto out2;
3156 }
3157 child = d_alloc(dentry, &name);
3158 if (unlikely(!child)) {
3159 error = -ENOMEM;
3160 goto out2;
3161 }
3162 nd->flags &= ~LOOKUP_DIRECTORY;
3163 nd->flags |= op->intent;
3164 dput(nd->path.dentry);
3165 nd->path.dentry = child;
3166 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3167 if (error)
3168 goto out2;
3169 audit_inode(pathname, nd->path.dentry, 0);
3170 /* Don't check for other permissions, the inode was just created */
3171 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3172 if (error)
3173 goto out2;
3174 file->f_path.mnt = nd->path.mnt;
3175 error = finish_open(file, nd->path.dentry, NULL, opened);
3176 if (error)
3177 goto out2;
3178 error = open_check_o_direct(file);
3179 if (error) {
3180 fput(file);
3181 } else if (!(op->open_flag & O_EXCL)) {
3182 struct inode *inode = file_inode(file);
3183 spin_lock(&inode->i_lock);
3184 inode->i_state |= I_LINKABLE;
3185 spin_unlock(&inode->i_lock);
3186 }
3187 out2:
3188 mnt_drop_write(nd->path.mnt);
3189 out:
3190 path_put(&nd->path);
3191 return error;
3192 }
3193
3194 static struct file *path_openat(int dfd, struct filename *pathname,
3195 struct nameidata *nd, const struct open_flags *op, int flags)
3196 {
3197 struct file *file;
3198 struct path path;
3199 int opened = 0;
3200 int error;
3201
3202 file = get_empty_filp();
3203 if (IS_ERR(file))
3204 return file;
3205
3206 file->f_flags = op->open_flag;
3207
3208 if (unlikely(file->f_flags & __O_TMPFILE)) {
3209 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3210 goto out;
3211 }
3212
3213 error = path_init(dfd, pathname->name, flags, nd);
3214 if (unlikely(error))
3215 goto out;
3216
3217 error = do_last(nd, &path, file, op, &opened, pathname);
3218 while (unlikely(error > 0)) { /* trailing symlink */
3219 struct path link = path;
3220 void *cookie;
3221 if (!(nd->flags & LOOKUP_FOLLOW)) {
3222 path_put_conditional(&path, nd);
3223 path_put(&nd->path);
3224 error = -ELOOP;
3225 break;
3226 }
3227 error = may_follow_link(&link, nd);
3228 if (unlikely(error))
3229 break;
3230 nd->flags |= LOOKUP_PARENT;
3231 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3232 error = follow_link(&link, nd, &cookie);
3233 if (unlikely(error))
3234 break;
3235 error = do_last(nd, &path, file, op, &opened, pathname);
3236 put_link(nd, &link, cookie);
3237 }
3238 out:
3239 path_cleanup(nd);
3240 if (!(opened & FILE_OPENED)) {
3241 BUG_ON(!error);
3242 put_filp(file);
3243 }
3244 if (unlikely(error)) {
3245 if (error == -EOPENSTALE) {
3246 if (flags & LOOKUP_RCU)
3247 error = -ECHILD;
3248 else
3249 error = -ESTALE;
3250 }
3251 file = ERR_PTR(error);
3252 }
3253 return file;
3254 }
3255
3256 struct file *do_filp_open(int dfd, struct filename *pathname,
3257 const struct open_flags *op)
3258 {
3259 struct nameidata nd;
3260 int flags = op->lookup_flags;
3261 struct file *filp;
3262
3263 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3264 if (unlikely(filp == ERR_PTR(-ECHILD)))
3265 filp = path_openat(dfd, pathname, &nd, op, flags);
3266 if (unlikely(filp == ERR_PTR(-ESTALE)))
3267 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3268 return filp;
3269 }
3270
3271 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3272 const char *name, const struct open_flags *op)
3273 {
3274 struct nameidata nd;
3275 struct file *file;
3276 struct filename filename = { .name = name };
3277 int flags = op->lookup_flags | LOOKUP_ROOT;
3278
3279 nd.root.mnt = mnt;
3280 nd.root.dentry = dentry;
3281
3282 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3283 return ERR_PTR(-ELOOP);
3284
3285 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3286 if (unlikely(file == ERR_PTR(-ECHILD)))
3287 file = path_openat(-1, &filename, &nd, op, flags);
3288 if (unlikely(file == ERR_PTR(-ESTALE)))
3289 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3290 return file;
3291 }
3292
3293 struct dentry *kern_path_create(int dfd, const char *pathname,
3294 struct path *path, unsigned int lookup_flags)
3295 {
3296 struct dentry *dentry = ERR_PTR(-EEXIST);
3297 struct nameidata nd;
3298 int err2;
3299 int error;
3300 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3301
3302 /*
3303 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3304 * other flags passed in are ignored!
3305 */
3306 lookup_flags &= LOOKUP_REVAL;
3307
3308 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3309 if (error)
3310 return ERR_PTR(error);
3311
3312 /*
3313 * Yucky last component or no last component at all?
3314 * (foo/., foo/.., /////)
3315 */
3316 if (nd.last_type != LAST_NORM)
3317 goto out;
3318 nd.flags &= ~LOOKUP_PARENT;
3319 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3320
3321 /* don't fail immediately if it's r/o, at least try to report other errors */
3322 err2 = mnt_want_write(nd.path.mnt);
3323 /*
3324 * Do the final lookup.
3325 */
3326 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3327 dentry = lookup_hash(&nd);
3328 if (IS_ERR(dentry))
3329 goto unlock;
3330
3331 error = -EEXIST;
3332 if (d_is_positive(dentry))
3333 goto fail;
3334
3335 /*
3336 * Special case - lookup gave negative, but... we had foo/bar/
3337 * From the vfs_mknod() POV we just have a negative dentry -
3338 * all is fine. Let's be bastards - you had / on the end, you've
3339 * been asking for (non-existent) directory. -ENOENT for you.
3340 */
3341 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3342 error = -ENOENT;
3343 goto fail;
3344 }
3345 if (unlikely(err2)) {
3346 error = err2;
3347 goto fail;
3348 }
3349 *path = nd.path;
3350 return dentry;
3351 fail:
3352 dput(dentry);
3353 dentry = ERR_PTR(error);
3354 unlock:
3355 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3356 if (!err2)
3357 mnt_drop_write(nd.path.mnt);
3358 out:
3359 path_put(&nd.path);
3360 return dentry;
3361 }
3362 EXPORT_SYMBOL(kern_path_create);
3363
3364 void done_path_create(struct path *path, struct dentry *dentry)
3365 {
3366 dput(dentry);
3367 mutex_unlock(&path->dentry->d_inode->i_mutex);
3368 mnt_drop_write(path->mnt);
3369 path_put(path);
3370 }
3371 EXPORT_SYMBOL(done_path_create);
3372
3373 struct dentry *user_path_create(int dfd, const char __user *pathname,
3374 struct path *path, unsigned int lookup_flags)
3375 {
3376 struct filename *tmp = getname(pathname);
3377 struct dentry *res;
3378 if (IS_ERR(tmp))
3379 return ERR_CAST(tmp);
3380 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3381 putname(tmp);
3382 return res;
3383 }
3384 EXPORT_SYMBOL(user_path_create);
3385
3386 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3387 {
3388 int error = may_create(dir, dentry);
3389
3390 if (error)
3391 return error;
3392
3393 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3394 return -EPERM;
3395
3396 if (!dir->i_op->mknod)
3397 return -EPERM;
3398
3399 error = devcgroup_inode_mknod(mode, dev);
3400 if (error)
3401 return error;
3402
3403 error = security_inode_mknod(dir, dentry, mode, dev);
3404 if (error)
3405 return error;
3406
3407 error = dir->i_op->mknod(dir, dentry, mode, dev);
3408 if (!error)
3409 fsnotify_create(dir, dentry);
3410 return error;
3411 }
3412 EXPORT_SYMBOL(vfs_mknod);
3413
3414 static int may_mknod(umode_t mode)
3415 {
3416 switch (mode & S_IFMT) {
3417 case S_IFREG:
3418 case S_IFCHR:
3419 case S_IFBLK:
3420 case S_IFIFO:
3421 case S_IFSOCK:
3422 case 0: /* zero mode translates to S_IFREG */
3423 return 0;
3424 case S_IFDIR:
3425 return -EPERM;
3426 default:
3427 return -EINVAL;
3428 }
3429 }
3430
3431 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3432 unsigned, dev)
3433 {
3434 struct dentry *dentry;
3435 struct path path;
3436 int error;
3437 unsigned int lookup_flags = 0;
3438
3439 error = may_mknod(mode);
3440 if (error)
3441 return error;
3442 retry:
3443 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3444 if (IS_ERR(dentry))
3445 return PTR_ERR(dentry);
3446
3447 if (!IS_POSIXACL(path.dentry->d_inode))
3448 mode &= ~current_umask();
3449 error = security_path_mknod(&path, dentry, mode, dev);
3450 if (error)
3451 goto out;
3452 switch (mode & S_IFMT) {
3453 case 0: case S_IFREG:
3454 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3455 break;
3456 case S_IFCHR: case S_IFBLK:
3457 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3458 new_decode_dev(dev));
3459 break;
3460 case S_IFIFO: case S_IFSOCK:
3461 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3462 break;
3463 }
3464 out:
3465 done_path_create(&path, dentry);
3466 if (retry_estale(error, lookup_flags)) {
3467 lookup_flags |= LOOKUP_REVAL;
3468 goto retry;
3469 }
3470 return error;
3471 }
3472
3473 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3474 {
3475 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3476 }
3477
3478 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3479 {
3480 int error = may_create(dir, dentry);
3481 unsigned max_links = dir->i_sb->s_max_links;
3482
3483 if (error)
3484 return error;
3485
3486 if (!dir->i_op->mkdir)
3487 return -EPERM;
3488
3489 mode &= (S_IRWXUGO|S_ISVTX);
3490 error = security_inode_mkdir(dir, dentry, mode);
3491 if (error)
3492 return error;
3493
3494 if (max_links && dir->i_nlink >= max_links)
3495 return -EMLINK;
3496
3497 error = dir->i_op->mkdir(dir, dentry, mode);
3498 if (!error)
3499 fsnotify_mkdir(dir, dentry);
3500 return error;
3501 }
3502 EXPORT_SYMBOL(vfs_mkdir);
3503
3504 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3505 {
3506 struct dentry *dentry;
3507 struct path path;
3508 int error;
3509 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3510
3511 retry:
3512 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3513 if (IS_ERR(dentry))
3514 return PTR_ERR(dentry);
3515
3516 if (!IS_POSIXACL(path.dentry->d_inode))
3517 mode &= ~current_umask();
3518 error = security_path_mkdir(&path, dentry, mode);
3519 if (!error)
3520 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3521 done_path_create(&path, dentry);
3522 if (retry_estale(error, lookup_flags)) {
3523 lookup_flags |= LOOKUP_REVAL;
3524 goto retry;
3525 }
3526 return error;
3527 }
3528
3529 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3530 {
3531 return sys_mkdirat(AT_FDCWD, pathname, mode);
3532 }
3533
3534 /*
3535 * The dentry_unhash() helper will try to drop the dentry early: we
3536 * should have a usage count of 1 if we're the only user of this
3537 * dentry, and if that is true (possibly after pruning the dcache),
3538 * then we drop the dentry now.
3539 *
3540 * A low-level filesystem can, if it choses, legally
3541 * do a
3542 *
3543 * if (!d_unhashed(dentry))
3544 * return -EBUSY;
3545 *
3546 * if it cannot handle the case of removing a directory
3547 * that is still in use by something else..
3548 */
3549 void dentry_unhash(struct dentry *dentry)
3550 {
3551 shrink_dcache_parent(dentry);
3552 spin_lock(&dentry->d_lock);
3553 if (dentry->d_lockref.count == 1)
3554 __d_drop(dentry);
3555 spin_unlock(&dentry->d_lock);
3556 }
3557 EXPORT_SYMBOL(dentry_unhash);
3558
3559 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3560 {
3561 int error = may_delete(dir, dentry, 1);
3562
3563 if (error)
3564 return error;
3565
3566 if (!dir->i_op->rmdir)
3567 return -EPERM;
3568
3569 dget(dentry);
3570 mutex_lock(&dentry->d_inode->i_mutex);
3571
3572 error = -EBUSY;
3573 if (is_local_mountpoint(dentry))
3574 goto out;
3575
3576 error = security_inode_rmdir(dir, dentry);
3577 if (error)
3578 goto out;
3579
3580 shrink_dcache_parent(dentry);
3581 error = dir->i_op->rmdir(dir, dentry);
3582 if (error)
3583 goto out;
3584
3585 dentry->d_inode->i_flags |= S_DEAD;
3586 dont_mount(dentry);
3587 detach_mounts(dentry);
3588
3589 out:
3590 mutex_unlock(&dentry->d_inode->i_mutex);
3591 dput(dentry);
3592 if (!error)
3593 d_delete(dentry);
3594 return error;
3595 }
3596 EXPORT_SYMBOL(vfs_rmdir);
3597
3598 static long do_rmdir(int dfd, const char __user *pathname)
3599 {
3600 int error = 0;
3601 struct filename *name;
3602 struct dentry *dentry;
3603 struct nameidata nd;
3604 unsigned int lookup_flags = 0;
3605 retry:
3606 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3607 if (IS_ERR(name))
3608 return PTR_ERR(name);
3609
3610 switch(nd.last_type) {
3611 case LAST_DOTDOT:
3612 error = -ENOTEMPTY;
3613 goto exit1;
3614 case LAST_DOT:
3615 error = -EINVAL;
3616 goto exit1;
3617 case LAST_ROOT:
3618 error = -EBUSY;
3619 goto exit1;
3620 }
3621
3622 nd.flags &= ~LOOKUP_PARENT;
3623 error = mnt_want_write(nd.path.mnt);
3624 if (error)
3625 goto exit1;
3626
3627 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3628 dentry = lookup_hash(&nd);
3629 error = PTR_ERR(dentry);
3630 if (IS_ERR(dentry))
3631 goto exit2;
3632 if (!dentry->d_inode) {
3633 error = -ENOENT;
3634 goto exit3;
3635 }
3636 error = security_path_rmdir(&nd.path, dentry);
3637 if (error)
3638 goto exit3;
3639 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3640 exit3:
3641 dput(dentry);
3642 exit2:
3643 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3644 mnt_drop_write(nd.path.mnt);
3645 exit1:
3646 path_put(&nd.path);
3647 putname(name);
3648 if (retry_estale(error, lookup_flags)) {
3649 lookup_flags |= LOOKUP_REVAL;
3650 goto retry;
3651 }
3652 return error;
3653 }
3654
3655 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3656 {
3657 return do_rmdir(AT_FDCWD, pathname);
3658 }
3659
3660 /**
3661 * vfs_unlink - unlink a filesystem object
3662 * @dir: parent directory
3663 * @dentry: victim
3664 * @delegated_inode: returns victim inode, if the inode is delegated.
3665 *
3666 * The caller must hold dir->i_mutex.
3667 *
3668 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3669 * return a reference to the inode in delegated_inode. The caller
3670 * should then break the delegation on that inode and retry. Because
3671 * breaking a delegation may take a long time, the caller should drop
3672 * dir->i_mutex before doing so.
3673 *
3674 * Alternatively, a caller may pass NULL for delegated_inode. This may
3675 * be appropriate for callers that expect the underlying filesystem not
3676 * to be NFS exported.
3677 */
3678 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3679 {
3680 struct inode *target = dentry->d_inode;
3681 int error = may_delete(dir, dentry, 0);
3682
3683 if (error)
3684 return error;
3685
3686 if (!dir->i_op->unlink)
3687 return -EPERM;
3688
3689 mutex_lock(&target->i_mutex);
3690 if (is_local_mountpoint(dentry))
3691 error = -EBUSY;
3692 else {
3693 error = security_inode_unlink(dir, dentry);
3694 if (!error) {
3695 error = try_break_deleg(target, delegated_inode);
3696 if (error)
3697 goto out;
3698 error = dir->i_op->unlink(dir, dentry);
3699 if (!error) {
3700 dont_mount(dentry);
3701 detach_mounts(dentry);
3702 }
3703 }
3704 }
3705 out:
3706 mutex_unlock(&target->i_mutex);
3707
3708 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3709 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3710 fsnotify_link_count(target);
3711 d_delete(dentry);
3712 }
3713
3714 return error;
3715 }
3716 EXPORT_SYMBOL(vfs_unlink);
3717
3718 /*
3719 * Make sure that the actual truncation of the file will occur outside its
3720 * directory's i_mutex. Truncate can take a long time if there is a lot of
3721 * writeout happening, and we don't want to prevent access to the directory
3722 * while waiting on the I/O.
3723 */
3724 static long do_unlinkat(int dfd, const char __user *pathname)
3725 {
3726 int error;
3727 struct filename *name;
3728 struct dentry *dentry;
3729 struct nameidata nd;
3730 struct inode *inode = NULL;
3731 struct inode *delegated_inode = NULL;
3732 unsigned int lookup_flags = 0;
3733 retry:
3734 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3735 if (IS_ERR(name))
3736 return PTR_ERR(name);
3737
3738 error = -EISDIR;
3739 if (nd.last_type != LAST_NORM)
3740 goto exit1;
3741
3742 nd.flags &= ~LOOKUP_PARENT;
3743 error = mnt_want_write(nd.path.mnt);
3744 if (error)
3745 goto exit1;
3746 retry_deleg:
3747 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3748 dentry = lookup_hash(&nd);
3749 error = PTR_ERR(dentry);
3750 if (!IS_ERR(dentry)) {
3751 /* Why not before? Because we want correct error value */
3752 if (nd.last.name[nd.last.len])
3753 goto slashes;
3754 inode = dentry->d_inode;
3755 if (d_is_negative(dentry))
3756 goto slashes;
3757 ihold(inode);
3758 error = security_path_unlink(&nd.path, dentry);
3759 if (error)
3760 goto exit2;
3761 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3762 exit2:
3763 dput(dentry);
3764 }
3765 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3766 if (inode)
3767 iput(inode); /* truncate the inode here */
3768 inode = NULL;
3769 if (delegated_inode) {
3770 error = break_deleg_wait(&delegated_inode);
3771 if (!error)
3772 goto retry_deleg;
3773 }
3774 mnt_drop_write(nd.path.mnt);
3775 exit1:
3776 path_put(&nd.path);
3777 putname(name);
3778 if (retry_estale(error, lookup_flags)) {
3779 lookup_flags |= LOOKUP_REVAL;
3780 inode = NULL;
3781 goto retry;
3782 }
3783 return error;
3784
3785 slashes:
3786 if (d_is_negative(dentry))
3787 error = -ENOENT;
3788 else if (d_is_dir(dentry))
3789 error = -EISDIR;
3790 else
3791 error = -ENOTDIR;
3792 goto exit2;
3793 }
3794
3795 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3796 {
3797 if ((flag & ~AT_REMOVEDIR) != 0)
3798 return -EINVAL;
3799
3800 if (flag & AT_REMOVEDIR)
3801 return do_rmdir(dfd, pathname);
3802
3803 return do_unlinkat(dfd, pathname);
3804 }
3805
3806 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3807 {
3808 return do_unlinkat(AT_FDCWD, pathname);
3809 }
3810
3811 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3812 {
3813 int error = may_create(dir, dentry);
3814
3815 if (error)
3816 return error;
3817
3818 if (!dir->i_op->symlink)
3819 return -EPERM;
3820
3821 error = security_inode_symlink(dir, dentry, oldname);
3822 if (error)
3823 return error;
3824
3825 error = dir->i_op->symlink(dir, dentry, oldname);
3826 if (!error)
3827 fsnotify_create(dir, dentry);
3828 return error;
3829 }
3830 EXPORT_SYMBOL(vfs_symlink);
3831
3832 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3833 int, newdfd, const char __user *, newname)
3834 {
3835 int error;
3836 struct filename *from;
3837 struct dentry *dentry;
3838 struct path path;
3839 unsigned int lookup_flags = 0;
3840
3841 from = getname(oldname);
3842 if (IS_ERR(from))
3843 return PTR_ERR(from);
3844 retry:
3845 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3846 error = PTR_ERR(dentry);
3847 if (IS_ERR(dentry))
3848 goto out_putname;
3849
3850 error = security_path_symlink(&path, dentry, from->name);
3851 if (!error)
3852 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3853 done_path_create(&path, dentry);
3854 if (retry_estale(error, lookup_flags)) {
3855 lookup_flags |= LOOKUP_REVAL;
3856 goto retry;
3857 }
3858 out_putname:
3859 putname(from);
3860 return error;
3861 }
3862
3863 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3864 {
3865 return sys_symlinkat(oldname, AT_FDCWD, newname);
3866 }
3867
3868 /**
3869 * vfs_link - create a new link
3870 * @old_dentry: object to be linked
3871 * @dir: new parent
3872 * @new_dentry: where to create the new link
3873 * @delegated_inode: returns inode needing a delegation break
3874 *
3875 * The caller must hold dir->i_mutex
3876 *
3877 * If vfs_link discovers a delegation on the to-be-linked file in need
3878 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3879 * inode in delegated_inode. The caller should then break the delegation
3880 * and retry. Because breaking a delegation may take a long time, the
3881 * caller should drop the i_mutex before doing so.
3882 *
3883 * Alternatively, a caller may pass NULL for delegated_inode. This may
3884 * be appropriate for callers that expect the underlying filesystem not
3885 * to be NFS exported.
3886 */
3887 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3888 {
3889 struct inode *inode = old_dentry->d_inode;
3890 unsigned max_links = dir->i_sb->s_max_links;
3891 int error;
3892
3893 if (!inode)
3894 return -ENOENT;
3895
3896 error = may_create(dir, new_dentry);
3897 if (error)
3898 return error;
3899
3900 if (dir->i_sb != inode->i_sb)
3901 return -EXDEV;
3902
3903 /*
3904 * A link to an append-only or immutable file cannot be created.
3905 */
3906 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3907 return -EPERM;
3908 if (!dir->i_op->link)
3909 return -EPERM;
3910 if (S_ISDIR(inode->i_mode))
3911 return -EPERM;
3912
3913 error = security_inode_link(old_dentry, dir, new_dentry);
3914 if (error)
3915 return error;
3916
3917 mutex_lock(&inode->i_mutex);
3918 /* Make sure we don't allow creating hardlink to an unlinked file */
3919 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3920 error = -ENOENT;
3921 else if (max_links && inode->i_nlink >= max_links)
3922 error = -EMLINK;
3923 else {
3924 error = try_break_deleg(inode, delegated_inode);
3925 if (!error)
3926 error = dir->i_op->link(old_dentry, dir, new_dentry);
3927 }
3928
3929 if (!error && (inode->i_state & I_LINKABLE)) {
3930 spin_lock(&inode->i_lock);
3931 inode->i_state &= ~I_LINKABLE;
3932 spin_unlock(&inode->i_lock);
3933 }
3934 mutex_unlock(&inode->i_mutex);
3935 if (!error)
3936 fsnotify_link(dir, inode, new_dentry);
3937 return error;
3938 }
3939 EXPORT_SYMBOL(vfs_link);
3940
3941 /*
3942 * Hardlinks are often used in delicate situations. We avoid
3943 * security-related surprises by not following symlinks on the
3944 * newname. --KAB
3945 *
3946 * We don't follow them on the oldname either to be compatible
3947 * with linux 2.0, and to avoid hard-linking to directories
3948 * and other special files. --ADM
3949 */
3950 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3951 int, newdfd, const char __user *, newname, int, flags)
3952 {
3953 struct dentry *new_dentry;
3954 struct path old_path, new_path;
3955 struct inode *delegated_inode = NULL;
3956 int how = 0;
3957 int error;
3958
3959 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3960 return -EINVAL;
3961 /*
3962 * To use null names we require CAP_DAC_READ_SEARCH
3963 * This ensures that not everyone will be able to create
3964 * handlink using the passed filedescriptor.
3965 */
3966 if (flags & AT_EMPTY_PATH) {
3967 if (!capable(CAP_DAC_READ_SEARCH))
3968 return -ENOENT;
3969 how = LOOKUP_EMPTY;
3970 }
3971
3972 if (flags & AT_SYMLINK_FOLLOW)
3973 how |= LOOKUP_FOLLOW;
3974 retry:
3975 error = user_path_at(olddfd, oldname, how, &old_path);
3976 if (error)
3977 return error;
3978
3979 new_dentry = user_path_create(newdfd, newname, &new_path,
3980 (how & LOOKUP_REVAL));
3981 error = PTR_ERR(new_dentry);
3982 if (IS_ERR(new_dentry))
3983 goto out;
3984
3985 error = -EXDEV;
3986 if (old_path.mnt != new_path.mnt)
3987 goto out_dput;
3988 error = may_linkat(&old_path);
3989 if (unlikely(error))
3990 goto out_dput;
3991 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3992 if (error)
3993 goto out_dput;
3994 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3995 out_dput:
3996 done_path_create(&new_path, new_dentry);
3997 if (delegated_inode) {
3998 error = break_deleg_wait(&delegated_inode);
3999 if (!error) {
4000 path_put(&old_path);
4001 goto retry;
4002 }
4003 }
4004 if (retry_estale(error, how)) {
4005 path_put(&old_path);
4006 how |= LOOKUP_REVAL;
4007 goto retry;
4008 }
4009 out:
4010 path_put(&old_path);
4011
4012 return error;
4013 }
4014
4015 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4016 {
4017 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4018 }
4019
4020 /**
4021 * vfs_rename - rename a filesystem object
4022 * @old_dir: parent of source
4023 * @old_dentry: source
4024 * @new_dir: parent of destination
4025 * @new_dentry: destination
4026 * @delegated_inode: returns an inode needing a delegation break
4027 * @flags: rename flags
4028 *
4029 * The caller must hold multiple mutexes--see lock_rename()).
4030 *
4031 * If vfs_rename discovers a delegation in need of breaking at either
4032 * the source or destination, it will return -EWOULDBLOCK and return a
4033 * reference to the inode in delegated_inode. The caller should then
4034 * break the delegation and retry. Because breaking a delegation may
4035 * take a long time, the caller should drop all locks before doing
4036 * so.
4037 *
4038 * Alternatively, a caller may pass NULL for delegated_inode. This may
4039 * be appropriate for callers that expect the underlying filesystem not
4040 * to be NFS exported.
4041 *
4042 * The worst of all namespace operations - renaming directory. "Perverted"
4043 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4044 * Problems:
4045 * a) we can get into loop creation.
4046 * b) race potential - two innocent renames can create a loop together.
4047 * That's where 4.4 screws up. Current fix: serialization on
4048 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4049 * story.
4050 * c) we have to lock _four_ objects - parents and victim (if it exists),
4051 * and source (if it is not a directory).
4052 * And that - after we got ->i_mutex on parents (until then we don't know
4053 * whether the target exists). Solution: try to be smart with locking
4054 * order for inodes. We rely on the fact that tree topology may change
4055 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4056 * move will be locked. Thus we can rank directories by the tree
4057 * (ancestors first) and rank all non-directories after them.
4058 * That works since everybody except rename does "lock parent, lookup,
4059 * lock child" and rename is under ->s_vfs_rename_mutex.
4060 * HOWEVER, it relies on the assumption that any object with ->lookup()
4061 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4062 * we'd better make sure that there's no link(2) for them.
4063 * d) conversion from fhandle to dentry may come in the wrong moment - when
4064 * we are removing the target. Solution: we will have to grab ->i_mutex
4065 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4066 * ->i_mutex on parents, which works but leads to some truly excessive
4067 * locking].
4068 */
4069 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4070 struct inode *new_dir, struct dentry *new_dentry,
4071 struct inode **delegated_inode, unsigned int flags)
4072 {
4073 int error;
4074 bool is_dir = d_is_dir(old_dentry);
4075 const unsigned char *old_name;
4076 struct inode *source = old_dentry->d_inode;
4077 struct inode *target = new_dentry->d_inode;
4078 bool new_is_dir = false;
4079 unsigned max_links = new_dir->i_sb->s_max_links;
4080
4081 if (source == target)
4082 return 0;
4083
4084 error = may_delete(old_dir, old_dentry, is_dir);
4085 if (error)
4086 return error;
4087
4088 if (!target) {
4089 error = may_create(new_dir, new_dentry);
4090 } else {
4091 new_is_dir = d_is_dir(new_dentry);
4092
4093 if (!(flags & RENAME_EXCHANGE))
4094 error = may_delete(new_dir, new_dentry, is_dir);
4095 else
4096 error = may_delete(new_dir, new_dentry, new_is_dir);
4097 }
4098 if (error)
4099 return error;
4100
4101 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4102 return -EPERM;
4103
4104 if (flags && !old_dir->i_op->rename2)
4105 return -EINVAL;
4106
4107 /*
4108 * If we are going to change the parent - check write permissions,
4109 * we'll need to flip '..'.
4110 */
4111 if (new_dir != old_dir) {
4112 if (is_dir) {
4113 error = inode_permission(source, MAY_WRITE);
4114 if (error)
4115 return error;
4116 }
4117 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4118 error = inode_permission(target, MAY_WRITE);
4119 if (error)
4120 return error;
4121 }
4122 }
4123
4124 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4125 flags);
4126 if (error)
4127 return error;
4128
4129 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4130 dget(new_dentry);
4131 if (!is_dir || (flags & RENAME_EXCHANGE))
4132 lock_two_nondirectories(source, target);
4133 else if (target)
4134 mutex_lock(&target->i_mutex);
4135
4136 error = -EBUSY;
4137 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4138 goto out;
4139
4140 if (max_links && new_dir != old_dir) {
4141 error = -EMLINK;
4142 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4143 goto out;
4144 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4145 old_dir->i_nlink >= max_links)
4146 goto out;
4147 }
4148 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4149 shrink_dcache_parent(new_dentry);
4150 if (!is_dir) {
4151 error = try_break_deleg(source, delegated_inode);
4152 if (error)
4153 goto out;
4154 }
4155 if (target && !new_is_dir) {
4156 error = try_break_deleg(target, delegated_inode);
4157 if (error)
4158 goto out;
4159 }
4160 if (!old_dir->i_op->rename2) {
4161 error = old_dir->i_op->rename(old_dir, old_dentry,
4162 new_dir, new_dentry);
4163 } else {
4164 WARN_ON(old_dir->i_op->rename != NULL);
4165 error = old_dir->i_op->rename2(old_dir, old_dentry,
4166 new_dir, new_dentry, flags);
4167 }
4168 if (error)
4169 goto out;
4170
4171 if (!(flags & RENAME_EXCHANGE) && target) {
4172 if (is_dir)
4173 target->i_flags |= S_DEAD;
4174 dont_mount(new_dentry);
4175 detach_mounts(new_dentry);
4176 }
4177 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4178 if (!(flags & RENAME_EXCHANGE))
4179 d_move(old_dentry, new_dentry);
4180 else
4181 d_exchange(old_dentry, new_dentry);
4182 }
4183 out:
4184 if (!is_dir || (flags & RENAME_EXCHANGE))
4185 unlock_two_nondirectories(source, target);
4186 else if (target)
4187 mutex_unlock(&target->i_mutex);
4188 dput(new_dentry);
4189 if (!error) {
4190 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4191 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4192 if (flags & RENAME_EXCHANGE) {
4193 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4194 new_is_dir, NULL, new_dentry);
4195 }
4196 }
4197 fsnotify_oldname_free(old_name);
4198
4199 return error;
4200 }
4201 EXPORT_SYMBOL(vfs_rename);
4202
4203 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4204 int, newdfd, const char __user *, newname, unsigned int, flags)
4205 {
4206 struct dentry *old_dir, *new_dir;
4207 struct dentry *old_dentry, *new_dentry;
4208 struct dentry *trap;
4209 struct nameidata oldnd, newnd;
4210 struct inode *delegated_inode = NULL;
4211 struct filename *from;
4212 struct filename *to;
4213 unsigned int lookup_flags = 0;
4214 bool should_retry = false;
4215 int error;
4216
4217 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4218 return -EINVAL;
4219
4220 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4221 (flags & RENAME_EXCHANGE))
4222 return -EINVAL;
4223
4224 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4225 return -EPERM;
4226
4227 retry:
4228 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4229 if (IS_ERR(from)) {
4230 error = PTR_ERR(from);
4231 goto exit;
4232 }
4233
4234 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4235 if (IS_ERR(to)) {
4236 error = PTR_ERR(to);
4237 goto exit1;
4238 }
4239
4240 error = -EXDEV;
4241 if (oldnd.path.mnt != newnd.path.mnt)
4242 goto exit2;
4243
4244 old_dir = oldnd.path.dentry;
4245 error = -EBUSY;
4246 if (oldnd.last_type != LAST_NORM)
4247 goto exit2;
4248
4249 new_dir = newnd.path.dentry;
4250 if (flags & RENAME_NOREPLACE)
4251 error = -EEXIST;
4252 if (newnd.last_type != LAST_NORM)
4253 goto exit2;
4254
4255 error = mnt_want_write(oldnd.path.mnt);
4256 if (error)
4257 goto exit2;
4258
4259 oldnd.flags &= ~LOOKUP_PARENT;
4260 newnd.flags &= ~LOOKUP_PARENT;
4261 if (!(flags & RENAME_EXCHANGE))
4262 newnd.flags |= LOOKUP_RENAME_TARGET;
4263
4264 retry_deleg:
4265 trap = lock_rename(new_dir, old_dir);
4266
4267 old_dentry = lookup_hash(&oldnd);
4268 error = PTR_ERR(old_dentry);
4269 if (IS_ERR(old_dentry))
4270 goto exit3;
4271 /* source must exist */
4272 error = -ENOENT;
4273 if (d_is_negative(old_dentry))
4274 goto exit4;
4275 new_dentry = lookup_hash(&newnd);
4276 error = PTR_ERR(new_dentry);
4277 if (IS_ERR(new_dentry))
4278 goto exit4;
4279 error = -EEXIST;
4280 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4281 goto exit5;
4282 if (flags & RENAME_EXCHANGE) {
4283 error = -ENOENT;
4284 if (d_is_negative(new_dentry))
4285 goto exit5;
4286
4287 if (!d_is_dir(new_dentry)) {
4288 error = -ENOTDIR;
4289 if (newnd.last.name[newnd.last.len])
4290 goto exit5;
4291 }
4292 }
4293 /* unless the source is a directory trailing slashes give -ENOTDIR */
4294 if (!d_is_dir(old_dentry)) {
4295 error = -ENOTDIR;
4296 if (oldnd.last.name[oldnd.last.len])
4297 goto exit5;
4298 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4299 goto exit5;
4300 }
4301 /* source should not be ancestor of target */
4302 error = -EINVAL;
4303 if (old_dentry == trap)
4304 goto exit5;
4305 /* target should not be an ancestor of source */
4306 if (!(flags & RENAME_EXCHANGE))
4307 error = -ENOTEMPTY;
4308 if (new_dentry == trap)
4309 goto exit5;
4310
4311 error = security_path_rename(&oldnd.path, old_dentry,
4312 &newnd.path, new_dentry, flags);
4313 if (error)
4314 goto exit5;
4315 error = vfs_rename(old_dir->d_inode, old_dentry,
4316 new_dir->d_inode, new_dentry,
4317 &delegated_inode, flags);
4318 exit5:
4319 dput(new_dentry);
4320 exit4:
4321 dput(old_dentry);
4322 exit3:
4323 unlock_rename(new_dir, old_dir);
4324 if (delegated_inode) {
4325 error = break_deleg_wait(&delegated_inode);
4326 if (!error)
4327 goto retry_deleg;
4328 }
4329 mnt_drop_write(oldnd.path.mnt);
4330 exit2:
4331 if (retry_estale(error, lookup_flags))
4332 should_retry = true;
4333 path_put(&newnd.path);
4334 putname(to);
4335 exit1:
4336 path_put(&oldnd.path);
4337 putname(from);
4338 if (should_retry) {
4339 should_retry = false;
4340 lookup_flags |= LOOKUP_REVAL;
4341 goto retry;
4342 }
4343 exit:
4344 return error;
4345 }
4346
4347 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4348 int, newdfd, const char __user *, newname)
4349 {
4350 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4351 }
4352
4353 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4354 {
4355 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4356 }
4357
4358 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4359 {
4360 int error = may_create(dir, dentry);
4361 if (error)
4362 return error;
4363
4364 if (!dir->i_op->mknod)
4365 return -EPERM;
4366
4367 return dir->i_op->mknod(dir, dentry,
4368 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4369 }
4370 EXPORT_SYMBOL(vfs_whiteout);
4371
4372 int readlink_copy(char __user *buffer, int buflen, const char *link)
4373 {
4374 int len = PTR_ERR(link);
4375 if (IS_ERR(link))
4376 goto out;
4377
4378 len = strlen(link);
4379 if (len > (unsigned) buflen)
4380 len = buflen;
4381 if (copy_to_user(buffer, link, len))
4382 len = -EFAULT;
4383 out:
4384 return len;
4385 }
4386 EXPORT_SYMBOL(readlink_copy);
4387
4388 /*
4389 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4390 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4391 * using) it for any given inode is up to filesystem.
4392 */
4393 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4394 {
4395 struct nameidata nd;
4396 void *cookie;
4397 int res;
4398
4399 nd.depth = 0;
4400 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4401 if (IS_ERR(cookie))
4402 return PTR_ERR(cookie);
4403
4404 res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4405 if (dentry->d_inode->i_op->put_link)
4406 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4407 return res;
4408 }
4409 EXPORT_SYMBOL(generic_readlink);
4410
4411 /* get the link contents into pagecache */
4412 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4413 {
4414 char *kaddr;
4415 struct page *page;
4416 struct address_space *mapping = dentry->d_inode->i_mapping;
4417 page = read_mapping_page(mapping, 0, NULL);
4418 if (IS_ERR(page))
4419 return (char*)page;
4420 *ppage = page;
4421 kaddr = kmap(page);
4422 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4423 return kaddr;
4424 }
4425
4426 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4427 {
4428 struct page *page = NULL;
4429 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4430 if (page) {
4431 kunmap(page);
4432 page_cache_release(page);
4433 }
4434 return res;
4435 }
4436 EXPORT_SYMBOL(page_readlink);
4437
4438 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4439 {
4440 struct page *page = NULL;
4441 nd_set_link(nd, page_getlink(dentry, &page));
4442 return page;
4443 }
4444 EXPORT_SYMBOL(page_follow_link_light);
4445
4446 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4447 {
4448 struct page *page = cookie;
4449
4450 if (page) {
4451 kunmap(page);
4452 page_cache_release(page);
4453 }
4454 }
4455 EXPORT_SYMBOL(page_put_link);
4456
4457 /*
4458 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4459 */
4460 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4461 {
4462 struct address_space *mapping = inode->i_mapping;
4463 struct page *page;
4464 void *fsdata;
4465 int err;
4466 char *kaddr;
4467 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4468 if (nofs)
4469 flags |= AOP_FLAG_NOFS;
4470
4471 retry:
4472 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4473 flags, &page, &fsdata);
4474 if (err)
4475 goto fail;
4476
4477 kaddr = kmap_atomic(page);
4478 memcpy(kaddr, symname, len-1);
4479 kunmap_atomic(kaddr);
4480
4481 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4482 page, fsdata);
4483 if (err < 0)
4484 goto fail;
4485 if (err < len-1)
4486 goto retry;
4487
4488 mark_inode_dirty(inode);
4489 return 0;
4490 fail:
4491 return err;
4492 }
4493 EXPORT_SYMBOL(__page_symlink);
4494
4495 int page_symlink(struct inode *inode, const char *symname, int len)
4496 {
4497 return __page_symlink(inode, symname, len,
4498 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4499 }
4500 EXPORT_SYMBOL(page_symlink);
4501
4502 const struct inode_operations page_symlink_inode_operations = {
4503 .readlink = generic_readlink,
4504 .follow_link = page_follow_link_light,
4505 .put_link = page_put_link,
4506 };
4507 EXPORT_SYMBOL(page_symlink_inode_operations);