]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/namei.c
Merge branch 'for-linus' of master.kernel.org:/home/rmk/linux-2.6-arm
[mirror_ubuntu-zesty-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <asm/namei.h>
34 #include <asm/uaccess.h>
35
36 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
37
38 /* [Feb-1997 T. Schoebel-Theuer]
39 * Fundamental changes in the pathname lookup mechanisms (namei)
40 * were necessary because of omirr. The reason is that omirr needs
41 * to know the _real_ pathname, not the user-supplied one, in case
42 * of symlinks (and also when transname replacements occur).
43 *
44 * The new code replaces the old recursive symlink resolution with
45 * an iterative one (in case of non-nested symlink chains). It does
46 * this with calls to <fs>_follow_link().
47 * As a side effect, dir_namei(), _namei() and follow_link() are now
48 * replaced with a single function lookup_dentry() that can handle all
49 * the special cases of the former code.
50 *
51 * With the new dcache, the pathname is stored at each inode, at least as
52 * long as the refcount of the inode is positive. As a side effect, the
53 * size of the dcache depends on the inode cache and thus is dynamic.
54 *
55 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
56 * resolution to correspond with current state of the code.
57 *
58 * Note that the symlink resolution is not *completely* iterative.
59 * There is still a significant amount of tail- and mid- recursion in
60 * the algorithm. Also, note that <fs>_readlink() is not used in
61 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
62 * may return different results than <fs>_follow_link(). Many virtual
63 * filesystems (including /proc) exhibit this behavior.
64 */
65
66 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
67 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
68 * and the name already exists in form of a symlink, try to create the new
69 * name indicated by the symlink. The old code always complained that the
70 * name already exists, due to not following the symlink even if its target
71 * is nonexistent. The new semantics affects also mknod() and link() when
72 * the name is a symlink pointing to a non-existant name.
73 *
74 * I don't know which semantics is the right one, since I have no access
75 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
76 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
77 * "old" one. Personally, I think the new semantics is much more logical.
78 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
79 * file does succeed in both HP-UX and SunOs, but not in Solaris
80 * and in the old Linux semantics.
81 */
82
83 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
84 * semantics. See the comments in "open_namei" and "do_link" below.
85 *
86 * [10-Sep-98 Alan Modra] Another symlink change.
87 */
88
89 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
90 * inside the path - always follow.
91 * in the last component in creation/removal/renaming - never follow.
92 * if LOOKUP_FOLLOW passed - follow.
93 * if the pathname has trailing slashes - follow.
94 * otherwise - don't follow.
95 * (applied in that order).
96 *
97 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
98 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
99 * During the 2.4 we need to fix the userland stuff depending on it -
100 * hopefully we will be able to get rid of that wart in 2.5. So far only
101 * XEmacs seems to be relying on it...
102 */
103 /*
104 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
105 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
106 * any extra contention...
107 */
108
109 static int __link_path_walk(const char *name, struct nameidata *nd);
110
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
114 *
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
117 */
118 static int do_getname(const char __user *filename, char *page)
119 {
120 int retval;
121 unsigned long len = PATH_MAX;
122
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
125 return -EFAULT;
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
128 }
129
130 retval = strncpy_from_user(page, filename, len);
131 if (retval > 0) {
132 if (retval < len)
133 return 0;
134 return -ENAMETOOLONG;
135 } else if (!retval)
136 retval = -ENOENT;
137 return retval;
138 }
139
140 char * getname(const char __user * filename)
141 {
142 char *tmp, *result;
143
144 result = ERR_PTR(-ENOMEM);
145 tmp = __getname();
146 if (tmp) {
147 int retval = do_getname(filename, tmp);
148
149 result = tmp;
150 if (retval < 0) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
153 }
154 }
155 audit_getname(result);
156 return result;
157 }
158
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
161 {
162 if (unlikely(!audit_dummy_context()))
163 audit_putname(name);
164 else
165 __putname(name);
166 }
167 EXPORT_SYMBOL(putname);
168 #endif
169
170
171 /**
172 * generic_permission - check for access rights on a Posix-like filesystem
173 * @inode: inode to check access rights for
174 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
175 * @check_acl: optional callback to check for Posix ACLs
176 *
177 * Used to check for read/write/execute permissions on a file.
178 * We use "fsuid" for this, letting us set arbitrary permissions
179 * for filesystem access without changing the "normal" uids which
180 * are used for other things..
181 */
182 int generic_permission(struct inode *inode, int mask,
183 int (*check_acl)(struct inode *inode, int mask))
184 {
185 umode_t mode = inode->i_mode;
186
187 if (current->fsuid == inode->i_uid)
188 mode >>= 6;
189 else {
190 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
191 int error = check_acl(inode, mask);
192 if (error == -EACCES)
193 goto check_capabilities;
194 else if (error != -EAGAIN)
195 return error;
196 }
197
198 if (in_group_p(inode->i_gid))
199 mode >>= 3;
200 }
201
202 /*
203 * If the DACs are ok we don't need any capability check.
204 */
205 if (((mode & mask & (MAY_READ|MAY_WRITE|MAY_EXEC)) == mask))
206 return 0;
207
208 check_capabilities:
209 /*
210 * Read/write DACs are always overridable.
211 * Executable DACs are overridable if at least one exec bit is set.
212 */
213 if (!(mask & MAY_EXEC) ||
214 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
215 if (capable(CAP_DAC_OVERRIDE))
216 return 0;
217
218 /*
219 * Searching includes executable on directories, else just read.
220 */
221 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
222 if (capable(CAP_DAC_READ_SEARCH))
223 return 0;
224
225 return -EACCES;
226 }
227
228 int permission(struct inode *inode, int mask, struct nameidata *nd)
229 {
230 int retval, submask;
231 struct vfsmount *mnt = NULL;
232
233 if (nd)
234 mnt = nd->path.mnt;
235
236 if (mask & MAY_WRITE) {
237 umode_t mode = inode->i_mode;
238
239 /*
240 * Nobody gets write access to a read-only fs.
241 */
242 if (IS_RDONLY(inode) &&
243 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
244 return -EROFS;
245
246 /*
247 * Nobody gets write access to an immutable file.
248 */
249 if (IS_IMMUTABLE(inode))
250 return -EACCES;
251 }
252
253 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode)) {
254 /*
255 * MAY_EXEC on regular files is denied if the fs is mounted
256 * with the "noexec" flag.
257 */
258 if (mnt && (mnt->mnt_flags & MNT_NOEXEC))
259 return -EACCES;
260 }
261
262 /* Ordinary permission routines do not understand MAY_APPEND. */
263 submask = mask & ~MAY_APPEND;
264 if (inode->i_op && inode->i_op->permission) {
265 retval = inode->i_op->permission(inode, submask, nd);
266 if (!retval) {
267 /*
268 * Exec permission on a regular file is denied if none
269 * of the execute bits are set.
270 *
271 * This check should be done by the ->permission()
272 * method.
273 */
274 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode) &&
275 !(inode->i_mode & S_IXUGO))
276 return -EACCES;
277 }
278 } else {
279 retval = generic_permission(inode, submask, NULL);
280 }
281 if (retval)
282 return retval;
283
284 return security_inode_permission(inode, mask, nd);
285 }
286
287 /**
288 * vfs_permission - check for access rights to a given path
289 * @nd: lookup result that describes the path
290 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
291 *
292 * Used to check for read/write/execute permissions on a path.
293 * We use "fsuid" for this, letting us set arbitrary permissions
294 * for filesystem access without changing the "normal" uids which
295 * are used for other things.
296 */
297 int vfs_permission(struct nameidata *nd, int mask)
298 {
299 return permission(nd->path.dentry->d_inode, mask, nd);
300 }
301
302 /**
303 * file_permission - check for additional access rights to a given file
304 * @file: file to check access rights for
305 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
306 *
307 * Used to check for read/write/execute permissions on an already opened
308 * file.
309 *
310 * Note:
311 * Do not use this function in new code. All access checks should
312 * be done using vfs_permission().
313 */
314 int file_permission(struct file *file, int mask)
315 {
316 return permission(file->f_path.dentry->d_inode, mask, NULL);
317 }
318
319 /*
320 * get_write_access() gets write permission for a file.
321 * put_write_access() releases this write permission.
322 * This is used for regular files.
323 * We cannot support write (and maybe mmap read-write shared) accesses and
324 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
325 * can have the following values:
326 * 0: no writers, no VM_DENYWRITE mappings
327 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
328 * > 0: (i_writecount) users are writing to the file.
329 *
330 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
331 * except for the cases where we don't hold i_writecount yet. Then we need to
332 * use {get,deny}_write_access() - these functions check the sign and refuse
333 * to do the change if sign is wrong. Exclusion between them is provided by
334 * the inode->i_lock spinlock.
335 */
336
337 int get_write_access(struct inode * inode)
338 {
339 spin_lock(&inode->i_lock);
340 if (atomic_read(&inode->i_writecount) < 0) {
341 spin_unlock(&inode->i_lock);
342 return -ETXTBSY;
343 }
344 atomic_inc(&inode->i_writecount);
345 spin_unlock(&inode->i_lock);
346
347 return 0;
348 }
349
350 int deny_write_access(struct file * file)
351 {
352 struct inode *inode = file->f_path.dentry->d_inode;
353
354 spin_lock(&inode->i_lock);
355 if (atomic_read(&inode->i_writecount) > 0) {
356 spin_unlock(&inode->i_lock);
357 return -ETXTBSY;
358 }
359 atomic_dec(&inode->i_writecount);
360 spin_unlock(&inode->i_lock);
361
362 return 0;
363 }
364
365 /**
366 * path_get - get a reference to a path
367 * @path: path to get the reference to
368 *
369 * Given a path increment the reference count to the dentry and the vfsmount.
370 */
371 void path_get(struct path *path)
372 {
373 mntget(path->mnt);
374 dget(path->dentry);
375 }
376 EXPORT_SYMBOL(path_get);
377
378 /**
379 * path_put - put a reference to a path
380 * @path: path to put the reference to
381 *
382 * Given a path decrement the reference count to the dentry and the vfsmount.
383 */
384 void path_put(struct path *path)
385 {
386 dput(path->dentry);
387 mntput(path->mnt);
388 }
389 EXPORT_SYMBOL(path_put);
390
391 /**
392 * release_open_intent - free up open intent resources
393 * @nd: pointer to nameidata
394 */
395 void release_open_intent(struct nameidata *nd)
396 {
397 if (nd->intent.open.file->f_path.dentry == NULL)
398 put_filp(nd->intent.open.file);
399 else
400 fput(nd->intent.open.file);
401 }
402
403 static inline struct dentry *
404 do_revalidate(struct dentry *dentry, struct nameidata *nd)
405 {
406 int status = dentry->d_op->d_revalidate(dentry, nd);
407 if (unlikely(status <= 0)) {
408 /*
409 * The dentry failed validation.
410 * If d_revalidate returned 0 attempt to invalidate
411 * the dentry otherwise d_revalidate is asking us
412 * to return a fail status.
413 */
414 if (!status) {
415 if (!d_invalidate(dentry)) {
416 dput(dentry);
417 dentry = NULL;
418 }
419 } else {
420 dput(dentry);
421 dentry = ERR_PTR(status);
422 }
423 }
424 return dentry;
425 }
426
427 /*
428 * Internal lookup() using the new generic dcache.
429 * SMP-safe
430 */
431 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
432 {
433 struct dentry * dentry = __d_lookup(parent, name);
434
435 /* lockess __d_lookup may fail due to concurrent d_move()
436 * in some unrelated directory, so try with d_lookup
437 */
438 if (!dentry)
439 dentry = d_lookup(parent, name);
440
441 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
442 dentry = do_revalidate(dentry, nd);
443
444 return dentry;
445 }
446
447 /*
448 * Short-cut version of permission(), for calling by
449 * path_walk(), when dcache lock is held. Combines parts
450 * of permission() and generic_permission(), and tests ONLY for
451 * MAY_EXEC permission.
452 *
453 * If appropriate, check DAC only. If not appropriate, or
454 * short-cut DAC fails, then call permission() to do more
455 * complete permission check.
456 */
457 static int exec_permission_lite(struct inode *inode,
458 struct nameidata *nd)
459 {
460 umode_t mode = inode->i_mode;
461
462 if (inode->i_op && inode->i_op->permission)
463 return -EAGAIN;
464
465 if (current->fsuid == inode->i_uid)
466 mode >>= 6;
467 else if (in_group_p(inode->i_gid))
468 mode >>= 3;
469
470 if (mode & MAY_EXEC)
471 goto ok;
472
473 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
474 goto ok;
475
476 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
477 goto ok;
478
479 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
480 goto ok;
481
482 return -EACCES;
483 ok:
484 return security_inode_permission(inode, MAY_EXEC, nd);
485 }
486
487 /*
488 * This is called when everything else fails, and we actually have
489 * to go to the low-level filesystem to find out what we should do..
490 *
491 * We get the directory semaphore, and after getting that we also
492 * make sure that nobody added the entry to the dcache in the meantime..
493 * SMP-safe
494 */
495 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
496 {
497 struct dentry * result;
498 struct inode *dir = parent->d_inode;
499
500 mutex_lock(&dir->i_mutex);
501 /*
502 * First re-do the cached lookup just in case it was created
503 * while we waited for the directory semaphore..
504 *
505 * FIXME! This could use version numbering or similar to
506 * avoid unnecessary cache lookups.
507 *
508 * The "dcache_lock" is purely to protect the RCU list walker
509 * from concurrent renames at this point (we mustn't get false
510 * negatives from the RCU list walk here, unlike the optimistic
511 * fast walk).
512 *
513 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
514 */
515 result = d_lookup(parent, name);
516 if (!result) {
517 struct dentry * dentry = d_alloc(parent, name);
518 result = ERR_PTR(-ENOMEM);
519 if (dentry) {
520 result = dir->i_op->lookup(dir, dentry, nd);
521 if (result)
522 dput(dentry);
523 else
524 result = dentry;
525 }
526 mutex_unlock(&dir->i_mutex);
527 return result;
528 }
529
530 /*
531 * Uhhuh! Nasty case: the cache was re-populated while
532 * we waited on the semaphore. Need to revalidate.
533 */
534 mutex_unlock(&dir->i_mutex);
535 if (result->d_op && result->d_op->d_revalidate) {
536 result = do_revalidate(result, nd);
537 if (!result)
538 result = ERR_PTR(-ENOENT);
539 }
540 return result;
541 }
542
543 static int __emul_lookup_dentry(const char *, struct nameidata *);
544
545 /* SMP-safe */
546 static __always_inline int
547 walk_init_root(const char *name, struct nameidata *nd)
548 {
549 struct fs_struct *fs = current->fs;
550
551 read_lock(&fs->lock);
552 if (fs->altroot.dentry && !(nd->flags & LOOKUP_NOALT)) {
553 nd->path = fs->altroot;
554 path_get(&fs->altroot);
555 read_unlock(&fs->lock);
556 if (__emul_lookup_dentry(name,nd))
557 return 0;
558 read_lock(&fs->lock);
559 }
560 nd->path = fs->root;
561 path_get(&fs->root);
562 read_unlock(&fs->lock);
563 return 1;
564 }
565
566 /*
567 * Wrapper to retry pathname resolution whenever the underlying
568 * file system returns an ESTALE.
569 *
570 * Retry the whole path once, forcing real lookup requests
571 * instead of relying on the dcache.
572 */
573 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
574 {
575 struct path save = nd->path;
576 int result;
577
578 /* make sure the stuff we saved doesn't go away */
579 dget(save.dentry);
580 mntget(save.mnt);
581
582 result = __link_path_walk(name, nd);
583 if (result == -ESTALE) {
584 /* nd->path had been dropped */
585 nd->path = save;
586 dget(nd->path.dentry);
587 mntget(nd->path.mnt);
588 nd->flags |= LOOKUP_REVAL;
589 result = __link_path_walk(name, nd);
590 }
591
592 path_put(&save);
593
594 return result;
595 }
596
597 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
598 {
599 int res = 0;
600 char *name;
601 if (IS_ERR(link))
602 goto fail;
603
604 if (*link == '/') {
605 path_put(&nd->path);
606 if (!walk_init_root(link, nd))
607 /* weird __emul_prefix() stuff did it */
608 goto out;
609 }
610 res = link_path_walk(link, nd);
611 out:
612 if (nd->depth || res || nd->last_type!=LAST_NORM)
613 return res;
614 /*
615 * If it is an iterative symlinks resolution in open_namei() we
616 * have to copy the last component. And all that crap because of
617 * bloody create() on broken symlinks. Furrfu...
618 */
619 name = __getname();
620 if (unlikely(!name)) {
621 path_put(&nd->path);
622 return -ENOMEM;
623 }
624 strcpy(name, nd->last.name);
625 nd->last.name = name;
626 return 0;
627 fail:
628 path_put(&nd->path);
629 return PTR_ERR(link);
630 }
631
632 static void path_put_conditional(struct path *path, struct nameidata *nd)
633 {
634 dput(path->dentry);
635 if (path->mnt != nd->path.mnt)
636 mntput(path->mnt);
637 }
638
639 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
640 {
641 dput(nd->path.dentry);
642 if (nd->path.mnt != path->mnt)
643 mntput(nd->path.mnt);
644 nd->path.mnt = path->mnt;
645 nd->path.dentry = path->dentry;
646 }
647
648 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
649 {
650 int error;
651 void *cookie;
652 struct dentry *dentry = path->dentry;
653
654 touch_atime(path->mnt, dentry);
655 nd_set_link(nd, NULL);
656
657 if (path->mnt != nd->path.mnt) {
658 path_to_nameidata(path, nd);
659 dget(dentry);
660 }
661 mntget(path->mnt);
662 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
663 error = PTR_ERR(cookie);
664 if (!IS_ERR(cookie)) {
665 char *s = nd_get_link(nd);
666 error = 0;
667 if (s)
668 error = __vfs_follow_link(nd, s);
669 if (dentry->d_inode->i_op->put_link)
670 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
671 }
672 path_put(path);
673
674 return error;
675 }
676
677 /*
678 * This limits recursive symlink follows to 8, while
679 * limiting consecutive symlinks to 40.
680 *
681 * Without that kind of total limit, nasty chains of consecutive
682 * symlinks can cause almost arbitrarily long lookups.
683 */
684 static inline int do_follow_link(struct path *path, struct nameidata *nd)
685 {
686 int err = -ELOOP;
687 if (current->link_count >= MAX_NESTED_LINKS)
688 goto loop;
689 if (current->total_link_count >= 40)
690 goto loop;
691 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
692 cond_resched();
693 err = security_inode_follow_link(path->dentry, nd);
694 if (err)
695 goto loop;
696 current->link_count++;
697 current->total_link_count++;
698 nd->depth++;
699 err = __do_follow_link(path, nd);
700 current->link_count--;
701 nd->depth--;
702 return err;
703 loop:
704 path_put_conditional(path, nd);
705 path_put(&nd->path);
706 return err;
707 }
708
709 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
710 {
711 struct vfsmount *parent;
712 struct dentry *mountpoint;
713 spin_lock(&vfsmount_lock);
714 parent=(*mnt)->mnt_parent;
715 if (parent == *mnt) {
716 spin_unlock(&vfsmount_lock);
717 return 0;
718 }
719 mntget(parent);
720 mountpoint=dget((*mnt)->mnt_mountpoint);
721 spin_unlock(&vfsmount_lock);
722 dput(*dentry);
723 *dentry = mountpoint;
724 mntput(*mnt);
725 *mnt = parent;
726 return 1;
727 }
728
729 /* no need for dcache_lock, as serialization is taken care in
730 * namespace.c
731 */
732 static int __follow_mount(struct path *path)
733 {
734 int res = 0;
735 while (d_mountpoint(path->dentry)) {
736 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
737 if (!mounted)
738 break;
739 dput(path->dentry);
740 if (res)
741 mntput(path->mnt);
742 path->mnt = mounted;
743 path->dentry = dget(mounted->mnt_root);
744 res = 1;
745 }
746 return res;
747 }
748
749 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
750 {
751 while (d_mountpoint(*dentry)) {
752 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
753 if (!mounted)
754 break;
755 dput(*dentry);
756 mntput(*mnt);
757 *mnt = mounted;
758 *dentry = dget(mounted->mnt_root);
759 }
760 }
761
762 /* no need for dcache_lock, as serialization is taken care in
763 * namespace.c
764 */
765 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
766 {
767 struct vfsmount *mounted;
768
769 mounted = lookup_mnt(*mnt, *dentry);
770 if (mounted) {
771 dput(*dentry);
772 mntput(*mnt);
773 *mnt = mounted;
774 *dentry = dget(mounted->mnt_root);
775 return 1;
776 }
777 return 0;
778 }
779
780 static __always_inline void follow_dotdot(struct nameidata *nd)
781 {
782 struct fs_struct *fs = current->fs;
783
784 while(1) {
785 struct vfsmount *parent;
786 struct dentry *old = nd->path.dentry;
787
788 read_lock(&fs->lock);
789 if (nd->path.dentry == fs->root.dentry &&
790 nd->path.mnt == fs->root.mnt) {
791 read_unlock(&fs->lock);
792 break;
793 }
794 read_unlock(&fs->lock);
795 spin_lock(&dcache_lock);
796 if (nd->path.dentry != nd->path.mnt->mnt_root) {
797 nd->path.dentry = dget(nd->path.dentry->d_parent);
798 spin_unlock(&dcache_lock);
799 dput(old);
800 break;
801 }
802 spin_unlock(&dcache_lock);
803 spin_lock(&vfsmount_lock);
804 parent = nd->path.mnt->mnt_parent;
805 if (parent == nd->path.mnt) {
806 spin_unlock(&vfsmount_lock);
807 break;
808 }
809 mntget(parent);
810 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
811 spin_unlock(&vfsmount_lock);
812 dput(old);
813 mntput(nd->path.mnt);
814 nd->path.mnt = parent;
815 }
816 follow_mount(&nd->path.mnt, &nd->path.dentry);
817 }
818
819 /*
820 * It's more convoluted than I'd like it to be, but... it's still fairly
821 * small and for now I'd prefer to have fast path as straight as possible.
822 * It _is_ time-critical.
823 */
824 static int do_lookup(struct nameidata *nd, struct qstr *name,
825 struct path *path)
826 {
827 struct vfsmount *mnt = nd->path.mnt;
828 struct dentry *dentry = __d_lookup(nd->path.dentry, name);
829
830 if (!dentry)
831 goto need_lookup;
832 if (dentry->d_op && dentry->d_op->d_revalidate)
833 goto need_revalidate;
834 done:
835 path->mnt = mnt;
836 path->dentry = dentry;
837 __follow_mount(path);
838 return 0;
839
840 need_lookup:
841 dentry = real_lookup(nd->path.dentry, name, nd);
842 if (IS_ERR(dentry))
843 goto fail;
844 goto done;
845
846 need_revalidate:
847 dentry = do_revalidate(dentry, nd);
848 if (!dentry)
849 goto need_lookup;
850 if (IS_ERR(dentry))
851 goto fail;
852 goto done;
853
854 fail:
855 return PTR_ERR(dentry);
856 }
857
858 /*
859 * Name resolution.
860 * This is the basic name resolution function, turning a pathname into
861 * the final dentry. We expect 'base' to be positive and a directory.
862 *
863 * Returns 0 and nd will have valid dentry and mnt on success.
864 * Returns error and drops reference to input namei data on failure.
865 */
866 static int __link_path_walk(const char *name, struct nameidata *nd)
867 {
868 struct path next;
869 struct inode *inode;
870 int err;
871 unsigned int lookup_flags = nd->flags;
872
873 while (*name=='/')
874 name++;
875 if (!*name)
876 goto return_reval;
877
878 inode = nd->path.dentry->d_inode;
879 if (nd->depth)
880 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
881
882 /* At this point we know we have a real path component. */
883 for(;;) {
884 unsigned long hash;
885 struct qstr this;
886 unsigned int c;
887
888 nd->flags |= LOOKUP_CONTINUE;
889 err = exec_permission_lite(inode, nd);
890 if (err == -EAGAIN)
891 err = vfs_permission(nd, MAY_EXEC);
892 if (err)
893 break;
894
895 this.name = name;
896 c = *(const unsigned char *)name;
897
898 hash = init_name_hash();
899 do {
900 name++;
901 hash = partial_name_hash(c, hash);
902 c = *(const unsigned char *)name;
903 } while (c && (c != '/'));
904 this.len = name - (const char *) this.name;
905 this.hash = end_name_hash(hash);
906
907 /* remove trailing slashes? */
908 if (!c)
909 goto last_component;
910 while (*++name == '/');
911 if (!*name)
912 goto last_with_slashes;
913
914 /*
915 * "." and ".." are special - ".." especially so because it has
916 * to be able to know about the current root directory and
917 * parent relationships.
918 */
919 if (this.name[0] == '.') switch (this.len) {
920 default:
921 break;
922 case 2:
923 if (this.name[1] != '.')
924 break;
925 follow_dotdot(nd);
926 inode = nd->path.dentry->d_inode;
927 /* fallthrough */
928 case 1:
929 continue;
930 }
931 /*
932 * See if the low-level filesystem might want
933 * to use its own hash..
934 */
935 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
936 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
937 &this);
938 if (err < 0)
939 break;
940 }
941 /* This does the actual lookups.. */
942 err = do_lookup(nd, &this, &next);
943 if (err)
944 break;
945
946 err = -ENOENT;
947 inode = next.dentry->d_inode;
948 if (!inode)
949 goto out_dput;
950 err = -ENOTDIR;
951 if (!inode->i_op)
952 goto out_dput;
953
954 if (inode->i_op->follow_link) {
955 err = do_follow_link(&next, nd);
956 if (err)
957 goto return_err;
958 err = -ENOENT;
959 inode = nd->path.dentry->d_inode;
960 if (!inode)
961 break;
962 err = -ENOTDIR;
963 if (!inode->i_op)
964 break;
965 } else
966 path_to_nameidata(&next, nd);
967 err = -ENOTDIR;
968 if (!inode->i_op->lookup)
969 break;
970 continue;
971 /* here ends the main loop */
972
973 last_with_slashes:
974 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
975 last_component:
976 /* Clear LOOKUP_CONTINUE iff it was previously unset */
977 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
978 if (lookup_flags & LOOKUP_PARENT)
979 goto lookup_parent;
980 if (this.name[0] == '.') switch (this.len) {
981 default:
982 break;
983 case 2:
984 if (this.name[1] != '.')
985 break;
986 follow_dotdot(nd);
987 inode = nd->path.dentry->d_inode;
988 /* fallthrough */
989 case 1:
990 goto return_reval;
991 }
992 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
993 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
994 &this);
995 if (err < 0)
996 break;
997 }
998 err = do_lookup(nd, &this, &next);
999 if (err)
1000 break;
1001 inode = next.dentry->d_inode;
1002 if ((lookup_flags & LOOKUP_FOLLOW)
1003 && inode && inode->i_op && inode->i_op->follow_link) {
1004 err = do_follow_link(&next, nd);
1005 if (err)
1006 goto return_err;
1007 inode = nd->path.dentry->d_inode;
1008 } else
1009 path_to_nameidata(&next, nd);
1010 err = -ENOENT;
1011 if (!inode)
1012 break;
1013 if (lookup_flags & LOOKUP_DIRECTORY) {
1014 err = -ENOTDIR;
1015 if (!inode->i_op || !inode->i_op->lookup)
1016 break;
1017 }
1018 goto return_base;
1019 lookup_parent:
1020 nd->last = this;
1021 nd->last_type = LAST_NORM;
1022 if (this.name[0] != '.')
1023 goto return_base;
1024 if (this.len == 1)
1025 nd->last_type = LAST_DOT;
1026 else if (this.len == 2 && this.name[1] == '.')
1027 nd->last_type = LAST_DOTDOT;
1028 else
1029 goto return_base;
1030 return_reval:
1031 /*
1032 * We bypassed the ordinary revalidation routines.
1033 * We may need to check the cached dentry for staleness.
1034 */
1035 if (nd->path.dentry && nd->path.dentry->d_sb &&
1036 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
1037 err = -ESTALE;
1038 /* Note: we do not d_invalidate() */
1039 if (!nd->path.dentry->d_op->d_revalidate(
1040 nd->path.dentry, nd))
1041 break;
1042 }
1043 return_base:
1044 return 0;
1045 out_dput:
1046 path_put_conditional(&next, nd);
1047 break;
1048 }
1049 path_put(&nd->path);
1050 return_err:
1051 return err;
1052 }
1053
1054 static int path_walk(const char *name, struct nameidata *nd)
1055 {
1056 current->total_link_count = 0;
1057 return link_path_walk(name, nd);
1058 }
1059
1060 /*
1061 * SMP-safe: Returns 1 and nd will have valid dentry and mnt, if
1062 * everything is done. Returns 0 and drops input nd, if lookup failed;
1063 */
1064 static int __emul_lookup_dentry(const char *name, struct nameidata *nd)
1065 {
1066 if (path_walk(name, nd))
1067 return 0; /* something went wrong... */
1068
1069 if (!nd->path.dentry->d_inode ||
1070 S_ISDIR(nd->path.dentry->d_inode->i_mode)) {
1071 struct path old_path = nd->path;
1072 struct qstr last = nd->last;
1073 int last_type = nd->last_type;
1074 struct fs_struct *fs = current->fs;
1075
1076 /*
1077 * NAME was not found in alternate root or it's a directory.
1078 * Try to find it in the normal root:
1079 */
1080 nd->last_type = LAST_ROOT;
1081 read_lock(&fs->lock);
1082 nd->path = fs->root;
1083 path_get(&fs->root);
1084 read_unlock(&fs->lock);
1085 if (path_walk(name, nd) == 0) {
1086 if (nd->path.dentry->d_inode) {
1087 path_put(&old_path);
1088 return 1;
1089 }
1090 path_put(&nd->path);
1091 }
1092 nd->path = old_path;
1093 nd->last = last;
1094 nd->last_type = last_type;
1095 }
1096 return 1;
1097 }
1098
1099 void set_fs_altroot(void)
1100 {
1101 char *emul = __emul_prefix();
1102 struct nameidata nd;
1103 struct path path = {}, old_path;
1104 int err;
1105 struct fs_struct *fs = current->fs;
1106
1107 if (!emul)
1108 goto set_it;
1109 err = path_lookup(emul, LOOKUP_FOLLOW|LOOKUP_DIRECTORY|LOOKUP_NOALT, &nd);
1110 if (!err)
1111 path = nd.path;
1112 set_it:
1113 write_lock(&fs->lock);
1114 old_path = fs->altroot;
1115 fs->altroot = path;
1116 write_unlock(&fs->lock);
1117 if (old_path.dentry)
1118 path_put(&old_path);
1119 }
1120
1121 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1122 static int do_path_lookup(int dfd, const char *name,
1123 unsigned int flags, struct nameidata *nd)
1124 {
1125 int retval = 0;
1126 int fput_needed;
1127 struct file *file;
1128 struct fs_struct *fs = current->fs;
1129
1130 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1131 nd->flags = flags;
1132 nd->depth = 0;
1133
1134 if (*name=='/') {
1135 read_lock(&fs->lock);
1136 if (fs->altroot.dentry && !(nd->flags & LOOKUP_NOALT)) {
1137 nd->path = fs->altroot;
1138 path_get(&fs->altroot);
1139 read_unlock(&fs->lock);
1140 if (__emul_lookup_dentry(name,nd))
1141 goto out; /* found in altroot */
1142 read_lock(&fs->lock);
1143 }
1144 nd->path = fs->root;
1145 path_get(&fs->root);
1146 read_unlock(&fs->lock);
1147 } else if (dfd == AT_FDCWD) {
1148 read_lock(&fs->lock);
1149 nd->path = fs->pwd;
1150 path_get(&fs->pwd);
1151 read_unlock(&fs->lock);
1152 } else {
1153 struct dentry *dentry;
1154
1155 file = fget_light(dfd, &fput_needed);
1156 retval = -EBADF;
1157 if (!file)
1158 goto out_fail;
1159
1160 dentry = file->f_path.dentry;
1161
1162 retval = -ENOTDIR;
1163 if (!S_ISDIR(dentry->d_inode->i_mode))
1164 goto fput_fail;
1165
1166 retval = file_permission(file, MAY_EXEC);
1167 if (retval)
1168 goto fput_fail;
1169
1170 nd->path = file->f_path;
1171 path_get(&file->f_path);
1172
1173 fput_light(file, fput_needed);
1174 }
1175
1176 retval = path_walk(name, nd);
1177 out:
1178 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1179 nd->path.dentry->d_inode))
1180 audit_inode(name, nd->path.dentry);
1181 out_fail:
1182 return retval;
1183
1184 fput_fail:
1185 fput_light(file, fput_needed);
1186 goto out_fail;
1187 }
1188
1189 int path_lookup(const char *name, unsigned int flags,
1190 struct nameidata *nd)
1191 {
1192 return do_path_lookup(AT_FDCWD, name, flags, nd);
1193 }
1194
1195 /**
1196 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1197 * @dentry: pointer to dentry of the base directory
1198 * @mnt: pointer to vfs mount of the base directory
1199 * @name: pointer to file name
1200 * @flags: lookup flags
1201 * @nd: pointer to nameidata
1202 */
1203 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1204 const char *name, unsigned int flags,
1205 struct nameidata *nd)
1206 {
1207 int retval;
1208
1209 /* same as do_path_lookup */
1210 nd->last_type = LAST_ROOT;
1211 nd->flags = flags;
1212 nd->depth = 0;
1213
1214 nd->path.mnt = mntget(mnt);
1215 nd->path.dentry = dget(dentry);
1216
1217 retval = path_walk(name, nd);
1218 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1219 nd->path.dentry->d_inode))
1220 audit_inode(name, nd->path.dentry);
1221
1222 return retval;
1223
1224 }
1225
1226 static int __path_lookup_intent_open(int dfd, const char *name,
1227 unsigned int lookup_flags, struct nameidata *nd,
1228 int open_flags, int create_mode)
1229 {
1230 struct file *filp = get_empty_filp();
1231 int err;
1232
1233 if (filp == NULL)
1234 return -ENFILE;
1235 nd->intent.open.file = filp;
1236 nd->intent.open.flags = open_flags;
1237 nd->intent.open.create_mode = create_mode;
1238 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1239 if (IS_ERR(nd->intent.open.file)) {
1240 if (err == 0) {
1241 err = PTR_ERR(nd->intent.open.file);
1242 path_put(&nd->path);
1243 }
1244 } else if (err != 0)
1245 release_open_intent(nd);
1246 return err;
1247 }
1248
1249 /**
1250 * path_lookup_open - lookup a file path with open intent
1251 * @dfd: the directory to use as base, or AT_FDCWD
1252 * @name: pointer to file name
1253 * @lookup_flags: lookup intent flags
1254 * @nd: pointer to nameidata
1255 * @open_flags: open intent flags
1256 */
1257 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1258 struct nameidata *nd, int open_flags)
1259 {
1260 return __path_lookup_intent_open(dfd, name, lookup_flags, nd,
1261 open_flags, 0);
1262 }
1263
1264 /**
1265 * path_lookup_create - lookup a file path with open + create intent
1266 * @dfd: the directory to use as base, or AT_FDCWD
1267 * @name: pointer to file name
1268 * @lookup_flags: lookup intent flags
1269 * @nd: pointer to nameidata
1270 * @open_flags: open intent flags
1271 * @create_mode: create intent flags
1272 */
1273 static int path_lookup_create(int dfd, const char *name,
1274 unsigned int lookup_flags, struct nameidata *nd,
1275 int open_flags, int create_mode)
1276 {
1277 return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE,
1278 nd, open_flags, create_mode);
1279 }
1280
1281 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags,
1282 struct nameidata *nd, int open_flags)
1283 {
1284 char *tmp = getname(name);
1285 int err = PTR_ERR(tmp);
1286
1287 if (!IS_ERR(tmp)) {
1288 err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0);
1289 putname(tmp);
1290 }
1291 return err;
1292 }
1293
1294 static struct dentry *__lookup_hash(struct qstr *name,
1295 struct dentry *base, struct nameidata *nd)
1296 {
1297 struct dentry *dentry;
1298 struct inode *inode;
1299 int err;
1300
1301 inode = base->d_inode;
1302
1303 /*
1304 * See if the low-level filesystem might want
1305 * to use its own hash..
1306 */
1307 if (base->d_op && base->d_op->d_hash) {
1308 err = base->d_op->d_hash(base, name);
1309 dentry = ERR_PTR(err);
1310 if (err < 0)
1311 goto out;
1312 }
1313
1314 dentry = cached_lookup(base, name, nd);
1315 if (!dentry) {
1316 struct dentry *new = d_alloc(base, name);
1317 dentry = ERR_PTR(-ENOMEM);
1318 if (!new)
1319 goto out;
1320 dentry = inode->i_op->lookup(inode, new, nd);
1321 if (!dentry)
1322 dentry = new;
1323 else
1324 dput(new);
1325 }
1326 out:
1327 return dentry;
1328 }
1329
1330 /*
1331 * Restricted form of lookup. Doesn't follow links, single-component only,
1332 * needs parent already locked. Doesn't follow mounts.
1333 * SMP-safe.
1334 */
1335 static struct dentry *lookup_hash(struct nameidata *nd)
1336 {
1337 int err;
1338
1339 err = permission(nd->path.dentry->d_inode, MAY_EXEC, nd);
1340 if (err)
1341 return ERR_PTR(err);
1342 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1343 }
1344
1345 static int __lookup_one_len(const char *name, struct qstr *this,
1346 struct dentry *base, int len)
1347 {
1348 unsigned long hash;
1349 unsigned int c;
1350
1351 this->name = name;
1352 this->len = len;
1353 if (!len)
1354 return -EACCES;
1355
1356 hash = init_name_hash();
1357 while (len--) {
1358 c = *(const unsigned char *)name++;
1359 if (c == '/' || c == '\0')
1360 return -EACCES;
1361 hash = partial_name_hash(c, hash);
1362 }
1363 this->hash = end_name_hash(hash);
1364 return 0;
1365 }
1366
1367 /**
1368 * lookup_one_len - filesystem helper to lookup single pathname component
1369 * @name: pathname component to lookup
1370 * @base: base directory to lookup from
1371 * @len: maximum length @len should be interpreted to
1372 *
1373 * Note that this routine is purely a helper for filesystem usage and should
1374 * not be called by generic code. Also note that by using this function the
1375 * nameidata argument is passed to the filesystem methods and a filesystem
1376 * using this helper needs to be prepared for that.
1377 */
1378 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1379 {
1380 int err;
1381 struct qstr this;
1382
1383 err = __lookup_one_len(name, &this, base, len);
1384 if (err)
1385 return ERR_PTR(err);
1386
1387 err = permission(base->d_inode, MAY_EXEC, NULL);
1388 if (err)
1389 return ERR_PTR(err);
1390 return __lookup_hash(&this, base, NULL);
1391 }
1392
1393 /**
1394 * lookup_one_noperm - bad hack for sysfs
1395 * @name: pathname component to lookup
1396 * @base: base directory to lookup from
1397 *
1398 * This is a variant of lookup_one_len that doesn't perform any permission
1399 * checks. It's a horrible hack to work around the braindead sysfs
1400 * architecture and should not be used anywhere else.
1401 *
1402 * DON'T USE THIS FUNCTION EVER, thanks.
1403 */
1404 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1405 {
1406 int err;
1407 struct qstr this;
1408
1409 err = __lookup_one_len(name, &this, base, strlen(name));
1410 if (err)
1411 return ERR_PTR(err);
1412 return __lookup_hash(&this, base, NULL);
1413 }
1414
1415 int __user_walk_fd(int dfd, const char __user *name, unsigned flags,
1416 struct nameidata *nd)
1417 {
1418 char *tmp = getname(name);
1419 int err = PTR_ERR(tmp);
1420
1421 if (!IS_ERR(tmp)) {
1422 err = do_path_lookup(dfd, tmp, flags, nd);
1423 putname(tmp);
1424 }
1425 return err;
1426 }
1427
1428 int __user_walk(const char __user *name, unsigned flags, struct nameidata *nd)
1429 {
1430 return __user_walk_fd(AT_FDCWD, name, flags, nd);
1431 }
1432
1433 /*
1434 * It's inline, so penalty for filesystems that don't use sticky bit is
1435 * minimal.
1436 */
1437 static inline int check_sticky(struct inode *dir, struct inode *inode)
1438 {
1439 if (!(dir->i_mode & S_ISVTX))
1440 return 0;
1441 if (inode->i_uid == current->fsuid)
1442 return 0;
1443 if (dir->i_uid == current->fsuid)
1444 return 0;
1445 return !capable(CAP_FOWNER);
1446 }
1447
1448 /*
1449 * Check whether we can remove a link victim from directory dir, check
1450 * whether the type of victim is right.
1451 * 1. We can't do it if dir is read-only (done in permission())
1452 * 2. We should have write and exec permissions on dir
1453 * 3. We can't remove anything from append-only dir
1454 * 4. We can't do anything with immutable dir (done in permission())
1455 * 5. If the sticky bit on dir is set we should either
1456 * a. be owner of dir, or
1457 * b. be owner of victim, or
1458 * c. have CAP_FOWNER capability
1459 * 6. If the victim is append-only or immutable we can't do antyhing with
1460 * links pointing to it.
1461 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1462 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1463 * 9. We can't remove a root or mountpoint.
1464 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1465 * nfs_async_unlink().
1466 */
1467 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1468 {
1469 int error;
1470
1471 if (!victim->d_inode)
1472 return -ENOENT;
1473
1474 BUG_ON(victim->d_parent->d_inode != dir);
1475 audit_inode_child(victim->d_name.name, victim, dir);
1476
1477 error = permission(dir,MAY_WRITE | MAY_EXEC, NULL);
1478 if (error)
1479 return error;
1480 if (IS_APPEND(dir))
1481 return -EPERM;
1482 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1483 IS_IMMUTABLE(victim->d_inode))
1484 return -EPERM;
1485 if (isdir) {
1486 if (!S_ISDIR(victim->d_inode->i_mode))
1487 return -ENOTDIR;
1488 if (IS_ROOT(victim))
1489 return -EBUSY;
1490 } else if (S_ISDIR(victim->d_inode->i_mode))
1491 return -EISDIR;
1492 if (IS_DEADDIR(dir))
1493 return -ENOENT;
1494 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1495 return -EBUSY;
1496 return 0;
1497 }
1498
1499 /* Check whether we can create an object with dentry child in directory
1500 * dir.
1501 * 1. We can't do it if child already exists (open has special treatment for
1502 * this case, but since we are inlined it's OK)
1503 * 2. We can't do it if dir is read-only (done in permission())
1504 * 3. We should have write and exec permissions on dir
1505 * 4. We can't do it if dir is immutable (done in permission())
1506 */
1507 static inline int may_create(struct inode *dir, struct dentry *child,
1508 struct nameidata *nd)
1509 {
1510 if (child->d_inode)
1511 return -EEXIST;
1512 if (IS_DEADDIR(dir))
1513 return -ENOENT;
1514 return permission(dir,MAY_WRITE | MAY_EXEC, nd);
1515 }
1516
1517 /*
1518 * O_DIRECTORY translates into forcing a directory lookup.
1519 */
1520 static inline int lookup_flags(unsigned int f)
1521 {
1522 unsigned long retval = LOOKUP_FOLLOW;
1523
1524 if (f & O_NOFOLLOW)
1525 retval &= ~LOOKUP_FOLLOW;
1526
1527 if (f & O_DIRECTORY)
1528 retval |= LOOKUP_DIRECTORY;
1529
1530 return retval;
1531 }
1532
1533 /*
1534 * p1 and p2 should be directories on the same fs.
1535 */
1536 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1537 {
1538 struct dentry *p;
1539
1540 if (p1 == p2) {
1541 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1542 return NULL;
1543 }
1544
1545 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1546
1547 for (p = p1; p->d_parent != p; p = p->d_parent) {
1548 if (p->d_parent == p2) {
1549 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1550 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1551 return p;
1552 }
1553 }
1554
1555 for (p = p2; p->d_parent != p; p = p->d_parent) {
1556 if (p->d_parent == p1) {
1557 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1558 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1559 return p;
1560 }
1561 }
1562
1563 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1564 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1565 return NULL;
1566 }
1567
1568 void unlock_rename(struct dentry *p1, struct dentry *p2)
1569 {
1570 mutex_unlock(&p1->d_inode->i_mutex);
1571 if (p1 != p2) {
1572 mutex_unlock(&p2->d_inode->i_mutex);
1573 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1574 }
1575 }
1576
1577 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1578 struct nameidata *nd)
1579 {
1580 int error = may_create(dir, dentry, nd);
1581
1582 if (error)
1583 return error;
1584
1585 if (!dir->i_op || !dir->i_op->create)
1586 return -EACCES; /* shouldn't it be ENOSYS? */
1587 mode &= S_IALLUGO;
1588 mode |= S_IFREG;
1589 error = security_inode_create(dir, dentry, mode);
1590 if (error)
1591 return error;
1592 DQUOT_INIT(dir);
1593 error = dir->i_op->create(dir, dentry, mode, nd);
1594 if (!error)
1595 fsnotify_create(dir, dentry);
1596 return error;
1597 }
1598
1599 int may_open(struct nameidata *nd, int acc_mode, int flag)
1600 {
1601 struct dentry *dentry = nd->path.dentry;
1602 struct inode *inode = dentry->d_inode;
1603 int error;
1604
1605 if (!inode)
1606 return -ENOENT;
1607
1608 if (S_ISLNK(inode->i_mode))
1609 return -ELOOP;
1610
1611 if (S_ISDIR(inode->i_mode) && (acc_mode & MAY_WRITE))
1612 return -EISDIR;
1613
1614 /*
1615 * FIFO's, sockets and device files are special: they don't
1616 * actually live on the filesystem itself, and as such you
1617 * can write to them even if the filesystem is read-only.
1618 */
1619 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1620 flag &= ~O_TRUNC;
1621 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1622 if (nd->path.mnt->mnt_flags & MNT_NODEV)
1623 return -EACCES;
1624
1625 flag &= ~O_TRUNC;
1626 }
1627
1628 error = vfs_permission(nd, acc_mode);
1629 if (error)
1630 return error;
1631 /*
1632 * An append-only file must be opened in append mode for writing.
1633 */
1634 if (IS_APPEND(inode)) {
1635 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1636 return -EPERM;
1637 if (flag & O_TRUNC)
1638 return -EPERM;
1639 }
1640
1641 /* O_NOATIME can only be set by the owner or superuser */
1642 if (flag & O_NOATIME)
1643 if (!is_owner_or_cap(inode))
1644 return -EPERM;
1645
1646 /*
1647 * Ensure there are no outstanding leases on the file.
1648 */
1649 error = break_lease(inode, flag);
1650 if (error)
1651 return error;
1652
1653 if (flag & O_TRUNC) {
1654 error = get_write_access(inode);
1655 if (error)
1656 return error;
1657
1658 /*
1659 * Refuse to truncate files with mandatory locks held on them.
1660 */
1661 error = locks_verify_locked(inode);
1662 if (!error) {
1663 DQUOT_INIT(inode);
1664
1665 error = do_truncate(dentry, 0,
1666 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1667 NULL);
1668 }
1669 put_write_access(inode);
1670 if (error)
1671 return error;
1672 } else
1673 if (flag & FMODE_WRITE)
1674 DQUOT_INIT(inode);
1675
1676 return 0;
1677 }
1678
1679 /*
1680 * Be careful about ever adding any more callers of this
1681 * function. Its flags must be in the namei format, not
1682 * what get passed to sys_open().
1683 */
1684 static int __open_namei_create(struct nameidata *nd, struct path *path,
1685 int flag, int mode)
1686 {
1687 int error;
1688 struct dentry *dir = nd->path.dentry;
1689
1690 if (!IS_POSIXACL(dir->d_inode))
1691 mode &= ~current->fs->umask;
1692 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1693 mutex_unlock(&dir->d_inode->i_mutex);
1694 dput(nd->path.dentry);
1695 nd->path.dentry = path->dentry;
1696 if (error)
1697 return error;
1698 /* Don't check for write permission, don't truncate */
1699 return may_open(nd, 0, flag & ~O_TRUNC);
1700 }
1701
1702 /*
1703 * Note that while the flag value (low two bits) for sys_open means:
1704 * 00 - read-only
1705 * 01 - write-only
1706 * 10 - read-write
1707 * 11 - special
1708 * it is changed into
1709 * 00 - no permissions needed
1710 * 01 - read-permission
1711 * 10 - write-permission
1712 * 11 - read-write
1713 * for the internal routines (ie open_namei()/follow_link() etc)
1714 * This is more logical, and also allows the 00 "no perm needed"
1715 * to be used for symlinks (where the permissions are checked
1716 * later).
1717 *
1718 */
1719 static inline int open_to_namei_flags(int flag)
1720 {
1721 if ((flag+1) & O_ACCMODE)
1722 flag++;
1723 return flag;
1724 }
1725
1726 static int open_will_write_to_fs(int flag, struct inode *inode)
1727 {
1728 /*
1729 * We'll never write to the fs underlying
1730 * a device file.
1731 */
1732 if (special_file(inode->i_mode))
1733 return 0;
1734 return (flag & O_TRUNC);
1735 }
1736
1737 /*
1738 * Note that the low bits of the passed in "open_flag"
1739 * are not the same as in the local variable "flag". See
1740 * open_to_namei_flags() for more details.
1741 */
1742 struct file *do_filp_open(int dfd, const char *pathname,
1743 int open_flag, int mode)
1744 {
1745 struct file *filp;
1746 struct nameidata nd;
1747 int acc_mode, error;
1748 struct path path;
1749 struct dentry *dir;
1750 int count = 0;
1751 int will_write;
1752 int flag = open_to_namei_flags(open_flag);
1753
1754 acc_mode = ACC_MODE(flag);
1755
1756 /* O_TRUNC implies we need access checks for write permissions */
1757 if (flag & O_TRUNC)
1758 acc_mode |= MAY_WRITE;
1759
1760 /* Allow the LSM permission hook to distinguish append
1761 access from general write access. */
1762 if (flag & O_APPEND)
1763 acc_mode |= MAY_APPEND;
1764
1765 /*
1766 * The simplest case - just a plain lookup.
1767 */
1768 if (!(flag & O_CREAT)) {
1769 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1770 &nd, flag);
1771 if (error)
1772 return ERR_PTR(error);
1773 goto ok;
1774 }
1775
1776 /*
1777 * Create - we need to know the parent.
1778 */
1779 error = path_lookup_create(dfd, pathname, LOOKUP_PARENT,
1780 &nd, flag, mode);
1781 if (error)
1782 return ERR_PTR(error);
1783
1784 /*
1785 * We have the parent and last component. First of all, check
1786 * that we are not asked to creat(2) an obvious directory - that
1787 * will not do.
1788 */
1789 error = -EISDIR;
1790 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1791 goto exit;
1792
1793 dir = nd.path.dentry;
1794 nd.flags &= ~LOOKUP_PARENT;
1795 mutex_lock(&dir->d_inode->i_mutex);
1796 path.dentry = lookup_hash(&nd);
1797 path.mnt = nd.path.mnt;
1798
1799 do_last:
1800 error = PTR_ERR(path.dentry);
1801 if (IS_ERR(path.dentry)) {
1802 mutex_unlock(&dir->d_inode->i_mutex);
1803 goto exit;
1804 }
1805
1806 if (IS_ERR(nd.intent.open.file)) {
1807 error = PTR_ERR(nd.intent.open.file);
1808 goto exit_mutex_unlock;
1809 }
1810
1811 /* Negative dentry, just create the file */
1812 if (!path.dentry->d_inode) {
1813 /*
1814 * This write is needed to ensure that a
1815 * ro->rw transition does not occur between
1816 * the time when the file is created and when
1817 * a permanent write count is taken through
1818 * the 'struct file' in nameidata_to_filp().
1819 */
1820 error = mnt_want_write(nd.path.mnt);
1821 if (error)
1822 goto exit_mutex_unlock;
1823 error = __open_namei_create(&nd, &path, flag, mode);
1824 if (error) {
1825 mnt_drop_write(nd.path.mnt);
1826 goto exit;
1827 }
1828 filp = nameidata_to_filp(&nd, open_flag);
1829 mnt_drop_write(nd.path.mnt);
1830 return filp;
1831 }
1832
1833 /*
1834 * It already exists.
1835 */
1836 mutex_unlock(&dir->d_inode->i_mutex);
1837 audit_inode(pathname, path.dentry);
1838
1839 error = -EEXIST;
1840 if (flag & O_EXCL)
1841 goto exit_dput;
1842
1843 if (__follow_mount(&path)) {
1844 error = -ELOOP;
1845 if (flag & O_NOFOLLOW)
1846 goto exit_dput;
1847 }
1848
1849 error = -ENOENT;
1850 if (!path.dentry->d_inode)
1851 goto exit_dput;
1852 if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1853 goto do_link;
1854
1855 path_to_nameidata(&path, &nd);
1856 error = -EISDIR;
1857 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1858 goto exit;
1859 ok:
1860 /*
1861 * Consider:
1862 * 1. may_open() truncates a file
1863 * 2. a rw->ro mount transition occurs
1864 * 3. nameidata_to_filp() fails due to
1865 * the ro mount.
1866 * That would be inconsistent, and should
1867 * be avoided. Taking this mnt write here
1868 * ensures that (2) can not occur.
1869 */
1870 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1871 if (will_write) {
1872 error = mnt_want_write(nd.path.mnt);
1873 if (error)
1874 goto exit;
1875 }
1876 error = may_open(&nd, acc_mode, flag);
1877 if (error) {
1878 if (will_write)
1879 mnt_drop_write(nd.path.mnt);
1880 goto exit;
1881 }
1882 filp = nameidata_to_filp(&nd, open_flag);
1883 /*
1884 * It is now safe to drop the mnt write
1885 * because the filp has had a write taken
1886 * on its behalf.
1887 */
1888 if (will_write)
1889 mnt_drop_write(nd.path.mnt);
1890 return filp;
1891
1892 exit_mutex_unlock:
1893 mutex_unlock(&dir->d_inode->i_mutex);
1894 exit_dput:
1895 path_put_conditional(&path, &nd);
1896 exit:
1897 if (!IS_ERR(nd.intent.open.file))
1898 release_open_intent(&nd);
1899 path_put(&nd.path);
1900 return ERR_PTR(error);
1901
1902 do_link:
1903 error = -ELOOP;
1904 if (flag & O_NOFOLLOW)
1905 goto exit_dput;
1906 /*
1907 * This is subtle. Instead of calling do_follow_link() we do the
1908 * thing by hands. The reason is that this way we have zero link_count
1909 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1910 * After that we have the parent and last component, i.e.
1911 * we are in the same situation as after the first path_walk().
1912 * Well, almost - if the last component is normal we get its copy
1913 * stored in nd->last.name and we will have to putname() it when we
1914 * are done. Procfs-like symlinks just set LAST_BIND.
1915 */
1916 nd.flags |= LOOKUP_PARENT;
1917 error = security_inode_follow_link(path.dentry, &nd);
1918 if (error)
1919 goto exit_dput;
1920 error = __do_follow_link(&path, &nd);
1921 if (error) {
1922 /* Does someone understand code flow here? Or it is only
1923 * me so stupid? Anathema to whoever designed this non-sense
1924 * with "intent.open".
1925 */
1926 release_open_intent(&nd);
1927 return ERR_PTR(error);
1928 }
1929 nd.flags &= ~LOOKUP_PARENT;
1930 if (nd.last_type == LAST_BIND)
1931 goto ok;
1932 error = -EISDIR;
1933 if (nd.last_type != LAST_NORM)
1934 goto exit;
1935 if (nd.last.name[nd.last.len]) {
1936 __putname(nd.last.name);
1937 goto exit;
1938 }
1939 error = -ELOOP;
1940 if (count++==32) {
1941 __putname(nd.last.name);
1942 goto exit;
1943 }
1944 dir = nd.path.dentry;
1945 mutex_lock(&dir->d_inode->i_mutex);
1946 path.dentry = lookup_hash(&nd);
1947 path.mnt = nd.path.mnt;
1948 __putname(nd.last.name);
1949 goto do_last;
1950 }
1951
1952 /**
1953 * filp_open - open file and return file pointer
1954 *
1955 * @filename: path to open
1956 * @flags: open flags as per the open(2) second argument
1957 * @mode: mode for the new file if O_CREAT is set, else ignored
1958 *
1959 * This is the helper to open a file from kernelspace if you really
1960 * have to. But in generally you should not do this, so please move
1961 * along, nothing to see here..
1962 */
1963 struct file *filp_open(const char *filename, int flags, int mode)
1964 {
1965 return do_filp_open(AT_FDCWD, filename, flags, mode);
1966 }
1967 EXPORT_SYMBOL(filp_open);
1968
1969 /**
1970 * lookup_create - lookup a dentry, creating it if it doesn't exist
1971 * @nd: nameidata info
1972 * @is_dir: directory flag
1973 *
1974 * Simple function to lookup and return a dentry and create it
1975 * if it doesn't exist. Is SMP-safe.
1976 *
1977 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1978 */
1979 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1980 {
1981 struct dentry *dentry = ERR_PTR(-EEXIST);
1982
1983 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1984 /*
1985 * Yucky last component or no last component at all?
1986 * (foo/., foo/.., /////)
1987 */
1988 if (nd->last_type != LAST_NORM)
1989 goto fail;
1990 nd->flags &= ~LOOKUP_PARENT;
1991 nd->flags |= LOOKUP_CREATE;
1992 nd->intent.open.flags = O_EXCL;
1993
1994 /*
1995 * Do the final lookup.
1996 */
1997 dentry = lookup_hash(nd);
1998 if (IS_ERR(dentry))
1999 goto fail;
2000
2001 /*
2002 * Special case - lookup gave negative, but... we had foo/bar/
2003 * From the vfs_mknod() POV we just have a negative dentry -
2004 * all is fine. Let's be bastards - you had / on the end, you've
2005 * been asking for (non-existent) directory. -ENOENT for you.
2006 */
2007 if (!is_dir && nd->last.name[nd->last.len] && !dentry->d_inode)
2008 goto enoent;
2009 return dentry;
2010 enoent:
2011 dput(dentry);
2012 dentry = ERR_PTR(-ENOENT);
2013 fail:
2014 return dentry;
2015 }
2016 EXPORT_SYMBOL_GPL(lookup_create);
2017
2018 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2019 {
2020 int error = may_create(dir, dentry, NULL);
2021
2022 if (error)
2023 return error;
2024
2025 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
2026 return -EPERM;
2027
2028 if (!dir->i_op || !dir->i_op->mknod)
2029 return -EPERM;
2030
2031 error = security_inode_mknod(dir, dentry, mode, dev);
2032 if (error)
2033 return error;
2034
2035 DQUOT_INIT(dir);
2036 error = dir->i_op->mknod(dir, dentry, mode, dev);
2037 if (!error)
2038 fsnotify_create(dir, dentry);
2039 return error;
2040 }
2041
2042 static int may_mknod(mode_t mode)
2043 {
2044 switch (mode & S_IFMT) {
2045 case S_IFREG:
2046 case S_IFCHR:
2047 case S_IFBLK:
2048 case S_IFIFO:
2049 case S_IFSOCK:
2050 case 0: /* zero mode translates to S_IFREG */
2051 return 0;
2052 case S_IFDIR:
2053 return -EPERM;
2054 default:
2055 return -EINVAL;
2056 }
2057 }
2058
2059 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
2060 unsigned dev)
2061 {
2062 int error = 0;
2063 char * tmp;
2064 struct dentry * dentry;
2065 struct nameidata nd;
2066
2067 if (S_ISDIR(mode))
2068 return -EPERM;
2069 tmp = getname(filename);
2070 if (IS_ERR(tmp))
2071 return PTR_ERR(tmp);
2072
2073 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
2074 if (error)
2075 goto out;
2076 dentry = lookup_create(&nd, 0);
2077 if (IS_ERR(dentry)) {
2078 error = PTR_ERR(dentry);
2079 goto out_unlock;
2080 }
2081 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2082 mode &= ~current->fs->umask;
2083 error = may_mknod(mode);
2084 if (error)
2085 goto out_dput;
2086 error = mnt_want_write(nd.path.mnt);
2087 if (error)
2088 goto out_dput;
2089 switch (mode & S_IFMT) {
2090 case 0: case S_IFREG:
2091 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2092 break;
2093 case S_IFCHR: case S_IFBLK:
2094 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2095 new_decode_dev(dev));
2096 break;
2097 case S_IFIFO: case S_IFSOCK:
2098 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2099 break;
2100 }
2101 mnt_drop_write(nd.path.mnt);
2102 out_dput:
2103 dput(dentry);
2104 out_unlock:
2105 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2106 path_put(&nd.path);
2107 out:
2108 putname(tmp);
2109
2110 return error;
2111 }
2112
2113 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
2114 {
2115 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2116 }
2117
2118 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2119 {
2120 int error = may_create(dir, dentry, NULL);
2121
2122 if (error)
2123 return error;
2124
2125 if (!dir->i_op || !dir->i_op->mkdir)
2126 return -EPERM;
2127
2128 mode &= (S_IRWXUGO|S_ISVTX);
2129 error = security_inode_mkdir(dir, dentry, mode);
2130 if (error)
2131 return error;
2132
2133 DQUOT_INIT(dir);
2134 error = dir->i_op->mkdir(dir, dentry, mode);
2135 if (!error)
2136 fsnotify_mkdir(dir, dentry);
2137 return error;
2138 }
2139
2140 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
2141 {
2142 int error = 0;
2143 char * tmp;
2144 struct dentry *dentry;
2145 struct nameidata nd;
2146
2147 tmp = getname(pathname);
2148 error = PTR_ERR(tmp);
2149 if (IS_ERR(tmp))
2150 goto out_err;
2151
2152 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
2153 if (error)
2154 goto out;
2155 dentry = lookup_create(&nd, 1);
2156 error = PTR_ERR(dentry);
2157 if (IS_ERR(dentry))
2158 goto out_unlock;
2159
2160 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2161 mode &= ~current->fs->umask;
2162 error = mnt_want_write(nd.path.mnt);
2163 if (error)
2164 goto out_dput;
2165 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2166 mnt_drop_write(nd.path.mnt);
2167 out_dput:
2168 dput(dentry);
2169 out_unlock:
2170 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2171 path_put(&nd.path);
2172 out:
2173 putname(tmp);
2174 out_err:
2175 return error;
2176 }
2177
2178 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
2179 {
2180 return sys_mkdirat(AT_FDCWD, pathname, mode);
2181 }
2182
2183 /*
2184 * We try to drop the dentry early: we should have
2185 * a usage count of 2 if we're the only user of this
2186 * dentry, and if that is true (possibly after pruning
2187 * the dcache), then we drop the dentry now.
2188 *
2189 * A low-level filesystem can, if it choses, legally
2190 * do a
2191 *
2192 * if (!d_unhashed(dentry))
2193 * return -EBUSY;
2194 *
2195 * if it cannot handle the case of removing a directory
2196 * that is still in use by something else..
2197 */
2198 void dentry_unhash(struct dentry *dentry)
2199 {
2200 dget(dentry);
2201 shrink_dcache_parent(dentry);
2202 spin_lock(&dcache_lock);
2203 spin_lock(&dentry->d_lock);
2204 if (atomic_read(&dentry->d_count) == 2)
2205 __d_drop(dentry);
2206 spin_unlock(&dentry->d_lock);
2207 spin_unlock(&dcache_lock);
2208 }
2209
2210 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2211 {
2212 int error = may_delete(dir, dentry, 1);
2213
2214 if (error)
2215 return error;
2216
2217 if (!dir->i_op || !dir->i_op->rmdir)
2218 return -EPERM;
2219
2220 DQUOT_INIT(dir);
2221
2222 mutex_lock(&dentry->d_inode->i_mutex);
2223 dentry_unhash(dentry);
2224 if (d_mountpoint(dentry))
2225 error = -EBUSY;
2226 else {
2227 error = security_inode_rmdir(dir, dentry);
2228 if (!error) {
2229 error = dir->i_op->rmdir(dir, dentry);
2230 if (!error)
2231 dentry->d_inode->i_flags |= S_DEAD;
2232 }
2233 }
2234 mutex_unlock(&dentry->d_inode->i_mutex);
2235 if (!error) {
2236 d_delete(dentry);
2237 }
2238 dput(dentry);
2239
2240 return error;
2241 }
2242
2243 static long do_rmdir(int dfd, const char __user *pathname)
2244 {
2245 int error = 0;
2246 char * name;
2247 struct dentry *dentry;
2248 struct nameidata nd;
2249
2250 name = getname(pathname);
2251 if(IS_ERR(name))
2252 return PTR_ERR(name);
2253
2254 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2255 if (error)
2256 goto exit;
2257
2258 switch(nd.last_type) {
2259 case LAST_DOTDOT:
2260 error = -ENOTEMPTY;
2261 goto exit1;
2262 case LAST_DOT:
2263 error = -EINVAL;
2264 goto exit1;
2265 case LAST_ROOT:
2266 error = -EBUSY;
2267 goto exit1;
2268 }
2269 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2270 dentry = lookup_hash(&nd);
2271 error = PTR_ERR(dentry);
2272 if (IS_ERR(dentry))
2273 goto exit2;
2274 error = mnt_want_write(nd.path.mnt);
2275 if (error)
2276 goto exit3;
2277 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2278 mnt_drop_write(nd.path.mnt);
2279 exit3:
2280 dput(dentry);
2281 exit2:
2282 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2283 exit1:
2284 path_put(&nd.path);
2285 exit:
2286 putname(name);
2287 return error;
2288 }
2289
2290 asmlinkage long sys_rmdir(const char __user *pathname)
2291 {
2292 return do_rmdir(AT_FDCWD, pathname);
2293 }
2294
2295 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2296 {
2297 int error = may_delete(dir, dentry, 0);
2298
2299 if (error)
2300 return error;
2301
2302 if (!dir->i_op || !dir->i_op->unlink)
2303 return -EPERM;
2304
2305 DQUOT_INIT(dir);
2306
2307 mutex_lock(&dentry->d_inode->i_mutex);
2308 if (d_mountpoint(dentry))
2309 error = -EBUSY;
2310 else {
2311 error = security_inode_unlink(dir, dentry);
2312 if (!error)
2313 error = dir->i_op->unlink(dir, dentry);
2314 }
2315 mutex_unlock(&dentry->d_inode->i_mutex);
2316
2317 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2318 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2319 fsnotify_link_count(dentry->d_inode);
2320 d_delete(dentry);
2321 }
2322
2323 return error;
2324 }
2325
2326 /*
2327 * Make sure that the actual truncation of the file will occur outside its
2328 * directory's i_mutex. Truncate can take a long time if there is a lot of
2329 * writeout happening, and we don't want to prevent access to the directory
2330 * while waiting on the I/O.
2331 */
2332 static long do_unlinkat(int dfd, const char __user *pathname)
2333 {
2334 int error = 0;
2335 char * name;
2336 struct dentry *dentry;
2337 struct nameidata nd;
2338 struct inode *inode = NULL;
2339
2340 name = getname(pathname);
2341 if(IS_ERR(name))
2342 return PTR_ERR(name);
2343
2344 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2345 if (error)
2346 goto exit;
2347 error = -EISDIR;
2348 if (nd.last_type != LAST_NORM)
2349 goto exit1;
2350 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2351 dentry = lookup_hash(&nd);
2352 error = PTR_ERR(dentry);
2353 if (!IS_ERR(dentry)) {
2354 /* Why not before? Because we want correct error value */
2355 if (nd.last.name[nd.last.len])
2356 goto slashes;
2357 inode = dentry->d_inode;
2358 if (inode)
2359 atomic_inc(&inode->i_count);
2360 error = mnt_want_write(nd.path.mnt);
2361 if (error)
2362 goto exit2;
2363 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2364 mnt_drop_write(nd.path.mnt);
2365 exit2:
2366 dput(dentry);
2367 }
2368 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2369 if (inode)
2370 iput(inode); /* truncate the inode here */
2371 exit1:
2372 path_put(&nd.path);
2373 exit:
2374 putname(name);
2375 return error;
2376
2377 slashes:
2378 error = !dentry->d_inode ? -ENOENT :
2379 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2380 goto exit2;
2381 }
2382
2383 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2384 {
2385 if ((flag & ~AT_REMOVEDIR) != 0)
2386 return -EINVAL;
2387
2388 if (flag & AT_REMOVEDIR)
2389 return do_rmdir(dfd, pathname);
2390
2391 return do_unlinkat(dfd, pathname);
2392 }
2393
2394 asmlinkage long sys_unlink(const char __user *pathname)
2395 {
2396 return do_unlinkat(AT_FDCWD, pathname);
2397 }
2398
2399 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname, int mode)
2400 {
2401 int error = may_create(dir, dentry, NULL);
2402
2403 if (error)
2404 return error;
2405
2406 if (!dir->i_op || !dir->i_op->symlink)
2407 return -EPERM;
2408
2409 error = security_inode_symlink(dir, dentry, oldname);
2410 if (error)
2411 return error;
2412
2413 DQUOT_INIT(dir);
2414 error = dir->i_op->symlink(dir, dentry, oldname);
2415 if (!error)
2416 fsnotify_create(dir, dentry);
2417 return error;
2418 }
2419
2420 asmlinkage long sys_symlinkat(const char __user *oldname,
2421 int newdfd, const char __user *newname)
2422 {
2423 int error = 0;
2424 char * from;
2425 char * to;
2426 struct dentry *dentry;
2427 struct nameidata nd;
2428
2429 from = getname(oldname);
2430 if(IS_ERR(from))
2431 return PTR_ERR(from);
2432 to = getname(newname);
2433 error = PTR_ERR(to);
2434 if (IS_ERR(to))
2435 goto out_putname;
2436
2437 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2438 if (error)
2439 goto out;
2440 dentry = lookup_create(&nd, 0);
2441 error = PTR_ERR(dentry);
2442 if (IS_ERR(dentry))
2443 goto out_unlock;
2444
2445 error = mnt_want_write(nd.path.mnt);
2446 if (error)
2447 goto out_dput;
2448 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from, S_IALLUGO);
2449 mnt_drop_write(nd.path.mnt);
2450 out_dput:
2451 dput(dentry);
2452 out_unlock:
2453 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2454 path_put(&nd.path);
2455 out:
2456 putname(to);
2457 out_putname:
2458 putname(from);
2459 return error;
2460 }
2461
2462 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2463 {
2464 return sys_symlinkat(oldname, AT_FDCWD, newname);
2465 }
2466
2467 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2468 {
2469 struct inode *inode = old_dentry->d_inode;
2470 int error;
2471
2472 if (!inode)
2473 return -ENOENT;
2474
2475 error = may_create(dir, new_dentry, NULL);
2476 if (error)
2477 return error;
2478
2479 if (dir->i_sb != inode->i_sb)
2480 return -EXDEV;
2481
2482 /*
2483 * A link to an append-only or immutable file cannot be created.
2484 */
2485 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2486 return -EPERM;
2487 if (!dir->i_op || !dir->i_op->link)
2488 return -EPERM;
2489 if (S_ISDIR(old_dentry->d_inode->i_mode))
2490 return -EPERM;
2491
2492 error = security_inode_link(old_dentry, dir, new_dentry);
2493 if (error)
2494 return error;
2495
2496 mutex_lock(&old_dentry->d_inode->i_mutex);
2497 DQUOT_INIT(dir);
2498 error = dir->i_op->link(old_dentry, dir, new_dentry);
2499 mutex_unlock(&old_dentry->d_inode->i_mutex);
2500 if (!error)
2501 fsnotify_link(dir, old_dentry->d_inode, new_dentry);
2502 return error;
2503 }
2504
2505 /*
2506 * Hardlinks are often used in delicate situations. We avoid
2507 * security-related surprises by not following symlinks on the
2508 * newname. --KAB
2509 *
2510 * We don't follow them on the oldname either to be compatible
2511 * with linux 2.0, and to avoid hard-linking to directories
2512 * and other special files. --ADM
2513 */
2514 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2515 int newdfd, const char __user *newname,
2516 int flags)
2517 {
2518 struct dentry *new_dentry;
2519 struct nameidata nd, old_nd;
2520 int error;
2521 char * to;
2522
2523 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2524 return -EINVAL;
2525
2526 to = getname(newname);
2527 if (IS_ERR(to))
2528 return PTR_ERR(to);
2529
2530 error = __user_walk_fd(olddfd, oldname,
2531 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2532 &old_nd);
2533 if (error)
2534 goto exit;
2535 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2536 if (error)
2537 goto out;
2538 error = -EXDEV;
2539 if (old_nd.path.mnt != nd.path.mnt)
2540 goto out_release;
2541 new_dentry = lookup_create(&nd, 0);
2542 error = PTR_ERR(new_dentry);
2543 if (IS_ERR(new_dentry))
2544 goto out_unlock;
2545 error = mnt_want_write(nd.path.mnt);
2546 if (error)
2547 goto out_dput;
2548 error = vfs_link(old_nd.path.dentry, nd.path.dentry->d_inode, new_dentry);
2549 mnt_drop_write(nd.path.mnt);
2550 out_dput:
2551 dput(new_dentry);
2552 out_unlock:
2553 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2554 out_release:
2555 path_put(&nd.path);
2556 out:
2557 path_put(&old_nd.path);
2558 exit:
2559 putname(to);
2560
2561 return error;
2562 }
2563
2564 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2565 {
2566 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2567 }
2568
2569 /*
2570 * The worst of all namespace operations - renaming directory. "Perverted"
2571 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2572 * Problems:
2573 * a) we can get into loop creation. Check is done in is_subdir().
2574 * b) race potential - two innocent renames can create a loop together.
2575 * That's where 4.4 screws up. Current fix: serialization on
2576 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2577 * story.
2578 * c) we have to lock _three_ objects - parents and victim (if it exists).
2579 * And that - after we got ->i_mutex on parents (until then we don't know
2580 * whether the target exists). Solution: try to be smart with locking
2581 * order for inodes. We rely on the fact that tree topology may change
2582 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2583 * move will be locked. Thus we can rank directories by the tree
2584 * (ancestors first) and rank all non-directories after them.
2585 * That works since everybody except rename does "lock parent, lookup,
2586 * lock child" and rename is under ->s_vfs_rename_mutex.
2587 * HOWEVER, it relies on the assumption that any object with ->lookup()
2588 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2589 * we'd better make sure that there's no link(2) for them.
2590 * d) some filesystems don't support opened-but-unlinked directories,
2591 * either because of layout or because they are not ready to deal with
2592 * all cases correctly. The latter will be fixed (taking this sort of
2593 * stuff into VFS), but the former is not going away. Solution: the same
2594 * trick as in rmdir().
2595 * e) conversion from fhandle to dentry may come in the wrong moment - when
2596 * we are removing the target. Solution: we will have to grab ->i_mutex
2597 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2598 * ->i_mutex on parents, which works but leads to some truely excessive
2599 * locking].
2600 */
2601 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2602 struct inode *new_dir, struct dentry *new_dentry)
2603 {
2604 int error = 0;
2605 struct inode *target;
2606
2607 /*
2608 * If we are going to change the parent - check write permissions,
2609 * we'll need to flip '..'.
2610 */
2611 if (new_dir != old_dir) {
2612 error = permission(old_dentry->d_inode, MAY_WRITE, NULL);
2613 if (error)
2614 return error;
2615 }
2616
2617 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2618 if (error)
2619 return error;
2620
2621 target = new_dentry->d_inode;
2622 if (target) {
2623 mutex_lock(&target->i_mutex);
2624 dentry_unhash(new_dentry);
2625 }
2626 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2627 error = -EBUSY;
2628 else
2629 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2630 if (target) {
2631 if (!error)
2632 target->i_flags |= S_DEAD;
2633 mutex_unlock(&target->i_mutex);
2634 if (d_unhashed(new_dentry))
2635 d_rehash(new_dentry);
2636 dput(new_dentry);
2637 }
2638 if (!error)
2639 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2640 d_move(old_dentry,new_dentry);
2641 return error;
2642 }
2643
2644 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2645 struct inode *new_dir, struct dentry *new_dentry)
2646 {
2647 struct inode *target;
2648 int error;
2649
2650 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2651 if (error)
2652 return error;
2653
2654 dget(new_dentry);
2655 target = new_dentry->d_inode;
2656 if (target)
2657 mutex_lock(&target->i_mutex);
2658 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2659 error = -EBUSY;
2660 else
2661 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2662 if (!error) {
2663 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2664 d_move(old_dentry, new_dentry);
2665 }
2666 if (target)
2667 mutex_unlock(&target->i_mutex);
2668 dput(new_dentry);
2669 return error;
2670 }
2671
2672 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2673 struct inode *new_dir, struct dentry *new_dentry)
2674 {
2675 int error;
2676 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2677 const char *old_name;
2678
2679 if (old_dentry->d_inode == new_dentry->d_inode)
2680 return 0;
2681
2682 error = may_delete(old_dir, old_dentry, is_dir);
2683 if (error)
2684 return error;
2685
2686 if (!new_dentry->d_inode)
2687 error = may_create(new_dir, new_dentry, NULL);
2688 else
2689 error = may_delete(new_dir, new_dentry, is_dir);
2690 if (error)
2691 return error;
2692
2693 if (!old_dir->i_op || !old_dir->i_op->rename)
2694 return -EPERM;
2695
2696 DQUOT_INIT(old_dir);
2697 DQUOT_INIT(new_dir);
2698
2699 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2700
2701 if (is_dir)
2702 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2703 else
2704 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2705 if (!error) {
2706 const char *new_name = old_dentry->d_name.name;
2707 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2708 new_dentry->d_inode, old_dentry);
2709 }
2710 fsnotify_oldname_free(old_name);
2711
2712 return error;
2713 }
2714
2715 static int do_rename(int olddfd, const char *oldname,
2716 int newdfd, const char *newname)
2717 {
2718 int error = 0;
2719 struct dentry * old_dir, * new_dir;
2720 struct dentry * old_dentry, *new_dentry;
2721 struct dentry * trap;
2722 struct nameidata oldnd, newnd;
2723
2724 error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd);
2725 if (error)
2726 goto exit;
2727
2728 error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd);
2729 if (error)
2730 goto exit1;
2731
2732 error = -EXDEV;
2733 if (oldnd.path.mnt != newnd.path.mnt)
2734 goto exit2;
2735
2736 old_dir = oldnd.path.dentry;
2737 error = -EBUSY;
2738 if (oldnd.last_type != LAST_NORM)
2739 goto exit2;
2740
2741 new_dir = newnd.path.dentry;
2742 if (newnd.last_type != LAST_NORM)
2743 goto exit2;
2744
2745 trap = lock_rename(new_dir, old_dir);
2746
2747 old_dentry = lookup_hash(&oldnd);
2748 error = PTR_ERR(old_dentry);
2749 if (IS_ERR(old_dentry))
2750 goto exit3;
2751 /* source must exist */
2752 error = -ENOENT;
2753 if (!old_dentry->d_inode)
2754 goto exit4;
2755 /* unless the source is a directory trailing slashes give -ENOTDIR */
2756 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2757 error = -ENOTDIR;
2758 if (oldnd.last.name[oldnd.last.len])
2759 goto exit4;
2760 if (newnd.last.name[newnd.last.len])
2761 goto exit4;
2762 }
2763 /* source should not be ancestor of target */
2764 error = -EINVAL;
2765 if (old_dentry == trap)
2766 goto exit4;
2767 new_dentry = lookup_hash(&newnd);
2768 error = PTR_ERR(new_dentry);
2769 if (IS_ERR(new_dentry))
2770 goto exit4;
2771 /* target should not be an ancestor of source */
2772 error = -ENOTEMPTY;
2773 if (new_dentry == trap)
2774 goto exit5;
2775
2776 error = mnt_want_write(oldnd.path.mnt);
2777 if (error)
2778 goto exit5;
2779 error = vfs_rename(old_dir->d_inode, old_dentry,
2780 new_dir->d_inode, new_dentry);
2781 mnt_drop_write(oldnd.path.mnt);
2782 exit5:
2783 dput(new_dentry);
2784 exit4:
2785 dput(old_dentry);
2786 exit3:
2787 unlock_rename(new_dir, old_dir);
2788 exit2:
2789 path_put(&newnd.path);
2790 exit1:
2791 path_put(&oldnd.path);
2792 exit:
2793 return error;
2794 }
2795
2796 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2797 int newdfd, const char __user *newname)
2798 {
2799 int error;
2800 char * from;
2801 char * to;
2802
2803 from = getname(oldname);
2804 if(IS_ERR(from))
2805 return PTR_ERR(from);
2806 to = getname(newname);
2807 error = PTR_ERR(to);
2808 if (!IS_ERR(to)) {
2809 error = do_rename(olddfd, from, newdfd, to);
2810 putname(to);
2811 }
2812 putname(from);
2813 return error;
2814 }
2815
2816 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2817 {
2818 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2819 }
2820
2821 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2822 {
2823 int len;
2824
2825 len = PTR_ERR(link);
2826 if (IS_ERR(link))
2827 goto out;
2828
2829 len = strlen(link);
2830 if (len > (unsigned) buflen)
2831 len = buflen;
2832 if (copy_to_user(buffer, link, len))
2833 len = -EFAULT;
2834 out:
2835 return len;
2836 }
2837
2838 /*
2839 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2840 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2841 * using) it for any given inode is up to filesystem.
2842 */
2843 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2844 {
2845 struct nameidata nd;
2846 void *cookie;
2847
2848 nd.depth = 0;
2849 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2850 if (!IS_ERR(cookie)) {
2851 int res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2852 if (dentry->d_inode->i_op->put_link)
2853 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2854 cookie = ERR_PTR(res);
2855 }
2856 return PTR_ERR(cookie);
2857 }
2858
2859 int vfs_follow_link(struct nameidata *nd, const char *link)
2860 {
2861 return __vfs_follow_link(nd, link);
2862 }
2863
2864 /* get the link contents into pagecache */
2865 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2866 {
2867 struct page * page;
2868 struct address_space *mapping = dentry->d_inode->i_mapping;
2869 page = read_mapping_page(mapping, 0, NULL);
2870 if (IS_ERR(page))
2871 return (char*)page;
2872 *ppage = page;
2873 return kmap(page);
2874 }
2875
2876 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2877 {
2878 struct page *page = NULL;
2879 char *s = page_getlink(dentry, &page);
2880 int res = vfs_readlink(dentry,buffer,buflen,s);
2881 if (page) {
2882 kunmap(page);
2883 page_cache_release(page);
2884 }
2885 return res;
2886 }
2887
2888 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2889 {
2890 struct page *page = NULL;
2891 nd_set_link(nd, page_getlink(dentry, &page));
2892 return page;
2893 }
2894
2895 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2896 {
2897 struct page *page = cookie;
2898
2899 if (page) {
2900 kunmap(page);
2901 page_cache_release(page);
2902 }
2903 }
2904
2905 int __page_symlink(struct inode *inode, const char *symname, int len,
2906 gfp_t gfp_mask)
2907 {
2908 struct address_space *mapping = inode->i_mapping;
2909 struct page *page;
2910 void *fsdata;
2911 int err;
2912 char *kaddr;
2913
2914 retry:
2915 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2916 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2917 if (err)
2918 goto fail;
2919
2920 kaddr = kmap_atomic(page, KM_USER0);
2921 memcpy(kaddr, symname, len-1);
2922 kunmap_atomic(kaddr, KM_USER0);
2923
2924 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2925 page, fsdata);
2926 if (err < 0)
2927 goto fail;
2928 if (err < len-1)
2929 goto retry;
2930
2931 mark_inode_dirty(inode);
2932 return 0;
2933 fail:
2934 return err;
2935 }
2936
2937 int page_symlink(struct inode *inode, const char *symname, int len)
2938 {
2939 return __page_symlink(inode, symname, len,
2940 mapping_gfp_mask(inode->i_mapping));
2941 }
2942
2943 const struct inode_operations page_symlink_inode_operations = {
2944 .readlink = generic_readlink,
2945 .follow_link = page_follow_link_light,
2946 .put_link = page_put_link,
2947 };
2948
2949 EXPORT_SYMBOL(__user_walk);
2950 EXPORT_SYMBOL(__user_walk_fd);
2951 EXPORT_SYMBOL(follow_down);
2952 EXPORT_SYMBOL(follow_up);
2953 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2954 EXPORT_SYMBOL(getname);
2955 EXPORT_SYMBOL(lock_rename);
2956 EXPORT_SYMBOL(lookup_one_len);
2957 EXPORT_SYMBOL(page_follow_link_light);
2958 EXPORT_SYMBOL(page_put_link);
2959 EXPORT_SYMBOL(page_readlink);
2960 EXPORT_SYMBOL(__page_symlink);
2961 EXPORT_SYMBOL(page_symlink);
2962 EXPORT_SYMBOL(page_symlink_inode_operations);
2963 EXPORT_SYMBOL(path_lookup);
2964 EXPORT_SYMBOL(vfs_path_lookup);
2965 EXPORT_SYMBOL(permission);
2966 EXPORT_SYMBOL(vfs_permission);
2967 EXPORT_SYMBOL(file_permission);
2968 EXPORT_SYMBOL(unlock_rename);
2969 EXPORT_SYMBOL(vfs_create);
2970 EXPORT_SYMBOL(vfs_follow_link);
2971 EXPORT_SYMBOL(vfs_link);
2972 EXPORT_SYMBOL(vfs_mkdir);
2973 EXPORT_SYMBOL(vfs_mknod);
2974 EXPORT_SYMBOL(generic_permission);
2975 EXPORT_SYMBOL(vfs_readlink);
2976 EXPORT_SYMBOL(vfs_rename);
2977 EXPORT_SYMBOL(vfs_rmdir);
2978 EXPORT_SYMBOL(vfs_symlink);
2979 EXPORT_SYMBOL(vfs_unlink);
2980 EXPORT_SYMBOL(dentry_unhash);
2981 EXPORT_SYMBOL(generic_readlink);