]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/namei.c
Merge tag 'platform-drivers-x86-v4.19-1' of git://git.infradead.org/linux-platform...
[mirror_ubuntu-eoan-kernel.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 #include <linux/build_bug.h>
43
44 #include "internal.h"
45 #include "mount.h"
46
47 /* [Feb-1997 T. Schoebel-Theuer]
48 * Fundamental changes in the pathname lookup mechanisms (namei)
49 * were necessary because of omirr. The reason is that omirr needs
50 * to know the _real_ pathname, not the user-supplied one, in case
51 * of symlinks (and also when transname replacements occur).
52 *
53 * The new code replaces the old recursive symlink resolution with
54 * an iterative one (in case of non-nested symlink chains). It does
55 * this with calls to <fs>_follow_link().
56 * As a side effect, dir_namei(), _namei() and follow_link() are now
57 * replaced with a single function lookup_dentry() that can handle all
58 * the special cases of the former code.
59 *
60 * With the new dcache, the pathname is stored at each inode, at least as
61 * long as the refcount of the inode is positive. As a side effect, the
62 * size of the dcache depends on the inode cache and thus is dynamic.
63 *
64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65 * resolution to correspond with current state of the code.
66 *
67 * Note that the symlink resolution is not *completely* iterative.
68 * There is still a significant amount of tail- and mid- recursion in
69 * the algorithm. Also, note that <fs>_readlink() is not used in
70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71 * may return different results than <fs>_follow_link(). Many virtual
72 * filesystems (including /proc) exhibit this behavior.
73 */
74
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77 * and the name already exists in form of a symlink, try to create the new
78 * name indicated by the symlink. The old code always complained that the
79 * name already exists, due to not following the symlink even if its target
80 * is nonexistent. The new semantics affects also mknod() and link() when
81 * the name is a symlink pointing to a non-existent name.
82 *
83 * I don't know which semantics is the right one, since I have no access
84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86 * "old" one. Personally, I think the new semantics is much more logical.
87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88 * file does succeed in both HP-UX and SunOs, but not in Solaris
89 * and in the old Linux semantics.
90 */
91
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93 * semantics. See the comments in "open_namei" and "do_link" below.
94 *
95 * [10-Sep-98 Alan Modra] Another symlink change.
96 */
97
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99 * inside the path - always follow.
100 * in the last component in creation/removal/renaming - never follow.
101 * if LOOKUP_FOLLOW passed - follow.
102 * if the pathname has trailing slashes - follow.
103 * otherwise - don't follow.
104 * (applied in that order).
105 *
106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108 * During the 2.4 we need to fix the userland stuff depending on it -
109 * hopefully we will be able to get rid of that wart in 2.5. So far only
110 * XEmacs seems to be relying on it...
111 */
112 /*
113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
115 * any extra contention...
116 */
117
118 /* In order to reduce some races, while at the same time doing additional
119 * checking and hopefully speeding things up, we copy filenames to the
120 * kernel data space before using them..
121 *
122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123 * PATH_MAX includes the nul terminator --RR.
124 */
125
126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
127
128 struct filename *
129 getname_flags(const char __user *filename, int flags, int *empty)
130 {
131 struct filename *result;
132 char *kname;
133 int len;
134 BUILD_BUG_ON(offsetof(struct filename, iname) % sizeof(long) != 0);
135
136 result = audit_reusename(filename);
137 if (result)
138 return result;
139
140 result = __getname();
141 if (unlikely(!result))
142 return ERR_PTR(-ENOMEM);
143
144 /*
145 * First, try to embed the struct filename inside the names_cache
146 * allocation
147 */
148 kname = (char *)result->iname;
149 result->name = kname;
150
151 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
152 if (unlikely(len < 0)) {
153 __putname(result);
154 return ERR_PTR(len);
155 }
156
157 /*
158 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
159 * separate struct filename so we can dedicate the entire
160 * names_cache allocation for the pathname, and re-do the copy from
161 * userland.
162 */
163 if (unlikely(len == EMBEDDED_NAME_MAX)) {
164 const size_t size = offsetof(struct filename, iname[1]);
165 kname = (char *)result;
166
167 /*
168 * size is chosen that way we to guarantee that
169 * result->iname[0] is within the same object and that
170 * kname can't be equal to result->iname, no matter what.
171 */
172 result = kzalloc(size, GFP_KERNEL);
173 if (unlikely(!result)) {
174 __putname(kname);
175 return ERR_PTR(-ENOMEM);
176 }
177 result->name = kname;
178 len = strncpy_from_user(kname, filename, PATH_MAX);
179 if (unlikely(len < 0)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(len);
183 }
184 if (unlikely(len == PATH_MAX)) {
185 __putname(kname);
186 kfree(result);
187 return ERR_PTR(-ENAMETOOLONG);
188 }
189 }
190
191 result->refcnt = 1;
192 /* The empty path is special. */
193 if (unlikely(!len)) {
194 if (empty)
195 *empty = 1;
196 if (!(flags & LOOKUP_EMPTY)) {
197 putname(result);
198 return ERR_PTR(-ENOENT);
199 }
200 }
201
202 result->uptr = filename;
203 result->aname = NULL;
204 audit_getname(result);
205 return result;
206 }
207
208 struct filename *
209 getname(const char __user * filename)
210 {
211 return getname_flags(filename, 0, NULL);
212 }
213
214 struct filename *
215 getname_kernel(const char * filename)
216 {
217 struct filename *result;
218 int len = strlen(filename) + 1;
219
220 result = __getname();
221 if (unlikely(!result))
222 return ERR_PTR(-ENOMEM);
223
224 if (len <= EMBEDDED_NAME_MAX) {
225 result->name = (char *)result->iname;
226 } else if (len <= PATH_MAX) {
227 const size_t size = offsetof(struct filename, iname[1]);
228 struct filename *tmp;
229
230 tmp = kmalloc(size, GFP_KERNEL);
231 if (unlikely(!tmp)) {
232 __putname(result);
233 return ERR_PTR(-ENOMEM);
234 }
235 tmp->name = (char *)result;
236 result = tmp;
237 } else {
238 __putname(result);
239 return ERR_PTR(-ENAMETOOLONG);
240 }
241 memcpy((char *)result->name, filename, len);
242 result->uptr = NULL;
243 result->aname = NULL;
244 result->refcnt = 1;
245 audit_getname(result);
246
247 return result;
248 }
249
250 void putname(struct filename *name)
251 {
252 BUG_ON(name->refcnt <= 0);
253
254 if (--name->refcnt > 0)
255 return;
256
257 if (name->name != name->iname) {
258 __putname(name->name);
259 kfree(name);
260 } else
261 __putname(name);
262 }
263
264 static int check_acl(struct inode *inode, int mask)
265 {
266 #ifdef CONFIG_FS_POSIX_ACL
267 struct posix_acl *acl;
268
269 if (mask & MAY_NOT_BLOCK) {
270 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
271 if (!acl)
272 return -EAGAIN;
273 /* no ->get_acl() calls in RCU mode... */
274 if (is_uncached_acl(acl))
275 return -ECHILD;
276 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
277 }
278
279 acl = get_acl(inode, ACL_TYPE_ACCESS);
280 if (IS_ERR(acl))
281 return PTR_ERR(acl);
282 if (acl) {
283 int error = posix_acl_permission(inode, acl, mask);
284 posix_acl_release(acl);
285 return error;
286 }
287 #endif
288
289 return -EAGAIN;
290 }
291
292 /*
293 * This does the basic permission checking
294 */
295 static int acl_permission_check(struct inode *inode, int mask)
296 {
297 unsigned int mode = inode->i_mode;
298
299 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
300 mode >>= 6;
301 else {
302 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
303 int error = check_acl(inode, mask);
304 if (error != -EAGAIN)
305 return error;
306 }
307
308 if (in_group_p(inode->i_gid))
309 mode >>= 3;
310 }
311
312 /*
313 * If the DACs are ok we don't need any capability check.
314 */
315 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
316 return 0;
317 return -EACCES;
318 }
319
320 /**
321 * generic_permission - check for access rights on a Posix-like filesystem
322 * @inode: inode to check access rights for
323 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
324 *
325 * Used to check for read/write/execute permissions on a file.
326 * We use "fsuid" for this, letting us set arbitrary permissions
327 * for filesystem access without changing the "normal" uids which
328 * are used for other things.
329 *
330 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
331 * request cannot be satisfied (eg. requires blocking or too much complexity).
332 * It would then be called again in ref-walk mode.
333 */
334 int generic_permission(struct inode *inode, int mask)
335 {
336 int ret;
337
338 /*
339 * Do the basic permission checks.
340 */
341 ret = acl_permission_check(inode, mask);
342 if (ret != -EACCES)
343 return ret;
344
345 if (S_ISDIR(inode->i_mode)) {
346 /* DACs are overridable for directories */
347 if (!(mask & MAY_WRITE))
348 if (capable_wrt_inode_uidgid(inode,
349 CAP_DAC_READ_SEARCH))
350 return 0;
351 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
352 return 0;
353 return -EACCES;
354 }
355
356 /*
357 * Searching includes executable on directories, else just read.
358 */
359 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
360 if (mask == MAY_READ)
361 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
362 return 0;
363 /*
364 * Read/write DACs are always overridable.
365 * Executable DACs are overridable when there is
366 * at least one exec bit set.
367 */
368 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
369 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
370 return 0;
371
372 return -EACCES;
373 }
374 EXPORT_SYMBOL(generic_permission);
375
376 /*
377 * We _really_ want to just do "generic_permission()" without
378 * even looking at the inode->i_op values. So we keep a cache
379 * flag in inode->i_opflags, that says "this has not special
380 * permission function, use the fast case".
381 */
382 static inline int do_inode_permission(struct inode *inode, int mask)
383 {
384 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
385 if (likely(inode->i_op->permission))
386 return inode->i_op->permission(inode, mask);
387
388 /* This gets set once for the inode lifetime */
389 spin_lock(&inode->i_lock);
390 inode->i_opflags |= IOP_FASTPERM;
391 spin_unlock(&inode->i_lock);
392 }
393 return generic_permission(inode, mask);
394 }
395
396 /**
397 * sb_permission - Check superblock-level permissions
398 * @sb: Superblock of inode to check permission on
399 * @inode: Inode to check permission on
400 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
401 *
402 * Separate out file-system wide checks from inode-specific permission checks.
403 */
404 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
405 {
406 if (unlikely(mask & MAY_WRITE)) {
407 umode_t mode = inode->i_mode;
408
409 /* Nobody gets write access to a read-only fs. */
410 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
411 return -EROFS;
412 }
413 return 0;
414 }
415
416 /**
417 * inode_permission - Check for access rights to a given inode
418 * @inode: Inode to check permission on
419 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
420 *
421 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
422 * this, letting us set arbitrary permissions for filesystem access without
423 * changing the "normal" UIDs which are used for other things.
424 *
425 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
426 */
427 int inode_permission(struct inode *inode, int mask)
428 {
429 int retval;
430
431 retval = sb_permission(inode->i_sb, inode, mask);
432 if (retval)
433 return retval;
434
435 if (unlikely(mask & MAY_WRITE)) {
436 /*
437 * Nobody gets write access to an immutable file.
438 */
439 if (IS_IMMUTABLE(inode))
440 return -EPERM;
441
442 /*
443 * Updating mtime will likely cause i_uid and i_gid to be
444 * written back improperly if their true value is unknown
445 * to the vfs.
446 */
447 if (HAS_UNMAPPED_ID(inode))
448 return -EACCES;
449 }
450
451 retval = do_inode_permission(inode, mask);
452 if (retval)
453 return retval;
454
455 retval = devcgroup_inode_permission(inode, mask);
456 if (retval)
457 return retval;
458
459 return security_inode_permission(inode, mask);
460 }
461 EXPORT_SYMBOL(inode_permission);
462
463 /**
464 * path_get - get a reference to a path
465 * @path: path to get the reference to
466 *
467 * Given a path increment the reference count to the dentry and the vfsmount.
468 */
469 void path_get(const struct path *path)
470 {
471 mntget(path->mnt);
472 dget(path->dentry);
473 }
474 EXPORT_SYMBOL(path_get);
475
476 /**
477 * path_put - put a reference to a path
478 * @path: path to put the reference to
479 *
480 * Given a path decrement the reference count to the dentry and the vfsmount.
481 */
482 void path_put(const struct path *path)
483 {
484 dput(path->dentry);
485 mntput(path->mnt);
486 }
487 EXPORT_SYMBOL(path_put);
488
489 #define EMBEDDED_LEVELS 2
490 struct nameidata {
491 struct path path;
492 struct qstr last;
493 struct path root;
494 struct inode *inode; /* path.dentry.d_inode */
495 unsigned int flags;
496 unsigned seq, m_seq;
497 int last_type;
498 unsigned depth;
499 int total_link_count;
500 struct saved {
501 struct path link;
502 struct delayed_call done;
503 const char *name;
504 unsigned seq;
505 } *stack, internal[EMBEDDED_LEVELS];
506 struct filename *name;
507 struct nameidata *saved;
508 struct inode *link_inode;
509 unsigned root_seq;
510 int dfd;
511 } __randomize_layout;
512
513 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
514 {
515 struct nameidata *old = current->nameidata;
516 p->stack = p->internal;
517 p->dfd = dfd;
518 p->name = name;
519 p->total_link_count = old ? old->total_link_count : 0;
520 p->saved = old;
521 current->nameidata = p;
522 }
523
524 static void restore_nameidata(void)
525 {
526 struct nameidata *now = current->nameidata, *old = now->saved;
527
528 current->nameidata = old;
529 if (old)
530 old->total_link_count = now->total_link_count;
531 if (now->stack != now->internal)
532 kfree(now->stack);
533 }
534
535 static int __nd_alloc_stack(struct nameidata *nd)
536 {
537 struct saved *p;
538
539 if (nd->flags & LOOKUP_RCU) {
540 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
541 GFP_ATOMIC);
542 if (unlikely(!p))
543 return -ECHILD;
544 } else {
545 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
546 GFP_KERNEL);
547 if (unlikely(!p))
548 return -ENOMEM;
549 }
550 memcpy(p, nd->internal, sizeof(nd->internal));
551 nd->stack = p;
552 return 0;
553 }
554
555 /**
556 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
557 * @path: nameidate to verify
558 *
559 * Rename can sometimes move a file or directory outside of a bind
560 * mount, path_connected allows those cases to be detected.
561 */
562 static bool path_connected(const struct path *path)
563 {
564 struct vfsmount *mnt = path->mnt;
565 struct super_block *sb = mnt->mnt_sb;
566
567 /* Bind mounts and multi-root filesystems can have disconnected paths */
568 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
569 return true;
570
571 return is_subdir(path->dentry, mnt->mnt_root);
572 }
573
574 static inline int nd_alloc_stack(struct nameidata *nd)
575 {
576 if (likely(nd->depth != EMBEDDED_LEVELS))
577 return 0;
578 if (likely(nd->stack != nd->internal))
579 return 0;
580 return __nd_alloc_stack(nd);
581 }
582
583 static void drop_links(struct nameidata *nd)
584 {
585 int i = nd->depth;
586 while (i--) {
587 struct saved *last = nd->stack + i;
588 do_delayed_call(&last->done);
589 clear_delayed_call(&last->done);
590 }
591 }
592
593 static void terminate_walk(struct nameidata *nd)
594 {
595 drop_links(nd);
596 if (!(nd->flags & LOOKUP_RCU)) {
597 int i;
598 path_put(&nd->path);
599 for (i = 0; i < nd->depth; i++)
600 path_put(&nd->stack[i].link);
601 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
602 path_put(&nd->root);
603 nd->root.mnt = NULL;
604 }
605 } else {
606 nd->flags &= ~LOOKUP_RCU;
607 if (!(nd->flags & LOOKUP_ROOT))
608 nd->root.mnt = NULL;
609 rcu_read_unlock();
610 }
611 nd->depth = 0;
612 }
613
614 /* path_put is needed afterwards regardless of success or failure */
615 static bool legitimize_path(struct nameidata *nd,
616 struct path *path, unsigned seq)
617 {
618 int res = __legitimize_mnt(path->mnt, nd->m_seq);
619 if (unlikely(res)) {
620 if (res > 0)
621 path->mnt = NULL;
622 path->dentry = NULL;
623 return false;
624 }
625 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
626 path->dentry = NULL;
627 return false;
628 }
629 return !read_seqcount_retry(&path->dentry->d_seq, seq);
630 }
631
632 static bool legitimize_links(struct nameidata *nd)
633 {
634 int i;
635 for (i = 0; i < nd->depth; i++) {
636 struct saved *last = nd->stack + i;
637 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
638 drop_links(nd);
639 nd->depth = i + 1;
640 return false;
641 }
642 }
643 return true;
644 }
645
646 /*
647 * Path walking has 2 modes, rcu-walk and ref-walk (see
648 * Documentation/filesystems/path-lookup.txt). In situations when we can't
649 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
650 * normal reference counts on dentries and vfsmounts to transition to ref-walk
651 * mode. Refcounts are grabbed at the last known good point before rcu-walk
652 * got stuck, so ref-walk may continue from there. If this is not successful
653 * (eg. a seqcount has changed), then failure is returned and it's up to caller
654 * to restart the path walk from the beginning in ref-walk mode.
655 */
656
657 /**
658 * unlazy_walk - try to switch to ref-walk mode.
659 * @nd: nameidata pathwalk data
660 * Returns: 0 on success, -ECHILD on failure
661 *
662 * unlazy_walk attempts to legitimize the current nd->path and nd->root
663 * for ref-walk mode.
664 * Must be called from rcu-walk context.
665 * Nothing should touch nameidata between unlazy_walk() failure and
666 * terminate_walk().
667 */
668 static int unlazy_walk(struct nameidata *nd)
669 {
670 struct dentry *parent = nd->path.dentry;
671
672 BUG_ON(!(nd->flags & LOOKUP_RCU));
673
674 nd->flags &= ~LOOKUP_RCU;
675 if (unlikely(!legitimize_links(nd)))
676 goto out2;
677 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
678 goto out1;
679 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
680 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
681 goto out;
682 }
683 rcu_read_unlock();
684 BUG_ON(nd->inode != parent->d_inode);
685 return 0;
686
687 out2:
688 nd->path.mnt = NULL;
689 nd->path.dentry = NULL;
690 out1:
691 if (!(nd->flags & LOOKUP_ROOT))
692 nd->root.mnt = NULL;
693 out:
694 rcu_read_unlock();
695 return -ECHILD;
696 }
697
698 /**
699 * unlazy_child - try to switch to ref-walk mode.
700 * @nd: nameidata pathwalk data
701 * @dentry: child of nd->path.dentry
702 * @seq: seq number to check dentry against
703 * Returns: 0 on success, -ECHILD on failure
704 *
705 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
706 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
707 * @nd. Must be called from rcu-walk context.
708 * Nothing should touch nameidata between unlazy_child() failure and
709 * terminate_walk().
710 */
711 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
712 {
713 BUG_ON(!(nd->flags & LOOKUP_RCU));
714
715 nd->flags &= ~LOOKUP_RCU;
716 if (unlikely(!legitimize_links(nd)))
717 goto out2;
718 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
719 goto out2;
720 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
721 goto out1;
722
723 /*
724 * We need to move both the parent and the dentry from the RCU domain
725 * to be properly refcounted. And the sequence number in the dentry
726 * validates *both* dentry counters, since we checked the sequence
727 * number of the parent after we got the child sequence number. So we
728 * know the parent must still be valid if the child sequence number is
729 */
730 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
731 goto out;
732 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
733 rcu_read_unlock();
734 dput(dentry);
735 goto drop_root_mnt;
736 }
737 /*
738 * Sequence counts matched. Now make sure that the root is
739 * still valid and get it if required.
740 */
741 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
742 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
743 rcu_read_unlock();
744 dput(dentry);
745 return -ECHILD;
746 }
747 }
748
749 rcu_read_unlock();
750 return 0;
751
752 out2:
753 nd->path.mnt = NULL;
754 out1:
755 nd->path.dentry = NULL;
756 out:
757 rcu_read_unlock();
758 drop_root_mnt:
759 if (!(nd->flags & LOOKUP_ROOT))
760 nd->root.mnt = NULL;
761 return -ECHILD;
762 }
763
764 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
765 {
766 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
767 return dentry->d_op->d_revalidate(dentry, flags);
768 else
769 return 1;
770 }
771
772 /**
773 * complete_walk - successful completion of path walk
774 * @nd: pointer nameidata
775 *
776 * If we had been in RCU mode, drop out of it and legitimize nd->path.
777 * Revalidate the final result, unless we'd already done that during
778 * the path walk or the filesystem doesn't ask for it. Return 0 on
779 * success, -error on failure. In case of failure caller does not
780 * need to drop nd->path.
781 */
782 static int complete_walk(struct nameidata *nd)
783 {
784 struct dentry *dentry = nd->path.dentry;
785 int status;
786
787 if (nd->flags & LOOKUP_RCU) {
788 if (!(nd->flags & LOOKUP_ROOT))
789 nd->root.mnt = NULL;
790 if (unlikely(unlazy_walk(nd)))
791 return -ECHILD;
792 }
793
794 if (likely(!(nd->flags & LOOKUP_JUMPED)))
795 return 0;
796
797 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
798 return 0;
799
800 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
801 if (status > 0)
802 return 0;
803
804 if (!status)
805 status = -ESTALE;
806
807 return status;
808 }
809
810 static void set_root(struct nameidata *nd)
811 {
812 struct fs_struct *fs = current->fs;
813
814 if (nd->flags & LOOKUP_RCU) {
815 unsigned seq;
816
817 do {
818 seq = read_seqcount_begin(&fs->seq);
819 nd->root = fs->root;
820 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
821 } while (read_seqcount_retry(&fs->seq, seq));
822 } else {
823 get_fs_root(fs, &nd->root);
824 }
825 }
826
827 static void path_put_conditional(struct path *path, struct nameidata *nd)
828 {
829 dput(path->dentry);
830 if (path->mnt != nd->path.mnt)
831 mntput(path->mnt);
832 }
833
834 static inline void path_to_nameidata(const struct path *path,
835 struct nameidata *nd)
836 {
837 if (!(nd->flags & LOOKUP_RCU)) {
838 dput(nd->path.dentry);
839 if (nd->path.mnt != path->mnt)
840 mntput(nd->path.mnt);
841 }
842 nd->path.mnt = path->mnt;
843 nd->path.dentry = path->dentry;
844 }
845
846 static int nd_jump_root(struct nameidata *nd)
847 {
848 if (nd->flags & LOOKUP_RCU) {
849 struct dentry *d;
850 nd->path = nd->root;
851 d = nd->path.dentry;
852 nd->inode = d->d_inode;
853 nd->seq = nd->root_seq;
854 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
855 return -ECHILD;
856 } else {
857 path_put(&nd->path);
858 nd->path = nd->root;
859 path_get(&nd->path);
860 nd->inode = nd->path.dentry->d_inode;
861 }
862 nd->flags |= LOOKUP_JUMPED;
863 return 0;
864 }
865
866 /*
867 * Helper to directly jump to a known parsed path from ->get_link,
868 * caller must have taken a reference to path beforehand.
869 */
870 void nd_jump_link(struct path *path)
871 {
872 struct nameidata *nd = current->nameidata;
873 path_put(&nd->path);
874
875 nd->path = *path;
876 nd->inode = nd->path.dentry->d_inode;
877 nd->flags |= LOOKUP_JUMPED;
878 }
879
880 static inline void put_link(struct nameidata *nd)
881 {
882 struct saved *last = nd->stack + --nd->depth;
883 do_delayed_call(&last->done);
884 if (!(nd->flags & LOOKUP_RCU))
885 path_put(&last->link);
886 }
887
888 int sysctl_protected_symlinks __read_mostly = 0;
889 int sysctl_protected_hardlinks __read_mostly = 0;
890
891 /**
892 * may_follow_link - Check symlink following for unsafe situations
893 * @nd: nameidata pathwalk data
894 *
895 * In the case of the sysctl_protected_symlinks sysctl being enabled,
896 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
897 * in a sticky world-writable directory. This is to protect privileged
898 * processes from failing races against path names that may change out
899 * from under them by way of other users creating malicious symlinks.
900 * It will permit symlinks to be followed only when outside a sticky
901 * world-writable directory, or when the uid of the symlink and follower
902 * match, or when the directory owner matches the symlink's owner.
903 *
904 * Returns 0 if following the symlink is allowed, -ve on error.
905 */
906 static inline int may_follow_link(struct nameidata *nd)
907 {
908 const struct inode *inode;
909 const struct inode *parent;
910 kuid_t puid;
911
912 if (!sysctl_protected_symlinks)
913 return 0;
914
915 /* Allowed if owner and follower match. */
916 inode = nd->link_inode;
917 if (uid_eq(current_cred()->fsuid, inode->i_uid))
918 return 0;
919
920 /* Allowed if parent directory not sticky and world-writable. */
921 parent = nd->inode;
922 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
923 return 0;
924
925 /* Allowed if parent directory and link owner match. */
926 puid = parent->i_uid;
927 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
928 return 0;
929
930 if (nd->flags & LOOKUP_RCU)
931 return -ECHILD;
932
933 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
934 audit_log_link_denied("follow_link");
935 return -EACCES;
936 }
937
938 /**
939 * safe_hardlink_source - Check for safe hardlink conditions
940 * @inode: the source inode to hardlink from
941 *
942 * Return false if at least one of the following conditions:
943 * - inode is not a regular file
944 * - inode is setuid
945 * - inode is setgid and group-exec
946 * - access failure for read and write
947 *
948 * Otherwise returns true.
949 */
950 static bool safe_hardlink_source(struct inode *inode)
951 {
952 umode_t mode = inode->i_mode;
953
954 /* Special files should not get pinned to the filesystem. */
955 if (!S_ISREG(mode))
956 return false;
957
958 /* Setuid files should not get pinned to the filesystem. */
959 if (mode & S_ISUID)
960 return false;
961
962 /* Executable setgid files should not get pinned to the filesystem. */
963 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
964 return false;
965
966 /* Hardlinking to unreadable or unwritable sources is dangerous. */
967 if (inode_permission(inode, MAY_READ | MAY_WRITE))
968 return false;
969
970 return true;
971 }
972
973 /**
974 * may_linkat - Check permissions for creating a hardlink
975 * @link: the source to hardlink from
976 *
977 * Block hardlink when all of:
978 * - sysctl_protected_hardlinks enabled
979 * - fsuid does not match inode
980 * - hardlink source is unsafe (see safe_hardlink_source() above)
981 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
982 *
983 * Returns 0 if successful, -ve on error.
984 */
985 static int may_linkat(struct path *link)
986 {
987 struct inode *inode = link->dentry->d_inode;
988
989 /* Inode writeback is not safe when the uid or gid are invalid. */
990 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
991 return -EOVERFLOW;
992
993 if (!sysctl_protected_hardlinks)
994 return 0;
995
996 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
997 * otherwise, it must be a safe source.
998 */
999 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1000 return 0;
1001
1002 audit_log_link_denied("linkat");
1003 return -EPERM;
1004 }
1005
1006 static __always_inline
1007 const char *get_link(struct nameidata *nd)
1008 {
1009 struct saved *last = nd->stack + nd->depth - 1;
1010 struct dentry *dentry = last->link.dentry;
1011 struct inode *inode = nd->link_inode;
1012 int error;
1013 const char *res;
1014
1015 if (!(nd->flags & LOOKUP_RCU)) {
1016 touch_atime(&last->link);
1017 cond_resched();
1018 } else if (atime_needs_update(&last->link, inode)) {
1019 if (unlikely(unlazy_walk(nd)))
1020 return ERR_PTR(-ECHILD);
1021 touch_atime(&last->link);
1022 }
1023
1024 error = security_inode_follow_link(dentry, inode,
1025 nd->flags & LOOKUP_RCU);
1026 if (unlikely(error))
1027 return ERR_PTR(error);
1028
1029 nd->last_type = LAST_BIND;
1030 res = inode->i_link;
1031 if (!res) {
1032 const char * (*get)(struct dentry *, struct inode *,
1033 struct delayed_call *);
1034 get = inode->i_op->get_link;
1035 if (nd->flags & LOOKUP_RCU) {
1036 res = get(NULL, inode, &last->done);
1037 if (res == ERR_PTR(-ECHILD)) {
1038 if (unlikely(unlazy_walk(nd)))
1039 return ERR_PTR(-ECHILD);
1040 res = get(dentry, inode, &last->done);
1041 }
1042 } else {
1043 res = get(dentry, inode, &last->done);
1044 }
1045 if (IS_ERR_OR_NULL(res))
1046 return res;
1047 }
1048 if (*res == '/') {
1049 if (!nd->root.mnt)
1050 set_root(nd);
1051 if (unlikely(nd_jump_root(nd)))
1052 return ERR_PTR(-ECHILD);
1053 while (unlikely(*++res == '/'))
1054 ;
1055 }
1056 if (!*res)
1057 res = NULL;
1058 return res;
1059 }
1060
1061 /*
1062 * follow_up - Find the mountpoint of path's vfsmount
1063 *
1064 * Given a path, find the mountpoint of its source file system.
1065 * Replace @path with the path of the mountpoint in the parent mount.
1066 * Up is towards /.
1067 *
1068 * Return 1 if we went up a level and 0 if we were already at the
1069 * root.
1070 */
1071 int follow_up(struct path *path)
1072 {
1073 struct mount *mnt = real_mount(path->mnt);
1074 struct mount *parent;
1075 struct dentry *mountpoint;
1076
1077 read_seqlock_excl(&mount_lock);
1078 parent = mnt->mnt_parent;
1079 if (parent == mnt) {
1080 read_sequnlock_excl(&mount_lock);
1081 return 0;
1082 }
1083 mntget(&parent->mnt);
1084 mountpoint = dget(mnt->mnt_mountpoint);
1085 read_sequnlock_excl(&mount_lock);
1086 dput(path->dentry);
1087 path->dentry = mountpoint;
1088 mntput(path->mnt);
1089 path->mnt = &parent->mnt;
1090 return 1;
1091 }
1092 EXPORT_SYMBOL(follow_up);
1093
1094 /*
1095 * Perform an automount
1096 * - return -EISDIR to tell follow_managed() to stop and return the path we
1097 * were called with.
1098 */
1099 static int follow_automount(struct path *path, struct nameidata *nd,
1100 bool *need_mntput)
1101 {
1102 struct vfsmount *mnt;
1103 int err;
1104
1105 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1106 return -EREMOTE;
1107
1108 /* We don't want to mount if someone's just doing a stat -
1109 * unless they're stat'ing a directory and appended a '/' to
1110 * the name.
1111 *
1112 * We do, however, want to mount if someone wants to open or
1113 * create a file of any type under the mountpoint, wants to
1114 * traverse through the mountpoint or wants to open the
1115 * mounted directory. Also, autofs may mark negative dentries
1116 * as being automount points. These will need the attentions
1117 * of the daemon to instantiate them before they can be used.
1118 */
1119 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1120 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1121 path->dentry->d_inode)
1122 return -EISDIR;
1123
1124 nd->total_link_count++;
1125 if (nd->total_link_count >= 40)
1126 return -ELOOP;
1127
1128 mnt = path->dentry->d_op->d_automount(path);
1129 if (IS_ERR(mnt)) {
1130 /*
1131 * The filesystem is allowed to return -EISDIR here to indicate
1132 * it doesn't want to automount. For instance, autofs would do
1133 * this so that its userspace daemon can mount on this dentry.
1134 *
1135 * However, we can only permit this if it's a terminal point in
1136 * the path being looked up; if it wasn't then the remainder of
1137 * the path is inaccessible and we should say so.
1138 */
1139 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1140 return -EREMOTE;
1141 return PTR_ERR(mnt);
1142 }
1143
1144 if (!mnt) /* mount collision */
1145 return 0;
1146
1147 if (!*need_mntput) {
1148 /* lock_mount() may release path->mnt on error */
1149 mntget(path->mnt);
1150 *need_mntput = true;
1151 }
1152 err = finish_automount(mnt, path);
1153
1154 switch (err) {
1155 case -EBUSY:
1156 /* Someone else made a mount here whilst we were busy */
1157 return 0;
1158 case 0:
1159 path_put(path);
1160 path->mnt = mnt;
1161 path->dentry = dget(mnt->mnt_root);
1162 return 0;
1163 default:
1164 return err;
1165 }
1166
1167 }
1168
1169 /*
1170 * Handle a dentry that is managed in some way.
1171 * - Flagged for transit management (autofs)
1172 * - Flagged as mountpoint
1173 * - Flagged as automount point
1174 *
1175 * This may only be called in refwalk mode.
1176 *
1177 * Serialization is taken care of in namespace.c
1178 */
1179 static int follow_managed(struct path *path, struct nameidata *nd)
1180 {
1181 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1182 unsigned managed;
1183 bool need_mntput = false;
1184 int ret = 0;
1185
1186 /* Given that we're not holding a lock here, we retain the value in a
1187 * local variable for each dentry as we look at it so that we don't see
1188 * the components of that value change under us */
1189 while (managed = READ_ONCE(path->dentry->d_flags),
1190 managed &= DCACHE_MANAGED_DENTRY,
1191 unlikely(managed != 0)) {
1192 /* Allow the filesystem to manage the transit without i_mutex
1193 * being held. */
1194 if (managed & DCACHE_MANAGE_TRANSIT) {
1195 BUG_ON(!path->dentry->d_op);
1196 BUG_ON(!path->dentry->d_op->d_manage);
1197 ret = path->dentry->d_op->d_manage(path, false);
1198 if (ret < 0)
1199 break;
1200 }
1201
1202 /* Transit to a mounted filesystem. */
1203 if (managed & DCACHE_MOUNTED) {
1204 struct vfsmount *mounted = lookup_mnt(path);
1205 if (mounted) {
1206 dput(path->dentry);
1207 if (need_mntput)
1208 mntput(path->mnt);
1209 path->mnt = mounted;
1210 path->dentry = dget(mounted->mnt_root);
1211 need_mntput = true;
1212 continue;
1213 }
1214
1215 /* Something is mounted on this dentry in another
1216 * namespace and/or whatever was mounted there in this
1217 * namespace got unmounted before lookup_mnt() could
1218 * get it */
1219 }
1220
1221 /* Handle an automount point */
1222 if (managed & DCACHE_NEED_AUTOMOUNT) {
1223 ret = follow_automount(path, nd, &need_mntput);
1224 if (ret < 0)
1225 break;
1226 continue;
1227 }
1228
1229 /* We didn't change the current path point */
1230 break;
1231 }
1232
1233 if (need_mntput && path->mnt == mnt)
1234 mntput(path->mnt);
1235 if (ret == -EISDIR || !ret)
1236 ret = 1;
1237 if (need_mntput)
1238 nd->flags |= LOOKUP_JUMPED;
1239 if (unlikely(ret < 0))
1240 path_put_conditional(path, nd);
1241 return ret;
1242 }
1243
1244 int follow_down_one(struct path *path)
1245 {
1246 struct vfsmount *mounted;
1247
1248 mounted = lookup_mnt(path);
1249 if (mounted) {
1250 dput(path->dentry);
1251 mntput(path->mnt);
1252 path->mnt = mounted;
1253 path->dentry = dget(mounted->mnt_root);
1254 return 1;
1255 }
1256 return 0;
1257 }
1258 EXPORT_SYMBOL(follow_down_one);
1259
1260 static inline int managed_dentry_rcu(const struct path *path)
1261 {
1262 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1263 path->dentry->d_op->d_manage(path, true) : 0;
1264 }
1265
1266 /*
1267 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1268 * we meet a managed dentry that would need blocking.
1269 */
1270 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1271 struct inode **inode, unsigned *seqp)
1272 {
1273 for (;;) {
1274 struct mount *mounted;
1275 /*
1276 * Don't forget we might have a non-mountpoint managed dentry
1277 * that wants to block transit.
1278 */
1279 switch (managed_dentry_rcu(path)) {
1280 case -ECHILD:
1281 default:
1282 return false;
1283 case -EISDIR:
1284 return true;
1285 case 0:
1286 break;
1287 }
1288
1289 if (!d_mountpoint(path->dentry))
1290 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1291
1292 mounted = __lookup_mnt(path->mnt, path->dentry);
1293 if (!mounted)
1294 break;
1295 path->mnt = &mounted->mnt;
1296 path->dentry = mounted->mnt.mnt_root;
1297 nd->flags |= LOOKUP_JUMPED;
1298 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1299 /*
1300 * Update the inode too. We don't need to re-check the
1301 * dentry sequence number here after this d_inode read,
1302 * because a mount-point is always pinned.
1303 */
1304 *inode = path->dentry->d_inode;
1305 }
1306 return !read_seqretry(&mount_lock, nd->m_seq) &&
1307 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1308 }
1309
1310 static int follow_dotdot_rcu(struct nameidata *nd)
1311 {
1312 struct inode *inode = nd->inode;
1313
1314 while (1) {
1315 if (path_equal(&nd->path, &nd->root))
1316 break;
1317 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1318 struct dentry *old = nd->path.dentry;
1319 struct dentry *parent = old->d_parent;
1320 unsigned seq;
1321
1322 inode = parent->d_inode;
1323 seq = read_seqcount_begin(&parent->d_seq);
1324 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1325 return -ECHILD;
1326 nd->path.dentry = parent;
1327 nd->seq = seq;
1328 if (unlikely(!path_connected(&nd->path)))
1329 return -ENOENT;
1330 break;
1331 } else {
1332 struct mount *mnt = real_mount(nd->path.mnt);
1333 struct mount *mparent = mnt->mnt_parent;
1334 struct dentry *mountpoint = mnt->mnt_mountpoint;
1335 struct inode *inode2 = mountpoint->d_inode;
1336 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1337 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1338 return -ECHILD;
1339 if (&mparent->mnt == nd->path.mnt)
1340 break;
1341 /* we know that mountpoint was pinned */
1342 nd->path.dentry = mountpoint;
1343 nd->path.mnt = &mparent->mnt;
1344 inode = inode2;
1345 nd->seq = seq;
1346 }
1347 }
1348 while (unlikely(d_mountpoint(nd->path.dentry))) {
1349 struct mount *mounted;
1350 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1351 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1352 return -ECHILD;
1353 if (!mounted)
1354 break;
1355 nd->path.mnt = &mounted->mnt;
1356 nd->path.dentry = mounted->mnt.mnt_root;
1357 inode = nd->path.dentry->d_inode;
1358 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1359 }
1360 nd->inode = inode;
1361 return 0;
1362 }
1363
1364 /*
1365 * Follow down to the covering mount currently visible to userspace. At each
1366 * point, the filesystem owning that dentry may be queried as to whether the
1367 * caller is permitted to proceed or not.
1368 */
1369 int follow_down(struct path *path)
1370 {
1371 unsigned managed;
1372 int ret;
1373
1374 while (managed = READ_ONCE(path->dentry->d_flags),
1375 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1376 /* Allow the filesystem to manage the transit without i_mutex
1377 * being held.
1378 *
1379 * We indicate to the filesystem if someone is trying to mount
1380 * something here. This gives autofs the chance to deny anyone
1381 * other than its daemon the right to mount on its
1382 * superstructure.
1383 *
1384 * The filesystem may sleep at this point.
1385 */
1386 if (managed & DCACHE_MANAGE_TRANSIT) {
1387 BUG_ON(!path->dentry->d_op);
1388 BUG_ON(!path->dentry->d_op->d_manage);
1389 ret = path->dentry->d_op->d_manage(path, false);
1390 if (ret < 0)
1391 return ret == -EISDIR ? 0 : ret;
1392 }
1393
1394 /* Transit to a mounted filesystem. */
1395 if (managed & DCACHE_MOUNTED) {
1396 struct vfsmount *mounted = lookup_mnt(path);
1397 if (!mounted)
1398 break;
1399 dput(path->dentry);
1400 mntput(path->mnt);
1401 path->mnt = mounted;
1402 path->dentry = dget(mounted->mnt_root);
1403 continue;
1404 }
1405
1406 /* Don't handle automount points here */
1407 break;
1408 }
1409 return 0;
1410 }
1411 EXPORT_SYMBOL(follow_down);
1412
1413 /*
1414 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1415 */
1416 static void follow_mount(struct path *path)
1417 {
1418 while (d_mountpoint(path->dentry)) {
1419 struct vfsmount *mounted = lookup_mnt(path);
1420 if (!mounted)
1421 break;
1422 dput(path->dentry);
1423 mntput(path->mnt);
1424 path->mnt = mounted;
1425 path->dentry = dget(mounted->mnt_root);
1426 }
1427 }
1428
1429 static int path_parent_directory(struct path *path)
1430 {
1431 struct dentry *old = path->dentry;
1432 /* rare case of legitimate dget_parent()... */
1433 path->dentry = dget_parent(path->dentry);
1434 dput(old);
1435 if (unlikely(!path_connected(path)))
1436 return -ENOENT;
1437 return 0;
1438 }
1439
1440 static int follow_dotdot(struct nameidata *nd)
1441 {
1442 while(1) {
1443 if (path_equal(&nd->path, &nd->root))
1444 break;
1445 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1446 int ret = path_parent_directory(&nd->path);
1447 if (ret)
1448 return ret;
1449 break;
1450 }
1451 if (!follow_up(&nd->path))
1452 break;
1453 }
1454 follow_mount(&nd->path);
1455 nd->inode = nd->path.dentry->d_inode;
1456 return 0;
1457 }
1458
1459 /*
1460 * This looks up the name in dcache and possibly revalidates the found dentry.
1461 * NULL is returned if the dentry does not exist in the cache.
1462 */
1463 static struct dentry *lookup_dcache(const struct qstr *name,
1464 struct dentry *dir,
1465 unsigned int flags)
1466 {
1467 struct dentry *dentry = d_lookup(dir, name);
1468 if (dentry) {
1469 int error = d_revalidate(dentry, flags);
1470 if (unlikely(error <= 0)) {
1471 if (!error)
1472 d_invalidate(dentry);
1473 dput(dentry);
1474 return ERR_PTR(error);
1475 }
1476 }
1477 return dentry;
1478 }
1479
1480 /*
1481 * Parent directory has inode locked exclusive. This is one
1482 * and only case when ->lookup() gets called on non in-lookup
1483 * dentries - as the matter of fact, this only gets called
1484 * when directory is guaranteed to have no in-lookup children
1485 * at all.
1486 */
1487 static struct dentry *__lookup_hash(const struct qstr *name,
1488 struct dentry *base, unsigned int flags)
1489 {
1490 struct dentry *dentry = lookup_dcache(name, base, flags);
1491 struct dentry *old;
1492 struct inode *dir = base->d_inode;
1493
1494 if (dentry)
1495 return dentry;
1496
1497 /* Don't create child dentry for a dead directory. */
1498 if (unlikely(IS_DEADDIR(dir)))
1499 return ERR_PTR(-ENOENT);
1500
1501 dentry = d_alloc(base, name);
1502 if (unlikely(!dentry))
1503 return ERR_PTR(-ENOMEM);
1504
1505 old = dir->i_op->lookup(dir, dentry, flags);
1506 if (unlikely(old)) {
1507 dput(dentry);
1508 dentry = old;
1509 }
1510 return dentry;
1511 }
1512
1513 static int lookup_fast(struct nameidata *nd,
1514 struct path *path, struct inode **inode,
1515 unsigned *seqp)
1516 {
1517 struct vfsmount *mnt = nd->path.mnt;
1518 struct dentry *dentry, *parent = nd->path.dentry;
1519 int status = 1;
1520 int err;
1521
1522 /*
1523 * Rename seqlock is not required here because in the off chance
1524 * of a false negative due to a concurrent rename, the caller is
1525 * going to fall back to non-racy lookup.
1526 */
1527 if (nd->flags & LOOKUP_RCU) {
1528 unsigned seq;
1529 bool negative;
1530 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1531 if (unlikely(!dentry)) {
1532 if (unlazy_walk(nd))
1533 return -ECHILD;
1534 return 0;
1535 }
1536
1537 /*
1538 * This sequence count validates that the inode matches
1539 * the dentry name information from lookup.
1540 */
1541 *inode = d_backing_inode(dentry);
1542 negative = d_is_negative(dentry);
1543 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1544 return -ECHILD;
1545
1546 /*
1547 * This sequence count validates that the parent had no
1548 * changes while we did the lookup of the dentry above.
1549 *
1550 * The memory barrier in read_seqcount_begin of child is
1551 * enough, we can use __read_seqcount_retry here.
1552 */
1553 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1554 return -ECHILD;
1555
1556 *seqp = seq;
1557 status = d_revalidate(dentry, nd->flags);
1558 if (likely(status > 0)) {
1559 /*
1560 * Note: do negative dentry check after revalidation in
1561 * case that drops it.
1562 */
1563 if (unlikely(negative))
1564 return -ENOENT;
1565 path->mnt = mnt;
1566 path->dentry = dentry;
1567 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1568 return 1;
1569 }
1570 if (unlazy_child(nd, dentry, seq))
1571 return -ECHILD;
1572 if (unlikely(status == -ECHILD))
1573 /* we'd been told to redo it in non-rcu mode */
1574 status = d_revalidate(dentry, nd->flags);
1575 } else {
1576 dentry = __d_lookup(parent, &nd->last);
1577 if (unlikely(!dentry))
1578 return 0;
1579 status = d_revalidate(dentry, nd->flags);
1580 }
1581 if (unlikely(status <= 0)) {
1582 if (!status)
1583 d_invalidate(dentry);
1584 dput(dentry);
1585 return status;
1586 }
1587 if (unlikely(d_is_negative(dentry))) {
1588 dput(dentry);
1589 return -ENOENT;
1590 }
1591
1592 path->mnt = mnt;
1593 path->dentry = dentry;
1594 err = follow_managed(path, nd);
1595 if (likely(err > 0))
1596 *inode = d_backing_inode(path->dentry);
1597 return err;
1598 }
1599
1600 /* Fast lookup failed, do it the slow way */
1601 static struct dentry *__lookup_slow(const struct qstr *name,
1602 struct dentry *dir,
1603 unsigned int flags)
1604 {
1605 struct dentry *dentry, *old;
1606 struct inode *inode = dir->d_inode;
1607 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1608
1609 /* Don't go there if it's already dead */
1610 if (unlikely(IS_DEADDIR(inode)))
1611 return ERR_PTR(-ENOENT);
1612 again:
1613 dentry = d_alloc_parallel(dir, name, &wq);
1614 if (IS_ERR(dentry))
1615 return dentry;
1616 if (unlikely(!d_in_lookup(dentry))) {
1617 if (!(flags & LOOKUP_NO_REVAL)) {
1618 int error = d_revalidate(dentry, flags);
1619 if (unlikely(error <= 0)) {
1620 if (!error) {
1621 d_invalidate(dentry);
1622 dput(dentry);
1623 goto again;
1624 }
1625 dput(dentry);
1626 dentry = ERR_PTR(error);
1627 }
1628 }
1629 } else {
1630 old = inode->i_op->lookup(inode, dentry, flags);
1631 d_lookup_done(dentry);
1632 if (unlikely(old)) {
1633 dput(dentry);
1634 dentry = old;
1635 }
1636 }
1637 return dentry;
1638 }
1639
1640 static struct dentry *lookup_slow(const struct qstr *name,
1641 struct dentry *dir,
1642 unsigned int flags)
1643 {
1644 struct inode *inode = dir->d_inode;
1645 struct dentry *res;
1646 inode_lock_shared(inode);
1647 res = __lookup_slow(name, dir, flags);
1648 inode_unlock_shared(inode);
1649 return res;
1650 }
1651
1652 static inline int may_lookup(struct nameidata *nd)
1653 {
1654 if (nd->flags & LOOKUP_RCU) {
1655 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1656 if (err != -ECHILD)
1657 return err;
1658 if (unlazy_walk(nd))
1659 return -ECHILD;
1660 }
1661 return inode_permission(nd->inode, MAY_EXEC);
1662 }
1663
1664 static inline int handle_dots(struct nameidata *nd, int type)
1665 {
1666 if (type == LAST_DOTDOT) {
1667 if (!nd->root.mnt)
1668 set_root(nd);
1669 if (nd->flags & LOOKUP_RCU) {
1670 return follow_dotdot_rcu(nd);
1671 } else
1672 return follow_dotdot(nd);
1673 }
1674 return 0;
1675 }
1676
1677 static int pick_link(struct nameidata *nd, struct path *link,
1678 struct inode *inode, unsigned seq)
1679 {
1680 int error;
1681 struct saved *last;
1682 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1683 path_to_nameidata(link, nd);
1684 return -ELOOP;
1685 }
1686 if (!(nd->flags & LOOKUP_RCU)) {
1687 if (link->mnt == nd->path.mnt)
1688 mntget(link->mnt);
1689 }
1690 error = nd_alloc_stack(nd);
1691 if (unlikely(error)) {
1692 if (error == -ECHILD) {
1693 if (unlikely(!legitimize_path(nd, link, seq))) {
1694 drop_links(nd);
1695 nd->depth = 0;
1696 nd->flags &= ~LOOKUP_RCU;
1697 nd->path.mnt = NULL;
1698 nd->path.dentry = NULL;
1699 if (!(nd->flags & LOOKUP_ROOT))
1700 nd->root.mnt = NULL;
1701 rcu_read_unlock();
1702 } else if (likely(unlazy_walk(nd)) == 0)
1703 error = nd_alloc_stack(nd);
1704 }
1705 if (error) {
1706 path_put(link);
1707 return error;
1708 }
1709 }
1710
1711 last = nd->stack + nd->depth++;
1712 last->link = *link;
1713 clear_delayed_call(&last->done);
1714 nd->link_inode = inode;
1715 last->seq = seq;
1716 return 1;
1717 }
1718
1719 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1720
1721 /*
1722 * Do we need to follow links? We _really_ want to be able
1723 * to do this check without having to look at inode->i_op,
1724 * so we keep a cache of "no, this doesn't need follow_link"
1725 * for the common case.
1726 */
1727 static inline int step_into(struct nameidata *nd, struct path *path,
1728 int flags, struct inode *inode, unsigned seq)
1729 {
1730 if (!(flags & WALK_MORE) && nd->depth)
1731 put_link(nd);
1732 if (likely(!d_is_symlink(path->dentry)) ||
1733 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1734 /* not a symlink or should not follow */
1735 path_to_nameidata(path, nd);
1736 nd->inode = inode;
1737 nd->seq = seq;
1738 return 0;
1739 }
1740 /* make sure that d_is_symlink above matches inode */
1741 if (nd->flags & LOOKUP_RCU) {
1742 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1743 return -ECHILD;
1744 }
1745 return pick_link(nd, path, inode, seq);
1746 }
1747
1748 static int walk_component(struct nameidata *nd, int flags)
1749 {
1750 struct path path;
1751 struct inode *inode;
1752 unsigned seq;
1753 int err;
1754 /*
1755 * "." and ".." are special - ".." especially so because it has
1756 * to be able to know about the current root directory and
1757 * parent relationships.
1758 */
1759 if (unlikely(nd->last_type != LAST_NORM)) {
1760 err = handle_dots(nd, nd->last_type);
1761 if (!(flags & WALK_MORE) && nd->depth)
1762 put_link(nd);
1763 return err;
1764 }
1765 err = lookup_fast(nd, &path, &inode, &seq);
1766 if (unlikely(err <= 0)) {
1767 if (err < 0)
1768 return err;
1769 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1770 nd->flags);
1771 if (IS_ERR(path.dentry))
1772 return PTR_ERR(path.dentry);
1773
1774 path.mnt = nd->path.mnt;
1775 err = follow_managed(&path, nd);
1776 if (unlikely(err < 0))
1777 return err;
1778
1779 if (unlikely(d_is_negative(path.dentry))) {
1780 path_to_nameidata(&path, nd);
1781 return -ENOENT;
1782 }
1783
1784 seq = 0; /* we are already out of RCU mode */
1785 inode = d_backing_inode(path.dentry);
1786 }
1787
1788 return step_into(nd, &path, flags, inode, seq);
1789 }
1790
1791 /*
1792 * We can do the critical dentry name comparison and hashing
1793 * operations one word at a time, but we are limited to:
1794 *
1795 * - Architectures with fast unaligned word accesses. We could
1796 * do a "get_unaligned()" if this helps and is sufficiently
1797 * fast.
1798 *
1799 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1800 * do not trap on the (extremely unlikely) case of a page
1801 * crossing operation.
1802 *
1803 * - Furthermore, we need an efficient 64-bit compile for the
1804 * 64-bit case in order to generate the "number of bytes in
1805 * the final mask". Again, that could be replaced with a
1806 * efficient population count instruction or similar.
1807 */
1808 #ifdef CONFIG_DCACHE_WORD_ACCESS
1809
1810 #include <asm/word-at-a-time.h>
1811
1812 #ifdef HASH_MIX
1813
1814 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1815
1816 #elif defined(CONFIG_64BIT)
1817 /*
1818 * Register pressure in the mixing function is an issue, particularly
1819 * on 32-bit x86, but almost any function requires one state value and
1820 * one temporary. Instead, use a function designed for two state values
1821 * and no temporaries.
1822 *
1823 * This function cannot create a collision in only two iterations, so
1824 * we have two iterations to achieve avalanche. In those two iterations,
1825 * we have six layers of mixing, which is enough to spread one bit's
1826 * influence out to 2^6 = 64 state bits.
1827 *
1828 * Rotate constants are scored by considering either 64 one-bit input
1829 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1830 * probability of that delta causing a change to each of the 128 output
1831 * bits, using a sample of random initial states.
1832 *
1833 * The Shannon entropy of the computed probabilities is then summed
1834 * to produce a score. Ideally, any input change has a 50% chance of
1835 * toggling any given output bit.
1836 *
1837 * Mixing scores (in bits) for (12,45):
1838 * Input delta: 1-bit 2-bit
1839 * 1 round: 713.3 42542.6
1840 * 2 rounds: 2753.7 140389.8
1841 * 3 rounds: 5954.1 233458.2
1842 * 4 rounds: 7862.6 256672.2
1843 * Perfect: 8192 258048
1844 * (64*128) (64*63/2 * 128)
1845 */
1846 #define HASH_MIX(x, y, a) \
1847 ( x ^= (a), \
1848 y ^= x, x = rol64(x,12),\
1849 x += y, y = rol64(y,45),\
1850 y *= 9 )
1851
1852 /*
1853 * Fold two longs into one 32-bit hash value. This must be fast, but
1854 * latency isn't quite as critical, as there is a fair bit of additional
1855 * work done before the hash value is used.
1856 */
1857 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1858 {
1859 y ^= x * GOLDEN_RATIO_64;
1860 y *= GOLDEN_RATIO_64;
1861 return y >> 32;
1862 }
1863
1864 #else /* 32-bit case */
1865
1866 /*
1867 * Mixing scores (in bits) for (7,20):
1868 * Input delta: 1-bit 2-bit
1869 * 1 round: 330.3 9201.6
1870 * 2 rounds: 1246.4 25475.4
1871 * 3 rounds: 1907.1 31295.1
1872 * 4 rounds: 2042.3 31718.6
1873 * Perfect: 2048 31744
1874 * (32*64) (32*31/2 * 64)
1875 */
1876 #define HASH_MIX(x, y, a) \
1877 ( x ^= (a), \
1878 y ^= x, x = rol32(x, 7),\
1879 x += y, y = rol32(y,20),\
1880 y *= 9 )
1881
1882 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1883 {
1884 /* Use arch-optimized multiply if one exists */
1885 return __hash_32(y ^ __hash_32(x));
1886 }
1887
1888 #endif
1889
1890 /*
1891 * Return the hash of a string of known length. This is carfully
1892 * designed to match hash_name(), which is the more critical function.
1893 * In particular, we must end by hashing a final word containing 0..7
1894 * payload bytes, to match the way that hash_name() iterates until it
1895 * finds the delimiter after the name.
1896 */
1897 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1898 {
1899 unsigned long a, x = 0, y = (unsigned long)salt;
1900
1901 for (;;) {
1902 if (!len)
1903 goto done;
1904 a = load_unaligned_zeropad(name);
1905 if (len < sizeof(unsigned long))
1906 break;
1907 HASH_MIX(x, y, a);
1908 name += sizeof(unsigned long);
1909 len -= sizeof(unsigned long);
1910 }
1911 x ^= a & bytemask_from_count(len);
1912 done:
1913 return fold_hash(x, y);
1914 }
1915 EXPORT_SYMBOL(full_name_hash);
1916
1917 /* Return the "hash_len" (hash and length) of a null-terminated string */
1918 u64 hashlen_string(const void *salt, const char *name)
1919 {
1920 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1921 unsigned long adata, mask, len;
1922 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1923
1924 len = 0;
1925 goto inside;
1926
1927 do {
1928 HASH_MIX(x, y, a);
1929 len += sizeof(unsigned long);
1930 inside:
1931 a = load_unaligned_zeropad(name+len);
1932 } while (!has_zero(a, &adata, &constants));
1933
1934 adata = prep_zero_mask(a, adata, &constants);
1935 mask = create_zero_mask(adata);
1936 x ^= a & zero_bytemask(mask);
1937
1938 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1939 }
1940 EXPORT_SYMBOL(hashlen_string);
1941
1942 /*
1943 * Calculate the length and hash of the path component, and
1944 * return the "hash_len" as the result.
1945 */
1946 static inline u64 hash_name(const void *salt, const char *name)
1947 {
1948 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1949 unsigned long adata, bdata, mask, len;
1950 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1951
1952 len = 0;
1953 goto inside;
1954
1955 do {
1956 HASH_MIX(x, y, a);
1957 len += sizeof(unsigned long);
1958 inside:
1959 a = load_unaligned_zeropad(name+len);
1960 b = a ^ REPEAT_BYTE('/');
1961 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1962
1963 adata = prep_zero_mask(a, adata, &constants);
1964 bdata = prep_zero_mask(b, bdata, &constants);
1965 mask = create_zero_mask(adata | bdata);
1966 x ^= a & zero_bytemask(mask);
1967
1968 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1969 }
1970
1971 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1972
1973 /* Return the hash of a string of known length */
1974 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1975 {
1976 unsigned long hash = init_name_hash(salt);
1977 while (len--)
1978 hash = partial_name_hash((unsigned char)*name++, hash);
1979 return end_name_hash(hash);
1980 }
1981 EXPORT_SYMBOL(full_name_hash);
1982
1983 /* Return the "hash_len" (hash and length) of a null-terminated string */
1984 u64 hashlen_string(const void *salt, const char *name)
1985 {
1986 unsigned long hash = init_name_hash(salt);
1987 unsigned long len = 0, c;
1988
1989 c = (unsigned char)*name;
1990 while (c) {
1991 len++;
1992 hash = partial_name_hash(c, hash);
1993 c = (unsigned char)name[len];
1994 }
1995 return hashlen_create(end_name_hash(hash), len);
1996 }
1997 EXPORT_SYMBOL(hashlen_string);
1998
1999 /*
2000 * We know there's a real path component here of at least
2001 * one character.
2002 */
2003 static inline u64 hash_name(const void *salt, const char *name)
2004 {
2005 unsigned long hash = init_name_hash(salt);
2006 unsigned long len = 0, c;
2007
2008 c = (unsigned char)*name;
2009 do {
2010 len++;
2011 hash = partial_name_hash(c, hash);
2012 c = (unsigned char)name[len];
2013 } while (c && c != '/');
2014 return hashlen_create(end_name_hash(hash), len);
2015 }
2016
2017 #endif
2018
2019 /*
2020 * Name resolution.
2021 * This is the basic name resolution function, turning a pathname into
2022 * the final dentry. We expect 'base' to be positive and a directory.
2023 *
2024 * Returns 0 and nd will have valid dentry and mnt on success.
2025 * Returns error and drops reference to input namei data on failure.
2026 */
2027 static int link_path_walk(const char *name, struct nameidata *nd)
2028 {
2029 int err;
2030
2031 if (IS_ERR(name))
2032 return PTR_ERR(name);
2033 while (*name=='/')
2034 name++;
2035 if (!*name)
2036 return 0;
2037
2038 /* At this point we know we have a real path component. */
2039 for(;;) {
2040 u64 hash_len;
2041 int type;
2042
2043 err = may_lookup(nd);
2044 if (err)
2045 return err;
2046
2047 hash_len = hash_name(nd->path.dentry, name);
2048
2049 type = LAST_NORM;
2050 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2051 case 2:
2052 if (name[1] == '.') {
2053 type = LAST_DOTDOT;
2054 nd->flags |= LOOKUP_JUMPED;
2055 }
2056 break;
2057 case 1:
2058 type = LAST_DOT;
2059 }
2060 if (likely(type == LAST_NORM)) {
2061 struct dentry *parent = nd->path.dentry;
2062 nd->flags &= ~LOOKUP_JUMPED;
2063 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2064 struct qstr this = { { .hash_len = hash_len }, .name = name };
2065 err = parent->d_op->d_hash(parent, &this);
2066 if (err < 0)
2067 return err;
2068 hash_len = this.hash_len;
2069 name = this.name;
2070 }
2071 }
2072
2073 nd->last.hash_len = hash_len;
2074 nd->last.name = name;
2075 nd->last_type = type;
2076
2077 name += hashlen_len(hash_len);
2078 if (!*name)
2079 goto OK;
2080 /*
2081 * If it wasn't NUL, we know it was '/'. Skip that
2082 * slash, and continue until no more slashes.
2083 */
2084 do {
2085 name++;
2086 } while (unlikely(*name == '/'));
2087 if (unlikely(!*name)) {
2088 OK:
2089 /* pathname body, done */
2090 if (!nd->depth)
2091 return 0;
2092 name = nd->stack[nd->depth - 1].name;
2093 /* trailing symlink, done */
2094 if (!name)
2095 return 0;
2096 /* last component of nested symlink */
2097 err = walk_component(nd, WALK_FOLLOW);
2098 } else {
2099 /* not the last component */
2100 err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2101 }
2102 if (err < 0)
2103 return err;
2104
2105 if (err) {
2106 const char *s = get_link(nd);
2107
2108 if (IS_ERR(s))
2109 return PTR_ERR(s);
2110 err = 0;
2111 if (unlikely(!s)) {
2112 /* jumped */
2113 put_link(nd);
2114 } else {
2115 nd->stack[nd->depth - 1].name = name;
2116 name = s;
2117 continue;
2118 }
2119 }
2120 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2121 if (nd->flags & LOOKUP_RCU) {
2122 if (unlazy_walk(nd))
2123 return -ECHILD;
2124 }
2125 return -ENOTDIR;
2126 }
2127 }
2128 }
2129
2130 /* must be paired with terminate_walk() */
2131 static const char *path_init(struct nameidata *nd, unsigned flags)
2132 {
2133 const char *s = nd->name->name;
2134
2135 if (!*s)
2136 flags &= ~LOOKUP_RCU;
2137 if (flags & LOOKUP_RCU)
2138 rcu_read_lock();
2139
2140 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2141 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2142 nd->depth = 0;
2143 if (flags & LOOKUP_ROOT) {
2144 struct dentry *root = nd->root.dentry;
2145 struct inode *inode = root->d_inode;
2146 if (*s && unlikely(!d_can_lookup(root)))
2147 return ERR_PTR(-ENOTDIR);
2148 nd->path = nd->root;
2149 nd->inode = inode;
2150 if (flags & LOOKUP_RCU) {
2151 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2152 nd->root_seq = nd->seq;
2153 nd->m_seq = read_seqbegin(&mount_lock);
2154 } else {
2155 path_get(&nd->path);
2156 }
2157 return s;
2158 }
2159
2160 nd->root.mnt = NULL;
2161 nd->path.mnt = NULL;
2162 nd->path.dentry = NULL;
2163
2164 nd->m_seq = read_seqbegin(&mount_lock);
2165 if (*s == '/') {
2166 set_root(nd);
2167 if (likely(!nd_jump_root(nd)))
2168 return s;
2169 return ERR_PTR(-ECHILD);
2170 } else if (nd->dfd == AT_FDCWD) {
2171 if (flags & LOOKUP_RCU) {
2172 struct fs_struct *fs = current->fs;
2173 unsigned seq;
2174
2175 do {
2176 seq = read_seqcount_begin(&fs->seq);
2177 nd->path = fs->pwd;
2178 nd->inode = nd->path.dentry->d_inode;
2179 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2180 } while (read_seqcount_retry(&fs->seq, seq));
2181 } else {
2182 get_fs_pwd(current->fs, &nd->path);
2183 nd->inode = nd->path.dentry->d_inode;
2184 }
2185 return s;
2186 } else {
2187 /* Caller must check execute permissions on the starting path component */
2188 struct fd f = fdget_raw(nd->dfd);
2189 struct dentry *dentry;
2190
2191 if (!f.file)
2192 return ERR_PTR(-EBADF);
2193
2194 dentry = f.file->f_path.dentry;
2195
2196 if (*s && unlikely(!d_can_lookup(dentry))) {
2197 fdput(f);
2198 return ERR_PTR(-ENOTDIR);
2199 }
2200
2201 nd->path = f.file->f_path;
2202 if (flags & LOOKUP_RCU) {
2203 nd->inode = nd->path.dentry->d_inode;
2204 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2205 } else {
2206 path_get(&nd->path);
2207 nd->inode = nd->path.dentry->d_inode;
2208 }
2209 fdput(f);
2210 return s;
2211 }
2212 }
2213
2214 static const char *trailing_symlink(struct nameidata *nd)
2215 {
2216 const char *s;
2217 int error = may_follow_link(nd);
2218 if (unlikely(error))
2219 return ERR_PTR(error);
2220 nd->flags |= LOOKUP_PARENT;
2221 nd->stack[0].name = NULL;
2222 s = get_link(nd);
2223 return s ? s : "";
2224 }
2225
2226 static inline int lookup_last(struct nameidata *nd)
2227 {
2228 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2229 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2230
2231 nd->flags &= ~LOOKUP_PARENT;
2232 return walk_component(nd, 0);
2233 }
2234
2235 static int handle_lookup_down(struct nameidata *nd)
2236 {
2237 struct path path = nd->path;
2238 struct inode *inode = nd->inode;
2239 unsigned seq = nd->seq;
2240 int err;
2241
2242 if (nd->flags & LOOKUP_RCU) {
2243 /*
2244 * don't bother with unlazy_walk on failure - we are
2245 * at the very beginning of walk, so we lose nothing
2246 * if we simply redo everything in non-RCU mode
2247 */
2248 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2249 return -ECHILD;
2250 } else {
2251 dget(path.dentry);
2252 err = follow_managed(&path, nd);
2253 if (unlikely(err < 0))
2254 return err;
2255 inode = d_backing_inode(path.dentry);
2256 seq = 0;
2257 }
2258 path_to_nameidata(&path, nd);
2259 nd->inode = inode;
2260 nd->seq = seq;
2261 return 0;
2262 }
2263
2264 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2265 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2266 {
2267 const char *s = path_init(nd, flags);
2268 int err;
2269
2270 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2271 err = handle_lookup_down(nd);
2272 if (unlikely(err < 0))
2273 s = ERR_PTR(err);
2274 }
2275
2276 while (!(err = link_path_walk(s, nd))
2277 && ((err = lookup_last(nd)) > 0)) {
2278 s = trailing_symlink(nd);
2279 }
2280 if (!err)
2281 err = complete_walk(nd);
2282
2283 if (!err && nd->flags & LOOKUP_DIRECTORY)
2284 if (!d_can_lookup(nd->path.dentry))
2285 err = -ENOTDIR;
2286 if (!err) {
2287 *path = nd->path;
2288 nd->path.mnt = NULL;
2289 nd->path.dentry = NULL;
2290 }
2291 terminate_walk(nd);
2292 return err;
2293 }
2294
2295 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2296 struct path *path, struct path *root)
2297 {
2298 int retval;
2299 struct nameidata nd;
2300 if (IS_ERR(name))
2301 return PTR_ERR(name);
2302 if (unlikely(root)) {
2303 nd.root = *root;
2304 flags |= LOOKUP_ROOT;
2305 }
2306 set_nameidata(&nd, dfd, name);
2307 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2308 if (unlikely(retval == -ECHILD))
2309 retval = path_lookupat(&nd, flags, path);
2310 if (unlikely(retval == -ESTALE))
2311 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2312
2313 if (likely(!retval))
2314 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2315 restore_nameidata();
2316 putname(name);
2317 return retval;
2318 }
2319
2320 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2321 static int path_parentat(struct nameidata *nd, unsigned flags,
2322 struct path *parent)
2323 {
2324 const char *s = path_init(nd, flags);
2325 int err = link_path_walk(s, nd);
2326 if (!err)
2327 err = complete_walk(nd);
2328 if (!err) {
2329 *parent = nd->path;
2330 nd->path.mnt = NULL;
2331 nd->path.dentry = NULL;
2332 }
2333 terminate_walk(nd);
2334 return err;
2335 }
2336
2337 static struct filename *filename_parentat(int dfd, struct filename *name,
2338 unsigned int flags, struct path *parent,
2339 struct qstr *last, int *type)
2340 {
2341 int retval;
2342 struct nameidata nd;
2343
2344 if (IS_ERR(name))
2345 return name;
2346 set_nameidata(&nd, dfd, name);
2347 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2348 if (unlikely(retval == -ECHILD))
2349 retval = path_parentat(&nd, flags, parent);
2350 if (unlikely(retval == -ESTALE))
2351 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2352 if (likely(!retval)) {
2353 *last = nd.last;
2354 *type = nd.last_type;
2355 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2356 } else {
2357 putname(name);
2358 name = ERR_PTR(retval);
2359 }
2360 restore_nameidata();
2361 return name;
2362 }
2363
2364 /* does lookup, returns the object with parent locked */
2365 struct dentry *kern_path_locked(const char *name, struct path *path)
2366 {
2367 struct filename *filename;
2368 struct dentry *d;
2369 struct qstr last;
2370 int type;
2371
2372 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2373 &last, &type);
2374 if (IS_ERR(filename))
2375 return ERR_CAST(filename);
2376 if (unlikely(type != LAST_NORM)) {
2377 path_put(path);
2378 putname(filename);
2379 return ERR_PTR(-EINVAL);
2380 }
2381 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2382 d = __lookup_hash(&last, path->dentry, 0);
2383 if (IS_ERR(d)) {
2384 inode_unlock(path->dentry->d_inode);
2385 path_put(path);
2386 }
2387 putname(filename);
2388 return d;
2389 }
2390
2391 int kern_path(const char *name, unsigned int flags, struct path *path)
2392 {
2393 return filename_lookup(AT_FDCWD, getname_kernel(name),
2394 flags, path, NULL);
2395 }
2396 EXPORT_SYMBOL(kern_path);
2397
2398 /**
2399 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2400 * @dentry: pointer to dentry of the base directory
2401 * @mnt: pointer to vfs mount of the base directory
2402 * @name: pointer to file name
2403 * @flags: lookup flags
2404 * @path: pointer to struct path to fill
2405 */
2406 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2407 const char *name, unsigned int flags,
2408 struct path *path)
2409 {
2410 struct path root = {.mnt = mnt, .dentry = dentry};
2411 /* the first argument of filename_lookup() is ignored with root */
2412 return filename_lookup(AT_FDCWD, getname_kernel(name),
2413 flags , path, &root);
2414 }
2415 EXPORT_SYMBOL(vfs_path_lookup);
2416
2417 static int lookup_one_len_common(const char *name, struct dentry *base,
2418 int len, struct qstr *this)
2419 {
2420 this->name = name;
2421 this->len = len;
2422 this->hash = full_name_hash(base, name, len);
2423 if (!len)
2424 return -EACCES;
2425
2426 if (unlikely(name[0] == '.')) {
2427 if (len < 2 || (len == 2 && name[1] == '.'))
2428 return -EACCES;
2429 }
2430
2431 while (len--) {
2432 unsigned int c = *(const unsigned char *)name++;
2433 if (c == '/' || c == '\0')
2434 return -EACCES;
2435 }
2436 /*
2437 * See if the low-level filesystem might want
2438 * to use its own hash..
2439 */
2440 if (base->d_flags & DCACHE_OP_HASH) {
2441 int err = base->d_op->d_hash(base, this);
2442 if (err < 0)
2443 return err;
2444 }
2445
2446 return inode_permission(base->d_inode, MAY_EXEC);
2447 }
2448
2449 /**
2450 * try_lookup_one_len - filesystem helper to lookup single pathname component
2451 * @name: pathname component to lookup
2452 * @base: base directory to lookup from
2453 * @len: maximum length @len should be interpreted to
2454 *
2455 * Look up a dentry by name in the dcache, returning NULL if it does not
2456 * currently exist. The function does not try to create a dentry.
2457 *
2458 * Note that this routine is purely a helper for filesystem usage and should
2459 * not be called by generic code.
2460 *
2461 * The caller must hold base->i_mutex.
2462 */
2463 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2464 {
2465 struct qstr this;
2466 int err;
2467
2468 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2469
2470 err = lookup_one_len_common(name, base, len, &this);
2471 if (err)
2472 return ERR_PTR(err);
2473
2474 return lookup_dcache(&this, base, 0);
2475 }
2476 EXPORT_SYMBOL(try_lookup_one_len);
2477
2478 /**
2479 * lookup_one_len - filesystem helper to lookup single pathname component
2480 * @name: pathname component to lookup
2481 * @base: base directory to lookup from
2482 * @len: maximum length @len should be interpreted to
2483 *
2484 * Note that this routine is purely a helper for filesystem usage and should
2485 * not be called by generic code.
2486 *
2487 * The caller must hold base->i_mutex.
2488 */
2489 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2490 {
2491 struct dentry *dentry;
2492 struct qstr this;
2493 int err;
2494
2495 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2496
2497 err = lookup_one_len_common(name, base, len, &this);
2498 if (err)
2499 return ERR_PTR(err);
2500
2501 dentry = lookup_dcache(&this, base, 0);
2502 return dentry ? dentry : __lookup_slow(&this, base, 0);
2503 }
2504 EXPORT_SYMBOL(lookup_one_len);
2505
2506 /**
2507 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2508 * @name: pathname component to lookup
2509 * @base: base directory to lookup from
2510 * @len: maximum length @len should be interpreted to
2511 *
2512 * Note that this routine is purely a helper for filesystem usage and should
2513 * not be called by generic code.
2514 *
2515 * Unlike lookup_one_len, it should be called without the parent
2516 * i_mutex held, and will take the i_mutex itself if necessary.
2517 */
2518 struct dentry *lookup_one_len_unlocked(const char *name,
2519 struct dentry *base, int len)
2520 {
2521 struct qstr this;
2522 int err;
2523 struct dentry *ret;
2524
2525 err = lookup_one_len_common(name, base, len, &this);
2526 if (err)
2527 return ERR_PTR(err);
2528
2529 ret = lookup_dcache(&this, base, 0);
2530 if (!ret)
2531 ret = lookup_slow(&this, base, 0);
2532 return ret;
2533 }
2534 EXPORT_SYMBOL(lookup_one_len_unlocked);
2535
2536 #ifdef CONFIG_UNIX98_PTYS
2537 int path_pts(struct path *path)
2538 {
2539 /* Find something mounted on "pts" in the same directory as
2540 * the input path.
2541 */
2542 struct dentry *child, *parent;
2543 struct qstr this;
2544 int ret;
2545
2546 ret = path_parent_directory(path);
2547 if (ret)
2548 return ret;
2549
2550 parent = path->dentry;
2551 this.name = "pts";
2552 this.len = 3;
2553 child = d_hash_and_lookup(parent, &this);
2554 if (!child)
2555 return -ENOENT;
2556
2557 path->dentry = child;
2558 dput(parent);
2559 follow_mount(path);
2560 return 0;
2561 }
2562 #endif
2563
2564 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2565 struct path *path, int *empty)
2566 {
2567 return filename_lookup(dfd, getname_flags(name, flags, empty),
2568 flags, path, NULL);
2569 }
2570 EXPORT_SYMBOL(user_path_at_empty);
2571
2572 /**
2573 * mountpoint_last - look up last component for umount
2574 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2575 *
2576 * This is a special lookup_last function just for umount. In this case, we
2577 * need to resolve the path without doing any revalidation.
2578 *
2579 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2580 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2581 * in almost all cases, this lookup will be served out of the dcache. The only
2582 * cases where it won't are if nd->last refers to a symlink or the path is
2583 * bogus and it doesn't exist.
2584 *
2585 * Returns:
2586 * -error: if there was an error during lookup. This includes -ENOENT if the
2587 * lookup found a negative dentry.
2588 *
2589 * 0: if we successfully resolved nd->last and found it to not to be a
2590 * symlink that needs to be followed.
2591 *
2592 * 1: if we successfully resolved nd->last and found it to be a symlink
2593 * that needs to be followed.
2594 */
2595 static int
2596 mountpoint_last(struct nameidata *nd)
2597 {
2598 int error = 0;
2599 struct dentry *dir = nd->path.dentry;
2600 struct path path;
2601
2602 /* If we're in rcuwalk, drop out of it to handle last component */
2603 if (nd->flags & LOOKUP_RCU) {
2604 if (unlazy_walk(nd))
2605 return -ECHILD;
2606 }
2607
2608 nd->flags &= ~LOOKUP_PARENT;
2609
2610 if (unlikely(nd->last_type != LAST_NORM)) {
2611 error = handle_dots(nd, nd->last_type);
2612 if (error)
2613 return error;
2614 path.dentry = dget(nd->path.dentry);
2615 } else {
2616 path.dentry = d_lookup(dir, &nd->last);
2617 if (!path.dentry) {
2618 /*
2619 * No cached dentry. Mounted dentries are pinned in the
2620 * cache, so that means that this dentry is probably
2621 * a symlink or the path doesn't actually point
2622 * to a mounted dentry.
2623 */
2624 path.dentry = lookup_slow(&nd->last, dir,
2625 nd->flags | LOOKUP_NO_REVAL);
2626 if (IS_ERR(path.dentry))
2627 return PTR_ERR(path.dentry);
2628 }
2629 }
2630 if (d_is_negative(path.dentry)) {
2631 dput(path.dentry);
2632 return -ENOENT;
2633 }
2634 path.mnt = nd->path.mnt;
2635 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2636 }
2637
2638 /**
2639 * path_mountpoint - look up a path to be umounted
2640 * @nd: lookup context
2641 * @flags: lookup flags
2642 * @path: pointer to container for result
2643 *
2644 * Look up the given name, but don't attempt to revalidate the last component.
2645 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2646 */
2647 static int
2648 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2649 {
2650 const char *s = path_init(nd, flags);
2651 int err;
2652
2653 while (!(err = link_path_walk(s, nd)) &&
2654 (err = mountpoint_last(nd)) > 0) {
2655 s = trailing_symlink(nd);
2656 }
2657 if (!err) {
2658 *path = nd->path;
2659 nd->path.mnt = NULL;
2660 nd->path.dentry = NULL;
2661 follow_mount(path);
2662 }
2663 terminate_walk(nd);
2664 return err;
2665 }
2666
2667 static int
2668 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2669 unsigned int flags)
2670 {
2671 struct nameidata nd;
2672 int error;
2673 if (IS_ERR(name))
2674 return PTR_ERR(name);
2675 set_nameidata(&nd, dfd, name);
2676 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2677 if (unlikely(error == -ECHILD))
2678 error = path_mountpoint(&nd, flags, path);
2679 if (unlikely(error == -ESTALE))
2680 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2681 if (likely(!error))
2682 audit_inode(name, path->dentry, 0);
2683 restore_nameidata();
2684 putname(name);
2685 return error;
2686 }
2687
2688 /**
2689 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2690 * @dfd: directory file descriptor
2691 * @name: pathname from userland
2692 * @flags: lookup flags
2693 * @path: pointer to container to hold result
2694 *
2695 * A umount is a special case for path walking. We're not actually interested
2696 * in the inode in this situation, and ESTALE errors can be a problem. We
2697 * simply want track down the dentry and vfsmount attached at the mountpoint
2698 * and avoid revalidating the last component.
2699 *
2700 * Returns 0 and populates "path" on success.
2701 */
2702 int
2703 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2704 struct path *path)
2705 {
2706 return filename_mountpoint(dfd, getname(name), path, flags);
2707 }
2708
2709 int
2710 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2711 unsigned int flags)
2712 {
2713 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2714 }
2715 EXPORT_SYMBOL(kern_path_mountpoint);
2716
2717 int __check_sticky(struct inode *dir, struct inode *inode)
2718 {
2719 kuid_t fsuid = current_fsuid();
2720
2721 if (uid_eq(inode->i_uid, fsuid))
2722 return 0;
2723 if (uid_eq(dir->i_uid, fsuid))
2724 return 0;
2725 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2726 }
2727 EXPORT_SYMBOL(__check_sticky);
2728
2729 /*
2730 * Check whether we can remove a link victim from directory dir, check
2731 * whether the type of victim is right.
2732 * 1. We can't do it if dir is read-only (done in permission())
2733 * 2. We should have write and exec permissions on dir
2734 * 3. We can't remove anything from append-only dir
2735 * 4. We can't do anything with immutable dir (done in permission())
2736 * 5. If the sticky bit on dir is set we should either
2737 * a. be owner of dir, or
2738 * b. be owner of victim, or
2739 * c. have CAP_FOWNER capability
2740 * 6. If the victim is append-only or immutable we can't do antyhing with
2741 * links pointing to it.
2742 * 7. If the victim has an unknown uid or gid we can't change the inode.
2743 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2744 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2745 * 10. We can't remove a root or mountpoint.
2746 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2747 * nfs_async_unlink().
2748 */
2749 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2750 {
2751 struct inode *inode = d_backing_inode(victim);
2752 int error;
2753
2754 if (d_is_negative(victim))
2755 return -ENOENT;
2756 BUG_ON(!inode);
2757
2758 BUG_ON(victim->d_parent->d_inode != dir);
2759
2760 /* Inode writeback is not safe when the uid or gid are invalid. */
2761 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2762 return -EOVERFLOW;
2763
2764 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2765
2766 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2767 if (error)
2768 return error;
2769 if (IS_APPEND(dir))
2770 return -EPERM;
2771
2772 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2773 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2774 return -EPERM;
2775 if (isdir) {
2776 if (!d_is_dir(victim))
2777 return -ENOTDIR;
2778 if (IS_ROOT(victim))
2779 return -EBUSY;
2780 } else if (d_is_dir(victim))
2781 return -EISDIR;
2782 if (IS_DEADDIR(dir))
2783 return -ENOENT;
2784 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2785 return -EBUSY;
2786 return 0;
2787 }
2788
2789 /* Check whether we can create an object with dentry child in directory
2790 * dir.
2791 * 1. We can't do it if child already exists (open has special treatment for
2792 * this case, but since we are inlined it's OK)
2793 * 2. We can't do it if dir is read-only (done in permission())
2794 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2795 * 4. We should have write and exec permissions on dir
2796 * 5. We can't do it if dir is immutable (done in permission())
2797 */
2798 static inline int may_create(struct inode *dir, struct dentry *child)
2799 {
2800 struct user_namespace *s_user_ns;
2801 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2802 if (child->d_inode)
2803 return -EEXIST;
2804 if (IS_DEADDIR(dir))
2805 return -ENOENT;
2806 s_user_ns = dir->i_sb->s_user_ns;
2807 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2808 !kgid_has_mapping(s_user_ns, current_fsgid()))
2809 return -EOVERFLOW;
2810 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2811 }
2812
2813 /*
2814 * p1 and p2 should be directories on the same fs.
2815 */
2816 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2817 {
2818 struct dentry *p;
2819
2820 if (p1 == p2) {
2821 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2822 return NULL;
2823 }
2824
2825 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2826
2827 p = d_ancestor(p2, p1);
2828 if (p) {
2829 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2830 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2831 return p;
2832 }
2833
2834 p = d_ancestor(p1, p2);
2835 if (p) {
2836 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2837 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2838 return p;
2839 }
2840
2841 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2842 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2843 return NULL;
2844 }
2845 EXPORT_SYMBOL(lock_rename);
2846
2847 void unlock_rename(struct dentry *p1, struct dentry *p2)
2848 {
2849 inode_unlock(p1->d_inode);
2850 if (p1 != p2) {
2851 inode_unlock(p2->d_inode);
2852 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2853 }
2854 }
2855 EXPORT_SYMBOL(unlock_rename);
2856
2857 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2858 bool want_excl)
2859 {
2860 int error = may_create(dir, dentry);
2861 if (error)
2862 return error;
2863
2864 if (!dir->i_op->create)
2865 return -EACCES; /* shouldn't it be ENOSYS? */
2866 mode &= S_IALLUGO;
2867 mode |= S_IFREG;
2868 error = security_inode_create(dir, dentry, mode);
2869 if (error)
2870 return error;
2871 error = dir->i_op->create(dir, dentry, mode, want_excl);
2872 if (!error)
2873 fsnotify_create(dir, dentry);
2874 return error;
2875 }
2876 EXPORT_SYMBOL(vfs_create);
2877
2878 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2879 int (*f)(struct dentry *, umode_t, void *),
2880 void *arg)
2881 {
2882 struct inode *dir = dentry->d_parent->d_inode;
2883 int error = may_create(dir, dentry);
2884 if (error)
2885 return error;
2886
2887 mode &= S_IALLUGO;
2888 mode |= S_IFREG;
2889 error = security_inode_create(dir, dentry, mode);
2890 if (error)
2891 return error;
2892 error = f(dentry, mode, arg);
2893 if (!error)
2894 fsnotify_create(dir, dentry);
2895 return error;
2896 }
2897 EXPORT_SYMBOL(vfs_mkobj);
2898
2899 bool may_open_dev(const struct path *path)
2900 {
2901 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2902 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2903 }
2904
2905 static int may_open(const struct path *path, int acc_mode, int flag)
2906 {
2907 struct dentry *dentry = path->dentry;
2908 struct inode *inode = dentry->d_inode;
2909 int error;
2910
2911 if (!inode)
2912 return -ENOENT;
2913
2914 switch (inode->i_mode & S_IFMT) {
2915 case S_IFLNK:
2916 return -ELOOP;
2917 case S_IFDIR:
2918 if (acc_mode & MAY_WRITE)
2919 return -EISDIR;
2920 break;
2921 case S_IFBLK:
2922 case S_IFCHR:
2923 if (!may_open_dev(path))
2924 return -EACCES;
2925 /*FALLTHRU*/
2926 case S_IFIFO:
2927 case S_IFSOCK:
2928 flag &= ~O_TRUNC;
2929 break;
2930 }
2931
2932 error = inode_permission(inode, MAY_OPEN | acc_mode);
2933 if (error)
2934 return error;
2935
2936 /*
2937 * An append-only file must be opened in append mode for writing.
2938 */
2939 if (IS_APPEND(inode)) {
2940 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2941 return -EPERM;
2942 if (flag & O_TRUNC)
2943 return -EPERM;
2944 }
2945
2946 /* O_NOATIME can only be set by the owner or superuser */
2947 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2948 return -EPERM;
2949
2950 return 0;
2951 }
2952
2953 static int handle_truncate(struct file *filp)
2954 {
2955 const struct path *path = &filp->f_path;
2956 struct inode *inode = path->dentry->d_inode;
2957 int error = get_write_access(inode);
2958 if (error)
2959 return error;
2960 /*
2961 * Refuse to truncate files with mandatory locks held on them.
2962 */
2963 error = locks_verify_locked(filp);
2964 if (!error)
2965 error = security_path_truncate(path);
2966 if (!error) {
2967 error = do_truncate(path->dentry, 0,
2968 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2969 filp);
2970 }
2971 put_write_access(inode);
2972 return error;
2973 }
2974
2975 static inline int open_to_namei_flags(int flag)
2976 {
2977 if ((flag & O_ACCMODE) == 3)
2978 flag--;
2979 return flag;
2980 }
2981
2982 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2983 {
2984 struct user_namespace *s_user_ns;
2985 int error = security_path_mknod(dir, dentry, mode, 0);
2986 if (error)
2987 return error;
2988
2989 s_user_ns = dir->dentry->d_sb->s_user_ns;
2990 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2991 !kgid_has_mapping(s_user_ns, current_fsgid()))
2992 return -EOVERFLOW;
2993
2994 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2995 if (error)
2996 return error;
2997
2998 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2999 }
3000
3001 /*
3002 * Attempt to atomically look up, create and open a file from a negative
3003 * dentry.
3004 *
3005 * Returns 0 if successful. The file will have been created and attached to
3006 * @file by the filesystem calling finish_open().
3007 *
3008 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3009 * be set. The caller will need to perform the open themselves. @path will
3010 * have been updated to point to the new dentry. This may be negative.
3011 *
3012 * Returns an error code otherwise.
3013 */
3014 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3015 struct path *path, struct file *file,
3016 const struct open_flags *op,
3017 int open_flag, umode_t mode)
3018 {
3019 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3020 struct inode *dir = nd->path.dentry->d_inode;
3021 int error;
3022
3023 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3024 open_flag &= ~O_TRUNC;
3025
3026 if (nd->flags & LOOKUP_DIRECTORY)
3027 open_flag |= O_DIRECTORY;
3028
3029 file->f_path.dentry = DENTRY_NOT_SET;
3030 file->f_path.mnt = nd->path.mnt;
3031 error = dir->i_op->atomic_open(dir, dentry, file,
3032 open_to_namei_flags(open_flag), mode);
3033 d_lookup_done(dentry);
3034 if (!error) {
3035 if (file->f_mode & FMODE_OPENED) {
3036 /*
3037 * We didn't have the inode before the open, so check open
3038 * permission here.
3039 */
3040 int acc_mode = op->acc_mode;
3041 if (file->f_mode & FMODE_CREATED) {
3042 WARN_ON(!(open_flag & O_CREAT));
3043 fsnotify_create(dir, dentry);
3044 acc_mode = 0;
3045 }
3046 error = may_open(&file->f_path, acc_mode, open_flag);
3047 if (WARN_ON(error > 0))
3048 error = -EINVAL;
3049 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3050 error = -EIO;
3051 } else {
3052 if (file->f_path.dentry) {
3053 dput(dentry);
3054 dentry = file->f_path.dentry;
3055 }
3056 if (file->f_mode & FMODE_CREATED)
3057 fsnotify_create(dir, dentry);
3058 if (unlikely(d_is_negative(dentry))) {
3059 error = -ENOENT;
3060 } else {
3061 path->dentry = dentry;
3062 path->mnt = nd->path.mnt;
3063 return 0;
3064 }
3065 }
3066 }
3067 dput(dentry);
3068 return error;
3069 }
3070
3071 /*
3072 * Look up and maybe create and open the last component.
3073 *
3074 * Must be called with parent locked (exclusive in O_CREAT case).
3075 *
3076 * Returns 0 on success, that is, if
3077 * the file was successfully atomically created (if necessary) and opened, or
3078 * the file was not completely opened at this time, though lookups and
3079 * creations were performed.
3080 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3081 * In the latter case dentry returned in @path might be negative if O_CREAT
3082 * hadn't been specified.
3083 *
3084 * An error code is returned on failure.
3085 */
3086 static int lookup_open(struct nameidata *nd, struct path *path,
3087 struct file *file,
3088 const struct open_flags *op,
3089 bool got_write)
3090 {
3091 struct dentry *dir = nd->path.dentry;
3092 struct inode *dir_inode = dir->d_inode;
3093 int open_flag = op->open_flag;
3094 struct dentry *dentry;
3095 int error, create_error = 0;
3096 umode_t mode = op->mode;
3097 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3098
3099 if (unlikely(IS_DEADDIR(dir_inode)))
3100 return -ENOENT;
3101
3102 file->f_mode &= ~FMODE_CREATED;
3103 dentry = d_lookup(dir, &nd->last);
3104 for (;;) {
3105 if (!dentry) {
3106 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3107 if (IS_ERR(dentry))
3108 return PTR_ERR(dentry);
3109 }
3110 if (d_in_lookup(dentry))
3111 break;
3112
3113 error = d_revalidate(dentry, nd->flags);
3114 if (likely(error > 0))
3115 break;
3116 if (error)
3117 goto out_dput;
3118 d_invalidate(dentry);
3119 dput(dentry);
3120 dentry = NULL;
3121 }
3122 if (dentry->d_inode) {
3123 /* Cached positive dentry: will open in f_op->open */
3124 goto out_no_open;
3125 }
3126
3127 /*
3128 * Checking write permission is tricky, bacuse we don't know if we are
3129 * going to actually need it: O_CREAT opens should work as long as the
3130 * file exists. But checking existence breaks atomicity. The trick is
3131 * to check access and if not granted clear O_CREAT from the flags.
3132 *
3133 * Another problem is returing the "right" error value (e.g. for an
3134 * O_EXCL open we want to return EEXIST not EROFS).
3135 */
3136 if (open_flag & O_CREAT) {
3137 if (!IS_POSIXACL(dir->d_inode))
3138 mode &= ~current_umask();
3139 if (unlikely(!got_write)) {
3140 create_error = -EROFS;
3141 open_flag &= ~O_CREAT;
3142 if (open_flag & (O_EXCL | O_TRUNC))
3143 goto no_open;
3144 /* No side effects, safe to clear O_CREAT */
3145 } else {
3146 create_error = may_o_create(&nd->path, dentry, mode);
3147 if (create_error) {
3148 open_flag &= ~O_CREAT;
3149 if (open_flag & O_EXCL)
3150 goto no_open;
3151 }
3152 }
3153 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3154 unlikely(!got_write)) {
3155 /*
3156 * No O_CREATE -> atomicity not a requirement -> fall
3157 * back to lookup + open
3158 */
3159 goto no_open;
3160 }
3161
3162 if (dir_inode->i_op->atomic_open) {
3163 error = atomic_open(nd, dentry, path, file, op, open_flag,
3164 mode);
3165 if (unlikely(error == -ENOENT) && create_error)
3166 error = create_error;
3167 return error;
3168 }
3169
3170 no_open:
3171 if (d_in_lookup(dentry)) {
3172 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3173 nd->flags);
3174 d_lookup_done(dentry);
3175 if (unlikely(res)) {
3176 if (IS_ERR(res)) {
3177 error = PTR_ERR(res);
3178 goto out_dput;
3179 }
3180 dput(dentry);
3181 dentry = res;
3182 }
3183 }
3184
3185 /* Negative dentry, just create the file */
3186 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3187 file->f_mode |= FMODE_CREATED;
3188 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3189 if (!dir_inode->i_op->create) {
3190 error = -EACCES;
3191 goto out_dput;
3192 }
3193 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3194 open_flag & O_EXCL);
3195 if (error)
3196 goto out_dput;
3197 fsnotify_create(dir_inode, dentry);
3198 }
3199 if (unlikely(create_error) && !dentry->d_inode) {
3200 error = create_error;
3201 goto out_dput;
3202 }
3203 out_no_open:
3204 path->dentry = dentry;
3205 path->mnt = nd->path.mnt;
3206 return 0;
3207
3208 out_dput:
3209 dput(dentry);
3210 return error;
3211 }
3212
3213 /*
3214 * Handle the last step of open()
3215 */
3216 static int do_last(struct nameidata *nd,
3217 struct file *file, const struct open_flags *op)
3218 {
3219 struct dentry *dir = nd->path.dentry;
3220 int open_flag = op->open_flag;
3221 bool will_truncate = (open_flag & O_TRUNC) != 0;
3222 bool got_write = false;
3223 int acc_mode = op->acc_mode;
3224 unsigned seq;
3225 struct inode *inode;
3226 struct path path;
3227 int error;
3228
3229 nd->flags &= ~LOOKUP_PARENT;
3230 nd->flags |= op->intent;
3231
3232 if (nd->last_type != LAST_NORM) {
3233 error = handle_dots(nd, nd->last_type);
3234 if (unlikely(error))
3235 return error;
3236 goto finish_open;
3237 }
3238
3239 if (!(open_flag & O_CREAT)) {
3240 if (nd->last.name[nd->last.len])
3241 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3242 /* we _can_ be in RCU mode here */
3243 error = lookup_fast(nd, &path, &inode, &seq);
3244 if (likely(error > 0))
3245 goto finish_lookup;
3246
3247 if (error < 0)
3248 return error;
3249
3250 BUG_ON(nd->inode != dir->d_inode);
3251 BUG_ON(nd->flags & LOOKUP_RCU);
3252 } else {
3253 /* create side of things */
3254 /*
3255 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3256 * has been cleared when we got to the last component we are
3257 * about to look up
3258 */
3259 error = complete_walk(nd);
3260 if (error)
3261 return error;
3262
3263 audit_inode(nd->name, dir, LOOKUP_PARENT);
3264 /* trailing slashes? */
3265 if (unlikely(nd->last.name[nd->last.len]))
3266 return -EISDIR;
3267 }
3268
3269 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3270 error = mnt_want_write(nd->path.mnt);
3271 if (!error)
3272 got_write = true;
3273 /*
3274 * do _not_ fail yet - we might not need that or fail with
3275 * a different error; let lookup_open() decide; we'll be
3276 * dropping this one anyway.
3277 */
3278 }
3279 if (open_flag & O_CREAT)
3280 inode_lock(dir->d_inode);
3281 else
3282 inode_lock_shared(dir->d_inode);
3283 error = lookup_open(nd, &path, file, op, got_write);
3284 if (open_flag & O_CREAT)
3285 inode_unlock(dir->d_inode);
3286 else
3287 inode_unlock_shared(dir->d_inode);
3288
3289 if (error)
3290 goto out;
3291
3292 if (file->f_mode & FMODE_OPENED) {
3293 if ((file->f_mode & FMODE_CREATED) ||
3294 !S_ISREG(file_inode(file)->i_mode))
3295 will_truncate = false;
3296
3297 audit_inode(nd->name, file->f_path.dentry, 0);
3298 goto opened;
3299 }
3300
3301 if (file->f_mode & FMODE_CREATED) {
3302 /* Don't check for write permission, don't truncate */
3303 open_flag &= ~O_TRUNC;
3304 will_truncate = false;
3305 acc_mode = 0;
3306 path_to_nameidata(&path, nd);
3307 goto finish_open_created;
3308 }
3309
3310 /*
3311 * If atomic_open() acquired write access it is dropped now due to
3312 * possible mount and symlink following (this might be optimized away if
3313 * necessary...)
3314 */
3315 if (got_write) {
3316 mnt_drop_write(nd->path.mnt);
3317 got_write = false;
3318 }
3319
3320 error = follow_managed(&path, nd);
3321 if (unlikely(error < 0))
3322 return error;
3323
3324 if (unlikely(d_is_negative(path.dentry))) {
3325 path_to_nameidata(&path, nd);
3326 return -ENOENT;
3327 }
3328
3329 /*
3330 * create/update audit record if it already exists.
3331 */
3332 audit_inode(nd->name, path.dentry, 0);
3333
3334 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3335 path_to_nameidata(&path, nd);
3336 return -EEXIST;
3337 }
3338
3339 seq = 0; /* out of RCU mode, so the value doesn't matter */
3340 inode = d_backing_inode(path.dentry);
3341 finish_lookup:
3342 error = step_into(nd, &path, 0, inode, seq);
3343 if (unlikely(error))
3344 return error;
3345 finish_open:
3346 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3347 error = complete_walk(nd);
3348 if (error)
3349 return error;
3350 audit_inode(nd->name, nd->path.dentry, 0);
3351 error = -EISDIR;
3352 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3353 goto out;
3354 error = -ENOTDIR;
3355 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3356 goto out;
3357 if (!d_is_reg(nd->path.dentry))
3358 will_truncate = false;
3359
3360 if (will_truncate) {
3361 error = mnt_want_write(nd->path.mnt);
3362 if (error)
3363 goto out;
3364 got_write = true;
3365 }
3366 finish_open_created:
3367 error = may_open(&nd->path, acc_mode, open_flag);
3368 if (error)
3369 goto out;
3370 BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3371 error = vfs_open(&nd->path, file);
3372 if (error)
3373 goto out;
3374 opened:
3375 error = ima_file_check(file, op->acc_mode);
3376 if (!error && will_truncate)
3377 error = handle_truncate(file);
3378 out:
3379 if (unlikely(error > 0)) {
3380 WARN_ON(1);
3381 error = -EINVAL;
3382 }
3383 if (got_write)
3384 mnt_drop_write(nd->path.mnt);
3385 return error;
3386 }
3387
3388 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3389 {
3390 struct dentry *child = NULL;
3391 struct inode *dir = dentry->d_inode;
3392 struct inode *inode;
3393 int error;
3394
3395 /* we want directory to be writable */
3396 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3397 if (error)
3398 goto out_err;
3399 error = -EOPNOTSUPP;
3400 if (!dir->i_op->tmpfile)
3401 goto out_err;
3402 error = -ENOMEM;
3403 child = d_alloc(dentry, &slash_name);
3404 if (unlikely(!child))
3405 goto out_err;
3406 error = dir->i_op->tmpfile(dir, child, mode);
3407 if (error)
3408 goto out_err;
3409 error = -ENOENT;
3410 inode = child->d_inode;
3411 if (unlikely(!inode))
3412 goto out_err;
3413 if (!(open_flag & O_EXCL)) {
3414 spin_lock(&inode->i_lock);
3415 inode->i_state |= I_LINKABLE;
3416 spin_unlock(&inode->i_lock);
3417 }
3418 return child;
3419
3420 out_err:
3421 dput(child);
3422 return ERR_PTR(error);
3423 }
3424 EXPORT_SYMBOL(vfs_tmpfile);
3425
3426 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3427 const struct open_flags *op,
3428 struct file *file)
3429 {
3430 struct dentry *child;
3431 struct path path;
3432 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3433 if (unlikely(error))
3434 return error;
3435 error = mnt_want_write(path.mnt);
3436 if (unlikely(error))
3437 goto out;
3438 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3439 error = PTR_ERR(child);
3440 if (IS_ERR(child))
3441 goto out2;
3442 dput(path.dentry);
3443 path.dentry = child;
3444 audit_inode(nd->name, child, 0);
3445 /* Don't check for other permissions, the inode was just created */
3446 error = may_open(&path, 0, op->open_flag);
3447 if (error)
3448 goto out2;
3449 file->f_path.mnt = path.mnt;
3450 error = finish_open(file, child, NULL);
3451 out2:
3452 mnt_drop_write(path.mnt);
3453 out:
3454 path_put(&path);
3455 return error;
3456 }
3457
3458 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3459 {
3460 struct path path;
3461 int error = path_lookupat(nd, flags, &path);
3462 if (!error) {
3463 audit_inode(nd->name, path.dentry, 0);
3464 error = vfs_open(&path, file);
3465 path_put(&path);
3466 }
3467 return error;
3468 }
3469
3470 static struct file *path_openat(struct nameidata *nd,
3471 const struct open_flags *op, unsigned flags)
3472 {
3473 struct file *file;
3474 int error;
3475
3476 file = alloc_empty_file(op->open_flag, current_cred());
3477 if (IS_ERR(file))
3478 return file;
3479
3480 if (unlikely(file->f_flags & __O_TMPFILE)) {
3481 error = do_tmpfile(nd, flags, op, file);
3482 } else if (unlikely(file->f_flags & O_PATH)) {
3483 error = do_o_path(nd, flags, file);
3484 } else {
3485 const char *s = path_init(nd, flags);
3486 while (!(error = link_path_walk(s, nd)) &&
3487 (error = do_last(nd, file, op)) > 0) {
3488 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3489 s = trailing_symlink(nd);
3490 }
3491 terminate_walk(nd);
3492 }
3493 if (likely(!error)) {
3494 if (likely(file->f_mode & FMODE_OPENED))
3495 return file;
3496 WARN_ON(1);
3497 error = -EINVAL;
3498 }
3499 fput(file);
3500 if (error == -EOPENSTALE) {
3501 if (flags & LOOKUP_RCU)
3502 error = -ECHILD;
3503 else
3504 error = -ESTALE;
3505 }
3506 return ERR_PTR(error);
3507 }
3508
3509 struct file *do_filp_open(int dfd, struct filename *pathname,
3510 const struct open_flags *op)
3511 {
3512 struct nameidata nd;
3513 int flags = op->lookup_flags;
3514 struct file *filp;
3515
3516 set_nameidata(&nd, dfd, pathname);
3517 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3518 if (unlikely(filp == ERR_PTR(-ECHILD)))
3519 filp = path_openat(&nd, op, flags);
3520 if (unlikely(filp == ERR_PTR(-ESTALE)))
3521 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3522 restore_nameidata();
3523 return filp;
3524 }
3525
3526 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3527 const char *name, const struct open_flags *op)
3528 {
3529 struct nameidata nd;
3530 struct file *file;
3531 struct filename *filename;
3532 int flags = op->lookup_flags | LOOKUP_ROOT;
3533
3534 nd.root.mnt = mnt;
3535 nd.root.dentry = dentry;
3536
3537 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3538 return ERR_PTR(-ELOOP);
3539
3540 filename = getname_kernel(name);
3541 if (IS_ERR(filename))
3542 return ERR_CAST(filename);
3543
3544 set_nameidata(&nd, -1, filename);
3545 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3546 if (unlikely(file == ERR_PTR(-ECHILD)))
3547 file = path_openat(&nd, op, flags);
3548 if (unlikely(file == ERR_PTR(-ESTALE)))
3549 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3550 restore_nameidata();
3551 putname(filename);
3552 return file;
3553 }
3554
3555 static struct dentry *filename_create(int dfd, struct filename *name,
3556 struct path *path, unsigned int lookup_flags)
3557 {
3558 struct dentry *dentry = ERR_PTR(-EEXIST);
3559 struct qstr last;
3560 int type;
3561 int err2;
3562 int error;
3563 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3564
3565 /*
3566 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3567 * other flags passed in are ignored!
3568 */
3569 lookup_flags &= LOOKUP_REVAL;
3570
3571 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3572 if (IS_ERR(name))
3573 return ERR_CAST(name);
3574
3575 /*
3576 * Yucky last component or no last component at all?
3577 * (foo/., foo/.., /////)
3578 */
3579 if (unlikely(type != LAST_NORM))
3580 goto out;
3581
3582 /* don't fail immediately if it's r/o, at least try to report other errors */
3583 err2 = mnt_want_write(path->mnt);
3584 /*
3585 * Do the final lookup.
3586 */
3587 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3588 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3589 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3590 if (IS_ERR(dentry))
3591 goto unlock;
3592
3593 error = -EEXIST;
3594 if (d_is_positive(dentry))
3595 goto fail;
3596
3597 /*
3598 * Special case - lookup gave negative, but... we had foo/bar/
3599 * From the vfs_mknod() POV we just have a negative dentry -
3600 * all is fine. Let's be bastards - you had / on the end, you've
3601 * been asking for (non-existent) directory. -ENOENT for you.
3602 */
3603 if (unlikely(!is_dir && last.name[last.len])) {
3604 error = -ENOENT;
3605 goto fail;
3606 }
3607 if (unlikely(err2)) {
3608 error = err2;
3609 goto fail;
3610 }
3611 putname(name);
3612 return dentry;
3613 fail:
3614 dput(dentry);
3615 dentry = ERR_PTR(error);
3616 unlock:
3617 inode_unlock(path->dentry->d_inode);
3618 if (!err2)
3619 mnt_drop_write(path->mnt);
3620 out:
3621 path_put(path);
3622 putname(name);
3623 return dentry;
3624 }
3625
3626 struct dentry *kern_path_create(int dfd, const char *pathname,
3627 struct path *path, unsigned int lookup_flags)
3628 {
3629 return filename_create(dfd, getname_kernel(pathname),
3630 path, lookup_flags);
3631 }
3632 EXPORT_SYMBOL(kern_path_create);
3633
3634 void done_path_create(struct path *path, struct dentry *dentry)
3635 {
3636 dput(dentry);
3637 inode_unlock(path->dentry->d_inode);
3638 mnt_drop_write(path->mnt);
3639 path_put(path);
3640 }
3641 EXPORT_SYMBOL(done_path_create);
3642
3643 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3644 struct path *path, unsigned int lookup_flags)
3645 {
3646 return filename_create(dfd, getname(pathname), path, lookup_flags);
3647 }
3648 EXPORT_SYMBOL(user_path_create);
3649
3650 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3651 {
3652 int error = may_create(dir, dentry);
3653
3654 if (error)
3655 return error;
3656
3657 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
3658 !ns_capable(dentry->d_sb->s_user_ns, CAP_MKNOD))
3659 return -EPERM;
3660
3661 if (!dir->i_op->mknod)
3662 return -EPERM;
3663
3664 error = devcgroup_inode_mknod(mode, dev);
3665 if (error)
3666 return error;
3667
3668 error = security_inode_mknod(dir, dentry, mode, dev);
3669 if (error)
3670 return error;
3671
3672 error = dir->i_op->mknod(dir, dentry, mode, dev);
3673 if (!error)
3674 fsnotify_create(dir, dentry);
3675 return error;
3676 }
3677 EXPORT_SYMBOL(vfs_mknod);
3678
3679 static int may_mknod(umode_t mode)
3680 {
3681 switch (mode & S_IFMT) {
3682 case S_IFREG:
3683 case S_IFCHR:
3684 case S_IFBLK:
3685 case S_IFIFO:
3686 case S_IFSOCK:
3687 case 0: /* zero mode translates to S_IFREG */
3688 return 0;
3689 case S_IFDIR:
3690 return -EPERM;
3691 default:
3692 return -EINVAL;
3693 }
3694 }
3695
3696 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3697 unsigned int dev)
3698 {
3699 struct dentry *dentry;
3700 struct path path;
3701 int error;
3702 unsigned int lookup_flags = 0;
3703
3704 error = may_mknod(mode);
3705 if (error)
3706 return error;
3707 retry:
3708 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3709 if (IS_ERR(dentry))
3710 return PTR_ERR(dentry);
3711
3712 if (!IS_POSIXACL(path.dentry->d_inode))
3713 mode &= ~current_umask();
3714 error = security_path_mknod(&path, dentry, mode, dev);
3715 if (error)
3716 goto out;
3717 switch (mode & S_IFMT) {
3718 case 0: case S_IFREG:
3719 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3720 if (!error)
3721 ima_post_path_mknod(dentry);
3722 break;
3723 case S_IFCHR: case S_IFBLK:
3724 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3725 new_decode_dev(dev));
3726 break;
3727 case S_IFIFO: case S_IFSOCK:
3728 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3729 break;
3730 }
3731 out:
3732 done_path_create(&path, dentry);
3733 if (retry_estale(error, lookup_flags)) {
3734 lookup_flags |= LOOKUP_REVAL;
3735 goto retry;
3736 }
3737 return error;
3738 }
3739
3740 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3741 unsigned int, dev)
3742 {
3743 return do_mknodat(dfd, filename, mode, dev);
3744 }
3745
3746 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3747 {
3748 return do_mknodat(AT_FDCWD, filename, mode, dev);
3749 }
3750
3751 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3752 {
3753 int error = may_create(dir, dentry);
3754 unsigned max_links = dir->i_sb->s_max_links;
3755
3756 if (error)
3757 return error;
3758
3759 if (!dir->i_op->mkdir)
3760 return -EPERM;
3761
3762 mode &= (S_IRWXUGO|S_ISVTX);
3763 error = security_inode_mkdir(dir, dentry, mode);
3764 if (error)
3765 return error;
3766
3767 if (max_links && dir->i_nlink >= max_links)
3768 return -EMLINK;
3769
3770 error = dir->i_op->mkdir(dir, dentry, mode);
3771 if (!error)
3772 fsnotify_mkdir(dir, dentry);
3773 return error;
3774 }
3775 EXPORT_SYMBOL(vfs_mkdir);
3776
3777 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3778 {
3779 struct dentry *dentry;
3780 struct path path;
3781 int error;
3782 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3783
3784 retry:
3785 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3786 if (IS_ERR(dentry))
3787 return PTR_ERR(dentry);
3788
3789 if (!IS_POSIXACL(path.dentry->d_inode))
3790 mode &= ~current_umask();
3791 error = security_path_mkdir(&path, dentry, mode);
3792 if (!error)
3793 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3794 done_path_create(&path, dentry);
3795 if (retry_estale(error, lookup_flags)) {
3796 lookup_flags |= LOOKUP_REVAL;
3797 goto retry;
3798 }
3799 return error;
3800 }
3801
3802 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3803 {
3804 return do_mkdirat(dfd, pathname, mode);
3805 }
3806
3807 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3808 {
3809 return do_mkdirat(AT_FDCWD, pathname, mode);
3810 }
3811
3812 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3813 {
3814 int error = may_delete(dir, dentry, 1);
3815
3816 if (error)
3817 return error;
3818
3819 if (!dir->i_op->rmdir)
3820 return -EPERM;
3821
3822 dget(dentry);
3823 inode_lock(dentry->d_inode);
3824
3825 error = -EBUSY;
3826 if (is_local_mountpoint(dentry))
3827 goto out;
3828
3829 error = security_inode_rmdir(dir, dentry);
3830 if (error)
3831 goto out;
3832
3833 error = dir->i_op->rmdir(dir, dentry);
3834 if (error)
3835 goto out;
3836
3837 shrink_dcache_parent(dentry);
3838 dentry->d_inode->i_flags |= S_DEAD;
3839 dont_mount(dentry);
3840 detach_mounts(dentry);
3841
3842 out:
3843 inode_unlock(dentry->d_inode);
3844 dput(dentry);
3845 if (!error)
3846 d_delete(dentry);
3847 return error;
3848 }
3849 EXPORT_SYMBOL(vfs_rmdir);
3850
3851 long do_rmdir(int dfd, const char __user *pathname)
3852 {
3853 int error = 0;
3854 struct filename *name;
3855 struct dentry *dentry;
3856 struct path path;
3857 struct qstr last;
3858 int type;
3859 unsigned int lookup_flags = 0;
3860 retry:
3861 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3862 &path, &last, &type);
3863 if (IS_ERR(name))
3864 return PTR_ERR(name);
3865
3866 switch (type) {
3867 case LAST_DOTDOT:
3868 error = -ENOTEMPTY;
3869 goto exit1;
3870 case LAST_DOT:
3871 error = -EINVAL;
3872 goto exit1;
3873 case LAST_ROOT:
3874 error = -EBUSY;
3875 goto exit1;
3876 }
3877
3878 error = mnt_want_write(path.mnt);
3879 if (error)
3880 goto exit1;
3881
3882 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3883 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3884 error = PTR_ERR(dentry);
3885 if (IS_ERR(dentry))
3886 goto exit2;
3887 if (!dentry->d_inode) {
3888 error = -ENOENT;
3889 goto exit3;
3890 }
3891 error = security_path_rmdir(&path, dentry);
3892 if (error)
3893 goto exit3;
3894 error = vfs_rmdir(path.dentry->d_inode, dentry);
3895 exit3:
3896 dput(dentry);
3897 exit2:
3898 inode_unlock(path.dentry->d_inode);
3899 mnt_drop_write(path.mnt);
3900 exit1:
3901 path_put(&path);
3902 putname(name);
3903 if (retry_estale(error, lookup_flags)) {
3904 lookup_flags |= LOOKUP_REVAL;
3905 goto retry;
3906 }
3907 return error;
3908 }
3909
3910 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3911 {
3912 return do_rmdir(AT_FDCWD, pathname);
3913 }
3914
3915 /**
3916 * vfs_unlink - unlink a filesystem object
3917 * @dir: parent directory
3918 * @dentry: victim
3919 * @delegated_inode: returns victim inode, if the inode is delegated.
3920 *
3921 * The caller must hold dir->i_mutex.
3922 *
3923 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3924 * return a reference to the inode in delegated_inode. The caller
3925 * should then break the delegation on that inode and retry. Because
3926 * breaking a delegation may take a long time, the caller should drop
3927 * dir->i_mutex before doing so.
3928 *
3929 * Alternatively, a caller may pass NULL for delegated_inode. This may
3930 * be appropriate for callers that expect the underlying filesystem not
3931 * to be NFS exported.
3932 */
3933 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3934 {
3935 struct inode *target = dentry->d_inode;
3936 int error = may_delete(dir, dentry, 0);
3937
3938 if (error)
3939 return error;
3940
3941 if (!dir->i_op->unlink)
3942 return -EPERM;
3943
3944 inode_lock(target);
3945 if (is_local_mountpoint(dentry))
3946 error = -EBUSY;
3947 else {
3948 error = security_inode_unlink(dir, dentry);
3949 if (!error) {
3950 error = try_break_deleg(target, delegated_inode);
3951 if (error)
3952 goto out;
3953 error = dir->i_op->unlink(dir, dentry);
3954 if (!error) {
3955 dont_mount(dentry);
3956 detach_mounts(dentry);
3957 }
3958 }
3959 }
3960 out:
3961 inode_unlock(target);
3962
3963 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3964 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3965 fsnotify_link_count(target);
3966 d_delete(dentry);
3967 }
3968
3969 return error;
3970 }
3971 EXPORT_SYMBOL(vfs_unlink);
3972
3973 /*
3974 * Make sure that the actual truncation of the file will occur outside its
3975 * directory's i_mutex. Truncate can take a long time if there is a lot of
3976 * writeout happening, and we don't want to prevent access to the directory
3977 * while waiting on the I/O.
3978 */
3979 long do_unlinkat(int dfd, struct filename *name)
3980 {
3981 int error;
3982 struct dentry *dentry;
3983 struct path path;
3984 struct qstr last;
3985 int type;
3986 struct inode *inode = NULL;
3987 struct inode *delegated_inode = NULL;
3988 unsigned int lookup_flags = 0;
3989 retry:
3990 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
3991 if (IS_ERR(name))
3992 return PTR_ERR(name);
3993
3994 error = -EISDIR;
3995 if (type != LAST_NORM)
3996 goto exit1;
3997
3998 error = mnt_want_write(path.mnt);
3999 if (error)
4000 goto exit1;
4001 retry_deleg:
4002 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4003 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4004 error = PTR_ERR(dentry);
4005 if (!IS_ERR(dentry)) {
4006 /* Why not before? Because we want correct error value */
4007 if (last.name[last.len])
4008 goto slashes;
4009 inode = dentry->d_inode;
4010 if (d_is_negative(dentry))
4011 goto slashes;
4012 ihold(inode);
4013 error = security_path_unlink(&path, dentry);
4014 if (error)
4015 goto exit2;
4016 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4017 exit2:
4018 dput(dentry);
4019 }
4020 inode_unlock(path.dentry->d_inode);
4021 if (inode)
4022 iput(inode); /* truncate the inode here */
4023 inode = NULL;
4024 if (delegated_inode) {
4025 error = break_deleg_wait(&delegated_inode);
4026 if (!error)
4027 goto retry_deleg;
4028 }
4029 mnt_drop_write(path.mnt);
4030 exit1:
4031 path_put(&path);
4032 if (retry_estale(error, lookup_flags)) {
4033 lookup_flags |= LOOKUP_REVAL;
4034 inode = NULL;
4035 goto retry;
4036 }
4037 putname(name);
4038 return error;
4039
4040 slashes:
4041 if (d_is_negative(dentry))
4042 error = -ENOENT;
4043 else if (d_is_dir(dentry))
4044 error = -EISDIR;
4045 else
4046 error = -ENOTDIR;
4047 goto exit2;
4048 }
4049
4050 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4051 {
4052 if ((flag & ~AT_REMOVEDIR) != 0)
4053 return -EINVAL;
4054
4055 if (flag & AT_REMOVEDIR)
4056 return do_rmdir(dfd, pathname);
4057
4058 return do_unlinkat(dfd, getname(pathname));
4059 }
4060
4061 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4062 {
4063 return do_unlinkat(AT_FDCWD, getname(pathname));
4064 }
4065
4066 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4067 {
4068 int error = may_create(dir, dentry);
4069
4070 if (error)
4071 return error;
4072
4073 if (!dir->i_op->symlink)
4074 return -EPERM;
4075
4076 error = security_inode_symlink(dir, dentry, oldname);
4077 if (error)
4078 return error;
4079
4080 error = dir->i_op->symlink(dir, dentry, oldname);
4081 if (!error)
4082 fsnotify_create(dir, dentry);
4083 return error;
4084 }
4085 EXPORT_SYMBOL(vfs_symlink);
4086
4087 long do_symlinkat(const char __user *oldname, int newdfd,
4088 const char __user *newname)
4089 {
4090 int error;
4091 struct filename *from;
4092 struct dentry *dentry;
4093 struct path path;
4094 unsigned int lookup_flags = 0;
4095
4096 from = getname(oldname);
4097 if (IS_ERR(from))
4098 return PTR_ERR(from);
4099 retry:
4100 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4101 error = PTR_ERR(dentry);
4102 if (IS_ERR(dentry))
4103 goto out_putname;
4104
4105 error = security_path_symlink(&path, dentry, from->name);
4106 if (!error)
4107 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4108 done_path_create(&path, dentry);
4109 if (retry_estale(error, lookup_flags)) {
4110 lookup_flags |= LOOKUP_REVAL;
4111 goto retry;
4112 }
4113 out_putname:
4114 putname(from);
4115 return error;
4116 }
4117
4118 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4119 int, newdfd, const char __user *, newname)
4120 {
4121 return do_symlinkat(oldname, newdfd, newname);
4122 }
4123
4124 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4125 {
4126 return do_symlinkat(oldname, AT_FDCWD, newname);
4127 }
4128
4129 /**
4130 * vfs_link - create a new link
4131 * @old_dentry: object to be linked
4132 * @dir: new parent
4133 * @new_dentry: where to create the new link
4134 * @delegated_inode: returns inode needing a delegation break
4135 *
4136 * The caller must hold dir->i_mutex
4137 *
4138 * If vfs_link discovers a delegation on the to-be-linked file in need
4139 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4140 * inode in delegated_inode. The caller should then break the delegation
4141 * and retry. Because breaking a delegation may take a long time, the
4142 * caller should drop the i_mutex before doing so.
4143 *
4144 * Alternatively, a caller may pass NULL for delegated_inode. This may
4145 * be appropriate for callers that expect the underlying filesystem not
4146 * to be NFS exported.
4147 */
4148 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4149 {
4150 struct inode *inode = old_dentry->d_inode;
4151 unsigned max_links = dir->i_sb->s_max_links;
4152 int error;
4153
4154 if (!inode)
4155 return -ENOENT;
4156
4157 error = may_create(dir, new_dentry);
4158 if (error)
4159 return error;
4160
4161 if (dir->i_sb != inode->i_sb)
4162 return -EXDEV;
4163
4164 /*
4165 * A link to an append-only or immutable file cannot be created.
4166 */
4167 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4168 return -EPERM;
4169 /*
4170 * Updating the link count will likely cause i_uid and i_gid to
4171 * be writen back improperly if their true value is unknown to
4172 * the vfs.
4173 */
4174 if (HAS_UNMAPPED_ID(inode))
4175 return -EPERM;
4176 if (!dir->i_op->link)
4177 return -EPERM;
4178 if (S_ISDIR(inode->i_mode))
4179 return -EPERM;
4180
4181 error = security_inode_link(old_dentry, dir, new_dentry);
4182 if (error)
4183 return error;
4184
4185 inode_lock(inode);
4186 /* Make sure we don't allow creating hardlink to an unlinked file */
4187 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4188 error = -ENOENT;
4189 else if (max_links && inode->i_nlink >= max_links)
4190 error = -EMLINK;
4191 else {
4192 error = try_break_deleg(inode, delegated_inode);
4193 if (!error)
4194 error = dir->i_op->link(old_dentry, dir, new_dentry);
4195 }
4196
4197 if (!error && (inode->i_state & I_LINKABLE)) {
4198 spin_lock(&inode->i_lock);
4199 inode->i_state &= ~I_LINKABLE;
4200 spin_unlock(&inode->i_lock);
4201 }
4202 inode_unlock(inode);
4203 if (!error)
4204 fsnotify_link(dir, inode, new_dentry);
4205 return error;
4206 }
4207 EXPORT_SYMBOL(vfs_link);
4208
4209 /*
4210 * Hardlinks are often used in delicate situations. We avoid
4211 * security-related surprises by not following symlinks on the
4212 * newname. --KAB
4213 *
4214 * We don't follow them on the oldname either to be compatible
4215 * with linux 2.0, and to avoid hard-linking to directories
4216 * and other special files. --ADM
4217 */
4218 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4219 const char __user *newname, int flags)
4220 {
4221 struct dentry *new_dentry;
4222 struct path old_path, new_path;
4223 struct inode *delegated_inode = NULL;
4224 int how = 0;
4225 int error;
4226
4227 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4228 return -EINVAL;
4229 /*
4230 * To use null names we require CAP_DAC_READ_SEARCH
4231 * This ensures that not everyone will be able to create
4232 * handlink using the passed filedescriptor.
4233 */
4234 if (flags & AT_EMPTY_PATH) {
4235 if (!capable(CAP_DAC_READ_SEARCH))
4236 return -ENOENT;
4237 how = LOOKUP_EMPTY;
4238 }
4239
4240 if (flags & AT_SYMLINK_FOLLOW)
4241 how |= LOOKUP_FOLLOW;
4242 retry:
4243 error = user_path_at(olddfd, oldname, how, &old_path);
4244 if (error)
4245 return error;
4246
4247 new_dentry = user_path_create(newdfd, newname, &new_path,
4248 (how & LOOKUP_REVAL));
4249 error = PTR_ERR(new_dentry);
4250 if (IS_ERR(new_dentry))
4251 goto out;
4252
4253 error = -EXDEV;
4254 if (old_path.mnt != new_path.mnt)
4255 goto out_dput;
4256 error = may_linkat(&old_path);
4257 if (unlikely(error))
4258 goto out_dput;
4259 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4260 if (error)
4261 goto out_dput;
4262 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4263 out_dput:
4264 done_path_create(&new_path, new_dentry);
4265 if (delegated_inode) {
4266 error = break_deleg_wait(&delegated_inode);
4267 if (!error) {
4268 path_put(&old_path);
4269 goto retry;
4270 }
4271 }
4272 if (retry_estale(error, how)) {
4273 path_put(&old_path);
4274 how |= LOOKUP_REVAL;
4275 goto retry;
4276 }
4277 out:
4278 path_put(&old_path);
4279
4280 return error;
4281 }
4282
4283 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4284 int, newdfd, const char __user *, newname, int, flags)
4285 {
4286 return do_linkat(olddfd, oldname, newdfd, newname, flags);
4287 }
4288
4289 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4290 {
4291 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4292 }
4293
4294 /**
4295 * vfs_rename - rename a filesystem object
4296 * @old_dir: parent of source
4297 * @old_dentry: source
4298 * @new_dir: parent of destination
4299 * @new_dentry: destination
4300 * @delegated_inode: returns an inode needing a delegation break
4301 * @flags: rename flags
4302 *
4303 * The caller must hold multiple mutexes--see lock_rename()).
4304 *
4305 * If vfs_rename discovers a delegation in need of breaking at either
4306 * the source or destination, it will return -EWOULDBLOCK and return a
4307 * reference to the inode in delegated_inode. The caller should then
4308 * break the delegation and retry. Because breaking a delegation may
4309 * take a long time, the caller should drop all locks before doing
4310 * so.
4311 *
4312 * Alternatively, a caller may pass NULL for delegated_inode. This may
4313 * be appropriate for callers that expect the underlying filesystem not
4314 * to be NFS exported.
4315 *
4316 * The worst of all namespace operations - renaming directory. "Perverted"
4317 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4318 * Problems:
4319 *
4320 * a) we can get into loop creation.
4321 * b) race potential - two innocent renames can create a loop together.
4322 * That's where 4.4 screws up. Current fix: serialization on
4323 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4324 * story.
4325 * c) we have to lock _four_ objects - parents and victim (if it exists),
4326 * and source (if it is not a directory).
4327 * And that - after we got ->i_mutex on parents (until then we don't know
4328 * whether the target exists). Solution: try to be smart with locking
4329 * order for inodes. We rely on the fact that tree topology may change
4330 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4331 * move will be locked. Thus we can rank directories by the tree
4332 * (ancestors first) and rank all non-directories after them.
4333 * That works since everybody except rename does "lock parent, lookup,
4334 * lock child" and rename is under ->s_vfs_rename_mutex.
4335 * HOWEVER, it relies on the assumption that any object with ->lookup()
4336 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4337 * we'd better make sure that there's no link(2) for them.
4338 * d) conversion from fhandle to dentry may come in the wrong moment - when
4339 * we are removing the target. Solution: we will have to grab ->i_mutex
4340 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4341 * ->i_mutex on parents, which works but leads to some truly excessive
4342 * locking].
4343 */
4344 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4345 struct inode *new_dir, struct dentry *new_dentry,
4346 struct inode **delegated_inode, unsigned int flags)
4347 {
4348 int error;
4349 bool is_dir = d_is_dir(old_dentry);
4350 struct inode *source = old_dentry->d_inode;
4351 struct inode *target = new_dentry->d_inode;
4352 bool new_is_dir = false;
4353 unsigned max_links = new_dir->i_sb->s_max_links;
4354 struct name_snapshot old_name;
4355
4356 if (source == target)
4357 return 0;
4358
4359 error = may_delete(old_dir, old_dentry, is_dir);
4360 if (error)
4361 return error;
4362
4363 if (!target) {
4364 error = may_create(new_dir, new_dentry);
4365 } else {
4366 new_is_dir = d_is_dir(new_dentry);
4367
4368 if (!(flags & RENAME_EXCHANGE))
4369 error = may_delete(new_dir, new_dentry, is_dir);
4370 else
4371 error = may_delete(new_dir, new_dentry, new_is_dir);
4372 }
4373 if (error)
4374 return error;
4375
4376 if (!old_dir->i_op->rename)
4377 return -EPERM;
4378
4379 /*
4380 * If we are going to change the parent - check write permissions,
4381 * we'll need to flip '..'.
4382 */
4383 if (new_dir != old_dir) {
4384 if (is_dir) {
4385 error = inode_permission(source, MAY_WRITE);
4386 if (error)
4387 return error;
4388 }
4389 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4390 error = inode_permission(target, MAY_WRITE);
4391 if (error)
4392 return error;
4393 }
4394 }
4395
4396 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4397 flags);
4398 if (error)
4399 return error;
4400
4401 take_dentry_name_snapshot(&old_name, old_dentry);
4402 dget(new_dentry);
4403 if (!is_dir || (flags & RENAME_EXCHANGE))
4404 lock_two_nondirectories(source, target);
4405 else if (target)
4406 inode_lock(target);
4407
4408 error = -EBUSY;
4409 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4410 goto out;
4411
4412 if (max_links && new_dir != old_dir) {
4413 error = -EMLINK;
4414 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4415 goto out;
4416 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4417 old_dir->i_nlink >= max_links)
4418 goto out;
4419 }
4420 if (!is_dir) {
4421 error = try_break_deleg(source, delegated_inode);
4422 if (error)
4423 goto out;
4424 }
4425 if (target && !new_is_dir) {
4426 error = try_break_deleg(target, delegated_inode);
4427 if (error)
4428 goto out;
4429 }
4430 error = old_dir->i_op->rename(old_dir, old_dentry,
4431 new_dir, new_dentry, flags);
4432 if (error)
4433 goto out;
4434
4435 if (!(flags & RENAME_EXCHANGE) && target) {
4436 if (is_dir) {
4437 shrink_dcache_parent(new_dentry);
4438 target->i_flags |= S_DEAD;
4439 }
4440 dont_mount(new_dentry);
4441 detach_mounts(new_dentry);
4442 }
4443 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4444 if (!(flags & RENAME_EXCHANGE))
4445 d_move(old_dentry, new_dentry);
4446 else
4447 d_exchange(old_dentry, new_dentry);
4448 }
4449 out:
4450 if (!is_dir || (flags & RENAME_EXCHANGE))
4451 unlock_two_nondirectories(source, target);
4452 else if (target)
4453 inode_unlock(target);
4454 dput(new_dentry);
4455 if (!error) {
4456 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4457 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4458 if (flags & RENAME_EXCHANGE) {
4459 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4460 new_is_dir, NULL, new_dentry);
4461 }
4462 }
4463 release_dentry_name_snapshot(&old_name);
4464
4465 return error;
4466 }
4467 EXPORT_SYMBOL(vfs_rename);
4468
4469 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4470 const char __user *newname, unsigned int flags)
4471 {
4472 struct dentry *old_dentry, *new_dentry;
4473 struct dentry *trap;
4474 struct path old_path, new_path;
4475 struct qstr old_last, new_last;
4476 int old_type, new_type;
4477 struct inode *delegated_inode = NULL;
4478 struct filename *from;
4479 struct filename *to;
4480 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4481 bool should_retry = false;
4482 int error;
4483
4484 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4485 return -EINVAL;
4486
4487 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4488 (flags & RENAME_EXCHANGE))
4489 return -EINVAL;
4490
4491 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4492 return -EPERM;
4493
4494 if (flags & RENAME_EXCHANGE)
4495 target_flags = 0;
4496
4497 retry:
4498 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4499 &old_path, &old_last, &old_type);
4500 if (IS_ERR(from)) {
4501 error = PTR_ERR(from);
4502 goto exit;
4503 }
4504
4505 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4506 &new_path, &new_last, &new_type);
4507 if (IS_ERR(to)) {
4508 error = PTR_ERR(to);
4509 goto exit1;
4510 }
4511
4512 error = -EXDEV;
4513 if (old_path.mnt != new_path.mnt)
4514 goto exit2;
4515
4516 error = -EBUSY;
4517 if (old_type != LAST_NORM)
4518 goto exit2;
4519
4520 if (flags & RENAME_NOREPLACE)
4521 error = -EEXIST;
4522 if (new_type != LAST_NORM)
4523 goto exit2;
4524
4525 error = mnt_want_write(old_path.mnt);
4526 if (error)
4527 goto exit2;
4528
4529 retry_deleg:
4530 trap = lock_rename(new_path.dentry, old_path.dentry);
4531
4532 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4533 error = PTR_ERR(old_dentry);
4534 if (IS_ERR(old_dentry))
4535 goto exit3;
4536 /* source must exist */
4537 error = -ENOENT;
4538 if (d_is_negative(old_dentry))
4539 goto exit4;
4540 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4541 error = PTR_ERR(new_dentry);
4542 if (IS_ERR(new_dentry))
4543 goto exit4;
4544 error = -EEXIST;
4545 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4546 goto exit5;
4547 if (flags & RENAME_EXCHANGE) {
4548 error = -ENOENT;
4549 if (d_is_negative(new_dentry))
4550 goto exit5;
4551
4552 if (!d_is_dir(new_dentry)) {
4553 error = -ENOTDIR;
4554 if (new_last.name[new_last.len])
4555 goto exit5;
4556 }
4557 }
4558 /* unless the source is a directory trailing slashes give -ENOTDIR */
4559 if (!d_is_dir(old_dentry)) {
4560 error = -ENOTDIR;
4561 if (old_last.name[old_last.len])
4562 goto exit5;
4563 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4564 goto exit5;
4565 }
4566 /* source should not be ancestor of target */
4567 error = -EINVAL;
4568 if (old_dentry == trap)
4569 goto exit5;
4570 /* target should not be an ancestor of source */
4571 if (!(flags & RENAME_EXCHANGE))
4572 error = -ENOTEMPTY;
4573 if (new_dentry == trap)
4574 goto exit5;
4575
4576 error = security_path_rename(&old_path, old_dentry,
4577 &new_path, new_dentry, flags);
4578 if (error)
4579 goto exit5;
4580 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4581 new_path.dentry->d_inode, new_dentry,
4582 &delegated_inode, flags);
4583 exit5:
4584 dput(new_dentry);
4585 exit4:
4586 dput(old_dentry);
4587 exit3:
4588 unlock_rename(new_path.dentry, old_path.dentry);
4589 if (delegated_inode) {
4590 error = break_deleg_wait(&delegated_inode);
4591 if (!error)
4592 goto retry_deleg;
4593 }
4594 mnt_drop_write(old_path.mnt);
4595 exit2:
4596 if (retry_estale(error, lookup_flags))
4597 should_retry = true;
4598 path_put(&new_path);
4599 putname(to);
4600 exit1:
4601 path_put(&old_path);
4602 putname(from);
4603 if (should_retry) {
4604 should_retry = false;
4605 lookup_flags |= LOOKUP_REVAL;
4606 goto retry;
4607 }
4608 exit:
4609 return error;
4610 }
4611
4612 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4613 int, newdfd, const char __user *, newname, unsigned int, flags)
4614 {
4615 return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4616 }
4617
4618 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4619 int, newdfd, const char __user *, newname)
4620 {
4621 return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4622 }
4623
4624 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4625 {
4626 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4627 }
4628
4629 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4630 {
4631 int error = may_create(dir, dentry);
4632 if (error)
4633 return error;
4634
4635 if (!dir->i_op->mknod)
4636 return -EPERM;
4637
4638 return dir->i_op->mknod(dir, dentry,
4639 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4640 }
4641 EXPORT_SYMBOL(vfs_whiteout);
4642
4643 int readlink_copy(char __user *buffer, int buflen, const char *link)
4644 {
4645 int len = PTR_ERR(link);
4646 if (IS_ERR(link))
4647 goto out;
4648
4649 len = strlen(link);
4650 if (len > (unsigned) buflen)
4651 len = buflen;
4652 if (copy_to_user(buffer, link, len))
4653 len = -EFAULT;
4654 out:
4655 return len;
4656 }
4657
4658 /**
4659 * vfs_readlink - copy symlink body into userspace buffer
4660 * @dentry: dentry on which to get symbolic link
4661 * @buffer: user memory pointer
4662 * @buflen: size of buffer
4663 *
4664 * Does not touch atime. That's up to the caller if necessary
4665 *
4666 * Does not call security hook.
4667 */
4668 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4669 {
4670 struct inode *inode = d_inode(dentry);
4671 DEFINE_DELAYED_CALL(done);
4672 const char *link;
4673 int res;
4674
4675 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4676 if (unlikely(inode->i_op->readlink))
4677 return inode->i_op->readlink(dentry, buffer, buflen);
4678
4679 if (!d_is_symlink(dentry))
4680 return -EINVAL;
4681
4682 spin_lock(&inode->i_lock);
4683 inode->i_opflags |= IOP_DEFAULT_READLINK;
4684 spin_unlock(&inode->i_lock);
4685 }
4686
4687 link = inode->i_link;
4688 if (!link) {
4689 link = inode->i_op->get_link(dentry, inode, &done);
4690 if (IS_ERR(link))
4691 return PTR_ERR(link);
4692 }
4693 res = readlink_copy(buffer, buflen, link);
4694 do_delayed_call(&done);
4695 return res;
4696 }
4697 EXPORT_SYMBOL(vfs_readlink);
4698
4699 /**
4700 * vfs_get_link - get symlink body
4701 * @dentry: dentry on which to get symbolic link
4702 * @done: caller needs to free returned data with this
4703 *
4704 * Calls security hook and i_op->get_link() on the supplied inode.
4705 *
4706 * It does not touch atime. That's up to the caller if necessary.
4707 *
4708 * Does not work on "special" symlinks like /proc/$$/fd/N
4709 */
4710 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4711 {
4712 const char *res = ERR_PTR(-EINVAL);
4713 struct inode *inode = d_inode(dentry);
4714
4715 if (d_is_symlink(dentry)) {
4716 res = ERR_PTR(security_inode_readlink(dentry));
4717 if (!res)
4718 res = inode->i_op->get_link(dentry, inode, done);
4719 }
4720 return res;
4721 }
4722 EXPORT_SYMBOL(vfs_get_link);
4723
4724 /* get the link contents into pagecache */
4725 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4726 struct delayed_call *callback)
4727 {
4728 char *kaddr;
4729 struct page *page;
4730 struct address_space *mapping = inode->i_mapping;
4731
4732 if (!dentry) {
4733 page = find_get_page(mapping, 0);
4734 if (!page)
4735 return ERR_PTR(-ECHILD);
4736 if (!PageUptodate(page)) {
4737 put_page(page);
4738 return ERR_PTR(-ECHILD);
4739 }
4740 } else {
4741 page = read_mapping_page(mapping, 0, NULL);
4742 if (IS_ERR(page))
4743 return (char*)page;
4744 }
4745 set_delayed_call(callback, page_put_link, page);
4746 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4747 kaddr = page_address(page);
4748 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4749 return kaddr;
4750 }
4751
4752 EXPORT_SYMBOL(page_get_link);
4753
4754 void page_put_link(void *arg)
4755 {
4756 put_page(arg);
4757 }
4758 EXPORT_SYMBOL(page_put_link);
4759
4760 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4761 {
4762 DEFINE_DELAYED_CALL(done);
4763 int res = readlink_copy(buffer, buflen,
4764 page_get_link(dentry, d_inode(dentry),
4765 &done));
4766 do_delayed_call(&done);
4767 return res;
4768 }
4769 EXPORT_SYMBOL(page_readlink);
4770
4771 /*
4772 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4773 */
4774 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4775 {
4776 struct address_space *mapping = inode->i_mapping;
4777 struct page *page;
4778 void *fsdata;
4779 int err;
4780 unsigned int flags = 0;
4781 if (nofs)
4782 flags |= AOP_FLAG_NOFS;
4783
4784 retry:
4785 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4786 flags, &page, &fsdata);
4787 if (err)
4788 goto fail;
4789
4790 memcpy(page_address(page), symname, len-1);
4791
4792 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4793 page, fsdata);
4794 if (err < 0)
4795 goto fail;
4796 if (err < len-1)
4797 goto retry;
4798
4799 mark_inode_dirty(inode);
4800 return 0;
4801 fail:
4802 return err;
4803 }
4804 EXPORT_SYMBOL(__page_symlink);
4805
4806 int page_symlink(struct inode *inode, const char *symname, int len)
4807 {
4808 return __page_symlink(inode, symname, len,
4809 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4810 }
4811 EXPORT_SYMBOL(page_symlink);
4812
4813 const struct inode_operations page_symlink_inode_operations = {
4814 .get_link = page_get_link,
4815 };
4816 EXPORT_SYMBOL(page_symlink_inode_operations);