]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/namei.c
link_path_walk: end of nd->depth massage
[mirror_ubuntu-zesty-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 struct path path;
498 union {
499 struct qstr last;
500 struct path link;
501 };
502 struct path root;
503 struct inode *inode; /* path.dentry.d_inode */
504 unsigned int flags;
505 unsigned seq, m_seq;
506 int last_type;
507 unsigned depth;
508 struct file *base;
509 struct saved {
510 struct path link;
511 void *cookie;
512 const char *name;
513 } *stack, internal[EMBEDDED_LEVELS];
514 };
515
516 static void set_nameidata(struct nameidata *nd)
517 {
518 nd->stack = nd->internal;
519 }
520
521 static void restore_nameidata(struct nameidata *nd)
522 {
523 if (nd->stack != nd->internal) {
524 kfree(nd->stack);
525 nd->stack = nd->internal;
526 }
527 }
528
529 static int __nd_alloc_stack(struct nameidata *nd)
530 {
531 struct saved *p = kmalloc((MAXSYMLINKS + 1) * sizeof(struct saved),
532 GFP_KERNEL);
533 if (unlikely(!p))
534 return -ENOMEM;
535 memcpy(p, nd->internal, sizeof(nd->internal));
536 nd->stack = p;
537 return 0;
538 }
539
540 static inline int nd_alloc_stack(struct nameidata *nd)
541 {
542 if (likely(nd->depth != EMBEDDED_LEVELS))
543 return 0;
544 if (likely(nd->stack != nd->internal))
545 return 0;
546 return __nd_alloc_stack(nd);
547 }
548
549 /*
550 * Path walking has 2 modes, rcu-walk and ref-walk (see
551 * Documentation/filesystems/path-lookup.txt). In situations when we can't
552 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
553 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
554 * mode. Refcounts are grabbed at the last known good point before rcu-walk
555 * got stuck, so ref-walk may continue from there. If this is not successful
556 * (eg. a seqcount has changed), then failure is returned and it's up to caller
557 * to restart the path walk from the beginning in ref-walk mode.
558 */
559
560 /**
561 * unlazy_walk - try to switch to ref-walk mode.
562 * @nd: nameidata pathwalk data
563 * @dentry: child of nd->path.dentry or NULL
564 * Returns: 0 on success, -ECHILD on failure
565 *
566 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
567 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
568 * @nd or NULL. Must be called from rcu-walk context.
569 */
570 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
571 {
572 struct fs_struct *fs = current->fs;
573 struct dentry *parent = nd->path.dentry;
574
575 BUG_ON(!(nd->flags & LOOKUP_RCU));
576
577 /*
578 * After legitimizing the bastards, terminate_walk()
579 * will do the right thing for non-RCU mode, and all our
580 * subsequent exit cases should rcu_read_unlock()
581 * before returning. Do vfsmount first; if dentry
582 * can't be legitimized, just set nd->path.dentry to NULL
583 * and rely on dput(NULL) being a no-op.
584 */
585 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
586 return -ECHILD;
587 nd->flags &= ~LOOKUP_RCU;
588
589 if (!lockref_get_not_dead(&parent->d_lockref)) {
590 nd->path.dentry = NULL;
591 goto out;
592 }
593
594 /*
595 * For a negative lookup, the lookup sequence point is the parents
596 * sequence point, and it only needs to revalidate the parent dentry.
597 *
598 * For a positive lookup, we need to move both the parent and the
599 * dentry from the RCU domain to be properly refcounted. And the
600 * sequence number in the dentry validates *both* dentry counters,
601 * since we checked the sequence number of the parent after we got
602 * the child sequence number. So we know the parent must still
603 * be valid if the child sequence number is still valid.
604 */
605 if (!dentry) {
606 if (read_seqcount_retry(&parent->d_seq, nd->seq))
607 goto out;
608 BUG_ON(nd->inode != parent->d_inode);
609 } else {
610 if (!lockref_get_not_dead(&dentry->d_lockref))
611 goto out;
612 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
613 goto drop_dentry;
614 }
615
616 /*
617 * Sequence counts matched. Now make sure that the root is
618 * still valid and get it if required.
619 */
620 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
621 spin_lock(&fs->lock);
622 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
623 goto unlock_and_drop_dentry;
624 path_get(&nd->root);
625 spin_unlock(&fs->lock);
626 }
627
628 rcu_read_unlock();
629 return 0;
630
631 unlock_and_drop_dentry:
632 spin_unlock(&fs->lock);
633 drop_dentry:
634 rcu_read_unlock();
635 dput(dentry);
636 goto drop_root_mnt;
637 out:
638 rcu_read_unlock();
639 drop_root_mnt:
640 if (!(nd->flags & LOOKUP_ROOT))
641 nd->root.mnt = NULL;
642 return -ECHILD;
643 }
644
645 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
646 {
647 return dentry->d_op->d_revalidate(dentry, flags);
648 }
649
650 /**
651 * complete_walk - successful completion of path walk
652 * @nd: pointer nameidata
653 *
654 * If we had been in RCU mode, drop out of it and legitimize nd->path.
655 * Revalidate the final result, unless we'd already done that during
656 * the path walk or the filesystem doesn't ask for it. Return 0 on
657 * success, -error on failure. In case of failure caller does not
658 * need to drop nd->path.
659 */
660 static int complete_walk(struct nameidata *nd)
661 {
662 struct dentry *dentry = nd->path.dentry;
663 int status;
664
665 if (nd->flags & LOOKUP_RCU) {
666 nd->flags &= ~LOOKUP_RCU;
667 if (!(nd->flags & LOOKUP_ROOT))
668 nd->root.mnt = NULL;
669
670 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
671 rcu_read_unlock();
672 return -ECHILD;
673 }
674 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
675 rcu_read_unlock();
676 mntput(nd->path.mnt);
677 return -ECHILD;
678 }
679 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
680 rcu_read_unlock();
681 dput(dentry);
682 mntput(nd->path.mnt);
683 return -ECHILD;
684 }
685 rcu_read_unlock();
686 }
687
688 if (likely(!(nd->flags & LOOKUP_JUMPED)))
689 return 0;
690
691 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
692 return 0;
693
694 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
695 if (status > 0)
696 return 0;
697
698 if (!status)
699 status = -ESTALE;
700
701 path_put(&nd->path);
702 return status;
703 }
704
705 static __always_inline void set_root(struct nameidata *nd)
706 {
707 get_fs_root(current->fs, &nd->root);
708 }
709
710 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
711 {
712 struct fs_struct *fs = current->fs;
713 unsigned seq, res;
714
715 do {
716 seq = read_seqcount_begin(&fs->seq);
717 nd->root = fs->root;
718 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
719 } while (read_seqcount_retry(&fs->seq, seq));
720 return res;
721 }
722
723 static void path_put_conditional(struct path *path, struct nameidata *nd)
724 {
725 dput(path->dentry);
726 if (path->mnt != nd->path.mnt)
727 mntput(path->mnt);
728 }
729
730 static inline void path_to_nameidata(const struct path *path,
731 struct nameidata *nd)
732 {
733 if (!(nd->flags & LOOKUP_RCU)) {
734 dput(nd->path.dentry);
735 if (nd->path.mnt != path->mnt)
736 mntput(nd->path.mnt);
737 }
738 nd->path.mnt = path->mnt;
739 nd->path.dentry = path->dentry;
740 }
741
742 /*
743 * Helper to directly jump to a known parsed path from ->follow_link,
744 * caller must have taken a reference to path beforehand.
745 */
746 void nd_jump_link(struct nameidata *nd, struct path *path)
747 {
748 path_put(&nd->path);
749
750 nd->path = *path;
751 nd->inode = nd->path.dentry->d_inode;
752 nd->flags |= LOOKUP_JUMPED;
753 }
754
755 static inline void put_link(struct nameidata *nd)
756 {
757 struct saved *last = nd->stack + --nd->depth;
758 struct inode *inode = last->link.dentry->d_inode;
759 if (last->cookie && inode->i_op->put_link)
760 inode->i_op->put_link(last->link.dentry, last->cookie);
761 path_put(&last->link);
762 }
763
764 int sysctl_protected_symlinks __read_mostly = 0;
765 int sysctl_protected_hardlinks __read_mostly = 0;
766
767 /**
768 * may_follow_link - Check symlink following for unsafe situations
769 * @link: The path of the symlink
770 * @nd: nameidata pathwalk data
771 *
772 * In the case of the sysctl_protected_symlinks sysctl being enabled,
773 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
774 * in a sticky world-writable directory. This is to protect privileged
775 * processes from failing races against path names that may change out
776 * from under them by way of other users creating malicious symlinks.
777 * It will permit symlinks to be followed only when outside a sticky
778 * world-writable directory, or when the uid of the symlink and follower
779 * match, or when the directory owner matches the symlink's owner.
780 *
781 * Returns 0 if following the symlink is allowed, -ve on error.
782 */
783 static inline int may_follow_link(struct path *link, struct nameidata *nd)
784 {
785 const struct inode *inode;
786 const struct inode *parent;
787
788 if (!sysctl_protected_symlinks)
789 return 0;
790
791 /* Allowed if owner and follower match. */
792 inode = link->dentry->d_inode;
793 if (uid_eq(current_cred()->fsuid, inode->i_uid))
794 return 0;
795
796 /* Allowed if parent directory not sticky and world-writable. */
797 parent = nd->path.dentry->d_inode;
798 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
799 return 0;
800
801 /* Allowed if parent directory and link owner match. */
802 if (uid_eq(parent->i_uid, inode->i_uid))
803 return 0;
804
805 audit_log_link_denied("follow_link", link);
806 path_put_conditional(link, nd);
807 path_put(&nd->path);
808 return -EACCES;
809 }
810
811 /**
812 * safe_hardlink_source - Check for safe hardlink conditions
813 * @inode: the source inode to hardlink from
814 *
815 * Return false if at least one of the following conditions:
816 * - inode is not a regular file
817 * - inode is setuid
818 * - inode is setgid and group-exec
819 * - access failure for read and write
820 *
821 * Otherwise returns true.
822 */
823 static bool safe_hardlink_source(struct inode *inode)
824 {
825 umode_t mode = inode->i_mode;
826
827 /* Special files should not get pinned to the filesystem. */
828 if (!S_ISREG(mode))
829 return false;
830
831 /* Setuid files should not get pinned to the filesystem. */
832 if (mode & S_ISUID)
833 return false;
834
835 /* Executable setgid files should not get pinned to the filesystem. */
836 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
837 return false;
838
839 /* Hardlinking to unreadable or unwritable sources is dangerous. */
840 if (inode_permission(inode, MAY_READ | MAY_WRITE))
841 return false;
842
843 return true;
844 }
845
846 /**
847 * may_linkat - Check permissions for creating a hardlink
848 * @link: the source to hardlink from
849 *
850 * Block hardlink when all of:
851 * - sysctl_protected_hardlinks enabled
852 * - fsuid does not match inode
853 * - hardlink source is unsafe (see safe_hardlink_source() above)
854 * - not CAP_FOWNER
855 *
856 * Returns 0 if successful, -ve on error.
857 */
858 static int may_linkat(struct path *link)
859 {
860 const struct cred *cred;
861 struct inode *inode;
862
863 if (!sysctl_protected_hardlinks)
864 return 0;
865
866 cred = current_cred();
867 inode = link->dentry->d_inode;
868
869 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
870 * otherwise, it must be a safe source.
871 */
872 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
873 capable(CAP_FOWNER))
874 return 0;
875
876 audit_log_link_denied("linkat", link);
877 return -EPERM;
878 }
879
880 static __always_inline
881 const char *get_link(struct nameidata *nd)
882 {
883 struct saved *last = nd->stack + nd->depth;
884 struct dentry *dentry = nd->link.dentry;
885 struct inode *inode = dentry->d_inode;
886 int error;
887 const char *res;
888
889 BUG_ON(nd->flags & LOOKUP_RCU);
890
891 if (nd->link.mnt == nd->path.mnt)
892 mntget(nd->link.mnt);
893
894 if (unlikely(current->total_link_count >= MAXSYMLINKS)) {
895 path_put(&nd->path);
896 path_put(&nd->link);
897 return ERR_PTR(-ELOOP);
898 }
899
900 last->link = nd->link;
901 last->cookie = NULL;
902
903 cond_resched();
904 current->total_link_count++;
905
906 touch_atime(&last->link);
907
908 error = security_inode_follow_link(dentry);
909 res = ERR_PTR(error);
910 if (error)
911 goto out;
912
913 nd->last_type = LAST_BIND;
914 res = inode->i_link;
915 if (!res) {
916 res = inode->i_op->follow_link(dentry, &last->cookie, nd);
917 if (IS_ERR(res)) {
918 out:
919 path_put(&nd->path);
920 path_put(&last->link);
921 return res;
922 }
923 }
924 nd->depth++;
925 return res;
926 }
927
928 static int follow_up_rcu(struct path *path)
929 {
930 struct mount *mnt = real_mount(path->mnt);
931 struct mount *parent;
932 struct dentry *mountpoint;
933
934 parent = mnt->mnt_parent;
935 if (&parent->mnt == path->mnt)
936 return 0;
937 mountpoint = mnt->mnt_mountpoint;
938 path->dentry = mountpoint;
939 path->mnt = &parent->mnt;
940 return 1;
941 }
942
943 /*
944 * follow_up - Find the mountpoint of path's vfsmount
945 *
946 * Given a path, find the mountpoint of its source file system.
947 * Replace @path with the path of the mountpoint in the parent mount.
948 * Up is towards /.
949 *
950 * Return 1 if we went up a level and 0 if we were already at the
951 * root.
952 */
953 int follow_up(struct path *path)
954 {
955 struct mount *mnt = real_mount(path->mnt);
956 struct mount *parent;
957 struct dentry *mountpoint;
958
959 read_seqlock_excl(&mount_lock);
960 parent = mnt->mnt_parent;
961 if (parent == mnt) {
962 read_sequnlock_excl(&mount_lock);
963 return 0;
964 }
965 mntget(&parent->mnt);
966 mountpoint = dget(mnt->mnt_mountpoint);
967 read_sequnlock_excl(&mount_lock);
968 dput(path->dentry);
969 path->dentry = mountpoint;
970 mntput(path->mnt);
971 path->mnt = &parent->mnt;
972 return 1;
973 }
974 EXPORT_SYMBOL(follow_up);
975
976 /*
977 * Perform an automount
978 * - return -EISDIR to tell follow_managed() to stop and return the path we
979 * were called with.
980 */
981 static int follow_automount(struct path *path, unsigned flags,
982 bool *need_mntput)
983 {
984 struct vfsmount *mnt;
985 int err;
986
987 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
988 return -EREMOTE;
989
990 /* We don't want to mount if someone's just doing a stat -
991 * unless they're stat'ing a directory and appended a '/' to
992 * the name.
993 *
994 * We do, however, want to mount if someone wants to open or
995 * create a file of any type under the mountpoint, wants to
996 * traverse through the mountpoint or wants to open the
997 * mounted directory. Also, autofs may mark negative dentries
998 * as being automount points. These will need the attentions
999 * of the daemon to instantiate them before they can be used.
1000 */
1001 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1002 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1003 path->dentry->d_inode)
1004 return -EISDIR;
1005
1006 current->total_link_count++;
1007 if (current->total_link_count >= 40)
1008 return -ELOOP;
1009
1010 mnt = path->dentry->d_op->d_automount(path);
1011 if (IS_ERR(mnt)) {
1012 /*
1013 * The filesystem is allowed to return -EISDIR here to indicate
1014 * it doesn't want to automount. For instance, autofs would do
1015 * this so that its userspace daemon can mount on this dentry.
1016 *
1017 * However, we can only permit this if it's a terminal point in
1018 * the path being looked up; if it wasn't then the remainder of
1019 * the path is inaccessible and we should say so.
1020 */
1021 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
1022 return -EREMOTE;
1023 return PTR_ERR(mnt);
1024 }
1025
1026 if (!mnt) /* mount collision */
1027 return 0;
1028
1029 if (!*need_mntput) {
1030 /* lock_mount() may release path->mnt on error */
1031 mntget(path->mnt);
1032 *need_mntput = true;
1033 }
1034 err = finish_automount(mnt, path);
1035
1036 switch (err) {
1037 case -EBUSY:
1038 /* Someone else made a mount here whilst we were busy */
1039 return 0;
1040 case 0:
1041 path_put(path);
1042 path->mnt = mnt;
1043 path->dentry = dget(mnt->mnt_root);
1044 return 0;
1045 default:
1046 return err;
1047 }
1048
1049 }
1050
1051 /*
1052 * Handle a dentry that is managed in some way.
1053 * - Flagged for transit management (autofs)
1054 * - Flagged as mountpoint
1055 * - Flagged as automount point
1056 *
1057 * This may only be called in refwalk mode.
1058 *
1059 * Serialization is taken care of in namespace.c
1060 */
1061 static int follow_managed(struct path *path, unsigned flags)
1062 {
1063 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1064 unsigned managed;
1065 bool need_mntput = false;
1066 int ret = 0;
1067
1068 /* Given that we're not holding a lock here, we retain the value in a
1069 * local variable for each dentry as we look at it so that we don't see
1070 * the components of that value change under us */
1071 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1072 managed &= DCACHE_MANAGED_DENTRY,
1073 unlikely(managed != 0)) {
1074 /* Allow the filesystem to manage the transit without i_mutex
1075 * being held. */
1076 if (managed & DCACHE_MANAGE_TRANSIT) {
1077 BUG_ON(!path->dentry->d_op);
1078 BUG_ON(!path->dentry->d_op->d_manage);
1079 ret = path->dentry->d_op->d_manage(path->dentry, false);
1080 if (ret < 0)
1081 break;
1082 }
1083
1084 /* Transit to a mounted filesystem. */
1085 if (managed & DCACHE_MOUNTED) {
1086 struct vfsmount *mounted = lookup_mnt(path);
1087 if (mounted) {
1088 dput(path->dentry);
1089 if (need_mntput)
1090 mntput(path->mnt);
1091 path->mnt = mounted;
1092 path->dentry = dget(mounted->mnt_root);
1093 need_mntput = true;
1094 continue;
1095 }
1096
1097 /* Something is mounted on this dentry in another
1098 * namespace and/or whatever was mounted there in this
1099 * namespace got unmounted before lookup_mnt() could
1100 * get it */
1101 }
1102
1103 /* Handle an automount point */
1104 if (managed & DCACHE_NEED_AUTOMOUNT) {
1105 ret = follow_automount(path, flags, &need_mntput);
1106 if (ret < 0)
1107 break;
1108 continue;
1109 }
1110
1111 /* We didn't change the current path point */
1112 break;
1113 }
1114
1115 if (need_mntput && path->mnt == mnt)
1116 mntput(path->mnt);
1117 if (ret == -EISDIR)
1118 ret = 0;
1119 return ret < 0 ? ret : need_mntput;
1120 }
1121
1122 int follow_down_one(struct path *path)
1123 {
1124 struct vfsmount *mounted;
1125
1126 mounted = lookup_mnt(path);
1127 if (mounted) {
1128 dput(path->dentry);
1129 mntput(path->mnt);
1130 path->mnt = mounted;
1131 path->dentry = dget(mounted->mnt_root);
1132 return 1;
1133 }
1134 return 0;
1135 }
1136 EXPORT_SYMBOL(follow_down_one);
1137
1138 static inline int managed_dentry_rcu(struct dentry *dentry)
1139 {
1140 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1141 dentry->d_op->d_manage(dentry, true) : 0;
1142 }
1143
1144 /*
1145 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1146 * we meet a managed dentry that would need blocking.
1147 */
1148 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1149 struct inode **inode)
1150 {
1151 for (;;) {
1152 struct mount *mounted;
1153 /*
1154 * Don't forget we might have a non-mountpoint managed dentry
1155 * that wants to block transit.
1156 */
1157 switch (managed_dentry_rcu(path->dentry)) {
1158 case -ECHILD:
1159 default:
1160 return false;
1161 case -EISDIR:
1162 return true;
1163 case 0:
1164 break;
1165 }
1166
1167 if (!d_mountpoint(path->dentry))
1168 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1169
1170 mounted = __lookup_mnt(path->mnt, path->dentry);
1171 if (!mounted)
1172 break;
1173 path->mnt = &mounted->mnt;
1174 path->dentry = mounted->mnt.mnt_root;
1175 nd->flags |= LOOKUP_JUMPED;
1176 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1177 /*
1178 * Update the inode too. We don't need to re-check the
1179 * dentry sequence number here after this d_inode read,
1180 * because a mount-point is always pinned.
1181 */
1182 *inode = path->dentry->d_inode;
1183 }
1184 return !read_seqretry(&mount_lock, nd->m_seq) &&
1185 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1186 }
1187
1188 static int follow_dotdot_rcu(struct nameidata *nd)
1189 {
1190 struct inode *inode = nd->inode;
1191 if (!nd->root.mnt)
1192 set_root_rcu(nd);
1193
1194 while (1) {
1195 if (nd->path.dentry == nd->root.dentry &&
1196 nd->path.mnt == nd->root.mnt) {
1197 break;
1198 }
1199 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1200 struct dentry *old = nd->path.dentry;
1201 struct dentry *parent = old->d_parent;
1202 unsigned seq;
1203
1204 inode = parent->d_inode;
1205 seq = read_seqcount_begin(&parent->d_seq);
1206 if (read_seqcount_retry(&old->d_seq, nd->seq))
1207 goto failed;
1208 nd->path.dentry = parent;
1209 nd->seq = seq;
1210 break;
1211 }
1212 if (!follow_up_rcu(&nd->path))
1213 break;
1214 inode = nd->path.dentry->d_inode;
1215 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1216 }
1217 while (d_mountpoint(nd->path.dentry)) {
1218 struct mount *mounted;
1219 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1220 if (!mounted)
1221 break;
1222 nd->path.mnt = &mounted->mnt;
1223 nd->path.dentry = mounted->mnt.mnt_root;
1224 inode = nd->path.dentry->d_inode;
1225 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1226 if (read_seqretry(&mount_lock, nd->m_seq))
1227 goto failed;
1228 }
1229 nd->inode = inode;
1230 return 0;
1231
1232 failed:
1233 nd->flags &= ~LOOKUP_RCU;
1234 if (!(nd->flags & LOOKUP_ROOT))
1235 nd->root.mnt = NULL;
1236 rcu_read_unlock();
1237 return -ECHILD;
1238 }
1239
1240 /*
1241 * Follow down to the covering mount currently visible to userspace. At each
1242 * point, the filesystem owning that dentry may be queried as to whether the
1243 * caller is permitted to proceed or not.
1244 */
1245 int follow_down(struct path *path)
1246 {
1247 unsigned managed;
1248 int ret;
1249
1250 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1251 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1252 /* Allow the filesystem to manage the transit without i_mutex
1253 * being held.
1254 *
1255 * We indicate to the filesystem if someone is trying to mount
1256 * something here. This gives autofs the chance to deny anyone
1257 * other than its daemon the right to mount on its
1258 * superstructure.
1259 *
1260 * The filesystem may sleep at this point.
1261 */
1262 if (managed & DCACHE_MANAGE_TRANSIT) {
1263 BUG_ON(!path->dentry->d_op);
1264 BUG_ON(!path->dentry->d_op->d_manage);
1265 ret = path->dentry->d_op->d_manage(
1266 path->dentry, false);
1267 if (ret < 0)
1268 return ret == -EISDIR ? 0 : ret;
1269 }
1270
1271 /* Transit to a mounted filesystem. */
1272 if (managed & DCACHE_MOUNTED) {
1273 struct vfsmount *mounted = lookup_mnt(path);
1274 if (!mounted)
1275 break;
1276 dput(path->dentry);
1277 mntput(path->mnt);
1278 path->mnt = mounted;
1279 path->dentry = dget(mounted->mnt_root);
1280 continue;
1281 }
1282
1283 /* Don't handle automount points here */
1284 break;
1285 }
1286 return 0;
1287 }
1288 EXPORT_SYMBOL(follow_down);
1289
1290 /*
1291 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1292 */
1293 static void follow_mount(struct path *path)
1294 {
1295 while (d_mountpoint(path->dentry)) {
1296 struct vfsmount *mounted = lookup_mnt(path);
1297 if (!mounted)
1298 break;
1299 dput(path->dentry);
1300 mntput(path->mnt);
1301 path->mnt = mounted;
1302 path->dentry = dget(mounted->mnt_root);
1303 }
1304 }
1305
1306 static void follow_dotdot(struct nameidata *nd)
1307 {
1308 if (!nd->root.mnt)
1309 set_root(nd);
1310
1311 while(1) {
1312 struct dentry *old = nd->path.dentry;
1313
1314 if (nd->path.dentry == nd->root.dentry &&
1315 nd->path.mnt == nd->root.mnt) {
1316 break;
1317 }
1318 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1319 /* rare case of legitimate dget_parent()... */
1320 nd->path.dentry = dget_parent(nd->path.dentry);
1321 dput(old);
1322 break;
1323 }
1324 if (!follow_up(&nd->path))
1325 break;
1326 }
1327 follow_mount(&nd->path);
1328 nd->inode = nd->path.dentry->d_inode;
1329 }
1330
1331 /*
1332 * This looks up the name in dcache, possibly revalidates the old dentry and
1333 * allocates a new one if not found or not valid. In the need_lookup argument
1334 * returns whether i_op->lookup is necessary.
1335 *
1336 * dir->d_inode->i_mutex must be held
1337 */
1338 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1339 unsigned int flags, bool *need_lookup)
1340 {
1341 struct dentry *dentry;
1342 int error;
1343
1344 *need_lookup = false;
1345 dentry = d_lookup(dir, name);
1346 if (dentry) {
1347 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1348 error = d_revalidate(dentry, flags);
1349 if (unlikely(error <= 0)) {
1350 if (error < 0) {
1351 dput(dentry);
1352 return ERR_PTR(error);
1353 } else {
1354 d_invalidate(dentry);
1355 dput(dentry);
1356 dentry = NULL;
1357 }
1358 }
1359 }
1360 }
1361
1362 if (!dentry) {
1363 dentry = d_alloc(dir, name);
1364 if (unlikely(!dentry))
1365 return ERR_PTR(-ENOMEM);
1366
1367 *need_lookup = true;
1368 }
1369 return dentry;
1370 }
1371
1372 /*
1373 * Call i_op->lookup on the dentry. The dentry must be negative and
1374 * unhashed.
1375 *
1376 * dir->d_inode->i_mutex must be held
1377 */
1378 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1379 unsigned int flags)
1380 {
1381 struct dentry *old;
1382
1383 /* Don't create child dentry for a dead directory. */
1384 if (unlikely(IS_DEADDIR(dir))) {
1385 dput(dentry);
1386 return ERR_PTR(-ENOENT);
1387 }
1388
1389 old = dir->i_op->lookup(dir, dentry, flags);
1390 if (unlikely(old)) {
1391 dput(dentry);
1392 dentry = old;
1393 }
1394 return dentry;
1395 }
1396
1397 static struct dentry *__lookup_hash(struct qstr *name,
1398 struct dentry *base, unsigned int flags)
1399 {
1400 bool need_lookup;
1401 struct dentry *dentry;
1402
1403 dentry = lookup_dcache(name, base, flags, &need_lookup);
1404 if (!need_lookup)
1405 return dentry;
1406
1407 return lookup_real(base->d_inode, dentry, flags);
1408 }
1409
1410 /*
1411 * It's more convoluted than I'd like it to be, but... it's still fairly
1412 * small and for now I'd prefer to have fast path as straight as possible.
1413 * It _is_ time-critical.
1414 */
1415 static int lookup_fast(struct nameidata *nd,
1416 struct path *path, struct inode **inode)
1417 {
1418 struct vfsmount *mnt = nd->path.mnt;
1419 struct dentry *dentry, *parent = nd->path.dentry;
1420 int need_reval = 1;
1421 int status = 1;
1422 int err;
1423
1424 /*
1425 * Rename seqlock is not required here because in the off chance
1426 * of a false negative due to a concurrent rename, we're going to
1427 * do the non-racy lookup, below.
1428 */
1429 if (nd->flags & LOOKUP_RCU) {
1430 unsigned seq;
1431 bool negative;
1432 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1433 if (!dentry)
1434 goto unlazy;
1435
1436 /*
1437 * This sequence count validates that the inode matches
1438 * the dentry name information from lookup.
1439 */
1440 *inode = dentry->d_inode;
1441 negative = d_is_negative(dentry);
1442 if (read_seqcount_retry(&dentry->d_seq, seq))
1443 return -ECHILD;
1444 if (negative)
1445 return -ENOENT;
1446
1447 /*
1448 * This sequence count validates that the parent had no
1449 * changes while we did the lookup of the dentry above.
1450 *
1451 * The memory barrier in read_seqcount_begin of child is
1452 * enough, we can use __read_seqcount_retry here.
1453 */
1454 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1455 return -ECHILD;
1456 nd->seq = seq;
1457
1458 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1459 status = d_revalidate(dentry, nd->flags);
1460 if (unlikely(status <= 0)) {
1461 if (status != -ECHILD)
1462 need_reval = 0;
1463 goto unlazy;
1464 }
1465 }
1466 path->mnt = mnt;
1467 path->dentry = dentry;
1468 if (likely(__follow_mount_rcu(nd, path, inode)))
1469 return 0;
1470 unlazy:
1471 if (unlazy_walk(nd, dentry))
1472 return -ECHILD;
1473 } else {
1474 dentry = __d_lookup(parent, &nd->last);
1475 }
1476
1477 if (unlikely(!dentry))
1478 goto need_lookup;
1479
1480 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1481 status = d_revalidate(dentry, nd->flags);
1482 if (unlikely(status <= 0)) {
1483 if (status < 0) {
1484 dput(dentry);
1485 return status;
1486 }
1487 d_invalidate(dentry);
1488 dput(dentry);
1489 goto need_lookup;
1490 }
1491
1492 if (unlikely(d_is_negative(dentry))) {
1493 dput(dentry);
1494 return -ENOENT;
1495 }
1496 path->mnt = mnt;
1497 path->dentry = dentry;
1498 err = follow_managed(path, nd->flags);
1499 if (unlikely(err < 0)) {
1500 path_put_conditional(path, nd);
1501 return err;
1502 }
1503 if (err)
1504 nd->flags |= LOOKUP_JUMPED;
1505 *inode = path->dentry->d_inode;
1506 return 0;
1507
1508 need_lookup:
1509 return 1;
1510 }
1511
1512 /* Fast lookup failed, do it the slow way */
1513 static int lookup_slow(struct nameidata *nd, struct path *path)
1514 {
1515 struct dentry *dentry, *parent;
1516 int err;
1517
1518 parent = nd->path.dentry;
1519 BUG_ON(nd->inode != parent->d_inode);
1520
1521 mutex_lock(&parent->d_inode->i_mutex);
1522 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1523 mutex_unlock(&parent->d_inode->i_mutex);
1524 if (IS_ERR(dentry))
1525 return PTR_ERR(dentry);
1526 path->mnt = nd->path.mnt;
1527 path->dentry = dentry;
1528 err = follow_managed(path, nd->flags);
1529 if (unlikely(err < 0)) {
1530 path_put_conditional(path, nd);
1531 return err;
1532 }
1533 if (err)
1534 nd->flags |= LOOKUP_JUMPED;
1535 return 0;
1536 }
1537
1538 static inline int may_lookup(struct nameidata *nd)
1539 {
1540 if (nd->flags & LOOKUP_RCU) {
1541 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1542 if (err != -ECHILD)
1543 return err;
1544 if (unlazy_walk(nd, NULL))
1545 return -ECHILD;
1546 }
1547 return inode_permission(nd->inode, MAY_EXEC);
1548 }
1549
1550 static inline int handle_dots(struct nameidata *nd, int type)
1551 {
1552 if (type == LAST_DOTDOT) {
1553 if (nd->flags & LOOKUP_RCU) {
1554 if (follow_dotdot_rcu(nd))
1555 return -ECHILD;
1556 } else
1557 follow_dotdot(nd);
1558 }
1559 return 0;
1560 }
1561
1562 static void terminate_walk(struct nameidata *nd)
1563 {
1564 if (!(nd->flags & LOOKUP_RCU)) {
1565 path_put(&nd->path);
1566 } else {
1567 nd->flags &= ~LOOKUP_RCU;
1568 if (!(nd->flags & LOOKUP_ROOT))
1569 nd->root.mnt = NULL;
1570 rcu_read_unlock();
1571 }
1572 }
1573
1574 /*
1575 * Do we need to follow links? We _really_ want to be able
1576 * to do this check without having to look at inode->i_op,
1577 * so we keep a cache of "no, this doesn't need follow_link"
1578 * for the common case.
1579 */
1580 static inline int should_follow_link(struct dentry *dentry, int follow)
1581 {
1582 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1583 }
1584
1585 static int walk_component(struct nameidata *nd, int follow)
1586 {
1587 struct path path;
1588 struct inode *inode;
1589 int err;
1590 /*
1591 * "." and ".." are special - ".." especially so because it has
1592 * to be able to know about the current root directory and
1593 * parent relationships.
1594 */
1595 if (unlikely(nd->last_type != LAST_NORM))
1596 return handle_dots(nd, nd->last_type);
1597 err = lookup_fast(nd, &path, &inode);
1598 if (unlikely(err)) {
1599 if (err < 0)
1600 goto out_err;
1601
1602 err = lookup_slow(nd, &path);
1603 if (err < 0)
1604 goto out_err;
1605
1606 inode = path.dentry->d_inode;
1607 err = -ENOENT;
1608 if (d_is_negative(path.dentry))
1609 goto out_path_put;
1610 }
1611
1612 if (should_follow_link(path.dentry, follow)) {
1613 if (nd->flags & LOOKUP_RCU) {
1614 if (unlikely(nd->path.mnt != path.mnt ||
1615 unlazy_walk(nd, path.dentry))) {
1616 err = -ECHILD;
1617 goto out_err;
1618 }
1619 }
1620 BUG_ON(inode != path.dentry->d_inode);
1621 nd->link = path;
1622 return 1;
1623 }
1624 path_to_nameidata(&path, nd);
1625 nd->inode = inode;
1626 return 0;
1627
1628 out_path_put:
1629 path_to_nameidata(&path, nd);
1630 out_err:
1631 terminate_walk(nd);
1632 return err;
1633 }
1634
1635 /*
1636 * We can do the critical dentry name comparison and hashing
1637 * operations one word at a time, but we are limited to:
1638 *
1639 * - Architectures with fast unaligned word accesses. We could
1640 * do a "get_unaligned()" if this helps and is sufficiently
1641 * fast.
1642 *
1643 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1644 * do not trap on the (extremely unlikely) case of a page
1645 * crossing operation.
1646 *
1647 * - Furthermore, we need an efficient 64-bit compile for the
1648 * 64-bit case in order to generate the "number of bytes in
1649 * the final mask". Again, that could be replaced with a
1650 * efficient population count instruction or similar.
1651 */
1652 #ifdef CONFIG_DCACHE_WORD_ACCESS
1653
1654 #include <asm/word-at-a-time.h>
1655
1656 #ifdef CONFIG_64BIT
1657
1658 static inline unsigned int fold_hash(unsigned long hash)
1659 {
1660 return hash_64(hash, 32);
1661 }
1662
1663 #else /* 32-bit case */
1664
1665 #define fold_hash(x) (x)
1666
1667 #endif
1668
1669 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1670 {
1671 unsigned long a, mask;
1672 unsigned long hash = 0;
1673
1674 for (;;) {
1675 a = load_unaligned_zeropad(name);
1676 if (len < sizeof(unsigned long))
1677 break;
1678 hash += a;
1679 hash *= 9;
1680 name += sizeof(unsigned long);
1681 len -= sizeof(unsigned long);
1682 if (!len)
1683 goto done;
1684 }
1685 mask = bytemask_from_count(len);
1686 hash += mask & a;
1687 done:
1688 return fold_hash(hash);
1689 }
1690 EXPORT_SYMBOL(full_name_hash);
1691
1692 /*
1693 * Calculate the length and hash of the path component, and
1694 * return the "hash_len" as the result.
1695 */
1696 static inline u64 hash_name(const char *name)
1697 {
1698 unsigned long a, b, adata, bdata, mask, hash, len;
1699 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1700
1701 hash = a = 0;
1702 len = -sizeof(unsigned long);
1703 do {
1704 hash = (hash + a) * 9;
1705 len += sizeof(unsigned long);
1706 a = load_unaligned_zeropad(name+len);
1707 b = a ^ REPEAT_BYTE('/');
1708 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1709
1710 adata = prep_zero_mask(a, adata, &constants);
1711 bdata = prep_zero_mask(b, bdata, &constants);
1712
1713 mask = create_zero_mask(adata | bdata);
1714
1715 hash += a & zero_bytemask(mask);
1716 len += find_zero(mask);
1717 return hashlen_create(fold_hash(hash), len);
1718 }
1719
1720 #else
1721
1722 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1723 {
1724 unsigned long hash = init_name_hash();
1725 while (len--)
1726 hash = partial_name_hash(*name++, hash);
1727 return end_name_hash(hash);
1728 }
1729 EXPORT_SYMBOL(full_name_hash);
1730
1731 /*
1732 * We know there's a real path component here of at least
1733 * one character.
1734 */
1735 static inline u64 hash_name(const char *name)
1736 {
1737 unsigned long hash = init_name_hash();
1738 unsigned long len = 0, c;
1739
1740 c = (unsigned char)*name;
1741 do {
1742 len++;
1743 hash = partial_name_hash(c, hash);
1744 c = (unsigned char)name[len];
1745 } while (c && c != '/');
1746 return hashlen_create(end_name_hash(hash), len);
1747 }
1748
1749 #endif
1750
1751 /*
1752 * Name resolution.
1753 * This is the basic name resolution function, turning a pathname into
1754 * the final dentry. We expect 'base' to be positive and a directory.
1755 *
1756 * Returns 0 and nd will have valid dentry and mnt on success.
1757 * Returns error and drops reference to input namei data on failure.
1758 */
1759 static int link_path_walk(const char *name, struct nameidata *nd)
1760 {
1761 int err;
1762
1763 while (*name=='/')
1764 name++;
1765 if (!*name)
1766 return 0;
1767
1768 /* At this point we know we have a real path component. */
1769 for(;;) {
1770 u64 hash_len;
1771 int type;
1772
1773 err = may_lookup(nd);
1774 if (err)
1775 break;
1776
1777 hash_len = hash_name(name);
1778
1779 type = LAST_NORM;
1780 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1781 case 2:
1782 if (name[1] == '.') {
1783 type = LAST_DOTDOT;
1784 nd->flags |= LOOKUP_JUMPED;
1785 }
1786 break;
1787 case 1:
1788 type = LAST_DOT;
1789 }
1790 if (likely(type == LAST_NORM)) {
1791 struct dentry *parent = nd->path.dentry;
1792 nd->flags &= ~LOOKUP_JUMPED;
1793 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1794 struct qstr this = { { .hash_len = hash_len }, .name = name };
1795 err = parent->d_op->d_hash(parent, &this);
1796 if (err < 0)
1797 break;
1798 hash_len = this.hash_len;
1799 name = this.name;
1800 }
1801 }
1802
1803 nd->last.hash_len = hash_len;
1804 nd->last.name = name;
1805 nd->last_type = type;
1806
1807 name += hashlen_len(hash_len);
1808 if (!*name)
1809 goto OK;
1810 /*
1811 * If it wasn't NUL, we know it was '/'. Skip that
1812 * slash, and continue until no more slashes.
1813 */
1814 do {
1815 name++;
1816 } while (unlikely(*name == '/'));
1817 if (!*name)
1818 goto OK;
1819
1820 err = walk_component(nd, LOOKUP_FOLLOW);
1821 Walked:
1822 if (err < 0)
1823 goto Err;
1824
1825 if (err) {
1826 const char *s;
1827
1828 err = nd_alloc_stack(nd);
1829 if (unlikely(err)) {
1830 path_to_nameidata(&nd->link, nd);
1831 break;
1832 }
1833
1834 s = get_link(nd);
1835
1836 if (unlikely(IS_ERR(s))) {
1837 err = PTR_ERR(s);
1838 goto Err;
1839 }
1840 err = 0;
1841 if (unlikely(!s)) {
1842 /* jumped */
1843 put_link(nd);
1844 } else {
1845 if (*s == '/') {
1846 if (!nd->root.mnt)
1847 set_root(nd);
1848 path_put(&nd->path);
1849 nd->path = nd->root;
1850 path_get(&nd->root);
1851 nd->flags |= LOOKUP_JUMPED;
1852 while (unlikely(*++s == '/'))
1853 ;
1854 }
1855 nd->inode = nd->path.dentry->d_inode;
1856 nd->stack[nd->depth - 1].name = name;
1857 if (!*s)
1858 goto OK;
1859 name = s;
1860 continue;
1861 }
1862 }
1863 if (!d_can_lookup(nd->path.dentry)) {
1864 err = -ENOTDIR;
1865 break;
1866 }
1867 }
1868 terminate_walk(nd);
1869 Err:
1870 while (unlikely(nd->depth))
1871 put_link(nd);
1872 return err;
1873 OK:
1874 if (!nd->depth) /* called from path_init(), done */
1875 return 0;
1876 name = nd->stack[nd->depth - 1].name;
1877 if (!name) /* called from trailing_symlink(), done */
1878 return 0;
1879
1880 err = walk_component(nd, LOOKUP_FOLLOW);
1881 put_link(nd);
1882 goto Walked;
1883 }
1884
1885 static int path_init(int dfd, const struct filename *name, unsigned int flags,
1886 struct nameidata *nd)
1887 {
1888 int retval = 0;
1889 const char *s = name->name;
1890
1891 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1892 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1893 nd->depth = 0;
1894 nd->base = NULL;
1895 if (flags & LOOKUP_ROOT) {
1896 struct dentry *root = nd->root.dentry;
1897 struct inode *inode = root->d_inode;
1898 if (*s) {
1899 if (!d_can_lookup(root))
1900 return -ENOTDIR;
1901 retval = inode_permission(inode, MAY_EXEC);
1902 if (retval)
1903 return retval;
1904 }
1905 nd->path = nd->root;
1906 nd->inode = inode;
1907 if (flags & LOOKUP_RCU) {
1908 rcu_read_lock();
1909 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1910 nd->m_seq = read_seqbegin(&mount_lock);
1911 } else {
1912 path_get(&nd->path);
1913 }
1914 goto done;
1915 }
1916
1917 nd->root.mnt = NULL;
1918
1919 nd->m_seq = read_seqbegin(&mount_lock);
1920 if (*s == '/') {
1921 if (flags & LOOKUP_RCU) {
1922 rcu_read_lock();
1923 nd->seq = set_root_rcu(nd);
1924 } else {
1925 set_root(nd);
1926 path_get(&nd->root);
1927 }
1928 nd->path = nd->root;
1929 } else if (dfd == AT_FDCWD) {
1930 if (flags & LOOKUP_RCU) {
1931 struct fs_struct *fs = current->fs;
1932 unsigned seq;
1933
1934 rcu_read_lock();
1935
1936 do {
1937 seq = read_seqcount_begin(&fs->seq);
1938 nd->path = fs->pwd;
1939 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1940 } while (read_seqcount_retry(&fs->seq, seq));
1941 } else {
1942 get_fs_pwd(current->fs, &nd->path);
1943 }
1944 } else {
1945 /* Caller must check execute permissions on the starting path component */
1946 struct fd f = fdget_raw(dfd);
1947 struct dentry *dentry;
1948
1949 if (!f.file)
1950 return -EBADF;
1951
1952 dentry = f.file->f_path.dentry;
1953
1954 if (*s) {
1955 if (!d_can_lookup(dentry)) {
1956 fdput(f);
1957 return -ENOTDIR;
1958 }
1959 }
1960
1961 nd->path = f.file->f_path;
1962 if (flags & LOOKUP_RCU) {
1963 if (f.flags & FDPUT_FPUT)
1964 nd->base = f.file;
1965 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1966 rcu_read_lock();
1967 } else {
1968 path_get(&nd->path);
1969 fdput(f);
1970 }
1971 }
1972
1973 nd->inode = nd->path.dentry->d_inode;
1974 if (!(flags & LOOKUP_RCU))
1975 goto done;
1976 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1977 goto done;
1978 if (!(nd->flags & LOOKUP_ROOT))
1979 nd->root.mnt = NULL;
1980 rcu_read_unlock();
1981 return -ECHILD;
1982 done:
1983 current->total_link_count = 0;
1984 return link_path_walk(s, nd);
1985 }
1986
1987 static void path_cleanup(struct nameidata *nd)
1988 {
1989 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1990 path_put(&nd->root);
1991 nd->root.mnt = NULL;
1992 }
1993 if (unlikely(nd->base))
1994 fput(nd->base);
1995 }
1996
1997 static int trailing_symlink(struct nameidata *nd)
1998 {
1999 const char *s;
2000 int error = may_follow_link(&nd->link, nd);
2001 if (unlikely(error))
2002 return error;
2003 nd->flags |= LOOKUP_PARENT;
2004 s = get_link(nd);
2005 if (unlikely(IS_ERR(s)))
2006 return PTR_ERR(s);
2007 if (unlikely(!s))
2008 return 0;
2009 if (*s == '/') {
2010 if (!nd->root.mnt)
2011 set_root(nd);
2012 path_put(&nd->path);
2013 nd->path = nd->root;
2014 path_get(&nd->root);
2015 nd->flags |= LOOKUP_JUMPED;
2016 }
2017 nd->inode = nd->path.dentry->d_inode;
2018 nd->stack[0].name = NULL;
2019 return link_path_walk(s, nd);
2020 }
2021
2022 static inline int lookup_last(struct nameidata *nd)
2023 {
2024 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2025 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2026
2027 nd->flags &= ~LOOKUP_PARENT;
2028 return walk_component(nd, nd->flags & LOOKUP_FOLLOW);
2029 }
2030
2031 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2032 static int path_lookupat(int dfd, const struct filename *name,
2033 unsigned int flags, struct nameidata *nd)
2034 {
2035 int err;
2036
2037 /*
2038 * Path walking is largely split up into 2 different synchronisation
2039 * schemes, rcu-walk and ref-walk (explained in
2040 * Documentation/filesystems/path-lookup.txt). These share much of the
2041 * path walk code, but some things particularly setup, cleanup, and
2042 * following mounts are sufficiently divergent that functions are
2043 * duplicated. Typically there is a function foo(), and its RCU
2044 * analogue, foo_rcu().
2045 *
2046 * -ECHILD is the error number of choice (just to avoid clashes) that
2047 * is returned if some aspect of an rcu-walk fails. Such an error must
2048 * be handled by restarting a traditional ref-walk (which will always
2049 * be able to complete).
2050 */
2051 err = path_init(dfd, name, flags, nd);
2052 if (!err && !(flags & LOOKUP_PARENT)) {
2053 err = lookup_last(nd);
2054 while (err > 0) {
2055 err = trailing_symlink(nd);
2056 if (err)
2057 break;
2058 err = lookup_last(nd);
2059 put_link(nd);
2060 }
2061 }
2062
2063 if (!err)
2064 err = complete_walk(nd);
2065
2066 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2067 if (!d_can_lookup(nd->path.dentry)) {
2068 path_put(&nd->path);
2069 err = -ENOTDIR;
2070 }
2071 }
2072
2073 path_cleanup(nd);
2074 return err;
2075 }
2076
2077 static int filename_lookup(int dfd, struct filename *name,
2078 unsigned int flags, struct nameidata *nd)
2079 {
2080 int retval;
2081
2082 set_nameidata(nd);
2083 retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2084
2085 if (unlikely(retval == -ECHILD))
2086 retval = path_lookupat(dfd, name, flags, nd);
2087 if (unlikely(retval == -ESTALE))
2088 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2089
2090 if (likely(!retval))
2091 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2092 restore_nameidata(nd);
2093 return retval;
2094 }
2095
2096 /* does lookup, returns the object with parent locked */
2097 struct dentry *kern_path_locked(const char *name, struct path *path)
2098 {
2099 struct filename *filename = getname_kernel(name);
2100 struct nameidata nd;
2101 struct dentry *d;
2102 int err;
2103
2104 if (IS_ERR(filename))
2105 return ERR_CAST(filename);
2106
2107 err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd);
2108 if (err) {
2109 d = ERR_PTR(err);
2110 goto out;
2111 }
2112 if (nd.last_type != LAST_NORM) {
2113 path_put(&nd.path);
2114 d = ERR_PTR(-EINVAL);
2115 goto out;
2116 }
2117 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2118 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2119 if (IS_ERR(d)) {
2120 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2121 path_put(&nd.path);
2122 goto out;
2123 }
2124 *path = nd.path;
2125 out:
2126 putname(filename);
2127 return d;
2128 }
2129
2130 int kern_path(const char *name, unsigned int flags, struct path *path)
2131 {
2132 struct nameidata nd;
2133 struct filename *filename = getname_kernel(name);
2134 int res = PTR_ERR(filename);
2135
2136 if (!IS_ERR(filename)) {
2137 res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2138 putname(filename);
2139 if (!res)
2140 *path = nd.path;
2141 }
2142 return res;
2143 }
2144 EXPORT_SYMBOL(kern_path);
2145
2146 /**
2147 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2148 * @dentry: pointer to dentry of the base directory
2149 * @mnt: pointer to vfs mount of the base directory
2150 * @name: pointer to file name
2151 * @flags: lookup flags
2152 * @path: pointer to struct path to fill
2153 */
2154 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2155 const char *name, unsigned int flags,
2156 struct path *path)
2157 {
2158 struct filename *filename = getname_kernel(name);
2159 int err = PTR_ERR(filename);
2160
2161 BUG_ON(flags & LOOKUP_PARENT);
2162
2163 /* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2164 if (!IS_ERR(filename)) {
2165 struct nameidata nd;
2166 nd.root.dentry = dentry;
2167 nd.root.mnt = mnt;
2168 err = filename_lookup(AT_FDCWD, filename,
2169 flags | LOOKUP_ROOT, &nd);
2170 if (!err)
2171 *path = nd.path;
2172 putname(filename);
2173 }
2174 return err;
2175 }
2176 EXPORT_SYMBOL(vfs_path_lookup);
2177
2178 /**
2179 * lookup_one_len - filesystem helper to lookup single pathname component
2180 * @name: pathname component to lookup
2181 * @base: base directory to lookup from
2182 * @len: maximum length @len should be interpreted to
2183 *
2184 * Note that this routine is purely a helper for filesystem usage and should
2185 * not be called by generic code.
2186 */
2187 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2188 {
2189 struct qstr this;
2190 unsigned int c;
2191 int err;
2192
2193 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2194
2195 this.name = name;
2196 this.len = len;
2197 this.hash = full_name_hash(name, len);
2198 if (!len)
2199 return ERR_PTR(-EACCES);
2200
2201 if (unlikely(name[0] == '.')) {
2202 if (len < 2 || (len == 2 && name[1] == '.'))
2203 return ERR_PTR(-EACCES);
2204 }
2205
2206 while (len--) {
2207 c = *(const unsigned char *)name++;
2208 if (c == '/' || c == '\0')
2209 return ERR_PTR(-EACCES);
2210 }
2211 /*
2212 * See if the low-level filesystem might want
2213 * to use its own hash..
2214 */
2215 if (base->d_flags & DCACHE_OP_HASH) {
2216 int err = base->d_op->d_hash(base, &this);
2217 if (err < 0)
2218 return ERR_PTR(err);
2219 }
2220
2221 err = inode_permission(base->d_inode, MAY_EXEC);
2222 if (err)
2223 return ERR_PTR(err);
2224
2225 return __lookup_hash(&this, base, 0);
2226 }
2227 EXPORT_SYMBOL(lookup_one_len);
2228
2229 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2230 struct path *path, int *empty)
2231 {
2232 struct nameidata nd;
2233 struct filename *tmp = getname_flags(name, flags, empty);
2234 int err = PTR_ERR(tmp);
2235 if (!IS_ERR(tmp)) {
2236
2237 BUG_ON(flags & LOOKUP_PARENT);
2238
2239 err = filename_lookup(dfd, tmp, flags, &nd);
2240 putname(tmp);
2241 if (!err)
2242 *path = nd.path;
2243 }
2244 return err;
2245 }
2246
2247 int user_path_at(int dfd, const char __user *name, unsigned flags,
2248 struct path *path)
2249 {
2250 return user_path_at_empty(dfd, name, flags, path, NULL);
2251 }
2252 EXPORT_SYMBOL(user_path_at);
2253
2254 /*
2255 * NB: most callers don't do anything directly with the reference to the
2256 * to struct filename, but the nd->last pointer points into the name string
2257 * allocated by getname. So we must hold the reference to it until all
2258 * path-walking is complete.
2259 */
2260 static struct filename *
2261 user_path_parent(int dfd, const char __user *path,
2262 struct path *parent,
2263 struct qstr *last,
2264 int *type,
2265 unsigned int flags)
2266 {
2267 struct nameidata nd;
2268 struct filename *s = getname(path);
2269 int error;
2270
2271 /* only LOOKUP_REVAL is allowed in extra flags */
2272 flags &= LOOKUP_REVAL;
2273
2274 if (IS_ERR(s))
2275 return s;
2276
2277 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, &nd);
2278 if (error) {
2279 putname(s);
2280 return ERR_PTR(error);
2281 }
2282 *parent = nd.path;
2283 *last = nd.last;
2284 *type = nd.last_type;
2285
2286 return s;
2287 }
2288
2289 /**
2290 * mountpoint_last - look up last component for umount
2291 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2292 * @path: pointer to container for result
2293 *
2294 * This is a special lookup_last function just for umount. In this case, we
2295 * need to resolve the path without doing any revalidation.
2296 *
2297 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2298 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2299 * in almost all cases, this lookup will be served out of the dcache. The only
2300 * cases where it won't are if nd->last refers to a symlink or the path is
2301 * bogus and it doesn't exist.
2302 *
2303 * Returns:
2304 * -error: if there was an error during lookup. This includes -ENOENT if the
2305 * lookup found a negative dentry. The nd->path reference will also be
2306 * put in this case.
2307 *
2308 * 0: if we successfully resolved nd->path and found it to not to be a
2309 * symlink that needs to be followed. "path" will also be populated.
2310 * The nd->path reference will also be put.
2311 *
2312 * 1: if we successfully resolved nd->last and found it to be a symlink
2313 * that needs to be followed. "path" will be populated with the path
2314 * to the link, and nd->path will *not* be put.
2315 */
2316 static int
2317 mountpoint_last(struct nameidata *nd, struct path *path)
2318 {
2319 int error = 0;
2320 struct dentry *dentry;
2321 struct dentry *dir = nd->path.dentry;
2322
2323 /* If we're in rcuwalk, drop out of it to handle last component */
2324 if (nd->flags & LOOKUP_RCU) {
2325 if (unlazy_walk(nd, NULL)) {
2326 error = -ECHILD;
2327 goto out;
2328 }
2329 }
2330
2331 nd->flags &= ~LOOKUP_PARENT;
2332
2333 if (unlikely(nd->last_type != LAST_NORM)) {
2334 error = handle_dots(nd, nd->last_type);
2335 if (error)
2336 goto out;
2337 dentry = dget(nd->path.dentry);
2338 goto done;
2339 }
2340
2341 mutex_lock(&dir->d_inode->i_mutex);
2342 dentry = d_lookup(dir, &nd->last);
2343 if (!dentry) {
2344 /*
2345 * No cached dentry. Mounted dentries are pinned in the cache,
2346 * so that means that this dentry is probably a symlink or the
2347 * path doesn't actually point to a mounted dentry.
2348 */
2349 dentry = d_alloc(dir, &nd->last);
2350 if (!dentry) {
2351 error = -ENOMEM;
2352 mutex_unlock(&dir->d_inode->i_mutex);
2353 goto out;
2354 }
2355 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2356 error = PTR_ERR(dentry);
2357 if (IS_ERR(dentry)) {
2358 mutex_unlock(&dir->d_inode->i_mutex);
2359 goto out;
2360 }
2361 }
2362 mutex_unlock(&dir->d_inode->i_mutex);
2363
2364 done:
2365 if (d_is_negative(dentry)) {
2366 error = -ENOENT;
2367 dput(dentry);
2368 goto out;
2369 }
2370 path->dentry = dentry;
2371 path->mnt = nd->path.mnt;
2372 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW)) {
2373 nd->link = *path;
2374 return 1;
2375 }
2376 mntget(path->mnt);
2377 follow_mount(path);
2378 error = 0;
2379 out:
2380 terminate_walk(nd);
2381 return error;
2382 }
2383
2384 /**
2385 * path_mountpoint - look up a path to be umounted
2386 * @dfd: directory file descriptor to start walk from
2387 * @name: full pathname to walk
2388 * @path: pointer to container for result
2389 * @flags: lookup flags
2390 *
2391 * Look up the given name, but don't attempt to revalidate the last component.
2392 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2393 */
2394 static int
2395 path_mountpoint(int dfd, const struct filename *name, struct path *path,
2396 struct nameidata *nd, unsigned int flags)
2397 {
2398 int err = path_init(dfd, name, flags, nd);
2399 if (unlikely(err))
2400 goto out;
2401
2402 err = mountpoint_last(nd, path);
2403 while (err > 0) {
2404 err = trailing_symlink(nd);
2405 if (err)
2406 break;
2407 err = mountpoint_last(nd, path);
2408 put_link(nd);
2409 }
2410 out:
2411 path_cleanup(nd);
2412 return err;
2413 }
2414
2415 static int
2416 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2417 unsigned int flags)
2418 {
2419 struct nameidata nd;
2420 int error;
2421 if (IS_ERR(name))
2422 return PTR_ERR(name);
2423 set_nameidata(&nd);
2424 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_RCU);
2425 if (unlikely(error == -ECHILD))
2426 error = path_mountpoint(dfd, name, path, &nd, flags);
2427 if (unlikely(error == -ESTALE))
2428 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_REVAL);
2429 if (likely(!error))
2430 audit_inode(name, path->dentry, 0);
2431 restore_nameidata(&nd);
2432 putname(name);
2433 return error;
2434 }
2435
2436 /**
2437 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2438 * @dfd: directory file descriptor
2439 * @name: pathname from userland
2440 * @flags: lookup flags
2441 * @path: pointer to container to hold result
2442 *
2443 * A umount is a special case for path walking. We're not actually interested
2444 * in the inode in this situation, and ESTALE errors can be a problem. We
2445 * simply want track down the dentry and vfsmount attached at the mountpoint
2446 * and avoid revalidating the last component.
2447 *
2448 * Returns 0 and populates "path" on success.
2449 */
2450 int
2451 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2452 struct path *path)
2453 {
2454 return filename_mountpoint(dfd, getname(name), path, flags);
2455 }
2456
2457 int
2458 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2459 unsigned int flags)
2460 {
2461 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2462 }
2463 EXPORT_SYMBOL(kern_path_mountpoint);
2464
2465 int __check_sticky(struct inode *dir, struct inode *inode)
2466 {
2467 kuid_t fsuid = current_fsuid();
2468
2469 if (uid_eq(inode->i_uid, fsuid))
2470 return 0;
2471 if (uid_eq(dir->i_uid, fsuid))
2472 return 0;
2473 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2474 }
2475 EXPORT_SYMBOL(__check_sticky);
2476
2477 /*
2478 * Check whether we can remove a link victim from directory dir, check
2479 * whether the type of victim is right.
2480 * 1. We can't do it if dir is read-only (done in permission())
2481 * 2. We should have write and exec permissions on dir
2482 * 3. We can't remove anything from append-only dir
2483 * 4. We can't do anything with immutable dir (done in permission())
2484 * 5. If the sticky bit on dir is set we should either
2485 * a. be owner of dir, or
2486 * b. be owner of victim, or
2487 * c. have CAP_FOWNER capability
2488 * 6. If the victim is append-only or immutable we can't do antyhing with
2489 * links pointing to it.
2490 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2491 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2492 * 9. We can't remove a root or mountpoint.
2493 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2494 * nfs_async_unlink().
2495 */
2496 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2497 {
2498 struct inode *inode = victim->d_inode;
2499 int error;
2500
2501 if (d_is_negative(victim))
2502 return -ENOENT;
2503 BUG_ON(!inode);
2504
2505 BUG_ON(victim->d_parent->d_inode != dir);
2506 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2507
2508 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2509 if (error)
2510 return error;
2511 if (IS_APPEND(dir))
2512 return -EPERM;
2513
2514 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2515 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2516 return -EPERM;
2517 if (isdir) {
2518 if (!d_is_dir(victim))
2519 return -ENOTDIR;
2520 if (IS_ROOT(victim))
2521 return -EBUSY;
2522 } else if (d_is_dir(victim))
2523 return -EISDIR;
2524 if (IS_DEADDIR(dir))
2525 return -ENOENT;
2526 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2527 return -EBUSY;
2528 return 0;
2529 }
2530
2531 /* Check whether we can create an object with dentry child in directory
2532 * dir.
2533 * 1. We can't do it if child already exists (open has special treatment for
2534 * this case, but since we are inlined it's OK)
2535 * 2. We can't do it if dir is read-only (done in permission())
2536 * 3. We should have write and exec permissions on dir
2537 * 4. We can't do it if dir is immutable (done in permission())
2538 */
2539 static inline int may_create(struct inode *dir, struct dentry *child)
2540 {
2541 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2542 if (child->d_inode)
2543 return -EEXIST;
2544 if (IS_DEADDIR(dir))
2545 return -ENOENT;
2546 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2547 }
2548
2549 /*
2550 * p1 and p2 should be directories on the same fs.
2551 */
2552 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2553 {
2554 struct dentry *p;
2555
2556 if (p1 == p2) {
2557 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2558 return NULL;
2559 }
2560
2561 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2562
2563 p = d_ancestor(p2, p1);
2564 if (p) {
2565 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2566 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2567 return p;
2568 }
2569
2570 p = d_ancestor(p1, p2);
2571 if (p) {
2572 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2573 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2574 return p;
2575 }
2576
2577 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2578 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2579 return NULL;
2580 }
2581 EXPORT_SYMBOL(lock_rename);
2582
2583 void unlock_rename(struct dentry *p1, struct dentry *p2)
2584 {
2585 mutex_unlock(&p1->d_inode->i_mutex);
2586 if (p1 != p2) {
2587 mutex_unlock(&p2->d_inode->i_mutex);
2588 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2589 }
2590 }
2591 EXPORT_SYMBOL(unlock_rename);
2592
2593 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2594 bool want_excl)
2595 {
2596 int error = may_create(dir, dentry);
2597 if (error)
2598 return error;
2599
2600 if (!dir->i_op->create)
2601 return -EACCES; /* shouldn't it be ENOSYS? */
2602 mode &= S_IALLUGO;
2603 mode |= S_IFREG;
2604 error = security_inode_create(dir, dentry, mode);
2605 if (error)
2606 return error;
2607 error = dir->i_op->create(dir, dentry, mode, want_excl);
2608 if (!error)
2609 fsnotify_create(dir, dentry);
2610 return error;
2611 }
2612 EXPORT_SYMBOL(vfs_create);
2613
2614 static int may_open(struct path *path, int acc_mode, int flag)
2615 {
2616 struct dentry *dentry = path->dentry;
2617 struct inode *inode = dentry->d_inode;
2618 int error;
2619
2620 /* O_PATH? */
2621 if (!acc_mode)
2622 return 0;
2623
2624 if (!inode)
2625 return -ENOENT;
2626
2627 switch (inode->i_mode & S_IFMT) {
2628 case S_IFLNK:
2629 return -ELOOP;
2630 case S_IFDIR:
2631 if (acc_mode & MAY_WRITE)
2632 return -EISDIR;
2633 break;
2634 case S_IFBLK:
2635 case S_IFCHR:
2636 if (path->mnt->mnt_flags & MNT_NODEV)
2637 return -EACCES;
2638 /*FALLTHRU*/
2639 case S_IFIFO:
2640 case S_IFSOCK:
2641 flag &= ~O_TRUNC;
2642 break;
2643 }
2644
2645 error = inode_permission(inode, acc_mode);
2646 if (error)
2647 return error;
2648
2649 /*
2650 * An append-only file must be opened in append mode for writing.
2651 */
2652 if (IS_APPEND(inode)) {
2653 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2654 return -EPERM;
2655 if (flag & O_TRUNC)
2656 return -EPERM;
2657 }
2658
2659 /* O_NOATIME can only be set by the owner or superuser */
2660 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2661 return -EPERM;
2662
2663 return 0;
2664 }
2665
2666 static int handle_truncate(struct file *filp)
2667 {
2668 struct path *path = &filp->f_path;
2669 struct inode *inode = path->dentry->d_inode;
2670 int error = get_write_access(inode);
2671 if (error)
2672 return error;
2673 /*
2674 * Refuse to truncate files with mandatory locks held on them.
2675 */
2676 error = locks_verify_locked(filp);
2677 if (!error)
2678 error = security_path_truncate(path);
2679 if (!error) {
2680 error = do_truncate(path->dentry, 0,
2681 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2682 filp);
2683 }
2684 put_write_access(inode);
2685 return error;
2686 }
2687
2688 static inline int open_to_namei_flags(int flag)
2689 {
2690 if ((flag & O_ACCMODE) == 3)
2691 flag--;
2692 return flag;
2693 }
2694
2695 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2696 {
2697 int error = security_path_mknod(dir, dentry, mode, 0);
2698 if (error)
2699 return error;
2700
2701 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2702 if (error)
2703 return error;
2704
2705 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2706 }
2707
2708 /*
2709 * Attempt to atomically look up, create and open a file from a negative
2710 * dentry.
2711 *
2712 * Returns 0 if successful. The file will have been created and attached to
2713 * @file by the filesystem calling finish_open().
2714 *
2715 * Returns 1 if the file was looked up only or didn't need creating. The
2716 * caller will need to perform the open themselves. @path will have been
2717 * updated to point to the new dentry. This may be negative.
2718 *
2719 * Returns an error code otherwise.
2720 */
2721 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2722 struct path *path, struct file *file,
2723 const struct open_flags *op,
2724 bool got_write, bool need_lookup,
2725 int *opened)
2726 {
2727 struct inode *dir = nd->path.dentry->d_inode;
2728 unsigned open_flag = open_to_namei_flags(op->open_flag);
2729 umode_t mode;
2730 int error;
2731 int acc_mode;
2732 int create_error = 0;
2733 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2734 bool excl;
2735
2736 BUG_ON(dentry->d_inode);
2737
2738 /* Don't create child dentry for a dead directory. */
2739 if (unlikely(IS_DEADDIR(dir))) {
2740 error = -ENOENT;
2741 goto out;
2742 }
2743
2744 mode = op->mode;
2745 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2746 mode &= ~current_umask();
2747
2748 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2749 if (excl)
2750 open_flag &= ~O_TRUNC;
2751
2752 /*
2753 * Checking write permission is tricky, bacuse we don't know if we are
2754 * going to actually need it: O_CREAT opens should work as long as the
2755 * file exists. But checking existence breaks atomicity. The trick is
2756 * to check access and if not granted clear O_CREAT from the flags.
2757 *
2758 * Another problem is returing the "right" error value (e.g. for an
2759 * O_EXCL open we want to return EEXIST not EROFS).
2760 */
2761 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2762 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2763 if (!(open_flag & O_CREAT)) {
2764 /*
2765 * No O_CREATE -> atomicity not a requirement -> fall
2766 * back to lookup + open
2767 */
2768 goto no_open;
2769 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2770 /* Fall back and fail with the right error */
2771 create_error = -EROFS;
2772 goto no_open;
2773 } else {
2774 /* No side effects, safe to clear O_CREAT */
2775 create_error = -EROFS;
2776 open_flag &= ~O_CREAT;
2777 }
2778 }
2779
2780 if (open_flag & O_CREAT) {
2781 error = may_o_create(&nd->path, dentry, mode);
2782 if (error) {
2783 create_error = error;
2784 if (open_flag & O_EXCL)
2785 goto no_open;
2786 open_flag &= ~O_CREAT;
2787 }
2788 }
2789
2790 if (nd->flags & LOOKUP_DIRECTORY)
2791 open_flag |= O_DIRECTORY;
2792
2793 file->f_path.dentry = DENTRY_NOT_SET;
2794 file->f_path.mnt = nd->path.mnt;
2795 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2796 opened);
2797 if (error < 0) {
2798 if (create_error && error == -ENOENT)
2799 error = create_error;
2800 goto out;
2801 }
2802
2803 if (error) { /* returned 1, that is */
2804 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2805 error = -EIO;
2806 goto out;
2807 }
2808 if (file->f_path.dentry) {
2809 dput(dentry);
2810 dentry = file->f_path.dentry;
2811 }
2812 if (*opened & FILE_CREATED)
2813 fsnotify_create(dir, dentry);
2814 if (!dentry->d_inode) {
2815 WARN_ON(*opened & FILE_CREATED);
2816 if (create_error) {
2817 error = create_error;
2818 goto out;
2819 }
2820 } else {
2821 if (excl && !(*opened & FILE_CREATED)) {
2822 error = -EEXIST;
2823 goto out;
2824 }
2825 }
2826 goto looked_up;
2827 }
2828
2829 /*
2830 * We didn't have the inode before the open, so check open permission
2831 * here.
2832 */
2833 acc_mode = op->acc_mode;
2834 if (*opened & FILE_CREATED) {
2835 WARN_ON(!(open_flag & O_CREAT));
2836 fsnotify_create(dir, dentry);
2837 acc_mode = MAY_OPEN;
2838 }
2839 error = may_open(&file->f_path, acc_mode, open_flag);
2840 if (error)
2841 fput(file);
2842
2843 out:
2844 dput(dentry);
2845 return error;
2846
2847 no_open:
2848 if (need_lookup) {
2849 dentry = lookup_real(dir, dentry, nd->flags);
2850 if (IS_ERR(dentry))
2851 return PTR_ERR(dentry);
2852
2853 if (create_error) {
2854 int open_flag = op->open_flag;
2855
2856 error = create_error;
2857 if ((open_flag & O_EXCL)) {
2858 if (!dentry->d_inode)
2859 goto out;
2860 } else if (!dentry->d_inode) {
2861 goto out;
2862 } else if ((open_flag & O_TRUNC) &&
2863 d_is_reg(dentry)) {
2864 goto out;
2865 }
2866 /* will fail later, go on to get the right error */
2867 }
2868 }
2869 looked_up:
2870 path->dentry = dentry;
2871 path->mnt = nd->path.mnt;
2872 return 1;
2873 }
2874
2875 /*
2876 * Look up and maybe create and open the last component.
2877 *
2878 * Must be called with i_mutex held on parent.
2879 *
2880 * Returns 0 if the file was successfully atomically created (if necessary) and
2881 * opened. In this case the file will be returned attached to @file.
2882 *
2883 * Returns 1 if the file was not completely opened at this time, though lookups
2884 * and creations will have been performed and the dentry returned in @path will
2885 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2886 * specified then a negative dentry may be returned.
2887 *
2888 * An error code is returned otherwise.
2889 *
2890 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2891 * cleared otherwise prior to returning.
2892 */
2893 static int lookup_open(struct nameidata *nd, struct path *path,
2894 struct file *file,
2895 const struct open_flags *op,
2896 bool got_write, int *opened)
2897 {
2898 struct dentry *dir = nd->path.dentry;
2899 struct inode *dir_inode = dir->d_inode;
2900 struct dentry *dentry;
2901 int error;
2902 bool need_lookup;
2903
2904 *opened &= ~FILE_CREATED;
2905 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2906 if (IS_ERR(dentry))
2907 return PTR_ERR(dentry);
2908
2909 /* Cached positive dentry: will open in f_op->open */
2910 if (!need_lookup && dentry->d_inode)
2911 goto out_no_open;
2912
2913 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2914 return atomic_open(nd, dentry, path, file, op, got_write,
2915 need_lookup, opened);
2916 }
2917
2918 if (need_lookup) {
2919 BUG_ON(dentry->d_inode);
2920
2921 dentry = lookup_real(dir_inode, dentry, nd->flags);
2922 if (IS_ERR(dentry))
2923 return PTR_ERR(dentry);
2924 }
2925
2926 /* Negative dentry, just create the file */
2927 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2928 umode_t mode = op->mode;
2929 if (!IS_POSIXACL(dir->d_inode))
2930 mode &= ~current_umask();
2931 /*
2932 * This write is needed to ensure that a
2933 * rw->ro transition does not occur between
2934 * the time when the file is created and when
2935 * a permanent write count is taken through
2936 * the 'struct file' in finish_open().
2937 */
2938 if (!got_write) {
2939 error = -EROFS;
2940 goto out_dput;
2941 }
2942 *opened |= FILE_CREATED;
2943 error = security_path_mknod(&nd->path, dentry, mode, 0);
2944 if (error)
2945 goto out_dput;
2946 error = vfs_create(dir->d_inode, dentry, mode,
2947 nd->flags & LOOKUP_EXCL);
2948 if (error)
2949 goto out_dput;
2950 }
2951 out_no_open:
2952 path->dentry = dentry;
2953 path->mnt = nd->path.mnt;
2954 return 1;
2955
2956 out_dput:
2957 dput(dentry);
2958 return error;
2959 }
2960
2961 /*
2962 * Handle the last step of open()
2963 */
2964 static int do_last(struct nameidata *nd,
2965 struct file *file, const struct open_flags *op,
2966 int *opened, struct filename *name)
2967 {
2968 struct dentry *dir = nd->path.dentry;
2969 int open_flag = op->open_flag;
2970 bool will_truncate = (open_flag & O_TRUNC) != 0;
2971 bool got_write = false;
2972 int acc_mode = op->acc_mode;
2973 struct inode *inode;
2974 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2975 struct path path;
2976 bool retried = false;
2977 int error;
2978
2979 nd->flags &= ~LOOKUP_PARENT;
2980 nd->flags |= op->intent;
2981
2982 if (nd->last_type != LAST_NORM) {
2983 error = handle_dots(nd, nd->last_type);
2984 if (error)
2985 return error;
2986 goto finish_open;
2987 }
2988
2989 if (!(open_flag & O_CREAT)) {
2990 if (nd->last.name[nd->last.len])
2991 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2992 /* we _can_ be in RCU mode here */
2993 error = lookup_fast(nd, &path, &inode);
2994 if (likely(!error))
2995 goto finish_lookup;
2996
2997 if (error < 0)
2998 goto out;
2999
3000 BUG_ON(nd->inode != dir->d_inode);
3001 } else {
3002 /* create side of things */
3003 /*
3004 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3005 * has been cleared when we got to the last component we are
3006 * about to look up
3007 */
3008 error = complete_walk(nd);
3009 if (error)
3010 return error;
3011
3012 audit_inode(name, dir, LOOKUP_PARENT);
3013 error = -EISDIR;
3014 /* trailing slashes? */
3015 if (nd->last.name[nd->last.len])
3016 goto out;
3017 }
3018
3019 retry_lookup:
3020 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3021 error = mnt_want_write(nd->path.mnt);
3022 if (!error)
3023 got_write = true;
3024 /*
3025 * do _not_ fail yet - we might not need that or fail with
3026 * a different error; let lookup_open() decide; we'll be
3027 * dropping this one anyway.
3028 */
3029 }
3030 mutex_lock(&dir->d_inode->i_mutex);
3031 error = lookup_open(nd, &path, file, op, got_write, opened);
3032 mutex_unlock(&dir->d_inode->i_mutex);
3033
3034 if (error <= 0) {
3035 if (error)
3036 goto out;
3037
3038 if ((*opened & FILE_CREATED) ||
3039 !S_ISREG(file_inode(file)->i_mode))
3040 will_truncate = false;
3041
3042 audit_inode(name, file->f_path.dentry, 0);
3043 goto opened;
3044 }
3045
3046 if (*opened & FILE_CREATED) {
3047 /* Don't check for write permission, don't truncate */
3048 open_flag &= ~O_TRUNC;
3049 will_truncate = false;
3050 acc_mode = MAY_OPEN;
3051 path_to_nameidata(&path, nd);
3052 goto finish_open_created;
3053 }
3054
3055 /*
3056 * create/update audit record if it already exists.
3057 */
3058 if (d_is_positive(path.dentry))
3059 audit_inode(name, path.dentry, 0);
3060
3061 /*
3062 * If atomic_open() acquired write access it is dropped now due to
3063 * possible mount and symlink following (this might be optimized away if
3064 * necessary...)
3065 */
3066 if (got_write) {
3067 mnt_drop_write(nd->path.mnt);
3068 got_write = false;
3069 }
3070
3071 error = -EEXIST;
3072 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3073 goto exit_dput;
3074
3075 error = follow_managed(&path, nd->flags);
3076 if (error < 0)
3077 goto exit_dput;
3078
3079 if (error)
3080 nd->flags |= LOOKUP_JUMPED;
3081
3082 BUG_ON(nd->flags & LOOKUP_RCU);
3083 inode = path.dentry->d_inode;
3084 error = -ENOENT;
3085 if (d_is_negative(path.dentry)) {
3086 path_to_nameidata(&path, nd);
3087 goto out;
3088 }
3089 finish_lookup:
3090 if (should_follow_link(path.dentry, nd->flags & LOOKUP_FOLLOW)) {
3091 if (nd->flags & LOOKUP_RCU) {
3092 if (unlikely(nd->path.mnt != path.mnt ||
3093 unlazy_walk(nd, path.dentry))) {
3094 error = -ECHILD;
3095 goto out;
3096 }
3097 }
3098 BUG_ON(inode != path.dentry->d_inode);
3099 nd->link = path;
3100 return 1;
3101 }
3102
3103 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3104 path_to_nameidata(&path, nd);
3105 error = -ELOOP;
3106 goto out;
3107 }
3108
3109 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3110 path_to_nameidata(&path, nd);
3111 } else {
3112 save_parent.dentry = nd->path.dentry;
3113 save_parent.mnt = mntget(path.mnt);
3114 nd->path.dentry = path.dentry;
3115
3116 }
3117 nd->inode = inode;
3118 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3119 finish_open:
3120 error = complete_walk(nd);
3121 if (error) {
3122 path_put(&save_parent);
3123 return error;
3124 }
3125 audit_inode(name, nd->path.dentry, 0);
3126 error = -EISDIR;
3127 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3128 goto out;
3129 error = -ENOTDIR;
3130 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3131 goto out;
3132 if (!d_is_reg(nd->path.dentry))
3133 will_truncate = false;
3134
3135 if (will_truncate) {
3136 error = mnt_want_write(nd->path.mnt);
3137 if (error)
3138 goto out;
3139 got_write = true;
3140 }
3141 finish_open_created:
3142 error = may_open(&nd->path, acc_mode, open_flag);
3143 if (error)
3144 goto out;
3145
3146 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3147 error = vfs_open(&nd->path, file, current_cred());
3148 if (!error) {
3149 *opened |= FILE_OPENED;
3150 } else {
3151 if (error == -EOPENSTALE)
3152 goto stale_open;
3153 goto out;
3154 }
3155 opened:
3156 error = open_check_o_direct(file);
3157 if (error)
3158 goto exit_fput;
3159 error = ima_file_check(file, op->acc_mode, *opened);
3160 if (error)
3161 goto exit_fput;
3162
3163 if (will_truncate) {
3164 error = handle_truncate(file);
3165 if (error)
3166 goto exit_fput;
3167 }
3168 out:
3169 if (got_write)
3170 mnt_drop_write(nd->path.mnt);
3171 path_put(&save_parent);
3172 terminate_walk(nd);
3173 return error;
3174
3175 exit_dput:
3176 path_put_conditional(&path, nd);
3177 goto out;
3178 exit_fput:
3179 fput(file);
3180 goto out;
3181
3182 stale_open:
3183 /* If no saved parent or already retried then can't retry */
3184 if (!save_parent.dentry || retried)
3185 goto out;
3186
3187 BUG_ON(save_parent.dentry != dir);
3188 path_put(&nd->path);
3189 nd->path = save_parent;
3190 nd->inode = dir->d_inode;
3191 save_parent.mnt = NULL;
3192 save_parent.dentry = NULL;
3193 if (got_write) {
3194 mnt_drop_write(nd->path.mnt);
3195 got_write = false;
3196 }
3197 retried = true;
3198 goto retry_lookup;
3199 }
3200
3201 static int do_tmpfile(int dfd, struct filename *pathname,
3202 struct nameidata *nd, int flags,
3203 const struct open_flags *op,
3204 struct file *file, int *opened)
3205 {
3206 static const struct qstr name = QSTR_INIT("/", 1);
3207 struct dentry *dentry, *child;
3208 struct inode *dir;
3209 int error = path_lookupat(dfd, pathname,
3210 flags | LOOKUP_DIRECTORY, nd);
3211 if (unlikely(error))
3212 return error;
3213 error = mnt_want_write(nd->path.mnt);
3214 if (unlikely(error))
3215 goto out;
3216 /* we want directory to be writable */
3217 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3218 if (error)
3219 goto out2;
3220 dentry = nd->path.dentry;
3221 dir = dentry->d_inode;
3222 if (!dir->i_op->tmpfile) {
3223 error = -EOPNOTSUPP;
3224 goto out2;
3225 }
3226 child = d_alloc(dentry, &name);
3227 if (unlikely(!child)) {
3228 error = -ENOMEM;
3229 goto out2;
3230 }
3231 nd->flags &= ~LOOKUP_DIRECTORY;
3232 nd->flags |= op->intent;
3233 dput(nd->path.dentry);
3234 nd->path.dentry = child;
3235 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3236 if (error)
3237 goto out2;
3238 audit_inode(pathname, nd->path.dentry, 0);
3239 /* Don't check for other permissions, the inode was just created */
3240 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3241 if (error)
3242 goto out2;
3243 file->f_path.mnt = nd->path.mnt;
3244 error = finish_open(file, nd->path.dentry, NULL, opened);
3245 if (error)
3246 goto out2;
3247 error = open_check_o_direct(file);
3248 if (error) {
3249 fput(file);
3250 } else if (!(op->open_flag & O_EXCL)) {
3251 struct inode *inode = file_inode(file);
3252 spin_lock(&inode->i_lock);
3253 inode->i_state |= I_LINKABLE;
3254 spin_unlock(&inode->i_lock);
3255 }
3256 out2:
3257 mnt_drop_write(nd->path.mnt);
3258 out:
3259 path_put(&nd->path);
3260 return error;
3261 }
3262
3263 static struct file *path_openat(int dfd, struct filename *pathname,
3264 struct nameidata *nd, const struct open_flags *op, int flags)
3265 {
3266 struct file *file;
3267 int opened = 0;
3268 int error;
3269
3270 file = get_empty_filp();
3271 if (IS_ERR(file))
3272 return file;
3273
3274 file->f_flags = op->open_flag;
3275
3276 if (unlikely(file->f_flags & __O_TMPFILE)) {
3277 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3278 goto out2;
3279 }
3280
3281 error = path_init(dfd, pathname, flags, nd);
3282 if (unlikely(error))
3283 goto out;
3284
3285 error = do_last(nd, file, op, &opened, pathname);
3286 while (unlikely(error > 0)) { /* trailing symlink */
3287 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3288 error = trailing_symlink(nd);
3289 if (unlikely(error))
3290 break;
3291 error = do_last(nd, file, op, &opened, pathname);
3292 put_link(nd);
3293 }
3294 out:
3295 path_cleanup(nd);
3296 out2:
3297 if (!(opened & FILE_OPENED)) {
3298 BUG_ON(!error);
3299 put_filp(file);
3300 }
3301 if (unlikely(error)) {
3302 if (error == -EOPENSTALE) {
3303 if (flags & LOOKUP_RCU)
3304 error = -ECHILD;
3305 else
3306 error = -ESTALE;
3307 }
3308 file = ERR_PTR(error);
3309 }
3310 return file;
3311 }
3312
3313 struct file *do_filp_open(int dfd, struct filename *pathname,
3314 const struct open_flags *op)
3315 {
3316 struct nameidata nd;
3317 int flags = op->lookup_flags;
3318 struct file *filp;
3319
3320 set_nameidata(&nd);
3321 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3322 if (unlikely(filp == ERR_PTR(-ECHILD)))
3323 filp = path_openat(dfd, pathname, &nd, op, flags);
3324 if (unlikely(filp == ERR_PTR(-ESTALE)))
3325 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3326 restore_nameidata(&nd);
3327 return filp;
3328 }
3329
3330 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3331 const char *name, const struct open_flags *op)
3332 {
3333 struct nameidata nd;
3334 struct file *file;
3335 struct filename *filename;
3336 int flags = op->lookup_flags | LOOKUP_ROOT;
3337
3338 nd.root.mnt = mnt;
3339 nd.root.dentry = dentry;
3340 set_nameidata(&nd);
3341
3342 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3343 return ERR_PTR(-ELOOP);
3344
3345 filename = getname_kernel(name);
3346 if (unlikely(IS_ERR(filename)))
3347 return ERR_CAST(filename);
3348
3349 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3350 if (unlikely(file == ERR_PTR(-ECHILD)))
3351 file = path_openat(-1, filename, &nd, op, flags);
3352 if (unlikely(file == ERR_PTR(-ESTALE)))
3353 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3354 restore_nameidata(&nd);
3355 putname(filename);
3356 return file;
3357 }
3358
3359 static struct dentry *filename_create(int dfd, struct filename *name,
3360 struct path *path, unsigned int lookup_flags)
3361 {
3362 struct dentry *dentry = ERR_PTR(-EEXIST);
3363 struct nameidata nd;
3364 int err2;
3365 int error;
3366 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3367
3368 /*
3369 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3370 * other flags passed in are ignored!
3371 */
3372 lookup_flags &= LOOKUP_REVAL;
3373
3374 error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd);
3375 if (error)
3376 return ERR_PTR(error);
3377
3378 /*
3379 * Yucky last component or no last component at all?
3380 * (foo/., foo/.., /////)
3381 */
3382 if (nd.last_type != LAST_NORM)
3383 goto out;
3384 nd.flags &= ~LOOKUP_PARENT;
3385 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3386
3387 /* don't fail immediately if it's r/o, at least try to report other errors */
3388 err2 = mnt_want_write(nd.path.mnt);
3389 /*
3390 * Do the final lookup.
3391 */
3392 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3393 dentry = __lookup_hash(&nd.last, nd.path.dentry, nd.flags);
3394 if (IS_ERR(dentry))
3395 goto unlock;
3396
3397 error = -EEXIST;
3398 if (d_is_positive(dentry))
3399 goto fail;
3400
3401 /*
3402 * Special case - lookup gave negative, but... we had foo/bar/
3403 * From the vfs_mknod() POV we just have a negative dentry -
3404 * all is fine. Let's be bastards - you had / on the end, you've
3405 * been asking for (non-existent) directory. -ENOENT for you.
3406 */
3407 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3408 error = -ENOENT;
3409 goto fail;
3410 }
3411 if (unlikely(err2)) {
3412 error = err2;
3413 goto fail;
3414 }
3415 *path = nd.path;
3416 return dentry;
3417 fail:
3418 dput(dentry);
3419 dentry = ERR_PTR(error);
3420 unlock:
3421 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3422 if (!err2)
3423 mnt_drop_write(nd.path.mnt);
3424 out:
3425 path_put(&nd.path);
3426 return dentry;
3427 }
3428
3429 struct dentry *kern_path_create(int dfd, const char *pathname,
3430 struct path *path, unsigned int lookup_flags)
3431 {
3432 struct filename *filename = getname_kernel(pathname);
3433 struct dentry *res;
3434
3435 if (IS_ERR(filename))
3436 return ERR_CAST(filename);
3437 res = filename_create(dfd, filename, path, lookup_flags);
3438 putname(filename);
3439 return res;
3440 }
3441 EXPORT_SYMBOL(kern_path_create);
3442
3443 void done_path_create(struct path *path, struct dentry *dentry)
3444 {
3445 dput(dentry);
3446 mutex_unlock(&path->dentry->d_inode->i_mutex);
3447 mnt_drop_write(path->mnt);
3448 path_put(path);
3449 }
3450 EXPORT_SYMBOL(done_path_create);
3451
3452 struct dentry *user_path_create(int dfd, const char __user *pathname,
3453 struct path *path, unsigned int lookup_flags)
3454 {
3455 struct filename *tmp = getname(pathname);
3456 struct dentry *res;
3457 if (IS_ERR(tmp))
3458 return ERR_CAST(tmp);
3459 res = filename_create(dfd, tmp, path, lookup_flags);
3460 putname(tmp);
3461 return res;
3462 }
3463 EXPORT_SYMBOL(user_path_create);
3464
3465 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3466 {
3467 int error = may_create(dir, dentry);
3468
3469 if (error)
3470 return error;
3471
3472 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3473 return -EPERM;
3474
3475 if (!dir->i_op->mknod)
3476 return -EPERM;
3477
3478 error = devcgroup_inode_mknod(mode, dev);
3479 if (error)
3480 return error;
3481
3482 error = security_inode_mknod(dir, dentry, mode, dev);
3483 if (error)
3484 return error;
3485
3486 error = dir->i_op->mknod(dir, dentry, mode, dev);
3487 if (!error)
3488 fsnotify_create(dir, dentry);
3489 return error;
3490 }
3491 EXPORT_SYMBOL(vfs_mknod);
3492
3493 static int may_mknod(umode_t mode)
3494 {
3495 switch (mode & S_IFMT) {
3496 case S_IFREG:
3497 case S_IFCHR:
3498 case S_IFBLK:
3499 case S_IFIFO:
3500 case S_IFSOCK:
3501 case 0: /* zero mode translates to S_IFREG */
3502 return 0;
3503 case S_IFDIR:
3504 return -EPERM;
3505 default:
3506 return -EINVAL;
3507 }
3508 }
3509
3510 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3511 unsigned, dev)
3512 {
3513 struct dentry *dentry;
3514 struct path path;
3515 int error;
3516 unsigned int lookup_flags = 0;
3517
3518 error = may_mknod(mode);
3519 if (error)
3520 return error;
3521 retry:
3522 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3523 if (IS_ERR(dentry))
3524 return PTR_ERR(dentry);
3525
3526 if (!IS_POSIXACL(path.dentry->d_inode))
3527 mode &= ~current_umask();
3528 error = security_path_mknod(&path, dentry, mode, dev);
3529 if (error)
3530 goto out;
3531 switch (mode & S_IFMT) {
3532 case 0: case S_IFREG:
3533 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3534 break;
3535 case S_IFCHR: case S_IFBLK:
3536 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3537 new_decode_dev(dev));
3538 break;
3539 case S_IFIFO: case S_IFSOCK:
3540 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3541 break;
3542 }
3543 out:
3544 done_path_create(&path, dentry);
3545 if (retry_estale(error, lookup_flags)) {
3546 lookup_flags |= LOOKUP_REVAL;
3547 goto retry;
3548 }
3549 return error;
3550 }
3551
3552 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3553 {
3554 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3555 }
3556
3557 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3558 {
3559 int error = may_create(dir, dentry);
3560 unsigned max_links = dir->i_sb->s_max_links;
3561
3562 if (error)
3563 return error;
3564
3565 if (!dir->i_op->mkdir)
3566 return -EPERM;
3567
3568 mode &= (S_IRWXUGO|S_ISVTX);
3569 error = security_inode_mkdir(dir, dentry, mode);
3570 if (error)
3571 return error;
3572
3573 if (max_links && dir->i_nlink >= max_links)
3574 return -EMLINK;
3575
3576 error = dir->i_op->mkdir(dir, dentry, mode);
3577 if (!error)
3578 fsnotify_mkdir(dir, dentry);
3579 return error;
3580 }
3581 EXPORT_SYMBOL(vfs_mkdir);
3582
3583 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3584 {
3585 struct dentry *dentry;
3586 struct path path;
3587 int error;
3588 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3589
3590 retry:
3591 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3592 if (IS_ERR(dentry))
3593 return PTR_ERR(dentry);
3594
3595 if (!IS_POSIXACL(path.dentry->d_inode))
3596 mode &= ~current_umask();
3597 error = security_path_mkdir(&path, dentry, mode);
3598 if (!error)
3599 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3600 done_path_create(&path, dentry);
3601 if (retry_estale(error, lookup_flags)) {
3602 lookup_flags |= LOOKUP_REVAL;
3603 goto retry;
3604 }
3605 return error;
3606 }
3607
3608 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3609 {
3610 return sys_mkdirat(AT_FDCWD, pathname, mode);
3611 }
3612
3613 /*
3614 * The dentry_unhash() helper will try to drop the dentry early: we
3615 * should have a usage count of 1 if we're the only user of this
3616 * dentry, and if that is true (possibly after pruning the dcache),
3617 * then we drop the dentry now.
3618 *
3619 * A low-level filesystem can, if it choses, legally
3620 * do a
3621 *
3622 * if (!d_unhashed(dentry))
3623 * return -EBUSY;
3624 *
3625 * if it cannot handle the case of removing a directory
3626 * that is still in use by something else..
3627 */
3628 void dentry_unhash(struct dentry *dentry)
3629 {
3630 shrink_dcache_parent(dentry);
3631 spin_lock(&dentry->d_lock);
3632 if (dentry->d_lockref.count == 1)
3633 __d_drop(dentry);
3634 spin_unlock(&dentry->d_lock);
3635 }
3636 EXPORT_SYMBOL(dentry_unhash);
3637
3638 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3639 {
3640 int error = may_delete(dir, dentry, 1);
3641
3642 if (error)
3643 return error;
3644
3645 if (!dir->i_op->rmdir)
3646 return -EPERM;
3647
3648 dget(dentry);
3649 mutex_lock(&dentry->d_inode->i_mutex);
3650
3651 error = -EBUSY;
3652 if (is_local_mountpoint(dentry))
3653 goto out;
3654
3655 error = security_inode_rmdir(dir, dentry);
3656 if (error)
3657 goto out;
3658
3659 shrink_dcache_parent(dentry);
3660 error = dir->i_op->rmdir(dir, dentry);
3661 if (error)
3662 goto out;
3663
3664 dentry->d_inode->i_flags |= S_DEAD;
3665 dont_mount(dentry);
3666 detach_mounts(dentry);
3667
3668 out:
3669 mutex_unlock(&dentry->d_inode->i_mutex);
3670 dput(dentry);
3671 if (!error)
3672 d_delete(dentry);
3673 return error;
3674 }
3675 EXPORT_SYMBOL(vfs_rmdir);
3676
3677 static long do_rmdir(int dfd, const char __user *pathname)
3678 {
3679 int error = 0;
3680 struct filename *name;
3681 struct dentry *dentry;
3682 struct path path;
3683 struct qstr last;
3684 int type;
3685 unsigned int lookup_flags = 0;
3686 retry:
3687 name = user_path_parent(dfd, pathname,
3688 &path, &last, &type, lookup_flags);
3689 if (IS_ERR(name))
3690 return PTR_ERR(name);
3691
3692 switch (type) {
3693 case LAST_DOTDOT:
3694 error = -ENOTEMPTY;
3695 goto exit1;
3696 case LAST_DOT:
3697 error = -EINVAL;
3698 goto exit1;
3699 case LAST_ROOT:
3700 error = -EBUSY;
3701 goto exit1;
3702 }
3703
3704 error = mnt_want_write(path.mnt);
3705 if (error)
3706 goto exit1;
3707
3708 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3709 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3710 error = PTR_ERR(dentry);
3711 if (IS_ERR(dentry))
3712 goto exit2;
3713 if (!dentry->d_inode) {
3714 error = -ENOENT;
3715 goto exit3;
3716 }
3717 error = security_path_rmdir(&path, dentry);
3718 if (error)
3719 goto exit3;
3720 error = vfs_rmdir(path.dentry->d_inode, dentry);
3721 exit3:
3722 dput(dentry);
3723 exit2:
3724 mutex_unlock(&path.dentry->d_inode->i_mutex);
3725 mnt_drop_write(path.mnt);
3726 exit1:
3727 path_put(&path);
3728 putname(name);
3729 if (retry_estale(error, lookup_flags)) {
3730 lookup_flags |= LOOKUP_REVAL;
3731 goto retry;
3732 }
3733 return error;
3734 }
3735
3736 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3737 {
3738 return do_rmdir(AT_FDCWD, pathname);
3739 }
3740
3741 /**
3742 * vfs_unlink - unlink a filesystem object
3743 * @dir: parent directory
3744 * @dentry: victim
3745 * @delegated_inode: returns victim inode, if the inode is delegated.
3746 *
3747 * The caller must hold dir->i_mutex.
3748 *
3749 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3750 * return a reference to the inode in delegated_inode. The caller
3751 * should then break the delegation on that inode and retry. Because
3752 * breaking a delegation may take a long time, the caller should drop
3753 * dir->i_mutex before doing so.
3754 *
3755 * Alternatively, a caller may pass NULL for delegated_inode. This may
3756 * be appropriate for callers that expect the underlying filesystem not
3757 * to be NFS exported.
3758 */
3759 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3760 {
3761 struct inode *target = dentry->d_inode;
3762 int error = may_delete(dir, dentry, 0);
3763
3764 if (error)
3765 return error;
3766
3767 if (!dir->i_op->unlink)
3768 return -EPERM;
3769
3770 mutex_lock(&target->i_mutex);
3771 if (is_local_mountpoint(dentry))
3772 error = -EBUSY;
3773 else {
3774 error = security_inode_unlink(dir, dentry);
3775 if (!error) {
3776 error = try_break_deleg(target, delegated_inode);
3777 if (error)
3778 goto out;
3779 error = dir->i_op->unlink(dir, dentry);
3780 if (!error) {
3781 dont_mount(dentry);
3782 detach_mounts(dentry);
3783 }
3784 }
3785 }
3786 out:
3787 mutex_unlock(&target->i_mutex);
3788
3789 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3790 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3791 fsnotify_link_count(target);
3792 d_delete(dentry);
3793 }
3794
3795 return error;
3796 }
3797 EXPORT_SYMBOL(vfs_unlink);
3798
3799 /*
3800 * Make sure that the actual truncation of the file will occur outside its
3801 * directory's i_mutex. Truncate can take a long time if there is a lot of
3802 * writeout happening, and we don't want to prevent access to the directory
3803 * while waiting on the I/O.
3804 */
3805 static long do_unlinkat(int dfd, const char __user *pathname)
3806 {
3807 int error;
3808 struct filename *name;
3809 struct dentry *dentry;
3810 struct path path;
3811 struct qstr last;
3812 int type;
3813 struct inode *inode = NULL;
3814 struct inode *delegated_inode = NULL;
3815 unsigned int lookup_flags = 0;
3816 retry:
3817 name = user_path_parent(dfd, pathname,
3818 &path, &last, &type, lookup_flags);
3819 if (IS_ERR(name))
3820 return PTR_ERR(name);
3821
3822 error = -EISDIR;
3823 if (type != LAST_NORM)
3824 goto exit1;
3825
3826 error = mnt_want_write(path.mnt);
3827 if (error)
3828 goto exit1;
3829 retry_deleg:
3830 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3831 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3832 error = PTR_ERR(dentry);
3833 if (!IS_ERR(dentry)) {
3834 /* Why not before? Because we want correct error value */
3835 if (last.name[last.len])
3836 goto slashes;
3837 inode = dentry->d_inode;
3838 if (d_is_negative(dentry))
3839 goto slashes;
3840 ihold(inode);
3841 error = security_path_unlink(&path, dentry);
3842 if (error)
3843 goto exit2;
3844 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3845 exit2:
3846 dput(dentry);
3847 }
3848 mutex_unlock(&path.dentry->d_inode->i_mutex);
3849 if (inode)
3850 iput(inode); /* truncate the inode here */
3851 inode = NULL;
3852 if (delegated_inode) {
3853 error = break_deleg_wait(&delegated_inode);
3854 if (!error)
3855 goto retry_deleg;
3856 }
3857 mnt_drop_write(path.mnt);
3858 exit1:
3859 path_put(&path);
3860 putname(name);
3861 if (retry_estale(error, lookup_flags)) {
3862 lookup_flags |= LOOKUP_REVAL;
3863 inode = NULL;
3864 goto retry;
3865 }
3866 return error;
3867
3868 slashes:
3869 if (d_is_negative(dentry))
3870 error = -ENOENT;
3871 else if (d_is_dir(dentry))
3872 error = -EISDIR;
3873 else
3874 error = -ENOTDIR;
3875 goto exit2;
3876 }
3877
3878 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3879 {
3880 if ((flag & ~AT_REMOVEDIR) != 0)
3881 return -EINVAL;
3882
3883 if (flag & AT_REMOVEDIR)
3884 return do_rmdir(dfd, pathname);
3885
3886 return do_unlinkat(dfd, pathname);
3887 }
3888
3889 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3890 {
3891 return do_unlinkat(AT_FDCWD, pathname);
3892 }
3893
3894 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3895 {
3896 int error = may_create(dir, dentry);
3897
3898 if (error)
3899 return error;
3900
3901 if (!dir->i_op->symlink)
3902 return -EPERM;
3903
3904 error = security_inode_symlink(dir, dentry, oldname);
3905 if (error)
3906 return error;
3907
3908 error = dir->i_op->symlink(dir, dentry, oldname);
3909 if (!error)
3910 fsnotify_create(dir, dentry);
3911 return error;
3912 }
3913 EXPORT_SYMBOL(vfs_symlink);
3914
3915 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3916 int, newdfd, const char __user *, newname)
3917 {
3918 int error;
3919 struct filename *from;
3920 struct dentry *dentry;
3921 struct path path;
3922 unsigned int lookup_flags = 0;
3923
3924 from = getname(oldname);
3925 if (IS_ERR(from))
3926 return PTR_ERR(from);
3927 retry:
3928 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3929 error = PTR_ERR(dentry);
3930 if (IS_ERR(dentry))
3931 goto out_putname;
3932
3933 error = security_path_symlink(&path, dentry, from->name);
3934 if (!error)
3935 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3936 done_path_create(&path, dentry);
3937 if (retry_estale(error, lookup_flags)) {
3938 lookup_flags |= LOOKUP_REVAL;
3939 goto retry;
3940 }
3941 out_putname:
3942 putname(from);
3943 return error;
3944 }
3945
3946 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3947 {
3948 return sys_symlinkat(oldname, AT_FDCWD, newname);
3949 }
3950
3951 /**
3952 * vfs_link - create a new link
3953 * @old_dentry: object to be linked
3954 * @dir: new parent
3955 * @new_dentry: where to create the new link
3956 * @delegated_inode: returns inode needing a delegation break
3957 *
3958 * The caller must hold dir->i_mutex
3959 *
3960 * If vfs_link discovers a delegation on the to-be-linked file in need
3961 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3962 * inode in delegated_inode. The caller should then break the delegation
3963 * and retry. Because breaking a delegation may take a long time, the
3964 * caller should drop the i_mutex before doing so.
3965 *
3966 * Alternatively, a caller may pass NULL for delegated_inode. This may
3967 * be appropriate for callers that expect the underlying filesystem not
3968 * to be NFS exported.
3969 */
3970 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3971 {
3972 struct inode *inode = old_dentry->d_inode;
3973 unsigned max_links = dir->i_sb->s_max_links;
3974 int error;
3975
3976 if (!inode)
3977 return -ENOENT;
3978
3979 error = may_create(dir, new_dentry);
3980 if (error)
3981 return error;
3982
3983 if (dir->i_sb != inode->i_sb)
3984 return -EXDEV;
3985
3986 /*
3987 * A link to an append-only or immutable file cannot be created.
3988 */
3989 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3990 return -EPERM;
3991 if (!dir->i_op->link)
3992 return -EPERM;
3993 if (S_ISDIR(inode->i_mode))
3994 return -EPERM;
3995
3996 error = security_inode_link(old_dentry, dir, new_dentry);
3997 if (error)
3998 return error;
3999
4000 mutex_lock(&inode->i_mutex);
4001 /* Make sure we don't allow creating hardlink to an unlinked file */
4002 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4003 error = -ENOENT;
4004 else if (max_links && inode->i_nlink >= max_links)
4005 error = -EMLINK;
4006 else {
4007 error = try_break_deleg(inode, delegated_inode);
4008 if (!error)
4009 error = dir->i_op->link(old_dentry, dir, new_dentry);
4010 }
4011
4012 if (!error && (inode->i_state & I_LINKABLE)) {
4013 spin_lock(&inode->i_lock);
4014 inode->i_state &= ~I_LINKABLE;
4015 spin_unlock(&inode->i_lock);
4016 }
4017 mutex_unlock(&inode->i_mutex);
4018 if (!error)
4019 fsnotify_link(dir, inode, new_dentry);
4020 return error;
4021 }
4022 EXPORT_SYMBOL(vfs_link);
4023
4024 /*
4025 * Hardlinks are often used in delicate situations. We avoid
4026 * security-related surprises by not following symlinks on the
4027 * newname. --KAB
4028 *
4029 * We don't follow them on the oldname either to be compatible
4030 * with linux 2.0, and to avoid hard-linking to directories
4031 * and other special files. --ADM
4032 */
4033 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4034 int, newdfd, const char __user *, newname, int, flags)
4035 {
4036 struct dentry *new_dentry;
4037 struct path old_path, new_path;
4038 struct inode *delegated_inode = NULL;
4039 int how = 0;
4040 int error;
4041
4042 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4043 return -EINVAL;
4044 /*
4045 * To use null names we require CAP_DAC_READ_SEARCH
4046 * This ensures that not everyone will be able to create
4047 * handlink using the passed filedescriptor.
4048 */
4049 if (flags & AT_EMPTY_PATH) {
4050 if (!capable(CAP_DAC_READ_SEARCH))
4051 return -ENOENT;
4052 how = LOOKUP_EMPTY;
4053 }
4054
4055 if (flags & AT_SYMLINK_FOLLOW)
4056 how |= LOOKUP_FOLLOW;
4057 retry:
4058 error = user_path_at(olddfd, oldname, how, &old_path);
4059 if (error)
4060 return error;
4061
4062 new_dentry = user_path_create(newdfd, newname, &new_path,
4063 (how & LOOKUP_REVAL));
4064 error = PTR_ERR(new_dentry);
4065 if (IS_ERR(new_dentry))
4066 goto out;
4067
4068 error = -EXDEV;
4069 if (old_path.mnt != new_path.mnt)
4070 goto out_dput;
4071 error = may_linkat(&old_path);
4072 if (unlikely(error))
4073 goto out_dput;
4074 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4075 if (error)
4076 goto out_dput;
4077 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4078 out_dput:
4079 done_path_create(&new_path, new_dentry);
4080 if (delegated_inode) {
4081 error = break_deleg_wait(&delegated_inode);
4082 if (!error) {
4083 path_put(&old_path);
4084 goto retry;
4085 }
4086 }
4087 if (retry_estale(error, how)) {
4088 path_put(&old_path);
4089 how |= LOOKUP_REVAL;
4090 goto retry;
4091 }
4092 out:
4093 path_put(&old_path);
4094
4095 return error;
4096 }
4097
4098 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4099 {
4100 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4101 }
4102
4103 /**
4104 * vfs_rename - rename a filesystem object
4105 * @old_dir: parent of source
4106 * @old_dentry: source
4107 * @new_dir: parent of destination
4108 * @new_dentry: destination
4109 * @delegated_inode: returns an inode needing a delegation break
4110 * @flags: rename flags
4111 *
4112 * The caller must hold multiple mutexes--see lock_rename()).
4113 *
4114 * If vfs_rename discovers a delegation in need of breaking at either
4115 * the source or destination, it will return -EWOULDBLOCK and return a
4116 * reference to the inode in delegated_inode. The caller should then
4117 * break the delegation and retry. Because breaking a delegation may
4118 * take a long time, the caller should drop all locks before doing
4119 * so.
4120 *
4121 * Alternatively, a caller may pass NULL for delegated_inode. This may
4122 * be appropriate for callers that expect the underlying filesystem not
4123 * to be NFS exported.
4124 *
4125 * The worst of all namespace operations - renaming directory. "Perverted"
4126 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4127 * Problems:
4128 * a) we can get into loop creation.
4129 * b) race potential - two innocent renames can create a loop together.
4130 * That's where 4.4 screws up. Current fix: serialization on
4131 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4132 * story.
4133 * c) we have to lock _four_ objects - parents and victim (if it exists),
4134 * and source (if it is not a directory).
4135 * And that - after we got ->i_mutex on parents (until then we don't know
4136 * whether the target exists). Solution: try to be smart with locking
4137 * order for inodes. We rely on the fact that tree topology may change
4138 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4139 * move will be locked. Thus we can rank directories by the tree
4140 * (ancestors first) and rank all non-directories after them.
4141 * That works since everybody except rename does "lock parent, lookup,
4142 * lock child" and rename is under ->s_vfs_rename_mutex.
4143 * HOWEVER, it relies on the assumption that any object with ->lookup()
4144 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4145 * we'd better make sure that there's no link(2) for them.
4146 * d) conversion from fhandle to dentry may come in the wrong moment - when
4147 * we are removing the target. Solution: we will have to grab ->i_mutex
4148 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4149 * ->i_mutex on parents, which works but leads to some truly excessive
4150 * locking].
4151 */
4152 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4153 struct inode *new_dir, struct dentry *new_dentry,
4154 struct inode **delegated_inode, unsigned int flags)
4155 {
4156 int error;
4157 bool is_dir = d_is_dir(old_dentry);
4158 const unsigned char *old_name;
4159 struct inode *source = old_dentry->d_inode;
4160 struct inode *target = new_dentry->d_inode;
4161 bool new_is_dir = false;
4162 unsigned max_links = new_dir->i_sb->s_max_links;
4163
4164 if (source == target)
4165 return 0;
4166
4167 error = may_delete(old_dir, old_dentry, is_dir);
4168 if (error)
4169 return error;
4170
4171 if (!target) {
4172 error = may_create(new_dir, new_dentry);
4173 } else {
4174 new_is_dir = d_is_dir(new_dentry);
4175
4176 if (!(flags & RENAME_EXCHANGE))
4177 error = may_delete(new_dir, new_dentry, is_dir);
4178 else
4179 error = may_delete(new_dir, new_dentry, new_is_dir);
4180 }
4181 if (error)
4182 return error;
4183
4184 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4185 return -EPERM;
4186
4187 if (flags && !old_dir->i_op->rename2)
4188 return -EINVAL;
4189
4190 /*
4191 * If we are going to change the parent - check write permissions,
4192 * we'll need to flip '..'.
4193 */
4194 if (new_dir != old_dir) {
4195 if (is_dir) {
4196 error = inode_permission(source, MAY_WRITE);
4197 if (error)
4198 return error;
4199 }
4200 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4201 error = inode_permission(target, MAY_WRITE);
4202 if (error)
4203 return error;
4204 }
4205 }
4206
4207 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4208 flags);
4209 if (error)
4210 return error;
4211
4212 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4213 dget(new_dentry);
4214 if (!is_dir || (flags & RENAME_EXCHANGE))
4215 lock_two_nondirectories(source, target);
4216 else if (target)
4217 mutex_lock(&target->i_mutex);
4218
4219 error = -EBUSY;
4220 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4221 goto out;
4222
4223 if (max_links && new_dir != old_dir) {
4224 error = -EMLINK;
4225 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4226 goto out;
4227 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4228 old_dir->i_nlink >= max_links)
4229 goto out;
4230 }
4231 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4232 shrink_dcache_parent(new_dentry);
4233 if (!is_dir) {
4234 error = try_break_deleg(source, delegated_inode);
4235 if (error)
4236 goto out;
4237 }
4238 if (target && !new_is_dir) {
4239 error = try_break_deleg(target, delegated_inode);
4240 if (error)
4241 goto out;
4242 }
4243 if (!old_dir->i_op->rename2) {
4244 error = old_dir->i_op->rename(old_dir, old_dentry,
4245 new_dir, new_dentry);
4246 } else {
4247 WARN_ON(old_dir->i_op->rename != NULL);
4248 error = old_dir->i_op->rename2(old_dir, old_dentry,
4249 new_dir, new_dentry, flags);
4250 }
4251 if (error)
4252 goto out;
4253
4254 if (!(flags & RENAME_EXCHANGE) && target) {
4255 if (is_dir)
4256 target->i_flags |= S_DEAD;
4257 dont_mount(new_dentry);
4258 detach_mounts(new_dentry);
4259 }
4260 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4261 if (!(flags & RENAME_EXCHANGE))
4262 d_move(old_dentry, new_dentry);
4263 else
4264 d_exchange(old_dentry, new_dentry);
4265 }
4266 out:
4267 if (!is_dir || (flags & RENAME_EXCHANGE))
4268 unlock_two_nondirectories(source, target);
4269 else if (target)
4270 mutex_unlock(&target->i_mutex);
4271 dput(new_dentry);
4272 if (!error) {
4273 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4274 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4275 if (flags & RENAME_EXCHANGE) {
4276 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4277 new_is_dir, NULL, new_dentry);
4278 }
4279 }
4280 fsnotify_oldname_free(old_name);
4281
4282 return error;
4283 }
4284 EXPORT_SYMBOL(vfs_rename);
4285
4286 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4287 int, newdfd, const char __user *, newname, unsigned int, flags)
4288 {
4289 struct dentry *old_dentry, *new_dentry;
4290 struct dentry *trap;
4291 struct path old_path, new_path;
4292 struct qstr old_last, new_last;
4293 int old_type, new_type;
4294 struct inode *delegated_inode = NULL;
4295 struct filename *from;
4296 struct filename *to;
4297 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4298 bool should_retry = false;
4299 int error;
4300
4301 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4302 return -EINVAL;
4303
4304 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4305 (flags & RENAME_EXCHANGE))
4306 return -EINVAL;
4307
4308 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4309 return -EPERM;
4310
4311 if (flags & RENAME_EXCHANGE)
4312 target_flags = 0;
4313
4314 retry:
4315 from = user_path_parent(olddfd, oldname,
4316 &old_path, &old_last, &old_type, lookup_flags);
4317 if (IS_ERR(from)) {
4318 error = PTR_ERR(from);
4319 goto exit;
4320 }
4321
4322 to = user_path_parent(newdfd, newname,
4323 &new_path, &new_last, &new_type, lookup_flags);
4324 if (IS_ERR(to)) {
4325 error = PTR_ERR(to);
4326 goto exit1;
4327 }
4328
4329 error = -EXDEV;
4330 if (old_path.mnt != new_path.mnt)
4331 goto exit2;
4332
4333 error = -EBUSY;
4334 if (old_type != LAST_NORM)
4335 goto exit2;
4336
4337 if (flags & RENAME_NOREPLACE)
4338 error = -EEXIST;
4339 if (new_type != LAST_NORM)
4340 goto exit2;
4341
4342 error = mnt_want_write(old_path.mnt);
4343 if (error)
4344 goto exit2;
4345
4346 retry_deleg:
4347 trap = lock_rename(new_path.dentry, old_path.dentry);
4348
4349 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4350 error = PTR_ERR(old_dentry);
4351 if (IS_ERR(old_dentry))
4352 goto exit3;
4353 /* source must exist */
4354 error = -ENOENT;
4355 if (d_is_negative(old_dentry))
4356 goto exit4;
4357 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4358 error = PTR_ERR(new_dentry);
4359 if (IS_ERR(new_dentry))
4360 goto exit4;
4361 error = -EEXIST;
4362 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4363 goto exit5;
4364 if (flags & RENAME_EXCHANGE) {
4365 error = -ENOENT;
4366 if (d_is_negative(new_dentry))
4367 goto exit5;
4368
4369 if (!d_is_dir(new_dentry)) {
4370 error = -ENOTDIR;
4371 if (new_last.name[new_last.len])
4372 goto exit5;
4373 }
4374 }
4375 /* unless the source is a directory trailing slashes give -ENOTDIR */
4376 if (!d_is_dir(old_dentry)) {
4377 error = -ENOTDIR;
4378 if (old_last.name[old_last.len])
4379 goto exit5;
4380 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4381 goto exit5;
4382 }
4383 /* source should not be ancestor of target */
4384 error = -EINVAL;
4385 if (old_dentry == trap)
4386 goto exit5;
4387 /* target should not be an ancestor of source */
4388 if (!(flags & RENAME_EXCHANGE))
4389 error = -ENOTEMPTY;
4390 if (new_dentry == trap)
4391 goto exit5;
4392
4393 error = security_path_rename(&old_path, old_dentry,
4394 &new_path, new_dentry, flags);
4395 if (error)
4396 goto exit5;
4397 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4398 new_path.dentry->d_inode, new_dentry,
4399 &delegated_inode, flags);
4400 exit5:
4401 dput(new_dentry);
4402 exit4:
4403 dput(old_dentry);
4404 exit3:
4405 unlock_rename(new_path.dentry, old_path.dentry);
4406 if (delegated_inode) {
4407 error = break_deleg_wait(&delegated_inode);
4408 if (!error)
4409 goto retry_deleg;
4410 }
4411 mnt_drop_write(old_path.mnt);
4412 exit2:
4413 if (retry_estale(error, lookup_flags))
4414 should_retry = true;
4415 path_put(&new_path);
4416 putname(to);
4417 exit1:
4418 path_put(&old_path);
4419 putname(from);
4420 if (should_retry) {
4421 should_retry = false;
4422 lookup_flags |= LOOKUP_REVAL;
4423 goto retry;
4424 }
4425 exit:
4426 return error;
4427 }
4428
4429 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4430 int, newdfd, const char __user *, newname)
4431 {
4432 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4433 }
4434
4435 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4436 {
4437 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4438 }
4439
4440 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4441 {
4442 int error = may_create(dir, dentry);
4443 if (error)
4444 return error;
4445
4446 if (!dir->i_op->mknod)
4447 return -EPERM;
4448
4449 return dir->i_op->mknod(dir, dentry,
4450 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4451 }
4452 EXPORT_SYMBOL(vfs_whiteout);
4453
4454 int readlink_copy(char __user *buffer, int buflen, const char *link)
4455 {
4456 int len = PTR_ERR(link);
4457 if (IS_ERR(link))
4458 goto out;
4459
4460 len = strlen(link);
4461 if (len > (unsigned) buflen)
4462 len = buflen;
4463 if (copy_to_user(buffer, link, len))
4464 len = -EFAULT;
4465 out:
4466 return len;
4467 }
4468 EXPORT_SYMBOL(readlink_copy);
4469
4470 /*
4471 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4472 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4473 * using) it for any given inode is up to filesystem.
4474 */
4475 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4476 {
4477 void *cookie;
4478 const char *link = dentry->d_inode->i_link;
4479 int res;
4480
4481 if (!link) {
4482 link = dentry->d_inode->i_op->follow_link(dentry, &cookie, NULL);
4483 if (IS_ERR(link))
4484 return PTR_ERR(link);
4485 }
4486 res = readlink_copy(buffer, buflen, link);
4487 if (cookie && dentry->d_inode->i_op->put_link)
4488 dentry->d_inode->i_op->put_link(dentry, cookie);
4489 return res;
4490 }
4491 EXPORT_SYMBOL(generic_readlink);
4492
4493 /* get the link contents into pagecache */
4494 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4495 {
4496 char *kaddr;
4497 struct page *page;
4498 struct address_space *mapping = dentry->d_inode->i_mapping;
4499 page = read_mapping_page(mapping, 0, NULL);
4500 if (IS_ERR(page))
4501 return (char*)page;
4502 *ppage = page;
4503 kaddr = kmap(page);
4504 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4505 return kaddr;
4506 }
4507
4508 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4509 {
4510 struct page *page = NULL;
4511 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4512 if (page) {
4513 kunmap(page);
4514 page_cache_release(page);
4515 }
4516 return res;
4517 }
4518 EXPORT_SYMBOL(page_readlink);
4519
4520 const char *page_follow_link_light(struct dentry *dentry, void **cookie, struct nameidata *nd)
4521 {
4522 struct page *page = NULL;
4523 char *res = page_getlink(dentry, &page);
4524 if (!IS_ERR(res))
4525 *cookie = page;
4526 return res;
4527 }
4528 EXPORT_SYMBOL(page_follow_link_light);
4529
4530 void page_put_link(struct dentry *dentry, void *cookie)
4531 {
4532 struct page *page = cookie;
4533 kunmap(page);
4534 page_cache_release(page);
4535 }
4536 EXPORT_SYMBOL(page_put_link);
4537
4538 /*
4539 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4540 */
4541 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4542 {
4543 struct address_space *mapping = inode->i_mapping;
4544 struct page *page;
4545 void *fsdata;
4546 int err;
4547 char *kaddr;
4548 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4549 if (nofs)
4550 flags |= AOP_FLAG_NOFS;
4551
4552 retry:
4553 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4554 flags, &page, &fsdata);
4555 if (err)
4556 goto fail;
4557
4558 kaddr = kmap_atomic(page);
4559 memcpy(kaddr, symname, len-1);
4560 kunmap_atomic(kaddr);
4561
4562 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4563 page, fsdata);
4564 if (err < 0)
4565 goto fail;
4566 if (err < len-1)
4567 goto retry;
4568
4569 mark_inode_dirty(inode);
4570 return 0;
4571 fail:
4572 return err;
4573 }
4574 EXPORT_SYMBOL(__page_symlink);
4575
4576 int page_symlink(struct inode *inode, const char *symname, int len)
4577 {
4578 return __page_symlink(inode, symname, len,
4579 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4580 }
4581 EXPORT_SYMBOL(page_symlink);
4582
4583 const struct inode_operations page_symlink_inode_operations = {
4584 .readlink = generic_readlink,
4585 .follow_link = page_follow_link_light,
4586 .put_link = page_put_link,
4587 };
4588 EXPORT_SYMBOL(page_symlink_inode_operations);