]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namei.c
Merge tag 'for-next-dma_ops' of git://git.kernel.org/pub/scm/linux/kernel/git/dledfor...
[mirror_ubuntu-artful-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <linux/bitops.h>
39 #include <linux/init_task.h>
40 #include <linux/uaccess.h>
41
42 #include "internal.h"
43 #include "mount.h"
44
45 /* [Feb-1997 T. Schoebel-Theuer]
46 * Fundamental changes in the pathname lookup mechanisms (namei)
47 * were necessary because of omirr. The reason is that omirr needs
48 * to know the _real_ pathname, not the user-supplied one, in case
49 * of symlinks (and also when transname replacements occur).
50 *
51 * The new code replaces the old recursive symlink resolution with
52 * an iterative one (in case of non-nested symlink chains). It does
53 * this with calls to <fs>_follow_link().
54 * As a side effect, dir_namei(), _namei() and follow_link() are now
55 * replaced with a single function lookup_dentry() that can handle all
56 * the special cases of the former code.
57 *
58 * With the new dcache, the pathname is stored at each inode, at least as
59 * long as the refcount of the inode is positive. As a side effect, the
60 * size of the dcache depends on the inode cache and thus is dynamic.
61 *
62 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
63 * resolution to correspond with current state of the code.
64 *
65 * Note that the symlink resolution is not *completely* iterative.
66 * There is still a significant amount of tail- and mid- recursion in
67 * the algorithm. Also, note that <fs>_readlink() is not used in
68 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
69 * may return different results than <fs>_follow_link(). Many virtual
70 * filesystems (including /proc) exhibit this behavior.
71 */
72
73 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
74 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
75 * and the name already exists in form of a symlink, try to create the new
76 * name indicated by the symlink. The old code always complained that the
77 * name already exists, due to not following the symlink even if its target
78 * is nonexistent. The new semantics affects also mknod() and link() when
79 * the name is a symlink pointing to a non-existent name.
80 *
81 * I don't know which semantics is the right one, since I have no access
82 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
83 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
84 * "old" one. Personally, I think the new semantics is much more logical.
85 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
86 * file does succeed in both HP-UX and SunOs, but not in Solaris
87 * and in the old Linux semantics.
88 */
89
90 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
91 * semantics. See the comments in "open_namei" and "do_link" below.
92 *
93 * [10-Sep-98 Alan Modra] Another symlink change.
94 */
95
96 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
97 * inside the path - always follow.
98 * in the last component in creation/removal/renaming - never follow.
99 * if LOOKUP_FOLLOW passed - follow.
100 * if the pathname has trailing slashes - follow.
101 * otherwise - don't follow.
102 * (applied in that order).
103 *
104 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
105 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
106 * During the 2.4 we need to fix the userland stuff depending on it -
107 * hopefully we will be able to get rid of that wart in 2.5. So far only
108 * XEmacs seems to be relying on it...
109 */
110 /*
111 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
112 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
113 * any extra contention...
114 */
115
116 /* In order to reduce some races, while at the same time doing additional
117 * checking and hopefully speeding things up, we copy filenames to the
118 * kernel data space before using them..
119 *
120 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
121 * PATH_MAX includes the nul terminator --RR.
122 */
123
124 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
125
126 struct filename *
127 getname_flags(const char __user *filename, int flags, int *empty)
128 {
129 struct filename *result;
130 char *kname;
131 int len;
132
133 result = audit_reusename(filename);
134 if (result)
135 return result;
136
137 result = __getname();
138 if (unlikely(!result))
139 return ERR_PTR(-ENOMEM);
140
141 /*
142 * First, try to embed the struct filename inside the names_cache
143 * allocation
144 */
145 kname = (char *)result->iname;
146 result->name = kname;
147
148 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
149 if (unlikely(len < 0)) {
150 __putname(result);
151 return ERR_PTR(len);
152 }
153
154 /*
155 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
156 * separate struct filename so we can dedicate the entire
157 * names_cache allocation for the pathname, and re-do the copy from
158 * userland.
159 */
160 if (unlikely(len == EMBEDDED_NAME_MAX)) {
161 const size_t size = offsetof(struct filename, iname[1]);
162 kname = (char *)result;
163
164 /*
165 * size is chosen that way we to guarantee that
166 * result->iname[0] is within the same object and that
167 * kname can't be equal to result->iname, no matter what.
168 */
169 result = kzalloc(size, GFP_KERNEL);
170 if (unlikely(!result)) {
171 __putname(kname);
172 return ERR_PTR(-ENOMEM);
173 }
174 result->name = kname;
175 len = strncpy_from_user(kname, filename, PATH_MAX);
176 if (unlikely(len < 0)) {
177 __putname(kname);
178 kfree(result);
179 return ERR_PTR(len);
180 }
181 if (unlikely(len == PATH_MAX)) {
182 __putname(kname);
183 kfree(result);
184 return ERR_PTR(-ENAMETOOLONG);
185 }
186 }
187
188 result->refcnt = 1;
189 /* The empty path is special. */
190 if (unlikely(!len)) {
191 if (empty)
192 *empty = 1;
193 if (!(flags & LOOKUP_EMPTY)) {
194 putname(result);
195 return ERR_PTR(-ENOENT);
196 }
197 }
198
199 result->uptr = filename;
200 result->aname = NULL;
201 audit_getname(result);
202 return result;
203 }
204
205 struct filename *
206 getname(const char __user * filename)
207 {
208 return getname_flags(filename, 0, NULL);
209 }
210
211 struct filename *
212 getname_kernel(const char * filename)
213 {
214 struct filename *result;
215 int len = strlen(filename) + 1;
216
217 result = __getname();
218 if (unlikely(!result))
219 return ERR_PTR(-ENOMEM);
220
221 if (len <= EMBEDDED_NAME_MAX) {
222 result->name = (char *)result->iname;
223 } else if (len <= PATH_MAX) {
224 struct filename *tmp;
225
226 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
227 if (unlikely(!tmp)) {
228 __putname(result);
229 return ERR_PTR(-ENOMEM);
230 }
231 tmp->name = (char *)result;
232 result = tmp;
233 } else {
234 __putname(result);
235 return ERR_PTR(-ENAMETOOLONG);
236 }
237 memcpy((char *)result->name, filename, len);
238 result->uptr = NULL;
239 result->aname = NULL;
240 result->refcnt = 1;
241 audit_getname(result);
242
243 return result;
244 }
245
246 void putname(struct filename *name)
247 {
248 BUG_ON(name->refcnt <= 0);
249
250 if (--name->refcnt > 0)
251 return;
252
253 if (name->name != name->iname) {
254 __putname(name->name);
255 kfree(name);
256 } else
257 __putname(name);
258 }
259
260 static int check_acl(struct inode *inode, int mask)
261 {
262 #ifdef CONFIG_FS_POSIX_ACL
263 struct posix_acl *acl;
264
265 if (mask & MAY_NOT_BLOCK) {
266 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
267 if (!acl)
268 return -EAGAIN;
269 /* no ->get_acl() calls in RCU mode... */
270 if (is_uncached_acl(acl))
271 return -ECHILD;
272 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
273 }
274
275 acl = get_acl(inode, ACL_TYPE_ACCESS);
276 if (IS_ERR(acl))
277 return PTR_ERR(acl);
278 if (acl) {
279 int error = posix_acl_permission(inode, acl, mask);
280 posix_acl_release(acl);
281 return error;
282 }
283 #endif
284
285 return -EAGAIN;
286 }
287
288 /*
289 * This does the basic permission checking
290 */
291 static int acl_permission_check(struct inode *inode, int mask)
292 {
293 unsigned int mode = inode->i_mode;
294
295 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
296 mode >>= 6;
297 else {
298 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
299 int error = check_acl(inode, mask);
300 if (error != -EAGAIN)
301 return error;
302 }
303
304 if (in_group_p(inode->i_gid))
305 mode >>= 3;
306 }
307
308 /*
309 * If the DACs are ok we don't need any capability check.
310 */
311 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
312 return 0;
313 return -EACCES;
314 }
315
316 /**
317 * generic_permission - check for access rights on a Posix-like filesystem
318 * @inode: inode to check access rights for
319 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
320 *
321 * Used to check for read/write/execute permissions on a file.
322 * We use "fsuid" for this, letting us set arbitrary permissions
323 * for filesystem access without changing the "normal" uids which
324 * are used for other things.
325 *
326 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
327 * request cannot be satisfied (eg. requires blocking or too much complexity).
328 * It would then be called again in ref-walk mode.
329 */
330 int generic_permission(struct inode *inode, int mask)
331 {
332 int ret;
333
334 /*
335 * Do the basic permission checks.
336 */
337 ret = acl_permission_check(inode, mask);
338 if (ret != -EACCES)
339 return ret;
340
341 if (S_ISDIR(inode->i_mode)) {
342 /* DACs are overridable for directories */
343 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
344 return 0;
345 if (!(mask & MAY_WRITE))
346 if (capable_wrt_inode_uidgid(inode,
347 CAP_DAC_READ_SEARCH))
348 return 0;
349 return -EACCES;
350 }
351 /*
352 * Read/write DACs are always overridable.
353 * Executable DACs are overridable when there is
354 * at least one exec bit set.
355 */
356 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
357 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
358 return 0;
359
360 /*
361 * Searching includes executable on directories, else just read.
362 */
363 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
364 if (mask == MAY_READ)
365 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
366 return 0;
367
368 return -EACCES;
369 }
370 EXPORT_SYMBOL(generic_permission);
371
372 /*
373 * We _really_ want to just do "generic_permission()" without
374 * even looking at the inode->i_op values. So we keep a cache
375 * flag in inode->i_opflags, that says "this has not special
376 * permission function, use the fast case".
377 */
378 static inline int do_inode_permission(struct inode *inode, int mask)
379 {
380 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
381 if (likely(inode->i_op->permission))
382 return inode->i_op->permission(inode, mask);
383
384 /* This gets set once for the inode lifetime */
385 spin_lock(&inode->i_lock);
386 inode->i_opflags |= IOP_FASTPERM;
387 spin_unlock(&inode->i_lock);
388 }
389 return generic_permission(inode, mask);
390 }
391
392 /**
393 * __inode_permission - Check for access rights to a given inode
394 * @inode: Inode to check permission on
395 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
396 *
397 * Check for read/write/execute permissions on an inode.
398 *
399 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
400 *
401 * This does not check for a read-only file system. You probably want
402 * inode_permission().
403 */
404 int __inode_permission(struct inode *inode, int mask)
405 {
406 int retval;
407
408 if (unlikely(mask & MAY_WRITE)) {
409 /*
410 * Nobody gets write access to an immutable file.
411 */
412 if (IS_IMMUTABLE(inode))
413 return -EPERM;
414
415 /*
416 * Updating mtime will likely cause i_uid and i_gid to be
417 * written back improperly if their true value is unknown
418 * to the vfs.
419 */
420 if (HAS_UNMAPPED_ID(inode))
421 return -EACCES;
422 }
423
424 retval = do_inode_permission(inode, mask);
425 if (retval)
426 return retval;
427
428 retval = devcgroup_inode_permission(inode, mask);
429 if (retval)
430 return retval;
431
432 return security_inode_permission(inode, mask);
433 }
434 EXPORT_SYMBOL(__inode_permission);
435
436 /**
437 * sb_permission - Check superblock-level permissions
438 * @sb: Superblock of inode to check permission on
439 * @inode: Inode to check permission on
440 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
441 *
442 * Separate out file-system wide checks from inode-specific permission checks.
443 */
444 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
445 {
446 if (unlikely(mask & MAY_WRITE)) {
447 umode_t mode = inode->i_mode;
448
449 /* Nobody gets write access to a read-only fs. */
450 if ((sb->s_flags & MS_RDONLY) &&
451 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
452 return -EROFS;
453 }
454 return 0;
455 }
456
457 /**
458 * inode_permission - Check for access rights to a given inode
459 * @inode: Inode to check permission on
460 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
461 *
462 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
463 * this, letting us set arbitrary permissions for filesystem access without
464 * changing the "normal" UIDs which are used for other things.
465 *
466 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
467 */
468 int inode_permission(struct inode *inode, int mask)
469 {
470 int retval;
471
472 retval = sb_permission(inode->i_sb, inode, mask);
473 if (retval)
474 return retval;
475 return __inode_permission(inode, mask);
476 }
477 EXPORT_SYMBOL(inode_permission);
478
479 /**
480 * path_get - get a reference to a path
481 * @path: path to get the reference to
482 *
483 * Given a path increment the reference count to the dentry and the vfsmount.
484 */
485 void path_get(const struct path *path)
486 {
487 mntget(path->mnt);
488 dget(path->dentry);
489 }
490 EXPORT_SYMBOL(path_get);
491
492 /**
493 * path_put - put a reference to a path
494 * @path: path to put the reference to
495 *
496 * Given a path decrement the reference count to the dentry and the vfsmount.
497 */
498 void path_put(const struct path *path)
499 {
500 dput(path->dentry);
501 mntput(path->mnt);
502 }
503 EXPORT_SYMBOL(path_put);
504
505 #define EMBEDDED_LEVELS 2
506 struct nameidata {
507 struct path path;
508 struct qstr last;
509 struct path root;
510 struct inode *inode; /* path.dentry.d_inode */
511 unsigned int flags;
512 unsigned seq, m_seq;
513 int last_type;
514 unsigned depth;
515 int total_link_count;
516 struct saved {
517 struct path link;
518 struct delayed_call done;
519 const char *name;
520 unsigned seq;
521 } *stack, internal[EMBEDDED_LEVELS];
522 struct filename *name;
523 struct nameidata *saved;
524 struct inode *link_inode;
525 unsigned root_seq;
526 int dfd;
527 };
528
529 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
530 {
531 struct nameidata *old = current->nameidata;
532 p->stack = p->internal;
533 p->dfd = dfd;
534 p->name = name;
535 p->total_link_count = old ? old->total_link_count : 0;
536 p->saved = old;
537 current->nameidata = p;
538 }
539
540 static void restore_nameidata(void)
541 {
542 struct nameidata *now = current->nameidata, *old = now->saved;
543
544 current->nameidata = old;
545 if (old)
546 old->total_link_count = now->total_link_count;
547 if (now->stack != now->internal)
548 kfree(now->stack);
549 }
550
551 static int __nd_alloc_stack(struct nameidata *nd)
552 {
553 struct saved *p;
554
555 if (nd->flags & LOOKUP_RCU) {
556 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
557 GFP_ATOMIC);
558 if (unlikely(!p))
559 return -ECHILD;
560 } else {
561 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
562 GFP_KERNEL);
563 if (unlikely(!p))
564 return -ENOMEM;
565 }
566 memcpy(p, nd->internal, sizeof(nd->internal));
567 nd->stack = p;
568 return 0;
569 }
570
571 /**
572 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
573 * @path: nameidate to verify
574 *
575 * Rename can sometimes move a file or directory outside of a bind
576 * mount, path_connected allows those cases to be detected.
577 */
578 static bool path_connected(const struct path *path)
579 {
580 struct vfsmount *mnt = path->mnt;
581
582 /* Only bind mounts can have disconnected paths */
583 if (mnt->mnt_root == mnt->mnt_sb->s_root)
584 return true;
585
586 return is_subdir(path->dentry, mnt->mnt_root);
587 }
588
589 static inline int nd_alloc_stack(struct nameidata *nd)
590 {
591 if (likely(nd->depth != EMBEDDED_LEVELS))
592 return 0;
593 if (likely(nd->stack != nd->internal))
594 return 0;
595 return __nd_alloc_stack(nd);
596 }
597
598 static void drop_links(struct nameidata *nd)
599 {
600 int i = nd->depth;
601 while (i--) {
602 struct saved *last = nd->stack + i;
603 do_delayed_call(&last->done);
604 clear_delayed_call(&last->done);
605 }
606 }
607
608 static void terminate_walk(struct nameidata *nd)
609 {
610 drop_links(nd);
611 if (!(nd->flags & LOOKUP_RCU)) {
612 int i;
613 path_put(&nd->path);
614 for (i = 0; i < nd->depth; i++)
615 path_put(&nd->stack[i].link);
616 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
617 path_put(&nd->root);
618 nd->root.mnt = NULL;
619 }
620 } else {
621 nd->flags &= ~LOOKUP_RCU;
622 if (!(nd->flags & LOOKUP_ROOT))
623 nd->root.mnt = NULL;
624 rcu_read_unlock();
625 }
626 nd->depth = 0;
627 }
628
629 /* path_put is needed afterwards regardless of success or failure */
630 static bool legitimize_path(struct nameidata *nd,
631 struct path *path, unsigned seq)
632 {
633 int res = __legitimize_mnt(path->mnt, nd->m_seq);
634 if (unlikely(res)) {
635 if (res > 0)
636 path->mnt = NULL;
637 path->dentry = NULL;
638 return false;
639 }
640 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
641 path->dentry = NULL;
642 return false;
643 }
644 return !read_seqcount_retry(&path->dentry->d_seq, seq);
645 }
646
647 static bool legitimize_links(struct nameidata *nd)
648 {
649 int i;
650 for (i = 0; i < nd->depth; i++) {
651 struct saved *last = nd->stack + i;
652 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
653 drop_links(nd);
654 nd->depth = i + 1;
655 return false;
656 }
657 }
658 return true;
659 }
660
661 /*
662 * Path walking has 2 modes, rcu-walk and ref-walk (see
663 * Documentation/filesystems/path-lookup.txt). In situations when we can't
664 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
665 * normal reference counts on dentries and vfsmounts to transition to ref-walk
666 * mode. Refcounts are grabbed at the last known good point before rcu-walk
667 * got stuck, so ref-walk may continue from there. If this is not successful
668 * (eg. a seqcount has changed), then failure is returned and it's up to caller
669 * to restart the path walk from the beginning in ref-walk mode.
670 */
671
672 /**
673 * unlazy_walk - try to switch to ref-walk mode.
674 * @nd: nameidata pathwalk data
675 * @dentry: child of nd->path.dentry or NULL
676 * @seq: seq number to check dentry against
677 * Returns: 0 on success, -ECHILD on failure
678 *
679 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
680 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
681 * @nd or NULL. Must be called from rcu-walk context.
682 * Nothing should touch nameidata between unlazy_walk() failure and
683 * terminate_walk().
684 */
685 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
686 {
687 struct dentry *parent = nd->path.dentry;
688
689 BUG_ON(!(nd->flags & LOOKUP_RCU));
690
691 nd->flags &= ~LOOKUP_RCU;
692 if (unlikely(!legitimize_links(nd)))
693 goto out2;
694 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
695 goto out2;
696 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
697 goto out1;
698
699 /*
700 * For a negative lookup, the lookup sequence point is the parents
701 * sequence point, and it only needs to revalidate the parent dentry.
702 *
703 * For a positive lookup, we need to move both the parent and the
704 * dentry from the RCU domain to be properly refcounted. And the
705 * sequence number in the dentry validates *both* dentry counters,
706 * since we checked the sequence number of the parent after we got
707 * the child sequence number. So we know the parent must still
708 * be valid if the child sequence number is still valid.
709 */
710 if (!dentry) {
711 if (read_seqcount_retry(&parent->d_seq, nd->seq))
712 goto out;
713 BUG_ON(nd->inode != parent->d_inode);
714 } else {
715 if (!lockref_get_not_dead(&dentry->d_lockref))
716 goto out;
717 if (read_seqcount_retry(&dentry->d_seq, seq))
718 goto drop_dentry;
719 }
720
721 /*
722 * Sequence counts matched. Now make sure that the root is
723 * still valid and get it if required.
724 */
725 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
726 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
727 rcu_read_unlock();
728 dput(dentry);
729 return -ECHILD;
730 }
731 }
732
733 rcu_read_unlock();
734 return 0;
735
736 drop_dentry:
737 rcu_read_unlock();
738 dput(dentry);
739 goto drop_root_mnt;
740 out2:
741 nd->path.mnt = NULL;
742 out1:
743 nd->path.dentry = NULL;
744 out:
745 rcu_read_unlock();
746 drop_root_mnt:
747 if (!(nd->flags & LOOKUP_ROOT))
748 nd->root.mnt = NULL;
749 return -ECHILD;
750 }
751
752 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
753 {
754 if (unlikely(!legitimize_path(nd, link, seq))) {
755 drop_links(nd);
756 nd->depth = 0;
757 nd->flags &= ~LOOKUP_RCU;
758 nd->path.mnt = NULL;
759 nd->path.dentry = NULL;
760 if (!(nd->flags & LOOKUP_ROOT))
761 nd->root.mnt = NULL;
762 rcu_read_unlock();
763 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
764 return 0;
765 }
766 path_put(link);
767 return -ECHILD;
768 }
769
770 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
771 {
772 return dentry->d_op->d_revalidate(dentry, flags);
773 }
774
775 /**
776 * complete_walk - successful completion of path walk
777 * @nd: pointer nameidata
778 *
779 * If we had been in RCU mode, drop out of it and legitimize nd->path.
780 * Revalidate the final result, unless we'd already done that during
781 * the path walk or the filesystem doesn't ask for it. Return 0 on
782 * success, -error on failure. In case of failure caller does not
783 * need to drop nd->path.
784 */
785 static int complete_walk(struct nameidata *nd)
786 {
787 struct dentry *dentry = nd->path.dentry;
788 int status;
789
790 if (nd->flags & LOOKUP_RCU) {
791 if (!(nd->flags & LOOKUP_ROOT))
792 nd->root.mnt = NULL;
793 if (unlikely(unlazy_walk(nd, NULL, 0)))
794 return -ECHILD;
795 }
796
797 if (likely(!(nd->flags & LOOKUP_JUMPED)))
798 return 0;
799
800 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
801 return 0;
802
803 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
804 if (status > 0)
805 return 0;
806
807 if (!status)
808 status = -ESTALE;
809
810 return status;
811 }
812
813 static void set_root(struct nameidata *nd)
814 {
815 struct fs_struct *fs = current->fs;
816
817 if (nd->flags & LOOKUP_RCU) {
818 unsigned seq;
819
820 do {
821 seq = read_seqcount_begin(&fs->seq);
822 nd->root = fs->root;
823 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
824 } while (read_seqcount_retry(&fs->seq, seq));
825 } else {
826 get_fs_root(fs, &nd->root);
827 }
828 }
829
830 static void path_put_conditional(struct path *path, struct nameidata *nd)
831 {
832 dput(path->dentry);
833 if (path->mnt != nd->path.mnt)
834 mntput(path->mnt);
835 }
836
837 static inline void path_to_nameidata(const struct path *path,
838 struct nameidata *nd)
839 {
840 if (!(nd->flags & LOOKUP_RCU)) {
841 dput(nd->path.dentry);
842 if (nd->path.mnt != path->mnt)
843 mntput(nd->path.mnt);
844 }
845 nd->path.mnt = path->mnt;
846 nd->path.dentry = path->dentry;
847 }
848
849 static int nd_jump_root(struct nameidata *nd)
850 {
851 if (nd->flags & LOOKUP_RCU) {
852 struct dentry *d;
853 nd->path = nd->root;
854 d = nd->path.dentry;
855 nd->inode = d->d_inode;
856 nd->seq = nd->root_seq;
857 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
858 return -ECHILD;
859 } else {
860 path_put(&nd->path);
861 nd->path = nd->root;
862 path_get(&nd->path);
863 nd->inode = nd->path.dentry->d_inode;
864 }
865 nd->flags |= LOOKUP_JUMPED;
866 return 0;
867 }
868
869 /*
870 * Helper to directly jump to a known parsed path from ->get_link,
871 * caller must have taken a reference to path beforehand.
872 */
873 void nd_jump_link(struct path *path)
874 {
875 struct nameidata *nd = current->nameidata;
876 path_put(&nd->path);
877
878 nd->path = *path;
879 nd->inode = nd->path.dentry->d_inode;
880 nd->flags |= LOOKUP_JUMPED;
881 }
882
883 static inline void put_link(struct nameidata *nd)
884 {
885 struct saved *last = nd->stack + --nd->depth;
886 do_delayed_call(&last->done);
887 if (!(nd->flags & LOOKUP_RCU))
888 path_put(&last->link);
889 }
890
891 int sysctl_protected_symlinks __read_mostly = 0;
892 int sysctl_protected_hardlinks __read_mostly = 0;
893
894 /**
895 * may_follow_link - Check symlink following for unsafe situations
896 * @nd: nameidata pathwalk data
897 *
898 * In the case of the sysctl_protected_symlinks sysctl being enabled,
899 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
900 * in a sticky world-writable directory. This is to protect privileged
901 * processes from failing races against path names that may change out
902 * from under them by way of other users creating malicious symlinks.
903 * It will permit symlinks to be followed only when outside a sticky
904 * world-writable directory, or when the uid of the symlink and follower
905 * match, or when the directory owner matches the symlink's owner.
906 *
907 * Returns 0 if following the symlink is allowed, -ve on error.
908 */
909 static inline int may_follow_link(struct nameidata *nd)
910 {
911 const struct inode *inode;
912 const struct inode *parent;
913 kuid_t puid;
914
915 if (!sysctl_protected_symlinks)
916 return 0;
917
918 /* Allowed if owner and follower match. */
919 inode = nd->link_inode;
920 if (uid_eq(current_cred()->fsuid, inode->i_uid))
921 return 0;
922
923 /* Allowed if parent directory not sticky and world-writable. */
924 parent = nd->inode;
925 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
926 return 0;
927
928 /* Allowed if parent directory and link owner match. */
929 puid = parent->i_uid;
930 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
931 return 0;
932
933 if (nd->flags & LOOKUP_RCU)
934 return -ECHILD;
935
936 audit_log_link_denied("follow_link", &nd->stack[0].link);
937 return -EACCES;
938 }
939
940 /**
941 * safe_hardlink_source - Check for safe hardlink conditions
942 * @inode: the source inode to hardlink from
943 *
944 * Return false if at least one of the following conditions:
945 * - inode is not a regular file
946 * - inode is setuid
947 * - inode is setgid and group-exec
948 * - access failure for read and write
949 *
950 * Otherwise returns true.
951 */
952 static bool safe_hardlink_source(struct inode *inode)
953 {
954 umode_t mode = inode->i_mode;
955
956 /* Special files should not get pinned to the filesystem. */
957 if (!S_ISREG(mode))
958 return false;
959
960 /* Setuid files should not get pinned to the filesystem. */
961 if (mode & S_ISUID)
962 return false;
963
964 /* Executable setgid files should not get pinned to the filesystem. */
965 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
966 return false;
967
968 /* Hardlinking to unreadable or unwritable sources is dangerous. */
969 if (inode_permission(inode, MAY_READ | MAY_WRITE))
970 return false;
971
972 return true;
973 }
974
975 /**
976 * may_linkat - Check permissions for creating a hardlink
977 * @link: the source to hardlink from
978 *
979 * Block hardlink when all of:
980 * - sysctl_protected_hardlinks enabled
981 * - fsuid does not match inode
982 * - hardlink source is unsafe (see safe_hardlink_source() above)
983 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
984 *
985 * Returns 0 if successful, -ve on error.
986 */
987 static int may_linkat(struct path *link)
988 {
989 struct inode *inode;
990
991 if (!sysctl_protected_hardlinks)
992 return 0;
993
994 inode = link->dentry->d_inode;
995
996 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
997 * otherwise, it must be a safe source.
998 */
999 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
1000 return 0;
1001
1002 audit_log_link_denied("linkat", link);
1003 return -EPERM;
1004 }
1005
1006 static __always_inline
1007 const char *get_link(struct nameidata *nd)
1008 {
1009 struct saved *last = nd->stack + nd->depth - 1;
1010 struct dentry *dentry = last->link.dentry;
1011 struct inode *inode = nd->link_inode;
1012 int error;
1013 const char *res;
1014
1015 if (!(nd->flags & LOOKUP_RCU)) {
1016 touch_atime(&last->link);
1017 cond_resched();
1018 } else if (atime_needs_update_rcu(&last->link, inode)) {
1019 if (unlikely(unlazy_walk(nd, NULL, 0)))
1020 return ERR_PTR(-ECHILD);
1021 touch_atime(&last->link);
1022 }
1023
1024 error = security_inode_follow_link(dentry, inode,
1025 nd->flags & LOOKUP_RCU);
1026 if (unlikely(error))
1027 return ERR_PTR(error);
1028
1029 nd->last_type = LAST_BIND;
1030 res = inode->i_link;
1031 if (!res) {
1032 const char * (*get)(struct dentry *, struct inode *,
1033 struct delayed_call *);
1034 get = inode->i_op->get_link;
1035 if (nd->flags & LOOKUP_RCU) {
1036 res = get(NULL, inode, &last->done);
1037 if (res == ERR_PTR(-ECHILD)) {
1038 if (unlikely(unlazy_walk(nd, NULL, 0)))
1039 return ERR_PTR(-ECHILD);
1040 res = get(dentry, inode, &last->done);
1041 }
1042 } else {
1043 res = get(dentry, inode, &last->done);
1044 }
1045 if (IS_ERR_OR_NULL(res))
1046 return res;
1047 }
1048 if (*res == '/') {
1049 if (!nd->root.mnt)
1050 set_root(nd);
1051 if (unlikely(nd_jump_root(nd)))
1052 return ERR_PTR(-ECHILD);
1053 while (unlikely(*++res == '/'))
1054 ;
1055 }
1056 if (!*res)
1057 res = NULL;
1058 return res;
1059 }
1060
1061 /*
1062 * follow_up - Find the mountpoint of path's vfsmount
1063 *
1064 * Given a path, find the mountpoint of its source file system.
1065 * Replace @path with the path of the mountpoint in the parent mount.
1066 * Up is towards /.
1067 *
1068 * Return 1 if we went up a level and 0 if we were already at the
1069 * root.
1070 */
1071 int follow_up(struct path *path)
1072 {
1073 struct mount *mnt = real_mount(path->mnt);
1074 struct mount *parent;
1075 struct dentry *mountpoint;
1076
1077 read_seqlock_excl(&mount_lock);
1078 parent = mnt->mnt_parent;
1079 if (parent == mnt) {
1080 read_sequnlock_excl(&mount_lock);
1081 return 0;
1082 }
1083 mntget(&parent->mnt);
1084 mountpoint = dget(mnt->mnt_mountpoint);
1085 read_sequnlock_excl(&mount_lock);
1086 dput(path->dentry);
1087 path->dentry = mountpoint;
1088 mntput(path->mnt);
1089 path->mnt = &parent->mnt;
1090 return 1;
1091 }
1092 EXPORT_SYMBOL(follow_up);
1093
1094 /*
1095 * Perform an automount
1096 * - return -EISDIR to tell follow_managed() to stop and return the path we
1097 * were called with.
1098 */
1099 static int follow_automount(struct path *path, struct nameidata *nd,
1100 bool *need_mntput)
1101 {
1102 struct vfsmount *mnt;
1103 int err;
1104
1105 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1106 return -EREMOTE;
1107
1108 /* We don't want to mount if someone's just doing a stat -
1109 * unless they're stat'ing a directory and appended a '/' to
1110 * the name.
1111 *
1112 * We do, however, want to mount if someone wants to open or
1113 * create a file of any type under the mountpoint, wants to
1114 * traverse through the mountpoint or wants to open the
1115 * mounted directory. Also, autofs may mark negative dentries
1116 * as being automount points. These will need the attentions
1117 * of the daemon to instantiate them before they can be used.
1118 */
1119 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1120 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1121 path->dentry->d_inode)
1122 return -EISDIR;
1123
1124 if (path->dentry->d_sb->s_user_ns != &init_user_ns)
1125 return -EACCES;
1126
1127 nd->total_link_count++;
1128 if (nd->total_link_count >= 40)
1129 return -ELOOP;
1130
1131 mnt = path->dentry->d_op->d_automount(path);
1132 if (IS_ERR(mnt)) {
1133 /*
1134 * The filesystem is allowed to return -EISDIR here to indicate
1135 * it doesn't want to automount. For instance, autofs would do
1136 * this so that its userspace daemon can mount on this dentry.
1137 *
1138 * However, we can only permit this if it's a terminal point in
1139 * the path being looked up; if it wasn't then the remainder of
1140 * the path is inaccessible and we should say so.
1141 */
1142 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1143 return -EREMOTE;
1144 return PTR_ERR(mnt);
1145 }
1146
1147 if (!mnt) /* mount collision */
1148 return 0;
1149
1150 if (!*need_mntput) {
1151 /* lock_mount() may release path->mnt on error */
1152 mntget(path->mnt);
1153 *need_mntput = true;
1154 }
1155 err = finish_automount(mnt, path);
1156
1157 switch (err) {
1158 case -EBUSY:
1159 /* Someone else made a mount here whilst we were busy */
1160 return 0;
1161 case 0:
1162 path_put(path);
1163 path->mnt = mnt;
1164 path->dentry = dget(mnt->mnt_root);
1165 return 0;
1166 default:
1167 return err;
1168 }
1169
1170 }
1171
1172 /*
1173 * Handle a dentry that is managed in some way.
1174 * - Flagged for transit management (autofs)
1175 * - Flagged as mountpoint
1176 * - Flagged as automount point
1177 *
1178 * This may only be called in refwalk mode.
1179 *
1180 * Serialization is taken care of in namespace.c
1181 */
1182 static int follow_managed(struct path *path, struct nameidata *nd)
1183 {
1184 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1185 unsigned managed;
1186 bool need_mntput = false;
1187 int ret = 0;
1188
1189 /* Given that we're not holding a lock here, we retain the value in a
1190 * local variable for each dentry as we look at it so that we don't see
1191 * the components of that value change under us */
1192 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1193 managed &= DCACHE_MANAGED_DENTRY,
1194 unlikely(managed != 0)) {
1195 /* Allow the filesystem to manage the transit without i_mutex
1196 * being held. */
1197 if (managed & DCACHE_MANAGE_TRANSIT) {
1198 BUG_ON(!path->dentry->d_op);
1199 BUG_ON(!path->dentry->d_op->d_manage);
1200 ret = path->dentry->d_op->d_manage(path, false);
1201 if (ret < 0)
1202 break;
1203 }
1204
1205 /* Transit to a mounted filesystem. */
1206 if (managed & DCACHE_MOUNTED) {
1207 struct vfsmount *mounted = lookup_mnt(path);
1208 if (mounted) {
1209 dput(path->dentry);
1210 if (need_mntput)
1211 mntput(path->mnt);
1212 path->mnt = mounted;
1213 path->dentry = dget(mounted->mnt_root);
1214 need_mntput = true;
1215 continue;
1216 }
1217
1218 /* Something is mounted on this dentry in another
1219 * namespace and/or whatever was mounted there in this
1220 * namespace got unmounted before lookup_mnt() could
1221 * get it */
1222 }
1223
1224 /* Handle an automount point */
1225 if (managed & DCACHE_NEED_AUTOMOUNT) {
1226 ret = follow_automount(path, nd, &need_mntput);
1227 if (ret < 0)
1228 break;
1229 continue;
1230 }
1231
1232 /* We didn't change the current path point */
1233 break;
1234 }
1235
1236 if (need_mntput && path->mnt == mnt)
1237 mntput(path->mnt);
1238 if (ret == -EISDIR || !ret)
1239 ret = 1;
1240 if (need_mntput)
1241 nd->flags |= LOOKUP_JUMPED;
1242 if (unlikely(ret < 0))
1243 path_put_conditional(path, nd);
1244 return ret;
1245 }
1246
1247 int follow_down_one(struct path *path)
1248 {
1249 struct vfsmount *mounted;
1250
1251 mounted = lookup_mnt(path);
1252 if (mounted) {
1253 dput(path->dentry);
1254 mntput(path->mnt);
1255 path->mnt = mounted;
1256 path->dentry = dget(mounted->mnt_root);
1257 return 1;
1258 }
1259 return 0;
1260 }
1261 EXPORT_SYMBOL(follow_down_one);
1262
1263 static inline int managed_dentry_rcu(const struct path *path)
1264 {
1265 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1266 path->dentry->d_op->d_manage(path, true) : 0;
1267 }
1268
1269 /*
1270 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1271 * we meet a managed dentry that would need blocking.
1272 */
1273 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1274 struct inode **inode, unsigned *seqp)
1275 {
1276 for (;;) {
1277 struct mount *mounted;
1278 /*
1279 * Don't forget we might have a non-mountpoint managed dentry
1280 * that wants to block transit.
1281 */
1282 switch (managed_dentry_rcu(path)) {
1283 case -ECHILD:
1284 default:
1285 return false;
1286 case -EISDIR:
1287 return true;
1288 case 0:
1289 break;
1290 }
1291
1292 if (!d_mountpoint(path->dentry))
1293 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1294
1295 mounted = __lookup_mnt(path->mnt, path->dentry);
1296 if (!mounted)
1297 break;
1298 path->mnt = &mounted->mnt;
1299 path->dentry = mounted->mnt.mnt_root;
1300 nd->flags |= LOOKUP_JUMPED;
1301 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1302 /*
1303 * Update the inode too. We don't need to re-check the
1304 * dentry sequence number here after this d_inode read,
1305 * because a mount-point is always pinned.
1306 */
1307 *inode = path->dentry->d_inode;
1308 }
1309 return !read_seqretry(&mount_lock, nd->m_seq) &&
1310 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1311 }
1312
1313 static int follow_dotdot_rcu(struct nameidata *nd)
1314 {
1315 struct inode *inode = nd->inode;
1316
1317 while (1) {
1318 if (path_equal(&nd->path, &nd->root))
1319 break;
1320 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1321 struct dentry *old = nd->path.dentry;
1322 struct dentry *parent = old->d_parent;
1323 unsigned seq;
1324
1325 inode = parent->d_inode;
1326 seq = read_seqcount_begin(&parent->d_seq);
1327 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1328 return -ECHILD;
1329 nd->path.dentry = parent;
1330 nd->seq = seq;
1331 if (unlikely(!path_connected(&nd->path)))
1332 return -ENOENT;
1333 break;
1334 } else {
1335 struct mount *mnt = real_mount(nd->path.mnt);
1336 struct mount *mparent = mnt->mnt_parent;
1337 struct dentry *mountpoint = mnt->mnt_mountpoint;
1338 struct inode *inode2 = mountpoint->d_inode;
1339 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1340 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1341 return -ECHILD;
1342 if (&mparent->mnt == nd->path.mnt)
1343 break;
1344 /* we know that mountpoint was pinned */
1345 nd->path.dentry = mountpoint;
1346 nd->path.mnt = &mparent->mnt;
1347 inode = inode2;
1348 nd->seq = seq;
1349 }
1350 }
1351 while (unlikely(d_mountpoint(nd->path.dentry))) {
1352 struct mount *mounted;
1353 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1354 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1355 return -ECHILD;
1356 if (!mounted)
1357 break;
1358 nd->path.mnt = &mounted->mnt;
1359 nd->path.dentry = mounted->mnt.mnt_root;
1360 inode = nd->path.dentry->d_inode;
1361 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1362 }
1363 nd->inode = inode;
1364 return 0;
1365 }
1366
1367 /*
1368 * Follow down to the covering mount currently visible to userspace. At each
1369 * point, the filesystem owning that dentry may be queried as to whether the
1370 * caller is permitted to proceed or not.
1371 */
1372 int follow_down(struct path *path)
1373 {
1374 unsigned managed;
1375 int ret;
1376
1377 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1378 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1379 /* Allow the filesystem to manage the transit without i_mutex
1380 * being held.
1381 *
1382 * We indicate to the filesystem if someone is trying to mount
1383 * something here. This gives autofs the chance to deny anyone
1384 * other than its daemon the right to mount on its
1385 * superstructure.
1386 *
1387 * The filesystem may sleep at this point.
1388 */
1389 if (managed & DCACHE_MANAGE_TRANSIT) {
1390 BUG_ON(!path->dentry->d_op);
1391 BUG_ON(!path->dentry->d_op->d_manage);
1392 ret = path->dentry->d_op->d_manage(path, false);
1393 if (ret < 0)
1394 return ret == -EISDIR ? 0 : ret;
1395 }
1396
1397 /* Transit to a mounted filesystem. */
1398 if (managed & DCACHE_MOUNTED) {
1399 struct vfsmount *mounted = lookup_mnt(path);
1400 if (!mounted)
1401 break;
1402 dput(path->dentry);
1403 mntput(path->mnt);
1404 path->mnt = mounted;
1405 path->dentry = dget(mounted->mnt_root);
1406 continue;
1407 }
1408
1409 /* Don't handle automount points here */
1410 break;
1411 }
1412 return 0;
1413 }
1414 EXPORT_SYMBOL(follow_down);
1415
1416 /*
1417 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1418 */
1419 static void follow_mount(struct path *path)
1420 {
1421 while (d_mountpoint(path->dentry)) {
1422 struct vfsmount *mounted = lookup_mnt(path);
1423 if (!mounted)
1424 break;
1425 dput(path->dentry);
1426 mntput(path->mnt);
1427 path->mnt = mounted;
1428 path->dentry = dget(mounted->mnt_root);
1429 }
1430 }
1431
1432 static int path_parent_directory(struct path *path)
1433 {
1434 struct dentry *old = path->dentry;
1435 /* rare case of legitimate dget_parent()... */
1436 path->dentry = dget_parent(path->dentry);
1437 dput(old);
1438 if (unlikely(!path_connected(path)))
1439 return -ENOENT;
1440 return 0;
1441 }
1442
1443 static int follow_dotdot(struct nameidata *nd)
1444 {
1445 while(1) {
1446 if (nd->path.dentry == nd->root.dentry &&
1447 nd->path.mnt == nd->root.mnt) {
1448 break;
1449 }
1450 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1451 int ret = path_parent_directory(&nd->path);
1452 if (ret)
1453 return ret;
1454 break;
1455 }
1456 if (!follow_up(&nd->path))
1457 break;
1458 }
1459 follow_mount(&nd->path);
1460 nd->inode = nd->path.dentry->d_inode;
1461 return 0;
1462 }
1463
1464 /*
1465 * This looks up the name in dcache and possibly revalidates the found dentry.
1466 * NULL is returned if the dentry does not exist in the cache.
1467 */
1468 static struct dentry *lookup_dcache(const struct qstr *name,
1469 struct dentry *dir,
1470 unsigned int flags)
1471 {
1472 struct dentry *dentry;
1473 int error;
1474
1475 dentry = d_lookup(dir, name);
1476 if (dentry) {
1477 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1478 error = d_revalidate(dentry, flags);
1479 if (unlikely(error <= 0)) {
1480 if (!error)
1481 d_invalidate(dentry);
1482 dput(dentry);
1483 return ERR_PTR(error);
1484 }
1485 }
1486 }
1487 return dentry;
1488 }
1489
1490 /*
1491 * Call i_op->lookup on the dentry. The dentry must be negative and
1492 * unhashed.
1493 *
1494 * dir->d_inode->i_mutex must be held
1495 */
1496 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1497 unsigned int flags)
1498 {
1499 struct dentry *old;
1500
1501 /* Don't create child dentry for a dead directory. */
1502 if (unlikely(IS_DEADDIR(dir))) {
1503 dput(dentry);
1504 return ERR_PTR(-ENOENT);
1505 }
1506
1507 old = dir->i_op->lookup(dir, dentry, flags);
1508 if (unlikely(old)) {
1509 dput(dentry);
1510 dentry = old;
1511 }
1512 return dentry;
1513 }
1514
1515 static struct dentry *__lookup_hash(const struct qstr *name,
1516 struct dentry *base, unsigned int flags)
1517 {
1518 struct dentry *dentry = lookup_dcache(name, base, flags);
1519
1520 if (dentry)
1521 return dentry;
1522
1523 dentry = d_alloc(base, name);
1524 if (unlikely(!dentry))
1525 return ERR_PTR(-ENOMEM);
1526
1527 return lookup_real(base->d_inode, dentry, flags);
1528 }
1529
1530 static int lookup_fast(struct nameidata *nd,
1531 struct path *path, struct inode **inode,
1532 unsigned *seqp)
1533 {
1534 struct vfsmount *mnt = nd->path.mnt;
1535 struct dentry *dentry, *parent = nd->path.dentry;
1536 int status = 1;
1537 int err;
1538
1539 /*
1540 * Rename seqlock is not required here because in the off chance
1541 * of a false negative due to a concurrent rename, the caller is
1542 * going to fall back to non-racy lookup.
1543 */
1544 if (nd->flags & LOOKUP_RCU) {
1545 unsigned seq;
1546 bool negative;
1547 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1548 if (unlikely(!dentry)) {
1549 if (unlazy_walk(nd, NULL, 0))
1550 return -ECHILD;
1551 return 0;
1552 }
1553
1554 /*
1555 * This sequence count validates that the inode matches
1556 * the dentry name information from lookup.
1557 */
1558 *inode = d_backing_inode(dentry);
1559 negative = d_is_negative(dentry);
1560 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1561 return -ECHILD;
1562
1563 /*
1564 * This sequence count validates that the parent had no
1565 * changes while we did the lookup of the dentry above.
1566 *
1567 * The memory barrier in read_seqcount_begin of child is
1568 * enough, we can use __read_seqcount_retry here.
1569 */
1570 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1571 return -ECHILD;
1572
1573 *seqp = seq;
1574 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1575 status = d_revalidate(dentry, nd->flags);
1576 if (unlikely(status <= 0)) {
1577 if (unlazy_walk(nd, dentry, seq))
1578 return -ECHILD;
1579 if (status == -ECHILD)
1580 status = d_revalidate(dentry, nd->flags);
1581 } else {
1582 /*
1583 * Note: do negative dentry check after revalidation in
1584 * case that drops it.
1585 */
1586 if (unlikely(negative))
1587 return -ENOENT;
1588 path->mnt = mnt;
1589 path->dentry = dentry;
1590 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1591 return 1;
1592 if (unlazy_walk(nd, dentry, seq))
1593 return -ECHILD;
1594 }
1595 } else {
1596 dentry = __d_lookup(parent, &nd->last);
1597 if (unlikely(!dentry))
1598 return 0;
1599 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1600 status = d_revalidate(dentry, nd->flags);
1601 }
1602 if (unlikely(status <= 0)) {
1603 if (!status)
1604 d_invalidate(dentry);
1605 dput(dentry);
1606 return status;
1607 }
1608 if (unlikely(d_is_negative(dentry))) {
1609 dput(dentry);
1610 return -ENOENT;
1611 }
1612
1613 path->mnt = mnt;
1614 path->dentry = dentry;
1615 err = follow_managed(path, nd);
1616 if (likely(err > 0))
1617 *inode = d_backing_inode(path->dentry);
1618 return err;
1619 }
1620
1621 /* Fast lookup failed, do it the slow way */
1622 static struct dentry *lookup_slow(const struct qstr *name,
1623 struct dentry *dir,
1624 unsigned int flags)
1625 {
1626 struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1627 struct inode *inode = dir->d_inode;
1628 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1629
1630 inode_lock_shared(inode);
1631 /* Don't go there if it's already dead */
1632 if (unlikely(IS_DEADDIR(inode)))
1633 goto out;
1634 again:
1635 dentry = d_alloc_parallel(dir, name, &wq);
1636 if (IS_ERR(dentry))
1637 goto out;
1638 if (unlikely(!d_in_lookup(dentry))) {
1639 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1640 !(flags & LOOKUP_NO_REVAL)) {
1641 int error = d_revalidate(dentry, flags);
1642 if (unlikely(error <= 0)) {
1643 if (!error) {
1644 d_invalidate(dentry);
1645 dput(dentry);
1646 goto again;
1647 }
1648 dput(dentry);
1649 dentry = ERR_PTR(error);
1650 }
1651 }
1652 } else {
1653 old = inode->i_op->lookup(inode, dentry, flags);
1654 d_lookup_done(dentry);
1655 if (unlikely(old)) {
1656 dput(dentry);
1657 dentry = old;
1658 }
1659 }
1660 out:
1661 inode_unlock_shared(inode);
1662 return dentry;
1663 }
1664
1665 static inline int may_lookup(struct nameidata *nd)
1666 {
1667 if (nd->flags & LOOKUP_RCU) {
1668 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1669 if (err != -ECHILD)
1670 return err;
1671 if (unlazy_walk(nd, NULL, 0))
1672 return -ECHILD;
1673 }
1674 return inode_permission(nd->inode, MAY_EXEC);
1675 }
1676
1677 static inline int handle_dots(struct nameidata *nd, int type)
1678 {
1679 if (type == LAST_DOTDOT) {
1680 if (!nd->root.mnt)
1681 set_root(nd);
1682 if (nd->flags & LOOKUP_RCU) {
1683 return follow_dotdot_rcu(nd);
1684 } else
1685 return follow_dotdot(nd);
1686 }
1687 return 0;
1688 }
1689
1690 static int pick_link(struct nameidata *nd, struct path *link,
1691 struct inode *inode, unsigned seq)
1692 {
1693 int error;
1694 struct saved *last;
1695 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1696 path_to_nameidata(link, nd);
1697 return -ELOOP;
1698 }
1699 if (!(nd->flags & LOOKUP_RCU)) {
1700 if (link->mnt == nd->path.mnt)
1701 mntget(link->mnt);
1702 }
1703 error = nd_alloc_stack(nd);
1704 if (unlikely(error)) {
1705 if (error == -ECHILD) {
1706 if (unlikely(unlazy_link(nd, link, seq)))
1707 return -ECHILD;
1708 error = nd_alloc_stack(nd);
1709 }
1710 if (error) {
1711 path_put(link);
1712 return error;
1713 }
1714 }
1715
1716 last = nd->stack + nd->depth++;
1717 last->link = *link;
1718 clear_delayed_call(&last->done);
1719 nd->link_inode = inode;
1720 last->seq = seq;
1721 return 1;
1722 }
1723
1724 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1725
1726 /*
1727 * Do we need to follow links? We _really_ want to be able
1728 * to do this check without having to look at inode->i_op,
1729 * so we keep a cache of "no, this doesn't need follow_link"
1730 * for the common case.
1731 */
1732 static inline int step_into(struct nameidata *nd, struct path *path,
1733 int flags, struct inode *inode, unsigned seq)
1734 {
1735 if (!(flags & WALK_MORE) && nd->depth)
1736 put_link(nd);
1737 if (likely(!d_is_symlink(path->dentry)) ||
1738 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1739 /* not a symlink or should not follow */
1740 path_to_nameidata(path, nd);
1741 nd->inode = inode;
1742 nd->seq = seq;
1743 return 0;
1744 }
1745 /* make sure that d_is_symlink above matches inode */
1746 if (nd->flags & LOOKUP_RCU) {
1747 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1748 return -ECHILD;
1749 }
1750 return pick_link(nd, path, inode, seq);
1751 }
1752
1753 static int walk_component(struct nameidata *nd, int flags)
1754 {
1755 struct path path;
1756 struct inode *inode;
1757 unsigned seq;
1758 int err;
1759 /*
1760 * "." and ".." are special - ".." especially so because it has
1761 * to be able to know about the current root directory and
1762 * parent relationships.
1763 */
1764 if (unlikely(nd->last_type != LAST_NORM)) {
1765 err = handle_dots(nd, nd->last_type);
1766 if (!(flags & WALK_MORE) && nd->depth)
1767 put_link(nd);
1768 return err;
1769 }
1770 err = lookup_fast(nd, &path, &inode, &seq);
1771 if (unlikely(err <= 0)) {
1772 if (err < 0)
1773 return err;
1774 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1775 nd->flags);
1776 if (IS_ERR(path.dentry))
1777 return PTR_ERR(path.dentry);
1778
1779 path.mnt = nd->path.mnt;
1780 err = follow_managed(&path, nd);
1781 if (unlikely(err < 0))
1782 return err;
1783
1784 if (unlikely(d_is_negative(path.dentry))) {
1785 path_to_nameidata(&path, nd);
1786 return -ENOENT;
1787 }
1788
1789 seq = 0; /* we are already out of RCU mode */
1790 inode = d_backing_inode(path.dentry);
1791 }
1792
1793 return step_into(nd, &path, flags, inode, seq);
1794 }
1795
1796 /*
1797 * We can do the critical dentry name comparison and hashing
1798 * operations one word at a time, but we are limited to:
1799 *
1800 * - Architectures with fast unaligned word accesses. We could
1801 * do a "get_unaligned()" if this helps and is sufficiently
1802 * fast.
1803 *
1804 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1805 * do not trap on the (extremely unlikely) case of a page
1806 * crossing operation.
1807 *
1808 * - Furthermore, we need an efficient 64-bit compile for the
1809 * 64-bit case in order to generate the "number of bytes in
1810 * the final mask". Again, that could be replaced with a
1811 * efficient population count instruction or similar.
1812 */
1813 #ifdef CONFIG_DCACHE_WORD_ACCESS
1814
1815 #include <asm/word-at-a-time.h>
1816
1817 #ifdef HASH_MIX
1818
1819 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1820
1821 #elif defined(CONFIG_64BIT)
1822 /*
1823 * Register pressure in the mixing function is an issue, particularly
1824 * on 32-bit x86, but almost any function requires one state value and
1825 * one temporary. Instead, use a function designed for two state values
1826 * and no temporaries.
1827 *
1828 * This function cannot create a collision in only two iterations, so
1829 * we have two iterations to achieve avalanche. In those two iterations,
1830 * we have six layers of mixing, which is enough to spread one bit's
1831 * influence out to 2^6 = 64 state bits.
1832 *
1833 * Rotate constants are scored by considering either 64 one-bit input
1834 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1835 * probability of that delta causing a change to each of the 128 output
1836 * bits, using a sample of random initial states.
1837 *
1838 * The Shannon entropy of the computed probabilities is then summed
1839 * to produce a score. Ideally, any input change has a 50% chance of
1840 * toggling any given output bit.
1841 *
1842 * Mixing scores (in bits) for (12,45):
1843 * Input delta: 1-bit 2-bit
1844 * 1 round: 713.3 42542.6
1845 * 2 rounds: 2753.7 140389.8
1846 * 3 rounds: 5954.1 233458.2
1847 * 4 rounds: 7862.6 256672.2
1848 * Perfect: 8192 258048
1849 * (64*128) (64*63/2 * 128)
1850 */
1851 #define HASH_MIX(x, y, a) \
1852 ( x ^= (a), \
1853 y ^= x, x = rol64(x,12),\
1854 x += y, y = rol64(y,45),\
1855 y *= 9 )
1856
1857 /*
1858 * Fold two longs into one 32-bit hash value. This must be fast, but
1859 * latency isn't quite as critical, as there is a fair bit of additional
1860 * work done before the hash value is used.
1861 */
1862 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1863 {
1864 y ^= x * GOLDEN_RATIO_64;
1865 y *= GOLDEN_RATIO_64;
1866 return y >> 32;
1867 }
1868
1869 #else /* 32-bit case */
1870
1871 /*
1872 * Mixing scores (in bits) for (7,20):
1873 * Input delta: 1-bit 2-bit
1874 * 1 round: 330.3 9201.6
1875 * 2 rounds: 1246.4 25475.4
1876 * 3 rounds: 1907.1 31295.1
1877 * 4 rounds: 2042.3 31718.6
1878 * Perfect: 2048 31744
1879 * (32*64) (32*31/2 * 64)
1880 */
1881 #define HASH_MIX(x, y, a) \
1882 ( x ^= (a), \
1883 y ^= x, x = rol32(x, 7),\
1884 x += y, y = rol32(y,20),\
1885 y *= 9 )
1886
1887 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1888 {
1889 /* Use arch-optimized multiply if one exists */
1890 return __hash_32(y ^ __hash_32(x));
1891 }
1892
1893 #endif
1894
1895 /*
1896 * Return the hash of a string of known length. This is carfully
1897 * designed to match hash_name(), which is the more critical function.
1898 * In particular, we must end by hashing a final word containing 0..7
1899 * payload bytes, to match the way that hash_name() iterates until it
1900 * finds the delimiter after the name.
1901 */
1902 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1903 {
1904 unsigned long a, x = 0, y = (unsigned long)salt;
1905
1906 for (;;) {
1907 if (!len)
1908 goto done;
1909 a = load_unaligned_zeropad(name);
1910 if (len < sizeof(unsigned long))
1911 break;
1912 HASH_MIX(x, y, a);
1913 name += sizeof(unsigned long);
1914 len -= sizeof(unsigned long);
1915 }
1916 x ^= a & bytemask_from_count(len);
1917 done:
1918 return fold_hash(x, y);
1919 }
1920 EXPORT_SYMBOL(full_name_hash);
1921
1922 /* Return the "hash_len" (hash and length) of a null-terminated string */
1923 u64 hashlen_string(const void *salt, const char *name)
1924 {
1925 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1926 unsigned long adata, mask, len;
1927 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1928
1929 len = 0;
1930 goto inside;
1931
1932 do {
1933 HASH_MIX(x, y, a);
1934 len += sizeof(unsigned long);
1935 inside:
1936 a = load_unaligned_zeropad(name+len);
1937 } while (!has_zero(a, &adata, &constants));
1938
1939 adata = prep_zero_mask(a, adata, &constants);
1940 mask = create_zero_mask(adata);
1941 x ^= a & zero_bytemask(mask);
1942
1943 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1944 }
1945 EXPORT_SYMBOL(hashlen_string);
1946
1947 /*
1948 * Calculate the length and hash of the path component, and
1949 * return the "hash_len" as the result.
1950 */
1951 static inline u64 hash_name(const void *salt, const char *name)
1952 {
1953 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1954 unsigned long adata, bdata, mask, len;
1955 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1956
1957 len = 0;
1958 goto inside;
1959
1960 do {
1961 HASH_MIX(x, y, a);
1962 len += sizeof(unsigned long);
1963 inside:
1964 a = load_unaligned_zeropad(name+len);
1965 b = a ^ REPEAT_BYTE('/');
1966 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1967
1968 adata = prep_zero_mask(a, adata, &constants);
1969 bdata = prep_zero_mask(b, bdata, &constants);
1970 mask = create_zero_mask(adata | bdata);
1971 x ^= a & zero_bytemask(mask);
1972
1973 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1974 }
1975
1976 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1977
1978 /* Return the hash of a string of known length */
1979 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1980 {
1981 unsigned long hash = init_name_hash(salt);
1982 while (len--)
1983 hash = partial_name_hash((unsigned char)*name++, hash);
1984 return end_name_hash(hash);
1985 }
1986 EXPORT_SYMBOL(full_name_hash);
1987
1988 /* Return the "hash_len" (hash and length) of a null-terminated string */
1989 u64 hashlen_string(const void *salt, const char *name)
1990 {
1991 unsigned long hash = init_name_hash(salt);
1992 unsigned long len = 0, c;
1993
1994 c = (unsigned char)*name;
1995 while (c) {
1996 len++;
1997 hash = partial_name_hash(c, hash);
1998 c = (unsigned char)name[len];
1999 }
2000 return hashlen_create(end_name_hash(hash), len);
2001 }
2002 EXPORT_SYMBOL(hashlen_string);
2003
2004 /*
2005 * We know there's a real path component here of at least
2006 * one character.
2007 */
2008 static inline u64 hash_name(const void *salt, const char *name)
2009 {
2010 unsigned long hash = init_name_hash(salt);
2011 unsigned long len = 0, c;
2012
2013 c = (unsigned char)*name;
2014 do {
2015 len++;
2016 hash = partial_name_hash(c, hash);
2017 c = (unsigned char)name[len];
2018 } while (c && c != '/');
2019 return hashlen_create(end_name_hash(hash), len);
2020 }
2021
2022 #endif
2023
2024 /*
2025 * Name resolution.
2026 * This is the basic name resolution function, turning a pathname into
2027 * the final dentry. We expect 'base' to be positive and a directory.
2028 *
2029 * Returns 0 and nd will have valid dentry and mnt on success.
2030 * Returns error and drops reference to input namei data on failure.
2031 */
2032 static int link_path_walk(const char *name, struct nameidata *nd)
2033 {
2034 int err;
2035
2036 while (*name=='/')
2037 name++;
2038 if (!*name)
2039 return 0;
2040
2041 /* At this point we know we have a real path component. */
2042 for(;;) {
2043 u64 hash_len;
2044 int type;
2045
2046 err = may_lookup(nd);
2047 if (err)
2048 return err;
2049
2050 hash_len = hash_name(nd->path.dentry, name);
2051
2052 type = LAST_NORM;
2053 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2054 case 2:
2055 if (name[1] == '.') {
2056 type = LAST_DOTDOT;
2057 nd->flags |= LOOKUP_JUMPED;
2058 }
2059 break;
2060 case 1:
2061 type = LAST_DOT;
2062 }
2063 if (likely(type == LAST_NORM)) {
2064 struct dentry *parent = nd->path.dentry;
2065 nd->flags &= ~LOOKUP_JUMPED;
2066 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2067 struct qstr this = { { .hash_len = hash_len }, .name = name };
2068 err = parent->d_op->d_hash(parent, &this);
2069 if (err < 0)
2070 return err;
2071 hash_len = this.hash_len;
2072 name = this.name;
2073 }
2074 }
2075
2076 nd->last.hash_len = hash_len;
2077 nd->last.name = name;
2078 nd->last_type = type;
2079
2080 name += hashlen_len(hash_len);
2081 if (!*name)
2082 goto OK;
2083 /*
2084 * If it wasn't NUL, we know it was '/'. Skip that
2085 * slash, and continue until no more slashes.
2086 */
2087 do {
2088 name++;
2089 } while (unlikely(*name == '/'));
2090 if (unlikely(!*name)) {
2091 OK:
2092 /* pathname body, done */
2093 if (!nd->depth)
2094 return 0;
2095 name = nd->stack[nd->depth - 1].name;
2096 /* trailing symlink, done */
2097 if (!name)
2098 return 0;
2099 /* last component of nested symlink */
2100 err = walk_component(nd, WALK_FOLLOW);
2101 } else {
2102 /* not the last component */
2103 err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2104 }
2105 if (err < 0)
2106 return err;
2107
2108 if (err) {
2109 const char *s = get_link(nd);
2110
2111 if (IS_ERR(s))
2112 return PTR_ERR(s);
2113 err = 0;
2114 if (unlikely(!s)) {
2115 /* jumped */
2116 put_link(nd);
2117 } else {
2118 nd->stack[nd->depth - 1].name = name;
2119 name = s;
2120 continue;
2121 }
2122 }
2123 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2124 if (nd->flags & LOOKUP_RCU) {
2125 if (unlazy_walk(nd, NULL, 0))
2126 return -ECHILD;
2127 }
2128 return -ENOTDIR;
2129 }
2130 }
2131 }
2132
2133 static const char *path_init(struct nameidata *nd, unsigned flags)
2134 {
2135 int retval = 0;
2136 const char *s = nd->name->name;
2137
2138 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2139 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2140 nd->depth = 0;
2141 if (flags & LOOKUP_ROOT) {
2142 struct dentry *root = nd->root.dentry;
2143 struct inode *inode = root->d_inode;
2144 if (*s) {
2145 if (!d_can_lookup(root))
2146 return ERR_PTR(-ENOTDIR);
2147 retval = inode_permission(inode, MAY_EXEC);
2148 if (retval)
2149 return ERR_PTR(retval);
2150 }
2151 nd->path = nd->root;
2152 nd->inode = inode;
2153 if (flags & LOOKUP_RCU) {
2154 rcu_read_lock();
2155 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2156 nd->root_seq = nd->seq;
2157 nd->m_seq = read_seqbegin(&mount_lock);
2158 } else {
2159 path_get(&nd->path);
2160 }
2161 return s;
2162 }
2163
2164 nd->root.mnt = NULL;
2165 nd->path.mnt = NULL;
2166 nd->path.dentry = NULL;
2167
2168 nd->m_seq = read_seqbegin(&mount_lock);
2169 if (*s == '/') {
2170 if (flags & LOOKUP_RCU)
2171 rcu_read_lock();
2172 set_root(nd);
2173 if (likely(!nd_jump_root(nd)))
2174 return s;
2175 nd->root.mnt = NULL;
2176 rcu_read_unlock();
2177 return ERR_PTR(-ECHILD);
2178 } else if (nd->dfd == AT_FDCWD) {
2179 if (flags & LOOKUP_RCU) {
2180 struct fs_struct *fs = current->fs;
2181 unsigned seq;
2182
2183 rcu_read_lock();
2184
2185 do {
2186 seq = read_seqcount_begin(&fs->seq);
2187 nd->path = fs->pwd;
2188 nd->inode = nd->path.dentry->d_inode;
2189 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2190 } while (read_seqcount_retry(&fs->seq, seq));
2191 } else {
2192 get_fs_pwd(current->fs, &nd->path);
2193 nd->inode = nd->path.dentry->d_inode;
2194 }
2195 return s;
2196 } else {
2197 /* Caller must check execute permissions on the starting path component */
2198 struct fd f = fdget_raw(nd->dfd);
2199 struct dentry *dentry;
2200
2201 if (!f.file)
2202 return ERR_PTR(-EBADF);
2203
2204 dentry = f.file->f_path.dentry;
2205
2206 if (*s) {
2207 if (!d_can_lookup(dentry)) {
2208 fdput(f);
2209 return ERR_PTR(-ENOTDIR);
2210 }
2211 }
2212
2213 nd->path = f.file->f_path;
2214 if (flags & LOOKUP_RCU) {
2215 rcu_read_lock();
2216 nd->inode = nd->path.dentry->d_inode;
2217 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2218 } else {
2219 path_get(&nd->path);
2220 nd->inode = nd->path.dentry->d_inode;
2221 }
2222 fdput(f);
2223 return s;
2224 }
2225 }
2226
2227 static const char *trailing_symlink(struct nameidata *nd)
2228 {
2229 const char *s;
2230 int error = may_follow_link(nd);
2231 if (unlikely(error))
2232 return ERR_PTR(error);
2233 nd->flags |= LOOKUP_PARENT;
2234 nd->stack[0].name = NULL;
2235 s = get_link(nd);
2236 return s ? s : "";
2237 }
2238
2239 static inline int lookup_last(struct nameidata *nd)
2240 {
2241 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2242 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2243
2244 nd->flags &= ~LOOKUP_PARENT;
2245 return walk_component(nd, 0);
2246 }
2247
2248 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2249 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2250 {
2251 const char *s = path_init(nd, flags);
2252 int err;
2253
2254 if (IS_ERR(s))
2255 return PTR_ERR(s);
2256 while (!(err = link_path_walk(s, nd))
2257 && ((err = lookup_last(nd)) > 0)) {
2258 s = trailing_symlink(nd);
2259 if (IS_ERR(s)) {
2260 err = PTR_ERR(s);
2261 break;
2262 }
2263 }
2264 if (!err)
2265 err = complete_walk(nd);
2266
2267 if (!err && nd->flags & LOOKUP_DIRECTORY)
2268 if (!d_can_lookup(nd->path.dentry))
2269 err = -ENOTDIR;
2270 if (!err) {
2271 *path = nd->path;
2272 nd->path.mnt = NULL;
2273 nd->path.dentry = NULL;
2274 }
2275 terminate_walk(nd);
2276 return err;
2277 }
2278
2279 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2280 struct path *path, struct path *root)
2281 {
2282 int retval;
2283 struct nameidata nd;
2284 if (IS_ERR(name))
2285 return PTR_ERR(name);
2286 if (unlikely(root)) {
2287 nd.root = *root;
2288 flags |= LOOKUP_ROOT;
2289 }
2290 set_nameidata(&nd, dfd, name);
2291 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2292 if (unlikely(retval == -ECHILD))
2293 retval = path_lookupat(&nd, flags, path);
2294 if (unlikely(retval == -ESTALE))
2295 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2296
2297 if (likely(!retval))
2298 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2299 restore_nameidata();
2300 putname(name);
2301 return retval;
2302 }
2303
2304 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2305 static int path_parentat(struct nameidata *nd, unsigned flags,
2306 struct path *parent)
2307 {
2308 const char *s = path_init(nd, flags);
2309 int err;
2310 if (IS_ERR(s))
2311 return PTR_ERR(s);
2312 err = link_path_walk(s, nd);
2313 if (!err)
2314 err = complete_walk(nd);
2315 if (!err) {
2316 *parent = nd->path;
2317 nd->path.mnt = NULL;
2318 nd->path.dentry = NULL;
2319 }
2320 terminate_walk(nd);
2321 return err;
2322 }
2323
2324 static struct filename *filename_parentat(int dfd, struct filename *name,
2325 unsigned int flags, struct path *parent,
2326 struct qstr *last, int *type)
2327 {
2328 int retval;
2329 struct nameidata nd;
2330
2331 if (IS_ERR(name))
2332 return name;
2333 set_nameidata(&nd, dfd, name);
2334 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2335 if (unlikely(retval == -ECHILD))
2336 retval = path_parentat(&nd, flags, parent);
2337 if (unlikely(retval == -ESTALE))
2338 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2339 if (likely(!retval)) {
2340 *last = nd.last;
2341 *type = nd.last_type;
2342 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2343 } else {
2344 putname(name);
2345 name = ERR_PTR(retval);
2346 }
2347 restore_nameidata();
2348 return name;
2349 }
2350
2351 /* does lookup, returns the object with parent locked */
2352 struct dentry *kern_path_locked(const char *name, struct path *path)
2353 {
2354 struct filename *filename;
2355 struct dentry *d;
2356 struct qstr last;
2357 int type;
2358
2359 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2360 &last, &type);
2361 if (IS_ERR(filename))
2362 return ERR_CAST(filename);
2363 if (unlikely(type != LAST_NORM)) {
2364 path_put(path);
2365 putname(filename);
2366 return ERR_PTR(-EINVAL);
2367 }
2368 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2369 d = __lookup_hash(&last, path->dentry, 0);
2370 if (IS_ERR(d)) {
2371 inode_unlock(path->dentry->d_inode);
2372 path_put(path);
2373 }
2374 putname(filename);
2375 return d;
2376 }
2377
2378 int kern_path(const char *name, unsigned int flags, struct path *path)
2379 {
2380 return filename_lookup(AT_FDCWD, getname_kernel(name),
2381 flags, path, NULL);
2382 }
2383 EXPORT_SYMBOL(kern_path);
2384
2385 /**
2386 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2387 * @dentry: pointer to dentry of the base directory
2388 * @mnt: pointer to vfs mount of the base directory
2389 * @name: pointer to file name
2390 * @flags: lookup flags
2391 * @path: pointer to struct path to fill
2392 */
2393 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2394 const char *name, unsigned int flags,
2395 struct path *path)
2396 {
2397 struct path root = {.mnt = mnt, .dentry = dentry};
2398 /* the first argument of filename_lookup() is ignored with root */
2399 return filename_lookup(AT_FDCWD, getname_kernel(name),
2400 flags , path, &root);
2401 }
2402 EXPORT_SYMBOL(vfs_path_lookup);
2403
2404 /**
2405 * lookup_one_len - filesystem helper to lookup single pathname component
2406 * @name: pathname component to lookup
2407 * @base: base directory to lookup from
2408 * @len: maximum length @len should be interpreted to
2409 *
2410 * Note that this routine is purely a helper for filesystem usage and should
2411 * not be called by generic code.
2412 *
2413 * The caller must hold base->i_mutex.
2414 */
2415 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2416 {
2417 struct qstr this;
2418 unsigned int c;
2419 int err;
2420
2421 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2422
2423 this.name = name;
2424 this.len = len;
2425 this.hash = full_name_hash(base, name, len);
2426 if (!len)
2427 return ERR_PTR(-EACCES);
2428
2429 if (unlikely(name[0] == '.')) {
2430 if (len < 2 || (len == 2 && name[1] == '.'))
2431 return ERR_PTR(-EACCES);
2432 }
2433
2434 while (len--) {
2435 c = *(const unsigned char *)name++;
2436 if (c == '/' || c == '\0')
2437 return ERR_PTR(-EACCES);
2438 }
2439 /*
2440 * See if the low-level filesystem might want
2441 * to use its own hash..
2442 */
2443 if (base->d_flags & DCACHE_OP_HASH) {
2444 int err = base->d_op->d_hash(base, &this);
2445 if (err < 0)
2446 return ERR_PTR(err);
2447 }
2448
2449 err = inode_permission(base->d_inode, MAY_EXEC);
2450 if (err)
2451 return ERR_PTR(err);
2452
2453 return __lookup_hash(&this, base, 0);
2454 }
2455 EXPORT_SYMBOL(lookup_one_len);
2456
2457 /**
2458 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2459 * @name: pathname component to lookup
2460 * @base: base directory to lookup from
2461 * @len: maximum length @len should be interpreted to
2462 *
2463 * Note that this routine is purely a helper for filesystem usage and should
2464 * not be called by generic code.
2465 *
2466 * Unlike lookup_one_len, it should be called without the parent
2467 * i_mutex held, and will take the i_mutex itself if necessary.
2468 */
2469 struct dentry *lookup_one_len_unlocked(const char *name,
2470 struct dentry *base, int len)
2471 {
2472 struct qstr this;
2473 unsigned int c;
2474 int err;
2475 struct dentry *ret;
2476
2477 this.name = name;
2478 this.len = len;
2479 this.hash = full_name_hash(base, name, len);
2480 if (!len)
2481 return ERR_PTR(-EACCES);
2482
2483 if (unlikely(name[0] == '.')) {
2484 if (len < 2 || (len == 2 && name[1] == '.'))
2485 return ERR_PTR(-EACCES);
2486 }
2487
2488 while (len--) {
2489 c = *(const unsigned char *)name++;
2490 if (c == '/' || c == '\0')
2491 return ERR_PTR(-EACCES);
2492 }
2493 /*
2494 * See if the low-level filesystem might want
2495 * to use its own hash..
2496 */
2497 if (base->d_flags & DCACHE_OP_HASH) {
2498 int err = base->d_op->d_hash(base, &this);
2499 if (err < 0)
2500 return ERR_PTR(err);
2501 }
2502
2503 err = inode_permission(base->d_inode, MAY_EXEC);
2504 if (err)
2505 return ERR_PTR(err);
2506
2507 ret = lookup_dcache(&this, base, 0);
2508 if (!ret)
2509 ret = lookup_slow(&this, base, 0);
2510 return ret;
2511 }
2512 EXPORT_SYMBOL(lookup_one_len_unlocked);
2513
2514 #ifdef CONFIG_UNIX98_PTYS
2515 int path_pts(struct path *path)
2516 {
2517 /* Find something mounted on "pts" in the same directory as
2518 * the input path.
2519 */
2520 struct dentry *child, *parent;
2521 struct qstr this;
2522 int ret;
2523
2524 ret = path_parent_directory(path);
2525 if (ret)
2526 return ret;
2527
2528 parent = path->dentry;
2529 this.name = "pts";
2530 this.len = 3;
2531 child = d_hash_and_lookup(parent, &this);
2532 if (!child)
2533 return -ENOENT;
2534
2535 path->dentry = child;
2536 dput(parent);
2537 follow_mount(path);
2538 return 0;
2539 }
2540 #endif
2541
2542 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2543 struct path *path, int *empty)
2544 {
2545 return filename_lookup(dfd, getname_flags(name, flags, empty),
2546 flags, path, NULL);
2547 }
2548 EXPORT_SYMBOL(user_path_at_empty);
2549
2550 /**
2551 * mountpoint_last - look up last component for umount
2552 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2553 *
2554 * This is a special lookup_last function just for umount. In this case, we
2555 * need to resolve the path without doing any revalidation.
2556 *
2557 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2558 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2559 * in almost all cases, this lookup will be served out of the dcache. The only
2560 * cases where it won't are if nd->last refers to a symlink or the path is
2561 * bogus and it doesn't exist.
2562 *
2563 * Returns:
2564 * -error: if there was an error during lookup. This includes -ENOENT if the
2565 * lookup found a negative dentry.
2566 *
2567 * 0: if we successfully resolved nd->last and found it to not to be a
2568 * symlink that needs to be followed.
2569 *
2570 * 1: if we successfully resolved nd->last and found it to be a symlink
2571 * that needs to be followed.
2572 */
2573 static int
2574 mountpoint_last(struct nameidata *nd)
2575 {
2576 int error = 0;
2577 struct dentry *dir = nd->path.dentry;
2578 struct path path;
2579
2580 /* If we're in rcuwalk, drop out of it to handle last component */
2581 if (nd->flags & LOOKUP_RCU) {
2582 if (unlazy_walk(nd, NULL, 0))
2583 return -ECHILD;
2584 }
2585
2586 nd->flags &= ~LOOKUP_PARENT;
2587
2588 if (unlikely(nd->last_type != LAST_NORM)) {
2589 error = handle_dots(nd, nd->last_type);
2590 if (error)
2591 return error;
2592 path.dentry = dget(nd->path.dentry);
2593 } else {
2594 path.dentry = d_lookup(dir, &nd->last);
2595 if (!path.dentry) {
2596 /*
2597 * No cached dentry. Mounted dentries are pinned in the
2598 * cache, so that means that this dentry is probably
2599 * a symlink or the path doesn't actually point
2600 * to a mounted dentry.
2601 */
2602 path.dentry = lookup_slow(&nd->last, dir,
2603 nd->flags | LOOKUP_NO_REVAL);
2604 if (IS_ERR(path.dentry))
2605 return PTR_ERR(path.dentry);
2606 }
2607 }
2608 if (d_is_negative(path.dentry)) {
2609 dput(path.dentry);
2610 return -ENOENT;
2611 }
2612 path.mnt = nd->path.mnt;
2613 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2614 }
2615
2616 /**
2617 * path_mountpoint - look up a path to be umounted
2618 * @nd: lookup context
2619 * @flags: lookup flags
2620 * @path: pointer to container for result
2621 *
2622 * Look up the given name, but don't attempt to revalidate the last component.
2623 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2624 */
2625 static int
2626 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2627 {
2628 const char *s = path_init(nd, flags);
2629 int err;
2630 if (IS_ERR(s))
2631 return PTR_ERR(s);
2632 while (!(err = link_path_walk(s, nd)) &&
2633 (err = mountpoint_last(nd)) > 0) {
2634 s = trailing_symlink(nd);
2635 if (IS_ERR(s)) {
2636 err = PTR_ERR(s);
2637 break;
2638 }
2639 }
2640 if (!err) {
2641 *path = nd->path;
2642 nd->path.mnt = NULL;
2643 nd->path.dentry = NULL;
2644 follow_mount(path);
2645 }
2646 terminate_walk(nd);
2647 return err;
2648 }
2649
2650 static int
2651 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2652 unsigned int flags)
2653 {
2654 struct nameidata nd;
2655 int error;
2656 if (IS_ERR(name))
2657 return PTR_ERR(name);
2658 set_nameidata(&nd, dfd, name);
2659 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2660 if (unlikely(error == -ECHILD))
2661 error = path_mountpoint(&nd, flags, path);
2662 if (unlikely(error == -ESTALE))
2663 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2664 if (likely(!error))
2665 audit_inode(name, path->dentry, 0);
2666 restore_nameidata();
2667 putname(name);
2668 return error;
2669 }
2670
2671 /**
2672 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2673 * @dfd: directory file descriptor
2674 * @name: pathname from userland
2675 * @flags: lookup flags
2676 * @path: pointer to container to hold result
2677 *
2678 * A umount is a special case for path walking. We're not actually interested
2679 * in the inode in this situation, and ESTALE errors can be a problem. We
2680 * simply want track down the dentry and vfsmount attached at the mountpoint
2681 * and avoid revalidating the last component.
2682 *
2683 * Returns 0 and populates "path" on success.
2684 */
2685 int
2686 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2687 struct path *path)
2688 {
2689 return filename_mountpoint(dfd, getname(name), path, flags);
2690 }
2691
2692 int
2693 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2694 unsigned int flags)
2695 {
2696 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2697 }
2698 EXPORT_SYMBOL(kern_path_mountpoint);
2699
2700 int __check_sticky(struct inode *dir, struct inode *inode)
2701 {
2702 kuid_t fsuid = current_fsuid();
2703
2704 if (uid_eq(inode->i_uid, fsuid))
2705 return 0;
2706 if (uid_eq(dir->i_uid, fsuid))
2707 return 0;
2708 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2709 }
2710 EXPORT_SYMBOL(__check_sticky);
2711
2712 /*
2713 * Check whether we can remove a link victim from directory dir, check
2714 * whether the type of victim is right.
2715 * 1. We can't do it if dir is read-only (done in permission())
2716 * 2. We should have write and exec permissions on dir
2717 * 3. We can't remove anything from append-only dir
2718 * 4. We can't do anything with immutable dir (done in permission())
2719 * 5. If the sticky bit on dir is set we should either
2720 * a. be owner of dir, or
2721 * b. be owner of victim, or
2722 * c. have CAP_FOWNER capability
2723 * 6. If the victim is append-only or immutable we can't do antyhing with
2724 * links pointing to it.
2725 * 7. If the victim has an unknown uid or gid we can't change the inode.
2726 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2727 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2728 * 10. We can't remove a root or mountpoint.
2729 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2730 * nfs_async_unlink().
2731 */
2732 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2733 {
2734 struct inode *inode = d_backing_inode(victim);
2735 int error;
2736
2737 if (d_is_negative(victim))
2738 return -ENOENT;
2739 BUG_ON(!inode);
2740
2741 BUG_ON(victim->d_parent->d_inode != dir);
2742 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2743
2744 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2745 if (error)
2746 return error;
2747 if (IS_APPEND(dir))
2748 return -EPERM;
2749
2750 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2751 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2752 return -EPERM;
2753 if (isdir) {
2754 if (!d_is_dir(victim))
2755 return -ENOTDIR;
2756 if (IS_ROOT(victim))
2757 return -EBUSY;
2758 } else if (d_is_dir(victim))
2759 return -EISDIR;
2760 if (IS_DEADDIR(dir))
2761 return -ENOENT;
2762 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2763 return -EBUSY;
2764 return 0;
2765 }
2766
2767 /* Check whether we can create an object with dentry child in directory
2768 * dir.
2769 * 1. We can't do it if child already exists (open has special treatment for
2770 * this case, but since we are inlined it's OK)
2771 * 2. We can't do it if dir is read-only (done in permission())
2772 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2773 * 4. We should have write and exec permissions on dir
2774 * 5. We can't do it if dir is immutable (done in permission())
2775 */
2776 static inline int may_create(struct inode *dir, struct dentry *child)
2777 {
2778 struct user_namespace *s_user_ns;
2779 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2780 if (child->d_inode)
2781 return -EEXIST;
2782 if (IS_DEADDIR(dir))
2783 return -ENOENT;
2784 s_user_ns = dir->i_sb->s_user_ns;
2785 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2786 !kgid_has_mapping(s_user_ns, current_fsgid()))
2787 return -EOVERFLOW;
2788 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2789 }
2790
2791 /*
2792 * p1 and p2 should be directories on the same fs.
2793 */
2794 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2795 {
2796 struct dentry *p;
2797
2798 if (p1 == p2) {
2799 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2800 return NULL;
2801 }
2802
2803 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2804
2805 p = d_ancestor(p2, p1);
2806 if (p) {
2807 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2808 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2809 return p;
2810 }
2811
2812 p = d_ancestor(p1, p2);
2813 if (p) {
2814 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2815 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2816 return p;
2817 }
2818
2819 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2820 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2821 return NULL;
2822 }
2823 EXPORT_SYMBOL(lock_rename);
2824
2825 void unlock_rename(struct dentry *p1, struct dentry *p2)
2826 {
2827 inode_unlock(p1->d_inode);
2828 if (p1 != p2) {
2829 inode_unlock(p2->d_inode);
2830 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2831 }
2832 }
2833 EXPORT_SYMBOL(unlock_rename);
2834
2835 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2836 bool want_excl)
2837 {
2838 int error = may_create(dir, dentry);
2839 if (error)
2840 return error;
2841
2842 if (!dir->i_op->create)
2843 return -EACCES; /* shouldn't it be ENOSYS? */
2844 mode &= S_IALLUGO;
2845 mode |= S_IFREG;
2846 error = security_inode_create(dir, dentry, mode);
2847 if (error)
2848 return error;
2849 error = dir->i_op->create(dir, dentry, mode, want_excl);
2850 if (!error)
2851 fsnotify_create(dir, dentry);
2852 return error;
2853 }
2854 EXPORT_SYMBOL(vfs_create);
2855
2856 bool may_open_dev(const struct path *path)
2857 {
2858 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2859 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2860 }
2861
2862 static int may_open(const struct path *path, int acc_mode, int flag)
2863 {
2864 struct dentry *dentry = path->dentry;
2865 struct inode *inode = dentry->d_inode;
2866 int error;
2867
2868 if (!inode)
2869 return -ENOENT;
2870
2871 switch (inode->i_mode & S_IFMT) {
2872 case S_IFLNK:
2873 return -ELOOP;
2874 case S_IFDIR:
2875 if (acc_mode & MAY_WRITE)
2876 return -EISDIR;
2877 break;
2878 case S_IFBLK:
2879 case S_IFCHR:
2880 if (!may_open_dev(path))
2881 return -EACCES;
2882 /*FALLTHRU*/
2883 case S_IFIFO:
2884 case S_IFSOCK:
2885 flag &= ~O_TRUNC;
2886 break;
2887 }
2888
2889 error = inode_permission(inode, MAY_OPEN | acc_mode);
2890 if (error)
2891 return error;
2892
2893 /*
2894 * An append-only file must be opened in append mode for writing.
2895 */
2896 if (IS_APPEND(inode)) {
2897 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2898 return -EPERM;
2899 if (flag & O_TRUNC)
2900 return -EPERM;
2901 }
2902
2903 /* O_NOATIME can only be set by the owner or superuser */
2904 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2905 return -EPERM;
2906
2907 return 0;
2908 }
2909
2910 static int handle_truncate(struct file *filp)
2911 {
2912 const struct path *path = &filp->f_path;
2913 struct inode *inode = path->dentry->d_inode;
2914 int error = get_write_access(inode);
2915 if (error)
2916 return error;
2917 /*
2918 * Refuse to truncate files with mandatory locks held on them.
2919 */
2920 error = locks_verify_locked(filp);
2921 if (!error)
2922 error = security_path_truncate(path);
2923 if (!error) {
2924 error = do_truncate(path->dentry, 0,
2925 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2926 filp);
2927 }
2928 put_write_access(inode);
2929 return error;
2930 }
2931
2932 static inline int open_to_namei_flags(int flag)
2933 {
2934 if ((flag & O_ACCMODE) == 3)
2935 flag--;
2936 return flag;
2937 }
2938
2939 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2940 {
2941 struct user_namespace *s_user_ns;
2942 int error = security_path_mknod(dir, dentry, mode, 0);
2943 if (error)
2944 return error;
2945
2946 s_user_ns = dir->dentry->d_sb->s_user_ns;
2947 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2948 !kgid_has_mapping(s_user_ns, current_fsgid()))
2949 return -EOVERFLOW;
2950
2951 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2952 if (error)
2953 return error;
2954
2955 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2956 }
2957
2958 /*
2959 * Attempt to atomically look up, create and open a file from a negative
2960 * dentry.
2961 *
2962 * Returns 0 if successful. The file will have been created and attached to
2963 * @file by the filesystem calling finish_open().
2964 *
2965 * Returns 1 if the file was looked up only or didn't need creating. The
2966 * caller will need to perform the open themselves. @path will have been
2967 * updated to point to the new dentry. This may be negative.
2968 *
2969 * Returns an error code otherwise.
2970 */
2971 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2972 struct path *path, struct file *file,
2973 const struct open_flags *op,
2974 int open_flag, umode_t mode,
2975 int *opened)
2976 {
2977 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2978 struct inode *dir = nd->path.dentry->d_inode;
2979 int error;
2980
2981 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
2982 open_flag &= ~O_TRUNC;
2983
2984 if (nd->flags & LOOKUP_DIRECTORY)
2985 open_flag |= O_DIRECTORY;
2986
2987 file->f_path.dentry = DENTRY_NOT_SET;
2988 file->f_path.mnt = nd->path.mnt;
2989 error = dir->i_op->atomic_open(dir, dentry, file,
2990 open_to_namei_flags(open_flag),
2991 mode, opened);
2992 d_lookup_done(dentry);
2993 if (!error) {
2994 /*
2995 * We didn't have the inode before the open, so check open
2996 * permission here.
2997 */
2998 int acc_mode = op->acc_mode;
2999 if (*opened & FILE_CREATED) {
3000 WARN_ON(!(open_flag & O_CREAT));
3001 fsnotify_create(dir, dentry);
3002 acc_mode = 0;
3003 }
3004 error = may_open(&file->f_path, acc_mode, open_flag);
3005 if (WARN_ON(error > 0))
3006 error = -EINVAL;
3007 } else if (error > 0) {
3008 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3009 error = -EIO;
3010 } else {
3011 if (file->f_path.dentry) {
3012 dput(dentry);
3013 dentry = file->f_path.dentry;
3014 }
3015 if (*opened & FILE_CREATED)
3016 fsnotify_create(dir, dentry);
3017 if (unlikely(d_is_negative(dentry))) {
3018 error = -ENOENT;
3019 } else {
3020 path->dentry = dentry;
3021 path->mnt = nd->path.mnt;
3022 return 1;
3023 }
3024 }
3025 }
3026 dput(dentry);
3027 return error;
3028 }
3029
3030 /*
3031 * Look up and maybe create and open the last component.
3032 *
3033 * Must be called with i_mutex held on parent.
3034 *
3035 * Returns 0 if the file was successfully atomically created (if necessary) and
3036 * opened. In this case the file will be returned attached to @file.
3037 *
3038 * Returns 1 if the file was not completely opened at this time, though lookups
3039 * and creations will have been performed and the dentry returned in @path will
3040 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3041 * specified then a negative dentry may be returned.
3042 *
3043 * An error code is returned otherwise.
3044 *
3045 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3046 * cleared otherwise prior to returning.
3047 */
3048 static int lookup_open(struct nameidata *nd, struct path *path,
3049 struct file *file,
3050 const struct open_flags *op,
3051 bool got_write, int *opened)
3052 {
3053 struct dentry *dir = nd->path.dentry;
3054 struct inode *dir_inode = dir->d_inode;
3055 int open_flag = op->open_flag;
3056 struct dentry *dentry;
3057 int error, create_error = 0;
3058 umode_t mode = op->mode;
3059 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3060
3061 if (unlikely(IS_DEADDIR(dir_inode)))
3062 return -ENOENT;
3063
3064 *opened &= ~FILE_CREATED;
3065 dentry = d_lookup(dir, &nd->last);
3066 for (;;) {
3067 if (!dentry) {
3068 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3069 if (IS_ERR(dentry))
3070 return PTR_ERR(dentry);
3071 }
3072 if (d_in_lookup(dentry))
3073 break;
3074
3075 if (!(dentry->d_flags & DCACHE_OP_REVALIDATE))
3076 break;
3077
3078 error = d_revalidate(dentry, nd->flags);
3079 if (likely(error > 0))
3080 break;
3081 if (error)
3082 goto out_dput;
3083 d_invalidate(dentry);
3084 dput(dentry);
3085 dentry = NULL;
3086 }
3087 if (dentry->d_inode) {
3088 /* Cached positive dentry: will open in f_op->open */
3089 goto out_no_open;
3090 }
3091
3092 /*
3093 * Checking write permission is tricky, bacuse we don't know if we are
3094 * going to actually need it: O_CREAT opens should work as long as the
3095 * file exists. But checking existence breaks atomicity. The trick is
3096 * to check access and if not granted clear O_CREAT from the flags.
3097 *
3098 * Another problem is returing the "right" error value (e.g. for an
3099 * O_EXCL open we want to return EEXIST not EROFS).
3100 */
3101 if (open_flag & O_CREAT) {
3102 if (!IS_POSIXACL(dir->d_inode))
3103 mode &= ~current_umask();
3104 if (unlikely(!got_write)) {
3105 create_error = -EROFS;
3106 open_flag &= ~O_CREAT;
3107 if (open_flag & (O_EXCL | O_TRUNC))
3108 goto no_open;
3109 /* No side effects, safe to clear O_CREAT */
3110 } else {
3111 create_error = may_o_create(&nd->path, dentry, mode);
3112 if (create_error) {
3113 open_flag &= ~O_CREAT;
3114 if (open_flag & O_EXCL)
3115 goto no_open;
3116 }
3117 }
3118 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3119 unlikely(!got_write)) {
3120 /*
3121 * No O_CREATE -> atomicity not a requirement -> fall
3122 * back to lookup + open
3123 */
3124 goto no_open;
3125 }
3126
3127 if (dir_inode->i_op->atomic_open) {
3128 error = atomic_open(nd, dentry, path, file, op, open_flag,
3129 mode, opened);
3130 if (unlikely(error == -ENOENT) && create_error)
3131 error = create_error;
3132 return error;
3133 }
3134
3135 no_open:
3136 if (d_in_lookup(dentry)) {
3137 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3138 nd->flags);
3139 d_lookup_done(dentry);
3140 if (unlikely(res)) {
3141 if (IS_ERR(res)) {
3142 error = PTR_ERR(res);
3143 goto out_dput;
3144 }
3145 dput(dentry);
3146 dentry = res;
3147 }
3148 }
3149
3150 /* Negative dentry, just create the file */
3151 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3152 *opened |= FILE_CREATED;
3153 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3154 if (!dir_inode->i_op->create) {
3155 error = -EACCES;
3156 goto out_dput;
3157 }
3158 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3159 open_flag & O_EXCL);
3160 if (error)
3161 goto out_dput;
3162 fsnotify_create(dir_inode, dentry);
3163 }
3164 if (unlikely(create_error) && !dentry->d_inode) {
3165 error = create_error;
3166 goto out_dput;
3167 }
3168 out_no_open:
3169 path->dentry = dentry;
3170 path->mnt = nd->path.mnt;
3171 return 1;
3172
3173 out_dput:
3174 dput(dentry);
3175 return error;
3176 }
3177
3178 /*
3179 * Handle the last step of open()
3180 */
3181 static int do_last(struct nameidata *nd,
3182 struct file *file, const struct open_flags *op,
3183 int *opened)
3184 {
3185 struct dentry *dir = nd->path.dentry;
3186 int open_flag = op->open_flag;
3187 bool will_truncate = (open_flag & O_TRUNC) != 0;
3188 bool got_write = false;
3189 int acc_mode = op->acc_mode;
3190 unsigned seq;
3191 struct inode *inode;
3192 struct path path;
3193 int error;
3194
3195 nd->flags &= ~LOOKUP_PARENT;
3196 nd->flags |= op->intent;
3197
3198 if (nd->last_type != LAST_NORM) {
3199 error = handle_dots(nd, nd->last_type);
3200 if (unlikely(error))
3201 return error;
3202 goto finish_open;
3203 }
3204
3205 if (!(open_flag & O_CREAT)) {
3206 if (nd->last.name[nd->last.len])
3207 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3208 /* we _can_ be in RCU mode here */
3209 error = lookup_fast(nd, &path, &inode, &seq);
3210 if (likely(error > 0))
3211 goto finish_lookup;
3212
3213 if (error < 0)
3214 return error;
3215
3216 BUG_ON(nd->inode != dir->d_inode);
3217 BUG_ON(nd->flags & LOOKUP_RCU);
3218 } else {
3219 /* create side of things */
3220 /*
3221 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3222 * has been cleared when we got to the last component we are
3223 * about to look up
3224 */
3225 error = complete_walk(nd);
3226 if (error)
3227 return error;
3228
3229 audit_inode(nd->name, dir, LOOKUP_PARENT);
3230 /* trailing slashes? */
3231 if (unlikely(nd->last.name[nd->last.len]))
3232 return -EISDIR;
3233 }
3234
3235 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3236 error = mnt_want_write(nd->path.mnt);
3237 if (!error)
3238 got_write = true;
3239 /*
3240 * do _not_ fail yet - we might not need that or fail with
3241 * a different error; let lookup_open() decide; we'll be
3242 * dropping this one anyway.
3243 */
3244 }
3245 if (open_flag & O_CREAT)
3246 inode_lock(dir->d_inode);
3247 else
3248 inode_lock_shared(dir->d_inode);
3249 error = lookup_open(nd, &path, file, op, got_write, opened);
3250 if (open_flag & O_CREAT)
3251 inode_unlock(dir->d_inode);
3252 else
3253 inode_unlock_shared(dir->d_inode);
3254
3255 if (error <= 0) {
3256 if (error)
3257 goto out;
3258
3259 if ((*opened & FILE_CREATED) ||
3260 !S_ISREG(file_inode(file)->i_mode))
3261 will_truncate = false;
3262
3263 audit_inode(nd->name, file->f_path.dentry, 0);
3264 goto opened;
3265 }
3266
3267 if (*opened & FILE_CREATED) {
3268 /* Don't check for write permission, don't truncate */
3269 open_flag &= ~O_TRUNC;
3270 will_truncate = false;
3271 acc_mode = 0;
3272 path_to_nameidata(&path, nd);
3273 goto finish_open_created;
3274 }
3275
3276 /*
3277 * If atomic_open() acquired write access it is dropped now due to
3278 * possible mount and symlink following (this might be optimized away if
3279 * necessary...)
3280 */
3281 if (got_write) {
3282 mnt_drop_write(nd->path.mnt);
3283 got_write = false;
3284 }
3285
3286 error = follow_managed(&path, nd);
3287 if (unlikely(error < 0))
3288 return error;
3289
3290 if (unlikely(d_is_negative(path.dentry))) {
3291 path_to_nameidata(&path, nd);
3292 return -ENOENT;
3293 }
3294
3295 /*
3296 * create/update audit record if it already exists.
3297 */
3298 audit_inode(nd->name, path.dentry, 0);
3299
3300 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3301 path_to_nameidata(&path, nd);
3302 return -EEXIST;
3303 }
3304
3305 seq = 0; /* out of RCU mode, so the value doesn't matter */
3306 inode = d_backing_inode(path.dentry);
3307 finish_lookup:
3308 error = step_into(nd, &path, 0, inode, seq);
3309 if (unlikely(error))
3310 return error;
3311 finish_open:
3312 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3313 error = complete_walk(nd);
3314 if (error)
3315 return error;
3316 audit_inode(nd->name, nd->path.dentry, 0);
3317 error = -EISDIR;
3318 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3319 goto out;
3320 error = -ENOTDIR;
3321 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3322 goto out;
3323 if (!d_is_reg(nd->path.dentry))
3324 will_truncate = false;
3325
3326 if (will_truncate) {
3327 error = mnt_want_write(nd->path.mnt);
3328 if (error)
3329 goto out;
3330 got_write = true;
3331 }
3332 finish_open_created:
3333 error = may_open(&nd->path, acc_mode, open_flag);
3334 if (error)
3335 goto out;
3336 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3337 error = vfs_open(&nd->path, file, current_cred());
3338 if (error)
3339 goto out;
3340 *opened |= FILE_OPENED;
3341 opened:
3342 error = open_check_o_direct(file);
3343 if (!error)
3344 error = ima_file_check(file, op->acc_mode, *opened);
3345 if (!error && will_truncate)
3346 error = handle_truncate(file);
3347 out:
3348 if (unlikely(error) && (*opened & FILE_OPENED))
3349 fput(file);
3350 if (unlikely(error > 0)) {
3351 WARN_ON(1);
3352 error = -EINVAL;
3353 }
3354 if (got_write)
3355 mnt_drop_write(nd->path.mnt);
3356 return error;
3357 }
3358
3359 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3360 const struct open_flags *op,
3361 struct file *file, int *opened)
3362 {
3363 static const struct qstr name = QSTR_INIT("/", 1);
3364 struct dentry *child;
3365 struct inode *dir;
3366 struct path path;
3367 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3368 if (unlikely(error))
3369 return error;
3370 error = mnt_want_write(path.mnt);
3371 if (unlikely(error))
3372 goto out;
3373 dir = path.dentry->d_inode;
3374 /* we want directory to be writable */
3375 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3376 if (error)
3377 goto out2;
3378 if (!dir->i_op->tmpfile) {
3379 error = -EOPNOTSUPP;
3380 goto out2;
3381 }
3382 child = d_alloc(path.dentry, &name);
3383 if (unlikely(!child)) {
3384 error = -ENOMEM;
3385 goto out2;
3386 }
3387 dput(path.dentry);
3388 path.dentry = child;
3389 error = dir->i_op->tmpfile(dir, child, op->mode);
3390 if (error)
3391 goto out2;
3392 audit_inode(nd->name, child, 0);
3393 /* Don't check for other permissions, the inode was just created */
3394 error = may_open(&path, 0, op->open_flag);
3395 if (error)
3396 goto out2;
3397 file->f_path.mnt = path.mnt;
3398 error = finish_open(file, child, NULL, opened);
3399 if (error)
3400 goto out2;
3401 error = open_check_o_direct(file);
3402 if (error) {
3403 fput(file);
3404 } else if (!(op->open_flag & O_EXCL)) {
3405 struct inode *inode = file_inode(file);
3406 spin_lock(&inode->i_lock);
3407 inode->i_state |= I_LINKABLE;
3408 spin_unlock(&inode->i_lock);
3409 }
3410 out2:
3411 mnt_drop_write(path.mnt);
3412 out:
3413 path_put(&path);
3414 return error;
3415 }
3416
3417 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3418 {
3419 struct path path;
3420 int error = path_lookupat(nd, flags, &path);
3421 if (!error) {
3422 audit_inode(nd->name, path.dentry, 0);
3423 error = vfs_open(&path, file, current_cred());
3424 path_put(&path);
3425 }
3426 return error;
3427 }
3428
3429 static struct file *path_openat(struct nameidata *nd,
3430 const struct open_flags *op, unsigned flags)
3431 {
3432 const char *s;
3433 struct file *file;
3434 int opened = 0;
3435 int error;
3436
3437 file = get_empty_filp();
3438 if (IS_ERR(file))
3439 return file;
3440
3441 file->f_flags = op->open_flag;
3442
3443 if (unlikely(file->f_flags & __O_TMPFILE)) {
3444 error = do_tmpfile(nd, flags, op, file, &opened);
3445 goto out2;
3446 }
3447
3448 if (unlikely(file->f_flags & O_PATH)) {
3449 error = do_o_path(nd, flags, file);
3450 if (!error)
3451 opened |= FILE_OPENED;
3452 goto out2;
3453 }
3454
3455 s = path_init(nd, flags);
3456 if (IS_ERR(s)) {
3457 put_filp(file);
3458 return ERR_CAST(s);
3459 }
3460 while (!(error = link_path_walk(s, nd)) &&
3461 (error = do_last(nd, file, op, &opened)) > 0) {
3462 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3463 s = trailing_symlink(nd);
3464 if (IS_ERR(s)) {
3465 error = PTR_ERR(s);
3466 break;
3467 }
3468 }
3469 terminate_walk(nd);
3470 out2:
3471 if (!(opened & FILE_OPENED)) {
3472 BUG_ON(!error);
3473 put_filp(file);
3474 }
3475 if (unlikely(error)) {
3476 if (error == -EOPENSTALE) {
3477 if (flags & LOOKUP_RCU)
3478 error = -ECHILD;
3479 else
3480 error = -ESTALE;
3481 }
3482 file = ERR_PTR(error);
3483 }
3484 return file;
3485 }
3486
3487 struct file *do_filp_open(int dfd, struct filename *pathname,
3488 const struct open_flags *op)
3489 {
3490 struct nameidata nd;
3491 int flags = op->lookup_flags;
3492 struct file *filp;
3493
3494 set_nameidata(&nd, dfd, pathname);
3495 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3496 if (unlikely(filp == ERR_PTR(-ECHILD)))
3497 filp = path_openat(&nd, op, flags);
3498 if (unlikely(filp == ERR_PTR(-ESTALE)))
3499 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3500 restore_nameidata();
3501 return filp;
3502 }
3503
3504 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3505 const char *name, const struct open_flags *op)
3506 {
3507 struct nameidata nd;
3508 struct file *file;
3509 struct filename *filename;
3510 int flags = op->lookup_flags | LOOKUP_ROOT;
3511
3512 nd.root.mnt = mnt;
3513 nd.root.dentry = dentry;
3514
3515 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3516 return ERR_PTR(-ELOOP);
3517
3518 filename = getname_kernel(name);
3519 if (IS_ERR(filename))
3520 return ERR_CAST(filename);
3521
3522 set_nameidata(&nd, -1, filename);
3523 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3524 if (unlikely(file == ERR_PTR(-ECHILD)))
3525 file = path_openat(&nd, op, flags);
3526 if (unlikely(file == ERR_PTR(-ESTALE)))
3527 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3528 restore_nameidata();
3529 putname(filename);
3530 return file;
3531 }
3532
3533 static struct dentry *filename_create(int dfd, struct filename *name,
3534 struct path *path, unsigned int lookup_flags)
3535 {
3536 struct dentry *dentry = ERR_PTR(-EEXIST);
3537 struct qstr last;
3538 int type;
3539 int err2;
3540 int error;
3541 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3542
3543 /*
3544 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3545 * other flags passed in are ignored!
3546 */
3547 lookup_flags &= LOOKUP_REVAL;
3548
3549 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3550 if (IS_ERR(name))
3551 return ERR_CAST(name);
3552
3553 /*
3554 * Yucky last component or no last component at all?
3555 * (foo/., foo/.., /////)
3556 */
3557 if (unlikely(type != LAST_NORM))
3558 goto out;
3559
3560 /* don't fail immediately if it's r/o, at least try to report other errors */
3561 err2 = mnt_want_write(path->mnt);
3562 /*
3563 * Do the final lookup.
3564 */
3565 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3566 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3567 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3568 if (IS_ERR(dentry))
3569 goto unlock;
3570
3571 error = -EEXIST;
3572 if (d_is_positive(dentry))
3573 goto fail;
3574
3575 /*
3576 * Special case - lookup gave negative, but... we had foo/bar/
3577 * From the vfs_mknod() POV we just have a negative dentry -
3578 * all is fine. Let's be bastards - you had / on the end, you've
3579 * been asking for (non-existent) directory. -ENOENT for you.
3580 */
3581 if (unlikely(!is_dir && last.name[last.len])) {
3582 error = -ENOENT;
3583 goto fail;
3584 }
3585 if (unlikely(err2)) {
3586 error = err2;
3587 goto fail;
3588 }
3589 putname(name);
3590 return dentry;
3591 fail:
3592 dput(dentry);
3593 dentry = ERR_PTR(error);
3594 unlock:
3595 inode_unlock(path->dentry->d_inode);
3596 if (!err2)
3597 mnt_drop_write(path->mnt);
3598 out:
3599 path_put(path);
3600 putname(name);
3601 return dentry;
3602 }
3603
3604 struct dentry *kern_path_create(int dfd, const char *pathname,
3605 struct path *path, unsigned int lookup_flags)
3606 {
3607 return filename_create(dfd, getname_kernel(pathname),
3608 path, lookup_flags);
3609 }
3610 EXPORT_SYMBOL(kern_path_create);
3611
3612 void done_path_create(struct path *path, struct dentry *dentry)
3613 {
3614 dput(dentry);
3615 inode_unlock(path->dentry->d_inode);
3616 mnt_drop_write(path->mnt);
3617 path_put(path);
3618 }
3619 EXPORT_SYMBOL(done_path_create);
3620
3621 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3622 struct path *path, unsigned int lookup_flags)
3623 {
3624 return filename_create(dfd, getname(pathname), path, lookup_flags);
3625 }
3626 EXPORT_SYMBOL(user_path_create);
3627
3628 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3629 {
3630 int error = may_create(dir, dentry);
3631
3632 if (error)
3633 return error;
3634
3635 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3636 return -EPERM;
3637
3638 if (!dir->i_op->mknod)
3639 return -EPERM;
3640
3641 error = devcgroup_inode_mknod(mode, dev);
3642 if (error)
3643 return error;
3644
3645 error = security_inode_mknod(dir, dentry, mode, dev);
3646 if (error)
3647 return error;
3648
3649 error = dir->i_op->mknod(dir, dentry, mode, dev);
3650 if (!error)
3651 fsnotify_create(dir, dentry);
3652 return error;
3653 }
3654 EXPORT_SYMBOL(vfs_mknod);
3655
3656 static int may_mknod(umode_t mode)
3657 {
3658 switch (mode & S_IFMT) {
3659 case S_IFREG:
3660 case S_IFCHR:
3661 case S_IFBLK:
3662 case S_IFIFO:
3663 case S_IFSOCK:
3664 case 0: /* zero mode translates to S_IFREG */
3665 return 0;
3666 case S_IFDIR:
3667 return -EPERM;
3668 default:
3669 return -EINVAL;
3670 }
3671 }
3672
3673 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3674 unsigned, dev)
3675 {
3676 struct dentry *dentry;
3677 struct path path;
3678 int error;
3679 unsigned int lookup_flags = 0;
3680
3681 error = may_mknod(mode);
3682 if (error)
3683 return error;
3684 retry:
3685 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3686 if (IS_ERR(dentry))
3687 return PTR_ERR(dentry);
3688
3689 if (!IS_POSIXACL(path.dentry->d_inode))
3690 mode &= ~current_umask();
3691 error = security_path_mknod(&path, dentry, mode, dev);
3692 if (error)
3693 goto out;
3694 switch (mode & S_IFMT) {
3695 case 0: case S_IFREG:
3696 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3697 if (!error)
3698 ima_post_path_mknod(dentry);
3699 break;
3700 case S_IFCHR: case S_IFBLK:
3701 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3702 new_decode_dev(dev));
3703 break;
3704 case S_IFIFO: case S_IFSOCK:
3705 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3706 break;
3707 }
3708 out:
3709 done_path_create(&path, dentry);
3710 if (retry_estale(error, lookup_flags)) {
3711 lookup_flags |= LOOKUP_REVAL;
3712 goto retry;
3713 }
3714 return error;
3715 }
3716
3717 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3718 {
3719 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3720 }
3721
3722 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3723 {
3724 int error = may_create(dir, dentry);
3725 unsigned max_links = dir->i_sb->s_max_links;
3726
3727 if (error)
3728 return error;
3729
3730 if (!dir->i_op->mkdir)
3731 return -EPERM;
3732
3733 mode &= (S_IRWXUGO|S_ISVTX);
3734 error = security_inode_mkdir(dir, dentry, mode);
3735 if (error)
3736 return error;
3737
3738 if (max_links && dir->i_nlink >= max_links)
3739 return -EMLINK;
3740
3741 error = dir->i_op->mkdir(dir, dentry, mode);
3742 if (!error)
3743 fsnotify_mkdir(dir, dentry);
3744 return error;
3745 }
3746 EXPORT_SYMBOL(vfs_mkdir);
3747
3748 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3749 {
3750 struct dentry *dentry;
3751 struct path path;
3752 int error;
3753 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3754
3755 retry:
3756 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3757 if (IS_ERR(dentry))
3758 return PTR_ERR(dentry);
3759
3760 if (!IS_POSIXACL(path.dentry->d_inode))
3761 mode &= ~current_umask();
3762 error = security_path_mkdir(&path, dentry, mode);
3763 if (!error)
3764 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3765 done_path_create(&path, dentry);
3766 if (retry_estale(error, lookup_flags)) {
3767 lookup_flags |= LOOKUP_REVAL;
3768 goto retry;
3769 }
3770 return error;
3771 }
3772
3773 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3774 {
3775 return sys_mkdirat(AT_FDCWD, pathname, mode);
3776 }
3777
3778 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3779 {
3780 int error = may_delete(dir, dentry, 1);
3781
3782 if (error)
3783 return error;
3784
3785 if (!dir->i_op->rmdir)
3786 return -EPERM;
3787
3788 dget(dentry);
3789 inode_lock(dentry->d_inode);
3790
3791 error = -EBUSY;
3792 if (is_local_mountpoint(dentry))
3793 goto out;
3794
3795 error = security_inode_rmdir(dir, dentry);
3796 if (error)
3797 goto out;
3798
3799 shrink_dcache_parent(dentry);
3800 error = dir->i_op->rmdir(dir, dentry);
3801 if (error)
3802 goto out;
3803
3804 dentry->d_inode->i_flags |= S_DEAD;
3805 dont_mount(dentry);
3806 detach_mounts(dentry);
3807
3808 out:
3809 inode_unlock(dentry->d_inode);
3810 dput(dentry);
3811 if (!error)
3812 d_delete(dentry);
3813 return error;
3814 }
3815 EXPORT_SYMBOL(vfs_rmdir);
3816
3817 static long do_rmdir(int dfd, const char __user *pathname)
3818 {
3819 int error = 0;
3820 struct filename *name;
3821 struct dentry *dentry;
3822 struct path path;
3823 struct qstr last;
3824 int type;
3825 unsigned int lookup_flags = 0;
3826 retry:
3827 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3828 &path, &last, &type);
3829 if (IS_ERR(name))
3830 return PTR_ERR(name);
3831
3832 switch (type) {
3833 case LAST_DOTDOT:
3834 error = -ENOTEMPTY;
3835 goto exit1;
3836 case LAST_DOT:
3837 error = -EINVAL;
3838 goto exit1;
3839 case LAST_ROOT:
3840 error = -EBUSY;
3841 goto exit1;
3842 }
3843
3844 error = mnt_want_write(path.mnt);
3845 if (error)
3846 goto exit1;
3847
3848 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3849 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3850 error = PTR_ERR(dentry);
3851 if (IS_ERR(dentry))
3852 goto exit2;
3853 if (!dentry->d_inode) {
3854 error = -ENOENT;
3855 goto exit3;
3856 }
3857 error = security_path_rmdir(&path, dentry);
3858 if (error)
3859 goto exit3;
3860 error = vfs_rmdir(path.dentry->d_inode, dentry);
3861 exit3:
3862 dput(dentry);
3863 exit2:
3864 inode_unlock(path.dentry->d_inode);
3865 mnt_drop_write(path.mnt);
3866 exit1:
3867 path_put(&path);
3868 putname(name);
3869 if (retry_estale(error, lookup_flags)) {
3870 lookup_flags |= LOOKUP_REVAL;
3871 goto retry;
3872 }
3873 return error;
3874 }
3875
3876 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3877 {
3878 return do_rmdir(AT_FDCWD, pathname);
3879 }
3880
3881 /**
3882 * vfs_unlink - unlink a filesystem object
3883 * @dir: parent directory
3884 * @dentry: victim
3885 * @delegated_inode: returns victim inode, if the inode is delegated.
3886 *
3887 * The caller must hold dir->i_mutex.
3888 *
3889 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3890 * return a reference to the inode in delegated_inode. The caller
3891 * should then break the delegation on that inode and retry. Because
3892 * breaking a delegation may take a long time, the caller should drop
3893 * dir->i_mutex before doing so.
3894 *
3895 * Alternatively, a caller may pass NULL for delegated_inode. This may
3896 * be appropriate for callers that expect the underlying filesystem not
3897 * to be NFS exported.
3898 */
3899 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3900 {
3901 struct inode *target = dentry->d_inode;
3902 int error = may_delete(dir, dentry, 0);
3903
3904 if (error)
3905 return error;
3906
3907 if (!dir->i_op->unlink)
3908 return -EPERM;
3909
3910 inode_lock(target);
3911 if (is_local_mountpoint(dentry))
3912 error = -EBUSY;
3913 else {
3914 error = security_inode_unlink(dir, dentry);
3915 if (!error) {
3916 error = try_break_deleg(target, delegated_inode);
3917 if (error)
3918 goto out;
3919 error = dir->i_op->unlink(dir, dentry);
3920 if (!error) {
3921 dont_mount(dentry);
3922 detach_mounts(dentry);
3923 }
3924 }
3925 }
3926 out:
3927 inode_unlock(target);
3928
3929 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3930 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3931 fsnotify_link_count(target);
3932 d_delete(dentry);
3933 }
3934
3935 return error;
3936 }
3937 EXPORT_SYMBOL(vfs_unlink);
3938
3939 /*
3940 * Make sure that the actual truncation of the file will occur outside its
3941 * directory's i_mutex. Truncate can take a long time if there is a lot of
3942 * writeout happening, and we don't want to prevent access to the directory
3943 * while waiting on the I/O.
3944 */
3945 static long do_unlinkat(int dfd, const char __user *pathname)
3946 {
3947 int error;
3948 struct filename *name;
3949 struct dentry *dentry;
3950 struct path path;
3951 struct qstr last;
3952 int type;
3953 struct inode *inode = NULL;
3954 struct inode *delegated_inode = NULL;
3955 unsigned int lookup_flags = 0;
3956 retry:
3957 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3958 &path, &last, &type);
3959 if (IS_ERR(name))
3960 return PTR_ERR(name);
3961
3962 error = -EISDIR;
3963 if (type != LAST_NORM)
3964 goto exit1;
3965
3966 error = mnt_want_write(path.mnt);
3967 if (error)
3968 goto exit1;
3969 retry_deleg:
3970 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3971 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3972 error = PTR_ERR(dentry);
3973 if (!IS_ERR(dentry)) {
3974 /* Why not before? Because we want correct error value */
3975 if (last.name[last.len])
3976 goto slashes;
3977 inode = dentry->d_inode;
3978 if (d_is_negative(dentry))
3979 goto slashes;
3980 ihold(inode);
3981 error = security_path_unlink(&path, dentry);
3982 if (error)
3983 goto exit2;
3984 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3985 exit2:
3986 dput(dentry);
3987 }
3988 inode_unlock(path.dentry->d_inode);
3989 if (inode)
3990 iput(inode); /* truncate the inode here */
3991 inode = NULL;
3992 if (delegated_inode) {
3993 error = break_deleg_wait(&delegated_inode);
3994 if (!error)
3995 goto retry_deleg;
3996 }
3997 mnt_drop_write(path.mnt);
3998 exit1:
3999 path_put(&path);
4000 putname(name);
4001 if (retry_estale(error, lookup_flags)) {
4002 lookup_flags |= LOOKUP_REVAL;
4003 inode = NULL;
4004 goto retry;
4005 }
4006 return error;
4007
4008 slashes:
4009 if (d_is_negative(dentry))
4010 error = -ENOENT;
4011 else if (d_is_dir(dentry))
4012 error = -EISDIR;
4013 else
4014 error = -ENOTDIR;
4015 goto exit2;
4016 }
4017
4018 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4019 {
4020 if ((flag & ~AT_REMOVEDIR) != 0)
4021 return -EINVAL;
4022
4023 if (flag & AT_REMOVEDIR)
4024 return do_rmdir(dfd, pathname);
4025
4026 return do_unlinkat(dfd, pathname);
4027 }
4028
4029 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4030 {
4031 return do_unlinkat(AT_FDCWD, pathname);
4032 }
4033
4034 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4035 {
4036 int error = may_create(dir, dentry);
4037
4038 if (error)
4039 return error;
4040
4041 if (!dir->i_op->symlink)
4042 return -EPERM;
4043
4044 error = security_inode_symlink(dir, dentry, oldname);
4045 if (error)
4046 return error;
4047
4048 error = dir->i_op->symlink(dir, dentry, oldname);
4049 if (!error)
4050 fsnotify_create(dir, dentry);
4051 return error;
4052 }
4053 EXPORT_SYMBOL(vfs_symlink);
4054
4055 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4056 int, newdfd, const char __user *, newname)
4057 {
4058 int error;
4059 struct filename *from;
4060 struct dentry *dentry;
4061 struct path path;
4062 unsigned int lookup_flags = 0;
4063
4064 from = getname(oldname);
4065 if (IS_ERR(from))
4066 return PTR_ERR(from);
4067 retry:
4068 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4069 error = PTR_ERR(dentry);
4070 if (IS_ERR(dentry))
4071 goto out_putname;
4072
4073 error = security_path_symlink(&path, dentry, from->name);
4074 if (!error)
4075 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4076 done_path_create(&path, dentry);
4077 if (retry_estale(error, lookup_flags)) {
4078 lookup_flags |= LOOKUP_REVAL;
4079 goto retry;
4080 }
4081 out_putname:
4082 putname(from);
4083 return error;
4084 }
4085
4086 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4087 {
4088 return sys_symlinkat(oldname, AT_FDCWD, newname);
4089 }
4090
4091 /**
4092 * vfs_link - create a new link
4093 * @old_dentry: object to be linked
4094 * @dir: new parent
4095 * @new_dentry: where to create the new link
4096 * @delegated_inode: returns inode needing a delegation break
4097 *
4098 * The caller must hold dir->i_mutex
4099 *
4100 * If vfs_link discovers a delegation on the to-be-linked file in need
4101 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4102 * inode in delegated_inode. The caller should then break the delegation
4103 * and retry. Because breaking a delegation may take a long time, the
4104 * caller should drop the i_mutex before doing so.
4105 *
4106 * Alternatively, a caller may pass NULL for delegated_inode. This may
4107 * be appropriate for callers that expect the underlying filesystem not
4108 * to be NFS exported.
4109 */
4110 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4111 {
4112 struct inode *inode = old_dentry->d_inode;
4113 unsigned max_links = dir->i_sb->s_max_links;
4114 int error;
4115
4116 if (!inode)
4117 return -ENOENT;
4118
4119 error = may_create(dir, new_dentry);
4120 if (error)
4121 return error;
4122
4123 if (dir->i_sb != inode->i_sb)
4124 return -EXDEV;
4125
4126 /*
4127 * A link to an append-only or immutable file cannot be created.
4128 */
4129 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4130 return -EPERM;
4131 /*
4132 * Updating the link count will likely cause i_uid and i_gid to
4133 * be writen back improperly if their true value is unknown to
4134 * the vfs.
4135 */
4136 if (HAS_UNMAPPED_ID(inode))
4137 return -EPERM;
4138 if (!dir->i_op->link)
4139 return -EPERM;
4140 if (S_ISDIR(inode->i_mode))
4141 return -EPERM;
4142
4143 error = security_inode_link(old_dentry, dir, new_dentry);
4144 if (error)
4145 return error;
4146
4147 inode_lock(inode);
4148 /* Make sure we don't allow creating hardlink to an unlinked file */
4149 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4150 error = -ENOENT;
4151 else if (max_links && inode->i_nlink >= max_links)
4152 error = -EMLINK;
4153 else {
4154 error = try_break_deleg(inode, delegated_inode);
4155 if (!error)
4156 error = dir->i_op->link(old_dentry, dir, new_dentry);
4157 }
4158
4159 if (!error && (inode->i_state & I_LINKABLE)) {
4160 spin_lock(&inode->i_lock);
4161 inode->i_state &= ~I_LINKABLE;
4162 spin_unlock(&inode->i_lock);
4163 }
4164 inode_unlock(inode);
4165 if (!error)
4166 fsnotify_link(dir, inode, new_dentry);
4167 return error;
4168 }
4169 EXPORT_SYMBOL(vfs_link);
4170
4171 /*
4172 * Hardlinks are often used in delicate situations. We avoid
4173 * security-related surprises by not following symlinks on the
4174 * newname. --KAB
4175 *
4176 * We don't follow them on the oldname either to be compatible
4177 * with linux 2.0, and to avoid hard-linking to directories
4178 * and other special files. --ADM
4179 */
4180 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4181 int, newdfd, const char __user *, newname, int, flags)
4182 {
4183 struct dentry *new_dentry;
4184 struct path old_path, new_path;
4185 struct inode *delegated_inode = NULL;
4186 int how = 0;
4187 int error;
4188
4189 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4190 return -EINVAL;
4191 /*
4192 * To use null names we require CAP_DAC_READ_SEARCH
4193 * This ensures that not everyone will be able to create
4194 * handlink using the passed filedescriptor.
4195 */
4196 if (flags & AT_EMPTY_PATH) {
4197 if (!capable(CAP_DAC_READ_SEARCH))
4198 return -ENOENT;
4199 how = LOOKUP_EMPTY;
4200 }
4201
4202 if (flags & AT_SYMLINK_FOLLOW)
4203 how |= LOOKUP_FOLLOW;
4204 retry:
4205 error = user_path_at(olddfd, oldname, how, &old_path);
4206 if (error)
4207 return error;
4208
4209 new_dentry = user_path_create(newdfd, newname, &new_path,
4210 (how & LOOKUP_REVAL));
4211 error = PTR_ERR(new_dentry);
4212 if (IS_ERR(new_dentry))
4213 goto out;
4214
4215 error = -EXDEV;
4216 if (old_path.mnt != new_path.mnt)
4217 goto out_dput;
4218 error = may_linkat(&old_path);
4219 if (unlikely(error))
4220 goto out_dput;
4221 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4222 if (error)
4223 goto out_dput;
4224 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4225 out_dput:
4226 done_path_create(&new_path, new_dentry);
4227 if (delegated_inode) {
4228 error = break_deleg_wait(&delegated_inode);
4229 if (!error) {
4230 path_put(&old_path);
4231 goto retry;
4232 }
4233 }
4234 if (retry_estale(error, how)) {
4235 path_put(&old_path);
4236 how |= LOOKUP_REVAL;
4237 goto retry;
4238 }
4239 out:
4240 path_put(&old_path);
4241
4242 return error;
4243 }
4244
4245 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4246 {
4247 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4248 }
4249
4250 /**
4251 * vfs_rename - rename a filesystem object
4252 * @old_dir: parent of source
4253 * @old_dentry: source
4254 * @new_dir: parent of destination
4255 * @new_dentry: destination
4256 * @delegated_inode: returns an inode needing a delegation break
4257 * @flags: rename flags
4258 *
4259 * The caller must hold multiple mutexes--see lock_rename()).
4260 *
4261 * If vfs_rename discovers a delegation in need of breaking at either
4262 * the source or destination, it will return -EWOULDBLOCK and return a
4263 * reference to the inode in delegated_inode. The caller should then
4264 * break the delegation and retry. Because breaking a delegation may
4265 * take a long time, the caller should drop all locks before doing
4266 * so.
4267 *
4268 * Alternatively, a caller may pass NULL for delegated_inode. This may
4269 * be appropriate for callers that expect the underlying filesystem not
4270 * to be NFS exported.
4271 *
4272 * The worst of all namespace operations - renaming directory. "Perverted"
4273 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4274 * Problems:
4275 * a) we can get into loop creation.
4276 * b) race potential - two innocent renames can create a loop together.
4277 * That's where 4.4 screws up. Current fix: serialization on
4278 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4279 * story.
4280 * c) we have to lock _four_ objects - parents and victim (if it exists),
4281 * and source (if it is not a directory).
4282 * And that - after we got ->i_mutex on parents (until then we don't know
4283 * whether the target exists). Solution: try to be smart with locking
4284 * order for inodes. We rely on the fact that tree topology may change
4285 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4286 * move will be locked. Thus we can rank directories by the tree
4287 * (ancestors first) and rank all non-directories after them.
4288 * That works since everybody except rename does "lock parent, lookup,
4289 * lock child" and rename is under ->s_vfs_rename_mutex.
4290 * HOWEVER, it relies on the assumption that any object with ->lookup()
4291 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4292 * we'd better make sure that there's no link(2) for them.
4293 * d) conversion from fhandle to dentry may come in the wrong moment - when
4294 * we are removing the target. Solution: we will have to grab ->i_mutex
4295 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4296 * ->i_mutex on parents, which works but leads to some truly excessive
4297 * locking].
4298 */
4299 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4300 struct inode *new_dir, struct dentry *new_dentry,
4301 struct inode **delegated_inode, unsigned int flags)
4302 {
4303 int error;
4304 bool is_dir = d_is_dir(old_dentry);
4305 const unsigned char *old_name;
4306 struct inode *source = old_dentry->d_inode;
4307 struct inode *target = new_dentry->d_inode;
4308 bool new_is_dir = false;
4309 unsigned max_links = new_dir->i_sb->s_max_links;
4310
4311 if (source == target)
4312 return 0;
4313
4314 error = may_delete(old_dir, old_dentry, is_dir);
4315 if (error)
4316 return error;
4317
4318 if (!target) {
4319 error = may_create(new_dir, new_dentry);
4320 } else {
4321 new_is_dir = d_is_dir(new_dentry);
4322
4323 if (!(flags & RENAME_EXCHANGE))
4324 error = may_delete(new_dir, new_dentry, is_dir);
4325 else
4326 error = may_delete(new_dir, new_dentry, new_is_dir);
4327 }
4328 if (error)
4329 return error;
4330
4331 if (!old_dir->i_op->rename)
4332 return -EPERM;
4333
4334 /*
4335 * If we are going to change the parent - check write permissions,
4336 * we'll need to flip '..'.
4337 */
4338 if (new_dir != old_dir) {
4339 if (is_dir) {
4340 error = inode_permission(source, MAY_WRITE);
4341 if (error)
4342 return error;
4343 }
4344 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4345 error = inode_permission(target, MAY_WRITE);
4346 if (error)
4347 return error;
4348 }
4349 }
4350
4351 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4352 flags);
4353 if (error)
4354 return error;
4355
4356 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4357 dget(new_dentry);
4358 if (!is_dir || (flags & RENAME_EXCHANGE))
4359 lock_two_nondirectories(source, target);
4360 else if (target)
4361 inode_lock(target);
4362
4363 error = -EBUSY;
4364 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4365 goto out;
4366
4367 if (max_links && new_dir != old_dir) {
4368 error = -EMLINK;
4369 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4370 goto out;
4371 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4372 old_dir->i_nlink >= max_links)
4373 goto out;
4374 }
4375 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4376 shrink_dcache_parent(new_dentry);
4377 if (!is_dir) {
4378 error = try_break_deleg(source, delegated_inode);
4379 if (error)
4380 goto out;
4381 }
4382 if (target && !new_is_dir) {
4383 error = try_break_deleg(target, delegated_inode);
4384 if (error)
4385 goto out;
4386 }
4387 error = old_dir->i_op->rename(old_dir, old_dentry,
4388 new_dir, new_dentry, flags);
4389 if (error)
4390 goto out;
4391
4392 if (!(flags & RENAME_EXCHANGE) && target) {
4393 if (is_dir)
4394 target->i_flags |= S_DEAD;
4395 dont_mount(new_dentry);
4396 detach_mounts(new_dentry);
4397 }
4398 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4399 if (!(flags & RENAME_EXCHANGE))
4400 d_move(old_dentry, new_dentry);
4401 else
4402 d_exchange(old_dentry, new_dentry);
4403 }
4404 out:
4405 if (!is_dir || (flags & RENAME_EXCHANGE))
4406 unlock_two_nondirectories(source, target);
4407 else if (target)
4408 inode_unlock(target);
4409 dput(new_dentry);
4410 if (!error) {
4411 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4412 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4413 if (flags & RENAME_EXCHANGE) {
4414 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4415 new_is_dir, NULL, new_dentry);
4416 }
4417 }
4418 fsnotify_oldname_free(old_name);
4419
4420 return error;
4421 }
4422 EXPORT_SYMBOL(vfs_rename);
4423
4424 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4425 int, newdfd, const char __user *, newname, unsigned int, flags)
4426 {
4427 struct dentry *old_dentry, *new_dentry;
4428 struct dentry *trap;
4429 struct path old_path, new_path;
4430 struct qstr old_last, new_last;
4431 int old_type, new_type;
4432 struct inode *delegated_inode = NULL;
4433 struct filename *from;
4434 struct filename *to;
4435 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4436 bool should_retry = false;
4437 int error;
4438
4439 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4440 return -EINVAL;
4441
4442 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4443 (flags & RENAME_EXCHANGE))
4444 return -EINVAL;
4445
4446 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4447 return -EPERM;
4448
4449 if (flags & RENAME_EXCHANGE)
4450 target_flags = 0;
4451
4452 retry:
4453 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4454 &old_path, &old_last, &old_type);
4455 if (IS_ERR(from)) {
4456 error = PTR_ERR(from);
4457 goto exit;
4458 }
4459
4460 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4461 &new_path, &new_last, &new_type);
4462 if (IS_ERR(to)) {
4463 error = PTR_ERR(to);
4464 goto exit1;
4465 }
4466
4467 error = -EXDEV;
4468 if (old_path.mnt != new_path.mnt)
4469 goto exit2;
4470
4471 error = -EBUSY;
4472 if (old_type != LAST_NORM)
4473 goto exit2;
4474
4475 if (flags & RENAME_NOREPLACE)
4476 error = -EEXIST;
4477 if (new_type != LAST_NORM)
4478 goto exit2;
4479
4480 error = mnt_want_write(old_path.mnt);
4481 if (error)
4482 goto exit2;
4483
4484 retry_deleg:
4485 trap = lock_rename(new_path.dentry, old_path.dentry);
4486
4487 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4488 error = PTR_ERR(old_dentry);
4489 if (IS_ERR(old_dentry))
4490 goto exit3;
4491 /* source must exist */
4492 error = -ENOENT;
4493 if (d_is_negative(old_dentry))
4494 goto exit4;
4495 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4496 error = PTR_ERR(new_dentry);
4497 if (IS_ERR(new_dentry))
4498 goto exit4;
4499 error = -EEXIST;
4500 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4501 goto exit5;
4502 if (flags & RENAME_EXCHANGE) {
4503 error = -ENOENT;
4504 if (d_is_negative(new_dentry))
4505 goto exit5;
4506
4507 if (!d_is_dir(new_dentry)) {
4508 error = -ENOTDIR;
4509 if (new_last.name[new_last.len])
4510 goto exit5;
4511 }
4512 }
4513 /* unless the source is a directory trailing slashes give -ENOTDIR */
4514 if (!d_is_dir(old_dentry)) {
4515 error = -ENOTDIR;
4516 if (old_last.name[old_last.len])
4517 goto exit5;
4518 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4519 goto exit5;
4520 }
4521 /* source should not be ancestor of target */
4522 error = -EINVAL;
4523 if (old_dentry == trap)
4524 goto exit5;
4525 /* target should not be an ancestor of source */
4526 if (!(flags & RENAME_EXCHANGE))
4527 error = -ENOTEMPTY;
4528 if (new_dentry == trap)
4529 goto exit5;
4530
4531 error = security_path_rename(&old_path, old_dentry,
4532 &new_path, new_dentry, flags);
4533 if (error)
4534 goto exit5;
4535 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4536 new_path.dentry->d_inode, new_dentry,
4537 &delegated_inode, flags);
4538 exit5:
4539 dput(new_dentry);
4540 exit4:
4541 dput(old_dentry);
4542 exit3:
4543 unlock_rename(new_path.dentry, old_path.dentry);
4544 if (delegated_inode) {
4545 error = break_deleg_wait(&delegated_inode);
4546 if (!error)
4547 goto retry_deleg;
4548 }
4549 mnt_drop_write(old_path.mnt);
4550 exit2:
4551 if (retry_estale(error, lookup_flags))
4552 should_retry = true;
4553 path_put(&new_path);
4554 putname(to);
4555 exit1:
4556 path_put(&old_path);
4557 putname(from);
4558 if (should_retry) {
4559 should_retry = false;
4560 lookup_flags |= LOOKUP_REVAL;
4561 goto retry;
4562 }
4563 exit:
4564 return error;
4565 }
4566
4567 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4568 int, newdfd, const char __user *, newname)
4569 {
4570 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4571 }
4572
4573 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4574 {
4575 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4576 }
4577
4578 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4579 {
4580 int error = may_create(dir, dentry);
4581 if (error)
4582 return error;
4583
4584 if (!dir->i_op->mknod)
4585 return -EPERM;
4586
4587 return dir->i_op->mknod(dir, dentry,
4588 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4589 }
4590 EXPORT_SYMBOL(vfs_whiteout);
4591
4592 int readlink_copy(char __user *buffer, int buflen, const char *link)
4593 {
4594 int len = PTR_ERR(link);
4595 if (IS_ERR(link))
4596 goto out;
4597
4598 len = strlen(link);
4599 if (len > (unsigned) buflen)
4600 len = buflen;
4601 if (copy_to_user(buffer, link, len))
4602 len = -EFAULT;
4603 out:
4604 return len;
4605 }
4606
4607 /*
4608 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4609 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4610 * for any given inode is up to filesystem.
4611 */
4612 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4613 int buflen)
4614 {
4615 DEFINE_DELAYED_CALL(done);
4616 struct inode *inode = d_inode(dentry);
4617 const char *link = inode->i_link;
4618 int res;
4619
4620 if (!link) {
4621 link = inode->i_op->get_link(dentry, inode, &done);
4622 if (IS_ERR(link))
4623 return PTR_ERR(link);
4624 }
4625 res = readlink_copy(buffer, buflen, link);
4626 do_delayed_call(&done);
4627 return res;
4628 }
4629
4630 /**
4631 * vfs_readlink - copy symlink body into userspace buffer
4632 * @dentry: dentry on which to get symbolic link
4633 * @buffer: user memory pointer
4634 * @buflen: size of buffer
4635 *
4636 * Does not touch atime. That's up to the caller if necessary
4637 *
4638 * Does not call security hook.
4639 */
4640 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4641 {
4642 struct inode *inode = d_inode(dentry);
4643
4644 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4645 if (unlikely(inode->i_op->readlink))
4646 return inode->i_op->readlink(dentry, buffer, buflen);
4647
4648 if (!d_is_symlink(dentry))
4649 return -EINVAL;
4650
4651 spin_lock(&inode->i_lock);
4652 inode->i_opflags |= IOP_DEFAULT_READLINK;
4653 spin_unlock(&inode->i_lock);
4654 }
4655
4656 return generic_readlink(dentry, buffer, buflen);
4657 }
4658 EXPORT_SYMBOL(vfs_readlink);
4659
4660 /**
4661 * vfs_get_link - get symlink body
4662 * @dentry: dentry on which to get symbolic link
4663 * @done: caller needs to free returned data with this
4664 *
4665 * Calls security hook and i_op->get_link() on the supplied inode.
4666 *
4667 * It does not touch atime. That's up to the caller if necessary.
4668 *
4669 * Does not work on "special" symlinks like /proc/$$/fd/N
4670 */
4671 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4672 {
4673 const char *res = ERR_PTR(-EINVAL);
4674 struct inode *inode = d_inode(dentry);
4675
4676 if (d_is_symlink(dentry)) {
4677 res = ERR_PTR(security_inode_readlink(dentry));
4678 if (!res)
4679 res = inode->i_op->get_link(dentry, inode, done);
4680 }
4681 return res;
4682 }
4683 EXPORT_SYMBOL(vfs_get_link);
4684
4685 /* get the link contents into pagecache */
4686 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4687 struct delayed_call *callback)
4688 {
4689 char *kaddr;
4690 struct page *page;
4691 struct address_space *mapping = inode->i_mapping;
4692
4693 if (!dentry) {
4694 page = find_get_page(mapping, 0);
4695 if (!page)
4696 return ERR_PTR(-ECHILD);
4697 if (!PageUptodate(page)) {
4698 put_page(page);
4699 return ERR_PTR(-ECHILD);
4700 }
4701 } else {
4702 page = read_mapping_page(mapping, 0, NULL);
4703 if (IS_ERR(page))
4704 return (char*)page;
4705 }
4706 set_delayed_call(callback, page_put_link, page);
4707 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4708 kaddr = page_address(page);
4709 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4710 return kaddr;
4711 }
4712
4713 EXPORT_SYMBOL(page_get_link);
4714
4715 void page_put_link(void *arg)
4716 {
4717 put_page(arg);
4718 }
4719 EXPORT_SYMBOL(page_put_link);
4720
4721 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4722 {
4723 DEFINE_DELAYED_CALL(done);
4724 int res = readlink_copy(buffer, buflen,
4725 page_get_link(dentry, d_inode(dentry),
4726 &done));
4727 do_delayed_call(&done);
4728 return res;
4729 }
4730 EXPORT_SYMBOL(page_readlink);
4731
4732 /*
4733 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4734 */
4735 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4736 {
4737 struct address_space *mapping = inode->i_mapping;
4738 struct page *page;
4739 void *fsdata;
4740 int err;
4741 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4742 if (nofs)
4743 flags |= AOP_FLAG_NOFS;
4744
4745 retry:
4746 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4747 flags, &page, &fsdata);
4748 if (err)
4749 goto fail;
4750
4751 memcpy(page_address(page), symname, len-1);
4752
4753 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4754 page, fsdata);
4755 if (err < 0)
4756 goto fail;
4757 if (err < len-1)
4758 goto retry;
4759
4760 mark_inode_dirty(inode);
4761 return 0;
4762 fail:
4763 return err;
4764 }
4765 EXPORT_SYMBOL(__page_symlink);
4766
4767 int page_symlink(struct inode *inode, const char *symname, int len)
4768 {
4769 return __page_symlink(inode, symname, len,
4770 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4771 }
4772 EXPORT_SYMBOL(page_symlink);
4773
4774 const struct inode_operations page_symlink_inode_operations = {
4775 .get_link = page_get_link,
4776 };
4777 EXPORT_SYMBOL(page_symlink_inode_operations);