]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/namei.c
Merge remote-tracking branch 'mkp-scsi/4.9/scsi-fixes' into fixes
[mirror_ubuntu-zesty-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <linux/bitops.h>
39 #include <linux/init_task.h>
40 #include <asm/uaccess.h>
41
42 #include "internal.h"
43 #include "mount.h"
44
45 /* [Feb-1997 T. Schoebel-Theuer]
46 * Fundamental changes in the pathname lookup mechanisms (namei)
47 * were necessary because of omirr. The reason is that omirr needs
48 * to know the _real_ pathname, not the user-supplied one, in case
49 * of symlinks (and also when transname replacements occur).
50 *
51 * The new code replaces the old recursive symlink resolution with
52 * an iterative one (in case of non-nested symlink chains). It does
53 * this with calls to <fs>_follow_link().
54 * As a side effect, dir_namei(), _namei() and follow_link() are now
55 * replaced with a single function lookup_dentry() that can handle all
56 * the special cases of the former code.
57 *
58 * With the new dcache, the pathname is stored at each inode, at least as
59 * long as the refcount of the inode is positive. As a side effect, the
60 * size of the dcache depends on the inode cache and thus is dynamic.
61 *
62 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
63 * resolution to correspond with current state of the code.
64 *
65 * Note that the symlink resolution is not *completely* iterative.
66 * There is still a significant amount of tail- and mid- recursion in
67 * the algorithm. Also, note that <fs>_readlink() is not used in
68 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
69 * may return different results than <fs>_follow_link(). Many virtual
70 * filesystems (including /proc) exhibit this behavior.
71 */
72
73 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
74 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
75 * and the name already exists in form of a symlink, try to create the new
76 * name indicated by the symlink. The old code always complained that the
77 * name already exists, due to not following the symlink even if its target
78 * is nonexistent. The new semantics affects also mknod() and link() when
79 * the name is a symlink pointing to a non-existent name.
80 *
81 * I don't know which semantics is the right one, since I have no access
82 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
83 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
84 * "old" one. Personally, I think the new semantics is much more logical.
85 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
86 * file does succeed in both HP-UX and SunOs, but not in Solaris
87 * and in the old Linux semantics.
88 */
89
90 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
91 * semantics. See the comments in "open_namei" and "do_link" below.
92 *
93 * [10-Sep-98 Alan Modra] Another symlink change.
94 */
95
96 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
97 * inside the path - always follow.
98 * in the last component in creation/removal/renaming - never follow.
99 * if LOOKUP_FOLLOW passed - follow.
100 * if the pathname has trailing slashes - follow.
101 * otherwise - don't follow.
102 * (applied in that order).
103 *
104 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
105 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
106 * During the 2.4 we need to fix the userland stuff depending on it -
107 * hopefully we will be able to get rid of that wart in 2.5. So far only
108 * XEmacs seems to be relying on it...
109 */
110 /*
111 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
112 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
113 * any extra contention...
114 */
115
116 /* In order to reduce some races, while at the same time doing additional
117 * checking and hopefully speeding things up, we copy filenames to the
118 * kernel data space before using them..
119 *
120 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
121 * PATH_MAX includes the nul terminator --RR.
122 */
123
124 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
125
126 struct filename *
127 getname_flags(const char __user *filename, int flags, int *empty)
128 {
129 struct filename *result;
130 char *kname;
131 int len;
132
133 result = audit_reusename(filename);
134 if (result)
135 return result;
136
137 result = __getname();
138 if (unlikely(!result))
139 return ERR_PTR(-ENOMEM);
140
141 /*
142 * First, try to embed the struct filename inside the names_cache
143 * allocation
144 */
145 kname = (char *)result->iname;
146 result->name = kname;
147
148 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
149 if (unlikely(len < 0)) {
150 __putname(result);
151 return ERR_PTR(len);
152 }
153
154 /*
155 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
156 * separate struct filename so we can dedicate the entire
157 * names_cache allocation for the pathname, and re-do the copy from
158 * userland.
159 */
160 if (unlikely(len == EMBEDDED_NAME_MAX)) {
161 const size_t size = offsetof(struct filename, iname[1]);
162 kname = (char *)result;
163
164 /*
165 * size is chosen that way we to guarantee that
166 * result->iname[0] is within the same object and that
167 * kname can't be equal to result->iname, no matter what.
168 */
169 result = kzalloc(size, GFP_KERNEL);
170 if (unlikely(!result)) {
171 __putname(kname);
172 return ERR_PTR(-ENOMEM);
173 }
174 result->name = kname;
175 len = strncpy_from_user(kname, filename, PATH_MAX);
176 if (unlikely(len < 0)) {
177 __putname(kname);
178 kfree(result);
179 return ERR_PTR(len);
180 }
181 if (unlikely(len == PATH_MAX)) {
182 __putname(kname);
183 kfree(result);
184 return ERR_PTR(-ENAMETOOLONG);
185 }
186 }
187
188 result->refcnt = 1;
189 /* The empty path is special. */
190 if (unlikely(!len)) {
191 if (empty)
192 *empty = 1;
193 if (!(flags & LOOKUP_EMPTY)) {
194 putname(result);
195 return ERR_PTR(-ENOENT);
196 }
197 }
198
199 result->uptr = filename;
200 result->aname = NULL;
201 audit_getname(result);
202 return result;
203 }
204
205 struct filename *
206 getname(const char __user * filename)
207 {
208 return getname_flags(filename, 0, NULL);
209 }
210
211 struct filename *
212 getname_kernel(const char * filename)
213 {
214 struct filename *result;
215 int len = strlen(filename) + 1;
216
217 result = __getname();
218 if (unlikely(!result))
219 return ERR_PTR(-ENOMEM);
220
221 if (len <= EMBEDDED_NAME_MAX) {
222 result->name = (char *)result->iname;
223 } else if (len <= PATH_MAX) {
224 struct filename *tmp;
225
226 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
227 if (unlikely(!tmp)) {
228 __putname(result);
229 return ERR_PTR(-ENOMEM);
230 }
231 tmp->name = (char *)result;
232 result = tmp;
233 } else {
234 __putname(result);
235 return ERR_PTR(-ENAMETOOLONG);
236 }
237 memcpy((char *)result->name, filename, len);
238 result->uptr = NULL;
239 result->aname = NULL;
240 result->refcnt = 1;
241 audit_getname(result);
242
243 return result;
244 }
245
246 void putname(struct filename *name)
247 {
248 BUG_ON(name->refcnt <= 0);
249
250 if (--name->refcnt > 0)
251 return;
252
253 if (name->name != name->iname) {
254 __putname(name->name);
255 kfree(name);
256 } else
257 __putname(name);
258 }
259
260 static int check_acl(struct inode *inode, int mask)
261 {
262 #ifdef CONFIG_FS_POSIX_ACL
263 struct posix_acl *acl;
264
265 if (mask & MAY_NOT_BLOCK) {
266 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
267 if (!acl)
268 return -EAGAIN;
269 /* no ->get_acl() calls in RCU mode... */
270 if (is_uncached_acl(acl))
271 return -ECHILD;
272 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
273 }
274
275 acl = get_acl(inode, ACL_TYPE_ACCESS);
276 if (IS_ERR(acl))
277 return PTR_ERR(acl);
278 if (acl) {
279 int error = posix_acl_permission(inode, acl, mask);
280 posix_acl_release(acl);
281 return error;
282 }
283 #endif
284
285 return -EAGAIN;
286 }
287
288 /*
289 * This does the basic permission checking
290 */
291 static int acl_permission_check(struct inode *inode, int mask)
292 {
293 unsigned int mode = inode->i_mode;
294
295 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
296 mode >>= 6;
297 else {
298 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
299 int error = check_acl(inode, mask);
300 if (error != -EAGAIN)
301 return error;
302 }
303
304 if (in_group_p(inode->i_gid))
305 mode >>= 3;
306 }
307
308 /*
309 * If the DACs are ok we don't need any capability check.
310 */
311 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
312 return 0;
313 return -EACCES;
314 }
315
316 /**
317 * generic_permission - check for access rights on a Posix-like filesystem
318 * @inode: inode to check access rights for
319 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
320 *
321 * Used to check for read/write/execute permissions on a file.
322 * We use "fsuid" for this, letting us set arbitrary permissions
323 * for filesystem access without changing the "normal" uids which
324 * are used for other things.
325 *
326 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
327 * request cannot be satisfied (eg. requires blocking or too much complexity).
328 * It would then be called again in ref-walk mode.
329 */
330 int generic_permission(struct inode *inode, int mask)
331 {
332 int ret;
333
334 /*
335 * Do the basic permission checks.
336 */
337 ret = acl_permission_check(inode, mask);
338 if (ret != -EACCES)
339 return ret;
340
341 if (S_ISDIR(inode->i_mode)) {
342 /* DACs are overridable for directories */
343 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
344 return 0;
345 if (!(mask & MAY_WRITE))
346 if (capable_wrt_inode_uidgid(inode,
347 CAP_DAC_READ_SEARCH))
348 return 0;
349 return -EACCES;
350 }
351 /*
352 * Read/write DACs are always overridable.
353 * Executable DACs are overridable when there is
354 * at least one exec bit set.
355 */
356 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
357 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
358 return 0;
359
360 /*
361 * Searching includes executable on directories, else just read.
362 */
363 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
364 if (mask == MAY_READ)
365 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
366 return 0;
367
368 return -EACCES;
369 }
370 EXPORT_SYMBOL(generic_permission);
371
372 /*
373 * We _really_ want to just do "generic_permission()" without
374 * even looking at the inode->i_op values. So we keep a cache
375 * flag in inode->i_opflags, that says "this has not special
376 * permission function, use the fast case".
377 */
378 static inline int do_inode_permission(struct inode *inode, int mask)
379 {
380 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
381 if (likely(inode->i_op->permission))
382 return inode->i_op->permission(inode, mask);
383
384 /* This gets set once for the inode lifetime */
385 spin_lock(&inode->i_lock);
386 inode->i_opflags |= IOP_FASTPERM;
387 spin_unlock(&inode->i_lock);
388 }
389 return generic_permission(inode, mask);
390 }
391
392 /**
393 * __inode_permission - Check for access rights to a given inode
394 * @inode: Inode to check permission on
395 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
396 *
397 * Check for read/write/execute permissions on an inode.
398 *
399 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
400 *
401 * This does not check for a read-only file system. You probably want
402 * inode_permission().
403 */
404 int __inode_permission(struct inode *inode, int mask)
405 {
406 int retval;
407
408 if (unlikely(mask & MAY_WRITE)) {
409 /*
410 * Nobody gets write access to an immutable file.
411 */
412 if (IS_IMMUTABLE(inode))
413 return -EPERM;
414
415 /*
416 * Updating mtime will likely cause i_uid and i_gid to be
417 * written back improperly if their true value is unknown
418 * to the vfs.
419 */
420 if (HAS_UNMAPPED_ID(inode))
421 return -EACCES;
422 }
423
424 retval = do_inode_permission(inode, mask);
425 if (retval)
426 return retval;
427
428 retval = devcgroup_inode_permission(inode, mask);
429 if (retval)
430 return retval;
431
432 return security_inode_permission(inode, mask);
433 }
434 EXPORT_SYMBOL(__inode_permission);
435
436 /**
437 * sb_permission - Check superblock-level permissions
438 * @sb: Superblock of inode to check permission on
439 * @inode: Inode to check permission on
440 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
441 *
442 * Separate out file-system wide checks from inode-specific permission checks.
443 */
444 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
445 {
446 if (unlikely(mask & MAY_WRITE)) {
447 umode_t mode = inode->i_mode;
448
449 /* Nobody gets write access to a read-only fs. */
450 if ((sb->s_flags & MS_RDONLY) &&
451 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
452 return -EROFS;
453 }
454 return 0;
455 }
456
457 /**
458 * inode_permission - Check for access rights to a given inode
459 * @inode: Inode to check permission on
460 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
461 *
462 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
463 * this, letting us set arbitrary permissions for filesystem access without
464 * changing the "normal" UIDs which are used for other things.
465 *
466 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
467 */
468 int inode_permission(struct inode *inode, int mask)
469 {
470 int retval;
471
472 retval = sb_permission(inode->i_sb, inode, mask);
473 if (retval)
474 return retval;
475 return __inode_permission(inode, mask);
476 }
477 EXPORT_SYMBOL(inode_permission);
478
479 /**
480 * path_get - get a reference to a path
481 * @path: path to get the reference to
482 *
483 * Given a path increment the reference count to the dentry and the vfsmount.
484 */
485 void path_get(const struct path *path)
486 {
487 mntget(path->mnt);
488 dget(path->dentry);
489 }
490 EXPORT_SYMBOL(path_get);
491
492 /**
493 * path_put - put a reference to a path
494 * @path: path to put the reference to
495 *
496 * Given a path decrement the reference count to the dentry and the vfsmount.
497 */
498 void path_put(const struct path *path)
499 {
500 dput(path->dentry);
501 mntput(path->mnt);
502 }
503 EXPORT_SYMBOL(path_put);
504
505 #define EMBEDDED_LEVELS 2
506 struct nameidata {
507 struct path path;
508 struct qstr last;
509 struct path root;
510 struct inode *inode; /* path.dentry.d_inode */
511 unsigned int flags;
512 unsigned seq, m_seq;
513 int last_type;
514 unsigned depth;
515 int total_link_count;
516 struct saved {
517 struct path link;
518 struct delayed_call done;
519 const char *name;
520 unsigned seq;
521 } *stack, internal[EMBEDDED_LEVELS];
522 struct filename *name;
523 struct nameidata *saved;
524 struct inode *link_inode;
525 unsigned root_seq;
526 int dfd;
527 };
528
529 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
530 {
531 struct nameidata *old = current->nameidata;
532 p->stack = p->internal;
533 p->dfd = dfd;
534 p->name = name;
535 p->total_link_count = old ? old->total_link_count : 0;
536 p->saved = old;
537 current->nameidata = p;
538 }
539
540 static void restore_nameidata(void)
541 {
542 struct nameidata *now = current->nameidata, *old = now->saved;
543
544 current->nameidata = old;
545 if (old)
546 old->total_link_count = now->total_link_count;
547 if (now->stack != now->internal)
548 kfree(now->stack);
549 }
550
551 static int __nd_alloc_stack(struct nameidata *nd)
552 {
553 struct saved *p;
554
555 if (nd->flags & LOOKUP_RCU) {
556 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
557 GFP_ATOMIC);
558 if (unlikely(!p))
559 return -ECHILD;
560 } else {
561 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
562 GFP_KERNEL);
563 if (unlikely(!p))
564 return -ENOMEM;
565 }
566 memcpy(p, nd->internal, sizeof(nd->internal));
567 nd->stack = p;
568 return 0;
569 }
570
571 /**
572 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
573 * @path: nameidate to verify
574 *
575 * Rename can sometimes move a file or directory outside of a bind
576 * mount, path_connected allows those cases to be detected.
577 */
578 static bool path_connected(const struct path *path)
579 {
580 struct vfsmount *mnt = path->mnt;
581
582 /* Only bind mounts can have disconnected paths */
583 if (mnt->mnt_root == mnt->mnt_sb->s_root)
584 return true;
585
586 return is_subdir(path->dentry, mnt->mnt_root);
587 }
588
589 static inline int nd_alloc_stack(struct nameidata *nd)
590 {
591 if (likely(nd->depth != EMBEDDED_LEVELS))
592 return 0;
593 if (likely(nd->stack != nd->internal))
594 return 0;
595 return __nd_alloc_stack(nd);
596 }
597
598 static void drop_links(struct nameidata *nd)
599 {
600 int i = nd->depth;
601 while (i--) {
602 struct saved *last = nd->stack + i;
603 do_delayed_call(&last->done);
604 clear_delayed_call(&last->done);
605 }
606 }
607
608 static void terminate_walk(struct nameidata *nd)
609 {
610 drop_links(nd);
611 if (!(nd->flags & LOOKUP_RCU)) {
612 int i;
613 path_put(&nd->path);
614 for (i = 0; i < nd->depth; i++)
615 path_put(&nd->stack[i].link);
616 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
617 path_put(&nd->root);
618 nd->root.mnt = NULL;
619 }
620 } else {
621 nd->flags &= ~LOOKUP_RCU;
622 if (!(nd->flags & LOOKUP_ROOT))
623 nd->root.mnt = NULL;
624 rcu_read_unlock();
625 }
626 nd->depth = 0;
627 }
628
629 /* path_put is needed afterwards regardless of success or failure */
630 static bool legitimize_path(struct nameidata *nd,
631 struct path *path, unsigned seq)
632 {
633 int res = __legitimize_mnt(path->mnt, nd->m_seq);
634 if (unlikely(res)) {
635 if (res > 0)
636 path->mnt = NULL;
637 path->dentry = NULL;
638 return false;
639 }
640 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
641 path->dentry = NULL;
642 return false;
643 }
644 return !read_seqcount_retry(&path->dentry->d_seq, seq);
645 }
646
647 static bool legitimize_links(struct nameidata *nd)
648 {
649 int i;
650 for (i = 0; i < nd->depth; i++) {
651 struct saved *last = nd->stack + i;
652 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
653 drop_links(nd);
654 nd->depth = i + 1;
655 return false;
656 }
657 }
658 return true;
659 }
660
661 /*
662 * Path walking has 2 modes, rcu-walk and ref-walk (see
663 * Documentation/filesystems/path-lookup.txt). In situations when we can't
664 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
665 * normal reference counts on dentries and vfsmounts to transition to ref-walk
666 * mode. Refcounts are grabbed at the last known good point before rcu-walk
667 * got stuck, so ref-walk may continue from there. If this is not successful
668 * (eg. a seqcount has changed), then failure is returned and it's up to caller
669 * to restart the path walk from the beginning in ref-walk mode.
670 */
671
672 /**
673 * unlazy_walk - try to switch to ref-walk mode.
674 * @nd: nameidata pathwalk data
675 * @dentry: child of nd->path.dentry or NULL
676 * @seq: seq number to check dentry against
677 * Returns: 0 on success, -ECHILD on failure
678 *
679 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
680 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
681 * @nd or NULL. Must be called from rcu-walk context.
682 * Nothing should touch nameidata between unlazy_walk() failure and
683 * terminate_walk().
684 */
685 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
686 {
687 struct dentry *parent = nd->path.dentry;
688
689 BUG_ON(!(nd->flags & LOOKUP_RCU));
690
691 nd->flags &= ~LOOKUP_RCU;
692 if (unlikely(!legitimize_links(nd)))
693 goto out2;
694 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
695 goto out2;
696 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
697 goto out1;
698
699 /*
700 * For a negative lookup, the lookup sequence point is the parents
701 * sequence point, and it only needs to revalidate the parent dentry.
702 *
703 * For a positive lookup, we need to move both the parent and the
704 * dentry from the RCU domain to be properly refcounted. And the
705 * sequence number in the dentry validates *both* dentry counters,
706 * since we checked the sequence number of the parent after we got
707 * the child sequence number. So we know the parent must still
708 * be valid if the child sequence number is still valid.
709 */
710 if (!dentry) {
711 if (read_seqcount_retry(&parent->d_seq, nd->seq))
712 goto out;
713 BUG_ON(nd->inode != parent->d_inode);
714 } else {
715 if (!lockref_get_not_dead(&dentry->d_lockref))
716 goto out;
717 if (read_seqcount_retry(&dentry->d_seq, seq))
718 goto drop_dentry;
719 }
720
721 /*
722 * Sequence counts matched. Now make sure that the root is
723 * still valid and get it if required.
724 */
725 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
726 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
727 rcu_read_unlock();
728 dput(dentry);
729 return -ECHILD;
730 }
731 }
732
733 rcu_read_unlock();
734 return 0;
735
736 drop_dentry:
737 rcu_read_unlock();
738 dput(dentry);
739 goto drop_root_mnt;
740 out2:
741 nd->path.mnt = NULL;
742 out1:
743 nd->path.dentry = NULL;
744 out:
745 rcu_read_unlock();
746 drop_root_mnt:
747 if (!(nd->flags & LOOKUP_ROOT))
748 nd->root.mnt = NULL;
749 return -ECHILD;
750 }
751
752 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
753 {
754 if (unlikely(!legitimize_path(nd, link, seq))) {
755 drop_links(nd);
756 nd->depth = 0;
757 nd->flags &= ~LOOKUP_RCU;
758 nd->path.mnt = NULL;
759 nd->path.dentry = NULL;
760 if (!(nd->flags & LOOKUP_ROOT))
761 nd->root.mnt = NULL;
762 rcu_read_unlock();
763 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
764 return 0;
765 }
766 path_put(link);
767 return -ECHILD;
768 }
769
770 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
771 {
772 return dentry->d_op->d_revalidate(dentry, flags);
773 }
774
775 /**
776 * complete_walk - successful completion of path walk
777 * @nd: pointer nameidata
778 *
779 * If we had been in RCU mode, drop out of it and legitimize nd->path.
780 * Revalidate the final result, unless we'd already done that during
781 * the path walk or the filesystem doesn't ask for it. Return 0 on
782 * success, -error on failure. In case of failure caller does not
783 * need to drop nd->path.
784 */
785 static int complete_walk(struct nameidata *nd)
786 {
787 struct dentry *dentry = nd->path.dentry;
788 int status;
789
790 if (nd->flags & LOOKUP_RCU) {
791 if (!(nd->flags & LOOKUP_ROOT))
792 nd->root.mnt = NULL;
793 if (unlikely(unlazy_walk(nd, NULL, 0)))
794 return -ECHILD;
795 }
796
797 if (likely(!(nd->flags & LOOKUP_JUMPED)))
798 return 0;
799
800 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
801 return 0;
802
803 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
804 if (status > 0)
805 return 0;
806
807 if (!status)
808 status = -ESTALE;
809
810 return status;
811 }
812
813 static void set_root(struct nameidata *nd)
814 {
815 struct fs_struct *fs = current->fs;
816
817 if (nd->flags & LOOKUP_RCU) {
818 unsigned seq;
819
820 do {
821 seq = read_seqcount_begin(&fs->seq);
822 nd->root = fs->root;
823 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
824 } while (read_seqcount_retry(&fs->seq, seq));
825 } else {
826 get_fs_root(fs, &nd->root);
827 }
828 }
829
830 static void path_put_conditional(struct path *path, struct nameidata *nd)
831 {
832 dput(path->dentry);
833 if (path->mnt != nd->path.mnt)
834 mntput(path->mnt);
835 }
836
837 static inline void path_to_nameidata(const struct path *path,
838 struct nameidata *nd)
839 {
840 if (!(nd->flags & LOOKUP_RCU)) {
841 dput(nd->path.dentry);
842 if (nd->path.mnt != path->mnt)
843 mntput(nd->path.mnt);
844 }
845 nd->path.mnt = path->mnt;
846 nd->path.dentry = path->dentry;
847 }
848
849 static int nd_jump_root(struct nameidata *nd)
850 {
851 if (nd->flags & LOOKUP_RCU) {
852 struct dentry *d;
853 nd->path = nd->root;
854 d = nd->path.dentry;
855 nd->inode = d->d_inode;
856 nd->seq = nd->root_seq;
857 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
858 return -ECHILD;
859 } else {
860 path_put(&nd->path);
861 nd->path = nd->root;
862 path_get(&nd->path);
863 nd->inode = nd->path.dentry->d_inode;
864 }
865 nd->flags |= LOOKUP_JUMPED;
866 return 0;
867 }
868
869 /*
870 * Helper to directly jump to a known parsed path from ->get_link,
871 * caller must have taken a reference to path beforehand.
872 */
873 void nd_jump_link(struct path *path)
874 {
875 struct nameidata *nd = current->nameidata;
876 path_put(&nd->path);
877
878 nd->path = *path;
879 nd->inode = nd->path.dentry->d_inode;
880 nd->flags |= LOOKUP_JUMPED;
881 }
882
883 static inline void put_link(struct nameidata *nd)
884 {
885 struct saved *last = nd->stack + --nd->depth;
886 do_delayed_call(&last->done);
887 if (!(nd->flags & LOOKUP_RCU))
888 path_put(&last->link);
889 }
890
891 int sysctl_protected_symlinks __read_mostly = 0;
892 int sysctl_protected_hardlinks __read_mostly = 0;
893
894 /**
895 * may_follow_link - Check symlink following for unsafe situations
896 * @nd: nameidata pathwalk data
897 *
898 * In the case of the sysctl_protected_symlinks sysctl being enabled,
899 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
900 * in a sticky world-writable directory. This is to protect privileged
901 * processes from failing races against path names that may change out
902 * from under them by way of other users creating malicious symlinks.
903 * It will permit symlinks to be followed only when outside a sticky
904 * world-writable directory, or when the uid of the symlink and follower
905 * match, or when the directory owner matches the symlink's owner.
906 *
907 * Returns 0 if following the symlink is allowed, -ve on error.
908 */
909 static inline int may_follow_link(struct nameidata *nd)
910 {
911 const struct inode *inode;
912 const struct inode *parent;
913 kuid_t puid;
914
915 if (!sysctl_protected_symlinks)
916 return 0;
917
918 /* Allowed if owner and follower match. */
919 inode = nd->link_inode;
920 if (uid_eq(current_cred()->fsuid, inode->i_uid))
921 return 0;
922
923 /* Allowed if parent directory not sticky and world-writable. */
924 parent = nd->inode;
925 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
926 return 0;
927
928 /* Allowed if parent directory and link owner match. */
929 puid = parent->i_uid;
930 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
931 return 0;
932
933 if (nd->flags & LOOKUP_RCU)
934 return -ECHILD;
935
936 audit_log_link_denied("follow_link", &nd->stack[0].link);
937 return -EACCES;
938 }
939
940 /**
941 * safe_hardlink_source - Check for safe hardlink conditions
942 * @inode: the source inode to hardlink from
943 *
944 * Return false if at least one of the following conditions:
945 * - inode is not a regular file
946 * - inode is setuid
947 * - inode is setgid and group-exec
948 * - access failure for read and write
949 *
950 * Otherwise returns true.
951 */
952 static bool safe_hardlink_source(struct inode *inode)
953 {
954 umode_t mode = inode->i_mode;
955
956 /* Special files should not get pinned to the filesystem. */
957 if (!S_ISREG(mode))
958 return false;
959
960 /* Setuid files should not get pinned to the filesystem. */
961 if (mode & S_ISUID)
962 return false;
963
964 /* Executable setgid files should not get pinned to the filesystem. */
965 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
966 return false;
967
968 /* Hardlinking to unreadable or unwritable sources is dangerous. */
969 if (inode_permission(inode, MAY_READ | MAY_WRITE))
970 return false;
971
972 return true;
973 }
974
975 /**
976 * may_linkat - Check permissions for creating a hardlink
977 * @link: the source to hardlink from
978 *
979 * Block hardlink when all of:
980 * - sysctl_protected_hardlinks enabled
981 * - fsuid does not match inode
982 * - hardlink source is unsafe (see safe_hardlink_source() above)
983 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
984 *
985 * Returns 0 if successful, -ve on error.
986 */
987 static int may_linkat(struct path *link)
988 {
989 struct inode *inode;
990
991 if (!sysctl_protected_hardlinks)
992 return 0;
993
994 inode = link->dentry->d_inode;
995
996 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
997 * otherwise, it must be a safe source.
998 */
999 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
1000 return 0;
1001
1002 audit_log_link_denied("linkat", link);
1003 return -EPERM;
1004 }
1005
1006 static __always_inline
1007 const char *get_link(struct nameidata *nd)
1008 {
1009 struct saved *last = nd->stack + nd->depth - 1;
1010 struct dentry *dentry = last->link.dentry;
1011 struct inode *inode = nd->link_inode;
1012 int error;
1013 const char *res;
1014
1015 if (!(nd->flags & LOOKUP_RCU)) {
1016 touch_atime(&last->link);
1017 cond_resched();
1018 } else if (atime_needs_update_rcu(&last->link, inode)) {
1019 if (unlikely(unlazy_walk(nd, NULL, 0)))
1020 return ERR_PTR(-ECHILD);
1021 touch_atime(&last->link);
1022 }
1023
1024 error = security_inode_follow_link(dentry, inode,
1025 nd->flags & LOOKUP_RCU);
1026 if (unlikely(error))
1027 return ERR_PTR(error);
1028
1029 nd->last_type = LAST_BIND;
1030 res = inode->i_link;
1031 if (!res) {
1032 const char * (*get)(struct dentry *, struct inode *,
1033 struct delayed_call *);
1034 get = inode->i_op->get_link;
1035 if (nd->flags & LOOKUP_RCU) {
1036 res = get(NULL, inode, &last->done);
1037 if (res == ERR_PTR(-ECHILD)) {
1038 if (unlikely(unlazy_walk(nd, NULL, 0)))
1039 return ERR_PTR(-ECHILD);
1040 res = get(dentry, inode, &last->done);
1041 }
1042 } else {
1043 res = get(dentry, inode, &last->done);
1044 }
1045 if (IS_ERR_OR_NULL(res))
1046 return res;
1047 }
1048 if (*res == '/') {
1049 if (!nd->root.mnt)
1050 set_root(nd);
1051 if (unlikely(nd_jump_root(nd)))
1052 return ERR_PTR(-ECHILD);
1053 while (unlikely(*++res == '/'))
1054 ;
1055 }
1056 if (!*res)
1057 res = NULL;
1058 return res;
1059 }
1060
1061 /*
1062 * follow_up - Find the mountpoint of path's vfsmount
1063 *
1064 * Given a path, find the mountpoint of its source file system.
1065 * Replace @path with the path of the mountpoint in the parent mount.
1066 * Up is towards /.
1067 *
1068 * Return 1 if we went up a level and 0 if we were already at the
1069 * root.
1070 */
1071 int follow_up(struct path *path)
1072 {
1073 struct mount *mnt = real_mount(path->mnt);
1074 struct mount *parent;
1075 struct dentry *mountpoint;
1076
1077 read_seqlock_excl(&mount_lock);
1078 parent = mnt->mnt_parent;
1079 if (parent == mnt) {
1080 read_sequnlock_excl(&mount_lock);
1081 return 0;
1082 }
1083 mntget(&parent->mnt);
1084 mountpoint = dget(mnt->mnt_mountpoint);
1085 read_sequnlock_excl(&mount_lock);
1086 dput(path->dentry);
1087 path->dentry = mountpoint;
1088 mntput(path->mnt);
1089 path->mnt = &parent->mnt;
1090 return 1;
1091 }
1092 EXPORT_SYMBOL(follow_up);
1093
1094 /*
1095 * Perform an automount
1096 * - return -EISDIR to tell follow_managed() to stop and return the path we
1097 * were called with.
1098 */
1099 static int follow_automount(struct path *path, struct nameidata *nd,
1100 bool *need_mntput)
1101 {
1102 struct vfsmount *mnt;
1103 const struct cred *old_cred;
1104 int err;
1105
1106 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1107 return -EREMOTE;
1108
1109 /* We don't want to mount if someone's just doing a stat -
1110 * unless they're stat'ing a directory and appended a '/' to
1111 * the name.
1112 *
1113 * We do, however, want to mount if someone wants to open or
1114 * create a file of any type under the mountpoint, wants to
1115 * traverse through the mountpoint or wants to open the
1116 * mounted directory. Also, autofs may mark negative dentries
1117 * as being automount points. These will need the attentions
1118 * of the daemon to instantiate them before they can be used.
1119 */
1120 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1121 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1122 path->dentry->d_inode)
1123 return -EISDIR;
1124
1125 if (path->dentry->d_sb->s_user_ns != &init_user_ns)
1126 return -EACCES;
1127
1128 nd->total_link_count++;
1129 if (nd->total_link_count >= 40)
1130 return -ELOOP;
1131
1132 old_cred = override_creds(&init_cred);
1133 mnt = path->dentry->d_op->d_automount(path);
1134 revert_creds(old_cred);
1135 if (IS_ERR(mnt)) {
1136 /*
1137 * The filesystem is allowed to return -EISDIR here to indicate
1138 * it doesn't want to automount. For instance, autofs would do
1139 * this so that its userspace daemon can mount on this dentry.
1140 *
1141 * However, we can only permit this if it's a terminal point in
1142 * the path being looked up; if it wasn't then the remainder of
1143 * the path is inaccessible and we should say so.
1144 */
1145 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1146 return -EREMOTE;
1147 return PTR_ERR(mnt);
1148 }
1149
1150 if (!mnt) /* mount collision */
1151 return 0;
1152
1153 if (!*need_mntput) {
1154 /* lock_mount() may release path->mnt on error */
1155 mntget(path->mnt);
1156 *need_mntput = true;
1157 }
1158 err = finish_automount(mnt, path);
1159
1160 switch (err) {
1161 case -EBUSY:
1162 /* Someone else made a mount here whilst we were busy */
1163 return 0;
1164 case 0:
1165 path_put(path);
1166 path->mnt = mnt;
1167 path->dentry = dget(mnt->mnt_root);
1168 return 0;
1169 default:
1170 return err;
1171 }
1172
1173 }
1174
1175 /*
1176 * Handle a dentry that is managed in some way.
1177 * - Flagged for transit management (autofs)
1178 * - Flagged as mountpoint
1179 * - Flagged as automount point
1180 *
1181 * This may only be called in refwalk mode.
1182 *
1183 * Serialization is taken care of in namespace.c
1184 */
1185 static int follow_managed(struct path *path, struct nameidata *nd)
1186 {
1187 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1188 unsigned managed;
1189 bool need_mntput = false;
1190 int ret = 0;
1191
1192 /* Given that we're not holding a lock here, we retain the value in a
1193 * local variable for each dentry as we look at it so that we don't see
1194 * the components of that value change under us */
1195 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1196 managed &= DCACHE_MANAGED_DENTRY,
1197 unlikely(managed != 0)) {
1198 /* Allow the filesystem to manage the transit without i_mutex
1199 * being held. */
1200 if (managed & DCACHE_MANAGE_TRANSIT) {
1201 BUG_ON(!path->dentry->d_op);
1202 BUG_ON(!path->dentry->d_op->d_manage);
1203 ret = path->dentry->d_op->d_manage(path->dentry, false);
1204 if (ret < 0)
1205 break;
1206 }
1207
1208 /* Transit to a mounted filesystem. */
1209 if (managed & DCACHE_MOUNTED) {
1210 struct vfsmount *mounted = lookup_mnt(path);
1211 if (mounted) {
1212 dput(path->dentry);
1213 if (need_mntput)
1214 mntput(path->mnt);
1215 path->mnt = mounted;
1216 path->dentry = dget(mounted->mnt_root);
1217 need_mntput = true;
1218 continue;
1219 }
1220
1221 /* Something is mounted on this dentry in another
1222 * namespace and/or whatever was mounted there in this
1223 * namespace got unmounted before lookup_mnt() could
1224 * get it */
1225 }
1226
1227 /* Handle an automount point */
1228 if (managed & DCACHE_NEED_AUTOMOUNT) {
1229 ret = follow_automount(path, nd, &need_mntput);
1230 if (ret < 0)
1231 break;
1232 continue;
1233 }
1234
1235 /* We didn't change the current path point */
1236 break;
1237 }
1238
1239 if (need_mntput && path->mnt == mnt)
1240 mntput(path->mnt);
1241 if (ret == -EISDIR || !ret)
1242 ret = 1;
1243 if (need_mntput)
1244 nd->flags |= LOOKUP_JUMPED;
1245 if (unlikely(ret < 0))
1246 path_put_conditional(path, nd);
1247 return ret;
1248 }
1249
1250 int follow_down_one(struct path *path)
1251 {
1252 struct vfsmount *mounted;
1253
1254 mounted = lookup_mnt(path);
1255 if (mounted) {
1256 dput(path->dentry);
1257 mntput(path->mnt);
1258 path->mnt = mounted;
1259 path->dentry = dget(mounted->mnt_root);
1260 return 1;
1261 }
1262 return 0;
1263 }
1264 EXPORT_SYMBOL(follow_down_one);
1265
1266 static inline int managed_dentry_rcu(struct dentry *dentry)
1267 {
1268 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1269 dentry->d_op->d_manage(dentry, true) : 0;
1270 }
1271
1272 /*
1273 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1274 * we meet a managed dentry that would need blocking.
1275 */
1276 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1277 struct inode **inode, unsigned *seqp)
1278 {
1279 for (;;) {
1280 struct mount *mounted;
1281 /*
1282 * Don't forget we might have a non-mountpoint managed dentry
1283 * that wants to block transit.
1284 */
1285 switch (managed_dentry_rcu(path->dentry)) {
1286 case -ECHILD:
1287 default:
1288 return false;
1289 case -EISDIR:
1290 return true;
1291 case 0:
1292 break;
1293 }
1294
1295 if (!d_mountpoint(path->dentry))
1296 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1297
1298 mounted = __lookup_mnt(path->mnt, path->dentry);
1299 if (!mounted)
1300 break;
1301 path->mnt = &mounted->mnt;
1302 path->dentry = mounted->mnt.mnt_root;
1303 nd->flags |= LOOKUP_JUMPED;
1304 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1305 /*
1306 * Update the inode too. We don't need to re-check the
1307 * dentry sequence number here after this d_inode read,
1308 * because a mount-point is always pinned.
1309 */
1310 *inode = path->dentry->d_inode;
1311 }
1312 return !read_seqretry(&mount_lock, nd->m_seq) &&
1313 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1314 }
1315
1316 static int follow_dotdot_rcu(struct nameidata *nd)
1317 {
1318 struct inode *inode = nd->inode;
1319
1320 while (1) {
1321 if (path_equal(&nd->path, &nd->root))
1322 break;
1323 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1324 struct dentry *old = nd->path.dentry;
1325 struct dentry *parent = old->d_parent;
1326 unsigned seq;
1327
1328 inode = parent->d_inode;
1329 seq = read_seqcount_begin(&parent->d_seq);
1330 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1331 return -ECHILD;
1332 nd->path.dentry = parent;
1333 nd->seq = seq;
1334 if (unlikely(!path_connected(&nd->path)))
1335 return -ENOENT;
1336 break;
1337 } else {
1338 struct mount *mnt = real_mount(nd->path.mnt);
1339 struct mount *mparent = mnt->mnt_parent;
1340 struct dentry *mountpoint = mnt->mnt_mountpoint;
1341 struct inode *inode2 = mountpoint->d_inode;
1342 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1343 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1344 return -ECHILD;
1345 if (&mparent->mnt == nd->path.mnt)
1346 break;
1347 /* we know that mountpoint was pinned */
1348 nd->path.dentry = mountpoint;
1349 nd->path.mnt = &mparent->mnt;
1350 inode = inode2;
1351 nd->seq = seq;
1352 }
1353 }
1354 while (unlikely(d_mountpoint(nd->path.dentry))) {
1355 struct mount *mounted;
1356 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1357 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1358 return -ECHILD;
1359 if (!mounted)
1360 break;
1361 nd->path.mnt = &mounted->mnt;
1362 nd->path.dentry = mounted->mnt.mnt_root;
1363 inode = nd->path.dentry->d_inode;
1364 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1365 }
1366 nd->inode = inode;
1367 return 0;
1368 }
1369
1370 /*
1371 * Follow down to the covering mount currently visible to userspace. At each
1372 * point, the filesystem owning that dentry may be queried as to whether the
1373 * caller is permitted to proceed or not.
1374 */
1375 int follow_down(struct path *path)
1376 {
1377 unsigned managed;
1378 int ret;
1379
1380 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1381 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1382 /* Allow the filesystem to manage the transit without i_mutex
1383 * being held.
1384 *
1385 * We indicate to the filesystem if someone is trying to mount
1386 * something here. This gives autofs the chance to deny anyone
1387 * other than its daemon the right to mount on its
1388 * superstructure.
1389 *
1390 * The filesystem may sleep at this point.
1391 */
1392 if (managed & DCACHE_MANAGE_TRANSIT) {
1393 BUG_ON(!path->dentry->d_op);
1394 BUG_ON(!path->dentry->d_op->d_manage);
1395 ret = path->dentry->d_op->d_manage(
1396 path->dentry, false);
1397 if (ret < 0)
1398 return ret == -EISDIR ? 0 : ret;
1399 }
1400
1401 /* Transit to a mounted filesystem. */
1402 if (managed & DCACHE_MOUNTED) {
1403 struct vfsmount *mounted = lookup_mnt(path);
1404 if (!mounted)
1405 break;
1406 dput(path->dentry);
1407 mntput(path->mnt);
1408 path->mnt = mounted;
1409 path->dentry = dget(mounted->mnt_root);
1410 continue;
1411 }
1412
1413 /* Don't handle automount points here */
1414 break;
1415 }
1416 return 0;
1417 }
1418 EXPORT_SYMBOL(follow_down);
1419
1420 /*
1421 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1422 */
1423 static void follow_mount(struct path *path)
1424 {
1425 while (d_mountpoint(path->dentry)) {
1426 struct vfsmount *mounted = lookup_mnt(path);
1427 if (!mounted)
1428 break;
1429 dput(path->dentry);
1430 mntput(path->mnt);
1431 path->mnt = mounted;
1432 path->dentry = dget(mounted->mnt_root);
1433 }
1434 }
1435
1436 static int path_parent_directory(struct path *path)
1437 {
1438 struct dentry *old = path->dentry;
1439 /* rare case of legitimate dget_parent()... */
1440 path->dentry = dget_parent(path->dentry);
1441 dput(old);
1442 if (unlikely(!path_connected(path)))
1443 return -ENOENT;
1444 return 0;
1445 }
1446
1447 static int follow_dotdot(struct nameidata *nd)
1448 {
1449 while(1) {
1450 if (nd->path.dentry == nd->root.dentry &&
1451 nd->path.mnt == nd->root.mnt) {
1452 break;
1453 }
1454 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1455 int ret = path_parent_directory(&nd->path);
1456 if (ret)
1457 return ret;
1458 break;
1459 }
1460 if (!follow_up(&nd->path))
1461 break;
1462 }
1463 follow_mount(&nd->path);
1464 nd->inode = nd->path.dentry->d_inode;
1465 return 0;
1466 }
1467
1468 /*
1469 * This looks up the name in dcache and possibly revalidates the found dentry.
1470 * NULL is returned if the dentry does not exist in the cache.
1471 */
1472 static struct dentry *lookup_dcache(const struct qstr *name,
1473 struct dentry *dir,
1474 unsigned int flags)
1475 {
1476 struct dentry *dentry;
1477 int error;
1478
1479 dentry = d_lookup(dir, name);
1480 if (dentry) {
1481 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1482 error = d_revalidate(dentry, flags);
1483 if (unlikely(error <= 0)) {
1484 if (!error)
1485 d_invalidate(dentry);
1486 dput(dentry);
1487 return ERR_PTR(error);
1488 }
1489 }
1490 }
1491 return dentry;
1492 }
1493
1494 /*
1495 * Call i_op->lookup on the dentry. The dentry must be negative and
1496 * unhashed.
1497 *
1498 * dir->d_inode->i_mutex must be held
1499 */
1500 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1501 unsigned int flags)
1502 {
1503 struct dentry *old;
1504
1505 /* Don't create child dentry for a dead directory. */
1506 if (unlikely(IS_DEADDIR(dir))) {
1507 dput(dentry);
1508 return ERR_PTR(-ENOENT);
1509 }
1510
1511 old = dir->i_op->lookup(dir, dentry, flags);
1512 if (unlikely(old)) {
1513 dput(dentry);
1514 dentry = old;
1515 }
1516 return dentry;
1517 }
1518
1519 static struct dentry *__lookup_hash(const struct qstr *name,
1520 struct dentry *base, unsigned int flags)
1521 {
1522 struct dentry *dentry = lookup_dcache(name, base, flags);
1523
1524 if (dentry)
1525 return dentry;
1526
1527 dentry = d_alloc(base, name);
1528 if (unlikely(!dentry))
1529 return ERR_PTR(-ENOMEM);
1530
1531 return lookup_real(base->d_inode, dentry, flags);
1532 }
1533
1534 static int lookup_fast(struct nameidata *nd,
1535 struct path *path, struct inode **inode,
1536 unsigned *seqp)
1537 {
1538 struct vfsmount *mnt = nd->path.mnt;
1539 struct dentry *dentry, *parent = nd->path.dentry;
1540 int status = 1;
1541 int err;
1542
1543 /*
1544 * Rename seqlock is not required here because in the off chance
1545 * of a false negative due to a concurrent rename, the caller is
1546 * going to fall back to non-racy lookup.
1547 */
1548 if (nd->flags & LOOKUP_RCU) {
1549 unsigned seq;
1550 bool negative;
1551 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1552 if (unlikely(!dentry)) {
1553 if (unlazy_walk(nd, NULL, 0))
1554 return -ECHILD;
1555 return 0;
1556 }
1557
1558 /*
1559 * This sequence count validates that the inode matches
1560 * the dentry name information from lookup.
1561 */
1562 *inode = d_backing_inode(dentry);
1563 negative = d_is_negative(dentry);
1564 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1565 return -ECHILD;
1566
1567 /*
1568 * This sequence count validates that the parent had no
1569 * changes while we did the lookup of the dentry above.
1570 *
1571 * The memory barrier in read_seqcount_begin of child is
1572 * enough, we can use __read_seqcount_retry here.
1573 */
1574 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1575 return -ECHILD;
1576
1577 *seqp = seq;
1578 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1579 status = d_revalidate(dentry, nd->flags);
1580 if (unlikely(status <= 0)) {
1581 if (unlazy_walk(nd, dentry, seq))
1582 return -ECHILD;
1583 if (status == -ECHILD)
1584 status = d_revalidate(dentry, nd->flags);
1585 } else {
1586 /*
1587 * Note: do negative dentry check after revalidation in
1588 * case that drops it.
1589 */
1590 if (unlikely(negative))
1591 return -ENOENT;
1592 path->mnt = mnt;
1593 path->dentry = dentry;
1594 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1595 return 1;
1596 if (unlazy_walk(nd, dentry, seq))
1597 return -ECHILD;
1598 }
1599 } else {
1600 dentry = __d_lookup(parent, &nd->last);
1601 if (unlikely(!dentry))
1602 return 0;
1603 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1604 status = d_revalidate(dentry, nd->flags);
1605 }
1606 if (unlikely(status <= 0)) {
1607 if (!status)
1608 d_invalidate(dentry);
1609 dput(dentry);
1610 return status;
1611 }
1612 if (unlikely(d_is_negative(dentry))) {
1613 dput(dentry);
1614 return -ENOENT;
1615 }
1616
1617 path->mnt = mnt;
1618 path->dentry = dentry;
1619 err = follow_managed(path, nd);
1620 if (likely(err > 0))
1621 *inode = d_backing_inode(path->dentry);
1622 return err;
1623 }
1624
1625 /* Fast lookup failed, do it the slow way */
1626 static struct dentry *lookup_slow(const struct qstr *name,
1627 struct dentry *dir,
1628 unsigned int flags)
1629 {
1630 struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1631 struct inode *inode = dir->d_inode;
1632 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1633
1634 inode_lock_shared(inode);
1635 /* Don't go there if it's already dead */
1636 if (unlikely(IS_DEADDIR(inode)))
1637 goto out;
1638 again:
1639 dentry = d_alloc_parallel(dir, name, &wq);
1640 if (IS_ERR(dentry))
1641 goto out;
1642 if (unlikely(!d_in_lookup(dentry))) {
1643 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1644 !(flags & LOOKUP_NO_REVAL)) {
1645 int error = d_revalidate(dentry, flags);
1646 if (unlikely(error <= 0)) {
1647 if (!error) {
1648 d_invalidate(dentry);
1649 dput(dentry);
1650 goto again;
1651 }
1652 dput(dentry);
1653 dentry = ERR_PTR(error);
1654 }
1655 }
1656 } else {
1657 old = inode->i_op->lookup(inode, dentry, flags);
1658 d_lookup_done(dentry);
1659 if (unlikely(old)) {
1660 dput(dentry);
1661 dentry = old;
1662 }
1663 }
1664 out:
1665 inode_unlock_shared(inode);
1666 return dentry;
1667 }
1668
1669 static inline int may_lookup(struct nameidata *nd)
1670 {
1671 if (nd->flags & LOOKUP_RCU) {
1672 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1673 if (err != -ECHILD)
1674 return err;
1675 if (unlazy_walk(nd, NULL, 0))
1676 return -ECHILD;
1677 }
1678 return inode_permission(nd->inode, MAY_EXEC);
1679 }
1680
1681 static inline int handle_dots(struct nameidata *nd, int type)
1682 {
1683 if (type == LAST_DOTDOT) {
1684 if (!nd->root.mnt)
1685 set_root(nd);
1686 if (nd->flags & LOOKUP_RCU) {
1687 return follow_dotdot_rcu(nd);
1688 } else
1689 return follow_dotdot(nd);
1690 }
1691 return 0;
1692 }
1693
1694 static int pick_link(struct nameidata *nd, struct path *link,
1695 struct inode *inode, unsigned seq)
1696 {
1697 int error;
1698 struct saved *last;
1699 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1700 path_to_nameidata(link, nd);
1701 return -ELOOP;
1702 }
1703 if (!(nd->flags & LOOKUP_RCU)) {
1704 if (link->mnt == nd->path.mnt)
1705 mntget(link->mnt);
1706 }
1707 error = nd_alloc_stack(nd);
1708 if (unlikely(error)) {
1709 if (error == -ECHILD) {
1710 if (unlikely(unlazy_link(nd, link, seq)))
1711 return -ECHILD;
1712 error = nd_alloc_stack(nd);
1713 }
1714 if (error) {
1715 path_put(link);
1716 return error;
1717 }
1718 }
1719
1720 last = nd->stack + nd->depth++;
1721 last->link = *link;
1722 clear_delayed_call(&last->done);
1723 nd->link_inode = inode;
1724 last->seq = seq;
1725 return 1;
1726 }
1727
1728 /*
1729 * Do we need to follow links? We _really_ want to be able
1730 * to do this check without having to look at inode->i_op,
1731 * so we keep a cache of "no, this doesn't need follow_link"
1732 * for the common case.
1733 */
1734 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1735 int follow,
1736 struct inode *inode, unsigned seq)
1737 {
1738 if (likely(!d_is_symlink(link->dentry)))
1739 return 0;
1740 if (!follow)
1741 return 0;
1742 /* make sure that d_is_symlink above matches inode */
1743 if (nd->flags & LOOKUP_RCU) {
1744 if (read_seqcount_retry(&link->dentry->d_seq, seq))
1745 return -ECHILD;
1746 }
1747 return pick_link(nd, link, inode, seq);
1748 }
1749
1750 enum {WALK_GET = 1, WALK_PUT = 2};
1751
1752 static int walk_component(struct nameidata *nd, int flags)
1753 {
1754 struct path path;
1755 struct inode *inode;
1756 unsigned seq;
1757 int err;
1758 /*
1759 * "." and ".." are special - ".." especially so because it has
1760 * to be able to know about the current root directory and
1761 * parent relationships.
1762 */
1763 if (unlikely(nd->last_type != LAST_NORM)) {
1764 err = handle_dots(nd, nd->last_type);
1765 if (flags & WALK_PUT)
1766 put_link(nd);
1767 return err;
1768 }
1769 err = lookup_fast(nd, &path, &inode, &seq);
1770 if (unlikely(err <= 0)) {
1771 if (err < 0)
1772 return err;
1773 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1774 nd->flags);
1775 if (IS_ERR(path.dentry))
1776 return PTR_ERR(path.dentry);
1777
1778 path.mnt = nd->path.mnt;
1779 err = follow_managed(&path, nd);
1780 if (unlikely(err < 0))
1781 return err;
1782
1783 if (unlikely(d_is_negative(path.dentry))) {
1784 path_to_nameidata(&path, nd);
1785 return -ENOENT;
1786 }
1787
1788 seq = 0; /* we are already out of RCU mode */
1789 inode = d_backing_inode(path.dentry);
1790 }
1791
1792 if (flags & WALK_PUT)
1793 put_link(nd);
1794 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1795 if (unlikely(err))
1796 return err;
1797 path_to_nameidata(&path, nd);
1798 nd->inode = inode;
1799 nd->seq = seq;
1800 return 0;
1801 }
1802
1803 /*
1804 * We can do the critical dentry name comparison and hashing
1805 * operations one word at a time, but we are limited to:
1806 *
1807 * - Architectures with fast unaligned word accesses. We could
1808 * do a "get_unaligned()" if this helps and is sufficiently
1809 * fast.
1810 *
1811 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1812 * do not trap on the (extremely unlikely) case of a page
1813 * crossing operation.
1814 *
1815 * - Furthermore, we need an efficient 64-bit compile for the
1816 * 64-bit case in order to generate the "number of bytes in
1817 * the final mask". Again, that could be replaced with a
1818 * efficient population count instruction or similar.
1819 */
1820 #ifdef CONFIG_DCACHE_WORD_ACCESS
1821
1822 #include <asm/word-at-a-time.h>
1823
1824 #ifdef HASH_MIX
1825
1826 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1827
1828 #elif defined(CONFIG_64BIT)
1829 /*
1830 * Register pressure in the mixing function is an issue, particularly
1831 * on 32-bit x86, but almost any function requires one state value and
1832 * one temporary. Instead, use a function designed for two state values
1833 * and no temporaries.
1834 *
1835 * This function cannot create a collision in only two iterations, so
1836 * we have two iterations to achieve avalanche. In those two iterations,
1837 * we have six layers of mixing, which is enough to spread one bit's
1838 * influence out to 2^6 = 64 state bits.
1839 *
1840 * Rotate constants are scored by considering either 64 one-bit input
1841 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1842 * probability of that delta causing a change to each of the 128 output
1843 * bits, using a sample of random initial states.
1844 *
1845 * The Shannon entropy of the computed probabilities is then summed
1846 * to produce a score. Ideally, any input change has a 50% chance of
1847 * toggling any given output bit.
1848 *
1849 * Mixing scores (in bits) for (12,45):
1850 * Input delta: 1-bit 2-bit
1851 * 1 round: 713.3 42542.6
1852 * 2 rounds: 2753.7 140389.8
1853 * 3 rounds: 5954.1 233458.2
1854 * 4 rounds: 7862.6 256672.2
1855 * Perfect: 8192 258048
1856 * (64*128) (64*63/2 * 128)
1857 */
1858 #define HASH_MIX(x, y, a) \
1859 ( x ^= (a), \
1860 y ^= x, x = rol64(x,12),\
1861 x += y, y = rol64(y,45),\
1862 y *= 9 )
1863
1864 /*
1865 * Fold two longs into one 32-bit hash value. This must be fast, but
1866 * latency isn't quite as critical, as there is a fair bit of additional
1867 * work done before the hash value is used.
1868 */
1869 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1870 {
1871 y ^= x * GOLDEN_RATIO_64;
1872 y *= GOLDEN_RATIO_64;
1873 return y >> 32;
1874 }
1875
1876 #else /* 32-bit case */
1877
1878 /*
1879 * Mixing scores (in bits) for (7,20):
1880 * Input delta: 1-bit 2-bit
1881 * 1 round: 330.3 9201.6
1882 * 2 rounds: 1246.4 25475.4
1883 * 3 rounds: 1907.1 31295.1
1884 * 4 rounds: 2042.3 31718.6
1885 * Perfect: 2048 31744
1886 * (32*64) (32*31/2 * 64)
1887 */
1888 #define HASH_MIX(x, y, a) \
1889 ( x ^= (a), \
1890 y ^= x, x = rol32(x, 7),\
1891 x += y, y = rol32(y,20),\
1892 y *= 9 )
1893
1894 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1895 {
1896 /* Use arch-optimized multiply if one exists */
1897 return __hash_32(y ^ __hash_32(x));
1898 }
1899
1900 #endif
1901
1902 /*
1903 * Return the hash of a string of known length. This is carfully
1904 * designed to match hash_name(), which is the more critical function.
1905 * In particular, we must end by hashing a final word containing 0..7
1906 * payload bytes, to match the way that hash_name() iterates until it
1907 * finds the delimiter after the name.
1908 */
1909 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1910 {
1911 unsigned long a, x = 0, y = (unsigned long)salt;
1912
1913 for (;;) {
1914 if (!len)
1915 goto done;
1916 a = load_unaligned_zeropad(name);
1917 if (len < sizeof(unsigned long))
1918 break;
1919 HASH_MIX(x, y, a);
1920 name += sizeof(unsigned long);
1921 len -= sizeof(unsigned long);
1922 }
1923 x ^= a & bytemask_from_count(len);
1924 done:
1925 return fold_hash(x, y);
1926 }
1927 EXPORT_SYMBOL(full_name_hash);
1928
1929 /* Return the "hash_len" (hash and length) of a null-terminated string */
1930 u64 hashlen_string(const void *salt, const char *name)
1931 {
1932 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1933 unsigned long adata, mask, len;
1934 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1935
1936 len = 0;
1937 goto inside;
1938
1939 do {
1940 HASH_MIX(x, y, a);
1941 len += sizeof(unsigned long);
1942 inside:
1943 a = load_unaligned_zeropad(name+len);
1944 } while (!has_zero(a, &adata, &constants));
1945
1946 adata = prep_zero_mask(a, adata, &constants);
1947 mask = create_zero_mask(adata);
1948 x ^= a & zero_bytemask(mask);
1949
1950 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1951 }
1952 EXPORT_SYMBOL(hashlen_string);
1953
1954 /*
1955 * Calculate the length and hash of the path component, and
1956 * return the "hash_len" as the result.
1957 */
1958 static inline u64 hash_name(const void *salt, const char *name)
1959 {
1960 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1961 unsigned long adata, bdata, mask, len;
1962 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1963
1964 len = 0;
1965 goto inside;
1966
1967 do {
1968 HASH_MIX(x, y, a);
1969 len += sizeof(unsigned long);
1970 inside:
1971 a = load_unaligned_zeropad(name+len);
1972 b = a ^ REPEAT_BYTE('/');
1973 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1974
1975 adata = prep_zero_mask(a, adata, &constants);
1976 bdata = prep_zero_mask(b, bdata, &constants);
1977 mask = create_zero_mask(adata | bdata);
1978 x ^= a & zero_bytemask(mask);
1979
1980 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1981 }
1982
1983 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1984
1985 /* Return the hash of a string of known length */
1986 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1987 {
1988 unsigned long hash = init_name_hash(salt);
1989 while (len--)
1990 hash = partial_name_hash((unsigned char)*name++, hash);
1991 return end_name_hash(hash);
1992 }
1993 EXPORT_SYMBOL(full_name_hash);
1994
1995 /* Return the "hash_len" (hash and length) of a null-terminated string */
1996 u64 hashlen_string(const void *salt, const char *name)
1997 {
1998 unsigned long hash = init_name_hash(salt);
1999 unsigned long len = 0, c;
2000
2001 c = (unsigned char)*name;
2002 while (c) {
2003 len++;
2004 hash = partial_name_hash(c, hash);
2005 c = (unsigned char)name[len];
2006 }
2007 return hashlen_create(end_name_hash(hash), len);
2008 }
2009 EXPORT_SYMBOL(hashlen_string);
2010
2011 /*
2012 * We know there's a real path component here of at least
2013 * one character.
2014 */
2015 static inline u64 hash_name(const void *salt, const char *name)
2016 {
2017 unsigned long hash = init_name_hash(salt);
2018 unsigned long len = 0, c;
2019
2020 c = (unsigned char)*name;
2021 do {
2022 len++;
2023 hash = partial_name_hash(c, hash);
2024 c = (unsigned char)name[len];
2025 } while (c && c != '/');
2026 return hashlen_create(end_name_hash(hash), len);
2027 }
2028
2029 #endif
2030
2031 /*
2032 * Name resolution.
2033 * This is the basic name resolution function, turning a pathname into
2034 * the final dentry. We expect 'base' to be positive and a directory.
2035 *
2036 * Returns 0 and nd will have valid dentry and mnt on success.
2037 * Returns error and drops reference to input namei data on failure.
2038 */
2039 static int link_path_walk(const char *name, struct nameidata *nd)
2040 {
2041 int err;
2042
2043 while (*name=='/')
2044 name++;
2045 if (!*name)
2046 return 0;
2047
2048 /* At this point we know we have a real path component. */
2049 for(;;) {
2050 u64 hash_len;
2051 int type;
2052
2053 err = may_lookup(nd);
2054 if (err)
2055 return err;
2056
2057 hash_len = hash_name(nd->path.dentry, name);
2058
2059 type = LAST_NORM;
2060 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2061 case 2:
2062 if (name[1] == '.') {
2063 type = LAST_DOTDOT;
2064 nd->flags |= LOOKUP_JUMPED;
2065 }
2066 break;
2067 case 1:
2068 type = LAST_DOT;
2069 }
2070 if (likely(type == LAST_NORM)) {
2071 struct dentry *parent = nd->path.dentry;
2072 nd->flags &= ~LOOKUP_JUMPED;
2073 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2074 struct qstr this = { { .hash_len = hash_len }, .name = name };
2075 err = parent->d_op->d_hash(parent, &this);
2076 if (err < 0)
2077 return err;
2078 hash_len = this.hash_len;
2079 name = this.name;
2080 }
2081 }
2082
2083 nd->last.hash_len = hash_len;
2084 nd->last.name = name;
2085 nd->last_type = type;
2086
2087 name += hashlen_len(hash_len);
2088 if (!*name)
2089 goto OK;
2090 /*
2091 * If it wasn't NUL, we know it was '/'. Skip that
2092 * slash, and continue until no more slashes.
2093 */
2094 do {
2095 name++;
2096 } while (unlikely(*name == '/'));
2097 if (unlikely(!*name)) {
2098 OK:
2099 /* pathname body, done */
2100 if (!nd->depth)
2101 return 0;
2102 name = nd->stack[nd->depth - 1].name;
2103 /* trailing symlink, done */
2104 if (!name)
2105 return 0;
2106 /* last component of nested symlink */
2107 err = walk_component(nd, WALK_GET | WALK_PUT);
2108 } else {
2109 err = walk_component(nd, WALK_GET);
2110 }
2111 if (err < 0)
2112 return err;
2113
2114 if (err) {
2115 const char *s = get_link(nd);
2116
2117 if (IS_ERR(s))
2118 return PTR_ERR(s);
2119 err = 0;
2120 if (unlikely(!s)) {
2121 /* jumped */
2122 put_link(nd);
2123 } else {
2124 nd->stack[nd->depth - 1].name = name;
2125 name = s;
2126 continue;
2127 }
2128 }
2129 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2130 if (nd->flags & LOOKUP_RCU) {
2131 if (unlazy_walk(nd, NULL, 0))
2132 return -ECHILD;
2133 }
2134 return -ENOTDIR;
2135 }
2136 }
2137 }
2138
2139 static const char *path_init(struct nameidata *nd, unsigned flags)
2140 {
2141 int retval = 0;
2142 const char *s = nd->name->name;
2143
2144 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2145 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2146 nd->depth = 0;
2147 if (flags & LOOKUP_ROOT) {
2148 struct dentry *root = nd->root.dentry;
2149 struct inode *inode = root->d_inode;
2150 if (*s) {
2151 if (!d_can_lookup(root))
2152 return ERR_PTR(-ENOTDIR);
2153 retval = inode_permission(inode, MAY_EXEC);
2154 if (retval)
2155 return ERR_PTR(retval);
2156 }
2157 nd->path = nd->root;
2158 nd->inode = inode;
2159 if (flags & LOOKUP_RCU) {
2160 rcu_read_lock();
2161 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2162 nd->root_seq = nd->seq;
2163 nd->m_seq = read_seqbegin(&mount_lock);
2164 } else {
2165 path_get(&nd->path);
2166 }
2167 return s;
2168 }
2169
2170 nd->root.mnt = NULL;
2171 nd->path.mnt = NULL;
2172 nd->path.dentry = NULL;
2173
2174 nd->m_seq = read_seqbegin(&mount_lock);
2175 if (*s == '/') {
2176 if (flags & LOOKUP_RCU)
2177 rcu_read_lock();
2178 set_root(nd);
2179 if (likely(!nd_jump_root(nd)))
2180 return s;
2181 nd->root.mnt = NULL;
2182 rcu_read_unlock();
2183 return ERR_PTR(-ECHILD);
2184 } else if (nd->dfd == AT_FDCWD) {
2185 if (flags & LOOKUP_RCU) {
2186 struct fs_struct *fs = current->fs;
2187 unsigned seq;
2188
2189 rcu_read_lock();
2190
2191 do {
2192 seq = read_seqcount_begin(&fs->seq);
2193 nd->path = fs->pwd;
2194 nd->inode = nd->path.dentry->d_inode;
2195 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2196 } while (read_seqcount_retry(&fs->seq, seq));
2197 } else {
2198 get_fs_pwd(current->fs, &nd->path);
2199 nd->inode = nd->path.dentry->d_inode;
2200 }
2201 return s;
2202 } else {
2203 /* Caller must check execute permissions on the starting path component */
2204 struct fd f = fdget_raw(nd->dfd);
2205 struct dentry *dentry;
2206
2207 if (!f.file)
2208 return ERR_PTR(-EBADF);
2209
2210 dentry = f.file->f_path.dentry;
2211
2212 if (*s) {
2213 if (!d_can_lookup(dentry)) {
2214 fdput(f);
2215 return ERR_PTR(-ENOTDIR);
2216 }
2217 }
2218
2219 nd->path = f.file->f_path;
2220 if (flags & LOOKUP_RCU) {
2221 rcu_read_lock();
2222 nd->inode = nd->path.dentry->d_inode;
2223 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2224 } else {
2225 path_get(&nd->path);
2226 nd->inode = nd->path.dentry->d_inode;
2227 }
2228 fdput(f);
2229 return s;
2230 }
2231 }
2232
2233 static const char *trailing_symlink(struct nameidata *nd)
2234 {
2235 const char *s;
2236 int error = may_follow_link(nd);
2237 if (unlikely(error))
2238 return ERR_PTR(error);
2239 nd->flags |= LOOKUP_PARENT;
2240 nd->stack[0].name = NULL;
2241 s = get_link(nd);
2242 return s ? s : "";
2243 }
2244
2245 static inline int lookup_last(struct nameidata *nd)
2246 {
2247 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2248 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2249
2250 nd->flags &= ~LOOKUP_PARENT;
2251 return walk_component(nd,
2252 nd->flags & LOOKUP_FOLLOW
2253 ? nd->depth
2254 ? WALK_PUT | WALK_GET
2255 : WALK_GET
2256 : 0);
2257 }
2258
2259 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2260 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2261 {
2262 const char *s = path_init(nd, flags);
2263 int err;
2264
2265 if (IS_ERR(s))
2266 return PTR_ERR(s);
2267 while (!(err = link_path_walk(s, nd))
2268 && ((err = lookup_last(nd)) > 0)) {
2269 s = trailing_symlink(nd);
2270 if (IS_ERR(s)) {
2271 err = PTR_ERR(s);
2272 break;
2273 }
2274 }
2275 if (!err)
2276 err = complete_walk(nd);
2277
2278 if (!err && nd->flags & LOOKUP_DIRECTORY)
2279 if (!d_can_lookup(nd->path.dentry))
2280 err = -ENOTDIR;
2281 if (!err) {
2282 *path = nd->path;
2283 nd->path.mnt = NULL;
2284 nd->path.dentry = NULL;
2285 }
2286 terminate_walk(nd);
2287 return err;
2288 }
2289
2290 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2291 struct path *path, struct path *root)
2292 {
2293 int retval;
2294 struct nameidata nd;
2295 if (IS_ERR(name))
2296 return PTR_ERR(name);
2297 if (unlikely(root)) {
2298 nd.root = *root;
2299 flags |= LOOKUP_ROOT;
2300 }
2301 set_nameidata(&nd, dfd, name);
2302 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2303 if (unlikely(retval == -ECHILD))
2304 retval = path_lookupat(&nd, flags, path);
2305 if (unlikely(retval == -ESTALE))
2306 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2307
2308 if (likely(!retval))
2309 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2310 restore_nameidata();
2311 putname(name);
2312 return retval;
2313 }
2314
2315 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2316 static int path_parentat(struct nameidata *nd, unsigned flags,
2317 struct path *parent)
2318 {
2319 const char *s = path_init(nd, flags);
2320 int err;
2321 if (IS_ERR(s))
2322 return PTR_ERR(s);
2323 err = link_path_walk(s, nd);
2324 if (!err)
2325 err = complete_walk(nd);
2326 if (!err) {
2327 *parent = nd->path;
2328 nd->path.mnt = NULL;
2329 nd->path.dentry = NULL;
2330 }
2331 terminate_walk(nd);
2332 return err;
2333 }
2334
2335 static struct filename *filename_parentat(int dfd, struct filename *name,
2336 unsigned int flags, struct path *parent,
2337 struct qstr *last, int *type)
2338 {
2339 int retval;
2340 struct nameidata nd;
2341
2342 if (IS_ERR(name))
2343 return name;
2344 set_nameidata(&nd, dfd, name);
2345 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2346 if (unlikely(retval == -ECHILD))
2347 retval = path_parentat(&nd, flags, parent);
2348 if (unlikely(retval == -ESTALE))
2349 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2350 if (likely(!retval)) {
2351 *last = nd.last;
2352 *type = nd.last_type;
2353 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2354 } else {
2355 putname(name);
2356 name = ERR_PTR(retval);
2357 }
2358 restore_nameidata();
2359 return name;
2360 }
2361
2362 /* does lookup, returns the object with parent locked */
2363 struct dentry *kern_path_locked(const char *name, struct path *path)
2364 {
2365 struct filename *filename;
2366 struct dentry *d;
2367 struct qstr last;
2368 int type;
2369
2370 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2371 &last, &type);
2372 if (IS_ERR(filename))
2373 return ERR_CAST(filename);
2374 if (unlikely(type != LAST_NORM)) {
2375 path_put(path);
2376 putname(filename);
2377 return ERR_PTR(-EINVAL);
2378 }
2379 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2380 d = __lookup_hash(&last, path->dentry, 0);
2381 if (IS_ERR(d)) {
2382 inode_unlock(path->dentry->d_inode);
2383 path_put(path);
2384 }
2385 putname(filename);
2386 return d;
2387 }
2388
2389 int kern_path(const char *name, unsigned int flags, struct path *path)
2390 {
2391 return filename_lookup(AT_FDCWD, getname_kernel(name),
2392 flags, path, NULL);
2393 }
2394 EXPORT_SYMBOL(kern_path);
2395
2396 /**
2397 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2398 * @dentry: pointer to dentry of the base directory
2399 * @mnt: pointer to vfs mount of the base directory
2400 * @name: pointer to file name
2401 * @flags: lookup flags
2402 * @path: pointer to struct path to fill
2403 */
2404 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2405 const char *name, unsigned int flags,
2406 struct path *path)
2407 {
2408 struct path root = {.mnt = mnt, .dentry = dentry};
2409 /* the first argument of filename_lookup() is ignored with root */
2410 return filename_lookup(AT_FDCWD, getname_kernel(name),
2411 flags , path, &root);
2412 }
2413 EXPORT_SYMBOL(vfs_path_lookup);
2414
2415 /**
2416 * lookup_one_len - filesystem helper to lookup single pathname component
2417 * @name: pathname component to lookup
2418 * @base: base directory to lookup from
2419 * @len: maximum length @len should be interpreted to
2420 *
2421 * Note that this routine is purely a helper for filesystem usage and should
2422 * not be called by generic code.
2423 *
2424 * The caller must hold base->i_mutex.
2425 */
2426 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2427 {
2428 struct qstr this;
2429 unsigned int c;
2430 int err;
2431
2432 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2433
2434 this.name = name;
2435 this.len = len;
2436 this.hash = full_name_hash(base, name, len);
2437 if (!len)
2438 return ERR_PTR(-EACCES);
2439
2440 if (unlikely(name[0] == '.')) {
2441 if (len < 2 || (len == 2 && name[1] == '.'))
2442 return ERR_PTR(-EACCES);
2443 }
2444
2445 while (len--) {
2446 c = *(const unsigned char *)name++;
2447 if (c == '/' || c == '\0')
2448 return ERR_PTR(-EACCES);
2449 }
2450 /*
2451 * See if the low-level filesystem might want
2452 * to use its own hash..
2453 */
2454 if (base->d_flags & DCACHE_OP_HASH) {
2455 int err = base->d_op->d_hash(base, &this);
2456 if (err < 0)
2457 return ERR_PTR(err);
2458 }
2459
2460 err = inode_permission(base->d_inode, MAY_EXEC);
2461 if (err)
2462 return ERR_PTR(err);
2463
2464 return __lookup_hash(&this, base, 0);
2465 }
2466 EXPORT_SYMBOL(lookup_one_len);
2467
2468 /**
2469 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2470 * @name: pathname component to lookup
2471 * @base: base directory to lookup from
2472 * @len: maximum length @len should be interpreted to
2473 *
2474 * Note that this routine is purely a helper for filesystem usage and should
2475 * not be called by generic code.
2476 *
2477 * Unlike lookup_one_len, it should be called without the parent
2478 * i_mutex held, and will take the i_mutex itself if necessary.
2479 */
2480 struct dentry *lookup_one_len_unlocked(const char *name,
2481 struct dentry *base, int len)
2482 {
2483 struct qstr this;
2484 unsigned int c;
2485 int err;
2486 struct dentry *ret;
2487
2488 this.name = name;
2489 this.len = len;
2490 this.hash = full_name_hash(base, name, len);
2491 if (!len)
2492 return ERR_PTR(-EACCES);
2493
2494 if (unlikely(name[0] == '.')) {
2495 if (len < 2 || (len == 2 && name[1] == '.'))
2496 return ERR_PTR(-EACCES);
2497 }
2498
2499 while (len--) {
2500 c = *(const unsigned char *)name++;
2501 if (c == '/' || c == '\0')
2502 return ERR_PTR(-EACCES);
2503 }
2504 /*
2505 * See if the low-level filesystem might want
2506 * to use its own hash..
2507 */
2508 if (base->d_flags & DCACHE_OP_HASH) {
2509 int err = base->d_op->d_hash(base, &this);
2510 if (err < 0)
2511 return ERR_PTR(err);
2512 }
2513
2514 err = inode_permission(base->d_inode, MAY_EXEC);
2515 if (err)
2516 return ERR_PTR(err);
2517
2518 ret = lookup_dcache(&this, base, 0);
2519 if (!ret)
2520 ret = lookup_slow(&this, base, 0);
2521 return ret;
2522 }
2523 EXPORT_SYMBOL(lookup_one_len_unlocked);
2524
2525 #ifdef CONFIG_UNIX98_PTYS
2526 int path_pts(struct path *path)
2527 {
2528 /* Find something mounted on "pts" in the same directory as
2529 * the input path.
2530 */
2531 struct dentry *child, *parent;
2532 struct qstr this;
2533 int ret;
2534
2535 ret = path_parent_directory(path);
2536 if (ret)
2537 return ret;
2538
2539 parent = path->dentry;
2540 this.name = "pts";
2541 this.len = 3;
2542 child = d_hash_and_lookup(parent, &this);
2543 if (!child)
2544 return -ENOENT;
2545
2546 path->dentry = child;
2547 dput(parent);
2548 follow_mount(path);
2549 return 0;
2550 }
2551 #endif
2552
2553 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2554 struct path *path, int *empty)
2555 {
2556 return filename_lookup(dfd, getname_flags(name, flags, empty),
2557 flags, path, NULL);
2558 }
2559 EXPORT_SYMBOL(user_path_at_empty);
2560
2561 /*
2562 * NB: most callers don't do anything directly with the reference to the
2563 * to struct filename, but the nd->last pointer points into the name string
2564 * allocated by getname. So we must hold the reference to it until all
2565 * path-walking is complete.
2566 */
2567 static inline struct filename *
2568 user_path_parent(int dfd, const char __user *path,
2569 struct path *parent,
2570 struct qstr *last,
2571 int *type,
2572 unsigned int flags)
2573 {
2574 /* only LOOKUP_REVAL is allowed in extra flags */
2575 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2576 parent, last, type);
2577 }
2578
2579 /**
2580 * mountpoint_last - look up last component for umount
2581 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2582 * @path: pointer to container for result
2583 *
2584 * This is a special lookup_last function just for umount. In this case, we
2585 * need to resolve the path without doing any revalidation.
2586 *
2587 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2588 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2589 * in almost all cases, this lookup will be served out of the dcache. The only
2590 * cases where it won't are if nd->last refers to a symlink or the path is
2591 * bogus and it doesn't exist.
2592 *
2593 * Returns:
2594 * -error: if there was an error during lookup. This includes -ENOENT if the
2595 * lookup found a negative dentry. The nd->path reference will also be
2596 * put in this case.
2597 *
2598 * 0: if we successfully resolved nd->path and found it to not to be a
2599 * symlink that needs to be followed. "path" will also be populated.
2600 * The nd->path reference will also be put.
2601 *
2602 * 1: if we successfully resolved nd->last and found it to be a symlink
2603 * that needs to be followed. "path" will be populated with the path
2604 * to the link, and nd->path will *not* be put.
2605 */
2606 static int
2607 mountpoint_last(struct nameidata *nd, struct path *path)
2608 {
2609 int error = 0;
2610 struct dentry *dentry;
2611 struct dentry *dir = nd->path.dentry;
2612
2613 /* If we're in rcuwalk, drop out of it to handle last component */
2614 if (nd->flags & LOOKUP_RCU) {
2615 if (unlazy_walk(nd, NULL, 0))
2616 return -ECHILD;
2617 }
2618
2619 nd->flags &= ~LOOKUP_PARENT;
2620
2621 if (unlikely(nd->last_type != LAST_NORM)) {
2622 error = handle_dots(nd, nd->last_type);
2623 if (error)
2624 return error;
2625 dentry = dget(nd->path.dentry);
2626 } else {
2627 dentry = d_lookup(dir, &nd->last);
2628 if (!dentry) {
2629 /*
2630 * No cached dentry. Mounted dentries are pinned in the
2631 * cache, so that means that this dentry is probably
2632 * a symlink or the path doesn't actually point
2633 * to a mounted dentry.
2634 */
2635 dentry = lookup_slow(&nd->last, dir,
2636 nd->flags | LOOKUP_NO_REVAL);
2637 if (IS_ERR(dentry))
2638 return PTR_ERR(dentry);
2639 }
2640 }
2641 if (d_is_negative(dentry)) {
2642 dput(dentry);
2643 return -ENOENT;
2644 }
2645 if (nd->depth)
2646 put_link(nd);
2647 path->dentry = dentry;
2648 path->mnt = nd->path.mnt;
2649 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2650 d_backing_inode(dentry), 0);
2651 if (unlikely(error))
2652 return error;
2653 mntget(path->mnt);
2654 follow_mount(path);
2655 return 0;
2656 }
2657
2658 /**
2659 * path_mountpoint - look up a path to be umounted
2660 * @nd: lookup context
2661 * @flags: lookup flags
2662 * @path: pointer to container for result
2663 *
2664 * Look up the given name, but don't attempt to revalidate the last component.
2665 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2666 */
2667 static int
2668 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2669 {
2670 const char *s = path_init(nd, flags);
2671 int err;
2672 if (IS_ERR(s))
2673 return PTR_ERR(s);
2674 while (!(err = link_path_walk(s, nd)) &&
2675 (err = mountpoint_last(nd, path)) > 0) {
2676 s = trailing_symlink(nd);
2677 if (IS_ERR(s)) {
2678 err = PTR_ERR(s);
2679 break;
2680 }
2681 }
2682 terminate_walk(nd);
2683 return err;
2684 }
2685
2686 static int
2687 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2688 unsigned int flags)
2689 {
2690 struct nameidata nd;
2691 int error;
2692 if (IS_ERR(name))
2693 return PTR_ERR(name);
2694 set_nameidata(&nd, dfd, name);
2695 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2696 if (unlikely(error == -ECHILD))
2697 error = path_mountpoint(&nd, flags, path);
2698 if (unlikely(error == -ESTALE))
2699 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2700 if (likely(!error))
2701 audit_inode(name, path->dentry, 0);
2702 restore_nameidata();
2703 putname(name);
2704 return error;
2705 }
2706
2707 /**
2708 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2709 * @dfd: directory file descriptor
2710 * @name: pathname from userland
2711 * @flags: lookup flags
2712 * @path: pointer to container to hold result
2713 *
2714 * A umount is a special case for path walking. We're not actually interested
2715 * in the inode in this situation, and ESTALE errors can be a problem. We
2716 * simply want track down the dentry and vfsmount attached at the mountpoint
2717 * and avoid revalidating the last component.
2718 *
2719 * Returns 0 and populates "path" on success.
2720 */
2721 int
2722 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2723 struct path *path)
2724 {
2725 return filename_mountpoint(dfd, getname(name), path, flags);
2726 }
2727
2728 int
2729 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2730 unsigned int flags)
2731 {
2732 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2733 }
2734 EXPORT_SYMBOL(kern_path_mountpoint);
2735
2736 int __check_sticky(struct inode *dir, struct inode *inode)
2737 {
2738 kuid_t fsuid = current_fsuid();
2739
2740 if (uid_eq(inode->i_uid, fsuid))
2741 return 0;
2742 if (uid_eq(dir->i_uid, fsuid))
2743 return 0;
2744 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2745 }
2746 EXPORT_SYMBOL(__check_sticky);
2747
2748 /*
2749 * Check whether we can remove a link victim from directory dir, check
2750 * whether the type of victim is right.
2751 * 1. We can't do it if dir is read-only (done in permission())
2752 * 2. We should have write and exec permissions on dir
2753 * 3. We can't remove anything from append-only dir
2754 * 4. We can't do anything with immutable dir (done in permission())
2755 * 5. If the sticky bit on dir is set we should either
2756 * a. be owner of dir, or
2757 * b. be owner of victim, or
2758 * c. have CAP_FOWNER capability
2759 * 6. If the victim is append-only or immutable we can't do antyhing with
2760 * links pointing to it.
2761 * 7. If the victim has an unknown uid or gid we can't change the inode.
2762 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2763 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2764 * 10. We can't remove a root or mountpoint.
2765 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2766 * nfs_async_unlink().
2767 */
2768 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2769 {
2770 struct inode *inode = d_backing_inode(victim);
2771 int error;
2772
2773 if (d_is_negative(victim))
2774 return -ENOENT;
2775 BUG_ON(!inode);
2776
2777 BUG_ON(victim->d_parent->d_inode != dir);
2778 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2779
2780 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2781 if (error)
2782 return error;
2783 if (IS_APPEND(dir))
2784 return -EPERM;
2785
2786 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2787 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2788 return -EPERM;
2789 if (isdir) {
2790 if (!d_is_dir(victim))
2791 return -ENOTDIR;
2792 if (IS_ROOT(victim))
2793 return -EBUSY;
2794 } else if (d_is_dir(victim))
2795 return -EISDIR;
2796 if (IS_DEADDIR(dir))
2797 return -ENOENT;
2798 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2799 return -EBUSY;
2800 return 0;
2801 }
2802
2803 /* Check whether we can create an object with dentry child in directory
2804 * dir.
2805 * 1. We can't do it if child already exists (open has special treatment for
2806 * this case, but since we are inlined it's OK)
2807 * 2. We can't do it if dir is read-only (done in permission())
2808 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2809 * 4. We should have write and exec permissions on dir
2810 * 5. We can't do it if dir is immutable (done in permission())
2811 */
2812 static inline int may_create(struct inode *dir, struct dentry *child)
2813 {
2814 struct user_namespace *s_user_ns;
2815 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2816 if (child->d_inode)
2817 return -EEXIST;
2818 if (IS_DEADDIR(dir))
2819 return -ENOENT;
2820 s_user_ns = dir->i_sb->s_user_ns;
2821 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2822 !kgid_has_mapping(s_user_ns, current_fsgid()))
2823 return -EOVERFLOW;
2824 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2825 }
2826
2827 /*
2828 * p1 and p2 should be directories on the same fs.
2829 */
2830 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2831 {
2832 struct dentry *p;
2833
2834 if (p1 == p2) {
2835 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2836 return NULL;
2837 }
2838
2839 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2840
2841 p = d_ancestor(p2, p1);
2842 if (p) {
2843 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2844 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2845 return p;
2846 }
2847
2848 p = d_ancestor(p1, p2);
2849 if (p) {
2850 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2851 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2852 return p;
2853 }
2854
2855 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2856 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2857 return NULL;
2858 }
2859 EXPORT_SYMBOL(lock_rename);
2860
2861 void unlock_rename(struct dentry *p1, struct dentry *p2)
2862 {
2863 inode_unlock(p1->d_inode);
2864 if (p1 != p2) {
2865 inode_unlock(p2->d_inode);
2866 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2867 }
2868 }
2869 EXPORT_SYMBOL(unlock_rename);
2870
2871 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2872 bool want_excl)
2873 {
2874 int error = may_create(dir, dentry);
2875 if (error)
2876 return error;
2877
2878 if (!dir->i_op->create)
2879 return -EACCES; /* shouldn't it be ENOSYS? */
2880 mode &= S_IALLUGO;
2881 mode |= S_IFREG;
2882 error = security_inode_create(dir, dentry, mode);
2883 if (error)
2884 return error;
2885 error = dir->i_op->create(dir, dentry, mode, want_excl);
2886 if (!error)
2887 fsnotify_create(dir, dentry);
2888 return error;
2889 }
2890 EXPORT_SYMBOL(vfs_create);
2891
2892 bool may_open_dev(const struct path *path)
2893 {
2894 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2895 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2896 }
2897
2898 static int may_open(struct path *path, int acc_mode, int flag)
2899 {
2900 struct dentry *dentry = path->dentry;
2901 struct inode *inode = dentry->d_inode;
2902 int error;
2903
2904 if (!inode)
2905 return -ENOENT;
2906
2907 switch (inode->i_mode & S_IFMT) {
2908 case S_IFLNK:
2909 return -ELOOP;
2910 case S_IFDIR:
2911 if (acc_mode & MAY_WRITE)
2912 return -EISDIR;
2913 break;
2914 case S_IFBLK:
2915 case S_IFCHR:
2916 if (!may_open_dev(path))
2917 return -EACCES;
2918 /*FALLTHRU*/
2919 case S_IFIFO:
2920 case S_IFSOCK:
2921 flag &= ~O_TRUNC;
2922 break;
2923 }
2924
2925 error = inode_permission(inode, MAY_OPEN | acc_mode);
2926 if (error)
2927 return error;
2928
2929 /*
2930 * An append-only file must be opened in append mode for writing.
2931 */
2932 if (IS_APPEND(inode)) {
2933 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2934 return -EPERM;
2935 if (flag & O_TRUNC)
2936 return -EPERM;
2937 }
2938
2939 /* O_NOATIME can only be set by the owner or superuser */
2940 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2941 return -EPERM;
2942
2943 return 0;
2944 }
2945
2946 static int handle_truncate(struct file *filp)
2947 {
2948 struct path *path = &filp->f_path;
2949 struct inode *inode = path->dentry->d_inode;
2950 int error = get_write_access(inode);
2951 if (error)
2952 return error;
2953 /*
2954 * Refuse to truncate files with mandatory locks held on them.
2955 */
2956 error = locks_verify_locked(filp);
2957 if (!error)
2958 error = security_path_truncate(path);
2959 if (!error) {
2960 error = do_truncate(path->dentry, 0,
2961 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2962 filp);
2963 }
2964 put_write_access(inode);
2965 return error;
2966 }
2967
2968 static inline int open_to_namei_flags(int flag)
2969 {
2970 if ((flag & O_ACCMODE) == 3)
2971 flag--;
2972 return flag;
2973 }
2974
2975 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2976 {
2977 int error = security_path_mknod(dir, dentry, mode, 0);
2978 if (error)
2979 return error;
2980
2981 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2982 if (error)
2983 return error;
2984
2985 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2986 }
2987
2988 /*
2989 * Attempt to atomically look up, create and open a file from a negative
2990 * dentry.
2991 *
2992 * Returns 0 if successful. The file will have been created and attached to
2993 * @file by the filesystem calling finish_open().
2994 *
2995 * Returns 1 if the file was looked up only or didn't need creating. The
2996 * caller will need to perform the open themselves. @path will have been
2997 * updated to point to the new dentry. This may be negative.
2998 *
2999 * Returns an error code otherwise.
3000 */
3001 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3002 struct path *path, struct file *file,
3003 const struct open_flags *op,
3004 int open_flag, umode_t mode,
3005 int *opened)
3006 {
3007 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3008 struct inode *dir = nd->path.dentry->d_inode;
3009 int error;
3010
3011 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3012 open_flag &= ~O_TRUNC;
3013
3014 if (nd->flags & LOOKUP_DIRECTORY)
3015 open_flag |= O_DIRECTORY;
3016
3017 file->f_path.dentry = DENTRY_NOT_SET;
3018 file->f_path.mnt = nd->path.mnt;
3019 error = dir->i_op->atomic_open(dir, dentry, file,
3020 open_to_namei_flags(open_flag),
3021 mode, opened);
3022 d_lookup_done(dentry);
3023 if (!error) {
3024 /*
3025 * We didn't have the inode before the open, so check open
3026 * permission here.
3027 */
3028 int acc_mode = op->acc_mode;
3029 if (*opened & FILE_CREATED) {
3030 WARN_ON(!(open_flag & O_CREAT));
3031 fsnotify_create(dir, dentry);
3032 acc_mode = 0;
3033 }
3034 error = may_open(&file->f_path, acc_mode, open_flag);
3035 if (WARN_ON(error > 0))
3036 error = -EINVAL;
3037 } else if (error > 0) {
3038 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3039 error = -EIO;
3040 } else {
3041 if (file->f_path.dentry) {
3042 dput(dentry);
3043 dentry = file->f_path.dentry;
3044 }
3045 if (*opened & FILE_CREATED)
3046 fsnotify_create(dir, dentry);
3047 if (unlikely(d_is_negative(dentry))) {
3048 error = -ENOENT;
3049 } else {
3050 path->dentry = dentry;
3051 path->mnt = nd->path.mnt;
3052 return 1;
3053 }
3054 }
3055 }
3056 dput(dentry);
3057 return error;
3058 }
3059
3060 /*
3061 * Look up and maybe create and open the last component.
3062 *
3063 * Must be called with i_mutex held on parent.
3064 *
3065 * Returns 0 if the file was successfully atomically created (if necessary) and
3066 * opened. In this case the file will be returned attached to @file.
3067 *
3068 * Returns 1 if the file was not completely opened at this time, though lookups
3069 * and creations will have been performed and the dentry returned in @path will
3070 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3071 * specified then a negative dentry may be returned.
3072 *
3073 * An error code is returned otherwise.
3074 *
3075 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3076 * cleared otherwise prior to returning.
3077 */
3078 static int lookup_open(struct nameidata *nd, struct path *path,
3079 struct file *file,
3080 const struct open_flags *op,
3081 bool got_write, int *opened)
3082 {
3083 struct dentry *dir = nd->path.dentry;
3084 struct inode *dir_inode = dir->d_inode;
3085 int open_flag = op->open_flag;
3086 struct dentry *dentry;
3087 int error, create_error = 0;
3088 umode_t mode = op->mode;
3089 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3090
3091 if (unlikely(IS_DEADDIR(dir_inode)))
3092 return -ENOENT;
3093
3094 *opened &= ~FILE_CREATED;
3095 dentry = d_lookup(dir, &nd->last);
3096 for (;;) {
3097 if (!dentry) {
3098 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3099 if (IS_ERR(dentry))
3100 return PTR_ERR(dentry);
3101 }
3102 if (d_in_lookup(dentry))
3103 break;
3104
3105 if (!(dentry->d_flags & DCACHE_OP_REVALIDATE))
3106 break;
3107
3108 error = d_revalidate(dentry, nd->flags);
3109 if (likely(error > 0))
3110 break;
3111 if (error)
3112 goto out_dput;
3113 d_invalidate(dentry);
3114 dput(dentry);
3115 dentry = NULL;
3116 }
3117 if (dentry->d_inode) {
3118 /* Cached positive dentry: will open in f_op->open */
3119 goto out_no_open;
3120 }
3121
3122 /*
3123 * Checking write permission is tricky, bacuse we don't know if we are
3124 * going to actually need it: O_CREAT opens should work as long as the
3125 * file exists. But checking existence breaks atomicity. The trick is
3126 * to check access and if not granted clear O_CREAT from the flags.
3127 *
3128 * Another problem is returing the "right" error value (e.g. for an
3129 * O_EXCL open we want to return EEXIST not EROFS).
3130 */
3131 if (open_flag & O_CREAT) {
3132 if (!IS_POSIXACL(dir->d_inode))
3133 mode &= ~current_umask();
3134 if (unlikely(!got_write)) {
3135 create_error = -EROFS;
3136 open_flag &= ~O_CREAT;
3137 if (open_flag & (O_EXCL | O_TRUNC))
3138 goto no_open;
3139 /* No side effects, safe to clear O_CREAT */
3140 } else {
3141 create_error = may_o_create(&nd->path, dentry, mode);
3142 if (create_error) {
3143 open_flag &= ~O_CREAT;
3144 if (open_flag & O_EXCL)
3145 goto no_open;
3146 }
3147 }
3148 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3149 unlikely(!got_write)) {
3150 /*
3151 * No O_CREATE -> atomicity not a requirement -> fall
3152 * back to lookup + open
3153 */
3154 goto no_open;
3155 }
3156
3157 if (dir_inode->i_op->atomic_open) {
3158 error = atomic_open(nd, dentry, path, file, op, open_flag,
3159 mode, opened);
3160 if (unlikely(error == -ENOENT) && create_error)
3161 error = create_error;
3162 return error;
3163 }
3164
3165 no_open:
3166 if (d_in_lookup(dentry)) {
3167 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3168 nd->flags);
3169 d_lookup_done(dentry);
3170 if (unlikely(res)) {
3171 if (IS_ERR(res)) {
3172 error = PTR_ERR(res);
3173 goto out_dput;
3174 }
3175 dput(dentry);
3176 dentry = res;
3177 }
3178 }
3179
3180 /* Negative dentry, just create the file */
3181 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3182 *opened |= FILE_CREATED;
3183 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3184 if (!dir_inode->i_op->create) {
3185 error = -EACCES;
3186 goto out_dput;
3187 }
3188 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3189 open_flag & O_EXCL);
3190 if (error)
3191 goto out_dput;
3192 fsnotify_create(dir_inode, dentry);
3193 }
3194 if (unlikely(create_error) && !dentry->d_inode) {
3195 error = create_error;
3196 goto out_dput;
3197 }
3198 out_no_open:
3199 path->dentry = dentry;
3200 path->mnt = nd->path.mnt;
3201 return 1;
3202
3203 out_dput:
3204 dput(dentry);
3205 return error;
3206 }
3207
3208 /*
3209 * Handle the last step of open()
3210 */
3211 static int do_last(struct nameidata *nd,
3212 struct file *file, const struct open_flags *op,
3213 int *opened)
3214 {
3215 struct dentry *dir = nd->path.dentry;
3216 int open_flag = op->open_flag;
3217 bool will_truncate = (open_flag & O_TRUNC) != 0;
3218 bool got_write = false;
3219 int acc_mode = op->acc_mode;
3220 unsigned seq;
3221 struct inode *inode;
3222 struct path path;
3223 int error;
3224
3225 nd->flags &= ~LOOKUP_PARENT;
3226 nd->flags |= op->intent;
3227
3228 if (nd->last_type != LAST_NORM) {
3229 error = handle_dots(nd, nd->last_type);
3230 if (unlikely(error))
3231 return error;
3232 goto finish_open;
3233 }
3234
3235 if (!(open_flag & O_CREAT)) {
3236 if (nd->last.name[nd->last.len])
3237 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3238 /* we _can_ be in RCU mode here */
3239 error = lookup_fast(nd, &path, &inode, &seq);
3240 if (likely(error > 0))
3241 goto finish_lookup;
3242
3243 if (error < 0)
3244 return error;
3245
3246 BUG_ON(nd->inode != dir->d_inode);
3247 BUG_ON(nd->flags & LOOKUP_RCU);
3248 } else {
3249 /* create side of things */
3250 /*
3251 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3252 * has been cleared when we got to the last component we are
3253 * about to look up
3254 */
3255 error = complete_walk(nd);
3256 if (error)
3257 return error;
3258
3259 audit_inode(nd->name, dir, LOOKUP_PARENT);
3260 /* trailing slashes? */
3261 if (unlikely(nd->last.name[nd->last.len]))
3262 return -EISDIR;
3263 }
3264
3265 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3266 error = mnt_want_write(nd->path.mnt);
3267 if (!error)
3268 got_write = true;
3269 /*
3270 * do _not_ fail yet - we might not need that or fail with
3271 * a different error; let lookup_open() decide; we'll be
3272 * dropping this one anyway.
3273 */
3274 }
3275 if (open_flag & O_CREAT)
3276 inode_lock(dir->d_inode);
3277 else
3278 inode_lock_shared(dir->d_inode);
3279 error = lookup_open(nd, &path, file, op, got_write, opened);
3280 if (open_flag & O_CREAT)
3281 inode_unlock(dir->d_inode);
3282 else
3283 inode_unlock_shared(dir->d_inode);
3284
3285 if (error <= 0) {
3286 if (error)
3287 goto out;
3288
3289 if ((*opened & FILE_CREATED) ||
3290 !S_ISREG(file_inode(file)->i_mode))
3291 will_truncate = false;
3292
3293 audit_inode(nd->name, file->f_path.dentry, 0);
3294 goto opened;
3295 }
3296
3297 if (*opened & FILE_CREATED) {
3298 /* Don't check for write permission, don't truncate */
3299 open_flag &= ~O_TRUNC;
3300 will_truncate = false;
3301 acc_mode = 0;
3302 path_to_nameidata(&path, nd);
3303 goto finish_open_created;
3304 }
3305
3306 /*
3307 * If atomic_open() acquired write access it is dropped now due to
3308 * possible mount and symlink following (this might be optimized away if
3309 * necessary...)
3310 */
3311 if (got_write) {
3312 mnt_drop_write(nd->path.mnt);
3313 got_write = false;
3314 }
3315
3316 error = follow_managed(&path, nd);
3317 if (unlikely(error < 0))
3318 return error;
3319
3320 if (unlikely(d_is_negative(path.dentry))) {
3321 path_to_nameidata(&path, nd);
3322 return -ENOENT;
3323 }
3324
3325 /*
3326 * create/update audit record if it already exists.
3327 */
3328 audit_inode(nd->name, path.dentry, 0);
3329
3330 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3331 path_to_nameidata(&path, nd);
3332 return -EEXIST;
3333 }
3334
3335 seq = 0; /* out of RCU mode, so the value doesn't matter */
3336 inode = d_backing_inode(path.dentry);
3337 finish_lookup:
3338 if (nd->depth)
3339 put_link(nd);
3340 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3341 inode, seq);
3342 if (unlikely(error))
3343 return error;
3344
3345 path_to_nameidata(&path, nd);
3346 nd->inode = inode;
3347 nd->seq = seq;
3348 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3349 finish_open:
3350 error = complete_walk(nd);
3351 if (error)
3352 return error;
3353 audit_inode(nd->name, nd->path.dentry, 0);
3354 error = -EISDIR;
3355 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3356 goto out;
3357 error = -ENOTDIR;
3358 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3359 goto out;
3360 if (!d_is_reg(nd->path.dentry))
3361 will_truncate = false;
3362
3363 if (will_truncate) {
3364 error = mnt_want_write(nd->path.mnt);
3365 if (error)
3366 goto out;
3367 got_write = true;
3368 }
3369 finish_open_created:
3370 error = may_open(&nd->path, acc_mode, open_flag);
3371 if (error)
3372 goto out;
3373 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3374 error = vfs_open(&nd->path, file, current_cred());
3375 if (error)
3376 goto out;
3377 *opened |= FILE_OPENED;
3378 opened:
3379 error = open_check_o_direct(file);
3380 if (!error)
3381 error = ima_file_check(file, op->acc_mode, *opened);
3382 if (!error && will_truncate)
3383 error = handle_truncate(file);
3384 out:
3385 if (unlikely(error) && (*opened & FILE_OPENED))
3386 fput(file);
3387 if (unlikely(error > 0)) {
3388 WARN_ON(1);
3389 error = -EINVAL;
3390 }
3391 if (got_write)
3392 mnt_drop_write(nd->path.mnt);
3393 return error;
3394 }
3395
3396 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3397 const struct open_flags *op,
3398 struct file *file, int *opened)
3399 {
3400 static const struct qstr name = QSTR_INIT("/", 1);
3401 struct dentry *child;
3402 struct inode *dir;
3403 struct path path;
3404 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3405 if (unlikely(error))
3406 return error;
3407 error = mnt_want_write(path.mnt);
3408 if (unlikely(error))
3409 goto out;
3410 dir = path.dentry->d_inode;
3411 /* we want directory to be writable */
3412 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3413 if (error)
3414 goto out2;
3415 if (!dir->i_op->tmpfile) {
3416 error = -EOPNOTSUPP;
3417 goto out2;
3418 }
3419 child = d_alloc(path.dentry, &name);
3420 if (unlikely(!child)) {
3421 error = -ENOMEM;
3422 goto out2;
3423 }
3424 dput(path.dentry);
3425 path.dentry = child;
3426 error = dir->i_op->tmpfile(dir, child, op->mode);
3427 if (error)
3428 goto out2;
3429 audit_inode(nd->name, child, 0);
3430 /* Don't check for other permissions, the inode was just created */
3431 error = may_open(&path, 0, op->open_flag);
3432 if (error)
3433 goto out2;
3434 file->f_path.mnt = path.mnt;
3435 error = finish_open(file, child, NULL, opened);
3436 if (error)
3437 goto out2;
3438 error = open_check_o_direct(file);
3439 if (error) {
3440 fput(file);
3441 } else if (!(op->open_flag & O_EXCL)) {
3442 struct inode *inode = file_inode(file);
3443 spin_lock(&inode->i_lock);
3444 inode->i_state |= I_LINKABLE;
3445 spin_unlock(&inode->i_lock);
3446 }
3447 out2:
3448 mnt_drop_write(path.mnt);
3449 out:
3450 path_put(&path);
3451 return error;
3452 }
3453
3454 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3455 {
3456 struct path path;
3457 int error = path_lookupat(nd, flags, &path);
3458 if (!error) {
3459 audit_inode(nd->name, path.dentry, 0);
3460 error = vfs_open(&path, file, current_cred());
3461 path_put(&path);
3462 }
3463 return error;
3464 }
3465
3466 static struct file *path_openat(struct nameidata *nd,
3467 const struct open_flags *op, unsigned flags)
3468 {
3469 const char *s;
3470 struct file *file;
3471 int opened = 0;
3472 int error;
3473
3474 file = get_empty_filp();
3475 if (IS_ERR(file))
3476 return file;
3477
3478 file->f_flags = op->open_flag;
3479
3480 if (unlikely(file->f_flags & __O_TMPFILE)) {
3481 error = do_tmpfile(nd, flags, op, file, &opened);
3482 goto out2;
3483 }
3484
3485 if (unlikely(file->f_flags & O_PATH)) {
3486 error = do_o_path(nd, flags, file);
3487 if (!error)
3488 opened |= FILE_OPENED;
3489 goto out2;
3490 }
3491
3492 s = path_init(nd, flags);
3493 if (IS_ERR(s)) {
3494 put_filp(file);
3495 return ERR_CAST(s);
3496 }
3497 while (!(error = link_path_walk(s, nd)) &&
3498 (error = do_last(nd, file, op, &opened)) > 0) {
3499 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3500 s = trailing_symlink(nd);
3501 if (IS_ERR(s)) {
3502 error = PTR_ERR(s);
3503 break;
3504 }
3505 }
3506 terminate_walk(nd);
3507 out2:
3508 if (!(opened & FILE_OPENED)) {
3509 BUG_ON(!error);
3510 put_filp(file);
3511 }
3512 if (unlikely(error)) {
3513 if (error == -EOPENSTALE) {
3514 if (flags & LOOKUP_RCU)
3515 error = -ECHILD;
3516 else
3517 error = -ESTALE;
3518 }
3519 file = ERR_PTR(error);
3520 }
3521 return file;
3522 }
3523
3524 struct file *do_filp_open(int dfd, struct filename *pathname,
3525 const struct open_flags *op)
3526 {
3527 struct nameidata nd;
3528 int flags = op->lookup_flags;
3529 struct file *filp;
3530
3531 set_nameidata(&nd, dfd, pathname);
3532 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3533 if (unlikely(filp == ERR_PTR(-ECHILD)))
3534 filp = path_openat(&nd, op, flags);
3535 if (unlikely(filp == ERR_PTR(-ESTALE)))
3536 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3537 restore_nameidata();
3538 return filp;
3539 }
3540
3541 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3542 const char *name, const struct open_flags *op)
3543 {
3544 struct nameidata nd;
3545 struct file *file;
3546 struct filename *filename;
3547 int flags = op->lookup_flags | LOOKUP_ROOT;
3548
3549 nd.root.mnt = mnt;
3550 nd.root.dentry = dentry;
3551
3552 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3553 return ERR_PTR(-ELOOP);
3554
3555 filename = getname_kernel(name);
3556 if (IS_ERR(filename))
3557 return ERR_CAST(filename);
3558
3559 set_nameidata(&nd, -1, filename);
3560 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3561 if (unlikely(file == ERR_PTR(-ECHILD)))
3562 file = path_openat(&nd, op, flags);
3563 if (unlikely(file == ERR_PTR(-ESTALE)))
3564 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3565 restore_nameidata();
3566 putname(filename);
3567 return file;
3568 }
3569
3570 static struct dentry *filename_create(int dfd, struct filename *name,
3571 struct path *path, unsigned int lookup_flags)
3572 {
3573 struct dentry *dentry = ERR_PTR(-EEXIST);
3574 struct qstr last;
3575 int type;
3576 int err2;
3577 int error;
3578 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3579
3580 /*
3581 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3582 * other flags passed in are ignored!
3583 */
3584 lookup_flags &= LOOKUP_REVAL;
3585
3586 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3587 if (IS_ERR(name))
3588 return ERR_CAST(name);
3589
3590 /*
3591 * Yucky last component or no last component at all?
3592 * (foo/., foo/.., /////)
3593 */
3594 if (unlikely(type != LAST_NORM))
3595 goto out;
3596
3597 /* don't fail immediately if it's r/o, at least try to report other errors */
3598 err2 = mnt_want_write(path->mnt);
3599 /*
3600 * Do the final lookup.
3601 */
3602 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3603 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3604 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3605 if (IS_ERR(dentry))
3606 goto unlock;
3607
3608 error = -EEXIST;
3609 if (d_is_positive(dentry))
3610 goto fail;
3611
3612 /*
3613 * Special case - lookup gave negative, but... we had foo/bar/
3614 * From the vfs_mknod() POV we just have a negative dentry -
3615 * all is fine. Let's be bastards - you had / on the end, you've
3616 * been asking for (non-existent) directory. -ENOENT for you.
3617 */
3618 if (unlikely(!is_dir && last.name[last.len])) {
3619 error = -ENOENT;
3620 goto fail;
3621 }
3622 if (unlikely(err2)) {
3623 error = err2;
3624 goto fail;
3625 }
3626 putname(name);
3627 return dentry;
3628 fail:
3629 dput(dentry);
3630 dentry = ERR_PTR(error);
3631 unlock:
3632 inode_unlock(path->dentry->d_inode);
3633 if (!err2)
3634 mnt_drop_write(path->mnt);
3635 out:
3636 path_put(path);
3637 putname(name);
3638 return dentry;
3639 }
3640
3641 struct dentry *kern_path_create(int dfd, const char *pathname,
3642 struct path *path, unsigned int lookup_flags)
3643 {
3644 return filename_create(dfd, getname_kernel(pathname),
3645 path, lookup_flags);
3646 }
3647 EXPORT_SYMBOL(kern_path_create);
3648
3649 void done_path_create(struct path *path, struct dentry *dentry)
3650 {
3651 dput(dentry);
3652 inode_unlock(path->dentry->d_inode);
3653 mnt_drop_write(path->mnt);
3654 path_put(path);
3655 }
3656 EXPORT_SYMBOL(done_path_create);
3657
3658 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3659 struct path *path, unsigned int lookup_flags)
3660 {
3661 return filename_create(dfd, getname(pathname), path, lookup_flags);
3662 }
3663 EXPORT_SYMBOL(user_path_create);
3664
3665 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3666 {
3667 int error = may_create(dir, dentry);
3668
3669 if (error)
3670 return error;
3671
3672 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3673 return -EPERM;
3674
3675 if (!dir->i_op->mknod)
3676 return -EPERM;
3677
3678 error = devcgroup_inode_mknod(mode, dev);
3679 if (error)
3680 return error;
3681
3682 error = security_inode_mknod(dir, dentry, mode, dev);
3683 if (error)
3684 return error;
3685
3686 error = dir->i_op->mknod(dir, dentry, mode, dev);
3687 if (!error)
3688 fsnotify_create(dir, dentry);
3689 return error;
3690 }
3691 EXPORT_SYMBOL(vfs_mknod);
3692
3693 static int may_mknod(umode_t mode)
3694 {
3695 switch (mode & S_IFMT) {
3696 case S_IFREG:
3697 case S_IFCHR:
3698 case S_IFBLK:
3699 case S_IFIFO:
3700 case S_IFSOCK:
3701 case 0: /* zero mode translates to S_IFREG */
3702 return 0;
3703 case S_IFDIR:
3704 return -EPERM;
3705 default:
3706 return -EINVAL;
3707 }
3708 }
3709
3710 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3711 unsigned, dev)
3712 {
3713 struct dentry *dentry;
3714 struct path path;
3715 int error;
3716 unsigned int lookup_flags = 0;
3717
3718 error = may_mknod(mode);
3719 if (error)
3720 return error;
3721 retry:
3722 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3723 if (IS_ERR(dentry))
3724 return PTR_ERR(dentry);
3725
3726 if (!IS_POSIXACL(path.dentry->d_inode))
3727 mode &= ~current_umask();
3728 error = security_path_mknod(&path, dentry, mode, dev);
3729 if (error)
3730 goto out;
3731 switch (mode & S_IFMT) {
3732 case 0: case S_IFREG:
3733 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3734 if (!error)
3735 ima_post_path_mknod(dentry);
3736 break;
3737 case S_IFCHR: case S_IFBLK:
3738 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3739 new_decode_dev(dev));
3740 break;
3741 case S_IFIFO: case S_IFSOCK:
3742 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3743 break;
3744 }
3745 out:
3746 done_path_create(&path, dentry);
3747 if (retry_estale(error, lookup_flags)) {
3748 lookup_flags |= LOOKUP_REVAL;
3749 goto retry;
3750 }
3751 return error;
3752 }
3753
3754 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3755 {
3756 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3757 }
3758
3759 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3760 {
3761 int error = may_create(dir, dentry);
3762 unsigned max_links = dir->i_sb->s_max_links;
3763
3764 if (error)
3765 return error;
3766
3767 if (!dir->i_op->mkdir)
3768 return -EPERM;
3769
3770 mode &= (S_IRWXUGO|S_ISVTX);
3771 error = security_inode_mkdir(dir, dentry, mode);
3772 if (error)
3773 return error;
3774
3775 if (max_links && dir->i_nlink >= max_links)
3776 return -EMLINK;
3777
3778 error = dir->i_op->mkdir(dir, dentry, mode);
3779 if (!error)
3780 fsnotify_mkdir(dir, dentry);
3781 return error;
3782 }
3783 EXPORT_SYMBOL(vfs_mkdir);
3784
3785 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3786 {
3787 struct dentry *dentry;
3788 struct path path;
3789 int error;
3790 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3791
3792 retry:
3793 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3794 if (IS_ERR(dentry))
3795 return PTR_ERR(dentry);
3796
3797 if (!IS_POSIXACL(path.dentry->d_inode))
3798 mode &= ~current_umask();
3799 error = security_path_mkdir(&path, dentry, mode);
3800 if (!error)
3801 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3802 done_path_create(&path, dentry);
3803 if (retry_estale(error, lookup_flags)) {
3804 lookup_flags |= LOOKUP_REVAL;
3805 goto retry;
3806 }
3807 return error;
3808 }
3809
3810 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3811 {
3812 return sys_mkdirat(AT_FDCWD, pathname, mode);
3813 }
3814
3815 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3816 {
3817 int error = may_delete(dir, dentry, 1);
3818
3819 if (error)
3820 return error;
3821
3822 if (!dir->i_op->rmdir)
3823 return -EPERM;
3824
3825 dget(dentry);
3826 inode_lock(dentry->d_inode);
3827
3828 error = -EBUSY;
3829 if (is_local_mountpoint(dentry))
3830 goto out;
3831
3832 error = security_inode_rmdir(dir, dentry);
3833 if (error)
3834 goto out;
3835
3836 shrink_dcache_parent(dentry);
3837 error = dir->i_op->rmdir(dir, dentry);
3838 if (error)
3839 goto out;
3840
3841 dentry->d_inode->i_flags |= S_DEAD;
3842 dont_mount(dentry);
3843 detach_mounts(dentry);
3844
3845 out:
3846 inode_unlock(dentry->d_inode);
3847 dput(dentry);
3848 if (!error)
3849 d_delete(dentry);
3850 return error;
3851 }
3852 EXPORT_SYMBOL(vfs_rmdir);
3853
3854 static long do_rmdir(int dfd, const char __user *pathname)
3855 {
3856 int error = 0;
3857 struct filename *name;
3858 struct dentry *dentry;
3859 struct path path;
3860 struct qstr last;
3861 int type;
3862 unsigned int lookup_flags = 0;
3863 retry:
3864 name = user_path_parent(dfd, pathname,
3865 &path, &last, &type, lookup_flags);
3866 if (IS_ERR(name))
3867 return PTR_ERR(name);
3868
3869 switch (type) {
3870 case LAST_DOTDOT:
3871 error = -ENOTEMPTY;
3872 goto exit1;
3873 case LAST_DOT:
3874 error = -EINVAL;
3875 goto exit1;
3876 case LAST_ROOT:
3877 error = -EBUSY;
3878 goto exit1;
3879 }
3880
3881 error = mnt_want_write(path.mnt);
3882 if (error)
3883 goto exit1;
3884
3885 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3886 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3887 error = PTR_ERR(dentry);
3888 if (IS_ERR(dentry))
3889 goto exit2;
3890 if (!dentry->d_inode) {
3891 error = -ENOENT;
3892 goto exit3;
3893 }
3894 error = security_path_rmdir(&path, dentry);
3895 if (error)
3896 goto exit3;
3897 error = vfs_rmdir(path.dentry->d_inode, dentry);
3898 exit3:
3899 dput(dentry);
3900 exit2:
3901 inode_unlock(path.dentry->d_inode);
3902 mnt_drop_write(path.mnt);
3903 exit1:
3904 path_put(&path);
3905 putname(name);
3906 if (retry_estale(error, lookup_flags)) {
3907 lookup_flags |= LOOKUP_REVAL;
3908 goto retry;
3909 }
3910 return error;
3911 }
3912
3913 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3914 {
3915 return do_rmdir(AT_FDCWD, pathname);
3916 }
3917
3918 /**
3919 * vfs_unlink - unlink a filesystem object
3920 * @dir: parent directory
3921 * @dentry: victim
3922 * @delegated_inode: returns victim inode, if the inode is delegated.
3923 *
3924 * The caller must hold dir->i_mutex.
3925 *
3926 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3927 * return a reference to the inode in delegated_inode. The caller
3928 * should then break the delegation on that inode and retry. Because
3929 * breaking a delegation may take a long time, the caller should drop
3930 * dir->i_mutex before doing so.
3931 *
3932 * Alternatively, a caller may pass NULL for delegated_inode. This may
3933 * be appropriate for callers that expect the underlying filesystem not
3934 * to be NFS exported.
3935 */
3936 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3937 {
3938 struct inode *target = dentry->d_inode;
3939 int error = may_delete(dir, dentry, 0);
3940
3941 if (error)
3942 return error;
3943
3944 if (!dir->i_op->unlink)
3945 return -EPERM;
3946
3947 inode_lock(target);
3948 if (is_local_mountpoint(dentry))
3949 error = -EBUSY;
3950 else {
3951 error = security_inode_unlink(dir, dentry);
3952 if (!error) {
3953 error = try_break_deleg(target, delegated_inode);
3954 if (error)
3955 goto out;
3956 error = dir->i_op->unlink(dir, dentry);
3957 if (!error) {
3958 dont_mount(dentry);
3959 detach_mounts(dentry);
3960 }
3961 }
3962 }
3963 out:
3964 inode_unlock(target);
3965
3966 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3967 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3968 fsnotify_link_count(target);
3969 d_delete(dentry);
3970 }
3971
3972 return error;
3973 }
3974 EXPORT_SYMBOL(vfs_unlink);
3975
3976 /*
3977 * Make sure that the actual truncation of the file will occur outside its
3978 * directory's i_mutex. Truncate can take a long time if there is a lot of
3979 * writeout happening, and we don't want to prevent access to the directory
3980 * while waiting on the I/O.
3981 */
3982 static long do_unlinkat(int dfd, const char __user *pathname)
3983 {
3984 int error;
3985 struct filename *name;
3986 struct dentry *dentry;
3987 struct path path;
3988 struct qstr last;
3989 int type;
3990 struct inode *inode = NULL;
3991 struct inode *delegated_inode = NULL;
3992 unsigned int lookup_flags = 0;
3993 retry:
3994 name = user_path_parent(dfd, pathname,
3995 &path, &last, &type, lookup_flags);
3996 if (IS_ERR(name))
3997 return PTR_ERR(name);
3998
3999 error = -EISDIR;
4000 if (type != LAST_NORM)
4001 goto exit1;
4002
4003 error = mnt_want_write(path.mnt);
4004 if (error)
4005 goto exit1;
4006 retry_deleg:
4007 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4008 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4009 error = PTR_ERR(dentry);
4010 if (!IS_ERR(dentry)) {
4011 /* Why not before? Because we want correct error value */
4012 if (last.name[last.len])
4013 goto slashes;
4014 inode = dentry->d_inode;
4015 if (d_is_negative(dentry))
4016 goto slashes;
4017 ihold(inode);
4018 error = security_path_unlink(&path, dentry);
4019 if (error)
4020 goto exit2;
4021 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4022 exit2:
4023 dput(dentry);
4024 }
4025 inode_unlock(path.dentry->d_inode);
4026 if (inode)
4027 iput(inode); /* truncate the inode here */
4028 inode = NULL;
4029 if (delegated_inode) {
4030 error = break_deleg_wait(&delegated_inode);
4031 if (!error)
4032 goto retry_deleg;
4033 }
4034 mnt_drop_write(path.mnt);
4035 exit1:
4036 path_put(&path);
4037 putname(name);
4038 if (retry_estale(error, lookup_flags)) {
4039 lookup_flags |= LOOKUP_REVAL;
4040 inode = NULL;
4041 goto retry;
4042 }
4043 return error;
4044
4045 slashes:
4046 if (d_is_negative(dentry))
4047 error = -ENOENT;
4048 else if (d_is_dir(dentry))
4049 error = -EISDIR;
4050 else
4051 error = -ENOTDIR;
4052 goto exit2;
4053 }
4054
4055 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4056 {
4057 if ((flag & ~AT_REMOVEDIR) != 0)
4058 return -EINVAL;
4059
4060 if (flag & AT_REMOVEDIR)
4061 return do_rmdir(dfd, pathname);
4062
4063 return do_unlinkat(dfd, pathname);
4064 }
4065
4066 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4067 {
4068 return do_unlinkat(AT_FDCWD, pathname);
4069 }
4070
4071 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4072 {
4073 int error = may_create(dir, dentry);
4074
4075 if (error)
4076 return error;
4077
4078 if (!dir->i_op->symlink)
4079 return -EPERM;
4080
4081 error = security_inode_symlink(dir, dentry, oldname);
4082 if (error)
4083 return error;
4084
4085 error = dir->i_op->symlink(dir, dentry, oldname);
4086 if (!error)
4087 fsnotify_create(dir, dentry);
4088 return error;
4089 }
4090 EXPORT_SYMBOL(vfs_symlink);
4091
4092 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4093 int, newdfd, const char __user *, newname)
4094 {
4095 int error;
4096 struct filename *from;
4097 struct dentry *dentry;
4098 struct path path;
4099 unsigned int lookup_flags = 0;
4100
4101 from = getname(oldname);
4102 if (IS_ERR(from))
4103 return PTR_ERR(from);
4104 retry:
4105 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4106 error = PTR_ERR(dentry);
4107 if (IS_ERR(dentry))
4108 goto out_putname;
4109
4110 error = security_path_symlink(&path, dentry, from->name);
4111 if (!error)
4112 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4113 done_path_create(&path, dentry);
4114 if (retry_estale(error, lookup_flags)) {
4115 lookup_flags |= LOOKUP_REVAL;
4116 goto retry;
4117 }
4118 out_putname:
4119 putname(from);
4120 return error;
4121 }
4122
4123 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4124 {
4125 return sys_symlinkat(oldname, AT_FDCWD, newname);
4126 }
4127
4128 /**
4129 * vfs_link - create a new link
4130 * @old_dentry: object to be linked
4131 * @dir: new parent
4132 * @new_dentry: where to create the new link
4133 * @delegated_inode: returns inode needing a delegation break
4134 *
4135 * The caller must hold dir->i_mutex
4136 *
4137 * If vfs_link discovers a delegation on the to-be-linked file in need
4138 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4139 * inode in delegated_inode. The caller should then break the delegation
4140 * and retry. Because breaking a delegation may take a long time, the
4141 * caller should drop the i_mutex before doing so.
4142 *
4143 * Alternatively, a caller may pass NULL for delegated_inode. This may
4144 * be appropriate for callers that expect the underlying filesystem not
4145 * to be NFS exported.
4146 */
4147 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4148 {
4149 struct inode *inode = old_dentry->d_inode;
4150 unsigned max_links = dir->i_sb->s_max_links;
4151 int error;
4152
4153 if (!inode)
4154 return -ENOENT;
4155
4156 error = may_create(dir, new_dentry);
4157 if (error)
4158 return error;
4159
4160 if (dir->i_sb != inode->i_sb)
4161 return -EXDEV;
4162
4163 /*
4164 * A link to an append-only or immutable file cannot be created.
4165 */
4166 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4167 return -EPERM;
4168 /*
4169 * Updating the link count will likely cause i_uid and i_gid to
4170 * be writen back improperly if their true value is unknown to
4171 * the vfs.
4172 */
4173 if (HAS_UNMAPPED_ID(inode))
4174 return -EPERM;
4175 if (!dir->i_op->link)
4176 return -EPERM;
4177 if (S_ISDIR(inode->i_mode))
4178 return -EPERM;
4179
4180 error = security_inode_link(old_dentry, dir, new_dentry);
4181 if (error)
4182 return error;
4183
4184 inode_lock(inode);
4185 /* Make sure we don't allow creating hardlink to an unlinked file */
4186 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4187 error = -ENOENT;
4188 else if (max_links && inode->i_nlink >= max_links)
4189 error = -EMLINK;
4190 else {
4191 error = try_break_deleg(inode, delegated_inode);
4192 if (!error)
4193 error = dir->i_op->link(old_dentry, dir, new_dentry);
4194 }
4195
4196 if (!error && (inode->i_state & I_LINKABLE)) {
4197 spin_lock(&inode->i_lock);
4198 inode->i_state &= ~I_LINKABLE;
4199 spin_unlock(&inode->i_lock);
4200 }
4201 inode_unlock(inode);
4202 if (!error)
4203 fsnotify_link(dir, inode, new_dentry);
4204 return error;
4205 }
4206 EXPORT_SYMBOL(vfs_link);
4207
4208 /*
4209 * Hardlinks are often used in delicate situations. We avoid
4210 * security-related surprises by not following symlinks on the
4211 * newname. --KAB
4212 *
4213 * We don't follow them on the oldname either to be compatible
4214 * with linux 2.0, and to avoid hard-linking to directories
4215 * and other special files. --ADM
4216 */
4217 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4218 int, newdfd, const char __user *, newname, int, flags)
4219 {
4220 struct dentry *new_dentry;
4221 struct path old_path, new_path;
4222 struct inode *delegated_inode = NULL;
4223 int how = 0;
4224 int error;
4225
4226 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4227 return -EINVAL;
4228 /*
4229 * To use null names we require CAP_DAC_READ_SEARCH
4230 * This ensures that not everyone will be able to create
4231 * handlink using the passed filedescriptor.
4232 */
4233 if (flags & AT_EMPTY_PATH) {
4234 if (!capable(CAP_DAC_READ_SEARCH))
4235 return -ENOENT;
4236 how = LOOKUP_EMPTY;
4237 }
4238
4239 if (flags & AT_SYMLINK_FOLLOW)
4240 how |= LOOKUP_FOLLOW;
4241 retry:
4242 error = user_path_at(olddfd, oldname, how, &old_path);
4243 if (error)
4244 return error;
4245
4246 new_dentry = user_path_create(newdfd, newname, &new_path,
4247 (how & LOOKUP_REVAL));
4248 error = PTR_ERR(new_dentry);
4249 if (IS_ERR(new_dentry))
4250 goto out;
4251
4252 error = -EXDEV;
4253 if (old_path.mnt != new_path.mnt)
4254 goto out_dput;
4255 error = may_linkat(&old_path);
4256 if (unlikely(error))
4257 goto out_dput;
4258 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4259 if (error)
4260 goto out_dput;
4261 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4262 out_dput:
4263 done_path_create(&new_path, new_dentry);
4264 if (delegated_inode) {
4265 error = break_deleg_wait(&delegated_inode);
4266 if (!error) {
4267 path_put(&old_path);
4268 goto retry;
4269 }
4270 }
4271 if (retry_estale(error, how)) {
4272 path_put(&old_path);
4273 how |= LOOKUP_REVAL;
4274 goto retry;
4275 }
4276 out:
4277 path_put(&old_path);
4278
4279 return error;
4280 }
4281
4282 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4283 {
4284 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4285 }
4286
4287 /**
4288 * vfs_rename - rename a filesystem object
4289 * @old_dir: parent of source
4290 * @old_dentry: source
4291 * @new_dir: parent of destination
4292 * @new_dentry: destination
4293 * @delegated_inode: returns an inode needing a delegation break
4294 * @flags: rename flags
4295 *
4296 * The caller must hold multiple mutexes--see lock_rename()).
4297 *
4298 * If vfs_rename discovers a delegation in need of breaking at either
4299 * the source or destination, it will return -EWOULDBLOCK and return a
4300 * reference to the inode in delegated_inode. The caller should then
4301 * break the delegation and retry. Because breaking a delegation may
4302 * take a long time, the caller should drop all locks before doing
4303 * so.
4304 *
4305 * Alternatively, a caller may pass NULL for delegated_inode. This may
4306 * be appropriate for callers that expect the underlying filesystem not
4307 * to be NFS exported.
4308 *
4309 * The worst of all namespace operations - renaming directory. "Perverted"
4310 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4311 * Problems:
4312 * a) we can get into loop creation.
4313 * b) race potential - two innocent renames can create a loop together.
4314 * That's where 4.4 screws up. Current fix: serialization on
4315 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4316 * story.
4317 * c) we have to lock _four_ objects - parents and victim (if it exists),
4318 * and source (if it is not a directory).
4319 * And that - after we got ->i_mutex on parents (until then we don't know
4320 * whether the target exists). Solution: try to be smart with locking
4321 * order for inodes. We rely on the fact that tree topology may change
4322 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4323 * move will be locked. Thus we can rank directories by the tree
4324 * (ancestors first) and rank all non-directories after them.
4325 * That works since everybody except rename does "lock parent, lookup,
4326 * lock child" and rename is under ->s_vfs_rename_mutex.
4327 * HOWEVER, it relies on the assumption that any object with ->lookup()
4328 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4329 * we'd better make sure that there's no link(2) for them.
4330 * d) conversion from fhandle to dentry may come in the wrong moment - when
4331 * we are removing the target. Solution: we will have to grab ->i_mutex
4332 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4333 * ->i_mutex on parents, which works but leads to some truly excessive
4334 * locking].
4335 */
4336 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4337 struct inode *new_dir, struct dentry *new_dentry,
4338 struct inode **delegated_inode, unsigned int flags)
4339 {
4340 int error;
4341 bool is_dir = d_is_dir(old_dentry);
4342 const unsigned char *old_name;
4343 struct inode *source = old_dentry->d_inode;
4344 struct inode *target = new_dentry->d_inode;
4345 bool new_is_dir = false;
4346 unsigned max_links = new_dir->i_sb->s_max_links;
4347
4348 /*
4349 * Check source == target.
4350 * On overlayfs need to look at underlying inodes.
4351 */
4352 if (d_real_inode(old_dentry) == d_real_inode(new_dentry))
4353 return 0;
4354
4355 error = may_delete(old_dir, old_dentry, is_dir);
4356 if (error)
4357 return error;
4358
4359 if (!target) {
4360 error = may_create(new_dir, new_dentry);
4361 } else {
4362 new_is_dir = d_is_dir(new_dentry);
4363
4364 if (!(flags & RENAME_EXCHANGE))
4365 error = may_delete(new_dir, new_dentry, is_dir);
4366 else
4367 error = may_delete(new_dir, new_dentry, new_is_dir);
4368 }
4369 if (error)
4370 return error;
4371
4372 if (!old_dir->i_op->rename)
4373 return -EPERM;
4374
4375 /*
4376 * If we are going to change the parent - check write permissions,
4377 * we'll need to flip '..'.
4378 */
4379 if (new_dir != old_dir) {
4380 if (is_dir) {
4381 error = inode_permission(source, MAY_WRITE);
4382 if (error)
4383 return error;
4384 }
4385 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4386 error = inode_permission(target, MAY_WRITE);
4387 if (error)
4388 return error;
4389 }
4390 }
4391
4392 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4393 flags);
4394 if (error)
4395 return error;
4396
4397 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4398 dget(new_dentry);
4399 if (!is_dir || (flags & RENAME_EXCHANGE))
4400 lock_two_nondirectories(source, target);
4401 else if (target)
4402 inode_lock(target);
4403
4404 error = -EBUSY;
4405 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4406 goto out;
4407
4408 if (max_links && new_dir != old_dir) {
4409 error = -EMLINK;
4410 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4411 goto out;
4412 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4413 old_dir->i_nlink >= max_links)
4414 goto out;
4415 }
4416 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4417 shrink_dcache_parent(new_dentry);
4418 if (!is_dir) {
4419 error = try_break_deleg(source, delegated_inode);
4420 if (error)
4421 goto out;
4422 }
4423 if (target && !new_is_dir) {
4424 error = try_break_deleg(target, delegated_inode);
4425 if (error)
4426 goto out;
4427 }
4428 error = old_dir->i_op->rename(old_dir, old_dentry,
4429 new_dir, new_dentry, flags);
4430 if (error)
4431 goto out;
4432
4433 if (!(flags & RENAME_EXCHANGE) && target) {
4434 if (is_dir)
4435 target->i_flags |= S_DEAD;
4436 dont_mount(new_dentry);
4437 detach_mounts(new_dentry);
4438 }
4439 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4440 if (!(flags & RENAME_EXCHANGE))
4441 d_move(old_dentry, new_dentry);
4442 else
4443 d_exchange(old_dentry, new_dentry);
4444 }
4445 out:
4446 if (!is_dir || (flags & RENAME_EXCHANGE))
4447 unlock_two_nondirectories(source, target);
4448 else if (target)
4449 inode_unlock(target);
4450 dput(new_dentry);
4451 if (!error) {
4452 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4453 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4454 if (flags & RENAME_EXCHANGE) {
4455 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4456 new_is_dir, NULL, new_dentry);
4457 }
4458 }
4459 fsnotify_oldname_free(old_name);
4460
4461 return error;
4462 }
4463 EXPORT_SYMBOL(vfs_rename);
4464
4465 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4466 int, newdfd, const char __user *, newname, unsigned int, flags)
4467 {
4468 struct dentry *old_dentry, *new_dentry;
4469 struct dentry *trap;
4470 struct path old_path, new_path;
4471 struct qstr old_last, new_last;
4472 int old_type, new_type;
4473 struct inode *delegated_inode = NULL;
4474 struct filename *from;
4475 struct filename *to;
4476 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4477 bool should_retry = false;
4478 int error;
4479
4480 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4481 return -EINVAL;
4482
4483 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4484 (flags & RENAME_EXCHANGE))
4485 return -EINVAL;
4486
4487 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4488 return -EPERM;
4489
4490 if (flags & RENAME_EXCHANGE)
4491 target_flags = 0;
4492
4493 retry:
4494 from = user_path_parent(olddfd, oldname,
4495 &old_path, &old_last, &old_type, lookup_flags);
4496 if (IS_ERR(from)) {
4497 error = PTR_ERR(from);
4498 goto exit;
4499 }
4500
4501 to = user_path_parent(newdfd, newname,
4502 &new_path, &new_last, &new_type, lookup_flags);
4503 if (IS_ERR(to)) {
4504 error = PTR_ERR(to);
4505 goto exit1;
4506 }
4507
4508 error = -EXDEV;
4509 if (old_path.mnt != new_path.mnt)
4510 goto exit2;
4511
4512 error = -EBUSY;
4513 if (old_type != LAST_NORM)
4514 goto exit2;
4515
4516 if (flags & RENAME_NOREPLACE)
4517 error = -EEXIST;
4518 if (new_type != LAST_NORM)
4519 goto exit2;
4520
4521 error = mnt_want_write(old_path.mnt);
4522 if (error)
4523 goto exit2;
4524
4525 retry_deleg:
4526 trap = lock_rename(new_path.dentry, old_path.dentry);
4527
4528 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4529 error = PTR_ERR(old_dentry);
4530 if (IS_ERR(old_dentry))
4531 goto exit3;
4532 /* source must exist */
4533 error = -ENOENT;
4534 if (d_is_negative(old_dentry))
4535 goto exit4;
4536 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4537 error = PTR_ERR(new_dentry);
4538 if (IS_ERR(new_dentry))
4539 goto exit4;
4540 error = -EEXIST;
4541 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4542 goto exit5;
4543 if (flags & RENAME_EXCHANGE) {
4544 error = -ENOENT;
4545 if (d_is_negative(new_dentry))
4546 goto exit5;
4547
4548 if (!d_is_dir(new_dentry)) {
4549 error = -ENOTDIR;
4550 if (new_last.name[new_last.len])
4551 goto exit5;
4552 }
4553 }
4554 /* unless the source is a directory trailing slashes give -ENOTDIR */
4555 if (!d_is_dir(old_dentry)) {
4556 error = -ENOTDIR;
4557 if (old_last.name[old_last.len])
4558 goto exit5;
4559 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4560 goto exit5;
4561 }
4562 /* source should not be ancestor of target */
4563 error = -EINVAL;
4564 if (old_dentry == trap)
4565 goto exit5;
4566 /* target should not be an ancestor of source */
4567 if (!(flags & RENAME_EXCHANGE))
4568 error = -ENOTEMPTY;
4569 if (new_dentry == trap)
4570 goto exit5;
4571
4572 error = security_path_rename(&old_path, old_dentry,
4573 &new_path, new_dentry, flags);
4574 if (error)
4575 goto exit5;
4576 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4577 new_path.dentry->d_inode, new_dentry,
4578 &delegated_inode, flags);
4579 exit5:
4580 dput(new_dentry);
4581 exit4:
4582 dput(old_dentry);
4583 exit3:
4584 unlock_rename(new_path.dentry, old_path.dentry);
4585 if (delegated_inode) {
4586 error = break_deleg_wait(&delegated_inode);
4587 if (!error)
4588 goto retry_deleg;
4589 }
4590 mnt_drop_write(old_path.mnt);
4591 exit2:
4592 if (retry_estale(error, lookup_flags))
4593 should_retry = true;
4594 path_put(&new_path);
4595 putname(to);
4596 exit1:
4597 path_put(&old_path);
4598 putname(from);
4599 if (should_retry) {
4600 should_retry = false;
4601 lookup_flags |= LOOKUP_REVAL;
4602 goto retry;
4603 }
4604 exit:
4605 return error;
4606 }
4607
4608 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4609 int, newdfd, const char __user *, newname)
4610 {
4611 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4612 }
4613
4614 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4615 {
4616 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4617 }
4618
4619 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4620 {
4621 int error = may_create(dir, dentry);
4622 if (error)
4623 return error;
4624
4625 if (!dir->i_op->mknod)
4626 return -EPERM;
4627
4628 return dir->i_op->mknod(dir, dentry,
4629 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4630 }
4631 EXPORT_SYMBOL(vfs_whiteout);
4632
4633 int readlink_copy(char __user *buffer, int buflen, const char *link)
4634 {
4635 int len = PTR_ERR(link);
4636 if (IS_ERR(link))
4637 goto out;
4638
4639 len = strlen(link);
4640 if (len > (unsigned) buflen)
4641 len = buflen;
4642 if (copy_to_user(buffer, link, len))
4643 len = -EFAULT;
4644 out:
4645 return len;
4646 }
4647
4648 /*
4649 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4650 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4651 * for any given inode is up to filesystem.
4652 */
4653 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4654 {
4655 DEFINE_DELAYED_CALL(done);
4656 struct inode *inode = d_inode(dentry);
4657 const char *link = inode->i_link;
4658 int res;
4659
4660 if (!link) {
4661 link = inode->i_op->get_link(dentry, inode, &done);
4662 if (IS_ERR(link))
4663 return PTR_ERR(link);
4664 }
4665 res = readlink_copy(buffer, buflen, link);
4666 do_delayed_call(&done);
4667 return res;
4668 }
4669 EXPORT_SYMBOL(generic_readlink);
4670
4671 /**
4672 * vfs_get_link - get symlink body
4673 * @dentry: dentry on which to get symbolic link
4674 * @done: caller needs to free returned data with this
4675 *
4676 * Calls security hook and i_op->get_link() on the supplied inode.
4677 *
4678 * It does not touch atime. That's up to the caller if necessary.
4679 *
4680 * Does not work on "special" symlinks like /proc/$$/fd/N
4681 */
4682 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4683 {
4684 const char *res = ERR_PTR(-EINVAL);
4685 struct inode *inode = d_inode(dentry);
4686
4687 if (d_is_symlink(dentry)) {
4688 res = ERR_PTR(security_inode_readlink(dentry));
4689 if (!res)
4690 res = inode->i_op->get_link(dentry, inode, done);
4691 }
4692 return res;
4693 }
4694 EXPORT_SYMBOL(vfs_get_link);
4695
4696 /* get the link contents into pagecache */
4697 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4698 struct delayed_call *callback)
4699 {
4700 char *kaddr;
4701 struct page *page;
4702 struct address_space *mapping = inode->i_mapping;
4703
4704 if (!dentry) {
4705 page = find_get_page(mapping, 0);
4706 if (!page)
4707 return ERR_PTR(-ECHILD);
4708 if (!PageUptodate(page)) {
4709 put_page(page);
4710 return ERR_PTR(-ECHILD);
4711 }
4712 } else {
4713 page = read_mapping_page(mapping, 0, NULL);
4714 if (IS_ERR(page))
4715 return (char*)page;
4716 }
4717 set_delayed_call(callback, page_put_link, page);
4718 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4719 kaddr = page_address(page);
4720 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4721 return kaddr;
4722 }
4723
4724 EXPORT_SYMBOL(page_get_link);
4725
4726 void page_put_link(void *arg)
4727 {
4728 put_page(arg);
4729 }
4730 EXPORT_SYMBOL(page_put_link);
4731
4732 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4733 {
4734 DEFINE_DELAYED_CALL(done);
4735 int res = readlink_copy(buffer, buflen,
4736 page_get_link(dentry, d_inode(dentry),
4737 &done));
4738 do_delayed_call(&done);
4739 return res;
4740 }
4741 EXPORT_SYMBOL(page_readlink);
4742
4743 /*
4744 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4745 */
4746 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4747 {
4748 struct address_space *mapping = inode->i_mapping;
4749 struct page *page;
4750 void *fsdata;
4751 int err;
4752 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4753 if (nofs)
4754 flags |= AOP_FLAG_NOFS;
4755
4756 retry:
4757 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4758 flags, &page, &fsdata);
4759 if (err)
4760 goto fail;
4761
4762 memcpy(page_address(page), symname, len-1);
4763
4764 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4765 page, fsdata);
4766 if (err < 0)
4767 goto fail;
4768 if (err < len-1)
4769 goto retry;
4770
4771 mark_inode_dirty(inode);
4772 return 0;
4773 fail:
4774 return err;
4775 }
4776 EXPORT_SYMBOL(__page_symlink);
4777
4778 int page_symlink(struct inode *inode, const char *symname, int len)
4779 {
4780 return __page_symlink(inode, symname, len,
4781 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4782 }
4783 EXPORT_SYMBOL(page_symlink);
4784
4785 const struct inode_operations page_symlink_inode_operations = {
4786 .readlink = generic_readlink,
4787 .get_link = page_get_link,
4788 };
4789 EXPORT_SYMBOL(page_symlink_inode_operations);