]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/namei.c
namei: introduce nameidata->link
[mirror_ubuntu-bionic-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 struct nameidata {
496 struct path path;
497 union {
498 struct qstr last;
499 struct path link;
500 };
501 struct path root;
502 struct inode *inode; /* path.dentry.d_inode */
503 unsigned int flags;
504 unsigned seq, m_seq;
505 int last_type;
506 unsigned depth;
507 struct file *base;
508 };
509
510 /*
511 * Path walking has 2 modes, rcu-walk and ref-walk (see
512 * Documentation/filesystems/path-lookup.txt). In situations when we can't
513 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
514 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
515 * mode. Refcounts are grabbed at the last known good point before rcu-walk
516 * got stuck, so ref-walk may continue from there. If this is not successful
517 * (eg. a seqcount has changed), then failure is returned and it's up to caller
518 * to restart the path walk from the beginning in ref-walk mode.
519 */
520
521 /**
522 * unlazy_walk - try to switch to ref-walk mode.
523 * @nd: nameidata pathwalk data
524 * @dentry: child of nd->path.dentry or NULL
525 * Returns: 0 on success, -ECHILD on failure
526 *
527 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
528 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
529 * @nd or NULL. Must be called from rcu-walk context.
530 */
531 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
532 {
533 struct fs_struct *fs = current->fs;
534 struct dentry *parent = nd->path.dentry;
535
536 BUG_ON(!(nd->flags & LOOKUP_RCU));
537
538 /*
539 * After legitimizing the bastards, terminate_walk()
540 * will do the right thing for non-RCU mode, and all our
541 * subsequent exit cases should rcu_read_unlock()
542 * before returning. Do vfsmount first; if dentry
543 * can't be legitimized, just set nd->path.dentry to NULL
544 * and rely on dput(NULL) being a no-op.
545 */
546 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
547 return -ECHILD;
548 nd->flags &= ~LOOKUP_RCU;
549
550 if (!lockref_get_not_dead(&parent->d_lockref)) {
551 nd->path.dentry = NULL;
552 goto out;
553 }
554
555 /*
556 * For a negative lookup, the lookup sequence point is the parents
557 * sequence point, and it only needs to revalidate the parent dentry.
558 *
559 * For a positive lookup, we need to move both the parent and the
560 * dentry from the RCU domain to be properly refcounted. And the
561 * sequence number in the dentry validates *both* dentry counters,
562 * since we checked the sequence number of the parent after we got
563 * the child sequence number. So we know the parent must still
564 * be valid if the child sequence number is still valid.
565 */
566 if (!dentry) {
567 if (read_seqcount_retry(&parent->d_seq, nd->seq))
568 goto out;
569 BUG_ON(nd->inode != parent->d_inode);
570 } else {
571 if (!lockref_get_not_dead(&dentry->d_lockref))
572 goto out;
573 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
574 goto drop_dentry;
575 }
576
577 /*
578 * Sequence counts matched. Now make sure that the root is
579 * still valid and get it if required.
580 */
581 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
582 spin_lock(&fs->lock);
583 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
584 goto unlock_and_drop_dentry;
585 path_get(&nd->root);
586 spin_unlock(&fs->lock);
587 }
588
589 rcu_read_unlock();
590 return 0;
591
592 unlock_and_drop_dentry:
593 spin_unlock(&fs->lock);
594 drop_dentry:
595 rcu_read_unlock();
596 dput(dentry);
597 goto drop_root_mnt;
598 out:
599 rcu_read_unlock();
600 drop_root_mnt:
601 if (!(nd->flags & LOOKUP_ROOT))
602 nd->root.mnt = NULL;
603 return -ECHILD;
604 }
605
606 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
607 {
608 return dentry->d_op->d_revalidate(dentry, flags);
609 }
610
611 /**
612 * complete_walk - successful completion of path walk
613 * @nd: pointer nameidata
614 *
615 * If we had been in RCU mode, drop out of it and legitimize nd->path.
616 * Revalidate the final result, unless we'd already done that during
617 * the path walk or the filesystem doesn't ask for it. Return 0 on
618 * success, -error on failure. In case of failure caller does not
619 * need to drop nd->path.
620 */
621 static int complete_walk(struct nameidata *nd)
622 {
623 struct dentry *dentry = nd->path.dentry;
624 int status;
625
626 if (nd->flags & LOOKUP_RCU) {
627 nd->flags &= ~LOOKUP_RCU;
628 if (!(nd->flags & LOOKUP_ROOT))
629 nd->root.mnt = NULL;
630
631 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
632 rcu_read_unlock();
633 return -ECHILD;
634 }
635 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
636 rcu_read_unlock();
637 mntput(nd->path.mnt);
638 return -ECHILD;
639 }
640 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
641 rcu_read_unlock();
642 dput(dentry);
643 mntput(nd->path.mnt);
644 return -ECHILD;
645 }
646 rcu_read_unlock();
647 }
648
649 if (likely(!(nd->flags & LOOKUP_JUMPED)))
650 return 0;
651
652 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
653 return 0;
654
655 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
656 if (status > 0)
657 return 0;
658
659 if (!status)
660 status = -ESTALE;
661
662 path_put(&nd->path);
663 return status;
664 }
665
666 static __always_inline void set_root(struct nameidata *nd)
667 {
668 get_fs_root(current->fs, &nd->root);
669 }
670
671 static int link_path_walk(const char *, struct nameidata *);
672
673 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
674 {
675 struct fs_struct *fs = current->fs;
676 unsigned seq, res;
677
678 do {
679 seq = read_seqcount_begin(&fs->seq);
680 nd->root = fs->root;
681 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
682 } while (read_seqcount_retry(&fs->seq, seq));
683 return res;
684 }
685
686 static void path_put_conditional(struct path *path, struct nameidata *nd)
687 {
688 dput(path->dentry);
689 if (path->mnt != nd->path.mnt)
690 mntput(path->mnt);
691 }
692
693 static inline void path_to_nameidata(const struct path *path,
694 struct nameidata *nd)
695 {
696 if (!(nd->flags & LOOKUP_RCU)) {
697 dput(nd->path.dentry);
698 if (nd->path.mnt != path->mnt)
699 mntput(nd->path.mnt);
700 }
701 nd->path.mnt = path->mnt;
702 nd->path.dentry = path->dentry;
703 }
704
705 /*
706 * Helper to directly jump to a known parsed path from ->follow_link,
707 * caller must have taken a reference to path beforehand.
708 */
709 void nd_jump_link(struct nameidata *nd, struct path *path)
710 {
711 path_put(&nd->path);
712
713 nd->path = *path;
714 nd->inode = nd->path.dentry->d_inode;
715 nd->flags |= LOOKUP_JUMPED;
716 }
717
718 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
719 {
720 struct inode *inode = link->dentry->d_inode;
721 if (cookie && inode->i_op->put_link)
722 inode->i_op->put_link(link->dentry, cookie);
723 path_put(link);
724 }
725
726 int sysctl_protected_symlinks __read_mostly = 0;
727 int sysctl_protected_hardlinks __read_mostly = 0;
728
729 /**
730 * may_follow_link - Check symlink following for unsafe situations
731 * @link: The path of the symlink
732 * @nd: nameidata pathwalk data
733 *
734 * In the case of the sysctl_protected_symlinks sysctl being enabled,
735 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
736 * in a sticky world-writable directory. This is to protect privileged
737 * processes from failing races against path names that may change out
738 * from under them by way of other users creating malicious symlinks.
739 * It will permit symlinks to be followed only when outside a sticky
740 * world-writable directory, or when the uid of the symlink and follower
741 * match, or when the directory owner matches the symlink's owner.
742 *
743 * Returns 0 if following the symlink is allowed, -ve on error.
744 */
745 static inline int may_follow_link(struct path *link, struct nameidata *nd)
746 {
747 const struct inode *inode;
748 const struct inode *parent;
749
750 if (!sysctl_protected_symlinks)
751 return 0;
752
753 /* Allowed if owner and follower match. */
754 inode = link->dentry->d_inode;
755 if (uid_eq(current_cred()->fsuid, inode->i_uid))
756 return 0;
757
758 /* Allowed if parent directory not sticky and world-writable. */
759 parent = nd->path.dentry->d_inode;
760 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
761 return 0;
762
763 /* Allowed if parent directory and link owner match. */
764 if (uid_eq(parent->i_uid, inode->i_uid))
765 return 0;
766
767 audit_log_link_denied("follow_link", link);
768 path_put_conditional(link, nd);
769 path_put(&nd->path);
770 return -EACCES;
771 }
772
773 /**
774 * safe_hardlink_source - Check for safe hardlink conditions
775 * @inode: the source inode to hardlink from
776 *
777 * Return false if at least one of the following conditions:
778 * - inode is not a regular file
779 * - inode is setuid
780 * - inode is setgid and group-exec
781 * - access failure for read and write
782 *
783 * Otherwise returns true.
784 */
785 static bool safe_hardlink_source(struct inode *inode)
786 {
787 umode_t mode = inode->i_mode;
788
789 /* Special files should not get pinned to the filesystem. */
790 if (!S_ISREG(mode))
791 return false;
792
793 /* Setuid files should not get pinned to the filesystem. */
794 if (mode & S_ISUID)
795 return false;
796
797 /* Executable setgid files should not get pinned to the filesystem. */
798 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
799 return false;
800
801 /* Hardlinking to unreadable or unwritable sources is dangerous. */
802 if (inode_permission(inode, MAY_READ | MAY_WRITE))
803 return false;
804
805 return true;
806 }
807
808 /**
809 * may_linkat - Check permissions for creating a hardlink
810 * @link: the source to hardlink from
811 *
812 * Block hardlink when all of:
813 * - sysctl_protected_hardlinks enabled
814 * - fsuid does not match inode
815 * - hardlink source is unsafe (see safe_hardlink_source() above)
816 * - not CAP_FOWNER
817 *
818 * Returns 0 if successful, -ve on error.
819 */
820 static int may_linkat(struct path *link)
821 {
822 const struct cred *cred;
823 struct inode *inode;
824
825 if (!sysctl_protected_hardlinks)
826 return 0;
827
828 cred = current_cred();
829 inode = link->dentry->d_inode;
830
831 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
832 * otherwise, it must be a safe source.
833 */
834 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
835 capable(CAP_FOWNER))
836 return 0;
837
838 audit_log_link_denied("linkat", link);
839 return -EPERM;
840 }
841
842 static __always_inline const char *
843 get_link(struct path *link, struct nameidata *nd, void **p)
844 {
845 struct dentry *dentry = link->dentry;
846 struct inode *inode = dentry->d_inode;
847 int error;
848 const char *res;
849
850 BUG_ON(nd->flags & LOOKUP_RCU);
851
852 if (link->mnt == nd->path.mnt)
853 mntget(link->mnt);
854
855 res = ERR_PTR(-ELOOP);
856 if (unlikely(current->total_link_count >= 40))
857 goto out;
858
859 cond_resched();
860 current->total_link_count++;
861
862 touch_atime(link);
863
864 error = security_inode_follow_link(dentry);
865 res = ERR_PTR(error);
866 if (error)
867 goto out;
868
869 nd->last_type = LAST_BIND;
870 *p = NULL;
871 res = inode->i_link;
872 if (!res) {
873 res = inode->i_op->follow_link(dentry, p, nd);
874 if (IS_ERR(res)) {
875 out:
876 path_put(&nd->path);
877 path_put(link);
878 }
879 }
880 return res;
881 }
882
883 static __always_inline int
884 follow_link(struct path *link, struct nameidata *nd, void **p)
885 {
886 const char *s = get_link(link, nd, p);
887 int error;
888
889 if (unlikely(IS_ERR(s)))
890 return PTR_ERR(s);
891 if (unlikely(!s))
892 return 0;
893 if (*s == '/') {
894 if (!nd->root.mnt)
895 set_root(nd);
896 path_put(&nd->path);
897 nd->path = nd->root;
898 path_get(&nd->root);
899 nd->flags |= LOOKUP_JUMPED;
900 }
901 nd->inode = nd->path.dentry->d_inode;
902 error = link_path_walk(s, nd);
903 if (unlikely(error))
904 put_link(nd, link, *p);
905 return error;
906 }
907
908 static int follow_up_rcu(struct path *path)
909 {
910 struct mount *mnt = real_mount(path->mnt);
911 struct mount *parent;
912 struct dentry *mountpoint;
913
914 parent = mnt->mnt_parent;
915 if (&parent->mnt == path->mnt)
916 return 0;
917 mountpoint = mnt->mnt_mountpoint;
918 path->dentry = mountpoint;
919 path->mnt = &parent->mnt;
920 return 1;
921 }
922
923 /*
924 * follow_up - Find the mountpoint of path's vfsmount
925 *
926 * Given a path, find the mountpoint of its source file system.
927 * Replace @path with the path of the mountpoint in the parent mount.
928 * Up is towards /.
929 *
930 * Return 1 if we went up a level and 0 if we were already at the
931 * root.
932 */
933 int follow_up(struct path *path)
934 {
935 struct mount *mnt = real_mount(path->mnt);
936 struct mount *parent;
937 struct dentry *mountpoint;
938
939 read_seqlock_excl(&mount_lock);
940 parent = mnt->mnt_parent;
941 if (parent == mnt) {
942 read_sequnlock_excl(&mount_lock);
943 return 0;
944 }
945 mntget(&parent->mnt);
946 mountpoint = dget(mnt->mnt_mountpoint);
947 read_sequnlock_excl(&mount_lock);
948 dput(path->dentry);
949 path->dentry = mountpoint;
950 mntput(path->mnt);
951 path->mnt = &parent->mnt;
952 return 1;
953 }
954 EXPORT_SYMBOL(follow_up);
955
956 /*
957 * Perform an automount
958 * - return -EISDIR to tell follow_managed() to stop and return the path we
959 * were called with.
960 */
961 static int follow_automount(struct path *path, unsigned flags,
962 bool *need_mntput)
963 {
964 struct vfsmount *mnt;
965 int err;
966
967 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
968 return -EREMOTE;
969
970 /* We don't want to mount if someone's just doing a stat -
971 * unless they're stat'ing a directory and appended a '/' to
972 * the name.
973 *
974 * We do, however, want to mount if someone wants to open or
975 * create a file of any type under the mountpoint, wants to
976 * traverse through the mountpoint or wants to open the
977 * mounted directory. Also, autofs may mark negative dentries
978 * as being automount points. These will need the attentions
979 * of the daemon to instantiate them before they can be used.
980 */
981 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
982 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
983 path->dentry->d_inode)
984 return -EISDIR;
985
986 current->total_link_count++;
987 if (current->total_link_count >= 40)
988 return -ELOOP;
989
990 mnt = path->dentry->d_op->d_automount(path);
991 if (IS_ERR(mnt)) {
992 /*
993 * The filesystem is allowed to return -EISDIR here to indicate
994 * it doesn't want to automount. For instance, autofs would do
995 * this so that its userspace daemon can mount on this dentry.
996 *
997 * However, we can only permit this if it's a terminal point in
998 * the path being looked up; if it wasn't then the remainder of
999 * the path is inaccessible and we should say so.
1000 */
1001 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
1002 return -EREMOTE;
1003 return PTR_ERR(mnt);
1004 }
1005
1006 if (!mnt) /* mount collision */
1007 return 0;
1008
1009 if (!*need_mntput) {
1010 /* lock_mount() may release path->mnt on error */
1011 mntget(path->mnt);
1012 *need_mntput = true;
1013 }
1014 err = finish_automount(mnt, path);
1015
1016 switch (err) {
1017 case -EBUSY:
1018 /* Someone else made a mount here whilst we were busy */
1019 return 0;
1020 case 0:
1021 path_put(path);
1022 path->mnt = mnt;
1023 path->dentry = dget(mnt->mnt_root);
1024 return 0;
1025 default:
1026 return err;
1027 }
1028
1029 }
1030
1031 /*
1032 * Handle a dentry that is managed in some way.
1033 * - Flagged for transit management (autofs)
1034 * - Flagged as mountpoint
1035 * - Flagged as automount point
1036 *
1037 * This may only be called in refwalk mode.
1038 *
1039 * Serialization is taken care of in namespace.c
1040 */
1041 static int follow_managed(struct path *path, unsigned flags)
1042 {
1043 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1044 unsigned managed;
1045 bool need_mntput = false;
1046 int ret = 0;
1047
1048 /* Given that we're not holding a lock here, we retain the value in a
1049 * local variable for each dentry as we look at it so that we don't see
1050 * the components of that value change under us */
1051 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1052 managed &= DCACHE_MANAGED_DENTRY,
1053 unlikely(managed != 0)) {
1054 /* Allow the filesystem to manage the transit without i_mutex
1055 * being held. */
1056 if (managed & DCACHE_MANAGE_TRANSIT) {
1057 BUG_ON(!path->dentry->d_op);
1058 BUG_ON(!path->dentry->d_op->d_manage);
1059 ret = path->dentry->d_op->d_manage(path->dentry, false);
1060 if (ret < 0)
1061 break;
1062 }
1063
1064 /* Transit to a mounted filesystem. */
1065 if (managed & DCACHE_MOUNTED) {
1066 struct vfsmount *mounted = lookup_mnt(path);
1067 if (mounted) {
1068 dput(path->dentry);
1069 if (need_mntput)
1070 mntput(path->mnt);
1071 path->mnt = mounted;
1072 path->dentry = dget(mounted->mnt_root);
1073 need_mntput = true;
1074 continue;
1075 }
1076
1077 /* Something is mounted on this dentry in another
1078 * namespace and/or whatever was mounted there in this
1079 * namespace got unmounted before lookup_mnt() could
1080 * get it */
1081 }
1082
1083 /* Handle an automount point */
1084 if (managed & DCACHE_NEED_AUTOMOUNT) {
1085 ret = follow_automount(path, flags, &need_mntput);
1086 if (ret < 0)
1087 break;
1088 continue;
1089 }
1090
1091 /* We didn't change the current path point */
1092 break;
1093 }
1094
1095 if (need_mntput && path->mnt == mnt)
1096 mntput(path->mnt);
1097 if (ret == -EISDIR)
1098 ret = 0;
1099 return ret < 0 ? ret : need_mntput;
1100 }
1101
1102 int follow_down_one(struct path *path)
1103 {
1104 struct vfsmount *mounted;
1105
1106 mounted = lookup_mnt(path);
1107 if (mounted) {
1108 dput(path->dentry);
1109 mntput(path->mnt);
1110 path->mnt = mounted;
1111 path->dentry = dget(mounted->mnt_root);
1112 return 1;
1113 }
1114 return 0;
1115 }
1116 EXPORT_SYMBOL(follow_down_one);
1117
1118 static inline int managed_dentry_rcu(struct dentry *dentry)
1119 {
1120 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1121 dentry->d_op->d_manage(dentry, true) : 0;
1122 }
1123
1124 /*
1125 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1126 * we meet a managed dentry that would need blocking.
1127 */
1128 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1129 struct inode **inode)
1130 {
1131 for (;;) {
1132 struct mount *mounted;
1133 /*
1134 * Don't forget we might have a non-mountpoint managed dentry
1135 * that wants to block transit.
1136 */
1137 switch (managed_dentry_rcu(path->dentry)) {
1138 case -ECHILD:
1139 default:
1140 return false;
1141 case -EISDIR:
1142 return true;
1143 case 0:
1144 break;
1145 }
1146
1147 if (!d_mountpoint(path->dentry))
1148 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1149
1150 mounted = __lookup_mnt(path->mnt, path->dentry);
1151 if (!mounted)
1152 break;
1153 path->mnt = &mounted->mnt;
1154 path->dentry = mounted->mnt.mnt_root;
1155 nd->flags |= LOOKUP_JUMPED;
1156 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1157 /*
1158 * Update the inode too. We don't need to re-check the
1159 * dentry sequence number here after this d_inode read,
1160 * because a mount-point is always pinned.
1161 */
1162 *inode = path->dentry->d_inode;
1163 }
1164 return !read_seqretry(&mount_lock, nd->m_seq) &&
1165 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1166 }
1167
1168 static int follow_dotdot_rcu(struct nameidata *nd)
1169 {
1170 struct inode *inode = nd->inode;
1171 if (!nd->root.mnt)
1172 set_root_rcu(nd);
1173
1174 while (1) {
1175 if (nd->path.dentry == nd->root.dentry &&
1176 nd->path.mnt == nd->root.mnt) {
1177 break;
1178 }
1179 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1180 struct dentry *old = nd->path.dentry;
1181 struct dentry *parent = old->d_parent;
1182 unsigned seq;
1183
1184 inode = parent->d_inode;
1185 seq = read_seqcount_begin(&parent->d_seq);
1186 if (read_seqcount_retry(&old->d_seq, nd->seq))
1187 goto failed;
1188 nd->path.dentry = parent;
1189 nd->seq = seq;
1190 break;
1191 }
1192 if (!follow_up_rcu(&nd->path))
1193 break;
1194 inode = nd->path.dentry->d_inode;
1195 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1196 }
1197 while (d_mountpoint(nd->path.dentry)) {
1198 struct mount *mounted;
1199 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1200 if (!mounted)
1201 break;
1202 nd->path.mnt = &mounted->mnt;
1203 nd->path.dentry = mounted->mnt.mnt_root;
1204 inode = nd->path.dentry->d_inode;
1205 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1206 if (read_seqretry(&mount_lock, nd->m_seq))
1207 goto failed;
1208 }
1209 nd->inode = inode;
1210 return 0;
1211
1212 failed:
1213 nd->flags &= ~LOOKUP_RCU;
1214 if (!(nd->flags & LOOKUP_ROOT))
1215 nd->root.mnt = NULL;
1216 rcu_read_unlock();
1217 return -ECHILD;
1218 }
1219
1220 /*
1221 * Follow down to the covering mount currently visible to userspace. At each
1222 * point, the filesystem owning that dentry may be queried as to whether the
1223 * caller is permitted to proceed or not.
1224 */
1225 int follow_down(struct path *path)
1226 {
1227 unsigned managed;
1228 int ret;
1229
1230 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1231 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1232 /* Allow the filesystem to manage the transit without i_mutex
1233 * being held.
1234 *
1235 * We indicate to the filesystem if someone is trying to mount
1236 * something here. This gives autofs the chance to deny anyone
1237 * other than its daemon the right to mount on its
1238 * superstructure.
1239 *
1240 * The filesystem may sleep at this point.
1241 */
1242 if (managed & DCACHE_MANAGE_TRANSIT) {
1243 BUG_ON(!path->dentry->d_op);
1244 BUG_ON(!path->dentry->d_op->d_manage);
1245 ret = path->dentry->d_op->d_manage(
1246 path->dentry, false);
1247 if (ret < 0)
1248 return ret == -EISDIR ? 0 : ret;
1249 }
1250
1251 /* Transit to a mounted filesystem. */
1252 if (managed & DCACHE_MOUNTED) {
1253 struct vfsmount *mounted = lookup_mnt(path);
1254 if (!mounted)
1255 break;
1256 dput(path->dentry);
1257 mntput(path->mnt);
1258 path->mnt = mounted;
1259 path->dentry = dget(mounted->mnt_root);
1260 continue;
1261 }
1262
1263 /* Don't handle automount points here */
1264 break;
1265 }
1266 return 0;
1267 }
1268 EXPORT_SYMBOL(follow_down);
1269
1270 /*
1271 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1272 */
1273 static void follow_mount(struct path *path)
1274 {
1275 while (d_mountpoint(path->dentry)) {
1276 struct vfsmount *mounted = lookup_mnt(path);
1277 if (!mounted)
1278 break;
1279 dput(path->dentry);
1280 mntput(path->mnt);
1281 path->mnt = mounted;
1282 path->dentry = dget(mounted->mnt_root);
1283 }
1284 }
1285
1286 static void follow_dotdot(struct nameidata *nd)
1287 {
1288 if (!nd->root.mnt)
1289 set_root(nd);
1290
1291 while(1) {
1292 struct dentry *old = nd->path.dentry;
1293
1294 if (nd->path.dentry == nd->root.dentry &&
1295 nd->path.mnt == nd->root.mnt) {
1296 break;
1297 }
1298 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1299 /* rare case of legitimate dget_parent()... */
1300 nd->path.dentry = dget_parent(nd->path.dentry);
1301 dput(old);
1302 break;
1303 }
1304 if (!follow_up(&nd->path))
1305 break;
1306 }
1307 follow_mount(&nd->path);
1308 nd->inode = nd->path.dentry->d_inode;
1309 }
1310
1311 /*
1312 * This looks up the name in dcache, possibly revalidates the old dentry and
1313 * allocates a new one if not found or not valid. In the need_lookup argument
1314 * returns whether i_op->lookup is necessary.
1315 *
1316 * dir->d_inode->i_mutex must be held
1317 */
1318 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1319 unsigned int flags, bool *need_lookup)
1320 {
1321 struct dentry *dentry;
1322 int error;
1323
1324 *need_lookup = false;
1325 dentry = d_lookup(dir, name);
1326 if (dentry) {
1327 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1328 error = d_revalidate(dentry, flags);
1329 if (unlikely(error <= 0)) {
1330 if (error < 0) {
1331 dput(dentry);
1332 return ERR_PTR(error);
1333 } else {
1334 d_invalidate(dentry);
1335 dput(dentry);
1336 dentry = NULL;
1337 }
1338 }
1339 }
1340 }
1341
1342 if (!dentry) {
1343 dentry = d_alloc(dir, name);
1344 if (unlikely(!dentry))
1345 return ERR_PTR(-ENOMEM);
1346
1347 *need_lookup = true;
1348 }
1349 return dentry;
1350 }
1351
1352 /*
1353 * Call i_op->lookup on the dentry. The dentry must be negative and
1354 * unhashed.
1355 *
1356 * dir->d_inode->i_mutex must be held
1357 */
1358 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1359 unsigned int flags)
1360 {
1361 struct dentry *old;
1362
1363 /* Don't create child dentry for a dead directory. */
1364 if (unlikely(IS_DEADDIR(dir))) {
1365 dput(dentry);
1366 return ERR_PTR(-ENOENT);
1367 }
1368
1369 old = dir->i_op->lookup(dir, dentry, flags);
1370 if (unlikely(old)) {
1371 dput(dentry);
1372 dentry = old;
1373 }
1374 return dentry;
1375 }
1376
1377 static struct dentry *__lookup_hash(struct qstr *name,
1378 struct dentry *base, unsigned int flags)
1379 {
1380 bool need_lookup;
1381 struct dentry *dentry;
1382
1383 dentry = lookup_dcache(name, base, flags, &need_lookup);
1384 if (!need_lookup)
1385 return dentry;
1386
1387 return lookup_real(base->d_inode, dentry, flags);
1388 }
1389
1390 /*
1391 * It's more convoluted than I'd like it to be, but... it's still fairly
1392 * small and for now I'd prefer to have fast path as straight as possible.
1393 * It _is_ time-critical.
1394 */
1395 static int lookup_fast(struct nameidata *nd,
1396 struct path *path, struct inode **inode)
1397 {
1398 struct vfsmount *mnt = nd->path.mnt;
1399 struct dentry *dentry, *parent = nd->path.dentry;
1400 int need_reval = 1;
1401 int status = 1;
1402 int err;
1403
1404 /*
1405 * Rename seqlock is not required here because in the off chance
1406 * of a false negative due to a concurrent rename, we're going to
1407 * do the non-racy lookup, below.
1408 */
1409 if (nd->flags & LOOKUP_RCU) {
1410 unsigned seq;
1411 bool negative;
1412 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1413 if (!dentry)
1414 goto unlazy;
1415
1416 /*
1417 * This sequence count validates that the inode matches
1418 * the dentry name information from lookup.
1419 */
1420 *inode = dentry->d_inode;
1421 negative = d_is_negative(dentry);
1422 if (read_seqcount_retry(&dentry->d_seq, seq))
1423 return -ECHILD;
1424 if (negative)
1425 return -ENOENT;
1426
1427 /*
1428 * This sequence count validates that the parent had no
1429 * changes while we did the lookup of the dentry above.
1430 *
1431 * The memory barrier in read_seqcount_begin of child is
1432 * enough, we can use __read_seqcount_retry here.
1433 */
1434 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1435 return -ECHILD;
1436 nd->seq = seq;
1437
1438 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1439 status = d_revalidate(dentry, nd->flags);
1440 if (unlikely(status <= 0)) {
1441 if (status != -ECHILD)
1442 need_reval = 0;
1443 goto unlazy;
1444 }
1445 }
1446 path->mnt = mnt;
1447 path->dentry = dentry;
1448 if (likely(__follow_mount_rcu(nd, path, inode)))
1449 return 0;
1450 unlazy:
1451 if (unlazy_walk(nd, dentry))
1452 return -ECHILD;
1453 } else {
1454 dentry = __d_lookup(parent, &nd->last);
1455 }
1456
1457 if (unlikely(!dentry))
1458 goto need_lookup;
1459
1460 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1461 status = d_revalidate(dentry, nd->flags);
1462 if (unlikely(status <= 0)) {
1463 if (status < 0) {
1464 dput(dentry);
1465 return status;
1466 }
1467 d_invalidate(dentry);
1468 dput(dentry);
1469 goto need_lookup;
1470 }
1471
1472 if (unlikely(d_is_negative(dentry))) {
1473 dput(dentry);
1474 return -ENOENT;
1475 }
1476 path->mnt = mnt;
1477 path->dentry = dentry;
1478 err = follow_managed(path, nd->flags);
1479 if (unlikely(err < 0)) {
1480 path_put_conditional(path, nd);
1481 return err;
1482 }
1483 if (err)
1484 nd->flags |= LOOKUP_JUMPED;
1485 *inode = path->dentry->d_inode;
1486 return 0;
1487
1488 need_lookup:
1489 return 1;
1490 }
1491
1492 /* Fast lookup failed, do it the slow way */
1493 static int lookup_slow(struct nameidata *nd, struct path *path)
1494 {
1495 struct dentry *dentry, *parent;
1496 int err;
1497
1498 parent = nd->path.dentry;
1499 BUG_ON(nd->inode != parent->d_inode);
1500
1501 mutex_lock(&parent->d_inode->i_mutex);
1502 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1503 mutex_unlock(&parent->d_inode->i_mutex);
1504 if (IS_ERR(dentry))
1505 return PTR_ERR(dentry);
1506 path->mnt = nd->path.mnt;
1507 path->dentry = dentry;
1508 err = follow_managed(path, nd->flags);
1509 if (unlikely(err < 0)) {
1510 path_put_conditional(path, nd);
1511 return err;
1512 }
1513 if (err)
1514 nd->flags |= LOOKUP_JUMPED;
1515 return 0;
1516 }
1517
1518 static inline int may_lookup(struct nameidata *nd)
1519 {
1520 if (nd->flags & LOOKUP_RCU) {
1521 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1522 if (err != -ECHILD)
1523 return err;
1524 if (unlazy_walk(nd, NULL))
1525 return -ECHILD;
1526 }
1527 return inode_permission(nd->inode, MAY_EXEC);
1528 }
1529
1530 static inline int handle_dots(struct nameidata *nd, int type)
1531 {
1532 if (type == LAST_DOTDOT) {
1533 if (nd->flags & LOOKUP_RCU) {
1534 if (follow_dotdot_rcu(nd))
1535 return -ECHILD;
1536 } else
1537 follow_dotdot(nd);
1538 }
1539 return 0;
1540 }
1541
1542 static void terminate_walk(struct nameidata *nd)
1543 {
1544 if (!(nd->flags & LOOKUP_RCU)) {
1545 path_put(&nd->path);
1546 } else {
1547 nd->flags &= ~LOOKUP_RCU;
1548 if (!(nd->flags & LOOKUP_ROOT))
1549 nd->root.mnt = NULL;
1550 rcu_read_unlock();
1551 }
1552 }
1553
1554 /*
1555 * Do we need to follow links? We _really_ want to be able
1556 * to do this check without having to look at inode->i_op,
1557 * so we keep a cache of "no, this doesn't need follow_link"
1558 * for the common case.
1559 */
1560 static inline int should_follow_link(struct dentry *dentry, int follow)
1561 {
1562 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1563 }
1564
1565 static int walk_component(struct nameidata *nd, int follow)
1566 {
1567 struct path path;
1568 struct inode *inode;
1569 int err;
1570 /*
1571 * "." and ".." are special - ".." especially so because it has
1572 * to be able to know about the current root directory and
1573 * parent relationships.
1574 */
1575 if (unlikely(nd->last_type != LAST_NORM))
1576 return handle_dots(nd, nd->last_type);
1577 err = lookup_fast(nd, &path, &inode);
1578 if (unlikely(err)) {
1579 if (err < 0)
1580 goto out_err;
1581
1582 err = lookup_slow(nd, &path);
1583 if (err < 0)
1584 goto out_err;
1585
1586 inode = path.dentry->d_inode;
1587 err = -ENOENT;
1588 if (d_is_negative(path.dentry))
1589 goto out_path_put;
1590 }
1591
1592 if (should_follow_link(path.dentry, follow)) {
1593 if (nd->flags & LOOKUP_RCU) {
1594 if (unlikely(nd->path.mnt != path.mnt ||
1595 unlazy_walk(nd, path.dentry))) {
1596 err = -ECHILD;
1597 goto out_err;
1598 }
1599 }
1600 BUG_ON(inode != path.dentry->d_inode);
1601 nd->link = path;
1602 return 1;
1603 }
1604 path_to_nameidata(&path, nd);
1605 nd->inode = inode;
1606 return 0;
1607
1608 out_path_put:
1609 path_to_nameidata(&path, nd);
1610 out_err:
1611 terminate_walk(nd);
1612 return err;
1613 }
1614
1615 /*
1616 * This limits recursive symlink follows to 8, while
1617 * limiting consecutive symlinks to 40.
1618 *
1619 * Without that kind of total limit, nasty chains of consecutive
1620 * symlinks can cause almost arbitrarily long lookups.
1621 */
1622 static inline int nested_symlink(struct nameidata *nd)
1623 {
1624 int res;
1625
1626 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1627 path_put_conditional(&nd->link, nd);
1628 path_put(&nd->path);
1629 return -ELOOP;
1630 }
1631 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1632
1633 nd->depth++;
1634 current->link_count++;
1635
1636 do {
1637 struct path link = nd->link;
1638 void *cookie;
1639
1640 res = follow_link(&link, nd, &cookie);
1641 if (res)
1642 break;
1643 res = walk_component(nd, LOOKUP_FOLLOW);
1644 put_link(nd, &link, cookie);
1645 } while (res > 0);
1646
1647 current->link_count--;
1648 nd->depth--;
1649 return res;
1650 }
1651
1652 /*
1653 * We can do the critical dentry name comparison and hashing
1654 * operations one word at a time, but we are limited to:
1655 *
1656 * - Architectures with fast unaligned word accesses. We could
1657 * do a "get_unaligned()" if this helps and is sufficiently
1658 * fast.
1659 *
1660 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1661 * do not trap on the (extremely unlikely) case of a page
1662 * crossing operation.
1663 *
1664 * - Furthermore, we need an efficient 64-bit compile for the
1665 * 64-bit case in order to generate the "number of bytes in
1666 * the final mask". Again, that could be replaced with a
1667 * efficient population count instruction or similar.
1668 */
1669 #ifdef CONFIG_DCACHE_WORD_ACCESS
1670
1671 #include <asm/word-at-a-time.h>
1672
1673 #ifdef CONFIG_64BIT
1674
1675 static inline unsigned int fold_hash(unsigned long hash)
1676 {
1677 return hash_64(hash, 32);
1678 }
1679
1680 #else /* 32-bit case */
1681
1682 #define fold_hash(x) (x)
1683
1684 #endif
1685
1686 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1687 {
1688 unsigned long a, mask;
1689 unsigned long hash = 0;
1690
1691 for (;;) {
1692 a = load_unaligned_zeropad(name);
1693 if (len < sizeof(unsigned long))
1694 break;
1695 hash += a;
1696 hash *= 9;
1697 name += sizeof(unsigned long);
1698 len -= sizeof(unsigned long);
1699 if (!len)
1700 goto done;
1701 }
1702 mask = bytemask_from_count(len);
1703 hash += mask & a;
1704 done:
1705 return fold_hash(hash);
1706 }
1707 EXPORT_SYMBOL(full_name_hash);
1708
1709 /*
1710 * Calculate the length and hash of the path component, and
1711 * return the "hash_len" as the result.
1712 */
1713 static inline u64 hash_name(const char *name)
1714 {
1715 unsigned long a, b, adata, bdata, mask, hash, len;
1716 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1717
1718 hash = a = 0;
1719 len = -sizeof(unsigned long);
1720 do {
1721 hash = (hash + a) * 9;
1722 len += sizeof(unsigned long);
1723 a = load_unaligned_zeropad(name+len);
1724 b = a ^ REPEAT_BYTE('/');
1725 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1726
1727 adata = prep_zero_mask(a, adata, &constants);
1728 bdata = prep_zero_mask(b, bdata, &constants);
1729
1730 mask = create_zero_mask(adata | bdata);
1731
1732 hash += a & zero_bytemask(mask);
1733 len += find_zero(mask);
1734 return hashlen_create(fold_hash(hash), len);
1735 }
1736
1737 #else
1738
1739 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1740 {
1741 unsigned long hash = init_name_hash();
1742 while (len--)
1743 hash = partial_name_hash(*name++, hash);
1744 return end_name_hash(hash);
1745 }
1746 EXPORT_SYMBOL(full_name_hash);
1747
1748 /*
1749 * We know there's a real path component here of at least
1750 * one character.
1751 */
1752 static inline u64 hash_name(const char *name)
1753 {
1754 unsigned long hash = init_name_hash();
1755 unsigned long len = 0, c;
1756
1757 c = (unsigned char)*name;
1758 do {
1759 len++;
1760 hash = partial_name_hash(c, hash);
1761 c = (unsigned char)name[len];
1762 } while (c && c != '/');
1763 return hashlen_create(end_name_hash(hash), len);
1764 }
1765
1766 #endif
1767
1768 /*
1769 * Name resolution.
1770 * This is the basic name resolution function, turning a pathname into
1771 * the final dentry. We expect 'base' to be positive and a directory.
1772 *
1773 * Returns 0 and nd will have valid dentry and mnt on success.
1774 * Returns error and drops reference to input namei data on failure.
1775 */
1776 static int link_path_walk(const char *name, struct nameidata *nd)
1777 {
1778 int err;
1779
1780 while (*name=='/')
1781 name++;
1782 if (!*name)
1783 return 0;
1784
1785 /* At this point we know we have a real path component. */
1786 for(;;) {
1787 u64 hash_len;
1788 int type;
1789
1790 err = may_lookup(nd);
1791 if (err)
1792 break;
1793
1794 hash_len = hash_name(name);
1795
1796 type = LAST_NORM;
1797 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1798 case 2:
1799 if (name[1] == '.') {
1800 type = LAST_DOTDOT;
1801 nd->flags |= LOOKUP_JUMPED;
1802 }
1803 break;
1804 case 1:
1805 type = LAST_DOT;
1806 }
1807 if (likely(type == LAST_NORM)) {
1808 struct dentry *parent = nd->path.dentry;
1809 nd->flags &= ~LOOKUP_JUMPED;
1810 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1811 struct qstr this = { { .hash_len = hash_len }, .name = name };
1812 err = parent->d_op->d_hash(parent, &this);
1813 if (err < 0)
1814 break;
1815 hash_len = this.hash_len;
1816 name = this.name;
1817 }
1818 }
1819
1820 nd->last.hash_len = hash_len;
1821 nd->last.name = name;
1822 nd->last_type = type;
1823
1824 name += hashlen_len(hash_len);
1825 if (!*name)
1826 return 0;
1827 /*
1828 * If it wasn't NUL, we know it was '/'. Skip that
1829 * slash, and continue until no more slashes.
1830 */
1831 do {
1832 name++;
1833 } while (unlikely(*name == '/'));
1834 if (!*name)
1835 return 0;
1836
1837 err = walk_component(nd, LOOKUP_FOLLOW);
1838 if (err < 0)
1839 return err;
1840
1841 if (err) {
1842 err = nested_symlink(nd);
1843 if (err)
1844 return err;
1845 }
1846 if (!d_can_lookup(nd->path.dentry)) {
1847 err = -ENOTDIR;
1848 break;
1849 }
1850 }
1851 terminate_walk(nd);
1852 return err;
1853 }
1854
1855 static int path_init(int dfd, const struct filename *name, unsigned int flags,
1856 struct nameidata *nd)
1857 {
1858 int retval = 0;
1859 const char *s = name->name;
1860
1861 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1862 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1863 nd->depth = 0;
1864 nd->base = NULL;
1865 if (flags & LOOKUP_ROOT) {
1866 struct dentry *root = nd->root.dentry;
1867 struct inode *inode = root->d_inode;
1868 if (*s) {
1869 if (!d_can_lookup(root))
1870 return -ENOTDIR;
1871 retval = inode_permission(inode, MAY_EXEC);
1872 if (retval)
1873 return retval;
1874 }
1875 nd->path = nd->root;
1876 nd->inode = inode;
1877 if (flags & LOOKUP_RCU) {
1878 rcu_read_lock();
1879 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1880 nd->m_seq = read_seqbegin(&mount_lock);
1881 } else {
1882 path_get(&nd->path);
1883 }
1884 goto done;
1885 }
1886
1887 nd->root.mnt = NULL;
1888
1889 nd->m_seq = read_seqbegin(&mount_lock);
1890 if (*s == '/') {
1891 if (flags & LOOKUP_RCU) {
1892 rcu_read_lock();
1893 nd->seq = set_root_rcu(nd);
1894 } else {
1895 set_root(nd);
1896 path_get(&nd->root);
1897 }
1898 nd->path = nd->root;
1899 } else if (dfd == AT_FDCWD) {
1900 if (flags & LOOKUP_RCU) {
1901 struct fs_struct *fs = current->fs;
1902 unsigned seq;
1903
1904 rcu_read_lock();
1905
1906 do {
1907 seq = read_seqcount_begin(&fs->seq);
1908 nd->path = fs->pwd;
1909 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1910 } while (read_seqcount_retry(&fs->seq, seq));
1911 } else {
1912 get_fs_pwd(current->fs, &nd->path);
1913 }
1914 } else {
1915 /* Caller must check execute permissions on the starting path component */
1916 struct fd f = fdget_raw(dfd);
1917 struct dentry *dentry;
1918
1919 if (!f.file)
1920 return -EBADF;
1921
1922 dentry = f.file->f_path.dentry;
1923
1924 if (*s) {
1925 if (!d_can_lookup(dentry)) {
1926 fdput(f);
1927 return -ENOTDIR;
1928 }
1929 }
1930
1931 nd->path = f.file->f_path;
1932 if (flags & LOOKUP_RCU) {
1933 if (f.flags & FDPUT_FPUT)
1934 nd->base = f.file;
1935 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1936 rcu_read_lock();
1937 } else {
1938 path_get(&nd->path);
1939 fdput(f);
1940 }
1941 }
1942
1943 nd->inode = nd->path.dentry->d_inode;
1944 if (!(flags & LOOKUP_RCU))
1945 goto done;
1946 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1947 goto done;
1948 if (!(nd->flags & LOOKUP_ROOT))
1949 nd->root.mnt = NULL;
1950 rcu_read_unlock();
1951 return -ECHILD;
1952 done:
1953 current->total_link_count = 0;
1954 return link_path_walk(s, nd);
1955 }
1956
1957 static void path_cleanup(struct nameidata *nd)
1958 {
1959 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1960 path_put(&nd->root);
1961 nd->root.mnt = NULL;
1962 }
1963 if (unlikely(nd->base))
1964 fput(nd->base);
1965 }
1966
1967 static inline int lookup_last(struct nameidata *nd)
1968 {
1969 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1970 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1971
1972 nd->flags &= ~LOOKUP_PARENT;
1973 return walk_component(nd, nd->flags & LOOKUP_FOLLOW);
1974 }
1975
1976 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1977 static int path_lookupat(int dfd, const struct filename *name,
1978 unsigned int flags, struct nameidata *nd)
1979 {
1980 int err;
1981
1982 /*
1983 * Path walking is largely split up into 2 different synchronisation
1984 * schemes, rcu-walk and ref-walk (explained in
1985 * Documentation/filesystems/path-lookup.txt). These share much of the
1986 * path walk code, but some things particularly setup, cleanup, and
1987 * following mounts are sufficiently divergent that functions are
1988 * duplicated. Typically there is a function foo(), and its RCU
1989 * analogue, foo_rcu().
1990 *
1991 * -ECHILD is the error number of choice (just to avoid clashes) that
1992 * is returned if some aspect of an rcu-walk fails. Such an error must
1993 * be handled by restarting a traditional ref-walk (which will always
1994 * be able to complete).
1995 */
1996 err = path_init(dfd, name, flags, nd);
1997 if (!err && !(flags & LOOKUP_PARENT)) {
1998 err = lookup_last(nd);
1999 while (err > 0) {
2000 void *cookie;
2001 struct path link = nd->link;
2002 err = may_follow_link(&link, nd);
2003 if (unlikely(err))
2004 break;
2005 nd->flags |= LOOKUP_PARENT;
2006 err = follow_link(&link, nd, &cookie);
2007 if (err)
2008 break;
2009 err = lookup_last(nd);
2010 put_link(nd, &link, cookie);
2011 }
2012 }
2013
2014 if (!err)
2015 err = complete_walk(nd);
2016
2017 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2018 if (!d_can_lookup(nd->path.dentry)) {
2019 path_put(&nd->path);
2020 err = -ENOTDIR;
2021 }
2022 }
2023
2024 path_cleanup(nd);
2025 return err;
2026 }
2027
2028 static int filename_lookup(int dfd, struct filename *name,
2029 unsigned int flags, struct nameidata *nd)
2030 {
2031 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2032 if (unlikely(retval == -ECHILD))
2033 retval = path_lookupat(dfd, name, flags, nd);
2034 if (unlikely(retval == -ESTALE))
2035 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2036
2037 if (likely(!retval))
2038 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2039 return retval;
2040 }
2041
2042 /* does lookup, returns the object with parent locked */
2043 struct dentry *kern_path_locked(const char *name, struct path *path)
2044 {
2045 struct filename *filename = getname_kernel(name);
2046 struct nameidata nd;
2047 struct dentry *d;
2048 int err;
2049
2050 if (IS_ERR(filename))
2051 return ERR_CAST(filename);
2052
2053 err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd);
2054 if (err) {
2055 d = ERR_PTR(err);
2056 goto out;
2057 }
2058 if (nd.last_type != LAST_NORM) {
2059 path_put(&nd.path);
2060 d = ERR_PTR(-EINVAL);
2061 goto out;
2062 }
2063 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2064 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2065 if (IS_ERR(d)) {
2066 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2067 path_put(&nd.path);
2068 goto out;
2069 }
2070 *path = nd.path;
2071 out:
2072 putname(filename);
2073 return d;
2074 }
2075
2076 int kern_path(const char *name, unsigned int flags, struct path *path)
2077 {
2078 struct nameidata nd;
2079 struct filename *filename = getname_kernel(name);
2080 int res = PTR_ERR(filename);
2081
2082 if (!IS_ERR(filename)) {
2083 res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2084 putname(filename);
2085 if (!res)
2086 *path = nd.path;
2087 }
2088 return res;
2089 }
2090 EXPORT_SYMBOL(kern_path);
2091
2092 /**
2093 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2094 * @dentry: pointer to dentry of the base directory
2095 * @mnt: pointer to vfs mount of the base directory
2096 * @name: pointer to file name
2097 * @flags: lookup flags
2098 * @path: pointer to struct path to fill
2099 */
2100 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2101 const char *name, unsigned int flags,
2102 struct path *path)
2103 {
2104 struct filename *filename = getname_kernel(name);
2105 int err = PTR_ERR(filename);
2106
2107 BUG_ON(flags & LOOKUP_PARENT);
2108
2109 /* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2110 if (!IS_ERR(filename)) {
2111 struct nameidata nd;
2112 nd.root.dentry = dentry;
2113 nd.root.mnt = mnt;
2114 err = filename_lookup(AT_FDCWD, filename,
2115 flags | LOOKUP_ROOT, &nd);
2116 if (!err)
2117 *path = nd.path;
2118 putname(filename);
2119 }
2120 return err;
2121 }
2122 EXPORT_SYMBOL(vfs_path_lookup);
2123
2124 /**
2125 * lookup_one_len - filesystem helper to lookup single pathname component
2126 * @name: pathname component to lookup
2127 * @base: base directory to lookup from
2128 * @len: maximum length @len should be interpreted to
2129 *
2130 * Note that this routine is purely a helper for filesystem usage and should
2131 * not be called by generic code.
2132 */
2133 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2134 {
2135 struct qstr this;
2136 unsigned int c;
2137 int err;
2138
2139 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2140
2141 this.name = name;
2142 this.len = len;
2143 this.hash = full_name_hash(name, len);
2144 if (!len)
2145 return ERR_PTR(-EACCES);
2146
2147 if (unlikely(name[0] == '.')) {
2148 if (len < 2 || (len == 2 && name[1] == '.'))
2149 return ERR_PTR(-EACCES);
2150 }
2151
2152 while (len--) {
2153 c = *(const unsigned char *)name++;
2154 if (c == '/' || c == '\0')
2155 return ERR_PTR(-EACCES);
2156 }
2157 /*
2158 * See if the low-level filesystem might want
2159 * to use its own hash..
2160 */
2161 if (base->d_flags & DCACHE_OP_HASH) {
2162 int err = base->d_op->d_hash(base, &this);
2163 if (err < 0)
2164 return ERR_PTR(err);
2165 }
2166
2167 err = inode_permission(base->d_inode, MAY_EXEC);
2168 if (err)
2169 return ERR_PTR(err);
2170
2171 return __lookup_hash(&this, base, 0);
2172 }
2173 EXPORT_SYMBOL(lookup_one_len);
2174
2175 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2176 struct path *path, int *empty)
2177 {
2178 struct nameidata nd;
2179 struct filename *tmp = getname_flags(name, flags, empty);
2180 int err = PTR_ERR(tmp);
2181 if (!IS_ERR(tmp)) {
2182
2183 BUG_ON(flags & LOOKUP_PARENT);
2184
2185 err = filename_lookup(dfd, tmp, flags, &nd);
2186 putname(tmp);
2187 if (!err)
2188 *path = nd.path;
2189 }
2190 return err;
2191 }
2192
2193 int user_path_at(int dfd, const char __user *name, unsigned flags,
2194 struct path *path)
2195 {
2196 return user_path_at_empty(dfd, name, flags, path, NULL);
2197 }
2198 EXPORT_SYMBOL(user_path_at);
2199
2200 /*
2201 * NB: most callers don't do anything directly with the reference to the
2202 * to struct filename, but the nd->last pointer points into the name string
2203 * allocated by getname. So we must hold the reference to it until all
2204 * path-walking is complete.
2205 */
2206 static struct filename *
2207 user_path_parent(int dfd, const char __user *path,
2208 struct path *parent,
2209 struct qstr *last,
2210 int *type,
2211 unsigned int flags)
2212 {
2213 struct nameidata nd;
2214 struct filename *s = getname(path);
2215 int error;
2216
2217 /* only LOOKUP_REVAL is allowed in extra flags */
2218 flags &= LOOKUP_REVAL;
2219
2220 if (IS_ERR(s))
2221 return s;
2222
2223 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, &nd);
2224 if (error) {
2225 putname(s);
2226 return ERR_PTR(error);
2227 }
2228 *parent = nd.path;
2229 *last = nd.last;
2230 *type = nd.last_type;
2231
2232 return s;
2233 }
2234
2235 /**
2236 * mountpoint_last - look up last component for umount
2237 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2238 * @path: pointer to container for result
2239 *
2240 * This is a special lookup_last function just for umount. In this case, we
2241 * need to resolve the path without doing any revalidation.
2242 *
2243 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2244 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2245 * in almost all cases, this lookup will be served out of the dcache. The only
2246 * cases where it won't are if nd->last refers to a symlink or the path is
2247 * bogus and it doesn't exist.
2248 *
2249 * Returns:
2250 * -error: if there was an error during lookup. This includes -ENOENT if the
2251 * lookup found a negative dentry. The nd->path reference will also be
2252 * put in this case.
2253 *
2254 * 0: if we successfully resolved nd->path and found it to not to be a
2255 * symlink that needs to be followed. "path" will also be populated.
2256 * The nd->path reference will also be put.
2257 *
2258 * 1: if we successfully resolved nd->last and found it to be a symlink
2259 * that needs to be followed. "path" will be populated with the path
2260 * to the link, and nd->path will *not* be put.
2261 */
2262 static int
2263 mountpoint_last(struct nameidata *nd, struct path *path)
2264 {
2265 int error = 0;
2266 struct dentry *dentry;
2267 struct dentry *dir = nd->path.dentry;
2268
2269 /* If we're in rcuwalk, drop out of it to handle last component */
2270 if (nd->flags & LOOKUP_RCU) {
2271 if (unlazy_walk(nd, NULL)) {
2272 error = -ECHILD;
2273 goto out;
2274 }
2275 }
2276
2277 nd->flags &= ~LOOKUP_PARENT;
2278
2279 if (unlikely(nd->last_type != LAST_NORM)) {
2280 error = handle_dots(nd, nd->last_type);
2281 if (error)
2282 goto out;
2283 dentry = dget(nd->path.dentry);
2284 goto done;
2285 }
2286
2287 mutex_lock(&dir->d_inode->i_mutex);
2288 dentry = d_lookup(dir, &nd->last);
2289 if (!dentry) {
2290 /*
2291 * No cached dentry. Mounted dentries are pinned in the cache,
2292 * so that means that this dentry is probably a symlink or the
2293 * path doesn't actually point to a mounted dentry.
2294 */
2295 dentry = d_alloc(dir, &nd->last);
2296 if (!dentry) {
2297 error = -ENOMEM;
2298 mutex_unlock(&dir->d_inode->i_mutex);
2299 goto out;
2300 }
2301 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2302 error = PTR_ERR(dentry);
2303 if (IS_ERR(dentry)) {
2304 mutex_unlock(&dir->d_inode->i_mutex);
2305 goto out;
2306 }
2307 }
2308 mutex_unlock(&dir->d_inode->i_mutex);
2309
2310 done:
2311 if (d_is_negative(dentry)) {
2312 error = -ENOENT;
2313 dput(dentry);
2314 goto out;
2315 }
2316 path->dentry = dentry;
2317 path->mnt = nd->path.mnt;
2318 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW)) {
2319 nd->link = *path;
2320 return 1;
2321 }
2322 mntget(path->mnt);
2323 follow_mount(path);
2324 error = 0;
2325 out:
2326 terminate_walk(nd);
2327 return error;
2328 }
2329
2330 /**
2331 * path_mountpoint - look up a path to be umounted
2332 * @dfd: directory file descriptor to start walk from
2333 * @name: full pathname to walk
2334 * @path: pointer to container for result
2335 * @flags: lookup flags
2336 *
2337 * Look up the given name, but don't attempt to revalidate the last component.
2338 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2339 */
2340 static int
2341 path_mountpoint(int dfd, const struct filename *name, struct path *path,
2342 struct nameidata *nd, unsigned int flags)
2343 {
2344 int err = path_init(dfd, name, flags, nd);
2345 if (unlikely(err))
2346 goto out;
2347
2348 err = mountpoint_last(nd, path);
2349 while (err > 0) {
2350 void *cookie;
2351 struct path link = *path;
2352 err = may_follow_link(&link, nd);
2353 if (unlikely(err))
2354 break;
2355 nd->flags |= LOOKUP_PARENT;
2356 err = follow_link(&link, nd, &cookie);
2357 if (err)
2358 break;
2359 err = mountpoint_last(nd, path);
2360 put_link(nd, &link, cookie);
2361 }
2362 out:
2363 path_cleanup(nd);
2364 return err;
2365 }
2366
2367 static int
2368 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2369 unsigned int flags)
2370 {
2371 struct nameidata nd;
2372 int error;
2373 if (IS_ERR(name))
2374 return PTR_ERR(name);
2375 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_RCU);
2376 if (unlikely(error == -ECHILD))
2377 error = path_mountpoint(dfd, name, path, &nd, flags);
2378 if (unlikely(error == -ESTALE))
2379 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_REVAL);
2380 if (likely(!error))
2381 audit_inode(name, path->dentry, 0);
2382 putname(name);
2383 return error;
2384 }
2385
2386 /**
2387 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2388 * @dfd: directory file descriptor
2389 * @name: pathname from userland
2390 * @flags: lookup flags
2391 * @path: pointer to container to hold result
2392 *
2393 * A umount is a special case for path walking. We're not actually interested
2394 * in the inode in this situation, and ESTALE errors can be a problem. We
2395 * simply want track down the dentry and vfsmount attached at the mountpoint
2396 * and avoid revalidating the last component.
2397 *
2398 * Returns 0 and populates "path" on success.
2399 */
2400 int
2401 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2402 struct path *path)
2403 {
2404 return filename_mountpoint(dfd, getname(name), path, flags);
2405 }
2406
2407 int
2408 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2409 unsigned int flags)
2410 {
2411 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2412 }
2413 EXPORT_SYMBOL(kern_path_mountpoint);
2414
2415 int __check_sticky(struct inode *dir, struct inode *inode)
2416 {
2417 kuid_t fsuid = current_fsuid();
2418
2419 if (uid_eq(inode->i_uid, fsuid))
2420 return 0;
2421 if (uid_eq(dir->i_uid, fsuid))
2422 return 0;
2423 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2424 }
2425 EXPORT_SYMBOL(__check_sticky);
2426
2427 /*
2428 * Check whether we can remove a link victim from directory dir, check
2429 * whether the type of victim is right.
2430 * 1. We can't do it if dir is read-only (done in permission())
2431 * 2. We should have write and exec permissions on dir
2432 * 3. We can't remove anything from append-only dir
2433 * 4. We can't do anything with immutable dir (done in permission())
2434 * 5. If the sticky bit on dir is set we should either
2435 * a. be owner of dir, or
2436 * b. be owner of victim, or
2437 * c. have CAP_FOWNER capability
2438 * 6. If the victim is append-only or immutable we can't do antyhing with
2439 * links pointing to it.
2440 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2441 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2442 * 9. We can't remove a root or mountpoint.
2443 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2444 * nfs_async_unlink().
2445 */
2446 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2447 {
2448 struct inode *inode = victim->d_inode;
2449 int error;
2450
2451 if (d_is_negative(victim))
2452 return -ENOENT;
2453 BUG_ON(!inode);
2454
2455 BUG_ON(victim->d_parent->d_inode != dir);
2456 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2457
2458 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2459 if (error)
2460 return error;
2461 if (IS_APPEND(dir))
2462 return -EPERM;
2463
2464 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2465 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2466 return -EPERM;
2467 if (isdir) {
2468 if (!d_is_dir(victim))
2469 return -ENOTDIR;
2470 if (IS_ROOT(victim))
2471 return -EBUSY;
2472 } else if (d_is_dir(victim))
2473 return -EISDIR;
2474 if (IS_DEADDIR(dir))
2475 return -ENOENT;
2476 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2477 return -EBUSY;
2478 return 0;
2479 }
2480
2481 /* Check whether we can create an object with dentry child in directory
2482 * dir.
2483 * 1. We can't do it if child already exists (open has special treatment for
2484 * this case, but since we are inlined it's OK)
2485 * 2. We can't do it if dir is read-only (done in permission())
2486 * 3. We should have write and exec permissions on dir
2487 * 4. We can't do it if dir is immutable (done in permission())
2488 */
2489 static inline int may_create(struct inode *dir, struct dentry *child)
2490 {
2491 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2492 if (child->d_inode)
2493 return -EEXIST;
2494 if (IS_DEADDIR(dir))
2495 return -ENOENT;
2496 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2497 }
2498
2499 /*
2500 * p1 and p2 should be directories on the same fs.
2501 */
2502 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2503 {
2504 struct dentry *p;
2505
2506 if (p1 == p2) {
2507 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2508 return NULL;
2509 }
2510
2511 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2512
2513 p = d_ancestor(p2, p1);
2514 if (p) {
2515 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2516 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2517 return p;
2518 }
2519
2520 p = d_ancestor(p1, p2);
2521 if (p) {
2522 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2523 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2524 return p;
2525 }
2526
2527 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2528 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2529 return NULL;
2530 }
2531 EXPORT_SYMBOL(lock_rename);
2532
2533 void unlock_rename(struct dentry *p1, struct dentry *p2)
2534 {
2535 mutex_unlock(&p1->d_inode->i_mutex);
2536 if (p1 != p2) {
2537 mutex_unlock(&p2->d_inode->i_mutex);
2538 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2539 }
2540 }
2541 EXPORT_SYMBOL(unlock_rename);
2542
2543 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2544 bool want_excl)
2545 {
2546 int error = may_create(dir, dentry);
2547 if (error)
2548 return error;
2549
2550 if (!dir->i_op->create)
2551 return -EACCES; /* shouldn't it be ENOSYS? */
2552 mode &= S_IALLUGO;
2553 mode |= S_IFREG;
2554 error = security_inode_create(dir, dentry, mode);
2555 if (error)
2556 return error;
2557 error = dir->i_op->create(dir, dentry, mode, want_excl);
2558 if (!error)
2559 fsnotify_create(dir, dentry);
2560 return error;
2561 }
2562 EXPORT_SYMBOL(vfs_create);
2563
2564 static int may_open(struct path *path, int acc_mode, int flag)
2565 {
2566 struct dentry *dentry = path->dentry;
2567 struct inode *inode = dentry->d_inode;
2568 int error;
2569
2570 /* O_PATH? */
2571 if (!acc_mode)
2572 return 0;
2573
2574 if (!inode)
2575 return -ENOENT;
2576
2577 switch (inode->i_mode & S_IFMT) {
2578 case S_IFLNK:
2579 return -ELOOP;
2580 case S_IFDIR:
2581 if (acc_mode & MAY_WRITE)
2582 return -EISDIR;
2583 break;
2584 case S_IFBLK:
2585 case S_IFCHR:
2586 if (path->mnt->mnt_flags & MNT_NODEV)
2587 return -EACCES;
2588 /*FALLTHRU*/
2589 case S_IFIFO:
2590 case S_IFSOCK:
2591 flag &= ~O_TRUNC;
2592 break;
2593 }
2594
2595 error = inode_permission(inode, acc_mode);
2596 if (error)
2597 return error;
2598
2599 /*
2600 * An append-only file must be opened in append mode for writing.
2601 */
2602 if (IS_APPEND(inode)) {
2603 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2604 return -EPERM;
2605 if (flag & O_TRUNC)
2606 return -EPERM;
2607 }
2608
2609 /* O_NOATIME can only be set by the owner or superuser */
2610 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2611 return -EPERM;
2612
2613 return 0;
2614 }
2615
2616 static int handle_truncate(struct file *filp)
2617 {
2618 struct path *path = &filp->f_path;
2619 struct inode *inode = path->dentry->d_inode;
2620 int error = get_write_access(inode);
2621 if (error)
2622 return error;
2623 /*
2624 * Refuse to truncate files with mandatory locks held on them.
2625 */
2626 error = locks_verify_locked(filp);
2627 if (!error)
2628 error = security_path_truncate(path);
2629 if (!error) {
2630 error = do_truncate(path->dentry, 0,
2631 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2632 filp);
2633 }
2634 put_write_access(inode);
2635 return error;
2636 }
2637
2638 static inline int open_to_namei_flags(int flag)
2639 {
2640 if ((flag & O_ACCMODE) == 3)
2641 flag--;
2642 return flag;
2643 }
2644
2645 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2646 {
2647 int error = security_path_mknod(dir, dentry, mode, 0);
2648 if (error)
2649 return error;
2650
2651 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2652 if (error)
2653 return error;
2654
2655 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2656 }
2657
2658 /*
2659 * Attempt to atomically look up, create and open a file from a negative
2660 * dentry.
2661 *
2662 * Returns 0 if successful. The file will have been created and attached to
2663 * @file by the filesystem calling finish_open().
2664 *
2665 * Returns 1 if the file was looked up only or didn't need creating. The
2666 * caller will need to perform the open themselves. @path will have been
2667 * updated to point to the new dentry. This may be negative.
2668 *
2669 * Returns an error code otherwise.
2670 */
2671 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2672 struct path *path, struct file *file,
2673 const struct open_flags *op,
2674 bool got_write, bool need_lookup,
2675 int *opened)
2676 {
2677 struct inode *dir = nd->path.dentry->d_inode;
2678 unsigned open_flag = open_to_namei_flags(op->open_flag);
2679 umode_t mode;
2680 int error;
2681 int acc_mode;
2682 int create_error = 0;
2683 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2684 bool excl;
2685
2686 BUG_ON(dentry->d_inode);
2687
2688 /* Don't create child dentry for a dead directory. */
2689 if (unlikely(IS_DEADDIR(dir))) {
2690 error = -ENOENT;
2691 goto out;
2692 }
2693
2694 mode = op->mode;
2695 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2696 mode &= ~current_umask();
2697
2698 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2699 if (excl)
2700 open_flag &= ~O_TRUNC;
2701
2702 /*
2703 * Checking write permission is tricky, bacuse we don't know if we are
2704 * going to actually need it: O_CREAT opens should work as long as the
2705 * file exists. But checking existence breaks atomicity. The trick is
2706 * to check access and if not granted clear O_CREAT from the flags.
2707 *
2708 * Another problem is returing the "right" error value (e.g. for an
2709 * O_EXCL open we want to return EEXIST not EROFS).
2710 */
2711 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2712 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2713 if (!(open_flag & O_CREAT)) {
2714 /*
2715 * No O_CREATE -> atomicity not a requirement -> fall
2716 * back to lookup + open
2717 */
2718 goto no_open;
2719 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2720 /* Fall back and fail with the right error */
2721 create_error = -EROFS;
2722 goto no_open;
2723 } else {
2724 /* No side effects, safe to clear O_CREAT */
2725 create_error = -EROFS;
2726 open_flag &= ~O_CREAT;
2727 }
2728 }
2729
2730 if (open_flag & O_CREAT) {
2731 error = may_o_create(&nd->path, dentry, mode);
2732 if (error) {
2733 create_error = error;
2734 if (open_flag & O_EXCL)
2735 goto no_open;
2736 open_flag &= ~O_CREAT;
2737 }
2738 }
2739
2740 if (nd->flags & LOOKUP_DIRECTORY)
2741 open_flag |= O_DIRECTORY;
2742
2743 file->f_path.dentry = DENTRY_NOT_SET;
2744 file->f_path.mnt = nd->path.mnt;
2745 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2746 opened);
2747 if (error < 0) {
2748 if (create_error && error == -ENOENT)
2749 error = create_error;
2750 goto out;
2751 }
2752
2753 if (error) { /* returned 1, that is */
2754 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2755 error = -EIO;
2756 goto out;
2757 }
2758 if (file->f_path.dentry) {
2759 dput(dentry);
2760 dentry = file->f_path.dentry;
2761 }
2762 if (*opened & FILE_CREATED)
2763 fsnotify_create(dir, dentry);
2764 if (!dentry->d_inode) {
2765 WARN_ON(*opened & FILE_CREATED);
2766 if (create_error) {
2767 error = create_error;
2768 goto out;
2769 }
2770 } else {
2771 if (excl && !(*opened & FILE_CREATED)) {
2772 error = -EEXIST;
2773 goto out;
2774 }
2775 }
2776 goto looked_up;
2777 }
2778
2779 /*
2780 * We didn't have the inode before the open, so check open permission
2781 * here.
2782 */
2783 acc_mode = op->acc_mode;
2784 if (*opened & FILE_CREATED) {
2785 WARN_ON(!(open_flag & O_CREAT));
2786 fsnotify_create(dir, dentry);
2787 acc_mode = MAY_OPEN;
2788 }
2789 error = may_open(&file->f_path, acc_mode, open_flag);
2790 if (error)
2791 fput(file);
2792
2793 out:
2794 dput(dentry);
2795 return error;
2796
2797 no_open:
2798 if (need_lookup) {
2799 dentry = lookup_real(dir, dentry, nd->flags);
2800 if (IS_ERR(dentry))
2801 return PTR_ERR(dentry);
2802
2803 if (create_error) {
2804 int open_flag = op->open_flag;
2805
2806 error = create_error;
2807 if ((open_flag & O_EXCL)) {
2808 if (!dentry->d_inode)
2809 goto out;
2810 } else if (!dentry->d_inode) {
2811 goto out;
2812 } else if ((open_flag & O_TRUNC) &&
2813 d_is_reg(dentry)) {
2814 goto out;
2815 }
2816 /* will fail later, go on to get the right error */
2817 }
2818 }
2819 looked_up:
2820 path->dentry = dentry;
2821 path->mnt = nd->path.mnt;
2822 return 1;
2823 }
2824
2825 /*
2826 * Look up and maybe create and open the last component.
2827 *
2828 * Must be called with i_mutex held on parent.
2829 *
2830 * Returns 0 if the file was successfully atomically created (if necessary) and
2831 * opened. In this case the file will be returned attached to @file.
2832 *
2833 * Returns 1 if the file was not completely opened at this time, though lookups
2834 * and creations will have been performed and the dentry returned in @path will
2835 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2836 * specified then a negative dentry may be returned.
2837 *
2838 * An error code is returned otherwise.
2839 *
2840 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2841 * cleared otherwise prior to returning.
2842 */
2843 static int lookup_open(struct nameidata *nd, struct path *path,
2844 struct file *file,
2845 const struct open_flags *op,
2846 bool got_write, int *opened)
2847 {
2848 struct dentry *dir = nd->path.dentry;
2849 struct inode *dir_inode = dir->d_inode;
2850 struct dentry *dentry;
2851 int error;
2852 bool need_lookup;
2853
2854 *opened &= ~FILE_CREATED;
2855 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2856 if (IS_ERR(dentry))
2857 return PTR_ERR(dentry);
2858
2859 /* Cached positive dentry: will open in f_op->open */
2860 if (!need_lookup && dentry->d_inode)
2861 goto out_no_open;
2862
2863 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2864 return atomic_open(nd, dentry, path, file, op, got_write,
2865 need_lookup, opened);
2866 }
2867
2868 if (need_lookup) {
2869 BUG_ON(dentry->d_inode);
2870
2871 dentry = lookup_real(dir_inode, dentry, nd->flags);
2872 if (IS_ERR(dentry))
2873 return PTR_ERR(dentry);
2874 }
2875
2876 /* Negative dentry, just create the file */
2877 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2878 umode_t mode = op->mode;
2879 if (!IS_POSIXACL(dir->d_inode))
2880 mode &= ~current_umask();
2881 /*
2882 * This write is needed to ensure that a
2883 * rw->ro transition does not occur between
2884 * the time when the file is created and when
2885 * a permanent write count is taken through
2886 * the 'struct file' in finish_open().
2887 */
2888 if (!got_write) {
2889 error = -EROFS;
2890 goto out_dput;
2891 }
2892 *opened |= FILE_CREATED;
2893 error = security_path_mknod(&nd->path, dentry, mode, 0);
2894 if (error)
2895 goto out_dput;
2896 error = vfs_create(dir->d_inode, dentry, mode,
2897 nd->flags & LOOKUP_EXCL);
2898 if (error)
2899 goto out_dput;
2900 }
2901 out_no_open:
2902 path->dentry = dentry;
2903 path->mnt = nd->path.mnt;
2904 return 1;
2905
2906 out_dput:
2907 dput(dentry);
2908 return error;
2909 }
2910
2911 /*
2912 * Handle the last step of open()
2913 */
2914 static int do_last(struct nameidata *nd, struct path *path,
2915 struct file *file, const struct open_flags *op,
2916 int *opened, struct filename *name)
2917 {
2918 struct dentry *dir = nd->path.dentry;
2919 int open_flag = op->open_flag;
2920 bool will_truncate = (open_flag & O_TRUNC) != 0;
2921 bool got_write = false;
2922 int acc_mode = op->acc_mode;
2923 struct inode *inode;
2924 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2925 bool retried = false;
2926 int error;
2927
2928 nd->flags &= ~LOOKUP_PARENT;
2929 nd->flags |= op->intent;
2930
2931 if (nd->last_type != LAST_NORM) {
2932 error = handle_dots(nd, nd->last_type);
2933 if (error)
2934 return error;
2935 goto finish_open;
2936 }
2937
2938 if (!(open_flag & O_CREAT)) {
2939 if (nd->last.name[nd->last.len])
2940 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2941 /* we _can_ be in RCU mode here */
2942 error = lookup_fast(nd, path, &inode);
2943 if (likely(!error))
2944 goto finish_lookup;
2945
2946 if (error < 0)
2947 goto out;
2948
2949 BUG_ON(nd->inode != dir->d_inode);
2950 } else {
2951 /* create side of things */
2952 /*
2953 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2954 * has been cleared when we got to the last component we are
2955 * about to look up
2956 */
2957 error = complete_walk(nd);
2958 if (error)
2959 return error;
2960
2961 audit_inode(name, dir, LOOKUP_PARENT);
2962 error = -EISDIR;
2963 /* trailing slashes? */
2964 if (nd->last.name[nd->last.len])
2965 goto out;
2966 }
2967
2968 retry_lookup:
2969 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2970 error = mnt_want_write(nd->path.mnt);
2971 if (!error)
2972 got_write = true;
2973 /*
2974 * do _not_ fail yet - we might not need that or fail with
2975 * a different error; let lookup_open() decide; we'll be
2976 * dropping this one anyway.
2977 */
2978 }
2979 mutex_lock(&dir->d_inode->i_mutex);
2980 error = lookup_open(nd, path, file, op, got_write, opened);
2981 mutex_unlock(&dir->d_inode->i_mutex);
2982
2983 if (error <= 0) {
2984 if (error)
2985 goto out;
2986
2987 if ((*opened & FILE_CREATED) ||
2988 !S_ISREG(file_inode(file)->i_mode))
2989 will_truncate = false;
2990
2991 audit_inode(name, file->f_path.dentry, 0);
2992 goto opened;
2993 }
2994
2995 if (*opened & FILE_CREATED) {
2996 /* Don't check for write permission, don't truncate */
2997 open_flag &= ~O_TRUNC;
2998 will_truncate = false;
2999 acc_mode = MAY_OPEN;
3000 path_to_nameidata(path, nd);
3001 goto finish_open_created;
3002 }
3003
3004 /*
3005 * create/update audit record if it already exists.
3006 */
3007 if (d_is_positive(path->dentry))
3008 audit_inode(name, path->dentry, 0);
3009
3010 /*
3011 * If atomic_open() acquired write access it is dropped now due to
3012 * possible mount and symlink following (this might be optimized away if
3013 * necessary...)
3014 */
3015 if (got_write) {
3016 mnt_drop_write(nd->path.mnt);
3017 got_write = false;
3018 }
3019
3020 error = -EEXIST;
3021 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3022 goto exit_dput;
3023
3024 error = follow_managed(path, nd->flags);
3025 if (error < 0)
3026 goto exit_dput;
3027
3028 if (error)
3029 nd->flags |= LOOKUP_JUMPED;
3030
3031 BUG_ON(nd->flags & LOOKUP_RCU);
3032 inode = path->dentry->d_inode;
3033 error = -ENOENT;
3034 if (d_is_negative(path->dentry)) {
3035 path_to_nameidata(path, nd);
3036 goto out;
3037 }
3038 finish_lookup:
3039 if (should_follow_link(path->dentry, nd->flags & LOOKUP_FOLLOW)) {
3040 if (nd->flags & LOOKUP_RCU) {
3041 if (unlikely(nd->path.mnt != path->mnt ||
3042 unlazy_walk(nd, path->dentry))) {
3043 error = -ECHILD;
3044 goto out;
3045 }
3046 }
3047 BUG_ON(inode != path->dentry->d_inode);
3048 nd->link = *path;
3049 return 1;
3050 }
3051
3052 if (unlikely(d_is_symlink(path->dentry)) && !(open_flag & O_PATH)) {
3053 path_to_nameidata(path, nd);
3054 error = -ELOOP;
3055 goto out;
3056 }
3057
3058 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3059 path_to_nameidata(path, nd);
3060 } else {
3061 save_parent.dentry = nd->path.dentry;
3062 save_parent.mnt = mntget(path->mnt);
3063 nd->path.dentry = path->dentry;
3064
3065 }
3066 nd->inode = inode;
3067 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3068 finish_open:
3069 error = complete_walk(nd);
3070 if (error) {
3071 path_put(&save_parent);
3072 return error;
3073 }
3074 audit_inode(name, nd->path.dentry, 0);
3075 error = -EISDIR;
3076 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3077 goto out;
3078 error = -ENOTDIR;
3079 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3080 goto out;
3081 if (!d_is_reg(nd->path.dentry))
3082 will_truncate = false;
3083
3084 if (will_truncate) {
3085 error = mnt_want_write(nd->path.mnt);
3086 if (error)
3087 goto out;
3088 got_write = true;
3089 }
3090 finish_open_created:
3091 error = may_open(&nd->path, acc_mode, open_flag);
3092 if (error)
3093 goto out;
3094
3095 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3096 error = vfs_open(&nd->path, file, current_cred());
3097 if (!error) {
3098 *opened |= FILE_OPENED;
3099 } else {
3100 if (error == -EOPENSTALE)
3101 goto stale_open;
3102 goto out;
3103 }
3104 opened:
3105 error = open_check_o_direct(file);
3106 if (error)
3107 goto exit_fput;
3108 error = ima_file_check(file, op->acc_mode, *opened);
3109 if (error)
3110 goto exit_fput;
3111
3112 if (will_truncate) {
3113 error = handle_truncate(file);
3114 if (error)
3115 goto exit_fput;
3116 }
3117 out:
3118 if (got_write)
3119 mnt_drop_write(nd->path.mnt);
3120 path_put(&save_parent);
3121 terminate_walk(nd);
3122 return error;
3123
3124 exit_dput:
3125 path_put_conditional(path, nd);
3126 goto out;
3127 exit_fput:
3128 fput(file);
3129 goto out;
3130
3131 stale_open:
3132 /* If no saved parent or already retried then can't retry */
3133 if (!save_parent.dentry || retried)
3134 goto out;
3135
3136 BUG_ON(save_parent.dentry != dir);
3137 path_put(&nd->path);
3138 nd->path = save_parent;
3139 nd->inode = dir->d_inode;
3140 save_parent.mnt = NULL;
3141 save_parent.dentry = NULL;
3142 if (got_write) {
3143 mnt_drop_write(nd->path.mnt);
3144 got_write = false;
3145 }
3146 retried = true;
3147 goto retry_lookup;
3148 }
3149
3150 static int do_tmpfile(int dfd, struct filename *pathname,
3151 struct nameidata *nd, int flags,
3152 const struct open_flags *op,
3153 struct file *file, int *opened)
3154 {
3155 static const struct qstr name = QSTR_INIT("/", 1);
3156 struct dentry *dentry, *child;
3157 struct inode *dir;
3158 int error = path_lookupat(dfd, pathname,
3159 flags | LOOKUP_DIRECTORY, nd);
3160 if (unlikely(error))
3161 return error;
3162 error = mnt_want_write(nd->path.mnt);
3163 if (unlikely(error))
3164 goto out;
3165 /* we want directory to be writable */
3166 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3167 if (error)
3168 goto out2;
3169 dentry = nd->path.dentry;
3170 dir = dentry->d_inode;
3171 if (!dir->i_op->tmpfile) {
3172 error = -EOPNOTSUPP;
3173 goto out2;
3174 }
3175 child = d_alloc(dentry, &name);
3176 if (unlikely(!child)) {
3177 error = -ENOMEM;
3178 goto out2;
3179 }
3180 nd->flags &= ~LOOKUP_DIRECTORY;
3181 nd->flags |= op->intent;
3182 dput(nd->path.dentry);
3183 nd->path.dentry = child;
3184 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3185 if (error)
3186 goto out2;
3187 audit_inode(pathname, nd->path.dentry, 0);
3188 /* Don't check for other permissions, the inode was just created */
3189 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3190 if (error)
3191 goto out2;
3192 file->f_path.mnt = nd->path.mnt;
3193 error = finish_open(file, nd->path.dentry, NULL, opened);
3194 if (error)
3195 goto out2;
3196 error = open_check_o_direct(file);
3197 if (error) {
3198 fput(file);
3199 } else if (!(op->open_flag & O_EXCL)) {
3200 struct inode *inode = file_inode(file);
3201 spin_lock(&inode->i_lock);
3202 inode->i_state |= I_LINKABLE;
3203 spin_unlock(&inode->i_lock);
3204 }
3205 out2:
3206 mnt_drop_write(nd->path.mnt);
3207 out:
3208 path_put(&nd->path);
3209 return error;
3210 }
3211
3212 static struct file *path_openat(int dfd, struct filename *pathname,
3213 struct nameidata *nd, const struct open_flags *op, int flags)
3214 {
3215 struct file *file;
3216 struct path path;
3217 int opened = 0;
3218 int error;
3219
3220 file = get_empty_filp();
3221 if (IS_ERR(file))
3222 return file;
3223
3224 file->f_flags = op->open_flag;
3225
3226 if (unlikely(file->f_flags & __O_TMPFILE)) {
3227 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3228 goto out2;
3229 }
3230
3231 error = path_init(dfd, pathname, flags, nd);
3232 if (unlikely(error))
3233 goto out;
3234
3235 error = do_last(nd, &path, file, op, &opened, pathname);
3236 while (unlikely(error > 0)) { /* trailing symlink */
3237 struct path link = nd->link;
3238 void *cookie;
3239 error = may_follow_link(&link, nd);
3240 if (unlikely(error))
3241 break;
3242 nd->flags |= LOOKUP_PARENT;
3243 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3244 error = follow_link(&link, nd, &cookie);
3245 if (unlikely(error))
3246 break;
3247 error = do_last(nd, &path, file, op, &opened, pathname);
3248 put_link(nd, &link, cookie);
3249 }
3250 out:
3251 path_cleanup(nd);
3252 out2:
3253 if (!(opened & FILE_OPENED)) {
3254 BUG_ON(!error);
3255 put_filp(file);
3256 }
3257 if (unlikely(error)) {
3258 if (error == -EOPENSTALE) {
3259 if (flags & LOOKUP_RCU)
3260 error = -ECHILD;
3261 else
3262 error = -ESTALE;
3263 }
3264 file = ERR_PTR(error);
3265 }
3266 return file;
3267 }
3268
3269 struct file *do_filp_open(int dfd, struct filename *pathname,
3270 const struct open_flags *op)
3271 {
3272 struct nameidata nd;
3273 int flags = op->lookup_flags;
3274 struct file *filp;
3275
3276 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3277 if (unlikely(filp == ERR_PTR(-ECHILD)))
3278 filp = path_openat(dfd, pathname, &nd, op, flags);
3279 if (unlikely(filp == ERR_PTR(-ESTALE)))
3280 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3281 return filp;
3282 }
3283
3284 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3285 const char *name, const struct open_flags *op)
3286 {
3287 struct nameidata nd;
3288 struct file *file;
3289 struct filename *filename;
3290 int flags = op->lookup_flags | LOOKUP_ROOT;
3291
3292 nd.root.mnt = mnt;
3293 nd.root.dentry = dentry;
3294
3295 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3296 return ERR_PTR(-ELOOP);
3297
3298 filename = getname_kernel(name);
3299 if (unlikely(IS_ERR(filename)))
3300 return ERR_CAST(filename);
3301
3302 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3303 if (unlikely(file == ERR_PTR(-ECHILD)))
3304 file = path_openat(-1, filename, &nd, op, flags);
3305 if (unlikely(file == ERR_PTR(-ESTALE)))
3306 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3307 putname(filename);
3308 return file;
3309 }
3310
3311 static struct dentry *filename_create(int dfd, struct filename *name,
3312 struct path *path, unsigned int lookup_flags)
3313 {
3314 struct dentry *dentry = ERR_PTR(-EEXIST);
3315 struct nameidata nd;
3316 int err2;
3317 int error;
3318 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3319
3320 /*
3321 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3322 * other flags passed in are ignored!
3323 */
3324 lookup_flags &= LOOKUP_REVAL;
3325
3326 error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd);
3327 if (error)
3328 return ERR_PTR(error);
3329
3330 /*
3331 * Yucky last component or no last component at all?
3332 * (foo/., foo/.., /////)
3333 */
3334 if (nd.last_type != LAST_NORM)
3335 goto out;
3336 nd.flags &= ~LOOKUP_PARENT;
3337 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3338
3339 /* don't fail immediately if it's r/o, at least try to report other errors */
3340 err2 = mnt_want_write(nd.path.mnt);
3341 /*
3342 * Do the final lookup.
3343 */
3344 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3345 dentry = __lookup_hash(&nd.last, nd.path.dentry, nd.flags);
3346 if (IS_ERR(dentry))
3347 goto unlock;
3348
3349 error = -EEXIST;
3350 if (d_is_positive(dentry))
3351 goto fail;
3352
3353 /*
3354 * Special case - lookup gave negative, but... we had foo/bar/
3355 * From the vfs_mknod() POV we just have a negative dentry -
3356 * all is fine. Let's be bastards - you had / on the end, you've
3357 * been asking for (non-existent) directory. -ENOENT for you.
3358 */
3359 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3360 error = -ENOENT;
3361 goto fail;
3362 }
3363 if (unlikely(err2)) {
3364 error = err2;
3365 goto fail;
3366 }
3367 *path = nd.path;
3368 return dentry;
3369 fail:
3370 dput(dentry);
3371 dentry = ERR_PTR(error);
3372 unlock:
3373 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3374 if (!err2)
3375 mnt_drop_write(nd.path.mnt);
3376 out:
3377 path_put(&nd.path);
3378 return dentry;
3379 }
3380
3381 struct dentry *kern_path_create(int dfd, const char *pathname,
3382 struct path *path, unsigned int lookup_flags)
3383 {
3384 struct filename *filename = getname_kernel(pathname);
3385 struct dentry *res;
3386
3387 if (IS_ERR(filename))
3388 return ERR_CAST(filename);
3389 res = filename_create(dfd, filename, path, lookup_flags);
3390 putname(filename);
3391 return res;
3392 }
3393 EXPORT_SYMBOL(kern_path_create);
3394
3395 void done_path_create(struct path *path, struct dentry *dentry)
3396 {
3397 dput(dentry);
3398 mutex_unlock(&path->dentry->d_inode->i_mutex);
3399 mnt_drop_write(path->mnt);
3400 path_put(path);
3401 }
3402 EXPORT_SYMBOL(done_path_create);
3403
3404 struct dentry *user_path_create(int dfd, const char __user *pathname,
3405 struct path *path, unsigned int lookup_flags)
3406 {
3407 struct filename *tmp = getname(pathname);
3408 struct dentry *res;
3409 if (IS_ERR(tmp))
3410 return ERR_CAST(tmp);
3411 res = filename_create(dfd, tmp, path, lookup_flags);
3412 putname(tmp);
3413 return res;
3414 }
3415 EXPORT_SYMBOL(user_path_create);
3416
3417 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3418 {
3419 int error = may_create(dir, dentry);
3420
3421 if (error)
3422 return error;
3423
3424 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3425 return -EPERM;
3426
3427 if (!dir->i_op->mknod)
3428 return -EPERM;
3429
3430 error = devcgroup_inode_mknod(mode, dev);
3431 if (error)
3432 return error;
3433
3434 error = security_inode_mknod(dir, dentry, mode, dev);
3435 if (error)
3436 return error;
3437
3438 error = dir->i_op->mknod(dir, dentry, mode, dev);
3439 if (!error)
3440 fsnotify_create(dir, dentry);
3441 return error;
3442 }
3443 EXPORT_SYMBOL(vfs_mknod);
3444
3445 static int may_mknod(umode_t mode)
3446 {
3447 switch (mode & S_IFMT) {
3448 case S_IFREG:
3449 case S_IFCHR:
3450 case S_IFBLK:
3451 case S_IFIFO:
3452 case S_IFSOCK:
3453 case 0: /* zero mode translates to S_IFREG */
3454 return 0;
3455 case S_IFDIR:
3456 return -EPERM;
3457 default:
3458 return -EINVAL;
3459 }
3460 }
3461
3462 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3463 unsigned, dev)
3464 {
3465 struct dentry *dentry;
3466 struct path path;
3467 int error;
3468 unsigned int lookup_flags = 0;
3469
3470 error = may_mknod(mode);
3471 if (error)
3472 return error;
3473 retry:
3474 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3475 if (IS_ERR(dentry))
3476 return PTR_ERR(dentry);
3477
3478 if (!IS_POSIXACL(path.dentry->d_inode))
3479 mode &= ~current_umask();
3480 error = security_path_mknod(&path, dentry, mode, dev);
3481 if (error)
3482 goto out;
3483 switch (mode & S_IFMT) {
3484 case 0: case S_IFREG:
3485 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3486 break;
3487 case S_IFCHR: case S_IFBLK:
3488 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3489 new_decode_dev(dev));
3490 break;
3491 case S_IFIFO: case S_IFSOCK:
3492 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3493 break;
3494 }
3495 out:
3496 done_path_create(&path, dentry);
3497 if (retry_estale(error, lookup_flags)) {
3498 lookup_flags |= LOOKUP_REVAL;
3499 goto retry;
3500 }
3501 return error;
3502 }
3503
3504 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3505 {
3506 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3507 }
3508
3509 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3510 {
3511 int error = may_create(dir, dentry);
3512 unsigned max_links = dir->i_sb->s_max_links;
3513
3514 if (error)
3515 return error;
3516
3517 if (!dir->i_op->mkdir)
3518 return -EPERM;
3519
3520 mode &= (S_IRWXUGO|S_ISVTX);
3521 error = security_inode_mkdir(dir, dentry, mode);
3522 if (error)
3523 return error;
3524
3525 if (max_links && dir->i_nlink >= max_links)
3526 return -EMLINK;
3527
3528 error = dir->i_op->mkdir(dir, dentry, mode);
3529 if (!error)
3530 fsnotify_mkdir(dir, dentry);
3531 return error;
3532 }
3533 EXPORT_SYMBOL(vfs_mkdir);
3534
3535 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3536 {
3537 struct dentry *dentry;
3538 struct path path;
3539 int error;
3540 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3541
3542 retry:
3543 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3544 if (IS_ERR(dentry))
3545 return PTR_ERR(dentry);
3546
3547 if (!IS_POSIXACL(path.dentry->d_inode))
3548 mode &= ~current_umask();
3549 error = security_path_mkdir(&path, dentry, mode);
3550 if (!error)
3551 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3552 done_path_create(&path, dentry);
3553 if (retry_estale(error, lookup_flags)) {
3554 lookup_flags |= LOOKUP_REVAL;
3555 goto retry;
3556 }
3557 return error;
3558 }
3559
3560 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3561 {
3562 return sys_mkdirat(AT_FDCWD, pathname, mode);
3563 }
3564
3565 /*
3566 * The dentry_unhash() helper will try to drop the dentry early: we
3567 * should have a usage count of 1 if we're the only user of this
3568 * dentry, and if that is true (possibly after pruning the dcache),
3569 * then we drop the dentry now.
3570 *
3571 * A low-level filesystem can, if it choses, legally
3572 * do a
3573 *
3574 * if (!d_unhashed(dentry))
3575 * return -EBUSY;
3576 *
3577 * if it cannot handle the case of removing a directory
3578 * that is still in use by something else..
3579 */
3580 void dentry_unhash(struct dentry *dentry)
3581 {
3582 shrink_dcache_parent(dentry);
3583 spin_lock(&dentry->d_lock);
3584 if (dentry->d_lockref.count == 1)
3585 __d_drop(dentry);
3586 spin_unlock(&dentry->d_lock);
3587 }
3588 EXPORT_SYMBOL(dentry_unhash);
3589
3590 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3591 {
3592 int error = may_delete(dir, dentry, 1);
3593
3594 if (error)
3595 return error;
3596
3597 if (!dir->i_op->rmdir)
3598 return -EPERM;
3599
3600 dget(dentry);
3601 mutex_lock(&dentry->d_inode->i_mutex);
3602
3603 error = -EBUSY;
3604 if (is_local_mountpoint(dentry))
3605 goto out;
3606
3607 error = security_inode_rmdir(dir, dentry);
3608 if (error)
3609 goto out;
3610
3611 shrink_dcache_parent(dentry);
3612 error = dir->i_op->rmdir(dir, dentry);
3613 if (error)
3614 goto out;
3615
3616 dentry->d_inode->i_flags |= S_DEAD;
3617 dont_mount(dentry);
3618 detach_mounts(dentry);
3619
3620 out:
3621 mutex_unlock(&dentry->d_inode->i_mutex);
3622 dput(dentry);
3623 if (!error)
3624 d_delete(dentry);
3625 return error;
3626 }
3627 EXPORT_SYMBOL(vfs_rmdir);
3628
3629 static long do_rmdir(int dfd, const char __user *pathname)
3630 {
3631 int error = 0;
3632 struct filename *name;
3633 struct dentry *dentry;
3634 struct path path;
3635 struct qstr last;
3636 int type;
3637 unsigned int lookup_flags = 0;
3638 retry:
3639 name = user_path_parent(dfd, pathname,
3640 &path, &last, &type, lookup_flags);
3641 if (IS_ERR(name))
3642 return PTR_ERR(name);
3643
3644 switch (type) {
3645 case LAST_DOTDOT:
3646 error = -ENOTEMPTY;
3647 goto exit1;
3648 case LAST_DOT:
3649 error = -EINVAL;
3650 goto exit1;
3651 case LAST_ROOT:
3652 error = -EBUSY;
3653 goto exit1;
3654 }
3655
3656 error = mnt_want_write(path.mnt);
3657 if (error)
3658 goto exit1;
3659
3660 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3661 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3662 error = PTR_ERR(dentry);
3663 if (IS_ERR(dentry))
3664 goto exit2;
3665 if (!dentry->d_inode) {
3666 error = -ENOENT;
3667 goto exit3;
3668 }
3669 error = security_path_rmdir(&path, dentry);
3670 if (error)
3671 goto exit3;
3672 error = vfs_rmdir(path.dentry->d_inode, dentry);
3673 exit3:
3674 dput(dentry);
3675 exit2:
3676 mutex_unlock(&path.dentry->d_inode->i_mutex);
3677 mnt_drop_write(path.mnt);
3678 exit1:
3679 path_put(&path);
3680 putname(name);
3681 if (retry_estale(error, lookup_flags)) {
3682 lookup_flags |= LOOKUP_REVAL;
3683 goto retry;
3684 }
3685 return error;
3686 }
3687
3688 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3689 {
3690 return do_rmdir(AT_FDCWD, pathname);
3691 }
3692
3693 /**
3694 * vfs_unlink - unlink a filesystem object
3695 * @dir: parent directory
3696 * @dentry: victim
3697 * @delegated_inode: returns victim inode, if the inode is delegated.
3698 *
3699 * The caller must hold dir->i_mutex.
3700 *
3701 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3702 * return a reference to the inode in delegated_inode. The caller
3703 * should then break the delegation on that inode and retry. Because
3704 * breaking a delegation may take a long time, the caller should drop
3705 * dir->i_mutex before doing so.
3706 *
3707 * Alternatively, a caller may pass NULL for delegated_inode. This may
3708 * be appropriate for callers that expect the underlying filesystem not
3709 * to be NFS exported.
3710 */
3711 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3712 {
3713 struct inode *target = dentry->d_inode;
3714 int error = may_delete(dir, dentry, 0);
3715
3716 if (error)
3717 return error;
3718
3719 if (!dir->i_op->unlink)
3720 return -EPERM;
3721
3722 mutex_lock(&target->i_mutex);
3723 if (is_local_mountpoint(dentry))
3724 error = -EBUSY;
3725 else {
3726 error = security_inode_unlink(dir, dentry);
3727 if (!error) {
3728 error = try_break_deleg(target, delegated_inode);
3729 if (error)
3730 goto out;
3731 error = dir->i_op->unlink(dir, dentry);
3732 if (!error) {
3733 dont_mount(dentry);
3734 detach_mounts(dentry);
3735 }
3736 }
3737 }
3738 out:
3739 mutex_unlock(&target->i_mutex);
3740
3741 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3742 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3743 fsnotify_link_count(target);
3744 d_delete(dentry);
3745 }
3746
3747 return error;
3748 }
3749 EXPORT_SYMBOL(vfs_unlink);
3750
3751 /*
3752 * Make sure that the actual truncation of the file will occur outside its
3753 * directory's i_mutex. Truncate can take a long time if there is a lot of
3754 * writeout happening, and we don't want to prevent access to the directory
3755 * while waiting on the I/O.
3756 */
3757 static long do_unlinkat(int dfd, const char __user *pathname)
3758 {
3759 int error;
3760 struct filename *name;
3761 struct dentry *dentry;
3762 struct path path;
3763 struct qstr last;
3764 int type;
3765 struct inode *inode = NULL;
3766 struct inode *delegated_inode = NULL;
3767 unsigned int lookup_flags = 0;
3768 retry:
3769 name = user_path_parent(dfd, pathname,
3770 &path, &last, &type, lookup_flags);
3771 if (IS_ERR(name))
3772 return PTR_ERR(name);
3773
3774 error = -EISDIR;
3775 if (type != LAST_NORM)
3776 goto exit1;
3777
3778 error = mnt_want_write(path.mnt);
3779 if (error)
3780 goto exit1;
3781 retry_deleg:
3782 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3783 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3784 error = PTR_ERR(dentry);
3785 if (!IS_ERR(dentry)) {
3786 /* Why not before? Because we want correct error value */
3787 if (last.name[last.len])
3788 goto slashes;
3789 inode = dentry->d_inode;
3790 if (d_is_negative(dentry))
3791 goto slashes;
3792 ihold(inode);
3793 error = security_path_unlink(&path, dentry);
3794 if (error)
3795 goto exit2;
3796 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3797 exit2:
3798 dput(dentry);
3799 }
3800 mutex_unlock(&path.dentry->d_inode->i_mutex);
3801 if (inode)
3802 iput(inode); /* truncate the inode here */
3803 inode = NULL;
3804 if (delegated_inode) {
3805 error = break_deleg_wait(&delegated_inode);
3806 if (!error)
3807 goto retry_deleg;
3808 }
3809 mnt_drop_write(path.mnt);
3810 exit1:
3811 path_put(&path);
3812 putname(name);
3813 if (retry_estale(error, lookup_flags)) {
3814 lookup_flags |= LOOKUP_REVAL;
3815 inode = NULL;
3816 goto retry;
3817 }
3818 return error;
3819
3820 slashes:
3821 if (d_is_negative(dentry))
3822 error = -ENOENT;
3823 else if (d_is_dir(dentry))
3824 error = -EISDIR;
3825 else
3826 error = -ENOTDIR;
3827 goto exit2;
3828 }
3829
3830 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3831 {
3832 if ((flag & ~AT_REMOVEDIR) != 0)
3833 return -EINVAL;
3834
3835 if (flag & AT_REMOVEDIR)
3836 return do_rmdir(dfd, pathname);
3837
3838 return do_unlinkat(dfd, pathname);
3839 }
3840
3841 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3842 {
3843 return do_unlinkat(AT_FDCWD, pathname);
3844 }
3845
3846 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3847 {
3848 int error = may_create(dir, dentry);
3849
3850 if (error)
3851 return error;
3852
3853 if (!dir->i_op->symlink)
3854 return -EPERM;
3855
3856 error = security_inode_symlink(dir, dentry, oldname);
3857 if (error)
3858 return error;
3859
3860 error = dir->i_op->symlink(dir, dentry, oldname);
3861 if (!error)
3862 fsnotify_create(dir, dentry);
3863 return error;
3864 }
3865 EXPORT_SYMBOL(vfs_symlink);
3866
3867 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3868 int, newdfd, const char __user *, newname)
3869 {
3870 int error;
3871 struct filename *from;
3872 struct dentry *dentry;
3873 struct path path;
3874 unsigned int lookup_flags = 0;
3875
3876 from = getname(oldname);
3877 if (IS_ERR(from))
3878 return PTR_ERR(from);
3879 retry:
3880 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3881 error = PTR_ERR(dentry);
3882 if (IS_ERR(dentry))
3883 goto out_putname;
3884
3885 error = security_path_symlink(&path, dentry, from->name);
3886 if (!error)
3887 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3888 done_path_create(&path, dentry);
3889 if (retry_estale(error, lookup_flags)) {
3890 lookup_flags |= LOOKUP_REVAL;
3891 goto retry;
3892 }
3893 out_putname:
3894 putname(from);
3895 return error;
3896 }
3897
3898 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3899 {
3900 return sys_symlinkat(oldname, AT_FDCWD, newname);
3901 }
3902
3903 /**
3904 * vfs_link - create a new link
3905 * @old_dentry: object to be linked
3906 * @dir: new parent
3907 * @new_dentry: where to create the new link
3908 * @delegated_inode: returns inode needing a delegation break
3909 *
3910 * The caller must hold dir->i_mutex
3911 *
3912 * If vfs_link discovers a delegation on the to-be-linked file in need
3913 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3914 * inode in delegated_inode. The caller should then break the delegation
3915 * and retry. Because breaking a delegation may take a long time, the
3916 * caller should drop the i_mutex before doing so.
3917 *
3918 * Alternatively, a caller may pass NULL for delegated_inode. This may
3919 * be appropriate for callers that expect the underlying filesystem not
3920 * to be NFS exported.
3921 */
3922 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3923 {
3924 struct inode *inode = old_dentry->d_inode;
3925 unsigned max_links = dir->i_sb->s_max_links;
3926 int error;
3927
3928 if (!inode)
3929 return -ENOENT;
3930
3931 error = may_create(dir, new_dentry);
3932 if (error)
3933 return error;
3934
3935 if (dir->i_sb != inode->i_sb)
3936 return -EXDEV;
3937
3938 /*
3939 * A link to an append-only or immutable file cannot be created.
3940 */
3941 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3942 return -EPERM;
3943 if (!dir->i_op->link)
3944 return -EPERM;
3945 if (S_ISDIR(inode->i_mode))
3946 return -EPERM;
3947
3948 error = security_inode_link(old_dentry, dir, new_dentry);
3949 if (error)
3950 return error;
3951
3952 mutex_lock(&inode->i_mutex);
3953 /* Make sure we don't allow creating hardlink to an unlinked file */
3954 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3955 error = -ENOENT;
3956 else if (max_links && inode->i_nlink >= max_links)
3957 error = -EMLINK;
3958 else {
3959 error = try_break_deleg(inode, delegated_inode);
3960 if (!error)
3961 error = dir->i_op->link(old_dentry, dir, new_dentry);
3962 }
3963
3964 if (!error && (inode->i_state & I_LINKABLE)) {
3965 spin_lock(&inode->i_lock);
3966 inode->i_state &= ~I_LINKABLE;
3967 spin_unlock(&inode->i_lock);
3968 }
3969 mutex_unlock(&inode->i_mutex);
3970 if (!error)
3971 fsnotify_link(dir, inode, new_dentry);
3972 return error;
3973 }
3974 EXPORT_SYMBOL(vfs_link);
3975
3976 /*
3977 * Hardlinks are often used in delicate situations. We avoid
3978 * security-related surprises by not following symlinks on the
3979 * newname. --KAB
3980 *
3981 * We don't follow them on the oldname either to be compatible
3982 * with linux 2.0, and to avoid hard-linking to directories
3983 * and other special files. --ADM
3984 */
3985 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3986 int, newdfd, const char __user *, newname, int, flags)
3987 {
3988 struct dentry *new_dentry;
3989 struct path old_path, new_path;
3990 struct inode *delegated_inode = NULL;
3991 int how = 0;
3992 int error;
3993
3994 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3995 return -EINVAL;
3996 /*
3997 * To use null names we require CAP_DAC_READ_SEARCH
3998 * This ensures that not everyone will be able to create
3999 * handlink using the passed filedescriptor.
4000 */
4001 if (flags & AT_EMPTY_PATH) {
4002 if (!capable(CAP_DAC_READ_SEARCH))
4003 return -ENOENT;
4004 how = LOOKUP_EMPTY;
4005 }
4006
4007 if (flags & AT_SYMLINK_FOLLOW)
4008 how |= LOOKUP_FOLLOW;
4009 retry:
4010 error = user_path_at(olddfd, oldname, how, &old_path);
4011 if (error)
4012 return error;
4013
4014 new_dentry = user_path_create(newdfd, newname, &new_path,
4015 (how & LOOKUP_REVAL));
4016 error = PTR_ERR(new_dentry);
4017 if (IS_ERR(new_dentry))
4018 goto out;
4019
4020 error = -EXDEV;
4021 if (old_path.mnt != new_path.mnt)
4022 goto out_dput;
4023 error = may_linkat(&old_path);
4024 if (unlikely(error))
4025 goto out_dput;
4026 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4027 if (error)
4028 goto out_dput;
4029 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4030 out_dput:
4031 done_path_create(&new_path, new_dentry);
4032 if (delegated_inode) {
4033 error = break_deleg_wait(&delegated_inode);
4034 if (!error) {
4035 path_put(&old_path);
4036 goto retry;
4037 }
4038 }
4039 if (retry_estale(error, how)) {
4040 path_put(&old_path);
4041 how |= LOOKUP_REVAL;
4042 goto retry;
4043 }
4044 out:
4045 path_put(&old_path);
4046
4047 return error;
4048 }
4049
4050 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4051 {
4052 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4053 }
4054
4055 /**
4056 * vfs_rename - rename a filesystem object
4057 * @old_dir: parent of source
4058 * @old_dentry: source
4059 * @new_dir: parent of destination
4060 * @new_dentry: destination
4061 * @delegated_inode: returns an inode needing a delegation break
4062 * @flags: rename flags
4063 *
4064 * The caller must hold multiple mutexes--see lock_rename()).
4065 *
4066 * If vfs_rename discovers a delegation in need of breaking at either
4067 * the source or destination, it will return -EWOULDBLOCK and return a
4068 * reference to the inode in delegated_inode. The caller should then
4069 * break the delegation and retry. Because breaking a delegation may
4070 * take a long time, the caller should drop all locks before doing
4071 * so.
4072 *
4073 * Alternatively, a caller may pass NULL for delegated_inode. This may
4074 * be appropriate for callers that expect the underlying filesystem not
4075 * to be NFS exported.
4076 *
4077 * The worst of all namespace operations - renaming directory. "Perverted"
4078 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4079 * Problems:
4080 * a) we can get into loop creation.
4081 * b) race potential - two innocent renames can create a loop together.
4082 * That's where 4.4 screws up. Current fix: serialization on
4083 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4084 * story.
4085 * c) we have to lock _four_ objects - parents and victim (if it exists),
4086 * and source (if it is not a directory).
4087 * And that - after we got ->i_mutex on parents (until then we don't know
4088 * whether the target exists). Solution: try to be smart with locking
4089 * order for inodes. We rely on the fact that tree topology may change
4090 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4091 * move will be locked. Thus we can rank directories by the tree
4092 * (ancestors first) and rank all non-directories after them.
4093 * That works since everybody except rename does "lock parent, lookup,
4094 * lock child" and rename is under ->s_vfs_rename_mutex.
4095 * HOWEVER, it relies on the assumption that any object with ->lookup()
4096 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4097 * we'd better make sure that there's no link(2) for them.
4098 * d) conversion from fhandle to dentry may come in the wrong moment - when
4099 * we are removing the target. Solution: we will have to grab ->i_mutex
4100 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4101 * ->i_mutex on parents, which works but leads to some truly excessive
4102 * locking].
4103 */
4104 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4105 struct inode *new_dir, struct dentry *new_dentry,
4106 struct inode **delegated_inode, unsigned int flags)
4107 {
4108 int error;
4109 bool is_dir = d_is_dir(old_dentry);
4110 const unsigned char *old_name;
4111 struct inode *source = old_dentry->d_inode;
4112 struct inode *target = new_dentry->d_inode;
4113 bool new_is_dir = false;
4114 unsigned max_links = new_dir->i_sb->s_max_links;
4115
4116 if (source == target)
4117 return 0;
4118
4119 error = may_delete(old_dir, old_dentry, is_dir);
4120 if (error)
4121 return error;
4122
4123 if (!target) {
4124 error = may_create(new_dir, new_dentry);
4125 } else {
4126 new_is_dir = d_is_dir(new_dentry);
4127
4128 if (!(flags & RENAME_EXCHANGE))
4129 error = may_delete(new_dir, new_dentry, is_dir);
4130 else
4131 error = may_delete(new_dir, new_dentry, new_is_dir);
4132 }
4133 if (error)
4134 return error;
4135
4136 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4137 return -EPERM;
4138
4139 if (flags && !old_dir->i_op->rename2)
4140 return -EINVAL;
4141
4142 /*
4143 * If we are going to change the parent - check write permissions,
4144 * we'll need to flip '..'.
4145 */
4146 if (new_dir != old_dir) {
4147 if (is_dir) {
4148 error = inode_permission(source, MAY_WRITE);
4149 if (error)
4150 return error;
4151 }
4152 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4153 error = inode_permission(target, MAY_WRITE);
4154 if (error)
4155 return error;
4156 }
4157 }
4158
4159 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4160 flags);
4161 if (error)
4162 return error;
4163
4164 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4165 dget(new_dentry);
4166 if (!is_dir || (flags & RENAME_EXCHANGE))
4167 lock_two_nondirectories(source, target);
4168 else if (target)
4169 mutex_lock(&target->i_mutex);
4170
4171 error = -EBUSY;
4172 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4173 goto out;
4174
4175 if (max_links && new_dir != old_dir) {
4176 error = -EMLINK;
4177 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4178 goto out;
4179 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4180 old_dir->i_nlink >= max_links)
4181 goto out;
4182 }
4183 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4184 shrink_dcache_parent(new_dentry);
4185 if (!is_dir) {
4186 error = try_break_deleg(source, delegated_inode);
4187 if (error)
4188 goto out;
4189 }
4190 if (target && !new_is_dir) {
4191 error = try_break_deleg(target, delegated_inode);
4192 if (error)
4193 goto out;
4194 }
4195 if (!old_dir->i_op->rename2) {
4196 error = old_dir->i_op->rename(old_dir, old_dentry,
4197 new_dir, new_dentry);
4198 } else {
4199 WARN_ON(old_dir->i_op->rename != NULL);
4200 error = old_dir->i_op->rename2(old_dir, old_dentry,
4201 new_dir, new_dentry, flags);
4202 }
4203 if (error)
4204 goto out;
4205
4206 if (!(flags & RENAME_EXCHANGE) && target) {
4207 if (is_dir)
4208 target->i_flags |= S_DEAD;
4209 dont_mount(new_dentry);
4210 detach_mounts(new_dentry);
4211 }
4212 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4213 if (!(flags & RENAME_EXCHANGE))
4214 d_move(old_dentry, new_dentry);
4215 else
4216 d_exchange(old_dentry, new_dentry);
4217 }
4218 out:
4219 if (!is_dir || (flags & RENAME_EXCHANGE))
4220 unlock_two_nondirectories(source, target);
4221 else if (target)
4222 mutex_unlock(&target->i_mutex);
4223 dput(new_dentry);
4224 if (!error) {
4225 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4226 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4227 if (flags & RENAME_EXCHANGE) {
4228 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4229 new_is_dir, NULL, new_dentry);
4230 }
4231 }
4232 fsnotify_oldname_free(old_name);
4233
4234 return error;
4235 }
4236 EXPORT_SYMBOL(vfs_rename);
4237
4238 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4239 int, newdfd, const char __user *, newname, unsigned int, flags)
4240 {
4241 struct dentry *old_dentry, *new_dentry;
4242 struct dentry *trap;
4243 struct path old_path, new_path;
4244 struct qstr old_last, new_last;
4245 int old_type, new_type;
4246 struct inode *delegated_inode = NULL;
4247 struct filename *from;
4248 struct filename *to;
4249 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4250 bool should_retry = false;
4251 int error;
4252
4253 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4254 return -EINVAL;
4255
4256 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4257 (flags & RENAME_EXCHANGE))
4258 return -EINVAL;
4259
4260 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4261 return -EPERM;
4262
4263 if (flags & RENAME_EXCHANGE)
4264 target_flags = 0;
4265
4266 retry:
4267 from = user_path_parent(olddfd, oldname,
4268 &old_path, &old_last, &old_type, lookup_flags);
4269 if (IS_ERR(from)) {
4270 error = PTR_ERR(from);
4271 goto exit;
4272 }
4273
4274 to = user_path_parent(newdfd, newname,
4275 &new_path, &new_last, &new_type, lookup_flags);
4276 if (IS_ERR(to)) {
4277 error = PTR_ERR(to);
4278 goto exit1;
4279 }
4280
4281 error = -EXDEV;
4282 if (old_path.mnt != new_path.mnt)
4283 goto exit2;
4284
4285 error = -EBUSY;
4286 if (old_type != LAST_NORM)
4287 goto exit2;
4288
4289 if (flags & RENAME_NOREPLACE)
4290 error = -EEXIST;
4291 if (new_type != LAST_NORM)
4292 goto exit2;
4293
4294 error = mnt_want_write(old_path.mnt);
4295 if (error)
4296 goto exit2;
4297
4298 retry_deleg:
4299 trap = lock_rename(new_path.dentry, old_path.dentry);
4300
4301 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4302 error = PTR_ERR(old_dentry);
4303 if (IS_ERR(old_dentry))
4304 goto exit3;
4305 /* source must exist */
4306 error = -ENOENT;
4307 if (d_is_negative(old_dentry))
4308 goto exit4;
4309 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4310 error = PTR_ERR(new_dentry);
4311 if (IS_ERR(new_dentry))
4312 goto exit4;
4313 error = -EEXIST;
4314 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4315 goto exit5;
4316 if (flags & RENAME_EXCHANGE) {
4317 error = -ENOENT;
4318 if (d_is_negative(new_dentry))
4319 goto exit5;
4320
4321 if (!d_is_dir(new_dentry)) {
4322 error = -ENOTDIR;
4323 if (new_last.name[new_last.len])
4324 goto exit5;
4325 }
4326 }
4327 /* unless the source is a directory trailing slashes give -ENOTDIR */
4328 if (!d_is_dir(old_dentry)) {
4329 error = -ENOTDIR;
4330 if (old_last.name[old_last.len])
4331 goto exit5;
4332 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4333 goto exit5;
4334 }
4335 /* source should not be ancestor of target */
4336 error = -EINVAL;
4337 if (old_dentry == trap)
4338 goto exit5;
4339 /* target should not be an ancestor of source */
4340 if (!(flags & RENAME_EXCHANGE))
4341 error = -ENOTEMPTY;
4342 if (new_dentry == trap)
4343 goto exit5;
4344
4345 error = security_path_rename(&old_path, old_dentry,
4346 &new_path, new_dentry, flags);
4347 if (error)
4348 goto exit5;
4349 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4350 new_path.dentry->d_inode, new_dentry,
4351 &delegated_inode, flags);
4352 exit5:
4353 dput(new_dentry);
4354 exit4:
4355 dput(old_dentry);
4356 exit3:
4357 unlock_rename(new_path.dentry, old_path.dentry);
4358 if (delegated_inode) {
4359 error = break_deleg_wait(&delegated_inode);
4360 if (!error)
4361 goto retry_deleg;
4362 }
4363 mnt_drop_write(old_path.mnt);
4364 exit2:
4365 if (retry_estale(error, lookup_flags))
4366 should_retry = true;
4367 path_put(&new_path);
4368 putname(to);
4369 exit1:
4370 path_put(&old_path);
4371 putname(from);
4372 if (should_retry) {
4373 should_retry = false;
4374 lookup_flags |= LOOKUP_REVAL;
4375 goto retry;
4376 }
4377 exit:
4378 return error;
4379 }
4380
4381 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4382 int, newdfd, const char __user *, newname)
4383 {
4384 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4385 }
4386
4387 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4388 {
4389 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4390 }
4391
4392 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4393 {
4394 int error = may_create(dir, dentry);
4395 if (error)
4396 return error;
4397
4398 if (!dir->i_op->mknod)
4399 return -EPERM;
4400
4401 return dir->i_op->mknod(dir, dentry,
4402 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4403 }
4404 EXPORT_SYMBOL(vfs_whiteout);
4405
4406 int readlink_copy(char __user *buffer, int buflen, const char *link)
4407 {
4408 int len = PTR_ERR(link);
4409 if (IS_ERR(link))
4410 goto out;
4411
4412 len = strlen(link);
4413 if (len > (unsigned) buflen)
4414 len = buflen;
4415 if (copy_to_user(buffer, link, len))
4416 len = -EFAULT;
4417 out:
4418 return len;
4419 }
4420 EXPORT_SYMBOL(readlink_copy);
4421
4422 /*
4423 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4424 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4425 * using) it for any given inode is up to filesystem.
4426 */
4427 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4428 {
4429 void *cookie;
4430 const char *link = dentry->d_inode->i_link;
4431 int res;
4432
4433 if (!link) {
4434 link = dentry->d_inode->i_op->follow_link(dentry, &cookie, NULL);
4435 if (IS_ERR(link))
4436 return PTR_ERR(link);
4437 }
4438 res = readlink_copy(buffer, buflen, link);
4439 if (cookie && dentry->d_inode->i_op->put_link)
4440 dentry->d_inode->i_op->put_link(dentry, cookie);
4441 return res;
4442 }
4443 EXPORT_SYMBOL(generic_readlink);
4444
4445 /* get the link contents into pagecache */
4446 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4447 {
4448 char *kaddr;
4449 struct page *page;
4450 struct address_space *mapping = dentry->d_inode->i_mapping;
4451 page = read_mapping_page(mapping, 0, NULL);
4452 if (IS_ERR(page))
4453 return (char*)page;
4454 *ppage = page;
4455 kaddr = kmap(page);
4456 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4457 return kaddr;
4458 }
4459
4460 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4461 {
4462 struct page *page = NULL;
4463 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4464 if (page) {
4465 kunmap(page);
4466 page_cache_release(page);
4467 }
4468 return res;
4469 }
4470 EXPORT_SYMBOL(page_readlink);
4471
4472 const char *page_follow_link_light(struct dentry *dentry, void **cookie, struct nameidata *nd)
4473 {
4474 struct page *page = NULL;
4475 char *res = page_getlink(dentry, &page);
4476 if (!IS_ERR(res))
4477 *cookie = page;
4478 return res;
4479 }
4480 EXPORT_SYMBOL(page_follow_link_light);
4481
4482 void page_put_link(struct dentry *dentry, void *cookie)
4483 {
4484 struct page *page = cookie;
4485 kunmap(page);
4486 page_cache_release(page);
4487 }
4488 EXPORT_SYMBOL(page_put_link);
4489
4490 /*
4491 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4492 */
4493 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4494 {
4495 struct address_space *mapping = inode->i_mapping;
4496 struct page *page;
4497 void *fsdata;
4498 int err;
4499 char *kaddr;
4500 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4501 if (nofs)
4502 flags |= AOP_FLAG_NOFS;
4503
4504 retry:
4505 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4506 flags, &page, &fsdata);
4507 if (err)
4508 goto fail;
4509
4510 kaddr = kmap_atomic(page);
4511 memcpy(kaddr, symname, len-1);
4512 kunmap_atomic(kaddr);
4513
4514 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4515 page, fsdata);
4516 if (err < 0)
4517 goto fail;
4518 if (err < len-1)
4519 goto retry;
4520
4521 mark_inode_dirty(inode);
4522 return 0;
4523 fail:
4524 return err;
4525 }
4526 EXPORT_SYMBOL(__page_symlink);
4527
4528 int page_symlink(struct inode *inode, const char *symname, int len)
4529 {
4530 return __page_symlink(inode, symname, len,
4531 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4532 }
4533 EXPORT_SYMBOL(page_symlink);
4534
4535 const struct inode_operations page_symlink_inode_operations = {
4536 .readlink = generic_readlink,
4537 .follow_link = page_follow_link_light,
4538 .put_link = page_put_link,
4539 };
4540 EXPORT_SYMBOL(page_symlink_inode_operations);