]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/namei.c
link_path_walk: nd->depth massage, part 3
[mirror_ubuntu-zesty-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 struct path path;
498 union {
499 struct qstr last;
500 struct path link;
501 };
502 struct path root;
503 struct inode *inode; /* path.dentry.d_inode */
504 unsigned int flags;
505 unsigned seq, m_seq;
506 int last_type;
507 unsigned depth;
508 struct file *base;
509 struct saved {
510 struct path link;
511 void *cookie;
512 const char *name;
513 } *stack, internal[EMBEDDED_LEVELS];
514 };
515
516 static void set_nameidata(struct nameidata *nd)
517 {
518 nd->stack = nd->internal;
519 }
520
521 static void restore_nameidata(struct nameidata *nd)
522 {
523 if (nd->stack != nd->internal) {
524 kfree(nd->stack);
525 nd->stack = nd->internal;
526 }
527 }
528
529 static int __nd_alloc_stack(struct nameidata *nd)
530 {
531 struct saved *p = kmalloc((MAXSYMLINKS + 1) * sizeof(struct saved),
532 GFP_KERNEL);
533 if (unlikely(!p))
534 return -ENOMEM;
535 memcpy(p, nd->internal, sizeof(nd->internal));
536 nd->stack = p;
537 return 0;
538 }
539
540 static inline int nd_alloc_stack(struct nameidata *nd)
541 {
542 if (likely(nd->depth != EMBEDDED_LEVELS))
543 return 0;
544 if (likely(nd->stack != nd->internal))
545 return 0;
546 return __nd_alloc_stack(nd);
547 }
548
549 /*
550 * Path walking has 2 modes, rcu-walk and ref-walk (see
551 * Documentation/filesystems/path-lookup.txt). In situations when we can't
552 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
553 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
554 * mode. Refcounts are grabbed at the last known good point before rcu-walk
555 * got stuck, so ref-walk may continue from there. If this is not successful
556 * (eg. a seqcount has changed), then failure is returned and it's up to caller
557 * to restart the path walk from the beginning in ref-walk mode.
558 */
559
560 /**
561 * unlazy_walk - try to switch to ref-walk mode.
562 * @nd: nameidata pathwalk data
563 * @dentry: child of nd->path.dentry or NULL
564 * Returns: 0 on success, -ECHILD on failure
565 *
566 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
567 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
568 * @nd or NULL. Must be called from rcu-walk context.
569 */
570 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
571 {
572 struct fs_struct *fs = current->fs;
573 struct dentry *parent = nd->path.dentry;
574
575 BUG_ON(!(nd->flags & LOOKUP_RCU));
576
577 /*
578 * After legitimizing the bastards, terminate_walk()
579 * will do the right thing for non-RCU mode, and all our
580 * subsequent exit cases should rcu_read_unlock()
581 * before returning. Do vfsmount first; if dentry
582 * can't be legitimized, just set nd->path.dentry to NULL
583 * and rely on dput(NULL) being a no-op.
584 */
585 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
586 return -ECHILD;
587 nd->flags &= ~LOOKUP_RCU;
588
589 if (!lockref_get_not_dead(&parent->d_lockref)) {
590 nd->path.dentry = NULL;
591 goto out;
592 }
593
594 /*
595 * For a negative lookup, the lookup sequence point is the parents
596 * sequence point, and it only needs to revalidate the parent dentry.
597 *
598 * For a positive lookup, we need to move both the parent and the
599 * dentry from the RCU domain to be properly refcounted. And the
600 * sequence number in the dentry validates *both* dentry counters,
601 * since we checked the sequence number of the parent after we got
602 * the child sequence number. So we know the parent must still
603 * be valid if the child sequence number is still valid.
604 */
605 if (!dentry) {
606 if (read_seqcount_retry(&parent->d_seq, nd->seq))
607 goto out;
608 BUG_ON(nd->inode != parent->d_inode);
609 } else {
610 if (!lockref_get_not_dead(&dentry->d_lockref))
611 goto out;
612 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
613 goto drop_dentry;
614 }
615
616 /*
617 * Sequence counts matched. Now make sure that the root is
618 * still valid and get it if required.
619 */
620 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
621 spin_lock(&fs->lock);
622 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
623 goto unlock_and_drop_dentry;
624 path_get(&nd->root);
625 spin_unlock(&fs->lock);
626 }
627
628 rcu_read_unlock();
629 return 0;
630
631 unlock_and_drop_dentry:
632 spin_unlock(&fs->lock);
633 drop_dentry:
634 rcu_read_unlock();
635 dput(dentry);
636 goto drop_root_mnt;
637 out:
638 rcu_read_unlock();
639 drop_root_mnt:
640 if (!(nd->flags & LOOKUP_ROOT))
641 nd->root.mnt = NULL;
642 return -ECHILD;
643 }
644
645 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
646 {
647 return dentry->d_op->d_revalidate(dentry, flags);
648 }
649
650 /**
651 * complete_walk - successful completion of path walk
652 * @nd: pointer nameidata
653 *
654 * If we had been in RCU mode, drop out of it and legitimize nd->path.
655 * Revalidate the final result, unless we'd already done that during
656 * the path walk or the filesystem doesn't ask for it. Return 0 on
657 * success, -error on failure. In case of failure caller does not
658 * need to drop nd->path.
659 */
660 static int complete_walk(struct nameidata *nd)
661 {
662 struct dentry *dentry = nd->path.dentry;
663 int status;
664
665 if (nd->flags & LOOKUP_RCU) {
666 nd->flags &= ~LOOKUP_RCU;
667 if (!(nd->flags & LOOKUP_ROOT))
668 nd->root.mnt = NULL;
669
670 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
671 rcu_read_unlock();
672 return -ECHILD;
673 }
674 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
675 rcu_read_unlock();
676 mntput(nd->path.mnt);
677 return -ECHILD;
678 }
679 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
680 rcu_read_unlock();
681 dput(dentry);
682 mntput(nd->path.mnt);
683 return -ECHILD;
684 }
685 rcu_read_unlock();
686 }
687
688 if (likely(!(nd->flags & LOOKUP_JUMPED)))
689 return 0;
690
691 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
692 return 0;
693
694 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
695 if (status > 0)
696 return 0;
697
698 if (!status)
699 status = -ESTALE;
700
701 path_put(&nd->path);
702 return status;
703 }
704
705 static __always_inline void set_root(struct nameidata *nd)
706 {
707 get_fs_root(current->fs, &nd->root);
708 }
709
710 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
711 {
712 struct fs_struct *fs = current->fs;
713 unsigned seq, res;
714
715 do {
716 seq = read_seqcount_begin(&fs->seq);
717 nd->root = fs->root;
718 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
719 } while (read_seqcount_retry(&fs->seq, seq));
720 return res;
721 }
722
723 static void path_put_conditional(struct path *path, struct nameidata *nd)
724 {
725 dput(path->dentry);
726 if (path->mnt != nd->path.mnt)
727 mntput(path->mnt);
728 }
729
730 static inline void path_to_nameidata(const struct path *path,
731 struct nameidata *nd)
732 {
733 if (!(nd->flags & LOOKUP_RCU)) {
734 dput(nd->path.dentry);
735 if (nd->path.mnt != path->mnt)
736 mntput(nd->path.mnt);
737 }
738 nd->path.mnt = path->mnt;
739 nd->path.dentry = path->dentry;
740 }
741
742 /*
743 * Helper to directly jump to a known parsed path from ->follow_link,
744 * caller must have taken a reference to path beforehand.
745 */
746 void nd_jump_link(struct nameidata *nd, struct path *path)
747 {
748 path_put(&nd->path);
749
750 nd->path = *path;
751 nd->inode = nd->path.dentry->d_inode;
752 nd->flags |= LOOKUP_JUMPED;
753 }
754
755 static inline void put_link(struct nameidata *nd)
756 {
757 struct saved *last = nd->stack + nd->depth;
758 struct inode *inode = last->link.dentry->d_inode;
759 if (last->cookie && inode->i_op->put_link)
760 inode->i_op->put_link(last->link.dentry, last->cookie);
761 path_put(&last->link);
762 }
763
764 int sysctl_protected_symlinks __read_mostly = 0;
765 int sysctl_protected_hardlinks __read_mostly = 0;
766
767 /**
768 * may_follow_link - Check symlink following for unsafe situations
769 * @link: The path of the symlink
770 * @nd: nameidata pathwalk data
771 *
772 * In the case of the sysctl_protected_symlinks sysctl being enabled,
773 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
774 * in a sticky world-writable directory. This is to protect privileged
775 * processes from failing races against path names that may change out
776 * from under them by way of other users creating malicious symlinks.
777 * It will permit symlinks to be followed only when outside a sticky
778 * world-writable directory, or when the uid of the symlink and follower
779 * match, or when the directory owner matches the symlink's owner.
780 *
781 * Returns 0 if following the symlink is allowed, -ve on error.
782 */
783 static inline int may_follow_link(struct path *link, struct nameidata *nd)
784 {
785 const struct inode *inode;
786 const struct inode *parent;
787
788 if (!sysctl_protected_symlinks)
789 return 0;
790
791 /* Allowed if owner and follower match. */
792 inode = link->dentry->d_inode;
793 if (uid_eq(current_cred()->fsuid, inode->i_uid))
794 return 0;
795
796 /* Allowed if parent directory not sticky and world-writable. */
797 parent = nd->path.dentry->d_inode;
798 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
799 return 0;
800
801 /* Allowed if parent directory and link owner match. */
802 if (uid_eq(parent->i_uid, inode->i_uid))
803 return 0;
804
805 audit_log_link_denied("follow_link", link);
806 path_put_conditional(link, nd);
807 path_put(&nd->path);
808 return -EACCES;
809 }
810
811 /**
812 * safe_hardlink_source - Check for safe hardlink conditions
813 * @inode: the source inode to hardlink from
814 *
815 * Return false if at least one of the following conditions:
816 * - inode is not a regular file
817 * - inode is setuid
818 * - inode is setgid and group-exec
819 * - access failure for read and write
820 *
821 * Otherwise returns true.
822 */
823 static bool safe_hardlink_source(struct inode *inode)
824 {
825 umode_t mode = inode->i_mode;
826
827 /* Special files should not get pinned to the filesystem. */
828 if (!S_ISREG(mode))
829 return false;
830
831 /* Setuid files should not get pinned to the filesystem. */
832 if (mode & S_ISUID)
833 return false;
834
835 /* Executable setgid files should not get pinned to the filesystem. */
836 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
837 return false;
838
839 /* Hardlinking to unreadable or unwritable sources is dangerous. */
840 if (inode_permission(inode, MAY_READ | MAY_WRITE))
841 return false;
842
843 return true;
844 }
845
846 /**
847 * may_linkat - Check permissions for creating a hardlink
848 * @link: the source to hardlink from
849 *
850 * Block hardlink when all of:
851 * - sysctl_protected_hardlinks enabled
852 * - fsuid does not match inode
853 * - hardlink source is unsafe (see safe_hardlink_source() above)
854 * - not CAP_FOWNER
855 *
856 * Returns 0 if successful, -ve on error.
857 */
858 static int may_linkat(struct path *link)
859 {
860 const struct cred *cred;
861 struct inode *inode;
862
863 if (!sysctl_protected_hardlinks)
864 return 0;
865
866 cred = current_cred();
867 inode = link->dentry->d_inode;
868
869 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
870 * otherwise, it must be a safe source.
871 */
872 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
873 capable(CAP_FOWNER))
874 return 0;
875
876 audit_log_link_denied("linkat", link);
877 return -EPERM;
878 }
879
880 static __always_inline
881 const char *get_link(struct nameidata *nd)
882 {
883 struct saved *last = nd->stack + nd->depth;
884 struct dentry *dentry = nd->link.dentry;
885 struct inode *inode = dentry->d_inode;
886 int error;
887 const char *res;
888
889 BUG_ON(nd->flags & LOOKUP_RCU);
890
891 if (nd->link.mnt == nd->path.mnt)
892 mntget(nd->link.mnt);
893
894 if (unlikely(current->total_link_count >= MAXSYMLINKS)) {
895 path_put(&nd->path);
896 path_put(&nd->link);
897 return ERR_PTR(-ELOOP);
898 }
899
900 last->link = nd->link;
901 last->cookie = NULL;
902
903 cond_resched();
904 current->total_link_count++;
905
906 touch_atime(&last->link);
907
908 error = security_inode_follow_link(dentry);
909 res = ERR_PTR(error);
910 if (error)
911 goto out;
912
913 nd->last_type = LAST_BIND;
914 res = inode->i_link;
915 if (!res) {
916 res = inode->i_op->follow_link(dentry, &last->cookie, nd);
917 if (IS_ERR(res)) {
918 out:
919 path_put(&nd->path);
920 path_put(&last->link);
921 }
922 }
923 return res;
924 }
925
926 static int follow_up_rcu(struct path *path)
927 {
928 struct mount *mnt = real_mount(path->mnt);
929 struct mount *parent;
930 struct dentry *mountpoint;
931
932 parent = mnt->mnt_parent;
933 if (&parent->mnt == path->mnt)
934 return 0;
935 mountpoint = mnt->mnt_mountpoint;
936 path->dentry = mountpoint;
937 path->mnt = &parent->mnt;
938 return 1;
939 }
940
941 /*
942 * follow_up - Find the mountpoint of path's vfsmount
943 *
944 * Given a path, find the mountpoint of its source file system.
945 * Replace @path with the path of the mountpoint in the parent mount.
946 * Up is towards /.
947 *
948 * Return 1 if we went up a level and 0 if we were already at the
949 * root.
950 */
951 int follow_up(struct path *path)
952 {
953 struct mount *mnt = real_mount(path->mnt);
954 struct mount *parent;
955 struct dentry *mountpoint;
956
957 read_seqlock_excl(&mount_lock);
958 parent = mnt->mnt_parent;
959 if (parent == mnt) {
960 read_sequnlock_excl(&mount_lock);
961 return 0;
962 }
963 mntget(&parent->mnt);
964 mountpoint = dget(mnt->mnt_mountpoint);
965 read_sequnlock_excl(&mount_lock);
966 dput(path->dentry);
967 path->dentry = mountpoint;
968 mntput(path->mnt);
969 path->mnt = &parent->mnt;
970 return 1;
971 }
972 EXPORT_SYMBOL(follow_up);
973
974 /*
975 * Perform an automount
976 * - return -EISDIR to tell follow_managed() to stop and return the path we
977 * were called with.
978 */
979 static int follow_automount(struct path *path, unsigned flags,
980 bool *need_mntput)
981 {
982 struct vfsmount *mnt;
983 int err;
984
985 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
986 return -EREMOTE;
987
988 /* We don't want to mount if someone's just doing a stat -
989 * unless they're stat'ing a directory and appended a '/' to
990 * the name.
991 *
992 * We do, however, want to mount if someone wants to open or
993 * create a file of any type under the mountpoint, wants to
994 * traverse through the mountpoint or wants to open the
995 * mounted directory. Also, autofs may mark negative dentries
996 * as being automount points. These will need the attentions
997 * of the daemon to instantiate them before they can be used.
998 */
999 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1000 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1001 path->dentry->d_inode)
1002 return -EISDIR;
1003
1004 current->total_link_count++;
1005 if (current->total_link_count >= 40)
1006 return -ELOOP;
1007
1008 mnt = path->dentry->d_op->d_automount(path);
1009 if (IS_ERR(mnt)) {
1010 /*
1011 * The filesystem is allowed to return -EISDIR here to indicate
1012 * it doesn't want to automount. For instance, autofs would do
1013 * this so that its userspace daemon can mount on this dentry.
1014 *
1015 * However, we can only permit this if it's a terminal point in
1016 * the path being looked up; if it wasn't then the remainder of
1017 * the path is inaccessible and we should say so.
1018 */
1019 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
1020 return -EREMOTE;
1021 return PTR_ERR(mnt);
1022 }
1023
1024 if (!mnt) /* mount collision */
1025 return 0;
1026
1027 if (!*need_mntput) {
1028 /* lock_mount() may release path->mnt on error */
1029 mntget(path->mnt);
1030 *need_mntput = true;
1031 }
1032 err = finish_automount(mnt, path);
1033
1034 switch (err) {
1035 case -EBUSY:
1036 /* Someone else made a mount here whilst we were busy */
1037 return 0;
1038 case 0:
1039 path_put(path);
1040 path->mnt = mnt;
1041 path->dentry = dget(mnt->mnt_root);
1042 return 0;
1043 default:
1044 return err;
1045 }
1046
1047 }
1048
1049 /*
1050 * Handle a dentry that is managed in some way.
1051 * - Flagged for transit management (autofs)
1052 * - Flagged as mountpoint
1053 * - Flagged as automount point
1054 *
1055 * This may only be called in refwalk mode.
1056 *
1057 * Serialization is taken care of in namespace.c
1058 */
1059 static int follow_managed(struct path *path, unsigned flags)
1060 {
1061 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1062 unsigned managed;
1063 bool need_mntput = false;
1064 int ret = 0;
1065
1066 /* Given that we're not holding a lock here, we retain the value in a
1067 * local variable for each dentry as we look at it so that we don't see
1068 * the components of that value change under us */
1069 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1070 managed &= DCACHE_MANAGED_DENTRY,
1071 unlikely(managed != 0)) {
1072 /* Allow the filesystem to manage the transit without i_mutex
1073 * being held. */
1074 if (managed & DCACHE_MANAGE_TRANSIT) {
1075 BUG_ON(!path->dentry->d_op);
1076 BUG_ON(!path->dentry->d_op->d_manage);
1077 ret = path->dentry->d_op->d_manage(path->dentry, false);
1078 if (ret < 0)
1079 break;
1080 }
1081
1082 /* Transit to a mounted filesystem. */
1083 if (managed & DCACHE_MOUNTED) {
1084 struct vfsmount *mounted = lookup_mnt(path);
1085 if (mounted) {
1086 dput(path->dentry);
1087 if (need_mntput)
1088 mntput(path->mnt);
1089 path->mnt = mounted;
1090 path->dentry = dget(mounted->mnt_root);
1091 need_mntput = true;
1092 continue;
1093 }
1094
1095 /* Something is mounted on this dentry in another
1096 * namespace and/or whatever was mounted there in this
1097 * namespace got unmounted before lookup_mnt() could
1098 * get it */
1099 }
1100
1101 /* Handle an automount point */
1102 if (managed & DCACHE_NEED_AUTOMOUNT) {
1103 ret = follow_automount(path, flags, &need_mntput);
1104 if (ret < 0)
1105 break;
1106 continue;
1107 }
1108
1109 /* We didn't change the current path point */
1110 break;
1111 }
1112
1113 if (need_mntput && path->mnt == mnt)
1114 mntput(path->mnt);
1115 if (ret == -EISDIR)
1116 ret = 0;
1117 return ret < 0 ? ret : need_mntput;
1118 }
1119
1120 int follow_down_one(struct path *path)
1121 {
1122 struct vfsmount *mounted;
1123
1124 mounted = lookup_mnt(path);
1125 if (mounted) {
1126 dput(path->dentry);
1127 mntput(path->mnt);
1128 path->mnt = mounted;
1129 path->dentry = dget(mounted->mnt_root);
1130 return 1;
1131 }
1132 return 0;
1133 }
1134 EXPORT_SYMBOL(follow_down_one);
1135
1136 static inline int managed_dentry_rcu(struct dentry *dentry)
1137 {
1138 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1139 dentry->d_op->d_manage(dentry, true) : 0;
1140 }
1141
1142 /*
1143 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1144 * we meet a managed dentry that would need blocking.
1145 */
1146 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1147 struct inode **inode)
1148 {
1149 for (;;) {
1150 struct mount *mounted;
1151 /*
1152 * Don't forget we might have a non-mountpoint managed dentry
1153 * that wants to block transit.
1154 */
1155 switch (managed_dentry_rcu(path->dentry)) {
1156 case -ECHILD:
1157 default:
1158 return false;
1159 case -EISDIR:
1160 return true;
1161 case 0:
1162 break;
1163 }
1164
1165 if (!d_mountpoint(path->dentry))
1166 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1167
1168 mounted = __lookup_mnt(path->mnt, path->dentry);
1169 if (!mounted)
1170 break;
1171 path->mnt = &mounted->mnt;
1172 path->dentry = mounted->mnt.mnt_root;
1173 nd->flags |= LOOKUP_JUMPED;
1174 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1175 /*
1176 * Update the inode too. We don't need to re-check the
1177 * dentry sequence number here after this d_inode read,
1178 * because a mount-point is always pinned.
1179 */
1180 *inode = path->dentry->d_inode;
1181 }
1182 return !read_seqretry(&mount_lock, nd->m_seq) &&
1183 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1184 }
1185
1186 static int follow_dotdot_rcu(struct nameidata *nd)
1187 {
1188 struct inode *inode = nd->inode;
1189 if (!nd->root.mnt)
1190 set_root_rcu(nd);
1191
1192 while (1) {
1193 if (nd->path.dentry == nd->root.dentry &&
1194 nd->path.mnt == nd->root.mnt) {
1195 break;
1196 }
1197 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1198 struct dentry *old = nd->path.dentry;
1199 struct dentry *parent = old->d_parent;
1200 unsigned seq;
1201
1202 inode = parent->d_inode;
1203 seq = read_seqcount_begin(&parent->d_seq);
1204 if (read_seqcount_retry(&old->d_seq, nd->seq))
1205 goto failed;
1206 nd->path.dentry = parent;
1207 nd->seq = seq;
1208 break;
1209 }
1210 if (!follow_up_rcu(&nd->path))
1211 break;
1212 inode = nd->path.dentry->d_inode;
1213 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1214 }
1215 while (d_mountpoint(nd->path.dentry)) {
1216 struct mount *mounted;
1217 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1218 if (!mounted)
1219 break;
1220 nd->path.mnt = &mounted->mnt;
1221 nd->path.dentry = mounted->mnt.mnt_root;
1222 inode = nd->path.dentry->d_inode;
1223 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1224 if (read_seqretry(&mount_lock, nd->m_seq))
1225 goto failed;
1226 }
1227 nd->inode = inode;
1228 return 0;
1229
1230 failed:
1231 nd->flags &= ~LOOKUP_RCU;
1232 if (!(nd->flags & LOOKUP_ROOT))
1233 nd->root.mnt = NULL;
1234 rcu_read_unlock();
1235 return -ECHILD;
1236 }
1237
1238 /*
1239 * Follow down to the covering mount currently visible to userspace. At each
1240 * point, the filesystem owning that dentry may be queried as to whether the
1241 * caller is permitted to proceed or not.
1242 */
1243 int follow_down(struct path *path)
1244 {
1245 unsigned managed;
1246 int ret;
1247
1248 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1249 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1250 /* Allow the filesystem to manage the transit without i_mutex
1251 * being held.
1252 *
1253 * We indicate to the filesystem if someone is trying to mount
1254 * something here. This gives autofs the chance to deny anyone
1255 * other than its daemon the right to mount on its
1256 * superstructure.
1257 *
1258 * The filesystem may sleep at this point.
1259 */
1260 if (managed & DCACHE_MANAGE_TRANSIT) {
1261 BUG_ON(!path->dentry->d_op);
1262 BUG_ON(!path->dentry->d_op->d_manage);
1263 ret = path->dentry->d_op->d_manage(
1264 path->dentry, false);
1265 if (ret < 0)
1266 return ret == -EISDIR ? 0 : ret;
1267 }
1268
1269 /* Transit to a mounted filesystem. */
1270 if (managed & DCACHE_MOUNTED) {
1271 struct vfsmount *mounted = lookup_mnt(path);
1272 if (!mounted)
1273 break;
1274 dput(path->dentry);
1275 mntput(path->mnt);
1276 path->mnt = mounted;
1277 path->dentry = dget(mounted->mnt_root);
1278 continue;
1279 }
1280
1281 /* Don't handle automount points here */
1282 break;
1283 }
1284 return 0;
1285 }
1286 EXPORT_SYMBOL(follow_down);
1287
1288 /*
1289 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1290 */
1291 static void follow_mount(struct path *path)
1292 {
1293 while (d_mountpoint(path->dentry)) {
1294 struct vfsmount *mounted = lookup_mnt(path);
1295 if (!mounted)
1296 break;
1297 dput(path->dentry);
1298 mntput(path->mnt);
1299 path->mnt = mounted;
1300 path->dentry = dget(mounted->mnt_root);
1301 }
1302 }
1303
1304 static void follow_dotdot(struct nameidata *nd)
1305 {
1306 if (!nd->root.mnt)
1307 set_root(nd);
1308
1309 while(1) {
1310 struct dentry *old = nd->path.dentry;
1311
1312 if (nd->path.dentry == nd->root.dentry &&
1313 nd->path.mnt == nd->root.mnt) {
1314 break;
1315 }
1316 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1317 /* rare case of legitimate dget_parent()... */
1318 nd->path.dentry = dget_parent(nd->path.dentry);
1319 dput(old);
1320 break;
1321 }
1322 if (!follow_up(&nd->path))
1323 break;
1324 }
1325 follow_mount(&nd->path);
1326 nd->inode = nd->path.dentry->d_inode;
1327 }
1328
1329 /*
1330 * This looks up the name in dcache, possibly revalidates the old dentry and
1331 * allocates a new one if not found or not valid. In the need_lookup argument
1332 * returns whether i_op->lookup is necessary.
1333 *
1334 * dir->d_inode->i_mutex must be held
1335 */
1336 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1337 unsigned int flags, bool *need_lookup)
1338 {
1339 struct dentry *dentry;
1340 int error;
1341
1342 *need_lookup = false;
1343 dentry = d_lookup(dir, name);
1344 if (dentry) {
1345 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1346 error = d_revalidate(dentry, flags);
1347 if (unlikely(error <= 0)) {
1348 if (error < 0) {
1349 dput(dentry);
1350 return ERR_PTR(error);
1351 } else {
1352 d_invalidate(dentry);
1353 dput(dentry);
1354 dentry = NULL;
1355 }
1356 }
1357 }
1358 }
1359
1360 if (!dentry) {
1361 dentry = d_alloc(dir, name);
1362 if (unlikely(!dentry))
1363 return ERR_PTR(-ENOMEM);
1364
1365 *need_lookup = true;
1366 }
1367 return dentry;
1368 }
1369
1370 /*
1371 * Call i_op->lookup on the dentry. The dentry must be negative and
1372 * unhashed.
1373 *
1374 * dir->d_inode->i_mutex must be held
1375 */
1376 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1377 unsigned int flags)
1378 {
1379 struct dentry *old;
1380
1381 /* Don't create child dentry for a dead directory. */
1382 if (unlikely(IS_DEADDIR(dir))) {
1383 dput(dentry);
1384 return ERR_PTR(-ENOENT);
1385 }
1386
1387 old = dir->i_op->lookup(dir, dentry, flags);
1388 if (unlikely(old)) {
1389 dput(dentry);
1390 dentry = old;
1391 }
1392 return dentry;
1393 }
1394
1395 static struct dentry *__lookup_hash(struct qstr *name,
1396 struct dentry *base, unsigned int flags)
1397 {
1398 bool need_lookup;
1399 struct dentry *dentry;
1400
1401 dentry = lookup_dcache(name, base, flags, &need_lookup);
1402 if (!need_lookup)
1403 return dentry;
1404
1405 return lookup_real(base->d_inode, dentry, flags);
1406 }
1407
1408 /*
1409 * It's more convoluted than I'd like it to be, but... it's still fairly
1410 * small and for now I'd prefer to have fast path as straight as possible.
1411 * It _is_ time-critical.
1412 */
1413 static int lookup_fast(struct nameidata *nd,
1414 struct path *path, struct inode **inode)
1415 {
1416 struct vfsmount *mnt = nd->path.mnt;
1417 struct dentry *dentry, *parent = nd->path.dentry;
1418 int need_reval = 1;
1419 int status = 1;
1420 int err;
1421
1422 /*
1423 * Rename seqlock is not required here because in the off chance
1424 * of a false negative due to a concurrent rename, we're going to
1425 * do the non-racy lookup, below.
1426 */
1427 if (nd->flags & LOOKUP_RCU) {
1428 unsigned seq;
1429 bool negative;
1430 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1431 if (!dentry)
1432 goto unlazy;
1433
1434 /*
1435 * This sequence count validates that the inode matches
1436 * the dentry name information from lookup.
1437 */
1438 *inode = dentry->d_inode;
1439 negative = d_is_negative(dentry);
1440 if (read_seqcount_retry(&dentry->d_seq, seq))
1441 return -ECHILD;
1442 if (negative)
1443 return -ENOENT;
1444
1445 /*
1446 * This sequence count validates that the parent had no
1447 * changes while we did the lookup of the dentry above.
1448 *
1449 * The memory barrier in read_seqcount_begin of child is
1450 * enough, we can use __read_seqcount_retry here.
1451 */
1452 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1453 return -ECHILD;
1454 nd->seq = seq;
1455
1456 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1457 status = d_revalidate(dentry, nd->flags);
1458 if (unlikely(status <= 0)) {
1459 if (status != -ECHILD)
1460 need_reval = 0;
1461 goto unlazy;
1462 }
1463 }
1464 path->mnt = mnt;
1465 path->dentry = dentry;
1466 if (likely(__follow_mount_rcu(nd, path, inode)))
1467 return 0;
1468 unlazy:
1469 if (unlazy_walk(nd, dentry))
1470 return -ECHILD;
1471 } else {
1472 dentry = __d_lookup(parent, &nd->last);
1473 }
1474
1475 if (unlikely(!dentry))
1476 goto need_lookup;
1477
1478 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1479 status = d_revalidate(dentry, nd->flags);
1480 if (unlikely(status <= 0)) {
1481 if (status < 0) {
1482 dput(dentry);
1483 return status;
1484 }
1485 d_invalidate(dentry);
1486 dput(dentry);
1487 goto need_lookup;
1488 }
1489
1490 if (unlikely(d_is_negative(dentry))) {
1491 dput(dentry);
1492 return -ENOENT;
1493 }
1494 path->mnt = mnt;
1495 path->dentry = dentry;
1496 err = follow_managed(path, nd->flags);
1497 if (unlikely(err < 0)) {
1498 path_put_conditional(path, nd);
1499 return err;
1500 }
1501 if (err)
1502 nd->flags |= LOOKUP_JUMPED;
1503 *inode = path->dentry->d_inode;
1504 return 0;
1505
1506 need_lookup:
1507 return 1;
1508 }
1509
1510 /* Fast lookup failed, do it the slow way */
1511 static int lookup_slow(struct nameidata *nd, struct path *path)
1512 {
1513 struct dentry *dentry, *parent;
1514 int err;
1515
1516 parent = nd->path.dentry;
1517 BUG_ON(nd->inode != parent->d_inode);
1518
1519 mutex_lock(&parent->d_inode->i_mutex);
1520 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1521 mutex_unlock(&parent->d_inode->i_mutex);
1522 if (IS_ERR(dentry))
1523 return PTR_ERR(dentry);
1524 path->mnt = nd->path.mnt;
1525 path->dentry = dentry;
1526 err = follow_managed(path, nd->flags);
1527 if (unlikely(err < 0)) {
1528 path_put_conditional(path, nd);
1529 return err;
1530 }
1531 if (err)
1532 nd->flags |= LOOKUP_JUMPED;
1533 return 0;
1534 }
1535
1536 static inline int may_lookup(struct nameidata *nd)
1537 {
1538 if (nd->flags & LOOKUP_RCU) {
1539 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1540 if (err != -ECHILD)
1541 return err;
1542 if (unlazy_walk(nd, NULL))
1543 return -ECHILD;
1544 }
1545 return inode_permission(nd->inode, MAY_EXEC);
1546 }
1547
1548 static inline int handle_dots(struct nameidata *nd, int type)
1549 {
1550 if (type == LAST_DOTDOT) {
1551 if (nd->flags & LOOKUP_RCU) {
1552 if (follow_dotdot_rcu(nd))
1553 return -ECHILD;
1554 } else
1555 follow_dotdot(nd);
1556 }
1557 return 0;
1558 }
1559
1560 static void terminate_walk(struct nameidata *nd)
1561 {
1562 if (!(nd->flags & LOOKUP_RCU)) {
1563 path_put(&nd->path);
1564 } else {
1565 nd->flags &= ~LOOKUP_RCU;
1566 if (!(nd->flags & LOOKUP_ROOT))
1567 nd->root.mnt = NULL;
1568 rcu_read_unlock();
1569 }
1570 }
1571
1572 /*
1573 * Do we need to follow links? We _really_ want to be able
1574 * to do this check without having to look at inode->i_op,
1575 * so we keep a cache of "no, this doesn't need follow_link"
1576 * for the common case.
1577 */
1578 static inline int should_follow_link(struct dentry *dentry, int follow)
1579 {
1580 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1581 }
1582
1583 static int walk_component(struct nameidata *nd, int follow)
1584 {
1585 struct path path;
1586 struct inode *inode;
1587 int err;
1588 /*
1589 * "." and ".." are special - ".." especially so because it has
1590 * to be able to know about the current root directory and
1591 * parent relationships.
1592 */
1593 if (unlikely(nd->last_type != LAST_NORM))
1594 return handle_dots(nd, nd->last_type);
1595 err = lookup_fast(nd, &path, &inode);
1596 if (unlikely(err)) {
1597 if (err < 0)
1598 goto out_err;
1599
1600 err = lookup_slow(nd, &path);
1601 if (err < 0)
1602 goto out_err;
1603
1604 inode = path.dentry->d_inode;
1605 err = -ENOENT;
1606 if (d_is_negative(path.dentry))
1607 goto out_path_put;
1608 }
1609
1610 if (should_follow_link(path.dentry, follow)) {
1611 if (nd->flags & LOOKUP_RCU) {
1612 if (unlikely(nd->path.mnt != path.mnt ||
1613 unlazy_walk(nd, path.dentry))) {
1614 err = -ECHILD;
1615 goto out_err;
1616 }
1617 }
1618 BUG_ON(inode != path.dentry->d_inode);
1619 nd->link = path;
1620 return 1;
1621 }
1622 path_to_nameidata(&path, nd);
1623 nd->inode = inode;
1624 return 0;
1625
1626 out_path_put:
1627 path_to_nameidata(&path, nd);
1628 out_err:
1629 terminate_walk(nd);
1630 return err;
1631 }
1632
1633 /*
1634 * We can do the critical dentry name comparison and hashing
1635 * operations one word at a time, but we are limited to:
1636 *
1637 * - Architectures with fast unaligned word accesses. We could
1638 * do a "get_unaligned()" if this helps and is sufficiently
1639 * fast.
1640 *
1641 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1642 * do not trap on the (extremely unlikely) case of a page
1643 * crossing operation.
1644 *
1645 * - Furthermore, we need an efficient 64-bit compile for the
1646 * 64-bit case in order to generate the "number of bytes in
1647 * the final mask". Again, that could be replaced with a
1648 * efficient population count instruction or similar.
1649 */
1650 #ifdef CONFIG_DCACHE_WORD_ACCESS
1651
1652 #include <asm/word-at-a-time.h>
1653
1654 #ifdef CONFIG_64BIT
1655
1656 static inline unsigned int fold_hash(unsigned long hash)
1657 {
1658 return hash_64(hash, 32);
1659 }
1660
1661 #else /* 32-bit case */
1662
1663 #define fold_hash(x) (x)
1664
1665 #endif
1666
1667 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1668 {
1669 unsigned long a, mask;
1670 unsigned long hash = 0;
1671
1672 for (;;) {
1673 a = load_unaligned_zeropad(name);
1674 if (len < sizeof(unsigned long))
1675 break;
1676 hash += a;
1677 hash *= 9;
1678 name += sizeof(unsigned long);
1679 len -= sizeof(unsigned long);
1680 if (!len)
1681 goto done;
1682 }
1683 mask = bytemask_from_count(len);
1684 hash += mask & a;
1685 done:
1686 return fold_hash(hash);
1687 }
1688 EXPORT_SYMBOL(full_name_hash);
1689
1690 /*
1691 * Calculate the length and hash of the path component, and
1692 * return the "hash_len" as the result.
1693 */
1694 static inline u64 hash_name(const char *name)
1695 {
1696 unsigned long a, b, adata, bdata, mask, hash, len;
1697 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1698
1699 hash = a = 0;
1700 len = -sizeof(unsigned long);
1701 do {
1702 hash = (hash + a) * 9;
1703 len += sizeof(unsigned long);
1704 a = load_unaligned_zeropad(name+len);
1705 b = a ^ REPEAT_BYTE('/');
1706 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1707
1708 adata = prep_zero_mask(a, adata, &constants);
1709 bdata = prep_zero_mask(b, bdata, &constants);
1710
1711 mask = create_zero_mask(adata | bdata);
1712
1713 hash += a & zero_bytemask(mask);
1714 len += find_zero(mask);
1715 return hashlen_create(fold_hash(hash), len);
1716 }
1717
1718 #else
1719
1720 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1721 {
1722 unsigned long hash = init_name_hash();
1723 while (len--)
1724 hash = partial_name_hash(*name++, hash);
1725 return end_name_hash(hash);
1726 }
1727 EXPORT_SYMBOL(full_name_hash);
1728
1729 /*
1730 * We know there's a real path component here of at least
1731 * one character.
1732 */
1733 static inline u64 hash_name(const char *name)
1734 {
1735 unsigned long hash = init_name_hash();
1736 unsigned long len = 0, c;
1737
1738 c = (unsigned char)*name;
1739 do {
1740 len++;
1741 hash = partial_name_hash(c, hash);
1742 c = (unsigned char)name[len];
1743 } while (c && c != '/');
1744 return hashlen_create(end_name_hash(hash), len);
1745 }
1746
1747 #endif
1748
1749 /*
1750 * Name resolution.
1751 * This is the basic name resolution function, turning a pathname into
1752 * the final dentry. We expect 'base' to be positive and a directory.
1753 *
1754 * Returns 0 and nd will have valid dentry and mnt on success.
1755 * Returns error and drops reference to input namei data on failure.
1756 */
1757 static int link_path_walk(const char *name, struct nameidata *nd)
1758 {
1759 int err;
1760
1761 while (*name=='/')
1762 name++;
1763 if (!*name)
1764 return 0;
1765
1766 nd->depth++;
1767 /* At this point we know we have a real path component. */
1768 for(;;) {
1769 u64 hash_len;
1770 int type;
1771
1772 err = may_lookup(nd);
1773 if (err)
1774 break;
1775
1776 hash_len = hash_name(name);
1777
1778 type = LAST_NORM;
1779 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1780 case 2:
1781 if (name[1] == '.') {
1782 type = LAST_DOTDOT;
1783 nd->flags |= LOOKUP_JUMPED;
1784 }
1785 break;
1786 case 1:
1787 type = LAST_DOT;
1788 }
1789 if (likely(type == LAST_NORM)) {
1790 struct dentry *parent = nd->path.dentry;
1791 nd->flags &= ~LOOKUP_JUMPED;
1792 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1793 struct qstr this = { { .hash_len = hash_len }, .name = name };
1794 err = parent->d_op->d_hash(parent, &this);
1795 if (err < 0)
1796 break;
1797 hash_len = this.hash_len;
1798 name = this.name;
1799 }
1800 }
1801
1802 nd->last.hash_len = hash_len;
1803 nd->last.name = name;
1804 nd->last_type = type;
1805
1806 name += hashlen_len(hash_len);
1807 if (!*name)
1808 goto OK;
1809 /*
1810 * If it wasn't NUL, we know it was '/'. Skip that
1811 * slash, and continue until no more slashes.
1812 */
1813 do {
1814 name++;
1815 } while (unlikely(*name == '/'));
1816 if (!*name)
1817 goto OK;
1818
1819 err = walk_component(nd, LOOKUP_FOLLOW);
1820 Walked:
1821 if (err < 0)
1822 goto Err;
1823
1824 if (err) {
1825 const char *s;
1826
1827 err = nd_alloc_stack(nd);
1828 if (unlikely(err)) {
1829 path_to_nameidata(&nd->link, nd);
1830 break;
1831 }
1832
1833 s = get_link(nd);
1834 nd->depth++;
1835
1836 if (unlikely(IS_ERR(s))) {
1837 err = PTR_ERR(s);
1838 nd->depth--;
1839 goto Err;
1840 }
1841 err = 0;
1842 if (unlikely(!s)) {
1843 /* jumped */
1844 nd->depth--;
1845 put_link(nd);
1846 } else {
1847 if (*s == '/') {
1848 if (!nd->root.mnt)
1849 set_root(nd);
1850 path_put(&nd->path);
1851 nd->path = nd->root;
1852 path_get(&nd->root);
1853 nd->flags |= LOOKUP_JUMPED;
1854 while (unlikely(*++s == '/'))
1855 ;
1856 }
1857 nd->inode = nd->path.dentry->d_inode;
1858 nd->stack[nd->depth - 1].name = name;
1859 if (!*s)
1860 goto OK;
1861 name = s;
1862 continue;
1863 }
1864 }
1865 if (!d_can_lookup(nd->path.dentry)) {
1866 err = -ENOTDIR;
1867 break;
1868 }
1869 }
1870 terminate_walk(nd);
1871 Err:
1872 while (unlikely(nd->depth > 1)) {
1873 nd->depth--;
1874 put_link(nd);
1875 }
1876 nd->depth--;
1877 return err;
1878 OK:
1879 if (unlikely(nd->depth > 1)) {
1880 name = nd->stack[nd->depth - 1].name;
1881 err = walk_component(nd, LOOKUP_FOLLOW);
1882 nd->depth--;
1883 put_link(nd);
1884 goto Walked;
1885 }
1886 nd->depth--;
1887 return 0;
1888 }
1889
1890 static int path_init(int dfd, const struct filename *name, unsigned int flags,
1891 struct nameidata *nd)
1892 {
1893 int retval = 0;
1894 const char *s = name->name;
1895
1896 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1897 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1898 nd->depth = 0;
1899 nd->base = NULL;
1900 if (flags & LOOKUP_ROOT) {
1901 struct dentry *root = nd->root.dentry;
1902 struct inode *inode = root->d_inode;
1903 if (*s) {
1904 if (!d_can_lookup(root))
1905 return -ENOTDIR;
1906 retval = inode_permission(inode, MAY_EXEC);
1907 if (retval)
1908 return retval;
1909 }
1910 nd->path = nd->root;
1911 nd->inode = inode;
1912 if (flags & LOOKUP_RCU) {
1913 rcu_read_lock();
1914 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1915 nd->m_seq = read_seqbegin(&mount_lock);
1916 } else {
1917 path_get(&nd->path);
1918 }
1919 goto done;
1920 }
1921
1922 nd->root.mnt = NULL;
1923
1924 nd->m_seq = read_seqbegin(&mount_lock);
1925 if (*s == '/') {
1926 if (flags & LOOKUP_RCU) {
1927 rcu_read_lock();
1928 nd->seq = set_root_rcu(nd);
1929 } else {
1930 set_root(nd);
1931 path_get(&nd->root);
1932 }
1933 nd->path = nd->root;
1934 } else if (dfd == AT_FDCWD) {
1935 if (flags & LOOKUP_RCU) {
1936 struct fs_struct *fs = current->fs;
1937 unsigned seq;
1938
1939 rcu_read_lock();
1940
1941 do {
1942 seq = read_seqcount_begin(&fs->seq);
1943 nd->path = fs->pwd;
1944 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1945 } while (read_seqcount_retry(&fs->seq, seq));
1946 } else {
1947 get_fs_pwd(current->fs, &nd->path);
1948 }
1949 } else {
1950 /* Caller must check execute permissions on the starting path component */
1951 struct fd f = fdget_raw(dfd);
1952 struct dentry *dentry;
1953
1954 if (!f.file)
1955 return -EBADF;
1956
1957 dentry = f.file->f_path.dentry;
1958
1959 if (*s) {
1960 if (!d_can_lookup(dentry)) {
1961 fdput(f);
1962 return -ENOTDIR;
1963 }
1964 }
1965
1966 nd->path = f.file->f_path;
1967 if (flags & LOOKUP_RCU) {
1968 if (f.flags & FDPUT_FPUT)
1969 nd->base = f.file;
1970 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1971 rcu_read_lock();
1972 } else {
1973 path_get(&nd->path);
1974 fdput(f);
1975 }
1976 }
1977
1978 nd->inode = nd->path.dentry->d_inode;
1979 if (!(flags & LOOKUP_RCU))
1980 goto done;
1981 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1982 goto done;
1983 if (!(nd->flags & LOOKUP_ROOT))
1984 nd->root.mnt = NULL;
1985 rcu_read_unlock();
1986 return -ECHILD;
1987 done:
1988 current->total_link_count = 0;
1989 return link_path_walk(s, nd);
1990 }
1991
1992 static void path_cleanup(struct nameidata *nd)
1993 {
1994 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1995 path_put(&nd->root);
1996 nd->root.mnt = NULL;
1997 }
1998 if (unlikely(nd->base))
1999 fput(nd->base);
2000 }
2001
2002 static int trailing_symlink(struct nameidata *nd)
2003 {
2004 const char *s;
2005 int error = may_follow_link(&nd->link, nd);
2006 if (unlikely(error))
2007 return error;
2008 nd->flags |= LOOKUP_PARENT;
2009 s = get_link(nd);
2010 if (unlikely(IS_ERR(s)))
2011 return PTR_ERR(s);
2012 if (unlikely(!s))
2013 return 0;
2014 if (*s == '/') {
2015 if (!nd->root.mnt)
2016 set_root(nd);
2017 path_put(&nd->path);
2018 nd->path = nd->root;
2019 path_get(&nd->root);
2020 nd->flags |= LOOKUP_JUMPED;
2021 }
2022 nd->inode = nd->path.dentry->d_inode;
2023 error = link_path_walk(s, nd);
2024 if (unlikely(error))
2025 put_link(nd);
2026 return error;
2027 }
2028
2029 static inline int lookup_last(struct nameidata *nd)
2030 {
2031 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2032 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2033
2034 nd->flags &= ~LOOKUP_PARENT;
2035 return walk_component(nd, nd->flags & LOOKUP_FOLLOW);
2036 }
2037
2038 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2039 static int path_lookupat(int dfd, const struct filename *name,
2040 unsigned int flags, struct nameidata *nd)
2041 {
2042 int err;
2043
2044 /*
2045 * Path walking is largely split up into 2 different synchronisation
2046 * schemes, rcu-walk and ref-walk (explained in
2047 * Documentation/filesystems/path-lookup.txt). These share much of the
2048 * path walk code, but some things particularly setup, cleanup, and
2049 * following mounts are sufficiently divergent that functions are
2050 * duplicated. Typically there is a function foo(), and its RCU
2051 * analogue, foo_rcu().
2052 *
2053 * -ECHILD is the error number of choice (just to avoid clashes) that
2054 * is returned if some aspect of an rcu-walk fails. Such an error must
2055 * be handled by restarting a traditional ref-walk (which will always
2056 * be able to complete).
2057 */
2058 err = path_init(dfd, name, flags, nd);
2059 if (!err && !(flags & LOOKUP_PARENT)) {
2060 err = lookup_last(nd);
2061 while (err > 0) {
2062 err = trailing_symlink(nd);
2063 if (err)
2064 break;
2065 err = lookup_last(nd);
2066 put_link(nd);
2067 }
2068 }
2069
2070 if (!err)
2071 err = complete_walk(nd);
2072
2073 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2074 if (!d_can_lookup(nd->path.dentry)) {
2075 path_put(&nd->path);
2076 err = -ENOTDIR;
2077 }
2078 }
2079
2080 path_cleanup(nd);
2081 return err;
2082 }
2083
2084 static int filename_lookup(int dfd, struct filename *name,
2085 unsigned int flags, struct nameidata *nd)
2086 {
2087 int retval;
2088
2089 set_nameidata(nd);
2090 retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2091
2092 if (unlikely(retval == -ECHILD))
2093 retval = path_lookupat(dfd, name, flags, nd);
2094 if (unlikely(retval == -ESTALE))
2095 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2096
2097 if (likely(!retval))
2098 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2099 restore_nameidata(nd);
2100 return retval;
2101 }
2102
2103 /* does lookup, returns the object with parent locked */
2104 struct dentry *kern_path_locked(const char *name, struct path *path)
2105 {
2106 struct filename *filename = getname_kernel(name);
2107 struct nameidata nd;
2108 struct dentry *d;
2109 int err;
2110
2111 if (IS_ERR(filename))
2112 return ERR_CAST(filename);
2113
2114 err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd);
2115 if (err) {
2116 d = ERR_PTR(err);
2117 goto out;
2118 }
2119 if (nd.last_type != LAST_NORM) {
2120 path_put(&nd.path);
2121 d = ERR_PTR(-EINVAL);
2122 goto out;
2123 }
2124 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2125 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2126 if (IS_ERR(d)) {
2127 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2128 path_put(&nd.path);
2129 goto out;
2130 }
2131 *path = nd.path;
2132 out:
2133 putname(filename);
2134 return d;
2135 }
2136
2137 int kern_path(const char *name, unsigned int flags, struct path *path)
2138 {
2139 struct nameidata nd;
2140 struct filename *filename = getname_kernel(name);
2141 int res = PTR_ERR(filename);
2142
2143 if (!IS_ERR(filename)) {
2144 res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2145 putname(filename);
2146 if (!res)
2147 *path = nd.path;
2148 }
2149 return res;
2150 }
2151 EXPORT_SYMBOL(kern_path);
2152
2153 /**
2154 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2155 * @dentry: pointer to dentry of the base directory
2156 * @mnt: pointer to vfs mount of the base directory
2157 * @name: pointer to file name
2158 * @flags: lookup flags
2159 * @path: pointer to struct path to fill
2160 */
2161 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2162 const char *name, unsigned int flags,
2163 struct path *path)
2164 {
2165 struct filename *filename = getname_kernel(name);
2166 int err = PTR_ERR(filename);
2167
2168 BUG_ON(flags & LOOKUP_PARENT);
2169
2170 /* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2171 if (!IS_ERR(filename)) {
2172 struct nameidata nd;
2173 nd.root.dentry = dentry;
2174 nd.root.mnt = mnt;
2175 err = filename_lookup(AT_FDCWD, filename,
2176 flags | LOOKUP_ROOT, &nd);
2177 if (!err)
2178 *path = nd.path;
2179 putname(filename);
2180 }
2181 return err;
2182 }
2183 EXPORT_SYMBOL(vfs_path_lookup);
2184
2185 /**
2186 * lookup_one_len - filesystem helper to lookup single pathname component
2187 * @name: pathname component to lookup
2188 * @base: base directory to lookup from
2189 * @len: maximum length @len should be interpreted to
2190 *
2191 * Note that this routine is purely a helper for filesystem usage and should
2192 * not be called by generic code.
2193 */
2194 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2195 {
2196 struct qstr this;
2197 unsigned int c;
2198 int err;
2199
2200 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2201
2202 this.name = name;
2203 this.len = len;
2204 this.hash = full_name_hash(name, len);
2205 if (!len)
2206 return ERR_PTR(-EACCES);
2207
2208 if (unlikely(name[0] == '.')) {
2209 if (len < 2 || (len == 2 && name[1] == '.'))
2210 return ERR_PTR(-EACCES);
2211 }
2212
2213 while (len--) {
2214 c = *(const unsigned char *)name++;
2215 if (c == '/' || c == '\0')
2216 return ERR_PTR(-EACCES);
2217 }
2218 /*
2219 * See if the low-level filesystem might want
2220 * to use its own hash..
2221 */
2222 if (base->d_flags & DCACHE_OP_HASH) {
2223 int err = base->d_op->d_hash(base, &this);
2224 if (err < 0)
2225 return ERR_PTR(err);
2226 }
2227
2228 err = inode_permission(base->d_inode, MAY_EXEC);
2229 if (err)
2230 return ERR_PTR(err);
2231
2232 return __lookup_hash(&this, base, 0);
2233 }
2234 EXPORT_SYMBOL(lookup_one_len);
2235
2236 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2237 struct path *path, int *empty)
2238 {
2239 struct nameidata nd;
2240 struct filename *tmp = getname_flags(name, flags, empty);
2241 int err = PTR_ERR(tmp);
2242 if (!IS_ERR(tmp)) {
2243
2244 BUG_ON(flags & LOOKUP_PARENT);
2245
2246 err = filename_lookup(dfd, tmp, flags, &nd);
2247 putname(tmp);
2248 if (!err)
2249 *path = nd.path;
2250 }
2251 return err;
2252 }
2253
2254 int user_path_at(int dfd, const char __user *name, unsigned flags,
2255 struct path *path)
2256 {
2257 return user_path_at_empty(dfd, name, flags, path, NULL);
2258 }
2259 EXPORT_SYMBOL(user_path_at);
2260
2261 /*
2262 * NB: most callers don't do anything directly with the reference to the
2263 * to struct filename, but the nd->last pointer points into the name string
2264 * allocated by getname. So we must hold the reference to it until all
2265 * path-walking is complete.
2266 */
2267 static struct filename *
2268 user_path_parent(int dfd, const char __user *path,
2269 struct path *parent,
2270 struct qstr *last,
2271 int *type,
2272 unsigned int flags)
2273 {
2274 struct nameidata nd;
2275 struct filename *s = getname(path);
2276 int error;
2277
2278 /* only LOOKUP_REVAL is allowed in extra flags */
2279 flags &= LOOKUP_REVAL;
2280
2281 if (IS_ERR(s))
2282 return s;
2283
2284 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, &nd);
2285 if (error) {
2286 putname(s);
2287 return ERR_PTR(error);
2288 }
2289 *parent = nd.path;
2290 *last = nd.last;
2291 *type = nd.last_type;
2292
2293 return s;
2294 }
2295
2296 /**
2297 * mountpoint_last - look up last component for umount
2298 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2299 * @path: pointer to container for result
2300 *
2301 * This is a special lookup_last function just for umount. In this case, we
2302 * need to resolve the path without doing any revalidation.
2303 *
2304 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2305 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2306 * in almost all cases, this lookup will be served out of the dcache. The only
2307 * cases where it won't are if nd->last refers to a symlink or the path is
2308 * bogus and it doesn't exist.
2309 *
2310 * Returns:
2311 * -error: if there was an error during lookup. This includes -ENOENT if the
2312 * lookup found a negative dentry. The nd->path reference will also be
2313 * put in this case.
2314 *
2315 * 0: if we successfully resolved nd->path and found it to not to be a
2316 * symlink that needs to be followed. "path" will also be populated.
2317 * The nd->path reference will also be put.
2318 *
2319 * 1: if we successfully resolved nd->last and found it to be a symlink
2320 * that needs to be followed. "path" will be populated with the path
2321 * to the link, and nd->path will *not* be put.
2322 */
2323 static int
2324 mountpoint_last(struct nameidata *nd, struct path *path)
2325 {
2326 int error = 0;
2327 struct dentry *dentry;
2328 struct dentry *dir = nd->path.dentry;
2329
2330 /* If we're in rcuwalk, drop out of it to handle last component */
2331 if (nd->flags & LOOKUP_RCU) {
2332 if (unlazy_walk(nd, NULL)) {
2333 error = -ECHILD;
2334 goto out;
2335 }
2336 }
2337
2338 nd->flags &= ~LOOKUP_PARENT;
2339
2340 if (unlikely(nd->last_type != LAST_NORM)) {
2341 error = handle_dots(nd, nd->last_type);
2342 if (error)
2343 goto out;
2344 dentry = dget(nd->path.dentry);
2345 goto done;
2346 }
2347
2348 mutex_lock(&dir->d_inode->i_mutex);
2349 dentry = d_lookup(dir, &nd->last);
2350 if (!dentry) {
2351 /*
2352 * No cached dentry. Mounted dentries are pinned in the cache,
2353 * so that means that this dentry is probably a symlink or the
2354 * path doesn't actually point to a mounted dentry.
2355 */
2356 dentry = d_alloc(dir, &nd->last);
2357 if (!dentry) {
2358 error = -ENOMEM;
2359 mutex_unlock(&dir->d_inode->i_mutex);
2360 goto out;
2361 }
2362 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2363 error = PTR_ERR(dentry);
2364 if (IS_ERR(dentry)) {
2365 mutex_unlock(&dir->d_inode->i_mutex);
2366 goto out;
2367 }
2368 }
2369 mutex_unlock(&dir->d_inode->i_mutex);
2370
2371 done:
2372 if (d_is_negative(dentry)) {
2373 error = -ENOENT;
2374 dput(dentry);
2375 goto out;
2376 }
2377 path->dentry = dentry;
2378 path->mnt = nd->path.mnt;
2379 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW)) {
2380 nd->link = *path;
2381 return 1;
2382 }
2383 mntget(path->mnt);
2384 follow_mount(path);
2385 error = 0;
2386 out:
2387 terminate_walk(nd);
2388 return error;
2389 }
2390
2391 /**
2392 * path_mountpoint - look up a path to be umounted
2393 * @dfd: directory file descriptor to start walk from
2394 * @name: full pathname to walk
2395 * @path: pointer to container for result
2396 * @flags: lookup flags
2397 *
2398 * Look up the given name, but don't attempt to revalidate the last component.
2399 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2400 */
2401 static int
2402 path_mountpoint(int dfd, const struct filename *name, struct path *path,
2403 struct nameidata *nd, unsigned int flags)
2404 {
2405 int err = path_init(dfd, name, flags, nd);
2406 if (unlikely(err))
2407 goto out;
2408
2409 err = mountpoint_last(nd, path);
2410 while (err > 0) {
2411 err = trailing_symlink(nd);
2412 if (err)
2413 break;
2414 err = mountpoint_last(nd, path);
2415 put_link(nd);
2416 }
2417 out:
2418 path_cleanup(nd);
2419 return err;
2420 }
2421
2422 static int
2423 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2424 unsigned int flags)
2425 {
2426 struct nameidata nd;
2427 int error;
2428 if (IS_ERR(name))
2429 return PTR_ERR(name);
2430 set_nameidata(&nd);
2431 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_RCU);
2432 if (unlikely(error == -ECHILD))
2433 error = path_mountpoint(dfd, name, path, &nd, flags);
2434 if (unlikely(error == -ESTALE))
2435 error = path_mountpoint(dfd, name, path, &nd, flags | LOOKUP_REVAL);
2436 if (likely(!error))
2437 audit_inode(name, path->dentry, 0);
2438 restore_nameidata(&nd);
2439 putname(name);
2440 return error;
2441 }
2442
2443 /**
2444 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2445 * @dfd: directory file descriptor
2446 * @name: pathname from userland
2447 * @flags: lookup flags
2448 * @path: pointer to container to hold result
2449 *
2450 * A umount is a special case for path walking. We're not actually interested
2451 * in the inode in this situation, and ESTALE errors can be a problem. We
2452 * simply want track down the dentry and vfsmount attached at the mountpoint
2453 * and avoid revalidating the last component.
2454 *
2455 * Returns 0 and populates "path" on success.
2456 */
2457 int
2458 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2459 struct path *path)
2460 {
2461 return filename_mountpoint(dfd, getname(name), path, flags);
2462 }
2463
2464 int
2465 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2466 unsigned int flags)
2467 {
2468 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2469 }
2470 EXPORT_SYMBOL(kern_path_mountpoint);
2471
2472 int __check_sticky(struct inode *dir, struct inode *inode)
2473 {
2474 kuid_t fsuid = current_fsuid();
2475
2476 if (uid_eq(inode->i_uid, fsuid))
2477 return 0;
2478 if (uid_eq(dir->i_uid, fsuid))
2479 return 0;
2480 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2481 }
2482 EXPORT_SYMBOL(__check_sticky);
2483
2484 /*
2485 * Check whether we can remove a link victim from directory dir, check
2486 * whether the type of victim is right.
2487 * 1. We can't do it if dir is read-only (done in permission())
2488 * 2. We should have write and exec permissions on dir
2489 * 3. We can't remove anything from append-only dir
2490 * 4. We can't do anything with immutable dir (done in permission())
2491 * 5. If the sticky bit on dir is set we should either
2492 * a. be owner of dir, or
2493 * b. be owner of victim, or
2494 * c. have CAP_FOWNER capability
2495 * 6. If the victim is append-only or immutable we can't do antyhing with
2496 * links pointing to it.
2497 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2498 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2499 * 9. We can't remove a root or mountpoint.
2500 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2501 * nfs_async_unlink().
2502 */
2503 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2504 {
2505 struct inode *inode = victim->d_inode;
2506 int error;
2507
2508 if (d_is_negative(victim))
2509 return -ENOENT;
2510 BUG_ON(!inode);
2511
2512 BUG_ON(victim->d_parent->d_inode != dir);
2513 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2514
2515 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2516 if (error)
2517 return error;
2518 if (IS_APPEND(dir))
2519 return -EPERM;
2520
2521 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2522 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2523 return -EPERM;
2524 if (isdir) {
2525 if (!d_is_dir(victim))
2526 return -ENOTDIR;
2527 if (IS_ROOT(victim))
2528 return -EBUSY;
2529 } else if (d_is_dir(victim))
2530 return -EISDIR;
2531 if (IS_DEADDIR(dir))
2532 return -ENOENT;
2533 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2534 return -EBUSY;
2535 return 0;
2536 }
2537
2538 /* Check whether we can create an object with dentry child in directory
2539 * dir.
2540 * 1. We can't do it if child already exists (open has special treatment for
2541 * this case, but since we are inlined it's OK)
2542 * 2. We can't do it if dir is read-only (done in permission())
2543 * 3. We should have write and exec permissions on dir
2544 * 4. We can't do it if dir is immutable (done in permission())
2545 */
2546 static inline int may_create(struct inode *dir, struct dentry *child)
2547 {
2548 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2549 if (child->d_inode)
2550 return -EEXIST;
2551 if (IS_DEADDIR(dir))
2552 return -ENOENT;
2553 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2554 }
2555
2556 /*
2557 * p1 and p2 should be directories on the same fs.
2558 */
2559 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2560 {
2561 struct dentry *p;
2562
2563 if (p1 == p2) {
2564 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2565 return NULL;
2566 }
2567
2568 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2569
2570 p = d_ancestor(p2, p1);
2571 if (p) {
2572 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2573 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2574 return p;
2575 }
2576
2577 p = d_ancestor(p1, p2);
2578 if (p) {
2579 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2580 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2581 return p;
2582 }
2583
2584 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2585 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2586 return NULL;
2587 }
2588 EXPORT_SYMBOL(lock_rename);
2589
2590 void unlock_rename(struct dentry *p1, struct dentry *p2)
2591 {
2592 mutex_unlock(&p1->d_inode->i_mutex);
2593 if (p1 != p2) {
2594 mutex_unlock(&p2->d_inode->i_mutex);
2595 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2596 }
2597 }
2598 EXPORT_SYMBOL(unlock_rename);
2599
2600 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2601 bool want_excl)
2602 {
2603 int error = may_create(dir, dentry);
2604 if (error)
2605 return error;
2606
2607 if (!dir->i_op->create)
2608 return -EACCES; /* shouldn't it be ENOSYS? */
2609 mode &= S_IALLUGO;
2610 mode |= S_IFREG;
2611 error = security_inode_create(dir, dentry, mode);
2612 if (error)
2613 return error;
2614 error = dir->i_op->create(dir, dentry, mode, want_excl);
2615 if (!error)
2616 fsnotify_create(dir, dentry);
2617 return error;
2618 }
2619 EXPORT_SYMBOL(vfs_create);
2620
2621 static int may_open(struct path *path, int acc_mode, int flag)
2622 {
2623 struct dentry *dentry = path->dentry;
2624 struct inode *inode = dentry->d_inode;
2625 int error;
2626
2627 /* O_PATH? */
2628 if (!acc_mode)
2629 return 0;
2630
2631 if (!inode)
2632 return -ENOENT;
2633
2634 switch (inode->i_mode & S_IFMT) {
2635 case S_IFLNK:
2636 return -ELOOP;
2637 case S_IFDIR:
2638 if (acc_mode & MAY_WRITE)
2639 return -EISDIR;
2640 break;
2641 case S_IFBLK:
2642 case S_IFCHR:
2643 if (path->mnt->mnt_flags & MNT_NODEV)
2644 return -EACCES;
2645 /*FALLTHRU*/
2646 case S_IFIFO:
2647 case S_IFSOCK:
2648 flag &= ~O_TRUNC;
2649 break;
2650 }
2651
2652 error = inode_permission(inode, acc_mode);
2653 if (error)
2654 return error;
2655
2656 /*
2657 * An append-only file must be opened in append mode for writing.
2658 */
2659 if (IS_APPEND(inode)) {
2660 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2661 return -EPERM;
2662 if (flag & O_TRUNC)
2663 return -EPERM;
2664 }
2665
2666 /* O_NOATIME can only be set by the owner or superuser */
2667 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2668 return -EPERM;
2669
2670 return 0;
2671 }
2672
2673 static int handle_truncate(struct file *filp)
2674 {
2675 struct path *path = &filp->f_path;
2676 struct inode *inode = path->dentry->d_inode;
2677 int error = get_write_access(inode);
2678 if (error)
2679 return error;
2680 /*
2681 * Refuse to truncate files with mandatory locks held on them.
2682 */
2683 error = locks_verify_locked(filp);
2684 if (!error)
2685 error = security_path_truncate(path);
2686 if (!error) {
2687 error = do_truncate(path->dentry, 0,
2688 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2689 filp);
2690 }
2691 put_write_access(inode);
2692 return error;
2693 }
2694
2695 static inline int open_to_namei_flags(int flag)
2696 {
2697 if ((flag & O_ACCMODE) == 3)
2698 flag--;
2699 return flag;
2700 }
2701
2702 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2703 {
2704 int error = security_path_mknod(dir, dentry, mode, 0);
2705 if (error)
2706 return error;
2707
2708 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2709 if (error)
2710 return error;
2711
2712 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2713 }
2714
2715 /*
2716 * Attempt to atomically look up, create and open a file from a negative
2717 * dentry.
2718 *
2719 * Returns 0 if successful. The file will have been created and attached to
2720 * @file by the filesystem calling finish_open().
2721 *
2722 * Returns 1 if the file was looked up only or didn't need creating. The
2723 * caller will need to perform the open themselves. @path will have been
2724 * updated to point to the new dentry. This may be negative.
2725 *
2726 * Returns an error code otherwise.
2727 */
2728 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2729 struct path *path, struct file *file,
2730 const struct open_flags *op,
2731 bool got_write, bool need_lookup,
2732 int *opened)
2733 {
2734 struct inode *dir = nd->path.dentry->d_inode;
2735 unsigned open_flag = open_to_namei_flags(op->open_flag);
2736 umode_t mode;
2737 int error;
2738 int acc_mode;
2739 int create_error = 0;
2740 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2741 bool excl;
2742
2743 BUG_ON(dentry->d_inode);
2744
2745 /* Don't create child dentry for a dead directory. */
2746 if (unlikely(IS_DEADDIR(dir))) {
2747 error = -ENOENT;
2748 goto out;
2749 }
2750
2751 mode = op->mode;
2752 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2753 mode &= ~current_umask();
2754
2755 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2756 if (excl)
2757 open_flag &= ~O_TRUNC;
2758
2759 /*
2760 * Checking write permission is tricky, bacuse we don't know if we are
2761 * going to actually need it: O_CREAT opens should work as long as the
2762 * file exists. But checking existence breaks atomicity. The trick is
2763 * to check access and if not granted clear O_CREAT from the flags.
2764 *
2765 * Another problem is returing the "right" error value (e.g. for an
2766 * O_EXCL open we want to return EEXIST not EROFS).
2767 */
2768 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2769 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2770 if (!(open_flag & O_CREAT)) {
2771 /*
2772 * No O_CREATE -> atomicity not a requirement -> fall
2773 * back to lookup + open
2774 */
2775 goto no_open;
2776 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2777 /* Fall back and fail with the right error */
2778 create_error = -EROFS;
2779 goto no_open;
2780 } else {
2781 /* No side effects, safe to clear O_CREAT */
2782 create_error = -EROFS;
2783 open_flag &= ~O_CREAT;
2784 }
2785 }
2786
2787 if (open_flag & O_CREAT) {
2788 error = may_o_create(&nd->path, dentry, mode);
2789 if (error) {
2790 create_error = error;
2791 if (open_flag & O_EXCL)
2792 goto no_open;
2793 open_flag &= ~O_CREAT;
2794 }
2795 }
2796
2797 if (nd->flags & LOOKUP_DIRECTORY)
2798 open_flag |= O_DIRECTORY;
2799
2800 file->f_path.dentry = DENTRY_NOT_SET;
2801 file->f_path.mnt = nd->path.mnt;
2802 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2803 opened);
2804 if (error < 0) {
2805 if (create_error && error == -ENOENT)
2806 error = create_error;
2807 goto out;
2808 }
2809
2810 if (error) { /* returned 1, that is */
2811 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2812 error = -EIO;
2813 goto out;
2814 }
2815 if (file->f_path.dentry) {
2816 dput(dentry);
2817 dentry = file->f_path.dentry;
2818 }
2819 if (*opened & FILE_CREATED)
2820 fsnotify_create(dir, dentry);
2821 if (!dentry->d_inode) {
2822 WARN_ON(*opened & FILE_CREATED);
2823 if (create_error) {
2824 error = create_error;
2825 goto out;
2826 }
2827 } else {
2828 if (excl && !(*opened & FILE_CREATED)) {
2829 error = -EEXIST;
2830 goto out;
2831 }
2832 }
2833 goto looked_up;
2834 }
2835
2836 /*
2837 * We didn't have the inode before the open, so check open permission
2838 * here.
2839 */
2840 acc_mode = op->acc_mode;
2841 if (*opened & FILE_CREATED) {
2842 WARN_ON(!(open_flag & O_CREAT));
2843 fsnotify_create(dir, dentry);
2844 acc_mode = MAY_OPEN;
2845 }
2846 error = may_open(&file->f_path, acc_mode, open_flag);
2847 if (error)
2848 fput(file);
2849
2850 out:
2851 dput(dentry);
2852 return error;
2853
2854 no_open:
2855 if (need_lookup) {
2856 dentry = lookup_real(dir, dentry, nd->flags);
2857 if (IS_ERR(dentry))
2858 return PTR_ERR(dentry);
2859
2860 if (create_error) {
2861 int open_flag = op->open_flag;
2862
2863 error = create_error;
2864 if ((open_flag & O_EXCL)) {
2865 if (!dentry->d_inode)
2866 goto out;
2867 } else if (!dentry->d_inode) {
2868 goto out;
2869 } else if ((open_flag & O_TRUNC) &&
2870 d_is_reg(dentry)) {
2871 goto out;
2872 }
2873 /* will fail later, go on to get the right error */
2874 }
2875 }
2876 looked_up:
2877 path->dentry = dentry;
2878 path->mnt = nd->path.mnt;
2879 return 1;
2880 }
2881
2882 /*
2883 * Look up and maybe create and open the last component.
2884 *
2885 * Must be called with i_mutex held on parent.
2886 *
2887 * Returns 0 if the file was successfully atomically created (if necessary) and
2888 * opened. In this case the file will be returned attached to @file.
2889 *
2890 * Returns 1 if the file was not completely opened at this time, though lookups
2891 * and creations will have been performed and the dentry returned in @path will
2892 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2893 * specified then a negative dentry may be returned.
2894 *
2895 * An error code is returned otherwise.
2896 *
2897 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2898 * cleared otherwise prior to returning.
2899 */
2900 static int lookup_open(struct nameidata *nd, struct path *path,
2901 struct file *file,
2902 const struct open_flags *op,
2903 bool got_write, int *opened)
2904 {
2905 struct dentry *dir = nd->path.dentry;
2906 struct inode *dir_inode = dir->d_inode;
2907 struct dentry *dentry;
2908 int error;
2909 bool need_lookup;
2910
2911 *opened &= ~FILE_CREATED;
2912 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2913 if (IS_ERR(dentry))
2914 return PTR_ERR(dentry);
2915
2916 /* Cached positive dentry: will open in f_op->open */
2917 if (!need_lookup && dentry->d_inode)
2918 goto out_no_open;
2919
2920 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2921 return atomic_open(nd, dentry, path, file, op, got_write,
2922 need_lookup, opened);
2923 }
2924
2925 if (need_lookup) {
2926 BUG_ON(dentry->d_inode);
2927
2928 dentry = lookup_real(dir_inode, dentry, nd->flags);
2929 if (IS_ERR(dentry))
2930 return PTR_ERR(dentry);
2931 }
2932
2933 /* Negative dentry, just create the file */
2934 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2935 umode_t mode = op->mode;
2936 if (!IS_POSIXACL(dir->d_inode))
2937 mode &= ~current_umask();
2938 /*
2939 * This write is needed to ensure that a
2940 * rw->ro transition does not occur between
2941 * the time when the file is created and when
2942 * a permanent write count is taken through
2943 * the 'struct file' in finish_open().
2944 */
2945 if (!got_write) {
2946 error = -EROFS;
2947 goto out_dput;
2948 }
2949 *opened |= FILE_CREATED;
2950 error = security_path_mknod(&nd->path, dentry, mode, 0);
2951 if (error)
2952 goto out_dput;
2953 error = vfs_create(dir->d_inode, dentry, mode,
2954 nd->flags & LOOKUP_EXCL);
2955 if (error)
2956 goto out_dput;
2957 }
2958 out_no_open:
2959 path->dentry = dentry;
2960 path->mnt = nd->path.mnt;
2961 return 1;
2962
2963 out_dput:
2964 dput(dentry);
2965 return error;
2966 }
2967
2968 /*
2969 * Handle the last step of open()
2970 */
2971 static int do_last(struct nameidata *nd,
2972 struct file *file, const struct open_flags *op,
2973 int *opened, struct filename *name)
2974 {
2975 struct dentry *dir = nd->path.dentry;
2976 int open_flag = op->open_flag;
2977 bool will_truncate = (open_flag & O_TRUNC) != 0;
2978 bool got_write = false;
2979 int acc_mode = op->acc_mode;
2980 struct inode *inode;
2981 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2982 struct path path;
2983 bool retried = false;
2984 int error;
2985
2986 nd->flags &= ~LOOKUP_PARENT;
2987 nd->flags |= op->intent;
2988
2989 if (nd->last_type != LAST_NORM) {
2990 error = handle_dots(nd, nd->last_type);
2991 if (error)
2992 return error;
2993 goto finish_open;
2994 }
2995
2996 if (!(open_flag & O_CREAT)) {
2997 if (nd->last.name[nd->last.len])
2998 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2999 /* we _can_ be in RCU mode here */
3000 error = lookup_fast(nd, &path, &inode);
3001 if (likely(!error))
3002 goto finish_lookup;
3003
3004 if (error < 0)
3005 goto out;
3006
3007 BUG_ON(nd->inode != dir->d_inode);
3008 } else {
3009 /* create side of things */
3010 /*
3011 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3012 * has been cleared when we got to the last component we are
3013 * about to look up
3014 */
3015 error = complete_walk(nd);
3016 if (error)
3017 return error;
3018
3019 audit_inode(name, dir, LOOKUP_PARENT);
3020 error = -EISDIR;
3021 /* trailing slashes? */
3022 if (nd->last.name[nd->last.len])
3023 goto out;
3024 }
3025
3026 retry_lookup:
3027 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3028 error = mnt_want_write(nd->path.mnt);
3029 if (!error)
3030 got_write = true;
3031 /*
3032 * do _not_ fail yet - we might not need that or fail with
3033 * a different error; let lookup_open() decide; we'll be
3034 * dropping this one anyway.
3035 */
3036 }
3037 mutex_lock(&dir->d_inode->i_mutex);
3038 error = lookup_open(nd, &path, file, op, got_write, opened);
3039 mutex_unlock(&dir->d_inode->i_mutex);
3040
3041 if (error <= 0) {
3042 if (error)
3043 goto out;
3044
3045 if ((*opened & FILE_CREATED) ||
3046 !S_ISREG(file_inode(file)->i_mode))
3047 will_truncate = false;
3048
3049 audit_inode(name, file->f_path.dentry, 0);
3050 goto opened;
3051 }
3052
3053 if (*opened & FILE_CREATED) {
3054 /* Don't check for write permission, don't truncate */
3055 open_flag &= ~O_TRUNC;
3056 will_truncate = false;
3057 acc_mode = MAY_OPEN;
3058 path_to_nameidata(&path, nd);
3059 goto finish_open_created;
3060 }
3061
3062 /*
3063 * create/update audit record if it already exists.
3064 */
3065 if (d_is_positive(path.dentry))
3066 audit_inode(name, path.dentry, 0);
3067
3068 /*
3069 * If atomic_open() acquired write access it is dropped now due to
3070 * possible mount and symlink following (this might be optimized away if
3071 * necessary...)
3072 */
3073 if (got_write) {
3074 mnt_drop_write(nd->path.mnt);
3075 got_write = false;
3076 }
3077
3078 error = -EEXIST;
3079 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3080 goto exit_dput;
3081
3082 error = follow_managed(&path, nd->flags);
3083 if (error < 0)
3084 goto exit_dput;
3085
3086 if (error)
3087 nd->flags |= LOOKUP_JUMPED;
3088
3089 BUG_ON(nd->flags & LOOKUP_RCU);
3090 inode = path.dentry->d_inode;
3091 error = -ENOENT;
3092 if (d_is_negative(path.dentry)) {
3093 path_to_nameidata(&path, nd);
3094 goto out;
3095 }
3096 finish_lookup:
3097 if (should_follow_link(path.dentry, nd->flags & LOOKUP_FOLLOW)) {
3098 if (nd->flags & LOOKUP_RCU) {
3099 if (unlikely(nd->path.mnt != path.mnt ||
3100 unlazy_walk(nd, path.dentry))) {
3101 error = -ECHILD;
3102 goto out;
3103 }
3104 }
3105 BUG_ON(inode != path.dentry->d_inode);
3106 nd->link = path;
3107 return 1;
3108 }
3109
3110 if (unlikely(d_is_symlink(path.dentry)) && !(open_flag & O_PATH)) {
3111 path_to_nameidata(&path, nd);
3112 error = -ELOOP;
3113 goto out;
3114 }
3115
3116 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3117 path_to_nameidata(&path, nd);
3118 } else {
3119 save_parent.dentry = nd->path.dentry;
3120 save_parent.mnt = mntget(path.mnt);
3121 nd->path.dentry = path.dentry;
3122
3123 }
3124 nd->inode = inode;
3125 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3126 finish_open:
3127 error = complete_walk(nd);
3128 if (error) {
3129 path_put(&save_parent);
3130 return error;
3131 }
3132 audit_inode(name, nd->path.dentry, 0);
3133 error = -EISDIR;
3134 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3135 goto out;
3136 error = -ENOTDIR;
3137 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3138 goto out;
3139 if (!d_is_reg(nd->path.dentry))
3140 will_truncate = false;
3141
3142 if (will_truncate) {
3143 error = mnt_want_write(nd->path.mnt);
3144 if (error)
3145 goto out;
3146 got_write = true;
3147 }
3148 finish_open_created:
3149 error = may_open(&nd->path, acc_mode, open_flag);
3150 if (error)
3151 goto out;
3152
3153 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3154 error = vfs_open(&nd->path, file, current_cred());
3155 if (!error) {
3156 *opened |= FILE_OPENED;
3157 } else {
3158 if (error == -EOPENSTALE)
3159 goto stale_open;
3160 goto out;
3161 }
3162 opened:
3163 error = open_check_o_direct(file);
3164 if (error)
3165 goto exit_fput;
3166 error = ima_file_check(file, op->acc_mode, *opened);
3167 if (error)
3168 goto exit_fput;
3169
3170 if (will_truncate) {
3171 error = handle_truncate(file);
3172 if (error)
3173 goto exit_fput;
3174 }
3175 out:
3176 if (got_write)
3177 mnt_drop_write(nd->path.mnt);
3178 path_put(&save_parent);
3179 terminate_walk(nd);
3180 return error;
3181
3182 exit_dput:
3183 path_put_conditional(&path, nd);
3184 goto out;
3185 exit_fput:
3186 fput(file);
3187 goto out;
3188
3189 stale_open:
3190 /* If no saved parent or already retried then can't retry */
3191 if (!save_parent.dentry || retried)
3192 goto out;
3193
3194 BUG_ON(save_parent.dentry != dir);
3195 path_put(&nd->path);
3196 nd->path = save_parent;
3197 nd->inode = dir->d_inode;
3198 save_parent.mnt = NULL;
3199 save_parent.dentry = NULL;
3200 if (got_write) {
3201 mnt_drop_write(nd->path.mnt);
3202 got_write = false;
3203 }
3204 retried = true;
3205 goto retry_lookup;
3206 }
3207
3208 static int do_tmpfile(int dfd, struct filename *pathname,
3209 struct nameidata *nd, int flags,
3210 const struct open_flags *op,
3211 struct file *file, int *opened)
3212 {
3213 static const struct qstr name = QSTR_INIT("/", 1);
3214 struct dentry *dentry, *child;
3215 struct inode *dir;
3216 int error = path_lookupat(dfd, pathname,
3217 flags | LOOKUP_DIRECTORY, nd);
3218 if (unlikely(error))
3219 return error;
3220 error = mnt_want_write(nd->path.mnt);
3221 if (unlikely(error))
3222 goto out;
3223 /* we want directory to be writable */
3224 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3225 if (error)
3226 goto out2;
3227 dentry = nd->path.dentry;
3228 dir = dentry->d_inode;
3229 if (!dir->i_op->tmpfile) {
3230 error = -EOPNOTSUPP;
3231 goto out2;
3232 }
3233 child = d_alloc(dentry, &name);
3234 if (unlikely(!child)) {
3235 error = -ENOMEM;
3236 goto out2;
3237 }
3238 nd->flags &= ~LOOKUP_DIRECTORY;
3239 nd->flags |= op->intent;
3240 dput(nd->path.dentry);
3241 nd->path.dentry = child;
3242 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3243 if (error)
3244 goto out2;
3245 audit_inode(pathname, nd->path.dentry, 0);
3246 /* Don't check for other permissions, the inode was just created */
3247 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3248 if (error)
3249 goto out2;
3250 file->f_path.mnt = nd->path.mnt;
3251 error = finish_open(file, nd->path.dentry, NULL, opened);
3252 if (error)
3253 goto out2;
3254 error = open_check_o_direct(file);
3255 if (error) {
3256 fput(file);
3257 } else if (!(op->open_flag & O_EXCL)) {
3258 struct inode *inode = file_inode(file);
3259 spin_lock(&inode->i_lock);
3260 inode->i_state |= I_LINKABLE;
3261 spin_unlock(&inode->i_lock);
3262 }
3263 out2:
3264 mnt_drop_write(nd->path.mnt);
3265 out:
3266 path_put(&nd->path);
3267 return error;
3268 }
3269
3270 static struct file *path_openat(int dfd, struct filename *pathname,
3271 struct nameidata *nd, const struct open_flags *op, int flags)
3272 {
3273 struct file *file;
3274 int opened = 0;
3275 int error;
3276
3277 file = get_empty_filp();
3278 if (IS_ERR(file))
3279 return file;
3280
3281 file->f_flags = op->open_flag;
3282
3283 if (unlikely(file->f_flags & __O_TMPFILE)) {
3284 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3285 goto out2;
3286 }
3287
3288 error = path_init(dfd, pathname, flags, nd);
3289 if (unlikely(error))
3290 goto out;
3291
3292 error = do_last(nd, file, op, &opened, pathname);
3293 while (unlikely(error > 0)) { /* trailing symlink */
3294 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3295 error = trailing_symlink(nd);
3296 if (unlikely(error))
3297 break;
3298 error = do_last(nd, file, op, &opened, pathname);
3299 put_link(nd);
3300 }
3301 out:
3302 path_cleanup(nd);
3303 out2:
3304 if (!(opened & FILE_OPENED)) {
3305 BUG_ON(!error);
3306 put_filp(file);
3307 }
3308 if (unlikely(error)) {
3309 if (error == -EOPENSTALE) {
3310 if (flags & LOOKUP_RCU)
3311 error = -ECHILD;
3312 else
3313 error = -ESTALE;
3314 }
3315 file = ERR_PTR(error);
3316 }
3317 return file;
3318 }
3319
3320 struct file *do_filp_open(int dfd, struct filename *pathname,
3321 const struct open_flags *op)
3322 {
3323 struct nameidata nd;
3324 int flags = op->lookup_flags;
3325 struct file *filp;
3326
3327 set_nameidata(&nd);
3328 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3329 if (unlikely(filp == ERR_PTR(-ECHILD)))
3330 filp = path_openat(dfd, pathname, &nd, op, flags);
3331 if (unlikely(filp == ERR_PTR(-ESTALE)))
3332 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3333 restore_nameidata(&nd);
3334 return filp;
3335 }
3336
3337 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3338 const char *name, const struct open_flags *op)
3339 {
3340 struct nameidata nd;
3341 struct file *file;
3342 struct filename *filename;
3343 int flags = op->lookup_flags | LOOKUP_ROOT;
3344
3345 nd.root.mnt = mnt;
3346 nd.root.dentry = dentry;
3347 set_nameidata(&nd);
3348
3349 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3350 return ERR_PTR(-ELOOP);
3351
3352 filename = getname_kernel(name);
3353 if (unlikely(IS_ERR(filename)))
3354 return ERR_CAST(filename);
3355
3356 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3357 if (unlikely(file == ERR_PTR(-ECHILD)))
3358 file = path_openat(-1, filename, &nd, op, flags);
3359 if (unlikely(file == ERR_PTR(-ESTALE)))
3360 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3361 restore_nameidata(&nd);
3362 putname(filename);
3363 return file;
3364 }
3365
3366 static struct dentry *filename_create(int dfd, struct filename *name,
3367 struct path *path, unsigned int lookup_flags)
3368 {
3369 struct dentry *dentry = ERR_PTR(-EEXIST);
3370 struct nameidata nd;
3371 int err2;
3372 int error;
3373 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3374
3375 /*
3376 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3377 * other flags passed in are ignored!
3378 */
3379 lookup_flags &= LOOKUP_REVAL;
3380
3381 error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd);
3382 if (error)
3383 return ERR_PTR(error);
3384
3385 /*
3386 * Yucky last component or no last component at all?
3387 * (foo/., foo/.., /////)
3388 */
3389 if (nd.last_type != LAST_NORM)
3390 goto out;
3391 nd.flags &= ~LOOKUP_PARENT;
3392 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3393
3394 /* don't fail immediately if it's r/o, at least try to report other errors */
3395 err2 = mnt_want_write(nd.path.mnt);
3396 /*
3397 * Do the final lookup.
3398 */
3399 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3400 dentry = __lookup_hash(&nd.last, nd.path.dentry, nd.flags);
3401 if (IS_ERR(dentry))
3402 goto unlock;
3403
3404 error = -EEXIST;
3405 if (d_is_positive(dentry))
3406 goto fail;
3407
3408 /*
3409 * Special case - lookup gave negative, but... we had foo/bar/
3410 * From the vfs_mknod() POV we just have a negative dentry -
3411 * all is fine. Let's be bastards - you had / on the end, you've
3412 * been asking for (non-existent) directory. -ENOENT for you.
3413 */
3414 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3415 error = -ENOENT;
3416 goto fail;
3417 }
3418 if (unlikely(err2)) {
3419 error = err2;
3420 goto fail;
3421 }
3422 *path = nd.path;
3423 return dentry;
3424 fail:
3425 dput(dentry);
3426 dentry = ERR_PTR(error);
3427 unlock:
3428 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3429 if (!err2)
3430 mnt_drop_write(nd.path.mnt);
3431 out:
3432 path_put(&nd.path);
3433 return dentry;
3434 }
3435
3436 struct dentry *kern_path_create(int dfd, const char *pathname,
3437 struct path *path, unsigned int lookup_flags)
3438 {
3439 struct filename *filename = getname_kernel(pathname);
3440 struct dentry *res;
3441
3442 if (IS_ERR(filename))
3443 return ERR_CAST(filename);
3444 res = filename_create(dfd, filename, path, lookup_flags);
3445 putname(filename);
3446 return res;
3447 }
3448 EXPORT_SYMBOL(kern_path_create);
3449
3450 void done_path_create(struct path *path, struct dentry *dentry)
3451 {
3452 dput(dentry);
3453 mutex_unlock(&path->dentry->d_inode->i_mutex);
3454 mnt_drop_write(path->mnt);
3455 path_put(path);
3456 }
3457 EXPORT_SYMBOL(done_path_create);
3458
3459 struct dentry *user_path_create(int dfd, const char __user *pathname,
3460 struct path *path, unsigned int lookup_flags)
3461 {
3462 struct filename *tmp = getname(pathname);
3463 struct dentry *res;
3464 if (IS_ERR(tmp))
3465 return ERR_CAST(tmp);
3466 res = filename_create(dfd, tmp, path, lookup_flags);
3467 putname(tmp);
3468 return res;
3469 }
3470 EXPORT_SYMBOL(user_path_create);
3471
3472 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3473 {
3474 int error = may_create(dir, dentry);
3475
3476 if (error)
3477 return error;
3478
3479 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3480 return -EPERM;
3481
3482 if (!dir->i_op->mknod)
3483 return -EPERM;
3484
3485 error = devcgroup_inode_mknod(mode, dev);
3486 if (error)
3487 return error;
3488
3489 error = security_inode_mknod(dir, dentry, mode, dev);
3490 if (error)
3491 return error;
3492
3493 error = dir->i_op->mknod(dir, dentry, mode, dev);
3494 if (!error)
3495 fsnotify_create(dir, dentry);
3496 return error;
3497 }
3498 EXPORT_SYMBOL(vfs_mknod);
3499
3500 static int may_mknod(umode_t mode)
3501 {
3502 switch (mode & S_IFMT) {
3503 case S_IFREG:
3504 case S_IFCHR:
3505 case S_IFBLK:
3506 case S_IFIFO:
3507 case S_IFSOCK:
3508 case 0: /* zero mode translates to S_IFREG */
3509 return 0;
3510 case S_IFDIR:
3511 return -EPERM;
3512 default:
3513 return -EINVAL;
3514 }
3515 }
3516
3517 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3518 unsigned, dev)
3519 {
3520 struct dentry *dentry;
3521 struct path path;
3522 int error;
3523 unsigned int lookup_flags = 0;
3524
3525 error = may_mknod(mode);
3526 if (error)
3527 return error;
3528 retry:
3529 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3530 if (IS_ERR(dentry))
3531 return PTR_ERR(dentry);
3532
3533 if (!IS_POSIXACL(path.dentry->d_inode))
3534 mode &= ~current_umask();
3535 error = security_path_mknod(&path, dentry, mode, dev);
3536 if (error)
3537 goto out;
3538 switch (mode & S_IFMT) {
3539 case 0: case S_IFREG:
3540 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3541 break;
3542 case S_IFCHR: case S_IFBLK:
3543 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3544 new_decode_dev(dev));
3545 break;
3546 case S_IFIFO: case S_IFSOCK:
3547 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3548 break;
3549 }
3550 out:
3551 done_path_create(&path, dentry);
3552 if (retry_estale(error, lookup_flags)) {
3553 lookup_flags |= LOOKUP_REVAL;
3554 goto retry;
3555 }
3556 return error;
3557 }
3558
3559 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3560 {
3561 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3562 }
3563
3564 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3565 {
3566 int error = may_create(dir, dentry);
3567 unsigned max_links = dir->i_sb->s_max_links;
3568
3569 if (error)
3570 return error;
3571
3572 if (!dir->i_op->mkdir)
3573 return -EPERM;
3574
3575 mode &= (S_IRWXUGO|S_ISVTX);
3576 error = security_inode_mkdir(dir, dentry, mode);
3577 if (error)
3578 return error;
3579
3580 if (max_links && dir->i_nlink >= max_links)
3581 return -EMLINK;
3582
3583 error = dir->i_op->mkdir(dir, dentry, mode);
3584 if (!error)
3585 fsnotify_mkdir(dir, dentry);
3586 return error;
3587 }
3588 EXPORT_SYMBOL(vfs_mkdir);
3589
3590 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3591 {
3592 struct dentry *dentry;
3593 struct path path;
3594 int error;
3595 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3596
3597 retry:
3598 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3599 if (IS_ERR(dentry))
3600 return PTR_ERR(dentry);
3601
3602 if (!IS_POSIXACL(path.dentry->d_inode))
3603 mode &= ~current_umask();
3604 error = security_path_mkdir(&path, dentry, mode);
3605 if (!error)
3606 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3607 done_path_create(&path, dentry);
3608 if (retry_estale(error, lookup_flags)) {
3609 lookup_flags |= LOOKUP_REVAL;
3610 goto retry;
3611 }
3612 return error;
3613 }
3614
3615 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3616 {
3617 return sys_mkdirat(AT_FDCWD, pathname, mode);
3618 }
3619
3620 /*
3621 * The dentry_unhash() helper will try to drop the dentry early: we
3622 * should have a usage count of 1 if we're the only user of this
3623 * dentry, and if that is true (possibly after pruning the dcache),
3624 * then we drop the dentry now.
3625 *
3626 * A low-level filesystem can, if it choses, legally
3627 * do a
3628 *
3629 * if (!d_unhashed(dentry))
3630 * return -EBUSY;
3631 *
3632 * if it cannot handle the case of removing a directory
3633 * that is still in use by something else..
3634 */
3635 void dentry_unhash(struct dentry *dentry)
3636 {
3637 shrink_dcache_parent(dentry);
3638 spin_lock(&dentry->d_lock);
3639 if (dentry->d_lockref.count == 1)
3640 __d_drop(dentry);
3641 spin_unlock(&dentry->d_lock);
3642 }
3643 EXPORT_SYMBOL(dentry_unhash);
3644
3645 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3646 {
3647 int error = may_delete(dir, dentry, 1);
3648
3649 if (error)
3650 return error;
3651
3652 if (!dir->i_op->rmdir)
3653 return -EPERM;
3654
3655 dget(dentry);
3656 mutex_lock(&dentry->d_inode->i_mutex);
3657
3658 error = -EBUSY;
3659 if (is_local_mountpoint(dentry))
3660 goto out;
3661
3662 error = security_inode_rmdir(dir, dentry);
3663 if (error)
3664 goto out;
3665
3666 shrink_dcache_parent(dentry);
3667 error = dir->i_op->rmdir(dir, dentry);
3668 if (error)
3669 goto out;
3670
3671 dentry->d_inode->i_flags |= S_DEAD;
3672 dont_mount(dentry);
3673 detach_mounts(dentry);
3674
3675 out:
3676 mutex_unlock(&dentry->d_inode->i_mutex);
3677 dput(dentry);
3678 if (!error)
3679 d_delete(dentry);
3680 return error;
3681 }
3682 EXPORT_SYMBOL(vfs_rmdir);
3683
3684 static long do_rmdir(int dfd, const char __user *pathname)
3685 {
3686 int error = 0;
3687 struct filename *name;
3688 struct dentry *dentry;
3689 struct path path;
3690 struct qstr last;
3691 int type;
3692 unsigned int lookup_flags = 0;
3693 retry:
3694 name = user_path_parent(dfd, pathname,
3695 &path, &last, &type, lookup_flags);
3696 if (IS_ERR(name))
3697 return PTR_ERR(name);
3698
3699 switch (type) {
3700 case LAST_DOTDOT:
3701 error = -ENOTEMPTY;
3702 goto exit1;
3703 case LAST_DOT:
3704 error = -EINVAL;
3705 goto exit1;
3706 case LAST_ROOT:
3707 error = -EBUSY;
3708 goto exit1;
3709 }
3710
3711 error = mnt_want_write(path.mnt);
3712 if (error)
3713 goto exit1;
3714
3715 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3716 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3717 error = PTR_ERR(dentry);
3718 if (IS_ERR(dentry))
3719 goto exit2;
3720 if (!dentry->d_inode) {
3721 error = -ENOENT;
3722 goto exit3;
3723 }
3724 error = security_path_rmdir(&path, dentry);
3725 if (error)
3726 goto exit3;
3727 error = vfs_rmdir(path.dentry->d_inode, dentry);
3728 exit3:
3729 dput(dentry);
3730 exit2:
3731 mutex_unlock(&path.dentry->d_inode->i_mutex);
3732 mnt_drop_write(path.mnt);
3733 exit1:
3734 path_put(&path);
3735 putname(name);
3736 if (retry_estale(error, lookup_flags)) {
3737 lookup_flags |= LOOKUP_REVAL;
3738 goto retry;
3739 }
3740 return error;
3741 }
3742
3743 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3744 {
3745 return do_rmdir(AT_FDCWD, pathname);
3746 }
3747
3748 /**
3749 * vfs_unlink - unlink a filesystem object
3750 * @dir: parent directory
3751 * @dentry: victim
3752 * @delegated_inode: returns victim inode, if the inode is delegated.
3753 *
3754 * The caller must hold dir->i_mutex.
3755 *
3756 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3757 * return a reference to the inode in delegated_inode. The caller
3758 * should then break the delegation on that inode and retry. Because
3759 * breaking a delegation may take a long time, the caller should drop
3760 * dir->i_mutex before doing so.
3761 *
3762 * Alternatively, a caller may pass NULL for delegated_inode. This may
3763 * be appropriate for callers that expect the underlying filesystem not
3764 * to be NFS exported.
3765 */
3766 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3767 {
3768 struct inode *target = dentry->d_inode;
3769 int error = may_delete(dir, dentry, 0);
3770
3771 if (error)
3772 return error;
3773
3774 if (!dir->i_op->unlink)
3775 return -EPERM;
3776
3777 mutex_lock(&target->i_mutex);
3778 if (is_local_mountpoint(dentry))
3779 error = -EBUSY;
3780 else {
3781 error = security_inode_unlink(dir, dentry);
3782 if (!error) {
3783 error = try_break_deleg(target, delegated_inode);
3784 if (error)
3785 goto out;
3786 error = dir->i_op->unlink(dir, dentry);
3787 if (!error) {
3788 dont_mount(dentry);
3789 detach_mounts(dentry);
3790 }
3791 }
3792 }
3793 out:
3794 mutex_unlock(&target->i_mutex);
3795
3796 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3797 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3798 fsnotify_link_count(target);
3799 d_delete(dentry);
3800 }
3801
3802 return error;
3803 }
3804 EXPORT_SYMBOL(vfs_unlink);
3805
3806 /*
3807 * Make sure that the actual truncation of the file will occur outside its
3808 * directory's i_mutex. Truncate can take a long time if there is a lot of
3809 * writeout happening, and we don't want to prevent access to the directory
3810 * while waiting on the I/O.
3811 */
3812 static long do_unlinkat(int dfd, const char __user *pathname)
3813 {
3814 int error;
3815 struct filename *name;
3816 struct dentry *dentry;
3817 struct path path;
3818 struct qstr last;
3819 int type;
3820 struct inode *inode = NULL;
3821 struct inode *delegated_inode = NULL;
3822 unsigned int lookup_flags = 0;
3823 retry:
3824 name = user_path_parent(dfd, pathname,
3825 &path, &last, &type, lookup_flags);
3826 if (IS_ERR(name))
3827 return PTR_ERR(name);
3828
3829 error = -EISDIR;
3830 if (type != LAST_NORM)
3831 goto exit1;
3832
3833 error = mnt_want_write(path.mnt);
3834 if (error)
3835 goto exit1;
3836 retry_deleg:
3837 mutex_lock_nested(&path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3838 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3839 error = PTR_ERR(dentry);
3840 if (!IS_ERR(dentry)) {
3841 /* Why not before? Because we want correct error value */
3842 if (last.name[last.len])
3843 goto slashes;
3844 inode = dentry->d_inode;
3845 if (d_is_negative(dentry))
3846 goto slashes;
3847 ihold(inode);
3848 error = security_path_unlink(&path, dentry);
3849 if (error)
3850 goto exit2;
3851 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3852 exit2:
3853 dput(dentry);
3854 }
3855 mutex_unlock(&path.dentry->d_inode->i_mutex);
3856 if (inode)
3857 iput(inode); /* truncate the inode here */
3858 inode = NULL;
3859 if (delegated_inode) {
3860 error = break_deleg_wait(&delegated_inode);
3861 if (!error)
3862 goto retry_deleg;
3863 }
3864 mnt_drop_write(path.mnt);
3865 exit1:
3866 path_put(&path);
3867 putname(name);
3868 if (retry_estale(error, lookup_flags)) {
3869 lookup_flags |= LOOKUP_REVAL;
3870 inode = NULL;
3871 goto retry;
3872 }
3873 return error;
3874
3875 slashes:
3876 if (d_is_negative(dentry))
3877 error = -ENOENT;
3878 else if (d_is_dir(dentry))
3879 error = -EISDIR;
3880 else
3881 error = -ENOTDIR;
3882 goto exit2;
3883 }
3884
3885 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3886 {
3887 if ((flag & ~AT_REMOVEDIR) != 0)
3888 return -EINVAL;
3889
3890 if (flag & AT_REMOVEDIR)
3891 return do_rmdir(dfd, pathname);
3892
3893 return do_unlinkat(dfd, pathname);
3894 }
3895
3896 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3897 {
3898 return do_unlinkat(AT_FDCWD, pathname);
3899 }
3900
3901 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3902 {
3903 int error = may_create(dir, dentry);
3904
3905 if (error)
3906 return error;
3907
3908 if (!dir->i_op->symlink)
3909 return -EPERM;
3910
3911 error = security_inode_symlink(dir, dentry, oldname);
3912 if (error)
3913 return error;
3914
3915 error = dir->i_op->symlink(dir, dentry, oldname);
3916 if (!error)
3917 fsnotify_create(dir, dentry);
3918 return error;
3919 }
3920 EXPORT_SYMBOL(vfs_symlink);
3921
3922 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3923 int, newdfd, const char __user *, newname)
3924 {
3925 int error;
3926 struct filename *from;
3927 struct dentry *dentry;
3928 struct path path;
3929 unsigned int lookup_flags = 0;
3930
3931 from = getname(oldname);
3932 if (IS_ERR(from))
3933 return PTR_ERR(from);
3934 retry:
3935 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3936 error = PTR_ERR(dentry);
3937 if (IS_ERR(dentry))
3938 goto out_putname;
3939
3940 error = security_path_symlink(&path, dentry, from->name);
3941 if (!error)
3942 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3943 done_path_create(&path, dentry);
3944 if (retry_estale(error, lookup_flags)) {
3945 lookup_flags |= LOOKUP_REVAL;
3946 goto retry;
3947 }
3948 out_putname:
3949 putname(from);
3950 return error;
3951 }
3952
3953 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3954 {
3955 return sys_symlinkat(oldname, AT_FDCWD, newname);
3956 }
3957
3958 /**
3959 * vfs_link - create a new link
3960 * @old_dentry: object to be linked
3961 * @dir: new parent
3962 * @new_dentry: where to create the new link
3963 * @delegated_inode: returns inode needing a delegation break
3964 *
3965 * The caller must hold dir->i_mutex
3966 *
3967 * If vfs_link discovers a delegation on the to-be-linked file in need
3968 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3969 * inode in delegated_inode. The caller should then break the delegation
3970 * and retry. Because breaking a delegation may take a long time, the
3971 * caller should drop the i_mutex before doing so.
3972 *
3973 * Alternatively, a caller may pass NULL for delegated_inode. This may
3974 * be appropriate for callers that expect the underlying filesystem not
3975 * to be NFS exported.
3976 */
3977 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3978 {
3979 struct inode *inode = old_dentry->d_inode;
3980 unsigned max_links = dir->i_sb->s_max_links;
3981 int error;
3982
3983 if (!inode)
3984 return -ENOENT;
3985
3986 error = may_create(dir, new_dentry);
3987 if (error)
3988 return error;
3989
3990 if (dir->i_sb != inode->i_sb)
3991 return -EXDEV;
3992
3993 /*
3994 * A link to an append-only or immutable file cannot be created.
3995 */
3996 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3997 return -EPERM;
3998 if (!dir->i_op->link)
3999 return -EPERM;
4000 if (S_ISDIR(inode->i_mode))
4001 return -EPERM;
4002
4003 error = security_inode_link(old_dentry, dir, new_dentry);
4004 if (error)
4005 return error;
4006
4007 mutex_lock(&inode->i_mutex);
4008 /* Make sure we don't allow creating hardlink to an unlinked file */
4009 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4010 error = -ENOENT;
4011 else if (max_links && inode->i_nlink >= max_links)
4012 error = -EMLINK;
4013 else {
4014 error = try_break_deleg(inode, delegated_inode);
4015 if (!error)
4016 error = dir->i_op->link(old_dentry, dir, new_dentry);
4017 }
4018
4019 if (!error && (inode->i_state & I_LINKABLE)) {
4020 spin_lock(&inode->i_lock);
4021 inode->i_state &= ~I_LINKABLE;
4022 spin_unlock(&inode->i_lock);
4023 }
4024 mutex_unlock(&inode->i_mutex);
4025 if (!error)
4026 fsnotify_link(dir, inode, new_dentry);
4027 return error;
4028 }
4029 EXPORT_SYMBOL(vfs_link);
4030
4031 /*
4032 * Hardlinks are often used in delicate situations. We avoid
4033 * security-related surprises by not following symlinks on the
4034 * newname. --KAB
4035 *
4036 * We don't follow them on the oldname either to be compatible
4037 * with linux 2.0, and to avoid hard-linking to directories
4038 * and other special files. --ADM
4039 */
4040 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4041 int, newdfd, const char __user *, newname, int, flags)
4042 {
4043 struct dentry *new_dentry;
4044 struct path old_path, new_path;
4045 struct inode *delegated_inode = NULL;
4046 int how = 0;
4047 int error;
4048
4049 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4050 return -EINVAL;
4051 /*
4052 * To use null names we require CAP_DAC_READ_SEARCH
4053 * This ensures that not everyone will be able to create
4054 * handlink using the passed filedescriptor.
4055 */
4056 if (flags & AT_EMPTY_PATH) {
4057 if (!capable(CAP_DAC_READ_SEARCH))
4058 return -ENOENT;
4059 how = LOOKUP_EMPTY;
4060 }
4061
4062 if (flags & AT_SYMLINK_FOLLOW)
4063 how |= LOOKUP_FOLLOW;
4064 retry:
4065 error = user_path_at(olddfd, oldname, how, &old_path);
4066 if (error)
4067 return error;
4068
4069 new_dentry = user_path_create(newdfd, newname, &new_path,
4070 (how & LOOKUP_REVAL));
4071 error = PTR_ERR(new_dentry);
4072 if (IS_ERR(new_dentry))
4073 goto out;
4074
4075 error = -EXDEV;
4076 if (old_path.mnt != new_path.mnt)
4077 goto out_dput;
4078 error = may_linkat(&old_path);
4079 if (unlikely(error))
4080 goto out_dput;
4081 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4082 if (error)
4083 goto out_dput;
4084 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4085 out_dput:
4086 done_path_create(&new_path, new_dentry);
4087 if (delegated_inode) {
4088 error = break_deleg_wait(&delegated_inode);
4089 if (!error) {
4090 path_put(&old_path);
4091 goto retry;
4092 }
4093 }
4094 if (retry_estale(error, how)) {
4095 path_put(&old_path);
4096 how |= LOOKUP_REVAL;
4097 goto retry;
4098 }
4099 out:
4100 path_put(&old_path);
4101
4102 return error;
4103 }
4104
4105 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4106 {
4107 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4108 }
4109
4110 /**
4111 * vfs_rename - rename a filesystem object
4112 * @old_dir: parent of source
4113 * @old_dentry: source
4114 * @new_dir: parent of destination
4115 * @new_dentry: destination
4116 * @delegated_inode: returns an inode needing a delegation break
4117 * @flags: rename flags
4118 *
4119 * The caller must hold multiple mutexes--see lock_rename()).
4120 *
4121 * If vfs_rename discovers a delegation in need of breaking at either
4122 * the source or destination, it will return -EWOULDBLOCK and return a
4123 * reference to the inode in delegated_inode. The caller should then
4124 * break the delegation and retry. Because breaking a delegation may
4125 * take a long time, the caller should drop all locks before doing
4126 * so.
4127 *
4128 * Alternatively, a caller may pass NULL for delegated_inode. This may
4129 * be appropriate for callers that expect the underlying filesystem not
4130 * to be NFS exported.
4131 *
4132 * The worst of all namespace operations - renaming directory. "Perverted"
4133 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4134 * Problems:
4135 * a) we can get into loop creation.
4136 * b) race potential - two innocent renames can create a loop together.
4137 * That's where 4.4 screws up. Current fix: serialization on
4138 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4139 * story.
4140 * c) we have to lock _four_ objects - parents and victim (if it exists),
4141 * and source (if it is not a directory).
4142 * And that - after we got ->i_mutex on parents (until then we don't know
4143 * whether the target exists). Solution: try to be smart with locking
4144 * order for inodes. We rely on the fact that tree topology may change
4145 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4146 * move will be locked. Thus we can rank directories by the tree
4147 * (ancestors first) and rank all non-directories after them.
4148 * That works since everybody except rename does "lock parent, lookup,
4149 * lock child" and rename is under ->s_vfs_rename_mutex.
4150 * HOWEVER, it relies on the assumption that any object with ->lookup()
4151 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4152 * we'd better make sure that there's no link(2) for them.
4153 * d) conversion from fhandle to dentry may come in the wrong moment - when
4154 * we are removing the target. Solution: we will have to grab ->i_mutex
4155 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4156 * ->i_mutex on parents, which works but leads to some truly excessive
4157 * locking].
4158 */
4159 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4160 struct inode *new_dir, struct dentry *new_dentry,
4161 struct inode **delegated_inode, unsigned int flags)
4162 {
4163 int error;
4164 bool is_dir = d_is_dir(old_dentry);
4165 const unsigned char *old_name;
4166 struct inode *source = old_dentry->d_inode;
4167 struct inode *target = new_dentry->d_inode;
4168 bool new_is_dir = false;
4169 unsigned max_links = new_dir->i_sb->s_max_links;
4170
4171 if (source == target)
4172 return 0;
4173
4174 error = may_delete(old_dir, old_dentry, is_dir);
4175 if (error)
4176 return error;
4177
4178 if (!target) {
4179 error = may_create(new_dir, new_dentry);
4180 } else {
4181 new_is_dir = d_is_dir(new_dentry);
4182
4183 if (!(flags & RENAME_EXCHANGE))
4184 error = may_delete(new_dir, new_dentry, is_dir);
4185 else
4186 error = may_delete(new_dir, new_dentry, new_is_dir);
4187 }
4188 if (error)
4189 return error;
4190
4191 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4192 return -EPERM;
4193
4194 if (flags && !old_dir->i_op->rename2)
4195 return -EINVAL;
4196
4197 /*
4198 * If we are going to change the parent - check write permissions,
4199 * we'll need to flip '..'.
4200 */
4201 if (new_dir != old_dir) {
4202 if (is_dir) {
4203 error = inode_permission(source, MAY_WRITE);
4204 if (error)
4205 return error;
4206 }
4207 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4208 error = inode_permission(target, MAY_WRITE);
4209 if (error)
4210 return error;
4211 }
4212 }
4213
4214 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4215 flags);
4216 if (error)
4217 return error;
4218
4219 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4220 dget(new_dentry);
4221 if (!is_dir || (flags & RENAME_EXCHANGE))
4222 lock_two_nondirectories(source, target);
4223 else if (target)
4224 mutex_lock(&target->i_mutex);
4225
4226 error = -EBUSY;
4227 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4228 goto out;
4229
4230 if (max_links && new_dir != old_dir) {
4231 error = -EMLINK;
4232 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4233 goto out;
4234 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4235 old_dir->i_nlink >= max_links)
4236 goto out;
4237 }
4238 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4239 shrink_dcache_parent(new_dentry);
4240 if (!is_dir) {
4241 error = try_break_deleg(source, delegated_inode);
4242 if (error)
4243 goto out;
4244 }
4245 if (target && !new_is_dir) {
4246 error = try_break_deleg(target, delegated_inode);
4247 if (error)
4248 goto out;
4249 }
4250 if (!old_dir->i_op->rename2) {
4251 error = old_dir->i_op->rename(old_dir, old_dentry,
4252 new_dir, new_dentry);
4253 } else {
4254 WARN_ON(old_dir->i_op->rename != NULL);
4255 error = old_dir->i_op->rename2(old_dir, old_dentry,
4256 new_dir, new_dentry, flags);
4257 }
4258 if (error)
4259 goto out;
4260
4261 if (!(flags & RENAME_EXCHANGE) && target) {
4262 if (is_dir)
4263 target->i_flags |= S_DEAD;
4264 dont_mount(new_dentry);
4265 detach_mounts(new_dentry);
4266 }
4267 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4268 if (!(flags & RENAME_EXCHANGE))
4269 d_move(old_dentry, new_dentry);
4270 else
4271 d_exchange(old_dentry, new_dentry);
4272 }
4273 out:
4274 if (!is_dir || (flags & RENAME_EXCHANGE))
4275 unlock_two_nondirectories(source, target);
4276 else if (target)
4277 mutex_unlock(&target->i_mutex);
4278 dput(new_dentry);
4279 if (!error) {
4280 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4281 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4282 if (flags & RENAME_EXCHANGE) {
4283 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4284 new_is_dir, NULL, new_dentry);
4285 }
4286 }
4287 fsnotify_oldname_free(old_name);
4288
4289 return error;
4290 }
4291 EXPORT_SYMBOL(vfs_rename);
4292
4293 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4294 int, newdfd, const char __user *, newname, unsigned int, flags)
4295 {
4296 struct dentry *old_dentry, *new_dentry;
4297 struct dentry *trap;
4298 struct path old_path, new_path;
4299 struct qstr old_last, new_last;
4300 int old_type, new_type;
4301 struct inode *delegated_inode = NULL;
4302 struct filename *from;
4303 struct filename *to;
4304 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4305 bool should_retry = false;
4306 int error;
4307
4308 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4309 return -EINVAL;
4310
4311 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4312 (flags & RENAME_EXCHANGE))
4313 return -EINVAL;
4314
4315 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4316 return -EPERM;
4317
4318 if (flags & RENAME_EXCHANGE)
4319 target_flags = 0;
4320
4321 retry:
4322 from = user_path_parent(olddfd, oldname,
4323 &old_path, &old_last, &old_type, lookup_flags);
4324 if (IS_ERR(from)) {
4325 error = PTR_ERR(from);
4326 goto exit;
4327 }
4328
4329 to = user_path_parent(newdfd, newname,
4330 &new_path, &new_last, &new_type, lookup_flags);
4331 if (IS_ERR(to)) {
4332 error = PTR_ERR(to);
4333 goto exit1;
4334 }
4335
4336 error = -EXDEV;
4337 if (old_path.mnt != new_path.mnt)
4338 goto exit2;
4339
4340 error = -EBUSY;
4341 if (old_type != LAST_NORM)
4342 goto exit2;
4343
4344 if (flags & RENAME_NOREPLACE)
4345 error = -EEXIST;
4346 if (new_type != LAST_NORM)
4347 goto exit2;
4348
4349 error = mnt_want_write(old_path.mnt);
4350 if (error)
4351 goto exit2;
4352
4353 retry_deleg:
4354 trap = lock_rename(new_path.dentry, old_path.dentry);
4355
4356 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4357 error = PTR_ERR(old_dentry);
4358 if (IS_ERR(old_dentry))
4359 goto exit3;
4360 /* source must exist */
4361 error = -ENOENT;
4362 if (d_is_negative(old_dentry))
4363 goto exit4;
4364 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4365 error = PTR_ERR(new_dentry);
4366 if (IS_ERR(new_dentry))
4367 goto exit4;
4368 error = -EEXIST;
4369 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4370 goto exit5;
4371 if (flags & RENAME_EXCHANGE) {
4372 error = -ENOENT;
4373 if (d_is_negative(new_dentry))
4374 goto exit5;
4375
4376 if (!d_is_dir(new_dentry)) {
4377 error = -ENOTDIR;
4378 if (new_last.name[new_last.len])
4379 goto exit5;
4380 }
4381 }
4382 /* unless the source is a directory trailing slashes give -ENOTDIR */
4383 if (!d_is_dir(old_dentry)) {
4384 error = -ENOTDIR;
4385 if (old_last.name[old_last.len])
4386 goto exit5;
4387 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4388 goto exit5;
4389 }
4390 /* source should not be ancestor of target */
4391 error = -EINVAL;
4392 if (old_dentry == trap)
4393 goto exit5;
4394 /* target should not be an ancestor of source */
4395 if (!(flags & RENAME_EXCHANGE))
4396 error = -ENOTEMPTY;
4397 if (new_dentry == trap)
4398 goto exit5;
4399
4400 error = security_path_rename(&old_path, old_dentry,
4401 &new_path, new_dentry, flags);
4402 if (error)
4403 goto exit5;
4404 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4405 new_path.dentry->d_inode, new_dentry,
4406 &delegated_inode, flags);
4407 exit5:
4408 dput(new_dentry);
4409 exit4:
4410 dput(old_dentry);
4411 exit3:
4412 unlock_rename(new_path.dentry, old_path.dentry);
4413 if (delegated_inode) {
4414 error = break_deleg_wait(&delegated_inode);
4415 if (!error)
4416 goto retry_deleg;
4417 }
4418 mnt_drop_write(old_path.mnt);
4419 exit2:
4420 if (retry_estale(error, lookup_flags))
4421 should_retry = true;
4422 path_put(&new_path);
4423 putname(to);
4424 exit1:
4425 path_put(&old_path);
4426 putname(from);
4427 if (should_retry) {
4428 should_retry = false;
4429 lookup_flags |= LOOKUP_REVAL;
4430 goto retry;
4431 }
4432 exit:
4433 return error;
4434 }
4435
4436 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4437 int, newdfd, const char __user *, newname)
4438 {
4439 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4440 }
4441
4442 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4443 {
4444 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4445 }
4446
4447 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4448 {
4449 int error = may_create(dir, dentry);
4450 if (error)
4451 return error;
4452
4453 if (!dir->i_op->mknod)
4454 return -EPERM;
4455
4456 return dir->i_op->mknod(dir, dentry,
4457 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4458 }
4459 EXPORT_SYMBOL(vfs_whiteout);
4460
4461 int readlink_copy(char __user *buffer, int buflen, const char *link)
4462 {
4463 int len = PTR_ERR(link);
4464 if (IS_ERR(link))
4465 goto out;
4466
4467 len = strlen(link);
4468 if (len > (unsigned) buflen)
4469 len = buflen;
4470 if (copy_to_user(buffer, link, len))
4471 len = -EFAULT;
4472 out:
4473 return len;
4474 }
4475 EXPORT_SYMBOL(readlink_copy);
4476
4477 /*
4478 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4479 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4480 * using) it for any given inode is up to filesystem.
4481 */
4482 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4483 {
4484 void *cookie;
4485 const char *link = dentry->d_inode->i_link;
4486 int res;
4487
4488 if (!link) {
4489 link = dentry->d_inode->i_op->follow_link(dentry, &cookie, NULL);
4490 if (IS_ERR(link))
4491 return PTR_ERR(link);
4492 }
4493 res = readlink_copy(buffer, buflen, link);
4494 if (cookie && dentry->d_inode->i_op->put_link)
4495 dentry->d_inode->i_op->put_link(dentry, cookie);
4496 return res;
4497 }
4498 EXPORT_SYMBOL(generic_readlink);
4499
4500 /* get the link contents into pagecache */
4501 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4502 {
4503 char *kaddr;
4504 struct page *page;
4505 struct address_space *mapping = dentry->d_inode->i_mapping;
4506 page = read_mapping_page(mapping, 0, NULL);
4507 if (IS_ERR(page))
4508 return (char*)page;
4509 *ppage = page;
4510 kaddr = kmap(page);
4511 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4512 return kaddr;
4513 }
4514
4515 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4516 {
4517 struct page *page = NULL;
4518 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4519 if (page) {
4520 kunmap(page);
4521 page_cache_release(page);
4522 }
4523 return res;
4524 }
4525 EXPORT_SYMBOL(page_readlink);
4526
4527 const char *page_follow_link_light(struct dentry *dentry, void **cookie, struct nameidata *nd)
4528 {
4529 struct page *page = NULL;
4530 char *res = page_getlink(dentry, &page);
4531 if (!IS_ERR(res))
4532 *cookie = page;
4533 return res;
4534 }
4535 EXPORT_SYMBOL(page_follow_link_light);
4536
4537 void page_put_link(struct dentry *dentry, void *cookie)
4538 {
4539 struct page *page = cookie;
4540 kunmap(page);
4541 page_cache_release(page);
4542 }
4543 EXPORT_SYMBOL(page_put_link);
4544
4545 /*
4546 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4547 */
4548 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4549 {
4550 struct address_space *mapping = inode->i_mapping;
4551 struct page *page;
4552 void *fsdata;
4553 int err;
4554 char *kaddr;
4555 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4556 if (nofs)
4557 flags |= AOP_FLAG_NOFS;
4558
4559 retry:
4560 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4561 flags, &page, &fsdata);
4562 if (err)
4563 goto fail;
4564
4565 kaddr = kmap_atomic(page);
4566 memcpy(kaddr, symname, len-1);
4567 kunmap_atomic(kaddr);
4568
4569 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4570 page, fsdata);
4571 if (err < 0)
4572 goto fail;
4573 if (err < len-1)
4574 goto retry;
4575
4576 mark_inode_dirty(inode);
4577 return 0;
4578 fail:
4579 return err;
4580 }
4581 EXPORT_SYMBOL(__page_symlink);
4582
4583 int page_symlink(struct inode *inode, const char *symname, int len)
4584 {
4585 return __page_symlink(inode, symname, len,
4586 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4587 }
4588 EXPORT_SYMBOL(page_symlink);
4589
4590 const struct inode_operations page_symlink_inode_operations = {
4591 .readlink = generic_readlink,
4592 .follow_link = page_follow_link_light,
4593 .put_link = page_put_link,
4594 };
4595 EXPORT_SYMBOL(page_symlink_inode_operations);