]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/namei.c
vfs: fix dentry RCU to refcounting possibly sleeping dput()
[mirror_ubuntu-bionic-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
38
39 #include "internal.h"
40 #include "mount.h"
41
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
47 *
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
54 *
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
58 *
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
61 *
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
68 */
69
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
77 *
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
85 */
86
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
89 *
90 * [10-Sep-98 Alan Modra] Another symlink change.
91 */
92
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
100 *
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
106 */
107 /*
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
111 */
112
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
116 *
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
119 */
120 void final_putname(struct filename *name)
121 {
122 if (name->separate) {
123 __putname(name->name);
124 kfree(name);
125 } else {
126 __putname(name);
127 }
128 }
129
130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
131
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
134 {
135 struct filename *result, *err;
136 int len;
137 long max;
138 char *kname;
139
140 result = audit_reusename(filename);
141 if (result)
142 return result;
143
144 result = __getname();
145 if (unlikely(!result))
146 return ERR_PTR(-ENOMEM);
147
148 /*
149 * First, try to embed the struct filename inside the names_cache
150 * allocation
151 */
152 kname = (char *)result + sizeof(*result);
153 result->name = kname;
154 result->separate = false;
155 max = EMBEDDED_NAME_MAX;
156
157 recopy:
158 len = strncpy_from_user(kname, filename, max);
159 if (unlikely(len < 0)) {
160 err = ERR_PTR(len);
161 goto error;
162 }
163
164 /*
165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 * separate struct filename so we can dedicate the entire
167 * names_cache allocation for the pathname, and re-do the copy from
168 * userland.
169 */
170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 kname = (char *)result;
172
173 result = kzalloc(sizeof(*result), GFP_KERNEL);
174 if (!result) {
175 err = ERR_PTR(-ENOMEM);
176 result = (struct filename *)kname;
177 goto error;
178 }
179 result->name = kname;
180 result->separate = true;
181 max = PATH_MAX;
182 goto recopy;
183 }
184
185 /* The empty path is special. */
186 if (unlikely(!len)) {
187 if (empty)
188 *empty = 1;
189 err = ERR_PTR(-ENOENT);
190 if (!(flags & LOOKUP_EMPTY))
191 goto error;
192 }
193
194 err = ERR_PTR(-ENAMETOOLONG);
195 if (unlikely(len >= PATH_MAX))
196 goto error;
197
198 result->uptr = filename;
199 audit_getname(result);
200 return result;
201
202 error:
203 final_putname(result);
204 return err;
205 }
206
207 struct filename *
208 getname(const char __user * filename)
209 {
210 return getname_flags(filename, 0, NULL);
211 }
212 EXPORT_SYMBOL(getname);
213
214 #ifdef CONFIG_AUDITSYSCALL
215 void putname(struct filename *name)
216 {
217 if (unlikely(!audit_dummy_context()))
218 return audit_putname(name);
219 final_putname(name);
220 }
221 #endif
222
223 static int check_acl(struct inode *inode, int mask)
224 {
225 #ifdef CONFIG_FS_POSIX_ACL
226 struct posix_acl *acl;
227
228 if (mask & MAY_NOT_BLOCK) {
229 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
230 if (!acl)
231 return -EAGAIN;
232 /* no ->get_acl() calls in RCU mode... */
233 if (acl == ACL_NOT_CACHED)
234 return -ECHILD;
235 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
236 }
237
238 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
239
240 /*
241 * A filesystem can force a ACL callback by just never filling the
242 * ACL cache. But normally you'd fill the cache either at inode
243 * instantiation time, or on the first ->get_acl call.
244 *
245 * If the filesystem doesn't have a get_acl() function at all, we'll
246 * just create the negative cache entry.
247 */
248 if (acl == ACL_NOT_CACHED) {
249 if (inode->i_op->get_acl) {
250 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
251 if (IS_ERR(acl))
252 return PTR_ERR(acl);
253 } else {
254 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
255 return -EAGAIN;
256 }
257 }
258
259 if (acl) {
260 int error = posix_acl_permission(inode, acl, mask);
261 posix_acl_release(acl);
262 return error;
263 }
264 #endif
265
266 return -EAGAIN;
267 }
268
269 /*
270 * This does the basic permission checking
271 */
272 static int acl_permission_check(struct inode *inode, int mask)
273 {
274 unsigned int mode = inode->i_mode;
275
276 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
277 mode >>= 6;
278 else {
279 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
280 int error = check_acl(inode, mask);
281 if (error != -EAGAIN)
282 return error;
283 }
284
285 if (in_group_p(inode->i_gid))
286 mode >>= 3;
287 }
288
289 /*
290 * If the DACs are ok we don't need any capability check.
291 */
292 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
293 return 0;
294 return -EACCES;
295 }
296
297 /**
298 * generic_permission - check for access rights on a Posix-like filesystem
299 * @inode: inode to check access rights for
300 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
301 *
302 * Used to check for read/write/execute permissions on a file.
303 * We use "fsuid" for this, letting us set arbitrary permissions
304 * for filesystem access without changing the "normal" uids which
305 * are used for other things.
306 *
307 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
308 * request cannot be satisfied (eg. requires blocking or too much complexity).
309 * It would then be called again in ref-walk mode.
310 */
311 int generic_permission(struct inode *inode, int mask)
312 {
313 int ret;
314
315 /*
316 * Do the basic permission checks.
317 */
318 ret = acl_permission_check(inode, mask);
319 if (ret != -EACCES)
320 return ret;
321
322 if (S_ISDIR(inode->i_mode)) {
323 /* DACs are overridable for directories */
324 if (inode_capable(inode, CAP_DAC_OVERRIDE))
325 return 0;
326 if (!(mask & MAY_WRITE))
327 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
328 return 0;
329 return -EACCES;
330 }
331 /*
332 * Read/write DACs are always overridable.
333 * Executable DACs are overridable when there is
334 * at least one exec bit set.
335 */
336 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
337 if (inode_capable(inode, CAP_DAC_OVERRIDE))
338 return 0;
339
340 /*
341 * Searching includes executable on directories, else just read.
342 */
343 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
344 if (mask == MAY_READ)
345 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
346 return 0;
347
348 return -EACCES;
349 }
350
351 /*
352 * We _really_ want to just do "generic_permission()" without
353 * even looking at the inode->i_op values. So we keep a cache
354 * flag in inode->i_opflags, that says "this has not special
355 * permission function, use the fast case".
356 */
357 static inline int do_inode_permission(struct inode *inode, int mask)
358 {
359 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
360 if (likely(inode->i_op->permission))
361 return inode->i_op->permission(inode, mask);
362
363 /* This gets set once for the inode lifetime */
364 spin_lock(&inode->i_lock);
365 inode->i_opflags |= IOP_FASTPERM;
366 spin_unlock(&inode->i_lock);
367 }
368 return generic_permission(inode, mask);
369 }
370
371 /**
372 * __inode_permission - Check for access rights to a given inode
373 * @inode: Inode to check permission on
374 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
375 *
376 * Check for read/write/execute permissions on an inode.
377 *
378 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
379 *
380 * This does not check for a read-only file system. You probably want
381 * inode_permission().
382 */
383 int __inode_permission(struct inode *inode, int mask)
384 {
385 int retval;
386
387 if (unlikely(mask & MAY_WRITE)) {
388 /*
389 * Nobody gets write access to an immutable file.
390 */
391 if (IS_IMMUTABLE(inode))
392 return -EACCES;
393 }
394
395 retval = do_inode_permission(inode, mask);
396 if (retval)
397 return retval;
398
399 retval = devcgroup_inode_permission(inode, mask);
400 if (retval)
401 return retval;
402
403 return security_inode_permission(inode, mask);
404 }
405
406 /**
407 * sb_permission - Check superblock-level permissions
408 * @sb: Superblock of inode to check permission on
409 * @inode: Inode to check permission on
410 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
411 *
412 * Separate out file-system wide checks from inode-specific permission checks.
413 */
414 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
415 {
416 if (unlikely(mask & MAY_WRITE)) {
417 umode_t mode = inode->i_mode;
418
419 /* Nobody gets write access to a read-only fs. */
420 if ((sb->s_flags & MS_RDONLY) &&
421 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
422 return -EROFS;
423 }
424 return 0;
425 }
426
427 /**
428 * inode_permission - Check for access rights to a given inode
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
433 * this, letting us set arbitrary permissions for filesystem access without
434 * changing the "normal" UIDs which are used for other things.
435 *
436 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
437 */
438 int inode_permission(struct inode *inode, int mask)
439 {
440 int retval;
441
442 retval = sb_permission(inode->i_sb, inode, mask);
443 if (retval)
444 return retval;
445 return __inode_permission(inode, mask);
446 }
447
448 /**
449 * path_get - get a reference to a path
450 * @path: path to get the reference to
451 *
452 * Given a path increment the reference count to the dentry and the vfsmount.
453 */
454 void path_get(const struct path *path)
455 {
456 mntget(path->mnt);
457 dget(path->dentry);
458 }
459 EXPORT_SYMBOL(path_get);
460
461 /**
462 * path_put - put a reference to a path
463 * @path: path to put the reference to
464 *
465 * Given a path decrement the reference count to the dentry and the vfsmount.
466 */
467 void path_put(const struct path *path)
468 {
469 dput(path->dentry);
470 mntput(path->mnt);
471 }
472 EXPORT_SYMBOL(path_put);
473
474 /*
475 * Path walking has 2 modes, rcu-walk and ref-walk (see
476 * Documentation/filesystems/path-lookup.txt). In situations when we can't
477 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
478 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
479 * mode. Refcounts are grabbed at the last known good point before rcu-walk
480 * got stuck, so ref-walk may continue from there. If this is not successful
481 * (eg. a seqcount has changed), then failure is returned and it's up to caller
482 * to restart the path walk from the beginning in ref-walk mode.
483 */
484
485 static inline void lock_rcu_walk(void)
486 {
487 br_read_lock(&vfsmount_lock);
488 rcu_read_lock();
489 }
490
491 static inline void unlock_rcu_walk(void)
492 {
493 rcu_read_unlock();
494 br_read_unlock(&vfsmount_lock);
495 }
496
497 /**
498 * unlazy_walk - try to switch to ref-walk mode.
499 * @nd: nameidata pathwalk data
500 * @dentry: child of nd->path.dentry or NULL
501 * Returns: 0 on success, -ECHILD on failure
502 *
503 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
504 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
505 * @nd or NULL. Must be called from rcu-walk context.
506 */
507 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
508 {
509 struct fs_struct *fs = current->fs;
510 struct dentry *parent = nd->path.dentry;
511
512 BUG_ON(!(nd->flags & LOOKUP_RCU));
513
514 /*
515 * Get a reference to the parent first: we're
516 * going to make "path_put(nd->path)" valid in
517 * non-RCU context for "terminate_walk()".
518 *
519 * If this doesn't work, return immediately with
520 * RCU walking still active (and then we will do
521 * the RCU walk cleanup in terminate_walk()).
522 */
523 if (!lockref_get_not_dead(&parent->d_lockref))
524 return -ECHILD;
525
526 /*
527 * After the mntget(), we terminate_walk() will do
528 * the right thing for non-RCU mode, and all our
529 * subsequent exit cases should unlock_rcu_walk()
530 * before returning.
531 */
532 mntget(nd->path.mnt);
533 nd->flags &= ~LOOKUP_RCU;
534
535 /*
536 * For a negative lookup, the lookup sequence point is the parents
537 * sequence point, and it only needs to revalidate the parent dentry.
538 *
539 * For a positive lookup, we need to move both the parent and the
540 * dentry from the RCU domain to be properly refcounted. And the
541 * sequence number in the dentry validates *both* dentry counters,
542 * since we checked the sequence number of the parent after we got
543 * the child sequence number. So we know the parent must still
544 * be valid if the child sequence number is still valid.
545 */
546 if (!dentry) {
547 if (read_seqcount_retry(&parent->d_seq, nd->seq))
548 goto out;
549 BUG_ON(nd->inode != parent->d_inode);
550 } else {
551 if (!lockref_get_not_dead(&dentry->d_lockref))
552 goto out;
553 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
554 goto drop_dentry;
555 }
556
557 /*
558 * Sequence counts matched. Now make sure that the root is
559 * still valid and get it if required.
560 */
561 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
562 spin_lock(&fs->lock);
563 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
564 goto unlock_and_drop_dentry;
565 path_get(&nd->root);
566 spin_unlock(&fs->lock);
567 }
568
569 unlock_rcu_walk();
570 return 0;
571
572 unlock_and_drop_dentry:
573 spin_unlock(&fs->lock);
574 drop_dentry:
575 unlock_rcu_walk();
576 dput(dentry);
577 return -ECHILD;
578 out:
579 unlock_rcu_walk();
580 return -ECHILD;
581 }
582
583 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
584 {
585 return dentry->d_op->d_revalidate(dentry, flags);
586 }
587
588 /**
589 * complete_walk - successful completion of path walk
590 * @nd: pointer nameidata
591 *
592 * If we had been in RCU mode, drop out of it and legitimize nd->path.
593 * Revalidate the final result, unless we'd already done that during
594 * the path walk or the filesystem doesn't ask for it. Return 0 on
595 * success, -error on failure. In case of failure caller does not
596 * need to drop nd->path.
597 */
598 static int complete_walk(struct nameidata *nd)
599 {
600 struct dentry *dentry = nd->path.dentry;
601 int status;
602
603 if (nd->flags & LOOKUP_RCU) {
604 nd->flags &= ~LOOKUP_RCU;
605 if (!(nd->flags & LOOKUP_ROOT))
606 nd->root.mnt = NULL;
607
608 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
609 unlock_rcu_walk();
610 return -ECHILD;
611 }
612 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
613 unlock_rcu_walk();
614 dput(dentry);
615 return -ECHILD;
616 }
617 mntget(nd->path.mnt);
618 unlock_rcu_walk();
619 }
620
621 if (likely(!(nd->flags & LOOKUP_JUMPED)))
622 return 0;
623
624 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
625 return 0;
626
627 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
628 if (status > 0)
629 return 0;
630
631 if (!status)
632 status = -ESTALE;
633
634 path_put(&nd->path);
635 return status;
636 }
637
638 static __always_inline void set_root(struct nameidata *nd)
639 {
640 if (!nd->root.mnt)
641 get_fs_root(current->fs, &nd->root);
642 }
643
644 static int link_path_walk(const char *, struct nameidata *);
645
646 static __always_inline void set_root_rcu(struct nameidata *nd)
647 {
648 if (!nd->root.mnt) {
649 struct fs_struct *fs = current->fs;
650 unsigned seq;
651
652 do {
653 seq = read_seqcount_begin(&fs->seq);
654 nd->root = fs->root;
655 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
656 } while (read_seqcount_retry(&fs->seq, seq));
657 }
658 }
659
660 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
661 {
662 int ret;
663
664 if (IS_ERR(link))
665 goto fail;
666
667 if (*link == '/') {
668 set_root(nd);
669 path_put(&nd->path);
670 nd->path = nd->root;
671 path_get(&nd->root);
672 nd->flags |= LOOKUP_JUMPED;
673 }
674 nd->inode = nd->path.dentry->d_inode;
675
676 ret = link_path_walk(link, nd);
677 return ret;
678 fail:
679 path_put(&nd->path);
680 return PTR_ERR(link);
681 }
682
683 static void path_put_conditional(struct path *path, struct nameidata *nd)
684 {
685 dput(path->dentry);
686 if (path->mnt != nd->path.mnt)
687 mntput(path->mnt);
688 }
689
690 static inline void path_to_nameidata(const struct path *path,
691 struct nameidata *nd)
692 {
693 if (!(nd->flags & LOOKUP_RCU)) {
694 dput(nd->path.dentry);
695 if (nd->path.mnt != path->mnt)
696 mntput(nd->path.mnt);
697 }
698 nd->path.mnt = path->mnt;
699 nd->path.dentry = path->dentry;
700 }
701
702 /*
703 * Helper to directly jump to a known parsed path from ->follow_link,
704 * caller must have taken a reference to path beforehand.
705 */
706 void nd_jump_link(struct nameidata *nd, struct path *path)
707 {
708 path_put(&nd->path);
709
710 nd->path = *path;
711 nd->inode = nd->path.dentry->d_inode;
712 nd->flags |= LOOKUP_JUMPED;
713 }
714
715 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
716 {
717 struct inode *inode = link->dentry->d_inode;
718 if (inode->i_op->put_link)
719 inode->i_op->put_link(link->dentry, nd, cookie);
720 path_put(link);
721 }
722
723 int sysctl_protected_symlinks __read_mostly = 0;
724 int sysctl_protected_hardlinks __read_mostly = 0;
725
726 /**
727 * may_follow_link - Check symlink following for unsafe situations
728 * @link: The path of the symlink
729 * @nd: nameidata pathwalk data
730 *
731 * In the case of the sysctl_protected_symlinks sysctl being enabled,
732 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
733 * in a sticky world-writable directory. This is to protect privileged
734 * processes from failing races against path names that may change out
735 * from under them by way of other users creating malicious symlinks.
736 * It will permit symlinks to be followed only when outside a sticky
737 * world-writable directory, or when the uid of the symlink and follower
738 * match, or when the directory owner matches the symlink's owner.
739 *
740 * Returns 0 if following the symlink is allowed, -ve on error.
741 */
742 static inline int may_follow_link(struct path *link, struct nameidata *nd)
743 {
744 const struct inode *inode;
745 const struct inode *parent;
746
747 if (!sysctl_protected_symlinks)
748 return 0;
749
750 /* Allowed if owner and follower match. */
751 inode = link->dentry->d_inode;
752 if (uid_eq(current_cred()->fsuid, inode->i_uid))
753 return 0;
754
755 /* Allowed if parent directory not sticky and world-writable. */
756 parent = nd->path.dentry->d_inode;
757 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
758 return 0;
759
760 /* Allowed if parent directory and link owner match. */
761 if (uid_eq(parent->i_uid, inode->i_uid))
762 return 0;
763
764 audit_log_link_denied("follow_link", link);
765 path_put_conditional(link, nd);
766 path_put(&nd->path);
767 return -EACCES;
768 }
769
770 /**
771 * safe_hardlink_source - Check for safe hardlink conditions
772 * @inode: the source inode to hardlink from
773 *
774 * Return false if at least one of the following conditions:
775 * - inode is not a regular file
776 * - inode is setuid
777 * - inode is setgid and group-exec
778 * - access failure for read and write
779 *
780 * Otherwise returns true.
781 */
782 static bool safe_hardlink_source(struct inode *inode)
783 {
784 umode_t mode = inode->i_mode;
785
786 /* Special files should not get pinned to the filesystem. */
787 if (!S_ISREG(mode))
788 return false;
789
790 /* Setuid files should not get pinned to the filesystem. */
791 if (mode & S_ISUID)
792 return false;
793
794 /* Executable setgid files should not get pinned to the filesystem. */
795 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
796 return false;
797
798 /* Hardlinking to unreadable or unwritable sources is dangerous. */
799 if (inode_permission(inode, MAY_READ | MAY_WRITE))
800 return false;
801
802 return true;
803 }
804
805 /**
806 * may_linkat - Check permissions for creating a hardlink
807 * @link: the source to hardlink from
808 *
809 * Block hardlink when all of:
810 * - sysctl_protected_hardlinks enabled
811 * - fsuid does not match inode
812 * - hardlink source is unsafe (see safe_hardlink_source() above)
813 * - not CAP_FOWNER
814 *
815 * Returns 0 if successful, -ve on error.
816 */
817 static int may_linkat(struct path *link)
818 {
819 const struct cred *cred;
820 struct inode *inode;
821
822 if (!sysctl_protected_hardlinks)
823 return 0;
824
825 cred = current_cred();
826 inode = link->dentry->d_inode;
827
828 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
829 * otherwise, it must be a safe source.
830 */
831 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
832 capable(CAP_FOWNER))
833 return 0;
834
835 audit_log_link_denied("linkat", link);
836 return -EPERM;
837 }
838
839 static __always_inline int
840 follow_link(struct path *link, struct nameidata *nd, void **p)
841 {
842 struct dentry *dentry = link->dentry;
843 int error;
844 char *s;
845
846 BUG_ON(nd->flags & LOOKUP_RCU);
847
848 if (link->mnt == nd->path.mnt)
849 mntget(link->mnt);
850
851 error = -ELOOP;
852 if (unlikely(current->total_link_count >= 40))
853 goto out_put_nd_path;
854
855 cond_resched();
856 current->total_link_count++;
857
858 touch_atime(link);
859 nd_set_link(nd, NULL);
860
861 error = security_inode_follow_link(link->dentry, nd);
862 if (error)
863 goto out_put_nd_path;
864
865 nd->last_type = LAST_BIND;
866 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
867 error = PTR_ERR(*p);
868 if (IS_ERR(*p))
869 goto out_put_nd_path;
870
871 error = 0;
872 s = nd_get_link(nd);
873 if (s) {
874 error = __vfs_follow_link(nd, s);
875 if (unlikely(error))
876 put_link(nd, link, *p);
877 }
878
879 return error;
880
881 out_put_nd_path:
882 *p = NULL;
883 path_put(&nd->path);
884 path_put(link);
885 return error;
886 }
887
888 static int follow_up_rcu(struct path *path)
889 {
890 struct mount *mnt = real_mount(path->mnt);
891 struct mount *parent;
892 struct dentry *mountpoint;
893
894 parent = mnt->mnt_parent;
895 if (&parent->mnt == path->mnt)
896 return 0;
897 mountpoint = mnt->mnt_mountpoint;
898 path->dentry = mountpoint;
899 path->mnt = &parent->mnt;
900 return 1;
901 }
902
903 /*
904 * follow_up - Find the mountpoint of path's vfsmount
905 *
906 * Given a path, find the mountpoint of its source file system.
907 * Replace @path with the path of the mountpoint in the parent mount.
908 * Up is towards /.
909 *
910 * Return 1 if we went up a level and 0 if we were already at the
911 * root.
912 */
913 int follow_up(struct path *path)
914 {
915 struct mount *mnt = real_mount(path->mnt);
916 struct mount *parent;
917 struct dentry *mountpoint;
918
919 br_read_lock(&vfsmount_lock);
920 parent = mnt->mnt_parent;
921 if (parent == mnt) {
922 br_read_unlock(&vfsmount_lock);
923 return 0;
924 }
925 mntget(&parent->mnt);
926 mountpoint = dget(mnt->mnt_mountpoint);
927 br_read_unlock(&vfsmount_lock);
928 dput(path->dentry);
929 path->dentry = mountpoint;
930 mntput(path->mnt);
931 path->mnt = &parent->mnt;
932 return 1;
933 }
934
935 /*
936 * Perform an automount
937 * - return -EISDIR to tell follow_managed() to stop and return the path we
938 * were called with.
939 */
940 static int follow_automount(struct path *path, unsigned flags,
941 bool *need_mntput)
942 {
943 struct vfsmount *mnt;
944 int err;
945
946 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
947 return -EREMOTE;
948
949 /* We don't want to mount if someone's just doing a stat -
950 * unless they're stat'ing a directory and appended a '/' to
951 * the name.
952 *
953 * We do, however, want to mount if someone wants to open or
954 * create a file of any type under the mountpoint, wants to
955 * traverse through the mountpoint or wants to open the
956 * mounted directory. Also, autofs may mark negative dentries
957 * as being automount points. These will need the attentions
958 * of the daemon to instantiate them before they can be used.
959 */
960 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
961 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
962 path->dentry->d_inode)
963 return -EISDIR;
964
965 current->total_link_count++;
966 if (current->total_link_count >= 40)
967 return -ELOOP;
968
969 mnt = path->dentry->d_op->d_automount(path);
970 if (IS_ERR(mnt)) {
971 /*
972 * The filesystem is allowed to return -EISDIR here to indicate
973 * it doesn't want to automount. For instance, autofs would do
974 * this so that its userspace daemon can mount on this dentry.
975 *
976 * However, we can only permit this if it's a terminal point in
977 * the path being looked up; if it wasn't then the remainder of
978 * the path is inaccessible and we should say so.
979 */
980 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
981 return -EREMOTE;
982 return PTR_ERR(mnt);
983 }
984
985 if (!mnt) /* mount collision */
986 return 0;
987
988 if (!*need_mntput) {
989 /* lock_mount() may release path->mnt on error */
990 mntget(path->mnt);
991 *need_mntput = true;
992 }
993 err = finish_automount(mnt, path);
994
995 switch (err) {
996 case -EBUSY:
997 /* Someone else made a mount here whilst we were busy */
998 return 0;
999 case 0:
1000 path_put(path);
1001 path->mnt = mnt;
1002 path->dentry = dget(mnt->mnt_root);
1003 return 0;
1004 default:
1005 return err;
1006 }
1007
1008 }
1009
1010 /*
1011 * Handle a dentry that is managed in some way.
1012 * - Flagged for transit management (autofs)
1013 * - Flagged as mountpoint
1014 * - Flagged as automount point
1015 *
1016 * This may only be called in refwalk mode.
1017 *
1018 * Serialization is taken care of in namespace.c
1019 */
1020 static int follow_managed(struct path *path, unsigned flags)
1021 {
1022 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1023 unsigned managed;
1024 bool need_mntput = false;
1025 int ret = 0;
1026
1027 /* Given that we're not holding a lock here, we retain the value in a
1028 * local variable for each dentry as we look at it so that we don't see
1029 * the components of that value change under us */
1030 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1031 managed &= DCACHE_MANAGED_DENTRY,
1032 unlikely(managed != 0)) {
1033 /* Allow the filesystem to manage the transit without i_mutex
1034 * being held. */
1035 if (managed & DCACHE_MANAGE_TRANSIT) {
1036 BUG_ON(!path->dentry->d_op);
1037 BUG_ON(!path->dentry->d_op->d_manage);
1038 ret = path->dentry->d_op->d_manage(path->dentry, false);
1039 if (ret < 0)
1040 break;
1041 }
1042
1043 /* Transit to a mounted filesystem. */
1044 if (managed & DCACHE_MOUNTED) {
1045 struct vfsmount *mounted = lookup_mnt(path);
1046 if (mounted) {
1047 dput(path->dentry);
1048 if (need_mntput)
1049 mntput(path->mnt);
1050 path->mnt = mounted;
1051 path->dentry = dget(mounted->mnt_root);
1052 need_mntput = true;
1053 continue;
1054 }
1055
1056 /* Something is mounted on this dentry in another
1057 * namespace and/or whatever was mounted there in this
1058 * namespace got unmounted before we managed to get the
1059 * vfsmount_lock */
1060 }
1061
1062 /* Handle an automount point */
1063 if (managed & DCACHE_NEED_AUTOMOUNT) {
1064 ret = follow_automount(path, flags, &need_mntput);
1065 if (ret < 0)
1066 break;
1067 continue;
1068 }
1069
1070 /* We didn't change the current path point */
1071 break;
1072 }
1073
1074 if (need_mntput && path->mnt == mnt)
1075 mntput(path->mnt);
1076 if (ret == -EISDIR)
1077 ret = 0;
1078 return ret < 0 ? ret : need_mntput;
1079 }
1080
1081 int follow_down_one(struct path *path)
1082 {
1083 struct vfsmount *mounted;
1084
1085 mounted = lookup_mnt(path);
1086 if (mounted) {
1087 dput(path->dentry);
1088 mntput(path->mnt);
1089 path->mnt = mounted;
1090 path->dentry = dget(mounted->mnt_root);
1091 return 1;
1092 }
1093 return 0;
1094 }
1095
1096 static inline bool managed_dentry_might_block(struct dentry *dentry)
1097 {
1098 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1099 dentry->d_op->d_manage(dentry, true) < 0);
1100 }
1101
1102 /*
1103 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1104 * we meet a managed dentry that would need blocking.
1105 */
1106 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1107 struct inode **inode)
1108 {
1109 for (;;) {
1110 struct mount *mounted;
1111 /*
1112 * Don't forget we might have a non-mountpoint managed dentry
1113 * that wants to block transit.
1114 */
1115 if (unlikely(managed_dentry_might_block(path->dentry)))
1116 return false;
1117
1118 if (!d_mountpoint(path->dentry))
1119 break;
1120
1121 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1122 if (!mounted)
1123 break;
1124 path->mnt = &mounted->mnt;
1125 path->dentry = mounted->mnt.mnt_root;
1126 nd->flags |= LOOKUP_JUMPED;
1127 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1128 /*
1129 * Update the inode too. We don't need to re-check the
1130 * dentry sequence number here after this d_inode read,
1131 * because a mount-point is always pinned.
1132 */
1133 *inode = path->dentry->d_inode;
1134 }
1135 return true;
1136 }
1137
1138 static void follow_mount_rcu(struct nameidata *nd)
1139 {
1140 while (d_mountpoint(nd->path.dentry)) {
1141 struct mount *mounted;
1142 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
1143 if (!mounted)
1144 break;
1145 nd->path.mnt = &mounted->mnt;
1146 nd->path.dentry = mounted->mnt.mnt_root;
1147 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1148 }
1149 }
1150
1151 static int follow_dotdot_rcu(struct nameidata *nd)
1152 {
1153 set_root_rcu(nd);
1154
1155 while (1) {
1156 if (nd->path.dentry == nd->root.dentry &&
1157 nd->path.mnt == nd->root.mnt) {
1158 break;
1159 }
1160 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1161 struct dentry *old = nd->path.dentry;
1162 struct dentry *parent = old->d_parent;
1163 unsigned seq;
1164
1165 seq = read_seqcount_begin(&parent->d_seq);
1166 if (read_seqcount_retry(&old->d_seq, nd->seq))
1167 goto failed;
1168 nd->path.dentry = parent;
1169 nd->seq = seq;
1170 break;
1171 }
1172 if (!follow_up_rcu(&nd->path))
1173 break;
1174 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1175 }
1176 follow_mount_rcu(nd);
1177 nd->inode = nd->path.dentry->d_inode;
1178 return 0;
1179
1180 failed:
1181 nd->flags &= ~LOOKUP_RCU;
1182 if (!(nd->flags & LOOKUP_ROOT))
1183 nd->root.mnt = NULL;
1184 unlock_rcu_walk();
1185 return -ECHILD;
1186 }
1187
1188 /*
1189 * Follow down to the covering mount currently visible to userspace. At each
1190 * point, the filesystem owning that dentry may be queried as to whether the
1191 * caller is permitted to proceed or not.
1192 */
1193 int follow_down(struct path *path)
1194 {
1195 unsigned managed;
1196 int ret;
1197
1198 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1199 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1200 /* Allow the filesystem to manage the transit without i_mutex
1201 * being held.
1202 *
1203 * We indicate to the filesystem if someone is trying to mount
1204 * something here. This gives autofs the chance to deny anyone
1205 * other than its daemon the right to mount on its
1206 * superstructure.
1207 *
1208 * The filesystem may sleep at this point.
1209 */
1210 if (managed & DCACHE_MANAGE_TRANSIT) {
1211 BUG_ON(!path->dentry->d_op);
1212 BUG_ON(!path->dentry->d_op->d_manage);
1213 ret = path->dentry->d_op->d_manage(
1214 path->dentry, false);
1215 if (ret < 0)
1216 return ret == -EISDIR ? 0 : ret;
1217 }
1218
1219 /* Transit to a mounted filesystem. */
1220 if (managed & DCACHE_MOUNTED) {
1221 struct vfsmount *mounted = lookup_mnt(path);
1222 if (!mounted)
1223 break;
1224 dput(path->dentry);
1225 mntput(path->mnt);
1226 path->mnt = mounted;
1227 path->dentry = dget(mounted->mnt_root);
1228 continue;
1229 }
1230
1231 /* Don't handle automount points here */
1232 break;
1233 }
1234 return 0;
1235 }
1236
1237 /*
1238 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1239 */
1240 static void follow_mount(struct path *path)
1241 {
1242 while (d_mountpoint(path->dentry)) {
1243 struct vfsmount *mounted = lookup_mnt(path);
1244 if (!mounted)
1245 break;
1246 dput(path->dentry);
1247 mntput(path->mnt);
1248 path->mnt = mounted;
1249 path->dentry = dget(mounted->mnt_root);
1250 }
1251 }
1252
1253 static void follow_dotdot(struct nameidata *nd)
1254 {
1255 set_root(nd);
1256
1257 while(1) {
1258 struct dentry *old = nd->path.dentry;
1259
1260 if (nd->path.dentry == nd->root.dentry &&
1261 nd->path.mnt == nd->root.mnt) {
1262 break;
1263 }
1264 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1265 /* rare case of legitimate dget_parent()... */
1266 nd->path.dentry = dget_parent(nd->path.dentry);
1267 dput(old);
1268 break;
1269 }
1270 if (!follow_up(&nd->path))
1271 break;
1272 }
1273 follow_mount(&nd->path);
1274 nd->inode = nd->path.dentry->d_inode;
1275 }
1276
1277 /*
1278 * This looks up the name in dcache, possibly revalidates the old dentry and
1279 * allocates a new one if not found or not valid. In the need_lookup argument
1280 * returns whether i_op->lookup is necessary.
1281 *
1282 * dir->d_inode->i_mutex must be held
1283 */
1284 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1285 unsigned int flags, bool *need_lookup)
1286 {
1287 struct dentry *dentry;
1288 int error;
1289
1290 *need_lookup = false;
1291 dentry = d_lookup(dir, name);
1292 if (dentry) {
1293 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1294 error = d_revalidate(dentry, flags);
1295 if (unlikely(error <= 0)) {
1296 if (error < 0) {
1297 dput(dentry);
1298 return ERR_PTR(error);
1299 } else if (!d_invalidate(dentry)) {
1300 dput(dentry);
1301 dentry = NULL;
1302 }
1303 }
1304 }
1305 }
1306
1307 if (!dentry) {
1308 dentry = d_alloc(dir, name);
1309 if (unlikely(!dentry))
1310 return ERR_PTR(-ENOMEM);
1311
1312 *need_lookup = true;
1313 }
1314 return dentry;
1315 }
1316
1317 /*
1318 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1319 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1320 *
1321 * dir->d_inode->i_mutex must be held
1322 */
1323 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1324 unsigned int flags)
1325 {
1326 struct dentry *old;
1327
1328 /* Don't create child dentry for a dead directory. */
1329 if (unlikely(IS_DEADDIR(dir))) {
1330 dput(dentry);
1331 return ERR_PTR(-ENOENT);
1332 }
1333
1334 old = dir->i_op->lookup(dir, dentry, flags);
1335 if (unlikely(old)) {
1336 dput(dentry);
1337 dentry = old;
1338 }
1339 return dentry;
1340 }
1341
1342 static struct dentry *__lookup_hash(struct qstr *name,
1343 struct dentry *base, unsigned int flags)
1344 {
1345 bool need_lookup;
1346 struct dentry *dentry;
1347
1348 dentry = lookup_dcache(name, base, flags, &need_lookup);
1349 if (!need_lookup)
1350 return dentry;
1351
1352 return lookup_real(base->d_inode, dentry, flags);
1353 }
1354
1355 /*
1356 * It's more convoluted than I'd like it to be, but... it's still fairly
1357 * small and for now I'd prefer to have fast path as straight as possible.
1358 * It _is_ time-critical.
1359 */
1360 static int lookup_fast(struct nameidata *nd,
1361 struct path *path, struct inode **inode)
1362 {
1363 struct vfsmount *mnt = nd->path.mnt;
1364 struct dentry *dentry, *parent = nd->path.dentry;
1365 int need_reval = 1;
1366 int status = 1;
1367 int err;
1368
1369 /*
1370 * Rename seqlock is not required here because in the off chance
1371 * of a false negative due to a concurrent rename, we're going to
1372 * do the non-racy lookup, below.
1373 */
1374 if (nd->flags & LOOKUP_RCU) {
1375 unsigned seq;
1376 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1377 if (!dentry)
1378 goto unlazy;
1379
1380 /*
1381 * This sequence count validates that the inode matches
1382 * the dentry name information from lookup.
1383 */
1384 *inode = dentry->d_inode;
1385 if (read_seqcount_retry(&dentry->d_seq, seq))
1386 return -ECHILD;
1387
1388 /*
1389 * This sequence count validates that the parent had no
1390 * changes while we did the lookup of the dentry above.
1391 *
1392 * The memory barrier in read_seqcount_begin of child is
1393 * enough, we can use __read_seqcount_retry here.
1394 */
1395 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1396 return -ECHILD;
1397 nd->seq = seq;
1398
1399 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1400 status = d_revalidate(dentry, nd->flags);
1401 if (unlikely(status <= 0)) {
1402 if (status != -ECHILD)
1403 need_reval = 0;
1404 goto unlazy;
1405 }
1406 }
1407 path->mnt = mnt;
1408 path->dentry = dentry;
1409 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1410 goto unlazy;
1411 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1412 goto unlazy;
1413 return 0;
1414 unlazy:
1415 if (unlazy_walk(nd, dentry))
1416 return -ECHILD;
1417 } else {
1418 dentry = __d_lookup(parent, &nd->last);
1419 }
1420
1421 if (unlikely(!dentry))
1422 goto need_lookup;
1423
1424 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1425 status = d_revalidate(dentry, nd->flags);
1426 if (unlikely(status <= 0)) {
1427 if (status < 0) {
1428 dput(dentry);
1429 return status;
1430 }
1431 if (!d_invalidate(dentry)) {
1432 dput(dentry);
1433 goto need_lookup;
1434 }
1435 }
1436
1437 path->mnt = mnt;
1438 path->dentry = dentry;
1439 err = follow_managed(path, nd->flags);
1440 if (unlikely(err < 0)) {
1441 path_put_conditional(path, nd);
1442 return err;
1443 }
1444 if (err)
1445 nd->flags |= LOOKUP_JUMPED;
1446 *inode = path->dentry->d_inode;
1447 return 0;
1448
1449 need_lookup:
1450 return 1;
1451 }
1452
1453 /* Fast lookup failed, do it the slow way */
1454 static int lookup_slow(struct nameidata *nd, struct path *path)
1455 {
1456 struct dentry *dentry, *parent;
1457 int err;
1458
1459 parent = nd->path.dentry;
1460 BUG_ON(nd->inode != parent->d_inode);
1461
1462 mutex_lock(&parent->d_inode->i_mutex);
1463 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1464 mutex_unlock(&parent->d_inode->i_mutex);
1465 if (IS_ERR(dentry))
1466 return PTR_ERR(dentry);
1467 path->mnt = nd->path.mnt;
1468 path->dentry = dentry;
1469 err = follow_managed(path, nd->flags);
1470 if (unlikely(err < 0)) {
1471 path_put_conditional(path, nd);
1472 return err;
1473 }
1474 if (err)
1475 nd->flags |= LOOKUP_JUMPED;
1476 return 0;
1477 }
1478
1479 static inline int may_lookup(struct nameidata *nd)
1480 {
1481 if (nd->flags & LOOKUP_RCU) {
1482 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1483 if (err != -ECHILD)
1484 return err;
1485 if (unlazy_walk(nd, NULL))
1486 return -ECHILD;
1487 }
1488 return inode_permission(nd->inode, MAY_EXEC);
1489 }
1490
1491 static inline int handle_dots(struct nameidata *nd, int type)
1492 {
1493 if (type == LAST_DOTDOT) {
1494 if (nd->flags & LOOKUP_RCU) {
1495 if (follow_dotdot_rcu(nd))
1496 return -ECHILD;
1497 } else
1498 follow_dotdot(nd);
1499 }
1500 return 0;
1501 }
1502
1503 static void terminate_walk(struct nameidata *nd)
1504 {
1505 if (!(nd->flags & LOOKUP_RCU)) {
1506 path_put(&nd->path);
1507 } else {
1508 nd->flags &= ~LOOKUP_RCU;
1509 if (!(nd->flags & LOOKUP_ROOT))
1510 nd->root.mnt = NULL;
1511 unlock_rcu_walk();
1512 }
1513 }
1514
1515 /*
1516 * Do we need to follow links? We _really_ want to be able
1517 * to do this check without having to look at inode->i_op,
1518 * so we keep a cache of "no, this doesn't need follow_link"
1519 * for the common case.
1520 */
1521 static inline int should_follow_link(struct inode *inode, int follow)
1522 {
1523 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1524 if (likely(inode->i_op->follow_link))
1525 return follow;
1526
1527 /* This gets set once for the inode lifetime */
1528 spin_lock(&inode->i_lock);
1529 inode->i_opflags |= IOP_NOFOLLOW;
1530 spin_unlock(&inode->i_lock);
1531 }
1532 return 0;
1533 }
1534
1535 static inline int walk_component(struct nameidata *nd, struct path *path,
1536 int follow)
1537 {
1538 struct inode *inode;
1539 int err;
1540 /*
1541 * "." and ".." are special - ".." especially so because it has
1542 * to be able to know about the current root directory and
1543 * parent relationships.
1544 */
1545 if (unlikely(nd->last_type != LAST_NORM))
1546 return handle_dots(nd, nd->last_type);
1547 err = lookup_fast(nd, path, &inode);
1548 if (unlikely(err)) {
1549 if (err < 0)
1550 goto out_err;
1551
1552 err = lookup_slow(nd, path);
1553 if (err < 0)
1554 goto out_err;
1555
1556 inode = path->dentry->d_inode;
1557 }
1558 err = -ENOENT;
1559 if (!inode)
1560 goto out_path_put;
1561
1562 if (should_follow_link(inode, follow)) {
1563 if (nd->flags & LOOKUP_RCU) {
1564 if (unlikely(unlazy_walk(nd, path->dentry))) {
1565 err = -ECHILD;
1566 goto out_err;
1567 }
1568 }
1569 BUG_ON(inode != path->dentry->d_inode);
1570 return 1;
1571 }
1572 path_to_nameidata(path, nd);
1573 nd->inode = inode;
1574 return 0;
1575
1576 out_path_put:
1577 path_to_nameidata(path, nd);
1578 out_err:
1579 terminate_walk(nd);
1580 return err;
1581 }
1582
1583 /*
1584 * This limits recursive symlink follows to 8, while
1585 * limiting consecutive symlinks to 40.
1586 *
1587 * Without that kind of total limit, nasty chains of consecutive
1588 * symlinks can cause almost arbitrarily long lookups.
1589 */
1590 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1591 {
1592 int res;
1593
1594 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1595 path_put_conditional(path, nd);
1596 path_put(&nd->path);
1597 return -ELOOP;
1598 }
1599 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1600
1601 nd->depth++;
1602 current->link_count++;
1603
1604 do {
1605 struct path link = *path;
1606 void *cookie;
1607
1608 res = follow_link(&link, nd, &cookie);
1609 if (res)
1610 break;
1611 res = walk_component(nd, path, LOOKUP_FOLLOW);
1612 put_link(nd, &link, cookie);
1613 } while (res > 0);
1614
1615 current->link_count--;
1616 nd->depth--;
1617 return res;
1618 }
1619
1620 /*
1621 * We really don't want to look at inode->i_op->lookup
1622 * when we don't have to. So we keep a cache bit in
1623 * the inode ->i_opflags field that says "yes, we can
1624 * do lookup on this inode".
1625 */
1626 static inline int can_lookup(struct inode *inode)
1627 {
1628 if (likely(inode->i_opflags & IOP_LOOKUP))
1629 return 1;
1630 if (likely(!inode->i_op->lookup))
1631 return 0;
1632
1633 /* We do this once for the lifetime of the inode */
1634 spin_lock(&inode->i_lock);
1635 inode->i_opflags |= IOP_LOOKUP;
1636 spin_unlock(&inode->i_lock);
1637 return 1;
1638 }
1639
1640 /*
1641 * We can do the critical dentry name comparison and hashing
1642 * operations one word at a time, but we are limited to:
1643 *
1644 * - Architectures with fast unaligned word accesses. We could
1645 * do a "get_unaligned()" if this helps and is sufficiently
1646 * fast.
1647 *
1648 * - Little-endian machines (so that we can generate the mask
1649 * of low bytes efficiently). Again, we *could* do a byte
1650 * swapping load on big-endian architectures if that is not
1651 * expensive enough to make the optimization worthless.
1652 *
1653 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1654 * do not trap on the (extremely unlikely) case of a page
1655 * crossing operation.
1656 *
1657 * - Furthermore, we need an efficient 64-bit compile for the
1658 * 64-bit case in order to generate the "number of bytes in
1659 * the final mask". Again, that could be replaced with a
1660 * efficient population count instruction or similar.
1661 */
1662 #ifdef CONFIG_DCACHE_WORD_ACCESS
1663
1664 #include <asm/word-at-a-time.h>
1665
1666 #ifdef CONFIG_64BIT
1667
1668 static inline unsigned int fold_hash(unsigned long hash)
1669 {
1670 hash += hash >> (8*sizeof(int));
1671 return hash;
1672 }
1673
1674 #else /* 32-bit case */
1675
1676 #define fold_hash(x) (x)
1677
1678 #endif
1679
1680 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1681 {
1682 unsigned long a, mask;
1683 unsigned long hash = 0;
1684
1685 for (;;) {
1686 a = load_unaligned_zeropad(name);
1687 if (len < sizeof(unsigned long))
1688 break;
1689 hash += a;
1690 hash *= 9;
1691 name += sizeof(unsigned long);
1692 len -= sizeof(unsigned long);
1693 if (!len)
1694 goto done;
1695 }
1696 mask = ~(~0ul << len*8);
1697 hash += mask & a;
1698 done:
1699 return fold_hash(hash);
1700 }
1701 EXPORT_SYMBOL(full_name_hash);
1702
1703 /*
1704 * Calculate the length and hash of the path component, and
1705 * return the length of the component;
1706 */
1707 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1708 {
1709 unsigned long a, b, adata, bdata, mask, hash, len;
1710 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1711
1712 hash = a = 0;
1713 len = -sizeof(unsigned long);
1714 do {
1715 hash = (hash + a) * 9;
1716 len += sizeof(unsigned long);
1717 a = load_unaligned_zeropad(name+len);
1718 b = a ^ REPEAT_BYTE('/');
1719 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1720
1721 adata = prep_zero_mask(a, adata, &constants);
1722 bdata = prep_zero_mask(b, bdata, &constants);
1723
1724 mask = create_zero_mask(adata | bdata);
1725
1726 hash += a & zero_bytemask(mask);
1727 *hashp = fold_hash(hash);
1728
1729 return len + find_zero(mask);
1730 }
1731
1732 #else
1733
1734 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1735 {
1736 unsigned long hash = init_name_hash();
1737 while (len--)
1738 hash = partial_name_hash(*name++, hash);
1739 return end_name_hash(hash);
1740 }
1741 EXPORT_SYMBOL(full_name_hash);
1742
1743 /*
1744 * We know there's a real path component here of at least
1745 * one character.
1746 */
1747 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1748 {
1749 unsigned long hash = init_name_hash();
1750 unsigned long len = 0, c;
1751
1752 c = (unsigned char)*name;
1753 do {
1754 len++;
1755 hash = partial_name_hash(c, hash);
1756 c = (unsigned char)name[len];
1757 } while (c && c != '/');
1758 *hashp = end_name_hash(hash);
1759 return len;
1760 }
1761
1762 #endif
1763
1764 /*
1765 * Name resolution.
1766 * This is the basic name resolution function, turning a pathname into
1767 * the final dentry. We expect 'base' to be positive and a directory.
1768 *
1769 * Returns 0 and nd will have valid dentry and mnt on success.
1770 * Returns error and drops reference to input namei data on failure.
1771 */
1772 static int link_path_walk(const char *name, struct nameidata *nd)
1773 {
1774 struct path next;
1775 int err;
1776
1777 while (*name=='/')
1778 name++;
1779 if (!*name)
1780 return 0;
1781
1782 /* At this point we know we have a real path component. */
1783 for(;;) {
1784 struct qstr this;
1785 long len;
1786 int type;
1787
1788 err = may_lookup(nd);
1789 if (err)
1790 break;
1791
1792 len = hash_name(name, &this.hash);
1793 this.name = name;
1794 this.len = len;
1795
1796 type = LAST_NORM;
1797 if (name[0] == '.') switch (len) {
1798 case 2:
1799 if (name[1] == '.') {
1800 type = LAST_DOTDOT;
1801 nd->flags |= LOOKUP_JUMPED;
1802 }
1803 break;
1804 case 1:
1805 type = LAST_DOT;
1806 }
1807 if (likely(type == LAST_NORM)) {
1808 struct dentry *parent = nd->path.dentry;
1809 nd->flags &= ~LOOKUP_JUMPED;
1810 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1811 err = parent->d_op->d_hash(parent, &this);
1812 if (err < 0)
1813 break;
1814 }
1815 }
1816
1817 nd->last = this;
1818 nd->last_type = type;
1819
1820 if (!name[len])
1821 return 0;
1822 /*
1823 * If it wasn't NUL, we know it was '/'. Skip that
1824 * slash, and continue until no more slashes.
1825 */
1826 do {
1827 len++;
1828 } while (unlikely(name[len] == '/'));
1829 if (!name[len])
1830 return 0;
1831
1832 name += len;
1833
1834 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1835 if (err < 0)
1836 return err;
1837
1838 if (err) {
1839 err = nested_symlink(&next, nd);
1840 if (err)
1841 return err;
1842 }
1843 if (!can_lookup(nd->inode)) {
1844 err = -ENOTDIR;
1845 break;
1846 }
1847 }
1848 terminate_walk(nd);
1849 return err;
1850 }
1851
1852 static int path_init(int dfd, const char *name, unsigned int flags,
1853 struct nameidata *nd, struct file **fp)
1854 {
1855 int retval = 0;
1856
1857 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1858 nd->flags = flags | LOOKUP_JUMPED;
1859 nd->depth = 0;
1860 if (flags & LOOKUP_ROOT) {
1861 struct inode *inode = nd->root.dentry->d_inode;
1862 if (*name) {
1863 if (!can_lookup(inode))
1864 return -ENOTDIR;
1865 retval = inode_permission(inode, MAY_EXEC);
1866 if (retval)
1867 return retval;
1868 }
1869 nd->path = nd->root;
1870 nd->inode = inode;
1871 if (flags & LOOKUP_RCU) {
1872 lock_rcu_walk();
1873 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1874 } else {
1875 path_get(&nd->path);
1876 }
1877 return 0;
1878 }
1879
1880 nd->root.mnt = NULL;
1881
1882 if (*name=='/') {
1883 if (flags & LOOKUP_RCU) {
1884 lock_rcu_walk();
1885 set_root_rcu(nd);
1886 } else {
1887 set_root(nd);
1888 path_get(&nd->root);
1889 }
1890 nd->path = nd->root;
1891 } else if (dfd == AT_FDCWD) {
1892 if (flags & LOOKUP_RCU) {
1893 struct fs_struct *fs = current->fs;
1894 unsigned seq;
1895
1896 lock_rcu_walk();
1897
1898 do {
1899 seq = read_seqcount_begin(&fs->seq);
1900 nd->path = fs->pwd;
1901 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1902 } while (read_seqcount_retry(&fs->seq, seq));
1903 } else {
1904 get_fs_pwd(current->fs, &nd->path);
1905 }
1906 } else {
1907 /* Caller must check execute permissions on the starting path component */
1908 struct fd f = fdget_raw(dfd);
1909 struct dentry *dentry;
1910
1911 if (!f.file)
1912 return -EBADF;
1913
1914 dentry = f.file->f_path.dentry;
1915
1916 if (*name) {
1917 if (!can_lookup(dentry->d_inode)) {
1918 fdput(f);
1919 return -ENOTDIR;
1920 }
1921 }
1922
1923 nd->path = f.file->f_path;
1924 if (flags & LOOKUP_RCU) {
1925 if (f.need_put)
1926 *fp = f.file;
1927 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1928 lock_rcu_walk();
1929 } else {
1930 path_get(&nd->path);
1931 fdput(f);
1932 }
1933 }
1934
1935 nd->inode = nd->path.dentry->d_inode;
1936 return 0;
1937 }
1938
1939 static inline int lookup_last(struct nameidata *nd, struct path *path)
1940 {
1941 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1942 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1943
1944 nd->flags &= ~LOOKUP_PARENT;
1945 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1946 }
1947
1948 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1949 static int path_lookupat(int dfd, const char *name,
1950 unsigned int flags, struct nameidata *nd)
1951 {
1952 struct file *base = NULL;
1953 struct path path;
1954 int err;
1955
1956 /*
1957 * Path walking is largely split up into 2 different synchronisation
1958 * schemes, rcu-walk and ref-walk (explained in
1959 * Documentation/filesystems/path-lookup.txt). These share much of the
1960 * path walk code, but some things particularly setup, cleanup, and
1961 * following mounts are sufficiently divergent that functions are
1962 * duplicated. Typically there is a function foo(), and its RCU
1963 * analogue, foo_rcu().
1964 *
1965 * -ECHILD is the error number of choice (just to avoid clashes) that
1966 * is returned if some aspect of an rcu-walk fails. Such an error must
1967 * be handled by restarting a traditional ref-walk (which will always
1968 * be able to complete).
1969 */
1970 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1971
1972 if (unlikely(err))
1973 return err;
1974
1975 current->total_link_count = 0;
1976 err = link_path_walk(name, nd);
1977
1978 if (!err && !(flags & LOOKUP_PARENT)) {
1979 err = lookup_last(nd, &path);
1980 while (err > 0) {
1981 void *cookie;
1982 struct path link = path;
1983 err = may_follow_link(&link, nd);
1984 if (unlikely(err))
1985 break;
1986 nd->flags |= LOOKUP_PARENT;
1987 err = follow_link(&link, nd, &cookie);
1988 if (err)
1989 break;
1990 err = lookup_last(nd, &path);
1991 put_link(nd, &link, cookie);
1992 }
1993 }
1994
1995 if (!err)
1996 err = complete_walk(nd);
1997
1998 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1999 if (!can_lookup(nd->inode)) {
2000 path_put(&nd->path);
2001 err = -ENOTDIR;
2002 }
2003 }
2004
2005 if (base)
2006 fput(base);
2007
2008 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
2009 path_put(&nd->root);
2010 nd->root.mnt = NULL;
2011 }
2012 return err;
2013 }
2014
2015 static int filename_lookup(int dfd, struct filename *name,
2016 unsigned int flags, struct nameidata *nd)
2017 {
2018 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2019 if (unlikely(retval == -ECHILD))
2020 retval = path_lookupat(dfd, name->name, flags, nd);
2021 if (unlikely(retval == -ESTALE))
2022 retval = path_lookupat(dfd, name->name,
2023 flags | LOOKUP_REVAL, nd);
2024
2025 if (likely(!retval))
2026 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2027 return retval;
2028 }
2029
2030 static int do_path_lookup(int dfd, const char *name,
2031 unsigned int flags, struct nameidata *nd)
2032 {
2033 struct filename filename = { .name = name };
2034
2035 return filename_lookup(dfd, &filename, flags, nd);
2036 }
2037
2038 /* does lookup, returns the object with parent locked */
2039 struct dentry *kern_path_locked(const char *name, struct path *path)
2040 {
2041 struct nameidata nd;
2042 struct dentry *d;
2043 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2044 if (err)
2045 return ERR_PTR(err);
2046 if (nd.last_type != LAST_NORM) {
2047 path_put(&nd.path);
2048 return ERR_PTR(-EINVAL);
2049 }
2050 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2051 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2052 if (IS_ERR(d)) {
2053 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2054 path_put(&nd.path);
2055 return d;
2056 }
2057 *path = nd.path;
2058 return d;
2059 }
2060
2061 int kern_path(const char *name, unsigned int flags, struct path *path)
2062 {
2063 struct nameidata nd;
2064 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2065 if (!res)
2066 *path = nd.path;
2067 return res;
2068 }
2069
2070 /**
2071 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2072 * @dentry: pointer to dentry of the base directory
2073 * @mnt: pointer to vfs mount of the base directory
2074 * @name: pointer to file name
2075 * @flags: lookup flags
2076 * @path: pointer to struct path to fill
2077 */
2078 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2079 const char *name, unsigned int flags,
2080 struct path *path)
2081 {
2082 struct nameidata nd;
2083 int err;
2084 nd.root.dentry = dentry;
2085 nd.root.mnt = mnt;
2086 BUG_ON(flags & LOOKUP_PARENT);
2087 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2088 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2089 if (!err)
2090 *path = nd.path;
2091 return err;
2092 }
2093
2094 /*
2095 * Restricted form of lookup. Doesn't follow links, single-component only,
2096 * needs parent already locked. Doesn't follow mounts.
2097 * SMP-safe.
2098 */
2099 static struct dentry *lookup_hash(struct nameidata *nd)
2100 {
2101 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2102 }
2103
2104 /**
2105 * lookup_one_len - filesystem helper to lookup single pathname component
2106 * @name: pathname component to lookup
2107 * @base: base directory to lookup from
2108 * @len: maximum length @len should be interpreted to
2109 *
2110 * Note that this routine is purely a helper for filesystem usage and should
2111 * not be called by generic code. Also note that by using this function the
2112 * nameidata argument is passed to the filesystem methods and a filesystem
2113 * using this helper needs to be prepared for that.
2114 */
2115 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2116 {
2117 struct qstr this;
2118 unsigned int c;
2119 int err;
2120
2121 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2122
2123 this.name = name;
2124 this.len = len;
2125 this.hash = full_name_hash(name, len);
2126 if (!len)
2127 return ERR_PTR(-EACCES);
2128
2129 if (unlikely(name[0] == '.')) {
2130 if (len < 2 || (len == 2 && name[1] == '.'))
2131 return ERR_PTR(-EACCES);
2132 }
2133
2134 while (len--) {
2135 c = *(const unsigned char *)name++;
2136 if (c == '/' || c == '\0')
2137 return ERR_PTR(-EACCES);
2138 }
2139 /*
2140 * See if the low-level filesystem might want
2141 * to use its own hash..
2142 */
2143 if (base->d_flags & DCACHE_OP_HASH) {
2144 int err = base->d_op->d_hash(base, &this);
2145 if (err < 0)
2146 return ERR_PTR(err);
2147 }
2148
2149 err = inode_permission(base->d_inode, MAY_EXEC);
2150 if (err)
2151 return ERR_PTR(err);
2152
2153 return __lookup_hash(&this, base, 0);
2154 }
2155
2156 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2157 struct path *path, int *empty)
2158 {
2159 struct nameidata nd;
2160 struct filename *tmp = getname_flags(name, flags, empty);
2161 int err = PTR_ERR(tmp);
2162 if (!IS_ERR(tmp)) {
2163
2164 BUG_ON(flags & LOOKUP_PARENT);
2165
2166 err = filename_lookup(dfd, tmp, flags, &nd);
2167 putname(tmp);
2168 if (!err)
2169 *path = nd.path;
2170 }
2171 return err;
2172 }
2173
2174 int user_path_at(int dfd, const char __user *name, unsigned flags,
2175 struct path *path)
2176 {
2177 return user_path_at_empty(dfd, name, flags, path, NULL);
2178 }
2179
2180 /*
2181 * NB: most callers don't do anything directly with the reference to the
2182 * to struct filename, but the nd->last pointer points into the name string
2183 * allocated by getname. So we must hold the reference to it until all
2184 * path-walking is complete.
2185 */
2186 static struct filename *
2187 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2188 unsigned int flags)
2189 {
2190 struct filename *s = getname(path);
2191 int error;
2192
2193 /* only LOOKUP_REVAL is allowed in extra flags */
2194 flags &= LOOKUP_REVAL;
2195
2196 if (IS_ERR(s))
2197 return s;
2198
2199 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2200 if (error) {
2201 putname(s);
2202 return ERR_PTR(error);
2203 }
2204
2205 return s;
2206 }
2207
2208 /**
2209 * umount_lookup_last - look up last component for umount
2210 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2211 * @path: pointer to container for result
2212 *
2213 * This is a special lookup_last function just for umount. In this case, we
2214 * need to resolve the path without doing any revalidation.
2215 *
2216 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2217 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2218 * in almost all cases, this lookup will be served out of the dcache. The only
2219 * cases where it won't are if nd->last refers to a symlink or the path is
2220 * bogus and it doesn't exist.
2221 *
2222 * Returns:
2223 * -error: if there was an error during lookup. This includes -ENOENT if the
2224 * lookup found a negative dentry. The nd->path reference will also be
2225 * put in this case.
2226 *
2227 * 0: if we successfully resolved nd->path and found it to not to be a
2228 * symlink that needs to be followed. "path" will also be populated.
2229 * The nd->path reference will also be put.
2230 *
2231 * 1: if we successfully resolved nd->last and found it to be a symlink
2232 * that needs to be followed. "path" will be populated with the path
2233 * to the link, and nd->path will *not* be put.
2234 */
2235 static int
2236 umount_lookup_last(struct nameidata *nd, struct path *path)
2237 {
2238 int error = 0;
2239 struct dentry *dentry;
2240 struct dentry *dir = nd->path.dentry;
2241
2242 if (unlikely(nd->flags & LOOKUP_RCU)) {
2243 WARN_ON_ONCE(1);
2244 error = -ECHILD;
2245 goto error_check;
2246 }
2247
2248 nd->flags &= ~LOOKUP_PARENT;
2249
2250 if (unlikely(nd->last_type != LAST_NORM)) {
2251 error = handle_dots(nd, nd->last_type);
2252 if (!error)
2253 dentry = dget(nd->path.dentry);
2254 goto error_check;
2255 }
2256
2257 mutex_lock(&dir->d_inode->i_mutex);
2258 dentry = d_lookup(dir, &nd->last);
2259 if (!dentry) {
2260 /*
2261 * No cached dentry. Mounted dentries are pinned in the cache,
2262 * so that means that this dentry is probably a symlink or the
2263 * path doesn't actually point to a mounted dentry.
2264 */
2265 dentry = d_alloc(dir, &nd->last);
2266 if (!dentry) {
2267 error = -ENOMEM;
2268 } else {
2269 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2270 if (IS_ERR(dentry))
2271 error = PTR_ERR(dentry);
2272 }
2273 }
2274 mutex_unlock(&dir->d_inode->i_mutex);
2275
2276 error_check:
2277 if (!error) {
2278 if (!dentry->d_inode) {
2279 error = -ENOENT;
2280 dput(dentry);
2281 } else {
2282 path->dentry = dentry;
2283 path->mnt = mntget(nd->path.mnt);
2284 if (should_follow_link(dentry->d_inode,
2285 nd->flags & LOOKUP_FOLLOW))
2286 return 1;
2287 follow_mount(path);
2288 }
2289 }
2290 terminate_walk(nd);
2291 return error;
2292 }
2293
2294 /**
2295 * path_umountat - look up a path to be umounted
2296 * @dfd: directory file descriptor to start walk from
2297 * @name: full pathname to walk
2298 * @flags: lookup flags
2299 * @nd: pathwalk nameidata
2300 *
2301 * Look up the given name, but don't attempt to revalidate the last component.
2302 * Returns 0 and "path" will be valid on success; Retuns error otherwise.
2303 */
2304 static int
2305 path_umountat(int dfd, const char *name, struct path *path, unsigned int flags)
2306 {
2307 struct file *base = NULL;
2308 struct nameidata nd;
2309 int err;
2310
2311 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2312 if (unlikely(err))
2313 return err;
2314
2315 current->total_link_count = 0;
2316 err = link_path_walk(name, &nd);
2317 if (err)
2318 goto out;
2319
2320 /* If we're in rcuwalk, drop out of it to handle last component */
2321 if (nd.flags & LOOKUP_RCU) {
2322 err = unlazy_walk(&nd, NULL);
2323 if (err) {
2324 terminate_walk(&nd);
2325 goto out;
2326 }
2327 }
2328
2329 err = umount_lookup_last(&nd, path);
2330 while (err > 0) {
2331 void *cookie;
2332 struct path link = *path;
2333 err = may_follow_link(&link, &nd);
2334 if (unlikely(err))
2335 break;
2336 nd.flags |= LOOKUP_PARENT;
2337 err = follow_link(&link, &nd, &cookie);
2338 if (err)
2339 break;
2340 err = umount_lookup_last(&nd, path);
2341 put_link(&nd, &link, cookie);
2342 }
2343 out:
2344 if (base)
2345 fput(base);
2346
2347 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2348 path_put(&nd.root);
2349
2350 return err;
2351 }
2352
2353 /**
2354 * user_path_umountat - lookup a path from userland in order to umount it
2355 * @dfd: directory file descriptor
2356 * @name: pathname from userland
2357 * @flags: lookup flags
2358 * @path: pointer to container to hold result
2359 *
2360 * A umount is a special case for path walking. We're not actually interested
2361 * in the inode in this situation, and ESTALE errors can be a problem. We
2362 * simply want track down the dentry and vfsmount attached at the mountpoint
2363 * and avoid revalidating the last component.
2364 *
2365 * Returns 0 and populates "path" on success.
2366 */
2367 int
2368 user_path_umountat(int dfd, const char __user *name, unsigned int flags,
2369 struct path *path)
2370 {
2371 struct filename *s = getname(name);
2372 int error;
2373
2374 if (IS_ERR(s))
2375 return PTR_ERR(s);
2376
2377 error = path_umountat(dfd, s->name, path, flags | LOOKUP_RCU);
2378 if (unlikely(error == -ECHILD))
2379 error = path_umountat(dfd, s->name, path, flags);
2380 if (unlikely(error == -ESTALE))
2381 error = path_umountat(dfd, s->name, path, flags | LOOKUP_REVAL);
2382
2383 if (likely(!error))
2384 audit_inode(s, path->dentry, 0);
2385
2386 putname(s);
2387 return error;
2388 }
2389
2390 /*
2391 * It's inline, so penalty for filesystems that don't use sticky bit is
2392 * minimal.
2393 */
2394 static inline int check_sticky(struct inode *dir, struct inode *inode)
2395 {
2396 kuid_t fsuid = current_fsuid();
2397
2398 if (!(dir->i_mode & S_ISVTX))
2399 return 0;
2400 if (uid_eq(inode->i_uid, fsuid))
2401 return 0;
2402 if (uid_eq(dir->i_uid, fsuid))
2403 return 0;
2404 return !inode_capable(inode, CAP_FOWNER);
2405 }
2406
2407 /*
2408 * Check whether we can remove a link victim from directory dir, check
2409 * whether the type of victim is right.
2410 * 1. We can't do it if dir is read-only (done in permission())
2411 * 2. We should have write and exec permissions on dir
2412 * 3. We can't remove anything from append-only dir
2413 * 4. We can't do anything with immutable dir (done in permission())
2414 * 5. If the sticky bit on dir is set we should either
2415 * a. be owner of dir, or
2416 * b. be owner of victim, or
2417 * c. have CAP_FOWNER capability
2418 * 6. If the victim is append-only or immutable we can't do antyhing with
2419 * links pointing to it.
2420 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2421 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2422 * 9. We can't remove a root or mountpoint.
2423 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2424 * nfs_async_unlink().
2425 */
2426 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
2427 {
2428 int error;
2429
2430 if (!victim->d_inode)
2431 return -ENOENT;
2432
2433 BUG_ON(victim->d_parent->d_inode != dir);
2434 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2435
2436 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2437 if (error)
2438 return error;
2439 if (IS_APPEND(dir))
2440 return -EPERM;
2441 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
2442 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
2443 return -EPERM;
2444 if (isdir) {
2445 if (!S_ISDIR(victim->d_inode->i_mode))
2446 return -ENOTDIR;
2447 if (IS_ROOT(victim))
2448 return -EBUSY;
2449 } else if (S_ISDIR(victim->d_inode->i_mode))
2450 return -EISDIR;
2451 if (IS_DEADDIR(dir))
2452 return -ENOENT;
2453 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2454 return -EBUSY;
2455 return 0;
2456 }
2457
2458 /* Check whether we can create an object with dentry child in directory
2459 * dir.
2460 * 1. We can't do it if child already exists (open has special treatment for
2461 * this case, but since we are inlined it's OK)
2462 * 2. We can't do it if dir is read-only (done in permission())
2463 * 3. We should have write and exec permissions on dir
2464 * 4. We can't do it if dir is immutable (done in permission())
2465 */
2466 static inline int may_create(struct inode *dir, struct dentry *child)
2467 {
2468 if (child->d_inode)
2469 return -EEXIST;
2470 if (IS_DEADDIR(dir))
2471 return -ENOENT;
2472 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2473 }
2474
2475 /*
2476 * p1 and p2 should be directories on the same fs.
2477 */
2478 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2479 {
2480 struct dentry *p;
2481
2482 if (p1 == p2) {
2483 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2484 return NULL;
2485 }
2486
2487 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2488
2489 p = d_ancestor(p2, p1);
2490 if (p) {
2491 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2492 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2493 return p;
2494 }
2495
2496 p = d_ancestor(p1, p2);
2497 if (p) {
2498 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2499 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2500 return p;
2501 }
2502
2503 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2504 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2505 return NULL;
2506 }
2507
2508 void unlock_rename(struct dentry *p1, struct dentry *p2)
2509 {
2510 mutex_unlock(&p1->d_inode->i_mutex);
2511 if (p1 != p2) {
2512 mutex_unlock(&p2->d_inode->i_mutex);
2513 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2514 }
2515 }
2516
2517 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2518 bool want_excl)
2519 {
2520 int error = may_create(dir, dentry);
2521 if (error)
2522 return error;
2523
2524 if (!dir->i_op->create)
2525 return -EACCES; /* shouldn't it be ENOSYS? */
2526 mode &= S_IALLUGO;
2527 mode |= S_IFREG;
2528 error = security_inode_create(dir, dentry, mode);
2529 if (error)
2530 return error;
2531 error = dir->i_op->create(dir, dentry, mode, want_excl);
2532 if (!error)
2533 fsnotify_create(dir, dentry);
2534 return error;
2535 }
2536
2537 static int may_open(struct path *path, int acc_mode, int flag)
2538 {
2539 struct dentry *dentry = path->dentry;
2540 struct inode *inode = dentry->d_inode;
2541 int error;
2542
2543 /* O_PATH? */
2544 if (!acc_mode)
2545 return 0;
2546
2547 if (!inode)
2548 return -ENOENT;
2549
2550 switch (inode->i_mode & S_IFMT) {
2551 case S_IFLNK:
2552 return -ELOOP;
2553 case S_IFDIR:
2554 if (acc_mode & MAY_WRITE)
2555 return -EISDIR;
2556 break;
2557 case S_IFBLK:
2558 case S_IFCHR:
2559 if (path->mnt->mnt_flags & MNT_NODEV)
2560 return -EACCES;
2561 /*FALLTHRU*/
2562 case S_IFIFO:
2563 case S_IFSOCK:
2564 flag &= ~O_TRUNC;
2565 break;
2566 }
2567
2568 error = inode_permission(inode, acc_mode);
2569 if (error)
2570 return error;
2571
2572 /*
2573 * An append-only file must be opened in append mode for writing.
2574 */
2575 if (IS_APPEND(inode)) {
2576 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2577 return -EPERM;
2578 if (flag & O_TRUNC)
2579 return -EPERM;
2580 }
2581
2582 /* O_NOATIME can only be set by the owner or superuser */
2583 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2584 return -EPERM;
2585
2586 return 0;
2587 }
2588
2589 static int handle_truncate(struct file *filp)
2590 {
2591 struct path *path = &filp->f_path;
2592 struct inode *inode = path->dentry->d_inode;
2593 int error = get_write_access(inode);
2594 if (error)
2595 return error;
2596 /*
2597 * Refuse to truncate files with mandatory locks held on them.
2598 */
2599 error = locks_verify_locked(inode);
2600 if (!error)
2601 error = security_path_truncate(path);
2602 if (!error) {
2603 error = do_truncate(path->dentry, 0,
2604 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2605 filp);
2606 }
2607 put_write_access(inode);
2608 return error;
2609 }
2610
2611 static inline int open_to_namei_flags(int flag)
2612 {
2613 if ((flag & O_ACCMODE) == 3)
2614 flag--;
2615 return flag;
2616 }
2617
2618 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2619 {
2620 int error = security_path_mknod(dir, dentry, mode, 0);
2621 if (error)
2622 return error;
2623
2624 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2625 if (error)
2626 return error;
2627
2628 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2629 }
2630
2631 /*
2632 * Attempt to atomically look up, create and open a file from a negative
2633 * dentry.
2634 *
2635 * Returns 0 if successful. The file will have been created and attached to
2636 * @file by the filesystem calling finish_open().
2637 *
2638 * Returns 1 if the file was looked up only or didn't need creating. The
2639 * caller will need to perform the open themselves. @path will have been
2640 * updated to point to the new dentry. This may be negative.
2641 *
2642 * Returns an error code otherwise.
2643 */
2644 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2645 struct path *path, struct file *file,
2646 const struct open_flags *op,
2647 bool got_write, bool need_lookup,
2648 int *opened)
2649 {
2650 struct inode *dir = nd->path.dentry->d_inode;
2651 unsigned open_flag = open_to_namei_flags(op->open_flag);
2652 umode_t mode;
2653 int error;
2654 int acc_mode;
2655 int create_error = 0;
2656 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2657
2658 BUG_ON(dentry->d_inode);
2659
2660 /* Don't create child dentry for a dead directory. */
2661 if (unlikely(IS_DEADDIR(dir))) {
2662 error = -ENOENT;
2663 goto out;
2664 }
2665
2666 mode = op->mode;
2667 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2668 mode &= ~current_umask();
2669
2670 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) {
2671 open_flag &= ~O_TRUNC;
2672 *opened |= FILE_CREATED;
2673 }
2674
2675 /*
2676 * Checking write permission is tricky, bacuse we don't know if we are
2677 * going to actually need it: O_CREAT opens should work as long as the
2678 * file exists. But checking existence breaks atomicity. The trick is
2679 * to check access and if not granted clear O_CREAT from the flags.
2680 *
2681 * Another problem is returing the "right" error value (e.g. for an
2682 * O_EXCL open we want to return EEXIST not EROFS).
2683 */
2684 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2685 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2686 if (!(open_flag & O_CREAT)) {
2687 /*
2688 * No O_CREATE -> atomicity not a requirement -> fall
2689 * back to lookup + open
2690 */
2691 goto no_open;
2692 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2693 /* Fall back and fail with the right error */
2694 create_error = -EROFS;
2695 goto no_open;
2696 } else {
2697 /* No side effects, safe to clear O_CREAT */
2698 create_error = -EROFS;
2699 open_flag &= ~O_CREAT;
2700 }
2701 }
2702
2703 if (open_flag & O_CREAT) {
2704 error = may_o_create(&nd->path, dentry, mode);
2705 if (error) {
2706 create_error = error;
2707 if (open_flag & O_EXCL)
2708 goto no_open;
2709 open_flag &= ~O_CREAT;
2710 }
2711 }
2712
2713 if (nd->flags & LOOKUP_DIRECTORY)
2714 open_flag |= O_DIRECTORY;
2715
2716 file->f_path.dentry = DENTRY_NOT_SET;
2717 file->f_path.mnt = nd->path.mnt;
2718 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2719 opened);
2720 if (error < 0) {
2721 if (create_error && error == -ENOENT)
2722 error = create_error;
2723 goto out;
2724 }
2725
2726 acc_mode = op->acc_mode;
2727 if (*opened & FILE_CREATED) {
2728 fsnotify_create(dir, dentry);
2729 acc_mode = MAY_OPEN;
2730 }
2731
2732 if (error) { /* returned 1, that is */
2733 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2734 error = -EIO;
2735 goto out;
2736 }
2737 if (file->f_path.dentry) {
2738 dput(dentry);
2739 dentry = file->f_path.dentry;
2740 }
2741 if (create_error && dentry->d_inode == NULL) {
2742 error = create_error;
2743 goto out;
2744 }
2745 goto looked_up;
2746 }
2747
2748 /*
2749 * We didn't have the inode before the open, so check open permission
2750 * here.
2751 */
2752 error = may_open(&file->f_path, acc_mode, open_flag);
2753 if (error)
2754 fput(file);
2755
2756 out:
2757 dput(dentry);
2758 return error;
2759
2760 no_open:
2761 if (need_lookup) {
2762 dentry = lookup_real(dir, dentry, nd->flags);
2763 if (IS_ERR(dentry))
2764 return PTR_ERR(dentry);
2765
2766 if (create_error) {
2767 int open_flag = op->open_flag;
2768
2769 error = create_error;
2770 if ((open_flag & O_EXCL)) {
2771 if (!dentry->d_inode)
2772 goto out;
2773 } else if (!dentry->d_inode) {
2774 goto out;
2775 } else if ((open_flag & O_TRUNC) &&
2776 S_ISREG(dentry->d_inode->i_mode)) {
2777 goto out;
2778 }
2779 /* will fail later, go on to get the right error */
2780 }
2781 }
2782 looked_up:
2783 path->dentry = dentry;
2784 path->mnt = nd->path.mnt;
2785 return 1;
2786 }
2787
2788 /*
2789 * Look up and maybe create and open the last component.
2790 *
2791 * Must be called with i_mutex held on parent.
2792 *
2793 * Returns 0 if the file was successfully atomically created (if necessary) and
2794 * opened. In this case the file will be returned attached to @file.
2795 *
2796 * Returns 1 if the file was not completely opened at this time, though lookups
2797 * and creations will have been performed and the dentry returned in @path will
2798 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2799 * specified then a negative dentry may be returned.
2800 *
2801 * An error code is returned otherwise.
2802 *
2803 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2804 * cleared otherwise prior to returning.
2805 */
2806 static int lookup_open(struct nameidata *nd, struct path *path,
2807 struct file *file,
2808 const struct open_flags *op,
2809 bool got_write, int *opened)
2810 {
2811 struct dentry *dir = nd->path.dentry;
2812 struct inode *dir_inode = dir->d_inode;
2813 struct dentry *dentry;
2814 int error;
2815 bool need_lookup;
2816
2817 *opened &= ~FILE_CREATED;
2818 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2819 if (IS_ERR(dentry))
2820 return PTR_ERR(dentry);
2821
2822 /* Cached positive dentry: will open in f_op->open */
2823 if (!need_lookup && dentry->d_inode)
2824 goto out_no_open;
2825
2826 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2827 return atomic_open(nd, dentry, path, file, op, got_write,
2828 need_lookup, opened);
2829 }
2830
2831 if (need_lookup) {
2832 BUG_ON(dentry->d_inode);
2833
2834 dentry = lookup_real(dir_inode, dentry, nd->flags);
2835 if (IS_ERR(dentry))
2836 return PTR_ERR(dentry);
2837 }
2838
2839 /* Negative dentry, just create the file */
2840 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2841 umode_t mode = op->mode;
2842 if (!IS_POSIXACL(dir->d_inode))
2843 mode &= ~current_umask();
2844 /*
2845 * This write is needed to ensure that a
2846 * rw->ro transition does not occur between
2847 * the time when the file is created and when
2848 * a permanent write count is taken through
2849 * the 'struct file' in finish_open().
2850 */
2851 if (!got_write) {
2852 error = -EROFS;
2853 goto out_dput;
2854 }
2855 *opened |= FILE_CREATED;
2856 error = security_path_mknod(&nd->path, dentry, mode, 0);
2857 if (error)
2858 goto out_dput;
2859 error = vfs_create(dir->d_inode, dentry, mode,
2860 nd->flags & LOOKUP_EXCL);
2861 if (error)
2862 goto out_dput;
2863 }
2864 out_no_open:
2865 path->dentry = dentry;
2866 path->mnt = nd->path.mnt;
2867 return 1;
2868
2869 out_dput:
2870 dput(dentry);
2871 return error;
2872 }
2873
2874 /*
2875 * Handle the last step of open()
2876 */
2877 static int do_last(struct nameidata *nd, struct path *path,
2878 struct file *file, const struct open_flags *op,
2879 int *opened, struct filename *name)
2880 {
2881 struct dentry *dir = nd->path.dentry;
2882 int open_flag = op->open_flag;
2883 bool will_truncate = (open_flag & O_TRUNC) != 0;
2884 bool got_write = false;
2885 int acc_mode = op->acc_mode;
2886 struct inode *inode;
2887 bool symlink_ok = false;
2888 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2889 bool retried = false;
2890 int error;
2891
2892 nd->flags &= ~LOOKUP_PARENT;
2893 nd->flags |= op->intent;
2894
2895 if (nd->last_type != LAST_NORM) {
2896 error = handle_dots(nd, nd->last_type);
2897 if (error)
2898 return error;
2899 goto finish_open;
2900 }
2901
2902 if (!(open_flag & O_CREAT)) {
2903 if (nd->last.name[nd->last.len])
2904 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2905 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2906 symlink_ok = true;
2907 /* we _can_ be in RCU mode here */
2908 error = lookup_fast(nd, path, &inode);
2909 if (likely(!error))
2910 goto finish_lookup;
2911
2912 if (error < 0)
2913 goto out;
2914
2915 BUG_ON(nd->inode != dir->d_inode);
2916 } else {
2917 /* create side of things */
2918 /*
2919 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2920 * has been cleared when we got to the last component we are
2921 * about to look up
2922 */
2923 error = complete_walk(nd);
2924 if (error)
2925 return error;
2926
2927 audit_inode(name, dir, LOOKUP_PARENT);
2928 error = -EISDIR;
2929 /* trailing slashes? */
2930 if (nd->last.name[nd->last.len])
2931 goto out;
2932 }
2933
2934 retry_lookup:
2935 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2936 error = mnt_want_write(nd->path.mnt);
2937 if (!error)
2938 got_write = true;
2939 /*
2940 * do _not_ fail yet - we might not need that or fail with
2941 * a different error; let lookup_open() decide; we'll be
2942 * dropping this one anyway.
2943 */
2944 }
2945 mutex_lock(&dir->d_inode->i_mutex);
2946 error = lookup_open(nd, path, file, op, got_write, opened);
2947 mutex_unlock(&dir->d_inode->i_mutex);
2948
2949 if (error <= 0) {
2950 if (error)
2951 goto out;
2952
2953 if ((*opened & FILE_CREATED) ||
2954 !S_ISREG(file_inode(file)->i_mode))
2955 will_truncate = false;
2956
2957 audit_inode(name, file->f_path.dentry, 0);
2958 goto opened;
2959 }
2960
2961 if (*opened & FILE_CREATED) {
2962 /* Don't check for write permission, don't truncate */
2963 open_flag &= ~O_TRUNC;
2964 will_truncate = false;
2965 acc_mode = MAY_OPEN;
2966 path_to_nameidata(path, nd);
2967 goto finish_open_created;
2968 }
2969
2970 /*
2971 * create/update audit record if it already exists.
2972 */
2973 if (path->dentry->d_inode)
2974 audit_inode(name, path->dentry, 0);
2975
2976 /*
2977 * If atomic_open() acquired write access it is dropped now due to
2978 * possible mount and symlink following (this might be optimized away if
2979 * necessary...)
2980 */
2981 if (got_write) {
2982 mnt_drop_write(nd->path.mnt);
2983 got_write = false;
2984 }
2985
2986 error = -EEXIST;
2987 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2988 goto exit_dput;
2989
2990 error = follow_managed(path, nd->flags);
2991 if (error < 0)
2992 goto exit_dput;
2993
2994 if (error)
2995 nd->flags |= LOOKUP_JUMPED;
2996
2997 BUG_ON(nd->flags & LOOKUP_RCU);
2998 inode = path->dentry->d_inode;
2999 finish_lookup:
3000 /* we _can_ be in RCU mode here */
3001 error = -ENOENT;
3002 if (!inode) {
3003 path_to_nameidata(path, nd);
3004 goto out;
3005 }
3006
3007 if (should_follow_link(inode, !symlink_ok)) {
3008 if (nd->flags & LOOKUP_RCU) {
3009 if (unlikely(unlazy_walk(nd, path->dentry))) {
3010 error = -ECHILD;
3011 goto out;
3012 }
3013 }
3014 BUG_ON(inode != path->dentry->d_inode);
3015 return 1;
3016 }
3017
3018 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3019 path_to_nameidata(path, nd);
3020 } else {
3021 save_parent.dentry = nd->path.dentry;
3022 save_parent.mnt = mntget(path->mnt);
3023 nd->path.dentry = path->dentry;
3024
3025 }
3026 nd->inode = inode;
3027 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3028 finish_open:
3029 error = complete_walk(nd);
3030 if (error) {
3031 path_put(&save_parent);
3032 return error;
3033 }
3034 audit_inode(name, nd->path.dentry, 0);
3035 error = -EISDIR;
3036 if ((open_flag & O_CREAT) && S_ISDIR(nd->inode->i_mode))
3037 goto out;
3038 error = -ENOTDIR;
3039 if ((nd->flags & LOOKUP_DIRECTORY) && !can_lookup(nd->inode))
3040 goto out;
3041 if (!S_ISREG(nd->inode->i_mode))
3042 will_truncate = false;
3043
3044 if (will_truncate) {
3045 error = mnt_want_write(nd->path.mnt);
3046 if (error)
3047 goto out;
3048 got_write = true;
3049 }
3050 finish_open_created:
3051 error = may_open(&nd->path, acc_mode, open_flag);
3052 if (error)
3053 goto out;
3054 file->f_path.mnt = nd->path.mnt;
3055 error = finish_open(file, nd->path.dentry, NULL, opened);
3056 if (error) {
3057 if (error == -EOPENSTALE)
3058 goto stale_open;
3059 goto out;
3060 }
3061 opened:
3062 error = open_check_o_direct(file);
3063 if (error)
3064 goto exit_fput;
3065 error = ima_file_check(file, op->acc_mode);
3066 if (error)
3067 goto exit_fput;
3068
3069 if (will_truncate) {
3070 error = handle_truncate(file);
3071 if (error)
3072 goto exit_fput;
3073 }
3074 out:
3075 if (got_write)
3076 mnt_drop_write(nd->path.mnt);
3077 path_put(&save_parent);
3078 terminate_walk(nd);
3079 return error;
3080
3081 exit_dput:
3082 path_put_conditional(path, nd);
3083 goto out;
3084 exit_fput:
3085 fput(file);
3086 goto out;
3087
3088 stale_open:
3089 /* If no saved parent or already retried then can't retry */
3090 if (!save_parent.dentry || retried)
3091 goto out;
3092
3093 BUG_ON(save_parent.dentry != dir);
3094 path_put(&nd->path);
3095 nd->path = save_parent;
3096 nd->inode = dir->d_inode;
3097 save_parent.mnt = NULL;
3098 save_parent.dentry = NULL;
3099 if (got_write) {
3100 mnt_drop_write(nd->path.mnt);
3101 got_write = false;
3102 }
3103 retried = true;
3104 goto retry_lookup;
3105 }
3106
3107 static int do_tmpfile(int dfd, struct filename *pathname,
3108 struct nameidata *nd, int flags,
3109 const struct open_flags *op,
3110 struct file *file, int *opened)
3111 {
3112 static const struct qstr name = QSTR_INIT("/", 1);
3113 struct dentry *dentry, *child;
3114 struct inode *dir;
3115 int error = path_lookupat(dfd, pathname->name,
3116 flags | LOOKUP_DIRECTORY, nd);
3117 if (unlikely(error))
3118 return error;
3119 error = mnt_want_write(nd->path.mnt);
3120 if (unlikely(error))
3121 goto out;
3122 /* we want directory to be writable */
3123 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3124 if (error)
3125 goto out2;
3126 dentry = nd->path.dentry;
3127 dir = dentry->d_inode;
3128 if (!dir->i_op->tmpfile) {
3129 error = -EOPNOTSUPP;
3130 goto out2;
3131 }
3132 child = d_alloc(dentry, &name);
3133 if (unlikely(!child)) {
3134 error = -ENOMEM;
3135 goto out2;
3136 }
3137 nd->flags &= ~LOOKUP_DIRECTORY;
3138 nd->flags |= op->intent;
3139 dput(nd->path.dentry);
3140 nd->path.dentry = child;
3141 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3142 if (error)
3143 goto out2;
3144 audit_inode(pathname, nd->path.dentry, 0);
3145 error = may_open(&nd->path, op->acc_mode, op->open_flag);
3146 if (error)
3147 goto out2;
3148 file->f_path.mnt = nd->path.mnt;
3149 error = finish_open(file, nd->path.dentry, NULL, opened);
3150 if (error)
3151 goto out2;
3152 error = open_check_o_direct(file);
3153 if (error) {
3154 fput(file);
3155 } else if (!(op->open_flag & O_EXCL)) {
3156 struct inode *inode = file_inode(file);
3157 spin_lock(&inode->i_lock);
3158 inode->i_state |= I_LINKABLE;
3159 spin_unlock(&inode->i_lock);
3160 }
3161 out2:
3162 mnt_drop_write(nd->path.mnt);
3163 out:
3164 path_put(&nd->path);
3165 return error;
3166 }
3167
3168 static struct file *path_openat(int dfd, struct filename *pathname,
3169 struct nameidata *nd, const struct open_flags *op, int flags)
3170 {
3171 struct file *base = NULL;
3172 struct file *file;
3173 struct path path;
3174 int opened = 0;
3175 int error;
3176
3177 file = get_empty_filp();
3178 if (IS_ERR(file))
3179 return file;
3180
3181 file->f_flags = op->open_flag;
3182
3183 if (unlikely(file->f_flags & __O_TMPFILE)) {
3184 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3185 goto out;
3186 }
3187
3188 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3189 if (unlikely(error))
3190 goto out;
3191
3192 current->total_link_count = 0;
3193 error = link_path_walk(pathname->name, nd);
3194 if (unlikely(error))
3195 goto out;
3196
3197 error = do_last(nd, &path, file, op, &opened, pathname);
3198 while (unlikely(error > 0)) { /* trailing symlink */
3199 struct path link = path;
3200 void *cookie;
3201 if (!(nd->flags & LOOKUP_FOLLOW)) {
3202 path_put_conditional(&path, nd);
3203 path_put(&nd->path);
3204 error = -ELOOP;
3205 break;
3206 }
3207 error = may_follow_link(&link, nd);
3208 if (unlikely(error))
3209 break;
3210 nd->flags |= LOOKUP_PARENT;
3211 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3212 error = follow_link(&link, nd, &cookie);
3213 if (unlikely(error))
3214 break;
3215 error = do_last(nd, &path, file, op, &opened, pathname);
3216 put_link(nd, &link, cookie);
3217 }
3218 out:
3219 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3220 path_put(&nd->root);
3221 if (base)
3222 fput(base);
3223 if (!(opened & FILE_OPENED)) {
3224 BUG_ON(!error);
3225 put_filp(file);
3226 }
3227 if (unlikely(error)) {
3228 if (error == -EOPENSTALE) {
3229 if (flags & LOOKUP_RCU)
3230 error = -ECHILD;
3231 else
3232 error = -ESTALE;
3233 }
3234 file = ERR_PTR(error);
3235 }
3236 return file;
3237 }
3238
3239 struct file *do_filp_open(int dfd, struct filename *pathname,
3240 const struct open_flags *op)
3241 {
3242 struct nameidata nd;
3243 int flags = op->lookup_flags;
3244 struct file *filp;
3245
3246 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3247 if (unlikely(filp == ERR_PTR(-ECHILD)))
3248 filp = path_openat(dfd, pathname, &nd, op, flags);
3249 if (unlikely(filp == ERR_PTR(-ESTALE)))
3250 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3251 return filp;
3252 }
3253
3254 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3255 const char *name, const struct open_flags *op)
3256 {
3257 struct nameidata nd;
3258 struct file *file;
3259 struct filename filename = { .name = name };
3260 int flags = op->lookup_flags | LOOKUP_ROOT;
3261
3262 nd.root.mnt = mnt;
3263 nd.root.dentry = dentry;
3264
3265 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
3266 return ERR_PTR(-ELOOP);
3267
3268 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3269 if (unlikely(file == ERR_PTR(-ECHILD)))
3270 file = path_openat(-1, &filename, &nd, op, flags);
3271 if (unlikely(file == ERR_PTR(-ESTALE)))
3272 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3273 return file;
3274 }
3275
3276 struct dentry *kern_path_create(int dfd, const char *pathname,
3277 struct path *path, unsigned int lookup_flags)
3278 {
3279 struct dentry *dentry = ERR_PTR(-EEXIST);
3280 struct nameidata nd;
3281 int err2;
3282 int error;
3283 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3284
3285 /*
3286 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3287 * other flags passed in are ignored!
3288 */
3289 lookup_flags &= LOOKUP_REVAL;
3290
3291 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3292 if (error)
3293 return ERR_PTR(error);
3294
3295 /*
3296 * Yucky last component or no last component at all?
3297 * (foo/., foo/.., /////)
3298 */
3299 if (nd.last_type != LAST_NORM)
3300 goto out;
3301 nd.flags &= ~LOOKUP_PARENT;
3302 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3303
3304 /* don't fail immediately if it's r/o, at least try to report other errors */
3305 err2 = mnt_want_write(nd.path.mnt);
3306 /*
3307 * Do the final lookup.
3308 */
3309 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3310 dentry = lookup_hash(&nd);
3311 if (IS_ERR(dentry))
3312 goto unlock;
3313
3314 error = -EEXIST;
3315 if (dentry->d_inode)
3316 goto fail;
3317 /*
3318 * Special case - lookup gave negative, but... we had foo/bar/
3319 * From the vfs_mknod() POV we just have a negative dentry -
3320 * all is fine. Let's be bastards - you had / on the end, you've
3321 * been asking for (non-existent) directory. -ENOENT for you.
3322 */
3323 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3324 error = -ENOENT;
3325 goto fail;
3326 }
3327 if (unlikely(err2)) {
3328 error = err2;
3329 goto fail;
3330 }
3331 *path = nd.path;
3332 return dentry;
3333 fail:
3334 dput(dentry);
3335 dentry = ERR_PTR(error);
3336 unlock:
3337 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3338 if (!err2)
3339 mnt_drop_write(nd.path.mnt);
3340 out:
3341 path_put(&nd.path);
3342 return dentry;
3343 }
3344 EXPORT_SYMBOL(kern_path_create);
3345
3346 void done_path_create(struct path *path, struct dentry *dentry)
3347 {
3348 dput(dentry);
3349 mutex_unlock(&path->dentry->d_inode->i_mutex);
3350 mnt_drop_write(path->mnt);
3351 path_put(path);
3352 }
3353 EXPORT_SYMBOL(done_path_create);
3354
3355 struct dentry *user_path_create(int dfd, const char __user *pathname,
3356 struct path *path, unsigned int lookup_flags)
3357 {
3358 struct filename *tmp = getname(pathname);
3359 struct dentry *res;
3360 if (IS_ERR(tmp))
3361 return ERR_CAST(tmp);
3362 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3363 putname(tmp);
3364 return res;
3365 }
3366 EXPORT_SYMBOL(user_path_create);
3367
3368 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3369 {
3370 int error = may_create(dir, dentry);
3371
3372 if (error)
3373 return error;
3374
3375 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3376 return -EPERM;
3377
3378 if (!dir->i_op->mknod)
3379 return -EPERM;
3380
3381 error = devcgroup_inode_mknod(mode, dev);
3382 if (error)
3383 return error;
3384
3385 error = security_inode_mknod(dir, dentry, mode, dev);
3386 if (error)
3387 return error;
3388
3389 error = dir->i_op->mknod(dir, dentry, mode, dev);
3390 if (!error)
3391 fsnotify_create(dir, dentry);
3392 return error;
3393 }
3394
3395 static int may_mknod(umode_t mode)
3396 {
3397 switch (mode & S_IFMT) {
3398 case S_IFREG:
3399 case S_IFCHR:
3400 case S_IFBLK:
3401 case S_IFIFO:
3402 case S_IFSOCK:
3403 case 0: /* zero mode translates to S_IFREG */
3404 return 0;
3405 case S_IFDIR:
3406 return -EPERM;
3407 default:
3408 return -EINVAL;
3409 }
3410 }
3411
3412 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3413 unsigned, dev)
3414 {
3415 struct dentry *dentry;
3416 struct path path;
3417 int error;
3418 unsigned int lookup_flags = 0;
3419
3420 error = may_mknod(mode);
3421 if (error)
3422 return error;
3423 retry:
3424 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3425 if (IS_ERR(dentry))
3426 return PTR_ERR(dentry);
3427
3428 if (!IS_POSIXACL(path.dentry->d_inode))
3429 mode &= ~current_umask();
3430 error = security_path_mknod(&path, dentry, mode, dev);
3431 if (error)
3432 goto out;
3433 switch (mode & S_IFMT) {
3434 case 0: case S_IFREG:
3435 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3436 break;
3437 case S_IFCHR: case S_IFBLK:
3438 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3439 new_decode_dev(dev));
3440 break;
3441 case S_IFIFO: case S_IFSOCK:
3442 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3443 break;
3444 }
3445 out:
3446 done_path_create(&path, dentry);
3447 if (retry_estale(error, lookup_flags)) {
3448 lookup_flags |= LOOKUP_REVAL;
3449 goto retry;
3450 }
3451 return error;
3452 }
3453
3454 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3455 {
3456 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3457 }
3458
3459 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3460 {
3461 int error = may_create(dir, dentry);
3462 unsigned max_links = dir->i_sb->s_max_links;
3463
3464 if (error)
3465 return error;
3466
3467 if (!dir->i_op->mkdir)
3468 return -EPERM;
3469
3470 mode &= (S_IRWXUGO|S_ISVTX);
3471 error = security_inode_mkdir(dir, dentry, mode);
3472 if (error)
3473 return error;
3474
3475 if (max_links && dir->i_nlink >= max_links)
3476 return -EMLINK;
3477
3478 error = dir->i_op->mkdir(dir, dentry, mode);
3479 if (!error)
3480 fsnotify_mkdir(dir, dentry);
3481 return error;
3482 }
3483
3484 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3485 {
3486 struct dentry *dentry;
3487 struct path path;
3488 int error;
3489 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3490
3491 retry:
3492 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3493 if (IS_ERR(dentry))
3494 return PTR_ERR(dentry);
3495
3496 if (!IS_POSIXACL(path.dentry->d_inode))
3497 mode &= ~current_umask();
3498 error = security_path_mkdir(&path, dentry, mode);
3499 if (!error)
3500 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3501 done_path_create(&path, dentry);
3502 if (retry_estale(error, lookup_flags)) {
3503 lookup_flags |= LOOKUP_REVAL;
3504 goto retry;
3505 }
3506 return error;
3507 }
3508
3509 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3510 {
3511 return sys_mkdirat(AT_FDCWD, pathname, mode);
3512 }
3513
3514 /*
3515 * The dentry_unhash() helper will try to drop the dentry early: we
3516 * should have a usage count of 1 if we're the only user of this
3517 * dentry, and if that is true (possibly after pruning the dcache),
3518 * then we drop the dentry now.
3519 *
3520 * A low-level filesystem can, if it choses, legally
3521 * do a
3522 *
3523 * if (!d_unhashed(dentry))
3524 * return -EBUSY;
3525 *
3526 * if it cannot handle the case of removing a directory
3527 * that is still in use by something else..
3528 */
3529 void dentry_unhash(struct dentry *dentry)
3530 {
3531 shrink_dcache_parent(dentry);
3532 spin_lock(&dentry->d_lock);
3533 if (dentry->d_lockref.count == 1)
3534 __d_drop(dentry);
3535 spin_unlock(&dentry->d_lock);
3536 }
3537
3538 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3539 {
3540 int error = may_delete(dir, dentry, 1);
3541
3542 if (error)
3543 return error;
3544
3545 if (!dir->i_op->rmdir)
3546 return -EPERM;
3547
3548 dget(dentry);
3549 mutex_lock(&dentry->d_inode->i_mutex);
3550
3551 error = -EBUSY;
3552 if (d_mountpoint(dentry))
3553 goto out;
3554
3555 error = security_inode_rmdir(dir, dentry);
3556 if (error)
3557 goto out;
3558
3559 shrink_dcache_parent(dentry);
3560 error = dir->i_op->rmdir(dir, dentry);
3561 if (error)
3562 goto out;
3563
3564 dentry->d_inode->i_flags |= S_DEAD;
3565 dont_mount(dentry);
3566
3567 out:
3568 mutex_unlock(&dentry->d_inode->i_mutex);
3569 dput(dentry);
3570 if (!error)
3571 d_delete(dentry);
3572 return error;
3573 }
3574
3575 static long do_rmdir(int dfd, const char __user *pathname)
3576 {
3577 int error = 0;
3578 struct filename *name;
3579 struct dentry *dentry;
3580 struct nameidata nd;
3581 unsigned int lookup_flags = 0;
3582 retry:
3583 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3584 if (IS_ERR(name))
3585 return PTR_ERR(name);
3586
3587 switch(nd.last_type) {
3588 case LAST_DOTDOT:
3589 error = -ENOTEMPTY;
3590 goto exit1;
3591 case LAST_DOT:
3592 error = -EINVAL;
3593 goto exit1;
3594 case LAST_ROOT:
3595 error = -EBUSY;
3596 goto exit1;
3597 }
3598
3599 nd.flags &= ~LOOKUP_PARENT;
3600 error = mnt_want_write(nd.path.mnt);
3601 if (error)
3602 goto exit1;
3603
3604 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3605 dentry = lookup_hash(&nd);
3606 error = PTR_ERR(dentry);
3607 if (IS_ERR(dentry))
3608 goto exit2;
3609 if (!dentry->d_inode) {
3610 error = -ENOENT;
3611 goto exit3;
3612 }
3613 error = security_path_rmdir(&nd.path, dentry);
3614 if (error)
3615 goto exit3;
3616 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3617 exit3:
3618 dput(dentry);
3619 exit2:
3620 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3621 mnt_drop_write(nd.path.mnt);
3622 exit1:
3623 path_put(&nd.path);
3624 putname(name);
3625 if (retry_estale(error, lookup_flags)) {
3626 lookup_flags |= LOOKUP_REVAL;
3627 goto retry;
3628 }
3629 return error;
3630 }
3631
3632 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3633 {
3634 return do_rmdir(AT_FDCWD, pathname);
3635 }
3636
3637 int vfs_unlink(struct inode *dir, struct dentry *dentry)
3638 {
3639 int error = may_delete(dir, dentry, 0);
3640
3641 if (error)
3642 return error;
3643
3644 if (!dir->i_op->unlink)
3645 return -EPERM;
3646
3647 mutex_lock(&dentry->d_inode->i_mutex);
3648 if (d_mountpoint(dentry))
3649 error = -EBUSY;
3650 else {
3651 error = security_inode_unlink(dir, dentry);
3652 if (!error) {
3653 error = dir->i_op->unlink(dir, dentry);
3654 if (!error)
3655 dont_mount(dentry);
3656 }
3657 }
3658 mutex_unlock(&dentry->d_inode->i_mutex);
3659
3660 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3661 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3662 fsnotify_link_count(dentry->d_inode);
3663 d_delete(dentry);
3664 }
3665
3666 return error;
3667 }
3668
3669 /*
3670 * Make sure that the actual truncation of the file will occur outside its
3671 * directory's i_mutex. Truncate can take a long time if there is a lot of
3672 * writeout happening, and we don't want to prevent access to the directory
3673 * while waiting on the I/O.
3674 */
3675 static long do_unlinkat(int dfd, const char __user *pathname)
3676 {
3677 int error;
3678 struct filename *name;
3679 struct dentry *dentry;
3680 struct nameidata nd;
3681 struct inode *inode = NULL;
3682 unsigned int lookup_flags = 0;
3683 retry:
3684 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3685 if (IS_ERR(name))
3686 return PTR_ERR(name);
3687
3688 error = -EISDIR;
3689 if (nd.last_type != LAST_NORM)
3690 goto exit1;
3691
3692 nd.flags &= ~LOOKUP_PARENT;
3693 error = mnt_want_write(nd.path.mnt);
3694 if (error)
3695 goto exit1;
3696
3697 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3698 dentry = lookup_hash(&nd);
3699 error = PTR_ERR(dentry);
3700 if (!IS_ERR(dentry)) {
3701 /* Why not before? Because we want correct error value */
3702 if (nd.last.name[nd.last.len])
3703 goto slashes;
3704 inode = dentry->d_inode;
3705 if (!inode)
3706 goto slashes;
3707 ihold(inode);
3708 error = security_path_unlink(&nd.path, dentry);
3709 if (error)
3710 goto exit2;
3711 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
3712 exit2:
3713 dput(dentry);
3714 }
3715 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3716 if (inode)
3717 iput(inode); /* truncate the inode here */
3718 mnt_drop_write(nd.path.mnt);
3719 exit1:
3720 path_put(&nd.path);
3721 putname(name);
3722 if (retry_estale(error, lookup_flags)) {
3723 lookup_flags |= LOOKUP_REVAL;
3724 inode = NULL;
3725 goto retry;
3726 }
3727 return error;
3728
3729 slashes:
3730 error = !dentry->d_inode ? -ENOENT :
3731 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
3732 goto exit2;
3733 }
3734
3735 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3736 {
3737 if ((flag & ~AT_REMOVEDIR) != 0)
3738 return -EINVAL;
3739
3740 if (flag & AT_REMOVEDIR)
3741 return do_rmdir(dfd, pathname);
3742
3743 return do_unlinkat(dfd, pathname);
3744 }
3745
3746 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3747 {
3748 return do_unlinkat(AT_FDCWD, pathname);
3749 }
3750
3751 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3752 {
3753 int error = may_create(dir, dentry);
3754
3755 if (error)
3756 return error;
3757
3758 if (!dir->i_op->symlink)
3759 return -EPERM;
3760
3761 error = security_inode_symlink(dir, dentry, oldname);
3762 if (error)
3763 return error;
3764
3765 error = dir->i_op->symlink(dir, dentry, oldname);
3766 if (!error)
3767 fsnotify_create(dir, dentry);
3768 return error;
3769 }
3770
3771 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3772 int, newdfd, const char __user *, newname)
3773 {
3774 int error;
3775 struct filename *from;
3776 struct dentry *dentry;
3777 struct path path;
3778 unsigned int lookup_flags = 0;
3779
3780 from = getname(oldname);
3781 if (IS_ERR(from))
3782 return PTR_ERR(from);
3783 retry:
3784 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3785 error = PTR_ERR(dentry);
3786 if (IS_ERR(dentry))
3787 goto out_putname;
3788
3789 error = security_path_symlink(&path, dentry, from->name);
3790 if (!error)
3791 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3792 done_path_create(&path, dentry);
3793 if (retry_estale(error, lookup_flags)) {
3794 lookup_flags |= LOOKUP_REVAL;
3795 goto retry;
3796 }
3797 out_putname:
3798 putname(from);
3799 return error;
3800 }
3801
3802 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3803 {
3804 return sys_symlinkat(oldname, AT_FDCWD, newname);
3805 }
3806
3807 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3808 {
3809 struct inode *inode = old_dentry->d_inode;
3810 unsigned max_links = dir->i_sb->s_max_links;
3811 int error;
3812
3813 if (!inode)
3814 return -ENOENT;
3815
3816 error = may_create(dir, new_dentry);
3817 if (error)
3818 return error;
3819
3820 if (dir->i_sb != inode->i_sb)
3821 return -EXDEV;
3822
3823 /*
3824 * A link to an append-only or immutable file cannot be created.
3825 */
3826 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3827 return -EPERM;
3828 if (!dir->i_op->link)
3829 return -EPERM;
3830 if (S_ISDIR(inode->i_mode))
3831 return -EPERM;
3832
3833 error = security_inode_link(old_dentry, dir, new_dentry);
3834 if (error)
3835 return error;
3836
3837 mutex_lock(&inode->i_mutex);
3838 /* Make sure we don't allow creating hardlink to an unlinked file */
3839 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3840 error = -ENOENT;
3841 else if (max_links && inode->i_nlink >= max_links)
3842 error = -EMLINK;
3843 else
3844 error = dir->i_op->link(old_dentry, dir, new_dentry);
3845
3846 if (!error && (inode->i_state & I_LINKABLE)) {
3847 spin_lock(&inode->i_lock);
3848 inode->i_state &= ~I_LINKABLE;
3849 spin_unlock(&inode->i_lock);
3850 }
3851 mutex_unlock(&inode->i_mutex);
3852 if (!error)
3853 fsnotify_link(dir, inode, new_dentry);
3854 return error;
3855 }
3856
3857 /*
3858 * Hardlinks are often used in delicate situations. We avoid
3859 * security-related surprises by not following symlinks on the
3860 * newname. --KAB
3861 *
3862 * We don't follow them on the oldname either to be compatible
3863 * with linux 2.0, and to avoid hard-linking to directories
3864 * and other special files. --ADM
3865 */
3866 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3867 int, newdfd, const char __user *, newname, int, flags)
3868 {
3869 struct dentry *new_dentry;
3870 struct path old_path, new_path;
3871 int how = 0;
3872 int error;
3873
3874 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3875 return -EINVAL;
3876 /*
3877 * To use null names we require CAP_DAC_READ_SEARCH
3878 * This ensures that not everyone will be able to create
3879 * handlink using the passed filedescriptor.
3880 */
3881 if (flags & AT_EMPTY_PATH) {
3882 if (!capable(CAP_DAC_READ_SEARCH))
3883 return -ENOENT;
3884 how = LOOKUP_EMPTY;
3885 }
3886
3887 if (flags & AT_SYMLINK_FOLLOW)
3888 how |= LOOKUP_FOLLOW;
3889 retry:
3890 error = user_path_at(olddfd, oldname, how, &old_path);
3891 if (error)
3892 return error;
3893
3894 new_dentry = user_path_create(newdfd, newname, &new_path,
3895 (how & LOOKUP_REVAL));
3896 error = PTR_ERR(new_dentry);
3897 if (IS_ERR(new_dentry))
3898 goto out;
3899
3900 error = -EXDEV;
3901 if (old_path.mnt != new_path.mnt)
3902 goto out_dput;
3903 error = may_linkat(&old_path);
3904 if (unlikely(error))
3905 goto out_dput;
3906 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3907 if (error)
3908 goto out_dput;
3909 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3910 out_dput:
3911 done_path_create(&new_path, new_dentry);
3912 if (retry_estale(error, how)) {
3913 how |= LOOKUP_REVAL;
3914 goto retry;
3915 }
3916 out:
3917 path_put(&old_path);
3918
3919 return error;
3920 }
3921
3922 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3923 {
3924 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3925 }
3926
3927 /*
3928 * The worst of all namespace operations - renaming directory. "Perverted"
3929 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3930 * Problems:
3931 * a) we can get into loop creation. Check is done in is_subdir().
3932 * b) race potential - two innocent renames can create a loop together.
3933 * That's where 4.4 screws up. Current fix: serialization on
3934 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3935 * story.
3936 * c) we have to lock _three_ objects - parents and victim (if it exists).
3937 * And that - after we got ->i_mutex on parents (until then we don't know
3938 * whether the target exists). Solution: try to be smart with locking
3939 * order for inodes. We rely on the fact that tree topology may change
3940 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3941 * move will be locked. Thus we can rank directories by the tree
3942 * (ancestors first) and rank all non-directories after them.
3943 * That works since everybody except rename does "lock parent, lookup,
3944 * lock child" and rename is under ->s_vfs_rename_mutex.
3945 * HOWEVER, it relies on the assumption that any object with ->lookup()
3946 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3947 * we'd better make sure that there's no link(2) for them.
3948 * d) conversion from fhandle to dentry may come in the wrong moment - when
3949 * we are removing the target. Solution: we will have to grab ->i_mutex
3950 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3951 * ->i_mutex on parents, which works but leads to some truly excessive
3952 * locking].
3953 */
3954 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3955 struct inode *new_dir, struct dentry *new_dentry)
3956 {
3957 int error = 0;
3958 struct inode *target = new_dentry->d_inode;
3959 unsigned max_links = new_dir->i_sb->s_max_links;
3960
3961 /*
3962 * If we are going to change the parent - check write permissions,
3963 * we'll need to flip '..'.
3964 */
3965 if (new_dir != old_dir) {
3966 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3967 if (error)
3968 return error;
3969 }
3970
3971 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3972 if (error)
3973 return error;
3974
3975 dget(new_dentry);
3976 if (target)
3977 mutex_lock(&target->i_mutex);
3978
3979 error = -EBUSY;
3980 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3981 goto out;
3982
3983 error = -EMLINK;
3984 if (max_links && !target && new_dir != old_dir &&
3985 new_dir->i_nlink >= max_links)
3986 goto out;
3987
3988 if (target)
3989 shrink_dcache_parent(new_dentry);
3990 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3991 if (error)
3992 goto out;
3993
3994 if (target) {
3995 target->i_flags |= S_DEAD;
3996 dont_mount(new_dentry);
3997 }
3998 out:
3999 if (target)
4000 mutex_unlock(&target->i_mutex);
4001 dput(new_dentry);
4002 if (!error)
4003 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4004 d_move(old_dentry,new_dentry);
4005 return error;
4006 }
4007
4008 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
4009 struct inode *new_dir, struct dentry *new_dentry)
4010 {
4011 struct inode *target = new_dentry->d_inode;
4012 int error;
4013
4014 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
4015 if (error)
4016 return error;
4017
4018 dget(new_dentry);
4019 if (target)
4020 mutex_lock(&target->i_mutex);
4021
4022 error = -EBUSY;
4023 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
4024 goto out;
4025
4026 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4027 if (error)
4028 goto out;
4029
4030 if (target)
4031 dont_mount(new_dentry);
4032 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4033 d_move(old_dentry, new_dentry);
4034 out:
4035 if (target)
4036 mutex_unlock(&target->i_mutex);
4037 dput(new_dentry);
4038 return error;
4039 }
4040
4041 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4042 struct inode *new_dir, struct dentry *new_dentry)
4043 {
4044 int error;
4045 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
4046 const unsigned char *old_name;
4047
4048 if (old_dentry->d_inode == new_dentry->d_inode)
4049 return 0;
4050
4051 error = may_delete(old_dir, old_dentry, is_dir);
4052 if (error)
4053 return error;
4054
4055 if (!new_dentry->d_inode)
4056 error = may_create(new_dir, new_dentry);
4057 else
4058 error = may_delete(new_dir, new_dentry, is_dir);
4059 if (error)
4060 return error;
4061
4062 if (!old_dir->i_op->rename)
4063 return -EPERM;
4064
4065 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4066
4067 if (is_dir)
4068 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
4069 else
4070 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
4071 if (!error)
4072 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4073 new_dentry->d_inode, old_dentry);
4074 fsnotify_oldname_free(old_name);
4075
4076 return error;
4077 }
4078
4079 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4080 int, newdfd, const char __user *, newname)
4081 {
4082 struct dentry *old_dir, *new_dir;
4083 struct dentry *old_dentry, *new_dentry;
4084 struct dentry *trap;
4085 struct nameidata oldnd, newnd;
4086 struct filename *from;
4087 struct filename *to;
4088 unsigned int lookup_flags = 0;
4089 bool should_retry = false;
4090 int error;
4091 retry:
4092 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4093 if (IS_ERR(from)) {
4094 error = PTR_ERR(from);
4095 goto exit;
4096 }
4097
4098 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4099 if (IS_ERR(to)) {
4100 error = PTR_ERR(to);
4101 goto exit1;
4102 }
4103
4104 error = -EXDEV;
4105 if (oldnd.path.mnt != newnd.path.mnt)
4106 goto exit2;
4107
4108 old_dir = oldnd.path.dentry;
4109 error = -EBUSY;
4110 if (oldnd.last_type != LAST_NORM)
4111 goto exit2;
4112
4113 new_dir = newnd.path.dentry;
4114 if (newnd.last_type != LAST_NORM)
4115 goto exit2;
4116
4117 error = mnt_want_write(oldnd.path.mnt);
4118 if (error)
4119 goto exit2;
4120
4121 oldnd.flags &= ~LOOKUP_PARENT;
4122 newnd.flags &= ~LOOKUP_PARENT;
4123 newnd.flags |= LOOKUP_RENAME_TARGET;
4124
4125 trap = lock_rename(new_dir, old_dir);
4126
4127 old_dentry = lookup_hash(&oldnd);
4128 error = PTR_ERR(old_dentry);
4129 if (IS_ERR(old_dentry))
4130 goto exit3;
4131 /* source must exist */
4132 error = -ENOENT;
4133 if (!old_dentry->d_inode)
4134 goto exit4;
4135 /* unless the source is a directory trailing slashes give -ENOTDIR */
4136 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
4137 error = -ENOTDIR;
4138 if (oldnd.last.name[oldnd.last.len])
4139 goto exit4;
4140 if (newnd.last.name[newnd.last.len])
4141 goto exit4;
4142 }
4143 /* source should not be ancestor of target */
4144 error = -EINVAL;
4145 if (old_dentry == trap)
4146 goto exit4;
4147 new_dentry = lookup_hash(&newnd);
4148 error = PTR_ERR(new_dentry);
4149 if (IS_ERR(new_dentry))
4150 goto exit4;
4151 /* target should not be an ancestor of source */
4152 error = -ENOTEMPTY;
4153 if (new_dentry == trap)
4154 goto exit5;
4155
4156 error = security_path_rename(&oldnd.path, old_dentry,
4157 &newnd.path, new_dentry);
4158 if (error)
4159 goto exit5;
4160 error = vfs_rename(old_dir->d_inode, old_dentry,
4161 new_dir->d_inode, new_dentry);
4162 exit5:
4163 dput(new_dentry);
4164 exit4:
4165 dput(old_dentry);
4166 exit3:
4167 unlock_rename(new_dir, old_dir);
4168 mnt_drop_write(oldnd.path.mnt);
4169 exit2:
4170 if (retry_estale(error, lookup_flags))
4171 should_retry = true;
4172 path_put(&newnd.path);
4173 putname(to);
4174 exit1:
4175 path_put(&oldnd.path);
4176 putname(from);
4177 if (should_retry) {
4178 should_retry = false;
4179 lookup_flags |= LOOKUP_REVAL;
4180 goto retry;
4181 }
4182 exit:
4183 return error;
4184 }
4185
4186 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4187 {
4188 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
4189 }
4190
4191 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
4192 {
4193 int len;
4194
4195 len = PTR_ERR(link);
4196 if (IS_ERR(link))
4197 goto out;
4198
4199 len = strlen(link);
4200 if (len > (unsigned) buflen)
4201 len = buflen;
4202 if (copy_to_user(buffer, link, len))
4203 len = -EFAULT;
4204 out:
4205 return len;
4206 }
4207
4208 /*
4209 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4210 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4211 * using) it for any given inode is up to filesystem.
4212 */
4213 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4214 {
4215 struct nameidata nd;
4216 void *cookie;
4217 int res;
4218
4219 nd.depth = 0;
4220 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4221 if (IS_ERR(cookie))
4222 return PTR_ERR(cookie);
4223
4224 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
4225 if (dentry->d_inode->i_op->put_link)
4226 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4227 return res;
4228 }
4229
4230 int vfs_follow_link(struct nameidata *nd, const char *link)
4231 {
4232 return __vfs_follow_link(nd, link);
4233 }
4234
4235 /* get the link contents into pagecache */
4236 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4237 {
4238 char *kaddr;
4239 struct page *page;
4240 struct address_space *mapping = dentry->d_inode->i_mapping;
4241 page = read_mapping_page(mapping, 0, NULL);
4242 if (IS_ERR(page))
4243 return (char*)page;
4244 *ppage = page;
4245 kaddr = kmap(page);
4246 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4247 return kaddr;
4248 }
4249
4250 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4251 {
4252 struct page *page = NULL;
4253 char *s = page_getlink(dentry, &page);
4254 int res = vfs_readlink(dentry,buffer,buflen,s);
4255 if (page) {
4256 kunmap(page);
4257 page_cache_release(page);
4258 }
4259 return res;
4260 }
4261
4262 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4263 {
4264 struct page *page = NULL;
4265 nd_set_link(nd, page_getlink(dentry, &page));
4266 return page;
4267 }
4268
4269 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4270 {
4271 struct page *page = cookie;
4272
4273 if (page) {
4274 kunmap(page);
4275 page_cache_release(page);
4276 }
4277 }
4278
4279 /*
4280 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4281 */
4282 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4283 {
4284 struct address_space *mapping = inode->i_mapping;
4285 struct page *page;
4286 void *fsdata;
4287 int err;
4288 char *kaddr;
4289 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4290 if (nofs)
4291 flags |= AOP_FLAG_NOFS;
4292
4293 retry:
4294 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4295 flags, &page, &fsdata);
4296 if (err)
4297 goto fail;
4298
4299 kaddr = kmap_atomic(page);
4300 memcpy(kaddr, symname, len-1);
4301 kunmap_atomic(kaddr);
4302
4303 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4304 page, fsdata);
4305 if (err < 0)
4306 goto fail;
4307 if (err < len-1)
4308 goto retry;
4309
4310 mark_inode_dirty(inode);
4311 return 0;
4312 fail:
4313 return err;
4314 }
4315
4316 int page_symlink(struct inode *inode, const char *symname, int len)
4317 {
4318 return __page_symlink(inode, symname, len,
4319 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4320 }
4321
4322 const struct inode_operations page_symlink_inode_operations = {
4323 .readlink = generic_readlink,
4324 .follow_link = page_follow_link_light,
4325 .put_link = page_put_link,
4326 };
4327
4328 EXPORT_SYMBOL(user_path_at);
4329 EXPORT_SYMBOL(follow_down_one);
4330 EXPORT_SYMBOL(follow_down);
4331 EXPORT_SYMBOL(follow_up);
4332 EXPORT_SYMBOL(get_write_access); /* nfsd */
4333 EXPORT_SYMBOL(lock_rename);
4334 EXPORT_SYMBOL(lookup_one_len);
4335 EXPORT_SYMBOL(page_follow_link_light);
4336 EXPORT_SYMBOL(page_put_link);
4337 EXPORT_SYMBOL(page_readlink);
4338 EXPORT_SYMBOL(__page_symlink);
4339 EXPORT_SYMBOL(page_symlink);
4340 EXPORT_SYMBOL(page_symlink_inode_operations);
4341 EXPORT_SYMBOL(kern_path);
4342 EXPORT_SYMBOL(vfs_path_lookup);
4343 EXPORT_SYMBOL(inode_permission);
4344 EXPORT_SYMBOL(unlock_rename);
4345 EXPORT_SYMBOL(vfs_create);
4346 EXPORT_SYMBOL(vfs_follow_link);
4347 EXPORT_SYMBOL(vfs_link);
4348 EXPORT_SYMBOL(vfs_mkdir);
4349 EXPORT_SYMBOL(vfs_mknod);
4350 EXPORT_SYMBOL(generic_permission);
4351 EXPORT_SYMBOL(vfs_readlink);
4352 EXPORT_SYMBOL(vfs_rename);
4353 EXPORT_SYMBOL(vfs_rmdir);
4354 EXPORT_SYMBOL(vfs_symlink);
4355 EXPORT_SYMBOL(vfs_unlink);
4356 EXPORT_SYMBOL(dentry_unhash);
4357 EXPORT_SYMBOL(generic_readlink);