]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/namei.c
do_last: kill symlink_ok
[mirror_ubuntu-zesty-kernel.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 struct nameidata {
496 struct path path;
497 struct qstr last;
498 struct path root;
499 struct inode *inode; /* path.dentry.d_inode */
500 unsigned int flags;
501 unsigned seq, m_seq;
502 int last_type;
503 unsigned depth;
504 struct file *base;
505 char *saved_names[MAX_NESTED_LINKS + 1];
506 };
507
508 /*
509 * Path walking has 2 modes, rcu-walk and ref-walk (see
510 * Documentation/filesystems/path-lookup.txt). In situations when we can't
511 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
512 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
513 * mode. Refcounts are grabbed at the last known good point before rcu-walk
514 * got stuck, so ref-walk may continue from there. If this is not successful
515 * (eg. a seqcount has changed), then failure is returned and it's up to caller
516 * to restart the path walk from the beginning in ref-walk mode.
517 */
518
519 /**
520 * unlazy_walk - try to switch to ref-walk mode.
521 * @nd: nameidata pathwalk data
522 * @dentry: child of nd->path.dentry or NULL
523 * Returns: 0 on success, -ECHILD on failure
524 *
525 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
526 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
527 * @nd or NULL. Must be called from rcu-walk context.
528 */
529 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
530 {
531 struct fs_struct *fs = current->fs;
532 struct dentry *parent = nd->path.dentry;
533
534 BUG_ON(!(nd->flags & LOOKUP_RCU));
535
536 /*
537 * After legitimizing the bastards, terminate_walk()
538 * will do the right thing for non-RCU mode, and all our
539 * subsequent exit cases should rcu_read_unlock()
540 * before returning. Do vfsmount first; if dentry
541 * can't be legitimized, just set nd->path.dentry to NULL
542 * and rely on dput(NULL) being a no-op.
543 */
544 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
545 return -ECHILD;
546 nd->flags &= ~LOOKUP_RCU;
547
548 if (!lockref_get_not_dead(&parent->d_lockref)) {
549 nd->path.dentry = NULL;
550 goto out;
551 }
552
553 /*
554 * For a negative lookup, the lookup sequence point is the parents
555 * sequence point, and it only needs to revalidate the parent dentry.
556 *
557 * For a positive lookup, we need to move both the parent and the
558 * dentry from the RCU domain to be properly refcounted. And the
559 * sequence number in the dentry validates *both* dentry counters,
560 * since we checked the sequence number of the parent after we got
561 * the child sequence number. So we know the parent must still
562 * be valid if the child sequence number is still valid.
563 */
564 if (!dentry) {
565 if (read_seqcount_retry(&parent->d_seq, nd->seq))
566 goto out;
567 BUG_ON(nd->inode != parent->d_inode);
568 } else {
569 if (!lockref_get_not_dead(&dentry->d_lockref))
570 goto out;
571 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
572 goto drop_dentry;
573 }
574
575 /*
576 * Sequence counts matched. Now make sure that the root is
577 * still valid and get it if required.
578 */
579 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
580 spin_lock(&fs->lock);
581 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
582 goto unlock_and_drop_dentry;
583 path_get(&nd->root);
584 spin_unlock(&fs->lock);
585 }
586
587 rcu_read_unlock();
588 return 0;
589
590 unlock_and_drop_dentry:
591 spin_unlock(&fs->lock);
592 drop_dentry:
593 rcu_read_unlock();
594 dput(dentry);
595 goto drop_root_mnt;
596 out:
597 rcu_read_unlock();
598 drop_root_mnt:
599 if (!(nd->flags & LOOKUP_ROOT))
600 nd->root.mnt = NULL;
601 return -ECHILD;
602 }
603
604 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
605 {
606 return dentry->d_op->d_revalidate(dentry, flags);
607 }
608
609 /**
610 * complete_walk - successful completion of path walk
611 * @nd: pointer nameidata
612 *
613 * If we had been in RCU mode, drop out of it and legitimize nd->path.
614 * Revalidate the final result, unless we'd already done that during
615 * the path walk or the filesystem doesn't ask for it. Return 0 on
616 * success, -error on failure. In case of failure caller does not
617 * need to drop nd->path.
618 */
619 static int complete_walk(struct nameidata *nd)
620 {
621 struct dentry *dentry = nd->path.dentry;
622 int status;
623
624 if (nd->flags & LOOKUP_RCU) {
625 nd->flags &= ~LOOKUP_RCU;
626 if (!(nd->flags & LOOKUP_ROOT))
627 nd->root.mnt = NULL;
628
629 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
630 rcu_read_unlock();
631 return -ECHILD;
632 }
633 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
634 rcu_read_unlock();
635 mntput(nd->path.mnt);
636 return -ECHILD;
637 }
638 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
639 rcu_read_unlock();
640 dput(dentry);
641 mntput(nd->path.mnt);
642 return -ECHILD;
643 }
644 rcu_read_unlock();
645 }
646
647 if (likely(!(nd->flags & LOOKUP_JUMPED)))
648 return 0;
649
650 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
651 return 0;
652
653 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
654 if (status > 0)
655 return 0;
656
657 if (!status)
658 status = -ESTALE;
659
660 path_put(&nd->path);
661 return status;
662 }
663
664 static __always_inline void set_root(struct nameidata *nd)
665 {
666 get_fs_root(current->fs, &nd->root);
667 }
668
669 static int link_path_walk(const char *, struct nameidata *);
670
671 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
672 {
673 struct fs_struct *fs = current->fs;
674 unsigned seq, res;
675
676 do {
677 seq = read_seqcount_begin(&fs->seq);
678 nd->root = fs->root;
679 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
680 } while (read_seqcount_retry(&fs->seq, seq));
681 return res;
682 }
683
684 static void path_put_conditional(struct path *path, struct nameidata *nd)
685 {
686 dput(path->dentry);
687 if (path->mnt != nd->path.mnt)
688 mntput(path->mnt);
689 }
690
691 static inline void path_to_nameidata(const struct path *path,
692 struct nameidata *nd)
693 {
694 if (!(nd->flags & LOOKUP_RCU)) {
695 dput(nd->path.dentry);
696 if (nd->path.mnt != path->mnt)
697 mntput(nd->path.mnt);
698 }
699 nd->path.mnt = path->mnt;
700 nd->path.dentry = path->dentry;
701 }
702
703 /*
704 * Helper to directly jump to a known parsed path from ->follow_link,
705 * caller must have taken a reference to path beforehand.
706 */
707 void nd_jump_link(struct nameidata *nd, struct path *path)
708 {
709 path_put(&nd->path);
710
711 nd->path = *path;
712 nd->inode = nd->path.dentry->d_inode;
713 nd->flags |= LOOKUP_JUMPED;
714 }
715
716 void nd_set_link(struct nameidata *nd, char *path)
717 {
718 nd->saved_names[nd->depth] = path;
719 }
720 EXPORT_SYMBOL(nd_set_link);
721
722 char *nd_get_link(struct nameidata *nd)
723 {
724 return nd->saved_names[nd->depth];
725 }
726 EXPORT_SYMBOL(nd_get_link);
727
728 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
729 {
730 struct inode *inode = link->dentry->d_inode;
731 if (inode->i_op->put_link)
732 inode->i_op->put_link(link->dentry, nd, cookie);
733 path_put(link);
734 }
735
736 int sysctl_protected_symlinks __read_mostly = 0;
737 int sysctl_protected_hardlinks __read_mostly = 0;
738
739 /**
740 * may_follow_link - Check symlink following for unsafe situations
741 * @link: The path of the symlink
742 * @nd: nameidata pathwalk data
743 *
744 * In the case of the sysctl_protected_symlinks sysctl being enabled,
745 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
746 * in a sticky world-writable directory. This is to protect privileged
747 * processes from failing races against path names that may change out
748 * from under them by way of other users creating malicious symlinks.
749 * It will permit symlinks to be followed only when outside a sticky
750 * world-writable directory, or when the uid of the symlink and follower
751 * match, or when the directory owner matches the symlink's owner.
752 *
753 * Returns 0 if following the symlink is allowed, -ve on error.
754 */
755 static inline int may_follow_link(struct path *link, struct nameidata *nd)
756 {
757 const struct inode *inode;
758 const struct inode *parent;
759
760 if (!sysctl_protected_symlinks)
761 return 0;
762
763 /* Allowed if owner and follower match. */
764 inode = link->dentry->d_inode;
765 if (uid_eq(current_cred()->fsuid, inode->i_uid))
766 return 0;
767
768 /* Allowed if parent directory not sticky and world-writable. */
769 parent = nd->path.dentry->d_inode;
770 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
771 return 0;
772
773 /* Allowed if parent directory and link owner match. */
774 if (uid_eq(parent->i_uid, inode->i_uid))
775 return 0;
776
777 audit_log_link_denied("follow_link", link);
778 path_put_conditional(link, nd);
779 path_put(&nd->path);
780 return -EACCES;
781 }
782
783 /**
784 * safe_hardlink_source - Check for safe hardlink conditions
785 * @inode: the source inode to hardlink from
786 *
787 * Return false if at least one of the following conditions:
788 * - inode is not a regular file
789 * - inode is setuid
790 * - inode is setgid and group-exec
791 * - access failure for read and write
792 *
793 * Otherwise returns true.
794 */
795 static bool safe_hardlink_source(struct inode *inode)
796 {
797 umode_t mode = inode->i_mode;
798
799 /* Special files should not get pinned to the filesystem. */
800 if (!S_ISREG(mode))
801 return false;
802
803 /* Setuid files should not get pinned to the filesystem. */
804 if (mode & S_ISUID)
805 return false;
806
807 /* Executable setgid files should not get pinned to the filesystem. */
808 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
809 return false;
810
811 /* Hardlinking to unreadable or unwritable sources is dangerous. */
812 if (inode_permission(inode, MAY_READ | MAY_WRITE))
813 return false;
814
815 return true;
816 }
817
818 /**
819 * may_linkat - Check permissions for creating a hardlink
820 * @link: the source to hardlink from
821 *
822 * Block hardlink when all of:
823 * - sysctl_protected_hardlinks enabled
824 * - fsuid does not match inode
825 * - hardlink source is unsafe (see safe_hardlink_source() above)
826 * - not CAP_FOWNER
827 *
828 * Returns 0 if successful, -ve on error.
829 */
830 static int may_linkat(struct path *link)
831 {
832 const struct cred *cred;
833 struct inode *inode;
834
835 if (!sysctl_protected_hardlinks)
836 return 0;
837
838 cred = current_cred();
839 inode = link->dentry->d_inode;
840
841 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
842 * otherwise, it must be a safe source.
843 */
844 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
845 capable(CAP_FOWNER))
846 return 0;
847
848 audit_log_link_denied("linkat", link);
849 return -EPERM;
850 }
851
852 static __always_inline int
853 follow_link(struct path *link, struct nameidata *nd, void **p)
854 {
855 struct dentry *dentry = link->dentry;
856 int error;
857 char *s;
858
859 BUG_ON(nd->flags & LOOKUP_RCU);
860
861 if (link->mnt == nd->path.mnt)
862 mntget(link->mnt);
863
864 error = -ELOOP;
865 if (unlikely(current->total_link_count >= 40))
866 goto out_put_nd_path;
867
868 cond_resched();
869 current->total_link_count++;
870
871 touch_atime(link);
872 nd_set_link(nd, NULL);
873
874 error = security_inode_follow_link(dentry);
875 if (error)
876 goto out_put_nd_path;
877
878 nd->last_type = LAST_BIND;
879 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
880 error = PTR_ERR(*p);
881 if (IS_ERR(*p))
882 goto out_put_nd_path;
883
884 error = 0;
885 s = nd_get_link(nd);
886 if (s) {
887 if (unlikely(IS_ERR(s))) {
888 path_put(&nd->path);
889 put_link(nd, link, *p);
890 return PTR_ERR(s);
891 }
892 if (*s == '/') {
893 if (!nd->root.mnt)
894 set_root(nd);
895 path_put(&nd->path);
896 nd->path = nd->root;
897 path_get(&nd->root);
898 nd->flags |= LOOKUP_JUMPED;
899 }
900 nd->inode = nd->path.dentry->d_inode;
901 error = link_path_walk(s, nd);
902 if (unlikely(error))
903 put_link(nd, link, *p);
904 }
905
906 return error;
907
908 out_put_nd_path:
909 *p = NULL;
910 path_put(&nd->path);
911 path_put(link);
912 return error;
913 }
914
915 static int follow_up_rcu(struct path *path)
916 {
917 struct mount *mnt = real_mount(path->mnt);
918 struct mount *parent;
919 struct dentry *mountpoint;
920
921 parent = mnt->mnt_parent;
922 if (&parent->mnt == path->mnt)
923 return 0;
924 mountpoint = mnt->mnt_mountpoint;
925 path->dentry = mountpoint;
926 path->mnt = &parent->mnt;
927 return 1;
928 }
929
930 /*
931 * follow_up - Find the mountpoint of path's vfsmount
932 *
933 * Given a path, find the mountpoint of its source file system.
934 * Replace @path with the path of the mountpoint in the parent mount.
935 * Up is towards /.
936 *
937 * Return 1 if we went up a level and 0 if we were already at the
938 * root.
939 */
940 int follow_up(struct path *path)
941 {
942 struct mount *mnt = real_mount(path->mnt);
943 struct mount *parent;
944 struct dentry *mountpoint;
945
946 read_seqlock_excl(&mount_lock);
947 parent = mnt->mnt_parent;
948 if (parent == mnt) {
949 read_sequnlock_excl(&mount_lock);
950 return 0;
951 }
952 mntget(&parent->mnt);
953 mountpoint = dget(mnt->mnt_mountpoint);
954 read_sequnlock_excl(&mount_lock);
955 dput(path->dentry);
956 path->dentry = mountpoint;
957 mntput(path->mnt);
958 path->mnt = &parent->mnt;
959 return 1;
960 }
961 EXPORT_SYMBOL(follow_up);
962
963 /*
964 * Perform an automount
965 * - return -EISDIR to tell follow_managed() to stop and return the path we
966 * were called with.
967 */
968 static int follow_automount(struct path *path, unsigned flags,
969 bool *need_mntput)
970 {
971 struct vfsmount *mnt;
972 int err;
973
974 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
975 return -EREMOTE;
976
977 /* We don't want to mount if someone's just doing a stat -
978 * unless they're stat'ing a directory and appended a '/' to
979 * the name.
980 *
981 * We do, however, want to mount if someone wants to open or
982 * create a file of any type under the mountpoint, wants to
983 * traverse through the mountpoint or wants to open the
984 * mounted directory. Also, autofs may mark negative dentries
985 * as being automount points. These will need the attentions
986 * of the daemon to instantiate them before they can be used.
987 */
988 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
989 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
990 path->dentry->d_inode)
991 return -EISDIR;
992
993 current->total_link_count++;
994 if (current->total_link_count >= 40)
995 return -ELOOP;
996
997 mnt = path->dentry->d_op->d_automount(path);
998 if (IS_ERR(mnt)) {
999 /*
1000 * The filesystem is allowed to return -EISDIR here to indicate
1001 * it doesn't want to automount. For instance, autofs would do
1002 * this so that its userspace daemon can mount on this dentry.
1003 *
1004 * However, we can only permit this if it's a terminal point in
1005 * the path being looked up; if it wasn't then the remainder of
1006 * the path is inaccessible and we should say so.
1007 */
1008 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
1009 return -EREMOTE;
1010 return PTR_ERR(mnt);
1011 }
1012
1013 if (!mnt) /* mount collision */
1014 return 0;
1015
1016 if (!*need_mntput) {
1017 /* lock_mount() may release path->mnt on error */
1018 mntget(path->mnt);
1019 *need_mntput = true;
1020 }
1021 err = finish_automount(mnt, path);
1022
1023 switch (err) {
1024 case -EBUSY:
1025 /* Someone else made a mount here whilst we were busy */
1026 return 0;
1027 case 0:
1028 path_put(path);
1029 path->mnt = mnt;
1030 path->dentry = dget(mnt->mnt_root);
1031 return 0;
1032 default:
1033 return err;
1034 }
1035
1036 }
1037
1038 /*
1039 * Handle a dentry that is managed in some way.
1040 * - Flagged for transit management (autofs)
1041 * - Flagged as mountpoint
1042 * - Flagged as automount point
1043 *
1044 * This may only be called in refwalk mode.
1045 *
1046 * Serialization is taken care of in namespace.c
1047 */
1048 static int follow_managed(struct path *path, unsigned flags)
1049 {
1050 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1051 unsigned managed;
1052 bool need_mntput = false;
1053 int ret = 0;
1054
1055 /* Given that we're not holding a lock here, we retain the value in a
1056 * local variable for each dentry as we look at it so that we don't see
1057 * the components of that value change under us */
1058 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1059 managed &= DCACHE_MANAGED_DENTRY,
1060 unlikely(managed != 0)) {
1061 /* Allow the filesystem to manage the transit without i_mutex
1062 * being held. */
1063 if (managed & DCACHE_MANAGE_TRANSIT) {
1064 BUG_ON(!path->dentry->d_op);
1065 BUG_ON(!path->dentry->d_op->d_manage);
1066 ret = path->dentry->d_op->d_manage(path->dentry, false);
1067 if (ret < 0)
1068 break;
1069 }
1070
1071 /* Transit to a mounted filesystem. */
1072 if (managed & DCACHE_MOUNTED) {
1073 struct vfsmount *mounted = lookup_mnt(path);
1074 if (mounted) {
1075 dput(path->dentry);
1076 if (need_mntput)
1077 mntput(path->mnt);
1078 path->mnt = mounted;
1079 path->dentry = dget(mounted->mnt_root);
1080 need_mntput = true;
1081 continue;
1082 }
1083
1084 /* Something is mounted on this dentry in another
1085 * namespace and/or whatever was mounted there in this
1086 * namespace got unmounted before lookup_mnt() could
1087 * get it */
1088 }
1089
1090 /* Handle an automount point */
1091 if (managed & DCACHE_NEED_AUTOMOUNT) {
1092 ret = follow_automount(path, flags, &need_mntput);
1093 if (ret < 0)
1094 break;
1095 continue;
1096 }
1097
1098 /* We didn't change the current path point */
1099 break;
1100 }
1101
1102 if (need_mntput && path->mnt == mnt)
1103 mntput(path->mnt);
1104 if (ret == -EISDIR)
1105 ret = 0;
1106 return ret < 0 ? ret : need_mntput;
1107 }
1108
1109 int follow_down_one(struct path *path)
1110 {
1111 struct vfsmount *mounted;
1112
1113 mounted = lookup_mnt(path);
1114 if (mounted) {
1115 dput(path->dentry);
1116 mntput(path->mnt);
1117 path->mnt = mounted;
1118 path->dentry = dget(mounted->mnt_root);
1119 return 1;
1120 }
1121 return 0;
1122 }
1123 EXPORT_SYMBOL(follow_down_one);
1124
1125 static inline int managed_dentry_rcu(struct dentry *dentry)
1126 {
1127 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1128 dentry->d_op->d_manage(dentry, true) : 0;
1129 }
1130
1131 /*
1132 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1133 * we meet a managed dentry that would need blocking.
1134 */
1135 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1136 struct inode **inode)
1137 {
1138 for (;;) {
1139 struct mount *mounted;
1140 /*
1141 * Don't forget we might have a non-mountpoint managed dentry
1142 * that wants to block transit.
1143 */
1144 switch (managed_dentry_rcu(path->dentry)) {
1145 case -ECHILD:
1146 default:
1147 return false;
1148 case -EISDIR:
1149 return true;
1150 case 0:
1151 break;
1152 }
1153
1154 if (!d_mountpoint(path->dentry))
1155 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1156
1157 mounted = __lookup_mnt(path->mnt, path->dentry);
1158 if (!mounted)
1159 break;
1160 path->mnt = &mounted->mnt;
1161 path->dentry = mounted->mnt.mnt_root;
1162 nd->flags |= LOOKUP_JUMPED;
1163 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1164 /*
1165 * Update the inode too. We don't need to re-check the
1166 * dentry sequence number here after this d_inode read,
1167 * because a mount-point is always pinned.
1168 */
1169 *inode = path->dentry->d_inode;
1170 }
1171 return !read_seqretry(&mount_lock, nd->m_seq) &&
1172 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1173 }
1174
1175 static int follow_dotdot_rcu(struct nameidata *nd)
1176 {
1177 struct inode *inode = nd->inode;
1178 if (!nd->root.mnt)
1179 set_root_rcu(nd);
1180
1181 while (1) {
1182 if (nd->path.dentry == nd->root.dentry &&
1183 nd->path.mnt == nd->root.mnt) {
1184 break;
1185 }
1186 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1187 struct dentry *old = nd->path.dentry;
1188 struct dentry *parent = old->d_parent;
1189 unsigned seq;
1190
1191 inode = parent->d_inode;
1192 seq = read_seqcount_begin(&parent->d_seq);
1193 if (read_seqcount_retry(&old->d_seq, nd->seq))
1194 goto failed;
1195 nd->path.dentry = parent;
1196 nd->seq = seq;
1197 break;
1198 }
1199 if (!follow_up_rcu(&nd->path))
1200 break;
1201 inode = nd->path.dentry->d_inode;
1202 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1203 }
1204 while (d_mountpoint(nd->path.dentry)) {
1205 struct mount *mounted;
1206 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1207 if (!mounted)
1208 break;
1209 nd->path.mnt = &mounted->mnt;
1210 nd->path.dentry = mounted->mnt.mnt_root;
1211 inode = nd->path.dentry->d_inode;
1212 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1213 if (read_seqretry(&mount_lock, nd->m_seq))
1214 goto failed;
1215 }
1216 nd->inode = inode;
1217 return 0;
1218
1219 failed:
1220 nd->flags &= ~LOOKUP_RCU;
1221 if (!(nd->flags & LOOKUP_ROOT))
1222 nd->root.mnt = NULL;
1223 rcu_read_unlock();
1224 return -ECHILD;
1225 }
1226
1227 /*
1228 * Follow down to the covering mount currently visible to userspace. At each
1229 * point, the filesystem owning that dentry may be queried as to whether the
1230 * caller is permitted to proceed or not.
1231 */
1232 int follow_down(struct path *path)
1233 {
1234 unsigned managed;
1235 int ret;
1236
1237 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1238 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1239 /* Allow the filesystem to manage the transit without i_mutex
1240 * being held.
1241 *
1242 * We indicate to the filesystem if someone is trying to mount
1243 * something here. This gives autofs the chance to deny anyone
1244 * other than its daemon the right to mount on its
1245 * superstructure.
1246 *
1247 * The filesystem may sleep at this point.
1248 */
1249 if (managed & DCACHE_MANAGE_TRANSIT) {
1250 BUG_ON(!path->dentry->d_op);
1251 BUG_ON(!path->dentry->d_op->d_manage);
1252 ret = path->dentry->d_op->d_manage(
1253 path->dentry, false);
1254 if (ret < 0)
1255 return ret == -EISDIR ? 0 : ret;
1256 }
1257
1258 /* Transit to a mounted filesystem. */
1259 if (managed & DCACHE_MOUNTED) {
1260 struct vfsmount *mounted = lookup_mnt(path);
1261 if (!mounted)
1262 break;
1263 dput(path->dentry);
1264 mntput(path->mnt);
1265 path->mnt = mounted;
1266 path->dentry = dget(mounted->mnt_root);
1267 continue;
1268 }
1269
1270 /* Don't handle automount points here */
1271 break;
1272 }
1273 return 0;
1274 }
1275 EXPORT_SYMBOL(follow_down);
1276
1277 /*
1278 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1279 */
1280 static void follow_mount(struct path *path)
1281 {
1282 while (d_mountpoint(path->dentry)) {
1283 struct vfsmount *mounted = lookup_mnt(path);
1284 if (!mounted)
1285 break;
1286 dput(path->dentry);
1287 mntput(path->mnt);
1288 path->mnt = mounted;
1289 path->dentry = dget(mounted->mnt_root);
1290 }
1291 }
1292
1293 static void follow_dotdot(struct nameidata *nd)
1294 {
1295 if (!nd->root.mnt)
1296 set_root(nd);
1297
1298 while(1) {
1299 struct dentry *old = nd->path.dentry;
1300
1301 if (nd->path.dentry == nd->root.dentry &&
1302 nd->path.mnt == nd->root.mnt) {
1303 break;
1304 }
1305 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1306 /* rare case of legitimate dget_parent()... */
1307 nd->path.dentry = dget_parent(nd->path.dentry);
1308 dput(old);
1309 break;
1310 }
1311 if (!follow_up(&nd->path))
1312 break;
1313 }
1314 follow_mount(&nd->path);
1315 nd->inode = nd->path.dentry->d_inode;
1316 }
1317
1318 /*
1319 * This looks up the name in dcache, possibly revalidates the old dentry and
1320 * allocates a new one if not found or not valid. In the need_lookup argument
1321 * returns whether i_op->lookup is necessary.
1322 *
1323 * dir->d_inode->i_mutex must be held
1324 */
1325 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1326 unsigned int flags, bool *need_lookup)
1327 {
1328 struct dentry *dentry;
1329 int error;
1330
1331 *need_lookup = false;
1332 dentry = d_lookup(dir, name);
1333 if (dentry) {
1334 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1335 error = d_revalidate(dentry, flags);
1336 if (unlikely(error <= 0)) {
1337 if (error < 0) {
1338 dput(dentry);
1339 return ERR_PTR(error);
1340 } else {
1341 d_invalidate(dentry);
1342 dput(dentry);
1343 dentry = NULL;
1344 }
1345 }
1346 }
1347 }
1348
1349 if (!dentry) {
1350 dentry = d_alloc(dir, name);
1351 if (unlikely(!dentry))
1352 return ERR_PTR(-ENOMEM);
1353
1354 *need_lookup = true;
1355 }
1356 return dentry;
1357 }
1358
1359 /*
1360 * Call i_op->lookup on the dentry. The dentry must be negative and
1361 * unhashed.
1362 *
1363 * dir->d_inode->i_mutex must be held
1364 */
1365 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1366 unsigned int flags)
1367 {
1368 struct dentry *old;
1369
1370 /* Don't create child dentry for a dead directory. */
1371 if (unlikely(IS_DEADDIR(dir))) {
1372 dput(dentry);
1373 return ERR_PTR(-ENOENT);
1374 }
1375
1376 old = dir->i_op->lookup(dir, dentry, flags);
1377 if (unlikely(old)) {
1378 dput(dentry);
1379 dentry = old;
1380 }
1381 return dentry;
1382 }
1383
1384 static struct dentry *__lookup_hash(struct qstr *name,
1385 struct dentry *base, unsigned int flags)
1386 {
1387 bool need_lookup;
1388 struct dentry *dentry;
1389
1390 dentry = lookup_dcache(name, base, flags, &need_lookup);
1391 if (!need_lookup)
1392 return dentry;
1393
1394 return lookup_real(base->d_inode, dentry, flags);
1395 }
1396
1397 /*
1398 * It's more convoluted than I'd like it to be, but... it's still fairly
1399 * small and for now I'd prefer to have fast path as straight as possible.
1400 * It _is_ time-critical.
1401 */
1402 static int lookup_fast(struct nameidata *nd,
1403 struct path *path, struct inode **inode)
1404 {
1405 struct vfsmount *mnt = nd->path.mnt;
1406 struct dentry *dentry, *parent = nd->path.dentry;
1407 int need_reval = 1;
1408 int status = 1;
1409 int err;
1410
1411 /*
1412 * Rename seqlock is not required here because in the off chance
1413 * of a false negative due to a concurrent rename, we're going to
1414 * do the non-racy lookup, below.
1415 */
1416 if (nd->flags & LOOKUP_RCU) {
1417 unsigned seq;
1418 bool negative;
1419 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1420 if (!dentry)
1421 goto unlazy;
1422
1423 /*
1424 * This sequence count validates that the inode matches
1425 * the dentry name information from lookup.
1426 */
1427 *inode = dentry->d_inode;
1428 negative = d_is_negative(dentry);
1429 if (read_seqcount_retry(&dentry->d_seq, seq))
1430 return -ECHILD;
1431 if (negative)
1432 return -ENOENT;
1433
1434 /*
1435 * This sequence count validates that the parent had no
1436 * changes while we did the lookup of the dentry above.
1437 *
1438 * The memory barrier in read_seqcount_begin of child is
1439 * enough, we can use __read_seqcount_retry here.
1440 */
1441 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1442 return -ECHILD;
1443 nd->seq = seq;
1444
1445 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1446 status = d_revalidate(dentry, nd->flags);
1447 if (unlikely(status <= 0)) {
1448 if (status != -ECHILD)
1449 need_reval = 0;
1450 goto unlazy;
1451 }
1452 }
1453 path->mnt = mnt;
1454 path->dentry = dentry;
1455 if (likely(__follow_mount_rcu(nd, path, inode)))
1456 return 0;
1457 unlazy:
1458 if (unlazy_walk(nd, dentry))
1459 return -ECHILD;
1460 } else {
1461 dentry = __d_lookup(parent, &nd->last);
1462 }
1463
1464 if (unlikely(!dentry))
1465 goto need_lookup;
1466
1467 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1468 status = d_revalidate(dentry, nd->flags);
1469 if (unlikely(status <= 0)) {
1470 if (status < 0) {
1471 dput(dentry);
1472 return status;
1473 }
1474 d_invalidate(dentry);
1475 dput(dentry);
1476 goto need_lookup;
1477 }
1478
1479 if (unlikely(d_is_negative(dentry))) {
1480 dput(dentry);
1481 return -ENOENT;
1482 }
1483 path->mnt = mnt;
1484 path->dentry = dentry;
1485 err = follow_managed(path, nd->flags);
1486 if (unlikely(err < 0)) {
1487 path_put_conditional(path, nd);
1488 return err;
1489 }
1490 if (err)
1491 nd->flags |= LOOKUP_JUMPED;
1492 *inode = path->dentry->d_inode;
1493 return 0;
1494
1495 need_lookup:
1496 return 1;
1497 }
1498
1499 /* Fast lookup failed, do it the slow way */
1500 static int lookup_slow(struct nameidata *nd, struct path *path)
1501 {
1502 struct dentry *dentry, *parent;
1503 int err;
1504
1505 parent = nd->path.dentry;
1506 BUG_ON(nd->inode != parent->d_inode);
1507
1508 mutex_lock(&parent->d_inode->i_mutex);
1509 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1510 mutex_unlock(&parent->d_inode->i_mutex);
1511 if (IS_ERR(dentry))
1512 return PTR_ERR(dentry);
1513 path->mnt = nd->path.mnt;
1514 path->dentry = dentry;
1515 err = follow_managed(path, nd->flags);
1516 if (unlikely(err < 0)) {
1517 path_put_conditional(path, nd);
1518 return err;
1519 }
1520 if (err)
1521 nd->flags |= LOOKUP_JUMPED;
1522 return 0;
1523 }
1524
1525 static inline int may_lookup(struct nameidata *nd)
1526 {
1527 if (nd->flags & LOOKUP_RCU) {
1528 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1529 if (err != -ECHILD)
1530 return err;
1531 if (unlazy_walk(nd, NULL))
1532 return -ECHILD;
1533 }
1534 return inode_permission(nd->inode, MAY_EXEC);
1535 }
1536
1537 static inline int handle_dots(struct nameidata *nd, int type)
1538 {
1539 if (type == LAST_DOTDOT) {
1540 if (nd->flags & LOOKUP_RCU) {
1541 if (follow_dotdot_rcu(nd))
1542 return -ECHILD;
1543 } else
1544 follow_dotdot(nd);
1545 }
1546 return 0;
1547 }
1548
1549 static void terminate_walk(struct nameidata *nd)
1550 {
1551 if (!(nd->flags & LOOKUP_RCU)) {
1552 path_put(&nd->path);
1553 } else {
1554 nd->flags &= ~LOOKUP_RCU;
1555 if (!(nd->flags & LOOKUP_ROOT))
1556 nd->root.mnt = NULL;
1557 rcu_read_unlock();
1558 }
1559 }
1560
1561 /*
1562 * Do we need to follow links? We _really_ want to be able
1563 * to do this check without having to look at inode->i_op,
1564 * so we keep a cache of "no, this doesn't need follow_link"
1565 * for the common case.
1566 */
1567 static inline int should_follow_link(struct dentry *dentry, int follow)
1568 {
1569 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1570 }
1571
1572 static int walk_component(struct nameidata *nd, struct path *path, int follow)
1573 {
1574 struct inode *inode;
1575 int err;
1576 /*
1577 * "." and ".." are special - ".." especially so because it has
1578 * to be able to know about the current root directory and
1579 * parent relationships.
1580 */
1581 if (unlikely(nd->last_type != LAST_NORM))
1582 return handle_dots(nd, nd->last_type);
1583 err = lookup_fast(nd, path, &inode);
1584 if (unlikely(err)) {
1585 if (err < 0)
1586 goto out_err;
1587
1588 err = lookup_slow(nd, path);
1589 if (err < 0)
1590 goto out_err;
1591
1592 inode = path->dentry->d_inode;
1593 err = -ENOENT;
1594 if (d_is_negative(path->dentry))
1595 goto out_path_put;
1596 }
1597
1598 if (should_follow_link(path->dentry, follow)) {
1599 if (nd->flags & LOOKUP_RCU) {
1600 if (unlikely(nd->path.mnt != path->mnt ||
1601 unlazy_walk(nd, path->dentry))) {
1602 err = -ECHILD;
1603 goto out_err;
1604 }
1605 }
1606 BUG_ON(inode != path->dentry->d_inode);
1607 return 1;
1608 }
1609 path_to_nameidata(path, nd);
1610 nd->inode = inode;
1611 return 0;
1612
1613 out_path_put:
1614 path_to_nameidata(path, nd);
1615 out_err:
1616 terminate_walk(nd);
1617 return err;
1618 }
1619
1620 /*
1621 * This limits recursive symlink follows to 8, while
1622 * limiting consecutive symlinks to 40.
1623 *
1624 * Without that kind of total limit, nasty chains of consecutive
1625 * symlinks can cause almost arbitrarily long lookups.
1626 */
1627 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1628 {
1629 int res;
1630
1631 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1632 path_put_conditional(path, nd);
1633 path_put(&nd->path);
1634 return -ELOOP;
1635 }
1636 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1637
1638 nd->depth++;
1639 current->link_count++;
1640
1641 do {
1642 struct path link = *path;
1643 void *cookie;
1644
1645 res = follow_link(&link, nd, &cookie);
1646 if (res)
1647 break;
1648 res = walk_component(nd, path, LOOKUP_FOLLOW);
1649 put_link(nd, &link, cookie);
1650 } while (res > 0);
1651
1652 current->link_count--;
1653 nd->depth--;
1654 return res;
1655 }
1656
1657 /*
1658 * We can do the critical dentry name comparison and hashing
1659 * operations one word at a time, but we are limited to:
1660 *
1661 * - Architectures with fast unaligned word accesses. We could
1662 * do a "get_unaligned()" if this helps and is sufficiently
1663 * fast.
1664 *
1665 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1666 * do not trap on the (extremely unlikely) case of a page
1667 * crossing operation.
1668 *
1669 * - Furthermore, we need an efficient 64-bit compile for the
1670 * 64-bit case in order to generate the "number of bytes in
1671 * the final mask". Again, that could be replaced with a
1672 * efficient population count instruction or similar.
1673 */
1674 #ifdef CONFIG_DCACHE_WORD_ACCESS
1675
1676 #include <asm/word-at-a-time.h>
1677
1678 #ifdef CONFIG_64BIT
1679
1680 static inline unsigned int fold_hash(unsigned long hash)
1681 {
1682 return hash_64(hash, 32);
1683 }
1684
1685 #else /* 32-bit case */
1686
1687 #define fold_hash(x) (x)
1688
1689 #endif
1690
1691 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1692 {
1693 unsigned long a, mask;
1694 unsigned long hash = 0;
1695
1696 for (;;) {
1697 a = load_unaligned_zeropad(name);
1698 if (len < sizeof(unsigned long))
1699 break;
1700 hash += a;
1701 hash *= 9;
1702 name += sizeof(unsigned long);
1703 len -= sizeof(unsigned long);
1704 if (!len)
1705 goto done;
1706 }
1707 mask = bytemask_from_count(len);
1708 hash += mask & a;
1709 done:
1710 return fold_hash(hash);
1711 }
1712 EXPORT_SYMBOL(full_name_hash);
1713
1714 /*
1715 * Calculate the length and hash of the path component, and
1716 * return the "hash_len" as the result.
1717 */
1718 static inline u64 hash_name(const char *name)
1719 {
1720 unsigned long a, b, adata, bdata, mask, hash, len;
1721 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1722
1723 hash = a = 0;
1724 len = -sizeof(unsigned long);
1725 do {
1726 hash = (hash + a) * 9;
1727 len += sizeof(unsigned long);
1728 a = load_unaligned_zeropad(name+len);
1729 b = a ^ REPEAT_BYTE('/');
1730 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1731
1732 adata = prep_zero_mask(a, adata, &constants);
1733 bdata = prep_zero_mask(b, bdata, &constants);
1734
1735 mask = create_zero_mask(adata | bdata);
1736
1737 hash += a & zero_bytemask(mask);
1738 len += find_zero(mask);
1739 return hashlen_create(fold_hash(hash), len);
1740 }
1741
1742 #else
1743
1744 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1745 {
1746 unsigned long hash = init_name_hash();
1747 while (len--)
1748 hash = partial_name_hash(*name++, hash);
1749 return end_name_hash(hash);
1750 }
1751 EXPORT_SYMBOL(full_name_hash);
1752
1753 /*
1754 * We know there's a real path component here of at least
1755 * one character.
1756 */
1757 static inline u64 hash_name(const char *name)
1758 {
1759 unsigned long hash = init_name_hash();
1760 unsigned long len = 0, c;
1761
1762 c = (unsigned char)*name;
1763 do {
1764 len++;
1765 hash = partial_name_hash(c, hash);
1766 c = (unsigned char)name[len];
1767 } while (c && c != '/');
1768 return hashlen_create(end_name_hash(hash), len);
1769 }
1770
1771 #endif
1772
1773 /*
1774 * Name resolution.
1775 * This is the basic name resolution function, turning a pathname into
1776 * the final dentry. We expect 'base' to be positive and a directory.
1777 *
1778 * Returns 0 and nd will have valid dentry and mnt on success.
1779 * Returns error and drops reference to input namei data on failure.
1780 */
1781 static int link_path_walk(const char *name, struct nameidata *nd)
1782 {
1783 struct path next;
1784 int err;
1785
1786 while (*name=='/')
1787 name++;
1788 if (!*name)
1789 return 0;
1790
1791 /* At this point we know we have a real path component. */
1792 for(;;) {
1793 u64 hash_len;
1794 int type;
1795
1796 err = may_lookup(nd);
1797 if (err)
1798 break;
1799
1800 hash_len = hash_name(name);
1801
1802 type = LAST_NORM;
1803 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1804 case 2:
1805 if (name[1] == '.') {
1806 type = LAST_DOTDOT;
1807 nd->flags |= LOOKUP_JUMPED;
1808 }
1809 break;
1810 case 1:
1811 type = LAST_DOT;
1812 }
1813 if (likely(type == LAST_NORM)) {
1814 struct dentry *parent = nd->path.dentry;
1815 nd->flags &= ~LOOKUP_JUMPED;
1816 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1817 struct qstr this = { { .hash_len = hash_len }, .name = name };
1818 err = parent->d_op->d_hash(parent, &this);
1819 if (err < 0)
1820 break;
1821 hash_len = this.hash_len;
1822 name = this.name;
1823 }
1824 }
1825
1826 nd->last.hash_len = hash_len;
1827 nd->last.name = name;
1828 nd->last_type = type;
1829
1830 name += hashlen_len(hash_len);
1831 if (!*name)
1832 return 0;
1833 /*
1834 * If it wasn't NUL, we know it was '/'. Skip that
1835 * slash, and continue until no more slashes.
1836 */
1837 do {
1838 name++;
1839 } while (unlikely(*name == '/'));
1840 if (!*name)
1841 return 0;
1842
1843 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1844 if (err < 0)
1845 return err;
1846
1847 if (err) {
1848 err = nested_symlink(&next, nd);
1849 if (err)
1850 return err;
1851 }
1852 if (!d_can_lookup(nd->path.dentry)) {
1853 err = -ENOTDIR;
1854 break;
1855 }
1856 }
1857 terminate_walk(nd);
1858 return err;
1859 }
1860
1861 static int path_init(int dfd, const struct filename *name, unsigned int flags,
1862 struct nameidata *nd)
1863 {
1864 int retval = 0;
1865 const char *s = name->name;
1866
1867 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1868 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1869 nd->depth = 0;
1870 nd->base = NULL;
1871 if (flags & LOOKUP_ROOT) {
1872 struct dentry *root = nd->root.dentry;
1873 struct inode *inode = root->d_inode;
1874 if (*s) {
1875 if (!d_can_lookup(root))
1876 return -ENOTDIR;
1877 retval = inode_permission(inode, MAY_EXEC);
1878 if (retval)
1879 return retval;
1880 }
1881 nd->path = nd->root;
1882 nd->inode = inode;
1883 if (flags & LOOKUP_RCU) {
1884 rcu_read_lock();
1885 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1886 nd->m_seq = read_seqbegin(&mount_lock);
1887 } else {
1888 path_get(&nd->path);
1889 }
1890 goto done;
1891 }
1892
1893 nd->root.mnt = NULL;
1894
1895 nd->m_seq = read_seqbegin(&mount_lock);
1896 if (*s == '/') {
1897 if (flags & LOOKUP_RCU) {
1898 rcu_read_lock();
1899 nd->seq = set_root_rcu(nd);
1900 } else {
1901 set_root(nd);
1902 path_get(&nd->root);
1903 }
1904 nd->path = nd->root;
1905 } else if (dfd == AT_FDCWD) {
1906 if (flags & LOOKUP_RCU) {
1907 struct fs_struct *fs = current->fs;
1908 unsigned seq;
1909
1910 rcu_read_lock();
1911
1912 do {
1913 seq = read_seqcount_begin(&fs->seq);
1914 nd->path = fs->pwd;
1915 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1916 } while (read_seqcount_retry(&fs->seq, seq));
1917 } else {
1918 get_fs_pwd(current->fs, &nd->path);
1919 }
1920 } else {
1921 /* Caller must check execute permissions on the starting path component */
1922 struct fd f = fdget_raw(dfd);
1923 struct dentry *dentry;
1924
1925 if (!f.file)
1926 return -EBADF;
1927
1928 dentry = f.file->f_path.dentry;
1929
1930 if (*s) {
1931 if (!d_can_lookup(dentry)) {
1932 fdput(f);
1933 return -ENOTDIR;
1934 }
1935 }
1936
1937 nd->path = f.file->f_path;
1938 if (flags & LOOKUP_RCU) {
1939 if (f.flags & FDPUT_FPUT)
1940 nd->base = f.file;
1941 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1942 rcu_read_lock();
1943 } else {
1944 path_get(&nd->path);
1945 fdput(f);
1946 }
1947 }
1948
1949 nd->inode = nd->path.dentry->d_inode;
1950 if (!(flags & LOOKUP_RCU))
1951 goto done;
1952 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1953 goto done;
1954 if (!(nd->flags & LOOKUP_ROOT))
1955 nd->root.mnt = NULL;
1956 rcu_read_unlock();
1957 return -ECHILD;
1958 done:
1959 current->total_link_count = 0;
1960 return link_path_walk(s, nd);
1961 }
1962
1963 static void path_cleanup(struct nameidata *nd)
1964 {
1965 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1966 path_put(&nd->root);
1967 nd->root.mnt = NULL;
1968 }
1969 if (unlikely(nd->base))
1970 fput(nd->base);
1971 }
1972
1973 static inline int lookup_last(struct nameidata *nd, struct path *path)
1974 {
1975 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1976 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1977
1978 nd->flags &= ~LOOKUP_PARENT;
1979 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1980 }
1981
1982 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1983 static int path_lookupat(int dfd, const struct filename *name,
1984 unsigned int flags, struct nameidata *nd)
1985 {
1986 struct path path;
1987 int err;
1988
1989 /*
1990 * Path walking is largely split up into 2 different synchronisation
1991 * schemes, rcu-walk and ref-walk (explained in
1992 * Documentation/filesystems/path-lookup.txt). These share much of the
1993 * path walk code, but some things particularly setup, cleanup, and
1994 * following mounts are sufficiently divergent that functions are
1995 * duplicated. Typically there is a function foo(), and its RCU
1996 * analogue, foo_rcu().
1997 *
1998 * -ECHILD is the error number of choice (just to avoid clashes) that
1999 * is returned if some aspect of an rcu-walk fails. Such an error must
2000 * be handled by restarting a traditional ref-walk (which will always
2001 * be able to complete).
2002 */
2003 err = path_init(dfd, name, flags, nd);
2004 if (!err && !(flags & LOOKUP_PARENT)) {
2005 err = lookup_last(nd, &path);
2006 while (err > 0) {
2007 void *cookie;
2008 struct path link = path;
2009 err = may_follow_link(&link, nd);
2010 if (unlikely(err))
2011 break;
2012 nd->flags |= LOOKUP_PARENT;
2013 err = follow_link(&link, nd, &cookie);
2014 if (err)
2015 break;
2016 err = lookup_last(nd, &path);
2017 put_link(nd, &link, cookie);
2018 }
2019 }
2020
2021 if (!err)
2022 err = complete_walk(nd);
2023
2024 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2025 if (!d_can_lookup(nd->path.dentry)) {
2026 path_put(&nd->path);
2027 err = -ENOTDIR;
2028 }
2029 }
2030
2031 path_cleanup(nd);
2032 return err;
2033 }
2034
2035 static int filename_lookup(int dfd, struct filename *name,
2036 unsigned int flags, struct nameidata *nd)
2037 {
2038 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2039 if (unlikely(retval == -ECHILD))
2040 retval = path_lookupat(dfd, name, flags, nd);
2041 if (unlikely(retval == -ESTALE))
2042 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2043
2044 if (likely(!retval))
2045 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2046 return retval;
2047 }
2048
2049 /* does lookup, returns the object with parent locked */
2050 struct dentry *kern_path_locked(const char *name, struct path *path)
2051 {
2052 struct filename *filename = getname_kernel(name);
2053 struct nameidata nd;
2054 struct dentry *d;
2055 int err;
2056
2057 if (IS_ERR(filename))
2058 return ERR_CAST(filename);
2059
2060 err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd);
2061 if (err) {
2062 d = ERR_PTR(err);
2063 goto out;
2064 }
2065 if (nd.last_type != LAST_NORM) {
2066 path_put(&nd.path);
2067 d = ERR_PTR(-EINVAL);
2068 goto out;
2069 }
2070 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2071 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2072 if (IS_ERR(d)) {
2073 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2074 path_put(&nd.path);
2075 goto out;
2076 }
2077 *path = nd.path;
2078 out:
2079 putname(filename);
2080 return d;
2081 }
2082
2083 int kern_path(const char *name, unsigned int flags, struct path *path)
2084 {
2085 struct nameidata nd;
2086 struct filename *filename = getname_kernel(name);
2087 int res = PTR_ERR(filename);
2088
2089 if (!IS_ERR(filename)) {
2090 res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2091 putname(filename);
2092 if (!res)
2093 *path = nd.path;
2094 }
2095 return res;
2096 }
2097 EXPORT_SYMBOL(kern_path);
2098
2099 /**
2100 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2101 * @dentry: pointer to dentry of the base directory
2102 * @mnt: pointer to vfs mount of the base directory
2103 * @name: pointer to file name
2104 * @flags: lookup flags
2105 * @path: pointer to struct path to fill
2106 */
2107 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2108 const char *name, unsigned int flags,
2109 struct path *path)
2110 {
2111 struct filename *filename = getname_kernel(name);
2112 int err = PTR_ERR(filename);
2113
2114 BUG_ON(flags & LOOKUP_PARENT);
2115
2116 /* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2117 if (!IS_ERR(filename)) {
2118 struct nameidata nd;
2119 nd.root.dentry = dentry;
2120 nd.root.mnt = mnt;
2121 err = filename_lookup(AT_FDCWD, filename,
2122 flags | LOOKUP_ROOT, &nd);
2123 if (!err)
2124 *path = nd.path;
2125 putname(filename);
2126 }
2127 return err;
2128 }
2129 EXPORT_SYMBOL(vfs_path_lookup);
2130
2131 /*
2132 * Restricted form of lookup. Doesn't follow links, single-component only,
2133 * needs parent already locked. Doesn't follow mounts.
2134 * SMP-safe.
2135 */
2136 static struct dentry *lookup_hash(struct nameidata *nd)
2137 {
2138 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2139 }
2140
2141 /**
2142 * lookup_one_len - filesystem helper to lookup single pathname component
2143 * @name: pathname component to lookup
2144 * @base: base directory to lookup from
2145 * @len: maximum length @len should be interpreted to
2146 *
2147 * Note that this routine is purely a helper for filesystem usage and should
2148 * not be called by generic code.
2149 */
2150 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2151 {
2152 struct qstr this;
2153 unsigned int c;
2154 int err;
2155
2156 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2157
2158 this.name = name;
2159 this.len = len;
2160 this.hash = full_name_hash(name, len);
2161 if (!len)
2162 return ERR_PTR(-EACCES);
2163
2164 if (unlikely(name[0] == '.')) {
2165 if (len < 2 || (len == 2 && name[1] == '.'))
2166 return ERR_PTR(-EACCES);
2167 }
2168
2169 while (len--) {
2170 c = *(const unsigned char *)name++;
2171 if (c == '/' || c == '\0')
2172 return ERR_PTR(-EACCES);
2173 }
2174 /*
2175 * See if the low-level filesystem might want
2176 * to use its own hash..
2177 */
2178 if (base->d_flags & DCACHE_OP_HASH) {
2179 int err = base->d_op->d_hash(base, &this);
2180 if (err < 0)
2181 return ERR_PTR(err);
2182 }
2183
2184 err = inode_permission(base->d_inode, MAY_EXEC);
2185 if (err)
2186 return ERR_PTR(err);
2187
2188 return __lookup_hash(&this, base, 0);
2189 }
2190 EXPORT_SYMBOL(lookup_one_len);
2191
2192 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2193 struct path *path, int *empty)
2194 {
2195 struct nameidata nd;
2196 struct filename *tmp = getname_flags(name, flags, empty);
2197 int err = PTR_ERR(tmp);
2198 if (!IS_ERR(tmp)) {
2199
2200 BUG_ON(flags & LOOKUP_PARENT);
2201
2202 err = filename_lookup(dfd, tmp, flags, &nd);
2203 putname(tmp);
2204 if (!err)
2205 *path = nd.path;
2206 }
2207 return err;
2208 }
2209
2210 int user_path_at(int dfd, const char __user *name, unsigned flags,
2211 struct path *path)
2212 {
2213 return user_path_at_empty(dfd, name, flags, path, NULL);
2214 }
2215 EXPORT_SYMBOL(user_path_at);
2216
2217 /*
2218 * NB: most callers don't do anything directly with the reference to the
2219 * to struct filename, but the nd->last pointer points into the name string
2220 * allocated by getname. So we must hold the reference to it until all
2221 * path-walking is complete.
2222 */
2223 static struct filename *
2224 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2225 unsigned int flags)
2226 {
2227 struct filename *s = getname(path);
2228 int error;
2229
2230 /* only LOOKUP_REVAL is allowed in extra flags */
2231 flags &= LOOKUP_REVAL;
2232
2233 if (IS_ERR(s))
2234 return s;
2235
2236 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2237 if (error) {
2238 putname(s);
2239 return ERR_PTR(error);
2240 }
2241
2242 return s;
2243 }
2244
2245 /**
2246 * mountpoint_last - look up last component for umount
2247 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2248 * @path: pointer to container for result
2249 *
2250 * This is a special lookup_last function just for umount. In this case, we
2251 * need to resolve the path without doing any revalidation.
2252 *
2253 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2254 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2255 * in almost all cases, this lookup will be served out of the dcache. The only
2256 * cases where it won't are if nd->last refers to a symlink or the path is
2257 * bogus and it doesn't exist.
2258 *
2259 * Returns:
2260 * -error: if there was an error during lookup. This includes -ENOENT if the
2261 * lookup found a negative dentry. The nd->path reference will also be
2262 * put in this case.
2263 *
2264 * 0: if we successfully resolved nd->path and found it to not to be a
2265 * symlink that needs to be followed. "path" will also be populated.
2266 * The nd->path reference will also be put.
2267 *
2268 * 1: if we successfully resolved nd->last and found it to be a symlink
2269 * that needs to be followed. "path" will be populated with the path
2270 * to the link, and nd->path will *not* be put.
2271 */
2272 static int
2273 mountpoint_last(struct nameidata *nd, struct path *path)
2274 {
2275 int error = 0;
2276 struct dentry *dentry;
2277 struct dentry *dir = nd->path.dentry;
2278
2279 /* If we're in rcuwalk, drop out of it to handle last component */
2280 if (nd->flags & LOOKUP_RCU) {
2281 if (unlazy_walk(nd, NULL)) {
2282 error = -ECHILD;
2283 goto out;
2284 }
2285 }
2286
2287 nd->flags &= ~LOOKUP_PARENT;
2288
2289 if (unlikely(nd->last_type != LAST_NORM)) {
2290 error = handle_dots(nd, nd->last_type);
2291 if (error)
2292 goto out;
2293 dentry = dget(nd->path.dentry);
2294 goto done;
2295 }
2296
2297 mutex_lock(&dir->d_inode->i_mutex);
2298 dentry = d_lookup(dir, &nd->last);
2299 if (!dentry) {
2300 /*
2301 * No cached dentry. Mounted dentries are pinned in the cache,
2302 * so that means that this dentry is probably a symlink or the
2303 * path doesn't actually point to a mounted dentry.
2304 */
2305 dentry = d_alloc(dir, &nd->last);
2306 if (!dentry) {
2307 error = -ENOMEM;
2308 mutex_unlock(&dir->d_inode->i_mutex);
2309 goto out;
2310 }
2311 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2312 error = PTR_ERR(dentry);
2313 if (IS_ERR(dentry)) {
2314 mutex_unlock(&dir->d_inode->i_mutex);
2315 goto out;
2316 }
2317 }
2318 mutex_unlock(&dir->d_inode->i_mutex);
2319
2320 done:
2321 if (d_is_negative(dentry)) {
2322 error = -ENOENT;
2323 dput(dentry);
2324 goto out;
2325 }
2326 path->dentry = dentry;
2327 path->mnt = nd->path.mnt;
2328 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2329 return 1;
2330 mntget(path->mnt);
2331 follow_mount(path);
2332 error = 0;
2333 out:
2334 terminate_walk(nd);
2335 return error;
2336 }
2337
2338 /**
2339 * path_mountpoint - look up a path to be umounted
2340 * @dfd: directory file descriptor to start walk from
2341 * @name: full pathname to walk
2342 * @path: pointer to container for result
2343 * @flags: lookup flags
2344 *
2345 * Look up the given name, but don't attempt to revalidate the last component.
2346 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2347 */
2348 static int
2349 path_mountpoint(int dfd, const struct filename *name, struct path *path,
2350 unsigned int flags)
2351 {
2352 struct nameidata nd;
2353 int err;
2354
2355 err = path_init(dfd, name, flags, &nd);
2356 if (unlikely(err))
2357 goto out;
2358
2359 err = mountpoint_last(&nd, path);
2360 while (err > 0) {
2361 void *cookie;
2362 struct path link = *path;
2363 err = may_follow_link(&link, &nd);
2364 if (unlikely(err))
2365 break;
2366 nd.flags |= LOOKUP_PARENT;
2367 err = follow_link(&link, &nd, &cookie);
2368 if (err)
2369 break;
2370 err = mountpoint_last(&nd, path);
2371 put_link(&nd, &link, cookie);
2372 }
2373 out:
2374 path_cleanup(&nd);
2375 return err;
2376 }
2377
2378 static int
2379 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2380 unsigned int flags)
2381 {
2382 int error;
2383 if (IS_ERR(name))
2384 return PTR_ERR(name);
2385 error = path_mountpoint(dfd, name, path, flags | LOOKUP_RCU);
2386 if (unlikely(error == -ECHILD))
2387 error = path_mountpoint(dfd, name, path, flags);
2388 if (unlikely(error == -ESTALE))
2389 error = path_mountpoint(dfd, name, path, flags | LOOKUP_REVAL);
2390 if (likely(!error))
2391 audit_inode(name, path->dentry, 0);
2392 putname(name);
2393 return error;
2394 }
2395
2396 /**
2397 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2398 * @dfd: directory file descriptor
2399 * @name: pathname from userland
2400 * @flags: lookup flags
2401 * @path: pointer to container to hold result
2402 *
2403 * A umount is a special case for path walking. We're not actually interested
2404 * in the inode in this situation, and ESTALE errors can be a problem. We
2405 * simply want track down the dentry and vfsmount attached at the mountpoint
2406 * and avoid revalidating the last component.
2407 *
2408 * Returns 0 and populates "path" on success.
2409 */
2410 int
2411 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2412 struct path *path)
2413 {
2414 return filename_mountpoint(dfd, getname(name), path, flags);
2415 }
2416
2417 int
2418 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2419 unsigned int flags)
2420 {
2421 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2422 }
2423 EXPORT_SYMBOL(kern_path_mountpoint);
2424
2425 int __check_sticky(struct inode *dir, struct inode *inode)
2426 {
2427 kuid_t fsuid = current_fsuid();
2428
2429 if (uid_eq(inode->i_uid, fsuid))
2430 return 0;
2431 if (uid_eq(dir->i_uid, fsuid))
2432 return 0;
2433 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2434 }
2435 EXPORT_SYMBOL(__check_sticky);
2436
2437 /*
2438 * Check whether we can remove a link victim from directory dir, check
2439 * whether the type of victim is right.
2440 * 1. We can't do it if dir is read-only (done in permission())
2441 * 2. We should have write and exec permissions on dir
2442 * 3. We can't remove anything from append-only dir
2443 * 4. We can't do anything with immutable dir (done in permission())
2444 * 5. If the sticky bit on dir is set we should either
2445 * a. be owner of dir, or
2446 * b. be owner of victim, or
2447 * c. have CAP_FOWNER capability
2448 * 6. If the victim is append-only or immutable we can't do antyhing with
2449 * links pointing to it.
2450 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2451 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2452 * 9. We can't remove a root or mountpoint.
2453 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2454 * nfs_async_unlink().
2455 */
2456 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2457 {
2458 struct inode *inode = victim->d_inode;
2459 int error;
2460
2461 if (d_is_negative(victim))
2462 return -ENOENT;
2463 BUG_ON(!inode);
2464
2465 BUG_ON(victim->d_parent->d_inode != dir);
2466 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2467
2468 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2469 if (error)
2470 return error;
2471 if (IS_APPEND(dir))
2472 return -EPERM;
2473
2474 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2475 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2476 return -EPERM;
2477 if (isdir) {
2478 if (!d_is_dir(victim))
2479 return -ENOTDIR;
2480 if (IS_ROOT(victim))
2481 return -EBUSY;
2482 } else if (d_is_dir(victim))
2483 return -EISDIR;
2484 if (IS_DEADDIR(dir))
2485 return -ENOENT;
2486 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2487 return -EBUSY;
2488 return 0;
2489 }
2490
2491 /* Check whether we can create an object with dentry child in directory
2492 * dir.
2493 * 1. We can't do it if child already exists (open has special treatment for
2494 * this case, but since we are inlined it's OK)
2495 * 2. We can't do it if dir is read-only (done in permission())
2496 * 3. We should have write and exec permissions on dir
2497 * 4. We can't do it if dir is immutable (done in permission())
2498 */
2499 static inline int may_create(struct inode *dir, struct dentry *child)
2500 {
2501 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2502 if (child->d_inode)
2503 return -EEXIST;
2504 if (IS_DEADDIR(dir))
2505 return -ENOENT;
2506 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2507 }
2508
2509 /*
2510 * p1 and p2 should be directories on the same fs.
2511 */
2512 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2513 {
2514 struct dentry *p;
2515
2516 if (p1 == p2) {
2517 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2518 return NULL;
2519 }
2520
2521 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2522
2523 p = d_ancestor(p2, p1);
2524 if (p) {
2525 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2526 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2527 return p;
2528 }
2529
2530 p = d_ancestor(p1, p2);
2531 if (p) {
2532 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2533 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2534 return p;
2535 }
2536
2537 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2538 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2539 return NULL;
2540 }
2541 EXPORT_SYMBOL(lock_rename);
2542
2543 void unlock_rename(struct dentry *p1, struct dentry *p2)
2544 {
2545 mutex_unlock(&p1->d_inode->i_mutex);
2546 if (p1 != p2) {
2547 mutex_unlock(&p2->d_inode->i_mutex);
2548 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2549 }
2550 }
2551 EXPORT_SYMBOL(unlock_rename);
2552
2553 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2554 bool want_excl)
2555 {
2556 int error = may_create(dir, dentry);
2557 if (error)
2558 return error;
2559
2560 if (!dir->i_op->create)
2561 return -EACCES; /* shouldn't it be ENOSYS? */
2562 mode &= S_IALLUGO;
2563 mode |= S_IFREG;
2564 error = security_inode_create(dir, dentry, mode);
2565 if (error)
2566 return error;
2567 error = dir->i_op->create(dir, dentry, mode, want_excl);
2568 if (!error)
2569 fsnotify_create(dir, dentry);
2570 return error;
2571 }
2572 EXPORT_SYMBOL(vfs_create);
2573
2574 static int may_open(struct path *path, int acc_mode, int flag)
2575 {
2576 struct dentry *dentry = path->dentry;
2577 struct inode *inode = dentry->d_inode;
2578 int error;
2579
2580 /* O_PATH? */
2581 if (!acc_mode)
2582 return 0;
2583
2584 if (!inode)
2585 return -ENOENT;
2586
2587 switch (inode->i_mode & S_IFMT) {
2588 case S_IFLNK:
2589 return -ELOOP;
2590 case S_IFDIR:
2591 if (acc_mode & MAY_WRITE)
2592 return -EISDIR;
2593 break;
2594 case S_IFBLK:
2595 case S_IFCHR:
2596 if (path->mnt->mnt_flags & MNT_NODEV)
2597 return -EACCES;
2598 /*FALLTHRU*/
2599 case S_IFIFO:
2600 case S_IFSOCK:
2601 flag &= ~O_TRUNC;
2602 break;
2603 }
2604
2605 error = inode_permission(inode, acc_mode);
2606 if (error)
2607 return error;
2608
2609 /*
2610 * An append-only file must be opened in append mode for writing.
2611 */
2612 if (IS_APPEND(inode)) {
2613 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2614 return -EPERM;
2615 if (flag & O_TRUNC)
2616 return -EPERM;
2617 }
2618
2619 /* O_NOATIME can only be set by the owner or superuser */
2620 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2621 return -EPERM;
2622
2623 return 0;
2624 }
2625
2626 static int handle_truncate(struct file *filp)
2627 {
2628 struct path *path = &filp->f_path;
2629 struct inode *inode = path->dentry->d_inode;
2630 int error = get_write_access(inode);
2631 if (error)
2632 return error;
2633 /*
2634 * Refuse to truncate files with mandatory locks held on them.
2635 */
2636 error = locks_verify_locked(filp);
2637 if (!error)
2638 error = security_path_truncate(path);
2639 if (!error) {
2640 error = do_truncate(path->dentry, 0,
2641 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2642 filp);
2643 }
2644 put_write_access(inode);
2645 return error;
2646 }
2647
2648 static inline int open_to_namei_flags(int flag)
2649 {
2650 if ((flag & O_ACCMODE) == 3)
2651 flag--;
2652 return flag;
2653 }
2654
2655 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2656 {
2657 int error = security_path_mknod(dir, dentry, mode, 0);
2658 if (error)
2659 return error;
2660
2661 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2662 if (error)
2663 return error;
2664
2665 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2666 }
2667
2668 /*
2669 * Attempt to atomically look up, create and open a file from a negative
2670 * dentry.
2671 *
2672 * Returns 0 if successful. The file will have been created and attached to
2673 * @file by the filesystem calling finish_open().
2674 *
2675 * Returns 1 if the file was looked up only or didn't need creating. The
2676 * caller will need to perform the open themselves. @path will have been
2677 * updated to point to the new dentry. This may be negative.
2678 *
2679 * Returns an error code otherwise.
2680 */
2681 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2682 struct path *path, struct file *file,
2683 const struct open_flags *op,
2684 bool got_write, bool need_lookup,
2685 int *opened)
2686 {
2687 struct inode *dir = nd->path.dentry->d_inode;
2688 unsigned open_flag = open_to_namei_flags(op->open_flag);
2689 umode_t mode;
2690 int error;
2691 int acc_mode;
2692 int create_error = 0;
2693 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2694 bool excl;
2695
2696 BUG_ON(dentry->d_inode);
2697
2698 /* Don't create child dentry for a dead directory. */
2699 if (unlikely(IS_DEADDIR(dir))) {
2700 error = -ENOENT;
2701 goto out;
2702 }
2703
2704 mode = op->mode;
2705 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2706 mode &= ~current_umask();
2707
2708 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2709 if (excl)
2710 open_flag &= ~O_TRUNC;
2711
2712 /*
2713 * Checking write permission is tricky, bacuse we don't know if we are
2714 * going to actually need it: O_CREAT opens should work as long as the
2715 * file exists. But checking existence breaks atomicity. The trick is
2716 * to check access and if not granted clear O_CREAT from the flags.
2717 *
2718 * Another problem is returing the "right" error value (e.g. for an
2719 * O_EXCL open we want to return EEXIST not EROFS).
2720 */
2721 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2722 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2723 if (!(open_flag & O_CREAT)) {
2724 /*
2725 * No O_CREATE -> atomicity not a requirement -> fall
2726 * back to lookup + open
2727 */
2728 goto no_open;
2729 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2730 /* Fall back and fail with the right error */
2731 create_error = -EROFS;
2732 goto no_open;
2733 } else {
2734 /* No side effects, safe to clear O_CREAT */
2735 create_error = -EROFS;
2736 open_flag &= ~O_CREAT;
2737 }
2738 }
2739
2740 if (open_flag & O_CREAT) {
2741 error = may_o_create(&nd->path, dentry, mode);
2742 if (error) {
2743 create_error = error;
2744 if (open_flag & O_EXCL)
2745 goto no_open;
2746 open_flag &= ~O_CREAT;
2747 }
2748 }
2749
2750 if (nd->flags & LOOKUP_DIRECTORY)
2751 open_flag |= O_DIRECTORY;
2752
2753 file->f_path.dentry = DENTRY_NOT_SET;
2754 file->f_path.mnt = nd->path.mnt;
2755 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2756 opened);
2757 if (error < 0) {
2758 if (create_error && error == -ENOENT)
2759 error = create_error;
2760 goto out;
2761 }
2762
2763 if (error) { /* returned 1, that is */
2764 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2765 error = -EIO;
2766 goto out;
2767 }
2768 if (file->f_path.dentry) {
2769 dput(dentry);
2770 dentry = file->f_path.dentry;
2771 }
2772 if (*opened & FILE_CREATED)
2773 fsnotify_create(dir, dentry);
2774 if (!dentry->d_inode) {
2775 WARN_ON(*opened & FILE_CREATED);
2776 if (create_error) {
2777 error = create_error;
2778 goto out;
2779 }
2780 } else {
2781 if (excl && !(*opened & FILE_CREATED)) {
2782 error = -EEXIST;
2783 goto out;
2784 }
2785 }
2786 goto looked_up;
2787 }
2788
2789 /*
2790 * We didn't have the inode before the open, so check open permission
2791 * here.
2792 */
2793 acc_mode = op->acc_mode;
2794 if (*opened & FILE_CREATED) {
2795 WARN_ON(!(open_flag & O_CREAT));
2796 fsnotify_create(dir, dentry);
2797 acc_mode = MAY_OPEN;
2798 }
2799 error = may_open(&file->f_path, acc_mode, open_flag);
2800 if (error)
2801 fput(file);
2802
2803 out:
2804 dput(dentry);
2805 return error;
2806
2807 no_open:
2808 if (need_lookup) {
2809 dentry = lookup_real(dir, dentry, nd->flags);
2810 if (IS_ERR(dentry))
2811 return PTR_ERR(dentry);
2812
2813 if (create_error) {
2814 int open_flag = op->open_flag;
2815
2816 error = create_error;
2817 if ((open_flag & O_EXCL)) {
2818 if (!dentry->d_inode)
2819 goto out;
2820 } else if (!dentry->d_inode) {
2821 goto out;
2822 } else if ((open_flag & O_TRUNC) &&
2823 d_is_reg(dentry)) {
2824 goto out;
2825 }
2826 /* will fail later, go on to get the right error */
2827 }
2828 }
2829 looked_up:
2830 path->dentry = dentry;
2831 path->mnt = nd->path.mnt;
2832 return 1;
2833 }
2834
2835 /*
2836 * Look up and maybe create and open the last component.
2837 *
2838 * Must be called with i_mutex held on parent.
2839 *
2840 * Returns 0 if the file was successfully atomically created (if necessary) and
2841 * opened. In this case the file will be returned attached to @file.
2842 *
2843 * Returns 1 if the file was not completely opened at this time, though lookups
2844 * and creations will have been performed and the dentry returned in @path will
2845 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2846 * specified then a negative dentry may be returned.
2847 *
2848 * An error code is returned otherwise.
2849 *
2850 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2851 * cleared otherwise prior to returning.
2852 */
2853 static int lookup_open(struct nameidata *nd, struct path *path,
2854 struct file *file,
2855 const struct open_flags *op,
2856 bool got_write, int *opened)
2857 {
2858 struct dentry *dir = nd->path.dentry;
2859 struct inode *dir_inode = dir->d_inode;
2860 struct dentry *dentry;
2861 int error;
2862 bool need_lookup;
2863
2864 *opened &= ~FILE_CREATED;
2865 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2866 if (IS_ERR(dentry))
2867 return PTR_ERR(dentry);
2868
2869 /* Cached positive dentry: will open in f_op->open */
2870 if (!need_lookup && dentry->d_inode)
2871 goto out_no_open;
2872
2873 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2874 return atomic_open(nd, dentry, path, file, op, got_write,
2875 need_lookup, opened);
2876 }
2877
2878 if (need_lookup) {
2879 BUG_ON(dentry->d_inode);
2880
2881 dentry = lookup_real(dir_inode, dentry, nd->flags);
2882 if (IS_ERR(dentry))
2883 return PTR_ERR(dentry);
2884 }
2885
2886 /* Negative dentry, just create the file */
2887 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2888 umode_t mode = op->mode;
2889 if (!IS_POSIXACL(dir->d_inode))
2890 mode &= ~current_umask();
2891 /*
2892 * This write is needed to ensure that a
2893 * rw->ro transition does not occur between
2894 * the time when the file is created and when
2895 * a permanent write count is taken through
2896 * the 'struct file' in finish_open().
2897 */
2898 if (!got_write) {
2899 error = -EROFS;
2900 goto out_dput;
2901 }
2902 *opened |= FILE_CREATED;
2903 error = security_path_mknod(&nd->path, dentry, mode, 0);
2904 if (error)
2905 goto out_dput;
2906 error = vfs_create(dir->d_inode, dentry, mode,
2907 nd->flags & LOOKUP_EXCL);
2908 if (error)
2909 goto out_dput;
2910 }
2911 out_no_open:
2912 path->dentry = dentry;
2913 path->mnt = nd->path.mnt;
2914 return 1;
2915
2916 out_dput:
2917 dput(dentry);
2918 return error;
2919 }
2920
2921 /*
2922 * Handle the last step of open()
2923 */
2924 static int do_last(struct nameidata *nd, struct path *path,
2925 struct file *file, const struct open_flags *op,
2926 int *opened, struct filename *name)
2927 {
2928 struct dentry *dir = nd->path.dentry;
2929 int open_flag = op->open_flag;
2930 bool will_truncate = (open_flag & O_TRUNC) != 0;
2931 bool got_write = false;
2932 int acc_mode = op->acc_mode;
2933 struct inode *inode;
2934 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2935 bool retried = false;
2936 int error;
2937
2938 nd->flags &= ~LOOKUP_PARENT;
2939 nd->flags |= op->intent;
2940
2941 if (nd->last_type != LAST_NORM) {
2942 error = handle_dots(nd, nd->last_type);
2943 if (error)
2944 return error;
2945 goto finish_open;
2946 }
2947
2948 if (!(open_flag & O_CREAT)) {
2949 if (nd->last.name[nd->last.len])
2950 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2951 /* we _can_ be in RCU mode here */
2952 error = lookup_fast(nd, path, &inode);
2953 if (likely(!error))
2954 goto finish_lookup;
2955
2956 if (error < 0)
2957 goto out;
2958
2959 BUG_ON(nd->inode != dir->d_inode);
2960 } else {
2961 /* create side of things */
2962 /*
2963 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2964 * has been cleared when we got to the last component we are
2965 * about to look up
2966 */
2967 error = complete_walk(nd);
2968 if (error)
2969 return error;
2970
2971 audit_inode(name, dir, LOOKUP_PARENT);
2972 error = -EISDIR;
2973 /* trailing slashes? */
2974 if (nd->last.name[nd->last.len])
2975 goto out;
2976 }
2977
2978 retry_lookup:
2979 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2980 error = mnt_want_write(nd->path.mnt);
2981 if (!error)
2982 got_write = true;
2983 /*
2984 * do _not_ fail yet - we might not need that or fail with
2985 * a different error; let lookup_open() decide; we'll be
2986 * dropping this one anyway.
2987 */
2988 }
2989 mutex_lock(&dir->d_inode->i_mutex);
2990 error = lookup_open(nd, path, file, op, got_write, opened);
2991 mutex_unlock(&dir->d_inode->i_mutex);
2992
2993 if (error <= 0) {
2994 if (error)
2995 goto out;
2996
2997 if ((*opened & FILE_CREATED) ||
2998 !S_ISREG(file_inode(file)->i_mode))
2999 will_truncate = false;
3000
3001 audit_inode(name, file->f_path.dentry, 0);
3002 goto opened;
3003 }
3004
3005 if (*opened & FILE_CREATED) {
3006 /* Don't check for write permission, don't truncate */
3007 open_flag &= ~O_TRUNC;
3008 will_truncate = false;
3009 acc_mode = MAY_OPEN;
3010 path_to_nameidata(path, nd);
3011 goto finish_open_created;
3012 }
3013
3014 /*
3015 * create/update audit record if it already exists.
3016 */
3017 if (d_is_positive(path->dentry))
3018 audit_inode(name, path->dentry, 0);
3019
3020 /*
3021 * If atomic_open() acquired write access it is dropped now due to
3022 * possible mount and symlink following (this might be optimized away if
3023 * necessary...)
3024 */
3025 if (got_write) {
3026 mnt_drop_write(nd->path.mnt);
3027 got_write = false;
3028 }
3029
3030 error = -EEXIST;
3031 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3032 goto exit_dput;
3033
3034 error = follow_managed(path, nd->flags);
3035 if (error < 0)
3036 goto exit_dput;
3037
3038 if (error)
3039 nd->flags |= LOOKUP_JUMPED;
3040
3041 BUG_ON(nd->flags & LOOKUP_RCU);
3042 inode = path->dentry->d_inode;
3043 error = -ENOENT;
3044 if (d_is_negative(path->dentry)) {
3045 path_to_nameidata(path, nd);
3046 goto out;
3047 }
3048 finish_lookup:
3049 /* we _can_ be in RCU mode here */
3050 if (should_follow_link(path->dentry,
3051 !(open_flag & O_PATH) || (nd->flags & LOOKUP_FOLLOW))) {
3052 if (nd->flags & LOOKUP_RCU) {
3053 if (unlikely(nd->path.mnt != path->mnt ||
3054 unlazy_walk(nd, path->dentry))) {
3055 error = -ECHILD;
3056 goto out;
3057 }
3058 }
3059 BUG_ON(inode != path->dentry->d_inode);
3060 if (!(nd->flags & LOOKUP_FOLLOW)) {
3061 path_put_conditional(path, nd);
3062 path_put(&nd->path);
3063 return -ELOOP;
3064 }
3065 return 1;
3066 }
3067
3068 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3069 path_to_nameidata(path, nd);
3070 } else {
3071 save_parent.dentry = nd->path.dentry;
3072 save_parent.mnt = mntget(path->mnt);
3073 nd->path.dentry = path->dentry;
3074
3075 }
3076 nd->inode = inode;
3077 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3078 finish_open:
3079 error = complete_walk(nd);
3080 if (error) {
3081 path_put(&save_parent);
3082 return error;
3083 }
3084 audit_inode(name, nd->path.dentry, 0);
3085 error = -EISDIR;
3086 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3087 goto out;
3088 error = -ENOTDIR;
3089 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3090 goto out;
3091 if (!d_is_reg(nd->path.dentry))
3092 will_truncate = false;
3093
3094 if (will_truncate) {
3095 error = mnt_want_write(nd->path.mnt);
3096 if (error)
3097 goto out;
3098 got_write = true;
3099 }
3100 finish_open_created:
3101 error = may_open(&nd->path, acc_mode, open_flag);
3102 if (error)
3103 goto out;
3104
3105 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3106 error = vfs_open(&nd->path, file, current_cred());
3107 if (!error) {
3108 *opened |= FILE_OPENED;
3109 } else {
3110 if (error == -EOPENSTALE)
3111 goto stale_open;
3112 goto out;
3113 }
3114 opened:
3115 error = open_check_o_direct(file);
3116 if (error)
3117 goto exit_fput;
3118 error = ima_file_check(file, op->acc_mode, *opened);
3119 if (error)
3120 goto exit_fput;
3121
3122 if (will_truncate) {
3123 error = handle_truncate(file);
3124 if (error)
3125 goto exit_fput;
3126 }
3127 out:
3128 if (got_write)
3129 mnt_drop_write(nd->path.mnt);
3130 path_put(&save_parent);
3131 terminate_walk(nd);
3132 return error;
3133
3134 exit_dput:
3135 path_put_conditional(path, nd);
3136 goto out;
3137 exit_fput:
3138 fput(file);
3139 goto out;
3140
3141 stale_open:
3142 /* If no saved parent or already retried then can't retry */
3143 if (!save_parent.dentry || retried)
3144 goto out;
3145
3146 BUG_ON(save_parent.dentry != dir);
3147 path_put(&nd->path);
3148 nd->path = save_parent;
3149 nd->inode = dir->d_inode;
3150 save_parent.mnt = NULL;
3151 save_parent.dentry = NULL;
3152 if (got_write) {
3153 mnt_drop_write(nd->path.mnt);
3154 got_write = false;
3155 }
3156 retried = true;
3157 goto retry_lookup;
3158 }
3159
3160 static int do_tmpfile(int dfd, struct filename *pathname,
3161 struct nameidata *nd, int flags,
3162 const struct open_flags *op,
3163 struct file *file, int *opened)
3164 {
3165 static const struct qstr name = QSTR_INIT("/", 1);
3166 struct dentry *dentry, *child;
3167 struct inode *dir;
3168 int error = path_lookupat(dfd, pathname,
3169 flags | LOOKUP_DIRECTORY, nd);
3170 if (unlikely(error))
3171 return error;
3172 error = mnt_want_write(nd->path.mnt);
3173 if (unlikely(error))
3174 goto out;
3175 /* we want directory to be writable */
3176 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3177 if (error)
3178 goto out2;
3179 dentry = nd->path.dentry;
3180 dir = dentry->d_inode;
3181 if (!dir->i_op->tmpfile) {
3182 error = -EOPNOTSUPP;
3183 goto out2;
3184 }
3185 child = d_alloc(dentry, &name);
3186 if (unlikely(!child)) {
3187 error = -ENOMEM;
3188 goto out2;
3189 }
3190 nd->flags &= ~LOOKUP_DIRECTORY;
3191 nd->flags |= op->intent;
3192 dput(nd->path.dentry);
3193 nd->path.dentry = child;
3194 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3195 if (error)
3196 goto out2;
3197 audit_inode(pathname, nd->path.dentry, 0);
3198 /* Don't check for other permissions, the inode was just created */
3199 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3200 if (error)
3201 goto out2;
3202 file->f_path.mnt = nd->path.mnt;
3203 error = finish_open(file, nd->path.dentry, NULL, opened);
3204 if (error)
3205 goto out2;
3206 error = open_check_o_direct(file);
3207 if (error) {
3208 fput(file);
3209 } else if (!(op->open_flag & O_EXCL)) {
3210 struct inode *inode = file_inode(file);
3211 spin_lock(&inode->i_lock);
3212 inode->i_state |= I_LINKABLE;
3213 spin_unlock(&inode->i_lock);
3214 }
3215 out2:
3216 mnt_drop_write(nd->path.mnt);
3217 out:
3218 path_put(&nd->path);
3219 return error;
3220 }
3221
3222 static struct file *path_openat(int dfd, struct filename *pathname,
3223 struct nameidata *nd, const struct open_flags *op, int flags)
3224 {
3225 struct file *file;
3226 struct path path;
3227 int opened = 0;
3228 int error;
3229
3230 file = get_empty_filp();
3231 if (IS_ERR(file))
3232 return file;
3233
3234 file->f_flags = op->open_flag;
3235
3236 if (unlikely(file->f_flags & __O_TMPFILE)) {
3237 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3238 goto out2;
3239 }
3240
3241 error = path_init(dfd, pathname, flags, nd);
3242 if (unlikely(error))
3243 goto out;
3244
3245 error = do_last(nd, &path, file, op, &opened, pathname);
3246 while (unlikely(error > 0)) { /* trailing symlink */
3247 struct path link = path;
3248 void *cookie;
3249 error = may_follow_link(&link, nd);
3250 if (unlikely(error))
3251 break;
3252 nd->flags |= LOOKUP_PARENT;
3253 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3254 error = follow_link(&link, nd, &cookie);
3255 if (unlikely(error))
3256 break;
3257 error = do_last(nd, &path, file, op, &opened, pathname);
3258 put_link(nd, &link, cookie);
3259 }
3260 out:
3261 path_cleanup(nd);
3262 out2:
3263 if (!(opened & FILE_OPENED)) {
3264 BUG_ON(!error);
3265 put_filp(file);
3266 }
3267 if (unlikely(error)) {
3268 if (error == -EOPENSTALE) {
3269 if (flags & LOOKUP_RCU)
3270 error = -ECHILD;
3271 else
3272 error = -ESTALE;
3273 }
3274 file = ERR_PTR(error);
3275 }
3276 return file;
3277 }
3278
3279 struct file *do_filp_open(int dfd, struct filename *pathname,
3280 const struct open_flags *op)
3281 {
3282 struct nameidata nd;
3283 int flags = op->lookup_flags;
3284 struct file *filp;
3285
3286 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3287 if (unlikely(filp == ERR_PTR(-ECHILD)))
3288 filp = path_openat(dfd, pathname, &nd, op, flags);
3289 if (unlikely(filp == ERR_PTR(-ESTALE)))
3290 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3291 return filp;
3292 }
3293
3294 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3295 const char *name, const struct open_flags *op)
3296 {
3297 struct nameidata nd;
3298 struct file *file;
3299 struct filename *filename;
3300 int flags = op->lookup_flags | LOOKUP_ROOT;
3301
3302 nd.root.mnt = mnt;
3303 nd.root.dentry = dentry;
3304
3305 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3306 return ERR_PTR(-ELOOP);
3307
3308 filename = getname_kernel(name);
3309 if (unlikely(IS_ERR(filename)))
3310 return ERR_CAST(filename);
3311
3312 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3313 if (unlikely(file == ERR_PTR(-ECHILD)))
3314 file = path_openat(-1, filename, &nd, op, flags);
3315 if (unlikely(file == ERR_PTR(-ESTALE)))
3316 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3317 putname(filename);
3318 return file;
3319 }
3320
3321 static struct dentry *filename_create(int dfd, struct filename *name,
3322 struct path *path, unsigned int lookup_flags)
3323 {
3324 struct dentry *dentry = ERR_PTR(-EEXIST);
3325 struct nameidata nd;
3326 int err2;
3327 int error;
3328 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3329
3330 /*
3331 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3332 * other flags passed in are ignored!
3333 */
3334 lookup_flags &= LOOKUP_REVAL;
3335
3336 error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd);
3337 if (error)
3338 return ERR_PTR(error);
3339
3340 /*
3341 * Yucky last component or no last component at all?
3342 * (foo/., foo/.., /////)
3343 */
3344 if (nd.last_type != LAST_NORM)
3345 goto out;
3346 nd.flags &= ~LOOKUP_PARENT;
3347 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3348
3349 /* don't fail immediately if it's r/o, at least try to report other errors */
3350 err2 = mnt_want_write(nd.path.mnt);
3351 /*
3352 * Do the final lookup.
3353 */
3354 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3355 dentry = lookup_hash(&nd);
3356 if (IS_ERR(dentry))
3357 goto unlock;
3358
3359 error = -EEXIST;
3360 if (d_is_positive(dentry))
3361 goto fail;
3362
3363 /*
3364 * Special case - lookup gave negative, but... we had foo/bar/
3365 * From the vfs_mknod() POV we just have a negative dentry -
3366 * all is fine. Let's be bastards - you had / on the end, you've
3367 * been asking for (non-existent) directory. -ENOENT for you.
3368 */
3369 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3370 error = -ENOENT;
3371 goto fail;
3372 }
3373 if (unlikely(err2)) {
3374 error = err2;
3375 goto fail;
3376 }
3377 *path = nd.path;
3378 return dentry;
3379 fail:
3380 dput(dentry);
3381 dentry = ERR_PTR(error);
3382 unlock:
3383 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3384 if (!err2)
3385 mnt_drop_write(nd.path.mnt);
3386 out:
3387 path_put(&nd.path);
3388 return dentry;
3389 }
3390
3391 struct dentry *kern_path_create(int dfd, const char *pathname,
3392 struct path *path, unsigned int lookup_flags)
3393 {
3394 struct filename *filename = getname_kernel(pathname);
3395 struct dentry *res;
3396
3397 if (IS_ERR(filename))
3398 return ERR_CAST(filename);
3399 res = filename_create(dfd, filename, path, lookup_flags);
3400 putname(filename);
3401 return res;
3402 }
3403 EXPORT_SYMBOL(kern_path_create);
3404
3405 void done_path_create(struct path *path, struct dentry *dentry)
3406 {
3407 dput(dentry);
3408 mutex_unlock(&path->dentry->d_inode->i_mutex);
3409 mnt_drop_write(path->mnt);
3410 path_put(path);
3411 }
3412 EXPORT_SYMBOL(done_path_create);
3413
3414 struct dentry *user_path_create(int dfd, const char __user *pathname,
3415 struct path *path, unsigned int lookup_flags)
3416 {
3417 struct filename *tmp = getname(pathname);
3418 struct dentry *res;
3419 if (IS_ERR(tmp))
3420 return ERR_CAST(tmp);
3421 res = filename_create(dfd, tmp, path, lookup_flags);
3422 putname(tmp);
3423 return res;
3424 }
3425 EXPORT_SYMBOL(user_path_create);
3426
3427 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3428 {
3429 int error = may_create(dir, dentry);
3430
3431 if (error)
3432 return error;
3433
3434 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3435 return -EPERM;
3436
3437 if (!dir->i_op->mknod)
3438 return -EPERM;
3439
3440 error = devcgroup_inode_mknod(mode, dev);
3441 if (error)
3442 return error;
3443
3444 error = security_inode_mknod(dir, dentry, mode, dev);
3445 if (error)
3446 return error;
3447
3448 error = dir->i_op->mknod(dir, dentry, mode, dev);
3449 if (!error)
3450 fsnotify_create(dir, dentry);
3451 return error;
3452 }
3453 EXPORT_SYMBOL(vfs_mknod);
3454
3455 static int may_mknod(umode_t mode)
3456 {
3457 switch (mode & S_IFMT) {
3458 case S_IFREG:
3459 case S_IFCHR:
3460 case S_IFBLK:
3461 case S_IFIFO:
3462 case S_IFSOCK:
3463 case 0: /* zero mode translates to S_IFREG */
3464 return 0;
3465 case S_IFDIR:
3466 return -EPERM;
3467 default:
3468 return -EINVAL;
3469 }
3470 }
3471
3472 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3473 unsigned, dev)
3474 {
3475 struct dentry *dentry;
3476 struct path path;
3477 int error;
3478 unsigned int lookup_flags = 0;
3479
3480 error = may_mknod(mode);
3481 if (error)
3482 return error;
3483 retry:
3484 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3485 if (IS_ERR(dentry))
3486 return PTR_ERR(dentry);
3487
3488 if (!IS_POSIXACL(path.dentry->d_inode))
3489 mode &= ~current_umask();
3490 error = security_path_mknod(&path, dentry, mode, dev);
3491 if (error)
3492 goto out;
3493 switch (mode & S_IFMT) {
3494 case 0: case S_IFREG:
3495 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3496 break;
3497 case S_IFCHR: case S_IFBLK:
3498 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3499 new_decode_dev(dev));
3500 break;
3501 case S_IFIFO: case S_IFSOCK:
3502 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3503 break;
3504 }
3505 out:
3506 done_path_create(&path, dentry);
3507 if (retry_estale(error, lookup_flags)) {
3508 lookup_flags |= LOOKUP_REVAL;
3509 goto retry;
3510 }
3511 return error;
3512 }
3513
3514 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3515 {
3516 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3517 }
3518
3519 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3520 {
3521 int error = may_create(dir, dentry);
3522 unsigned max_links = dir->i_sb->s_max_links;
3523
3524 if (error)
3525 return error;
3526
3527 if (!dir->i_op->mkdir)
3528 return -EPERM;
3529
3530 mode &= (S_IRWXUGO|S_ISVTX);
3531 error = security_inode_mkdir(dir, dentry, mode);
3532 if (error)
3533 return error;
3534
3535 if (max_links && dir->i_nlink >= max_links)
3536 return -EMLINK;
3537
3538 error = dir->i_op->mkdir(dir, dentry, mode);
3539 if (!error)
3540 fsnotify_mkdir(dir, dentry);
3541 return error;
3542 }
3543 EXPORT_SYMBOL(vfs_mkdir);
3544
3545 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3546 {
3547 struct dentry *dentry;
3548 struct path path;
3549 int error;
3550 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3551
3552 retry:
3553 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3554 if (IS_ERR(dentry))
3555 return PTR_ERR(dentry);
3556
3557 if (!IS_POSIXACL(path.dentry->d_inode))
3558 mode &= ~current_umask();
3559 error = security_path_mkdir(&path, dentry, mode);
3560 if (!error)
3561 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3562 done_path_create(&path, dentry);
3563 if (retry_estale(error, lookup_flags)) {
3564 lookup_flags |= LOOKUP_REVAL;
3565 goto retry;
3566 }
3567 return error;
3568 }
3569
3570 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3571 {
3572 return sys_mkdirat(AT_FDCWD, pathname, mode);
3573 }
3574
3575 /*
3576 * The dentry_unhash() helper will try to drop the dentry early: we
3577 * should have a usage count of 1 if we're the only user of this
3578 * dentry, and if that is true (possibly after pruning the dcache),
3579 * then we drop the dentry now.
3580 *
3581 * A low-level filesystem can, if it choses, legally
3582 * do a
3583 *
3584 * if (!d_unhashed(dentry))
3585 * return -EBUSY;
3586 *
3587 * if it cannot handle the case of removing a directory
3588 * that is still in use by something else..
3589 */
3590 void dentry_unhash(struct dentry *dentry)
3591 {
3592 shrink_dcache_parent(dentry);
3593 spin_lock(&dentry->d_lock);
3594 if (dentry->d_lockref.count == 1)
3595 __d_drop(dentry);
3596 spin_unlock(&dentry->d_lock);
3597 }
3598 EXPORT_SYMBOL(dentry_unhash);
3599
3600 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3601 {
3602 int error = may_delete(dir, dentry, 1);
3603
3604 if (error)
3605 return error;
3606
3607 if (!dir->i_op->rmdir)
3608 return -EPERM;
3609
3610 dget(dentry);
3611 mutex_lock(&dentry->d_inode->i_mutex);
3612
3613 error = -EBUSY;
3614 if (is_local_mountpoint(dentry))
3615 goto out;
3616
3617 error = security_inode_rmdir(dir, dentry);
3618 if (error)
3619 goto out;
3620
3621 shrink_dcache_parent(dentry);
3622 error = dir->i_op->rmdir(dir, dentry);
3623 if (error)
3624 goto out;
3625
3626 dentry->d_inode->i_flags |= S_DEAD;
3627 dont_mount(dentry);
3628 detach_mounts(dentry);
3629
3630 out:
3631 mutex_unlock(&dentry->d_inode->i_mutex);
3632 dput(dentry);
3633 if (!error)
3634 d_delete(dentry);
3635 return error;
3636 }
3637 EXPORT_SYMBOL(vfs_rmdir);
3638
3639 static long do_rmdir(int dfd, const char __user *pathname)
3640 {
3641 int error = 0;
3642 struct filename *name;
3643 struct dentry *dentry;
3644 struct nameidata nd;
3645 unsigned int lookup_flags = 0;
3646 retry:
3647 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3648 if (IS_ERR(name))
3649 return PTR_ERR(name);
3650
3651 switch(nd.last_type) {
3652 case LAST_DOTDOT:
3653 error = -ENOTEMPTY;
3654 goto exit1;
3655 case LAST_DOT:
3656 error = -EINVAL;
3657 goto exit1;
3658 case LAST_ROOT:
3659 error = -EBUSY;
3660 goto exit1;
3661 }
3662
3663 nd.flags &= ~LOOKUP_PARENT;
3664 error = mnt_want_write(nd.path.mnt);
3665 if (error)
3666 goto exit1;
3667
3668 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3669 dentry = lookup_hash(&nd);
3670 error = PTR_ERR(dentry);
3671 if (IS_ERR(dentry))
3672 goto exit2;
3673 if (!dentry->d_inode) {
3674 error = -ENOENT;
3675 goto exit3;
3676 }
3677 error = security_path_rmdir(&nd.path, dentry);
3678 if (error)
3679 goto exit3;
3680 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3681 exit3:
3682 dput(dentry);
3683 exit2:
3684 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3685 mnt_drop_write(nd.path.mnt);
3686 exit1:
3687 path_put(&nd.path);
3688 putname(name);
3689 if (retry_estale(error, lookup_flags)) {
3690 lookup_flags |= LOOKUP_REVAL;
3691 goto retry;
3692 }
3693 return error;
3694 }
3695
3696 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3697 {
3698 return do_rmdir(AT_FDCWD, pathname);
3699 }
3700
3701 /**
3702 * vfs_unlink - unlink a filesystem object
3703 * @dir: parent directory
3704 * @dentry: victim
3705 * @delegated_inode: returns victim inode, if the inode is delegated.
3706 *
3707 * The caller must hold dir->i_mutex.
3708 *
3709 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3710 * return a reference to the inode in delegated_inode. The caller
3711 * should then break the delegation on that inode and retry. Because
3712 * breaking a delegation may take a long time, the caller should drop
3713 * dir->i_mutex before doing so.
3714 *
3715 * Alternatively, a caller may pass NULL for delegated_inode. This may
3716 * be appropriate for callers that expect the underlying filesystem not
3717 * to be NFS exported.
3718 */
3719 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3720 {
3721 struct inode *target = dentry->d_inode;
3722 int error = may_delete(dir, dentry, 0);
3723
3724 if (error)
3725 return error;
3726
3727 if (!dir->i_op->unlink)
3728 return -EPERM;
3729
3730 mutex_lock(&target->i_mutex);
3731 if (is_local_mountpoint(dentry))
3732 error = -EBUSY;
3733 else {
3734 error = security_inode_unlink(dir, dentry);
3735 if (!error) {
3736 error = try_break_deleg(target, delegated_inode);
3737 if (error)
3738 goto out;
3739 error = dir->i_op->unlink(dir, dentry);
3740 if (!error) {
3741 dont_mount(dentry);
3742 detach_mounts(dentry);
3743 }
3744 }
3745 }
3746 out:
3747 mutex_unlock(&target->i_mutex);
3748
3749 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3750 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3751 fsnotify_link_count(target);
3752 d_delete(dentry);
3753 }
3754
3755 return error;
3756 }
3757 EXPORT_SYMBOL(vfs_unlink);
3758
3759 /*
3760 * Make sure that the actual truncation of the file will occur outside its
3761 * directory's i_mutex. Truncate can take a long time if there is a lot of
3762 * writeout happening, and we don't want to prevent access to the directory
3763 * while waiting on the I/O.
3764 */
3765 static long do_unlinkat(int dfd, const char __user *pathname)
3766 {
3767 int error;
3768 struct filename *name;
3769 struct dentry *dentry;
3770 struct nameidata nd;
3771 struct inode *inode = NULL;
3772 struct inode *delegated_inode = NULL;
3773 unsigned int lookup_flags = 0;
3774 retry:
3775 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3776 if (IS_ERR(name))
3777 return PTR_ERR(name);
3778
3779 error = -EISDIR;
3780 if (nd.last_type != LAST_NORM)
3781 goto exit1;
3782
3783 nd.flags &= ~LOOKUP_PARENT;
3784 error = mnt_want_write(nd.path.mnt);
3785 if (error)
3786 goto exit1;
3787 retry_deleg:
3788 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3789 dentry = lookup_hash(&nd);
3790 error = PTR_ERR(dentry);
3791 if (!IS_ERR(dentry)) {
3792 /* Why not before? Because we want correct error value */
3793 if (nd.last.name[nd.last.len])
3794 goto slashes;
3795 inode = dentry->d_inode;
3796 if (d_is_negative(dentry))
3797 goto slashes;
3798 ihold(inode);
3799 error = security_path_unlink(&nd.path, dentry);
3800 if (error)
3801 goto exit2;
3802 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3803 exit2:
3804 dput(dentry);
3805 }
3806 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3807 if (inode)
3808 iput(inode); /* truncate the inode here */
3809 inode = NULL;
3810 if (delegated_inode) {
3811 error = break_deleg_wait(&delegated_inode);
3812 if (!error)
3813 goto retry_deleg;
3814 }
3815 mnt_drop_write(nd.path.mnt);
3816 exit1:
3817 path_put(&nd.path);
3818 putname(name);
3819 if (retry_estale(error, lookup_flags)) {
3820 lookup_flags |= LOOKUP_REVAL;
3821 inode = NULL;
3822 goto retry;
3823 }
3824 return error;
3825
3826 slashes:
3827 if (d_is_negative(dentry))
3828 error = -ENOENT;
3829 else if (d_is_dir(dentry))
3830 error = -EISDIR;
3831 else
3832 error = -ENOTDIR;
3833 goto exit2;
3834 }
3835
3836 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3837 {
3838 if ((flag & ~AT_REMOVEDIR) != 0)
3839 return -EINVAL;
3840
3841 if (flag & AT_REMOVEDIR)
3842 return do_rmdir(dfd, pathname);
3843
3844 return do_unlinkat(dfd, pathname);
3845 }
3846
3847 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3848 {
3849 return do_unlinkat(AT_FDCWD, pathname);
3850 }
3851
3852 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3853 {
3854 int error = may_create(dir, dentry);
3855
3856 if (error)
3857 return error;
3858
3859 if (!dir->i_op->symlink)
3860 return -EPERM;
3861
3862 error = security_inode_symlink(dir, dentry, oldname);
3863 if (error)
3864 return error;
3865
3866 error = dir->i_op->symlink(dir, dentry, oldname);
3867 if (!error)
3868 fsnotify_create(dir, dentry);
3869 return error;
3870 }
3871 EXPORT_SYMBOL(vfs_symlink);
3872
3873 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3874 int, newdfd, const char __user *, newname)
3875 {
3876 int error;
3877 struct filename *from;
3878 struct dentry *dentry;
3879 struct path path;
3880 unsigned int lookup_flags = 0;
3881
3882 from = getname(oldname);
3883 if (IS_ERR(from))
3884 return PTR_ERR(from);
3885 retry:
3886 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3887 error = PTR_ERR(dentry);
3888 if (IS_ERR(dentry))
3889 goto out_putname;
3890
3891 error = security_path_symlink(&path, dentry, from->name);
3892 if (!error)
3893 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3894 done_path_create(&path, dentry);
3895 if (retry_estale(error, lookup_flags)) {
3896 lookup_flags |= LOOKUP_REVAL;
3897 goto retry;
3898 }
3899 out_putname:
3900 putname(from);
3901 return error;
3902 }
3903
3904 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3905 {
3906 return sys_symlinkat(oldname, AT_FDCWD, newname);
3907 }
3908
3909 /**
3910 * vfs_link - create a new link
3911 * @old_dentry: object to be linked
3912 * @dir: new parent
3913 * @new_dentry: where to create the new link
3914 * @delegated_inode: returns inode needing a delegation break
3915 *
3916 * The caller must hold dir->i_mutex
3917 *
3918 * If vfs_link discovers a delegation on the to-be-linked file in need
3919 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3920 * inode in delegated_inode. The caller should then break the delegation
3921 * and retry. Because breaking a delegation may take a long time, the
3922 * caller should drop the i_mutex before doing so.
3923 *
3924 * Alternatively, a caller may pass NULL for delegated_inode. This may
3925 * be appropriate for callers that expect the underlying filesystem not
3926 * to be NFS exported.
3927 */
3928 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3929 {
3930 struct inode *inode = old_dentry->d_inode;
3931 unsigned max_links = dir->i_sb->s_max_links;
3932 int error;
3933
3934 if (!inode)
3935 return -ENOENT;
3936
3937 error = may_create(dir, new_dentry);
3938 if (error)
3939 return error;
3940
3941 if (dir->i_sb != inode->i_sb)
3942 return -EXDEV;
3943
3944 /*
3945 * A link to an append-only or immutable file cannot be created.
3946 */
3947 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3948 return -EPERM;
3949 if (!dir->i_op->link)
3950 return -EPERM;
3951 if (S_ISDIR(inode->i_mode))
3952 return -EPERM;
3953
3954 error = security_inode_link(old_dentry, dir, new_dentry);
3955 if (error)
3956 return error;
3957
3958 mutex_lock(&inode->i_mutex);
3959 /* Make sure we don't allow creating hardlink to an unlinked file */
3960 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3961 error = -ENOENT;
3962 else if (max_links && inode->i_nlink >= max_links)
3963 error = -EMLINK;
3964 else {
3965 error = try_break_deleg(inode, delegated_inode);
3966 if (!error)
3967 error = dir->i_op->link(old_dentry, dir, new_dentry);
3968 }
3969
3970 if (!error && (inode->i_state & I_LINKABLE)) {
3971 spin_lock(&inode->i_lock);
3972 inode->i_state &= ~I_LINKABLE;
3973 spin_unlock(&inode->i_lock);
3974 }
3975 mutex_unlock(&inode->i_mutex);
3976 if (!error)
3977 fsnotify_link(dir, inode, new_dentry);
3978 return error;
3979 }
3980 EXPORT_SYMBOL(vfs_link);
3981
3982 /*
3983 * Hardlinks are often used in delicate situations. We avoid
3984 * security-related surprises by not following symlinks on the
3985 * newname. --KAB
3986 *
3987 * We don't follow them on the oldname either to be compatible
3988 * with linux 2.0, and to avoid hard-linking to directories
3989 * and other special files. --ADM
3990 */
3991 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3992 int, newdfd, const char __user *, newname, int, flags)
3993 {
3994 struct dentry *new_dentry;
3995 struct path old_path, new_path;
3996 struct inode *delegated_inode = NULL;
3997 int how = 0;
3998 int error;
3999
4000 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4001 return -EINVAL;
4002 /*
4003 * To use null names we require CAP_DAC_READ_SEARCH
4004 * This ensures that not everyone will be able to create
4005 * handlink using the passed filedescriptor.
4006 */
4007 if (flags & AT_EMPTY_PATH) {
4008 if (!capable(CAP_DAC_READ_SEARCH))
4009 return -ENOENT;
4010 how = LOOKUP_EMPTY;
4011 }
4012
4013 if (flags & AT_SYMLINK_FOLLOW)
4014 how |= LOOKUP_FOLLOW;
4015 retry:
4016 error = user_path_at(olddfd, oldname, how, &old_path);
4017 if (error)
4018 return error;
4019
4020 new_dentry = user_path_create(newdfd, newname, &new_path,
4021 (how & LOOKUP_REVAL));
4022 error = PTR_ERR(new_dentry);
4023 if (IS_ERR(new_dentry))
4024 goto out;
4025
4026 error = -EXDEV;
4027 if (old_path.mnt != new_path.mnt)
4028 goto out_dput;
4029 error = may_linkat(&old_path);
4030 if (unlikely(error))
4031 goto out_dput;
4032 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4033 if (error)
4034 goto out_dput;
4035 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4036 out_dput:
4037 done_path_create(&new_path, new_dentry);
4038 if (delegated_inode) {
4039 error = break_deleg_wait(&delegated_inode);
4040 if (!error) {
4041 path_put(&old_path);
4042 goto retry;
4043 }
4044 }
4045 if (retry_estale(error, how)) {
4046 path_put(&old_path);
4047 how |= LOOKUP_REVAL;
4048 goto retry;
4049 }
4050 out:
4051 path_put(&old_path);
4052
4053 return error;
4054 }
4055
4056 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4057 {
4058 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4059 }
4060
4061 /**
4062 * vfs_rename - rename a filesystem object
4063 * @old_dir: parent of source
4064 * @old_dentry: source
4065 * @new_dir: parent of destination
4066 * @new_dentry: destination
4067 * @delegated_inode: returns an inode needing a delegation break
4068 * @flags: rename flags
4069 *
4070 * The caller must hold multiple mutexes--see lock_rename()).
4071 *
4072 * If vfs_rename discovers a delegation in need of breaking at either
4073 * the source or destination, it will return -EWOULDBLOCK and return a
4074 * reference to the inode in delegated_inode. The caller should then
4075 * break the delegation and retry. Because breaking a delegation may
4076 * take a long time, the caller should drop all locks before doing
4077 * so.
4078 *
4079 * Alternatively, a caller may pass NULL for delegated_inode. This may
4080 * be appropriate for callers that expect the underlying filesystem not
4081 * to be NFS exported.
4082 *
4083 * The worst of all namespace operations - renaming directory. "Perverted"
4084 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4085 * Problems:
4086 * a) we can get into loop creation.
4087 * b) race potential - two innocent renames can create a loop together.
4088 * That's where 4.4 screws up. Current fix: serialization on
4089 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4090 * story.
4091 * c) we have to lock _four_ objects - parents and victim (if it exists),
4092 * and source (if it is not a directory).
4093 * And that - after we got ->i_mutex on parents (until then we don't know
4094 * whether the target exists). Solution: try to be smart with locking
4095 * order for inodes. We rely on the fact that tree topology may change
4096 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4097 * move will be locked. Thus we can rank directories by the tree
4098 * (ancestors first) and rank all non-directories after them.
4099 * That works since everybody except rename does "lock parent, lookup,
4100 * lock child" and rename is under ->s_vfs_rename_mutex.
4101 * HOWEVER, it relies on the assumption that any object with ->lookup()
4102 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4103 * we'd better make sure that there's no link(2) for them.
4104 * d) conversion from fhandle to dentry may come in the wrong moment - when
4105 * we are removing the target. Solution: we will have to grab ->i_mutex
4106 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4107 * ->i_mutex on parents, which works but leads to some truly excessive
4108 * locking].
4109 */
4110 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4111 struct inode *new_dir, struct dentry *new_dentry,
4112 struct inode **delegated_inode, unsigned int flags)
4113 {
4114 int error;
4115 bool is_dir = d_is_dir(old_dentry);
4116 const unsigned char *old_name;
4117 struct inode *source = old_dentry->d_inode;
4118 struct inode *target = new_dentry->d_inode;
4119 bool new_is_dir = false;
4120 unsigned max_links = new_dir->i_sb->s_max_links;
4121
4122 if (source == target)
4123 return 0;
4124
4125 error = may_delete(old_dir, old_dentry, is_dir);
4126 if (error)
4127 return error;
4128
4129 if (!target) {
4130 error = may_create(new_dir, new_dentry);
4131 } else {
4132 new_is_dir = d_is_dir(new_dentry);
4133
4134 if (!(flags & RENAME_EXCHANGE))
4135 error = may_delete(new_dir, new_dentry, is_dir);
4136 else
4137 error = may_delete(new_dir, new_dentry, new_is_dir);
4138 }
4139 if (error)
4140 return error;
4141
4142 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4143 return -EPERM;
4144
4145 if (flags && !old_dir->i_op->rename2)
4146 return -EINVAL;
4147
4148 /*
4149 * If we are going to change the parent - check write permissions,
4150 * we'll need to flip '..'.
4151 */
4152 if (new_dir != old_dir) {
4153 if (is_dir) {
4154 error = inode_permission(source, MAY_WRITE);
4155 if (error)
4156 return error;
4157 }
4158 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4159 error = inode_permission(target, MAY_WRITE);
4160 if (error)
4161 return error;
4162 }
4163 }
4164
4165 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4166 flags);
4167 if (error)
4168 return error;
4169
4170 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4171 dget(new_dentry);
4172 if (!is_dir || (flags & RENAME_EXCHANGE))
4173 lock_two_nondirectories(source, target);
4174 else if (target)
4175 mutex_lock(&target->i_mutex);
4176
4177 error = -EBUSY;
4178 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4179 goto out;
4180
4181 if (max_links && new_dir != old_dir) {
4182 error = -EMLINK;
4183 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4184 goto out;
4185 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4186 old_dir->i_nlink >= max_links)
4187 goto out;
4188 }
4189 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4190 shrink_dcache_parent(new_dentry);
4191 if (!is_dir) {
4192 error = try_break_deleg(source, delegated_inode);
4193 if (error)
4194 goto out;
4195 }
4196 if (target && !new_is_dir) {
4197 error = try_break_deleg(target, delegated_inode);
4198 if (error)
4199 goto out;
4200 }
4201 if (!old_dir->i_op->rename2) {
4202 error = old_dir->i_op->rename(old_dir, old_dentry,
4203 new_dir, new_dentry);
4204 } else {
4205 WARN_ON(old_dir->i_op->rename != NULL);
4206 error = old_dir->i_op->rename2(old_dir, old_dentry,
4207 new_dir, new_dentry, flags);
4208 }
4209 if (error)
4210 goto out;
4211
4212 if (!(flags & RENAME_EXCHANGE) && target) {
4213 if (is_dir)
4214 target->i_flags |= S_DEAD;
4215 dont_mount(new_dentry);
4216 detach_mounts(new_dentry);
4217 }
4218 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4219 if (!(flags & RENAME_EXCHANGE))
4220 d_move(old_dentry, new_dentry);
4221 else
4222 d_exchange(old_dentry, new_dentry);
4223 }
4224 out:
4225 if (!is_dir || (flags & RENAME_EXCHANGE))
4226 unlock_two_nondirectories(source, target);
4227 else if (target)
4228 mutex_unlock(&target->i_mutex);
4229 dput(new_dentry);
4230 if (!error) {
4231 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4232 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4233 if (flags & RENAME_EXCHANGE) {
4234 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4235 new_is_dir, NULL, new_dentry);
4236 }
4237 }
4238 fsnotify_oldname_free(old_name);
4239
4240 return error;
4241 }
4242 EXPORT_SYMBOL(vfs_rename);
4243
4244 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4245 int, newdfd, const char __user *, newname, unsigned int, flags)
4246 {
4247 struct dentry *old_dir, *new_dir;
4248 struct dentry *old_dentry, *new_dentry;
4249 struct dentry *trap;
4250 struct nameidata oldnd, newnd;
4251 struct inode *delegated_inode = NULL;
4252 struct filename *from;
4253 struct filename *to;
4254 unsigned int lookup_flags = 0;
4255 bool should_retry = false;
4256 int error;
4257
4258 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4259 return -EINVAL;
4260
4261 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4262 (flags & RENAME_EXCHANGE))
4263 return -EINVAL;
4264
4265 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4266 return -EPERM;
4267
4268 retry:
4269 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4270 if (IS_ERR(from)) {
4271 error = PTR_ERR(from);
4272 goto exit;
4273 }
4274
4275 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4276 if (IS_ERR(to)) {
4277 error = PTR_ERR(to);
4278 goto exit1;
4279 }
4280
4281 error = -EXDEV;
4282 if (oldnd.path.mnt != newnd.path.mnt)
4283 goto exit2;
4284
4285 old_dir = oldnd.path.dentry;
4286 error = -EBUSY;
4287 if (oldnd.last_type != LAST_NORM)
4288 goto exit2;
4289
4290 new_dir = newnd.path.dentry;
4291 if (flags & RENAME_NOREPLACE)
4292 error = -EEXIST;
4293 if (newnd.last_type != LAST_NORM)
4294 goto exit2;
4295
4296 error = mnt_want_write(oldnd.path.mnt);
4297 if (error)
4298 goto exit2;
4299
4300 oldnd.flags &= ~LOOKUP_PARENT;
4301 newnd.flags &= ~LOOKUP_PARENT;
4302 if (!(flags & RENAME_EXCHANGE))
4303 newnd.flags |= LOOKUP_RENAME_TARGET;
4304
4305 retry_deleg:
4306 trap = lock_rename(new_dir, old_dir);
4307
4308 old_dentry = lookup_hash(&oldnd);
4309 error = PTR_ERR(old_dentry);
4310 if (IS_ERR(old_dentry))
4311 goto exit3;
4312 /* source must exist */
4313 error = -ENOENT;
4314 if (d_is_negative(old_dentry))
4315 goto exit4;
4316 new_dentry = lookup_hash(&newnd);
4317 error = PTR_ERR(new_dentry);
4318 if (IS_ERR(new_dentry))
4319 goto exit4;
4320 error = -EEXIST;
4321 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4322 goto exit5;
4323 if (flags & RENAME_EXCHANGE) {
4324 error = -ENOENT;
4325 if (d_is_negative(new_dentry))
4326 goto exit5;
4327
4328 if (!d_is_dir(new_dentry)) {
4329 error = -ENOTDIR;
4330 if (newnd.last.name[newnd.last.len])
4331 goto exit5;
4332 }
4333 }
4334 /* unless the source is a directory trailing slashes give -ENOTDIR */
4335 if (!d_is_dir(old_dentry)) {
4336 error = -ENOTDIR;
4337 if (oldnd.last.name[oldnd.last.len])
4338 goto exit5;
4339 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4340 goto exit5;
4341 }
4342 /* source should not be ancestor of target */
4343 error = -EINVAL;
4344 if (old_dentry == trap)
4345 goto exit5;
4346 /* target should not be an ancestor of source */
4347 if (!(flags & RENAME_EXCHANGE))
4348 error = -ENOTEMPTY;
4349 if (new_dentry == trap)
4350 goto exit5;
4351
4352 error = security_path_rename(&oldnd.path, old_dentry,
4353 &newnd.path, new_dentry, flags);
4354 if (error)
4355 goto exit5;
4356 error = vfs_rename(old_dir->d_inode, old_dentry,
4357 new_dir->d_inode, new_dentry,
4358 &delegated_inode, flags);
4359 exit5:
4360 dput(new_dentry);
4361 exit4:
4362 dput(old_dentry);
4363 exit3:
4364 unlock_rename(new_dir, old_dir);
4365 if (delegated_inode) {
4366 error = break_deleg_wait(&delegated_inode);
4367 if (!error)
4368 goto retry_deleg;
4369 }
4370 mnt_drop_write(oldnd.path.mnt);
4371 exit2:
4372 if (retry_estale(error, lookup_flags))
4373 should_retry = true;
4374 path_put(&newnd.path);
4375 putname(to);
4376 exit1:
4377 path_put(&oldnd.path);
4378 putname(from);
4379 if (should_retry) {
4380 should_retry = false;
4381 lookup_flags |= LOOKUP_REVAL;
4382 goto retry;
4383 }
4384 exit:
4385 return error;
4386 }
4387
4388 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4389 int, newdfd, const char __user *, newname)
4390 {
4391 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4392 }
4393
4394 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4395 {
4396 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4397 }
4398
4399 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4400 {
4401 int error = may_create(dir, dentry);
4402 if (error)
4403 return error;
4404
4405 if (!dir->i_op->mknod)
4406 return -EPERM;
4407
4408 return dir->i_op->mknod(dir, dentry,
4409 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4410 }
4411 EXPORT_SYMBOL(vfs_whiteout);
4412
4413 int readlink_copy(char __user *buffer, int buflen, const char *link)
4414 {
4415 int len = PTR_ERR(link);
4416 if (IS_ERR(link))
4417 goto out;
4418
4419 len = strlen(link);
4420 if (len > (unsigned) buflen)
4421 len = buflen;
4422 if (copy_to_user(buffer, link, len))
4423 len = -EFAULT;
4424 out:
4425 return len;
4426 }
4427 EXPORT_SYMBOL(readlink_copy);
4428
4429 /*
4430 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4431 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4432 * using) it for any given inode is up to filesystem.
4433 */
4434 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4435 {
4436 struct nameidata nd;
4437 void *cookie;
4438 int res;
4439
4440 nd.depth = 0;
4441 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4442 if (IS_ERR(cookie))
4443 return PTR_ERR(cookie);
4444
4445 res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4446 if (dentry->d_inode->i_op->put_link)
4447 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4448 return res;
4449 }
4450 EXPORT_SYMBOL(generic_readlink);
4451
4452 /* get the link contents into pagecache */
4453 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4454 {
4455 char *kaddr;
4456 struct page *page;
4457 struct address_space *mapping = dentry->d_inode->i_mapping;
4458 page = read_mapping_page(mapping, 0, NULL);
4459 if (IS_ERR(page))
4460 return (char*)page;
4461 *ppage = page;
4462 kaddr = kmap(page);
4463 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4464 return kaddr;
4465 }
4466
4467 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4468 {
4469 struct page *page = NULL;
4470 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4471 if (page) {
4472 kunmap(page);
4473 page_cache_release(page);
4474 }
4475 return res;
4476 }
4477 EXPORT_SYMBOL(page_readlink);
4478
4479 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4480 {
4481 struct page *page = NULL;
4482 nd_set_link(nd, page_getlink(dentry, &page));
4483 return page;
4484 }
4485 EXPORT_SYMBOL(page_follow_link_light);
4486
4487 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4488 {
4489 struct page *page = cookie;
4490
4491 if (page) {
4492 kunmap(page);
4493 page_cache_release(page);
4494 }
4495 }
4496 EXPORT_SYMBOL(page_put_link);
4497
4498 /*
4499 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4500 */
4501 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4502 {
4503 struct address_space *mapping = inode->i_mapping;
4504 struct page *page;
4505 void *fsdata;
4506 int err;
4507 char *kaddr;
4508 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4509 if (nofs)
4510 flags |= AOP_FLAG_NOFS;
4511
4512 retry:
4513 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4514 flags, &page, &fsdata);
4515 if (err)
4516 goto fail;
4517
4518 kaddr = kmap_atomic(page);
4519 memcpy(kaddr, symname, len-1);
4520 kunmap_atomic(kaddr);
4521
4522 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4523 page, fsdata);
4524 if (err < 0)
4525 goto fail;
4526 if (err < len-1)
4527 goto retry;
4528
4529 mark_inode_dirty(inode);
4530 return 0;
4531 fail:
4532 return err;
4533 }
4534 EXPORT_SYMBOL(__page_symlink);
4535
4536 int page_symlink(struct inode *inode, const char *symname, int len)
4537 {
4538 return __page_symlink(inode, symname, len,
4539 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4540 }
4541 EXPORT_SYMBOL(page_symlink);
4542
4543 const struct inode_operations page_symlink_inode_operations = {
4544 .readlink = generic_readlink,
4545 .follow_link = page_follow_link_light,
4546 .put_link = page_put_link,
4547 };
4548 EXPORT_SYMBOL(page_symlink_inode_operations);