]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/namespace.c
tty: pl011: Work around QDF2400 E44 stuck BUSY bit
[mirror_ubuntu-zesty-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
32
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
37
38 static __initdata unsigned long mhash_entries;
39 static int __init set_mhash_entries(char *str)
40 {
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
45 }
46 __setup("mhash_entries=", set_mhash_entries);
47
48 static __initdata unsigned long mphash_entries;
49 static int __init set_mphash_entries(char *str)
50 {
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
55 }
56 __setup("mphash_entries=", set_mphash_entries);
57
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
64
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
69
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
73
74 /*
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
78 *
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
81 */
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
83
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
85 {
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
90 }
91
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
93 {
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
97 }
98
99 static int mnt_alloc_id(struct mount *mnt)
100 {
101 int res;
102
103 retry:
104 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
105 spin_lock(&mnt_id_lock);
106 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
107 if (!res)
108 mnt_id_start = mnt->mnt_id + 1;
109 spin_unlock(&mnt_id_lock);
110 if (res == -EAGAIN)
111 goto retry;
112
113 return res;
114 }
115
116 static void mnt_free_id(struct mount *mnt)
117 {
118 int id = mnt->mnt_id;
119 spin_lock(&mnt_id_lock);
120 ida_remove(&mnt_id_ida, id);
121 if (mnt_id_start > id)
122 mnt_id_start = id;
123 spin_unlock(&mnt_id_lock);
124 }
125
126 /*
127 * Allocate a new peer group ID
128 *
129 * mnt_group_ida is protected by namespace_sem
130 */
131 static int mnt_alloc_group_id(struct mount *mnt)
132 {
133 int res;
134
135 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
136 return -ENOMEM;
137
138 res = ida_get_new_above(&mnt_group_ida,
139 mnt_group_start,
140 &mnt->mnt_group_id);
141 if (!res)
142 mnt_group_start = mnt->mnt_group_id + 1;
143
144 return res;
145 }
146
147 /*
148 * Release a peer group ID
149 */
150 void mnt_release_group_id(struct mount *mnt)
151 {
152 int id = mnt->mnt_group_id;
153 ida_remove(&mnt_group_ida, id);
154 if (mnt_group_start > id)
155 mnt_group_start = id;
156 mnt->mnt_group_id = 0;
157 }
158
159 /*
160 * vfsmount lock must be held for read
161 */
162 static inline void mnt_add_count(struct mount *mnt, int n)
163 {
164 #ifdef CONFIG_SMP
165 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
166 #else
167 preempt_disable();
168 mnt->mnt_count += n;
169 preempt_enable();
170 #endif
171 }
172
173 /*
174 * vfsmount lock must be held for write
175 */
176 unsigned int mnt_get_count(struct mount *mnt)
177 {
178 #ifdef CONFIG_SMP
179 unsigned int count = 0;
180 int cpu;
181
182 for_each_possible_cpu(cpu) {
183 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
184 }
185
186 return count;
187 #else
188 return mnt->mnt_count;
189 #endif
190 }
191
192 static void drop_mountpoint(struct fs_pin *p)
193 {
194 struct mount *m = container_of(p, struct mount, mnt_umount);
195 dput(m->mnt_ex_mountpoint);
196 pin_remove(p);
197 mntput(&m->mnt);
198 }
199
200 static struct mount *alloc_vfsmnt(const char *name)
201 {
202 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
203 if (mnt) {
204 int err;
205
206 err = mnt_alloc_id(mnt);
207 if (err)
208 goto out_free_cache;
209
210 if (name) {
211 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
212 if (!mnt->mnt_devname)
213 goto out_free_id;
214 }
215
216 #ifdef CONFIG_SMP
217 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
218 if (!mnt->mnt_pcp)
219 goto out_free_devname;
220
221 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
222 #else
223 mnt->mnt_count = 1;
224 mnt->mnt_writers = 0;
225 #endif
226
227 INIT_HLIST_NODE(&mnt->mnt_hash);
228 INIT_LIST_HEAD(&mnt->mnt_child);
229 INIT_LIST_HEAD(&mnt->mnt_mounts);
230 INIT_LIST_HEAD(&mnt->mnt_list);
231 INIT_LIST_HEAD(&mnt->mnt_expire);
232 INIT_LIST_HEAD(&mnt->mnt_share);
233 INIT_LIST_HEAD(&mnt->mnt_slave_list);
234 INIT_LIST_HEAD(&mnt->mnt_slave);
235 INIT_HLIST_NODE(&mnt->mnt_mp_list);
236 #ifdef CONFIG_FSNOTIFY
237 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
238 #endif
239 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
240 }
241 return mnt;
242
243 #ifdef CONFIG_SMP
244 out_free_devname:
245 kfree_const(mnt->mnt_devname);
246 #endif
247 out_free_id:
248 mnt_free_id(mnt);
249 out_free_cache:
250 kmem_cache_free(mnt_cache, mnt);
251 return NULL;
252 }
253
254 /*
255 * Most r/o checks on a fs are for operations that take
256 * discrete amounts of time, like a write() or unlink().
257 * We must keep track of when those operations start
258 * (for permission checks) and when they end, so that
259 * we can determine when writes are able to occur to
260 * a filesystem.
261 */
262 /*
263 * __mnt_is_readonly: check whether a mount is read-only
264 * @mnt: the mount to check for its write status
265 *
266 * This shouldn't be used directly ouside of the VFS.
267 * It does not guarantee that the filesystem will stay
268 * r/w, just that it is right *now*. This can not and
269 * should not be used in place of IS_RDONLY(inode).
270 * mnt_want/drop_write() will _keep_ the filesystem
271 * r/w.
272 */
273 int __mnt_is_readonly(struct vfsmount *mnt)
274 {
275 if (mnt->mnt_flags & MNT_READONLY)
276 return 1;
277 if (mnt->mnt_sb->s_flags & MS_RDONLY)
278 return 1;
279 return 0;
280 }
281 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
282
283 static inline void mnt_inc_writers(struct mount *mnt)
284 {
285 #ifdef CONFIG_SMP
286 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
287 #else
288 mnt->mnt_writers++;
289 #endif
290 }
291
292 static inline void mnt_dec_writers(struct mount *mnt)
293 {
294 #ifdef CONFIG_SMP
295 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
296 #else
297 mnt->mnt_writers--;
298 #endif
299 }
300
301 static unsigned int mnt_get_writers(struct mount *mnt)
302 {
303 #ifdef CONFIG_SMP
304 unsigned int count = 0;
305 int cpu;
306
307 for_each_possible_cpu(cpu) {
308 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
309 }
310
311 return count;
312 #else
313 return mnt->mnt_writers;
314 #endif
315 }
316
317 static int mnt_is_readonly(struct vfsmount *mnt)
318 {
319 if (mnt->mnt_sb->s_readonly_remount)
320 return 1;
321 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
322 smp_rmb();
323 return __mnt_is_readonly(mnt);
324 }
325
326 /*
327 * Most r/o & frozen checks on a fs are for operations that take discrete
328 * amounts of time, like a write() or unlink(). We must keep track of when
329 * those operations start (for permission checks) and when they end, so that we
330 * can determine when writes are able to occur to a filesystem.
331 */
332 /**
333 * __mnt_want_write - get write access to a mount without freeze protection
334 * @m: the mount on which to take a write
335 *
336 * This tells the low-level filesystem that a write is about to be performed to
337 * it, and makes sure that writes are allowed (mnt it read-write) before
338 * returning success. This operation does not protect against filesystem being
339 * frozen. When the write operation is finished, __mnt_drop_write() must be
340 * called. This is effectively a refcount.
341 */
342 int __mnt_want_write(struct vfsmount *m)
343 {
344 struct mount *mnt = real_mount(m);
345 int ret = 0;
346
347 preempt_disable();
348 mnt_inc_writers(mnt);
349 /*
350 * The store to mnt_inc_writers must be visible before we pass
351 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
352 * incremented count after it has set MNT_WRITE_HOLD.
353 */
354 smp_mb();
355 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
356 cpu_relax();
357 /*
358 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
359 * be set to match its requirements. So we must not load that until
360 * MNT_WRITE_HOLD is cleared.
361 */
362 smp_rmb();
363 if (mnt_is_readonly(m)) {
364 mnt_dec_writers(mnt);
365 ret = -EROFS;
366 }
367 preempt_enable();
368
369 return ret;
370 }
371
372 /**
373 * mnt_want_write - get write access to a mount
374 * @m: the mount on which to take a write
375 *
376 * This tells the low-level filesystem that a write is about to be performed to
377 * it, and makes sure that writes are allowed (mount is read-write, filesystem
378 * is not frozen) before returning success. When the write operation is
379 * finished, mnt_drop_write() must be called. This is effectively a refcount.
380 */
381 int mnt_want_write(struct vfsmount *m)
382 {
383 int ret;
384
385 sb_start_write(m->mnt_sb);
386 ret = __mnt_want_write(m);
387 if (ret)
388 sb_end_write(m->mnt_sb);
389 return ret;
390 }
391 EXPORT_SYMBOL_GPL(mnt_want_write);
392
393 /**
394 * mnt_clone_write - get write access to a mount
395 * @mnt: the mount on which to take a write
396 *
397 * This is effectively like mnt_want_write, except
398 * it must only be used to take an extra write reference
399 * on a mountpoint that we already know has a write reference
400 * on it. This allows some optimisation.
401 *
402 * After finished, mnt_drop_write must be called as usual to
403 * drop the reference.
404 */
405 int mnt_clone_write(struct vfsmount *mnt)
406 {
407 /* superblock may be r/o */
408 if (__mnt_is_readonly(mnt))
409 return -EROFS;
410 preempt_disable();
411 mnt_inc_writers(real_mount(mnt));
412 preempt_enable();
413 return 0;
414 }
415 EXPORT_SYMBOL_GPL(mnt_clone_write);
416
417 /**
418 * __mnt_want_write_file - get write access to a file's mount
419 * @file: the file who's mount on which to take a write
420 *
421 * This is like __mnt_want_write, but it takes a file and can
422 * do some optimisations if the file is open for write already
423 */
424 int __mnt_want_write_file(struct file *file)
425 {
426 if (!(file->f_mode & FMODE_WRITER))
427 return __mnt_want_write(file->f_path.mnt);
428 else
429 return mnt_clone_write(file->f_path.mnt);
430 }
431
432 /**
433 * mnt_want_write_file - get write access to a file's mount
434 * @file: the file who's mount on which to take a write
435 *
436 * This is like mnt_want_write, but it takes a file and can
437 * do some optimisations if the file is open for write already
438 */
439 int mnt_want_write_file(struct file *file)
440 {
441 int ret;
442
443 sb_start_write(file->f_path.mnt->mnt_sb);
444 ret = __mnt_want_write_file(file);
445 if (ret)
446 sb_end_write(file->f_path.mnt->mnt_sb);
447 return ret;
448 }
449 EXPORT_SYMBOL_GPL(mnt_want_write_file);
450
451 /**
452 * __mnt_drop_write - give up write access to a mount
453 * @mnt: the mount on which to give up write access
454 *
455 * Tells the low-level filesystem that we are done
456 * performing writes to it. Must be matched with
457 * __mnt_want_write() call above.
458 */
459 void __mnt_drop_write(struct vfsmount *mnt)
460 {
461 preempt_disable();
462 mnt_dec_writers(real_mount(mnt));
463 preempt_enable();
464 }
465 EXPORT_SYMBOL_GPL(__mnt_drop_write);
466
467 /**
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
470 *
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
474 */
475 void mnt_drop_write(struct vfsmount *mnt)
476 {
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
479 }
480 EXPORT_SYMBOL_GPL(mnt_drop_write);
481
482 void __mnt_drop_write_file(struct file *file)
483 {
484 __mnt_drop_write(file->f_path.mnt);
485 }
486
487 void mnt_drop_write_file(struct file *file)
488 {
489 mnt_drop_write(file->f_path.mnt);
490 }
491 EXPORT_SYMBOL(mnt_drop_write_file);
492
493 static int mnt_make_readonly(struct mount *mnt)
494 {
495 int ret = 0;
496
497 lock_mount_hash();
498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
499 /*
500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
502 */
503 smp_mb();
504
505 /*
506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
510 *
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
520 */
521 if (mnt_get_writers(mnt) > 0)
522 ret = -EBUSY;
523 else
524 mnt->mnt.mnt_flags |= MNT_READONLY;
525 /*
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
528 */
529 smp_wmb();
530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
531 unlock_mount_hash();
532 return ret;
533 }
534
535 static void __mnt_unmake_readonly(struct mount *mnt)
536 {
537 lock_mount_hash();
538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
539 unlock_mount_hash();
540 }
541
542 int sb_prepare_remount_readonly(struct super_block *sb)
543 {
544 struct mount *mnt;
545 int err = 0;
546
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
549 return -EBUSY;
550
551 lock_mount_hash();
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 smp_mb();
556 if (mnt_get_writers(mnt) > 0) {
557 err = -EBUSY;
558 break;
559 }
560 }
561 }
562 if (!err && atomic_long_read(&sb->s_remove_count))
563 err = -EBUSY;
564
565 if (!err) {
566 sb->s_readonly_remount = 1;
567 smp_wmb();
568 }
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 }
573 unlock_mount_hash();
574
575 return err;
576 }
577
578 static void free_vfsmnt(struct mount *mnt)
579 {
580 kfree_const(mnt->mnt_devname);
581 #ifdef CONFIG_SMP
582 free_percpu(mnt->mnt_pcp);
583 #endif
584 kmem_cache_free(mnt_cache, mnt);
585 }
586
587 static void delayed_free_vfsmnt(struct rcu_head *head)
588 {
589 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590 }
591
592 /* call under rcu_read_lock */
593 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594 {
595 struct mount *mnt;
596 if (read_seqretry(&mount_lock, seq))
597 return 1;
598 if (bastard == NULL)
599 return 0;
600 mnt = real_mount(bastard);
601 mnt_add_count(mnt, 1);
602 if (likely(!read_seqretry(&mount_lock, seq)))
603 return 0;
604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 mnt_add_count(mnt, -1);
606 return 1;
607 }
608 return -1;
609 }
610
611 /* call under rcu_read_lock */
612 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
613 {
614 int res = __legitimize_mnt(bastard, seq);
615 if (likely(!res))
616 return true;
617 if (unlikely(res < 0)) {
618 rcu_read_unlock();
619 mntput(bastard);
620 rcu_read_lock();
621 }
622 return false;
623 }
624
625 /*
626 * find the first mount at @dentry on vfsmount @mnt.
627 * call under rcu_read_lock()
628 */
629 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
630 {
631 struct hlist_head *head = m_hash(mnt, dentry);
632 struct mount *p;
633
634 hlist_for_each_entry_rcu(p, head, mnt_hash)
635 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
636 return p;
637 return NULL;
638 }
639
640 /*
641 * find the last mount at @dentry on vfsmount @mnt.
642 * mount_lock must be held.
643 */
644 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
645 {
646 struct mount *p, *res = NULL;
647 p = __lookup_mnt(mnt, dentry);
648 if (!p)
649 goto out;
650 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
651 res = p;
652 hlist_for_each_entry_continue(p, mnt_hash) {
653 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
654 break;
655 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
656 res = p;
657 }
658 out:
659 return res;
660 }
661
662 /*
663 * lookup_mnt - Return the first child mount mounted at path
664 *
665 * "First" means first mounted chronologically. If you create the
666 * following mounts:
667 *
668 * mount /dev/sda1 /mnt
669 * mount /dev/sda2 /mnt
670 * mount /dev/sda3 /mnt
671 *
672 * Then lookup_mnt() on the base /mnt dentry in the root mount will
673 * return successively the root dentry and vfsmount of /dev/sda1, then
674 * /dev/sda2, then /dev/sda3, then NULL.
675 *
676 * lookup_mnt takes a reference to the found vfsmount.
677 */
678 struct vfsmount *lookup_mnt(const struct path *path)
679 {
680 struct mount *child_mnt;
681 struct vfsmount *m;
682 unsigned seq;
683
684 rcu_read_lock();
685 do {
686 seq = read_seqbegin(&mount_lock);
687 child_mnt = __lookup_mnt(path->mnt, path->dentry);
688 m = child_mnt ? &child_mnt->mnt : NULL;
689 } while (!legitimize_mnt(m, seq));
690 rcu_read_unlock();
691 return m;
692 }
693
694 /*
695 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
696 * current mount namespace.
697 *
698 * The common case is dentries are not mountpoints at all and that
699 * test is handled inline. For the slow case when we are actually
700 * dealing with a mountpoint of some kind, walk through all of the
701 * mounts in the current mount namespace and test to see if the dentry
702 * is a mountpoint.
703 *
704 * The mount_hashtable is not usable in the context because we
705 * need to identify all mounts that may be in the current mount
706 * namespace not just a mount that happens to have some specified
707 * parent mount.
708 */
709 bool __is_local_mountpoint(struct dentry *dentry)
710 {
711 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
712 struct mount *mnt;
713 bool is_covered = false;
714
715 if (!d_mountpoint(dentry))
716 goto out;
717
718 down_read(&namespace_sem);
719 list_for_each_entry(mnt, &ns->list, mnt_list) {
720 is_covered = (mnt->mnt_mountpoint == dentry);
721 if (is_covered)
722 break;
723 }
724 up_read(&namespace_sem);
725 out:
726 return is_covered;
727 }
728
729 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
730 {
731 struct hlist_head *chain = mp_hash(dentry);
732 struct mountpoint *mp;
733
734 hlist_for_each_entry(mp, chain, m_hash) {
735 if (mp->m_dentry == dentry) {
736 /* might be worth a WARN_ON() */
737 if (d_unlinked(dentry))
738 return ERR_PTR(-ENOENT);
739 mp->m_count++;
740 return mp;
741 }
742 }
743 return NULL;
744 }
745
746 static struct mountpoint *get_mountpoint(struct dentry *dentry)
747 {
748 struct mountpoint *mp, *new = NULL;
749 int ret;
750
751 if (d_mountpoint(dentry)) {
752 mountpoint:
753 read_seqlock_excl(&mount_lock);
754 mp = lookup_mountpoint(dentry);
755 read_sequnlock_excl(&mount_lock);
756 if (mp)
757 goto done;
758 }
759
760 if (!new)
761 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
762 if (!new)
763 return ERR_PTR(-ENOMEM);
764
765
766 /* Exactly one processes may set d_mounted */
767 ret = d_set_mounted(dentry);
768
769 /* Someone else set d_mounted? */
770 if (ret == -EBUSY)
771 goto mountpoint;
772
773 /* The dentry is not available as a mountpoint? */
774 mp = ERR_PTR(ret);
775 if (ret)
776 goto done;
777
778 /* Add the new mountpoint to the hash table */
779 read_seqlock_excl(&mount_lock);
780 new->m_dentry = dentry;
781 new->m_count = 1;
782 hlist_add_head(&new->m_hash, mp_hash(dentry));
783 INIT_HLIST_HEAD(&new->m_list);
784 read_sequnlock_excl(&mount_lock);
785
786 mp = new;
787 new = NULL;
788 done:
789 kfree(new);
790 return mp;
791 }
792
793 static void put_mountpoint(struct mountpoint *mp)
794 {
795 if (!--mp->m_count) {
796 struct dentry *dentry = mp->m_dentry;
797 BUG_ON(!hlist_empty(&mp->m_list));
798 spin_lock(&dentry->d_lock);
799 dentry->d_flags &= ~DCACHE_MOUNTED;
800 spin_unlock(&dentry->d_lock);
801 hlist_del(&mp->m_hash);
802 kfree(mp);
803 }
804 }
805
806 static inline int check_mnt(struct mount *mnt)
807 {
808 return mnt->mnt_ns == current->nsproxy->mnt_ns;
809 }
810
811 /*
812 * vfsmount lock must be held for write
813 */
814 static void touch_mnt_namespace(struct mnt_namespace *ns)
815 {
816 if (ns) {
817 ns->event = ++event;
818 wake_up_interruptible(&ns->poll);
819 }
820 }
821
822 /*
823 * vfsmount lock must be held for write
824 */
825 static void __touch_mnt_namespace(struct mnt_namespace *ns)
826 {
827 if (ns && ns->event != event) {
828 ns->event = event;
829 wake_up_interruptible(&ns->poll);
830 }
831 }
832
833 /*
834 * vfsmount lock must be held for write
835 */
836 static void unhash_mnt(struct mount *mnt)
837 {
838 mnt->mnt_parent = mnt;
839 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
840 list_del_init(&mnt->mnt_child);
841 hlist_del_init_rcu(&mnt->mnt_hash);
842 hlist_del_init(&mnt->mnt_mp_list);
843 put_mountpoint(mnt->mnt_mp);
844 mnt->mnt_mp = NULL;
845 }
846
847 /*
848 * vfsmount lock must be held for write
849 */
850 static void detach_mnt(struct mount *mnt, struct path *old_path)
851 {
852 old_path->dentry = mnt->mnt_mountpoint;
853 old_path->mnt = &mnt->mnt_parent->mnt;
854 unhash_mnt(mnt);
855 }
856
857 /*
858 * vfsmount lock must be held for write
859 */
860 static void umount_mnt(struct mount *mnt)
861 {
862 /* old mountpoint will be dropped when we can do that */
863 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
864 unhash_mnt(mnt);
865 }
866
867 /*
868 * vfsmount lock must be held for write
869 */
870 void mnt_set_mountpoint(struct mount *mnt,
871 struct mountpoint *mp,
872 struct mount *child_mnt)
873 {
874 mp->m_count++;
875 mnt_add_count(mnt, 1); /* essentially, that's mntget */
876 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
877 child_mnt->mnt_parent = mnt;
878 child_mnt->mnt_mp = mp;
879 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
880 }
881
882 /*
883 * vfsmount lock must be held for write
884 */
885 static void attach_mnt(struct mount *mnt,
886 struct mount *parent,
887 struct mountpoint *mp)
888 {
889 mnt_set_mountpoint(parent, mp, mnt);
890 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
891 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
892 }
893
894 static void attach_shadowed(struct mount *mnt,
895 struct mount *parent,
896 struct mount *shadows)
897 {
898 if (shadows) {
899 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
900 list_add(&mnt->mnt_child, &shadows->mnt_child);
901 } else {
902 hlist_add_head_rcu(&mnt->mnt_hash,
903 m_hash(&parent->mnt, mnt->mnt_mountpoint));
904 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
905 }
906 }
907
908 /*
909 * vfsmount lock must be held for write
910 */
911 static void commit_tree(struct mount *mnt, struct mount *shadows)
912 {
913 struct mount *parent = mnt->mnt_parent;
914 struct mount *m;
915 LIST_HEAD(head);
916 struct mnt_namespace *n = parent->mnt_ns;
917
918 BUG_ON(parent == mnt);
919
920 list_add_tail(&head, &mnt->mnt_list);
921 list_for_each_entry(m, &head, mnt_list)
922 m->mnt_ns = n;
923
924 list_splice(&head, n->list.prev);
925
926 n->mounts += n->pending_mounts;
927 n->pending_mounts = 0;
928
929 attach_shadowed(mnt, parent, shadows);
930 touch_mnt_namespace(n);
931 }
932
933 static struct mount *next_mnt(struct mount *p, struct mount *root)
934 {
935 struct list_head *next = p->mnt_mounts.next;
936 if (next == &p->mnt_mounts) {
937 while (1) {
938 if (p == root)
939 return NULL;
940 next = p->mnt_child.next;
941 if (next != &p->mnt_parent->mnt_mounts)
942 break;
943 p = p->mnt_parent;
944 }
945 }
946 return list_entry(next, struct mount, mnt_child);
947 }
948
949 static struct mount *skip_mnt_tree(struct mount *p)
950 {
951 struct list_head *prev = p->mnt_mounts.prev;
952 while (prev != &p->mnt_mounts) {
953 p = list_entry(prev, struct mount, mnt_child);
954 prev = p->mnt_mounts.prev;
955 }
956 return p;
957 }
958
959 struct vfsmount *
960 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
961 {
962 struct mount *mnt;
963 struct dentry *root;
964
965 if (!type)
966 return ERR_PTR(-ENODEV);
967
968 mnt = alloc_vfsmnt(name);
969 if (!mnt)
970 return ERR_PTR(-ENOMEM);
971
972 if (flags & MS_KERNMOUNT)
973 mnt->mnt.mnt_flags = MNT_INTERNAL;
974
975 root = mount_fs(type, flags, name, data);
976 if (IS_ERR(root)) {
977 mnt_free_id(mnt);
978 free_vfsmnt(mnt);
979 return ERR_CAST(root);
980 }
981
982 mnt->mnt.mnt_root = root;
983 mnt->mnt.mnt_sb = root->d_sb;
984 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
985 mnt->mnt_parent = mnt;
986 lock_mount_hash();
987 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
988 unlock_mount_hash();
989 return &mnt->mnt;
990 }
991 EXPORT_SYMBOL_GPL(vfs_kern_mount);
992
993 struct vfsmount *
994 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
995 const char *name, void *data)
996 {
997 /* Until it is worked out how to pass the user namespace
998 * through from the parent mount to the submount don't support
999 * unprivileged mounts with submounts.
1000 */
1001 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1002 return ERR_PTR(-EPERM);
1003
1004 return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
1005 }
1006 EXPORT_SYMBOL_GPL(vfs_submount);
1007
1008 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1009 int flag)
1010 {
1011 struct super_block *sb = old->mnt.mnt_sb;
1012 struct mount *mnt;
1013 int err;
1014
1015 mnt = alloc_vfsmnt(old->mnt_devname);
1016 if (!mnt)
1017 return ERR_PTR(-ENOMEM);
1018
1019 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1020 mnt->mnt_group_id = 0; /* not a peer of original */
1021 else
1022 mnt->mnt_group_id = old->mnt_group_id;
1023
1024 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1025 err = mnt_alloc_group_id(mnt);
1026 if (err)
1027 goto out_free;
1028 }
1029
1030 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
1031 /* Don't allow unprivileged users to change mount flags */
1032 if (flag & CL_UNPRIVILEGED) {
1033 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1034
1035 if (mnt->mnt.mnt_flags & MNT_READONLY)
1036 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1037
1038 if (mnt->mnt.mnt_flags & MNT_NODEV)
1039 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1040
1041 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1042 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1043
1044 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1045 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1046 }
1047
1048 /* Don't allow unprivileged users to reveal what is under a mount */
1049 if ((flag & CL_UNPRIVILEGED) &&
1050 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1051 mnt->mnt.mnt_flags |= MNT_LOCKED;
1052
1053 atomic_inc(&sb->s_active);
1054 mnt->mnt.mnt_sb = sb;
1055 mnt->mnt.mnt_root = dget(root);
1056 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1057 mnt->mnt_parent = mnt;
1058 lock_mount_hash();
1059 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1060 unlock_mount_hash();
1061
1062 if ((flag & CL_SLAVE) ||
1063 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1064 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1065 mnt->mnt_master = old;
1066 CLEAR_MNT_SHARED(mnt);
1067 } else if (!(flag & CL_PRIVATE)) {
1068 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1069 list_add(&mnt->mnt_share, &old->mnt_share);
1070 if (IS_MNT_SLAVE(old))
1071 list_add(&mnt->mnt_slave, &old->mnt_slave);
1072 mnt->mnt_master = old->mnt_master;
1073 } else {
1074 CLEAR_MNT_SHARED(mnt);
1075 }
1076 if (flag & CL_MAKE_SHARED)
1077 set_mnt_shared(mnt);
1078
1079 /* stick the duplicate mount on the same expiry list
1080 * as the original if that was on one */
1081 if (flag & CL_EXPIRE) {
1082 if (!list_empty(&old->mnt_expire))
1083 list_add(&mnt->mnt_expire, &old->mnt_expire);
1084 }
1085
1086 return mnt;
1087
1088 out_free:
1089 mnt_free_id(mnt);
1090 free_vfsmnt(mnt);
1091 return ERR_PTR(err);
1092 }
1093
1094 static void cleanup_mnt(struct mount *mnt)
1095 {
1096 /*
1097 * This probably indicates that somebody messed
1098 * up a mnt_want/drop_write() pair. If this
1099 * happens, the filesystem was probably unable
1100 * to make r/w->r/o transitions.
1101 */
1102 /*
1103 * The locking used to deal with mnt_count decrement provides barriers,
1104 * so mnt_get_writers() below is safe.
1105 */
1106 WARN_ON(mnt_get_writers(mnt));
1107 if (unlikely(mnt->mnt_pins.first))
1108 mnt_pin_kill(mnt);
1109 fsnotify_vfsmount_delete(&mnt->mnt);
1110 dput(mnt->mnt.mnt_root);
1111 deactivate_super(mnt->mnt.mnt_sb);
1112 mnt_free_id(mnt);
1113 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1114 }
1115
1116 static void __cleanup_mnt(struct rcu_head *head)
1117 {
1118 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1119 }
1120
1121 static LLIST_HEAD(delayed_mntput_list);
1122 static void delayed_mntput(struct work_struct *unused)
1123 {
1124 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1125 struct llist_node *next;
1126
1127 for (; node; node = next) {
1128 next = llist_next(node);
1129 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1130 }
1131 }
1132 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1133
1134 static void mntput_no_expire(struct mount *mnt)
1135 {
1136 rcu_read_lock();
1137 mnt_add_count(mnt, -1);
1138 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1139 rcu_read_unlock();
1140 return;
1141 }
1142 lock_mount_hash();
1143 if (mnt_get_count(mnt)) {
1144 rcu_read_unlock();
1145 unlock_mount_hash();
1146 return;
1147 }
1148 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1149 rcu_read_unlock();
1150 unlock_mount_hash();
1151 return;
1152 }
1153 mnt->mnt.mnt_flags |= MNT_DOOMED;
1154 rcu_read_unlock();
1155
1156 list_del(&mnt->mnt_instance);
1157
1158 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1159 struct mount *p, *tmp;
1160 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1161 umount_mnt(p);
1162 }
1163 }
1164 unlock_mount_hash();
1165
1166 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1167 struct task_struct *task = current;
1168 if (likely(!(task->flags & PF_KTHREAD))) {
1169 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1170 if (!task_work_add(task, &mnt->mnt_rcu, true))
1171 return;
1172 }
1173 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1174 schedule_delayed_work(&delayed_mntput_work, 1);
1175 return;
1176 }
1177 cleanup_mnt(mnt);
1178 }
1179
1180 void mntput(struct vfsmount *mnt)
1181 {
1182 if (mnt) {
1183 struct mount *m = real_mount(mnt);
1184 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1185 if (unlikely(m->mnt_expiry_mark))
1186 m->mnt_expiry_mark = 0;
1187 mntput_no_expire(m);
1188 }
1189 }
1190 EXPORT_SYMBOL(mntput);
1191
1192 struct vfsmount *mntget(struct vfsmount *mnt)
1193 {
1194 if (mnt)
1195 mnt_add_count(real_mount(mnt), 1);
1196 return mnt;
1197 }
1198 EXPORT_SYMBOL(mntget);
1199
1200 /* path_is_mountpoint() - Check if path is a mount in the current
1201 * namespace.
1202 *
1203 * d_mountpoint() can only be used reliably to establish if a dentry is
1204 * not mounted in any namespace and that common case is handled inline.
1205 * d_mountpoint() isn't aware of the possibility there may be multiple
1206 * mounts using a given dentry in a different namespace. This function
1207 * checks if the passed in path is a mountpoint rather than the dentry
1208 * alone.
1209 */
1210 bool path_is_mountpoint(const struct path *path)
1211 {
1212 unsigned seq;
1213 bool res;
1214
1215 if (!d_mountpoint(path->dentry))
1216 return false;
1217
1218 rcu_read_lock();
1219 do {
1220 seq = read_seqbegin(&mount_lock);
1221 res = __path_is_mountpoint(path);
1222 } while (read_seqretry(&mount_lock, seq));
1223 rcu_read_unlock();
1224
1225 return res;
1226 }
1227 EXPORT_SYMBOL(path_is_mountpoint);
1228
1229 struct vfsmount *mnt_clone_internal(const struct path *path)
1230 {
1231 struct mount *p;
1232 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1233 if (IS_ERR(p))
1234 return ERR_CAST(p);
1235 p->mnt.mnt_flags |= MNT_INTERNAL;
1236 return &p->mnt;
1237 }
1238
1239 static inline void mangle(struct seq_file *m, const char *s)
1240 {
1241 seq_escape(m, s, " \t\n\\");
1242 }
1243
1244 /*
1245 * Simple .show_options callback for filesystems which don't want to
1246 * implement more complex mount option showing.
1247 *
1248 * See also save_mount_options().
1249 */
1250 int generic_show_options(struct seq_file *m, struct dentry *root)
1251 {
1252 const char *options;
1253
1254 rcu_read_lock();
1255 options = rcu_dereference(root->d_sb->s_options);
1256
1257 if (options != NULL && options[0]) {
1258 seq_putc(m, ',');
1259 mangle(m, options);
1260 }
1261 rcu_read_unlock();
1262
1263 return 0;
1264 }
1265 EXPORT_SYMBOL(generic_show_options);
1266
1267 /*
1268 * If filesystem uses generic_show_options(), this function should be
1269 * called from the fill_super() callback.
1270 *
1271 * The .remount_fs callback usually needs to be handled in a special
1272 * way, to make sure, that previous options are not overwritten if the
1273 * remount fails.
1274 *
1275 * Also note, that if the filesystem's .remount_fs function doesn't
1276 * reset all options to their default value, but changes only newly
1277 * given options, then the displayed options will not reflect reality
1278 * any more.
1279 */
1280 void save_mount_options(struct super_block *sb, char *options)
1281 {
1282 BUG_ON(sb->s_options);
1283 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1284 }
1285 EXPORT_SYMBOL(save_mount_options);
1286
1287 void replace_mount_options(struct super_block *sb, char *options)
1288 {
1289 char *old = sb->s_options;
1290 rcu_assign_pointer(sb->s_options, options);
1291 if (old) {
1292 synchronize_rcu();
1293 kfree(old);
1294 }
1295 }
1296 EXPORT_SYMBOL(replace_mount_options);
1297
1298 #ifdef CONFIG_PROC_FS
1299 /* iterator; we want it to have access to namespace_sem, thus here... */
1300 static void *m_start(struct seq_file *m, loff_t *pos)
1301 {
1302 struct proc_mounts *p = m->private;
1303
1304 down_read(&namespace_sem);
1305 if (p->cached_event == p->ns->event) {
1306 void *v = p->cached_mount;
1307 if (*pos == p->cached_index)
1308 return v;
1309 if (*pos == p->cached_index + 1) {
1310 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1311 return p->cached_mount = v;
1312 }
1313 }
1314
1315 p->cached_event = p->ns->event;
1316 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1317 p->cached_index = *pos;
1318 return p->cached_mount;
1319 }
1320
1321 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1322 {
1323 struct proc_mounts *p = m->private;
1324
1325 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1326 p->cached_index = *pos;
1327 return p->cached_mount;
1328 }
1329
1330 static void m_stop(struct seq_file *m, void *v)
1331 {
1332 up_read(&namespace_sem);
1333 }
1334
1335 static int m_show(struct seq_file *m, void *v)
1336 {
1337 struct proc_mounts *p = m->private;
1338 struct mount *r = list_entry(v, struct mount, mnt_list);
1339 return p->show(m, &r->mnt);
1340 }
1341
1342 const struct seq_operations mounts_op = {
1343 .start = m_start,
1344 .next = m_next,
1345 .stop = m_stop,
1346 .show = m_show,
1347 };
1348 #endif /* CONFIG_PROC_FS */
1349
1350 /**
1351 * may_umount_tree - check if a mount tree is busy
1352 * @mnt: root of mount tree
1353 *
1354 * This is called to check if a tree of mounts has any
1355 * open files, pwds, chroots or sub mounts that are
1356 * busy.
1357 */
1358 int may_umount_tree(struct vfsmount *m)
1359 {
1360 struct mount *mnt = real_mount(m);
1361 int actual_refs = 0;
1362 int minimum_refs = 0;
1363 struct mount *p;
1364 BUG_ON(!m);
1365
1366 /* write lock needed for mnt_get_count */
1367 lock_mount_hash();
1368 for (p = mnt; p; p = next_mnt(p, mnt)) {
1369 actual_refs += mnt_get_count(p);
1370 minimum_refs += 2;
1371 }
1372 unlock_mount_hash();
1373
1374 if (actual_refs > minimum_refs)
1375 return 0;
1376
1377 return 1;
1378 }
1379
1380 EXPORT_SYMBOL(may_umount_tree);
1381
1382 /**
1383 * may_umount - check if a mount point is busy
1384 * @mnt: root of mount
1385 *
1386 * This is called to check if a mount point has any
1387 * open files, pwds, chroots or sub mounts. If the
1388 * mount has sub mounts this will return busy
1389 * regardless of whether the sub mounts are busy.
1390 *
1391 * Doesn't take quota and stuff into account. IOW, in some cases it will
1392 * give false negatives. The main reason why it's here is that we need
1393 * a non-destructive way to look for easily umountable filesystems.
1394 */
1395 int may_umount(struct vfsmount *mnt)
1396 {
1397 int ret = 1;
1398 down_read(&namespace_sem);
1399 lock_mount_hash();
1400 if (propagate_mount_busy(real_mount(mnt), 2))
1401 ret = 0;
1402 unlock_mount_hash();
1403 up_read(&namespace_sem);
1404 return ret;
1405 }
1406
1407 EXPORT_SYMBOL(may_umount);
1408
1409 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1410
1411 static void namespace_unlock(void)
1412 {
1413 struct hlist_head head;
1414
1415 hlist_move_list(&unmounted, &head);
1416
1417 up_write(&namespace_sem);
1418
1419 if (likely(hlist_empty(&head)))
1420 return;
1421
1422 synchronize_rcu();
1423
1424 group_pin_kill(&head);
1425 }
1426
1427 static inline void namespace_lock(void)
1428 {
1429 down_write(&namespace_sem);
1430 }
1431
1432 enum umount_tree_flags {
1433 UMOUNT_SYNC = 1,
1434 UMOUNT_PROPAGATE = 2,
1435 UMOUNT_CONNECTED = 4,
1436 };
1437
1438 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1439 {
1440 /* Leaving mounts connected is only valid for lazy umounts */
1441 if (how & UMOUNT_SYNC)
1442 return true;
1443
1444 /* A mount without a parent has nothing to be connected to */
1445 if (!mnt_has_parent(mnt))
1446 return true;
1447
1448 /* Because the reference counting rules change when mounts are
1449 * unmounted and connected, umounted mounts may not be
1450 * connected to mounted mounts.
1451 */
1452 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1453 return true;
1454
1455 /* Has it been requested that the mount remain connected? */
1456 if (how & UMOUNT_CONNECTED)
1457 return false;
1458
1459 /* Is the mount locked such that it needs to remain connected? */
1460 if (IS_MNT_LOCKED(mnt))
1461 return false;
1462
1463 /* By default disconnect the mount */
1464 return true;
1465 }
1466
1467 /*
1468 * mount_lock must be held
1469 * namespace_sem must be held for write
1470 */
1471 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1472 {
1473 LIST_HEAD(tmp_list);
1474 struct mount *p;
1475
1476 if (how & UMOUNT_PROPAGATE)
1477 propagate_mount_unlock(mnt);
1478
1479 /* Gather the mounts to umount */
1480 for (p = mnt; p; p = next_mnt(p, mnt)) {
1481 p->mnt.mnt_flags |= MNT_UMOUNT;
1482 list_move(&p->mnt_list, &tmp_list);
1483 }
1484
1485 /* Hide the mounts from mnt_mounts */
1486 list_for_each_entry(p, &tmp_list, mnt_list) {
1487 list_del_init(&p->mnt_child);
1488 }
1489
1490 /* Add propogated mounts to the tmp_list */
1491 if (how & UMOUNT_PROPAGATE)
1492 propagate_umount(&tmp_list);
1493
1494 while (!list_empty(&tmp_list)) {
1495 struct mnt_namespace *ns;
1496 bool disconnect;
1497 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1498 list_del_init(&p->mnt_expire);
1499 list_del_init(&p->mnt_list);
1500 ns = p->mnt_ns;
1501 if (ns) {
1502 ns->mounts--;
1503 __touch_mnt_namespace(ns);
1504 }
1505 p->mnt_ns = NULL;
1506 if (how & UMOUNT_SYNC)
1507 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1508
1509 disconnect = disconnect_mount(p, how);
1510
1511 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1512 disconnect ? &unmounted : NULL);
1513 if (mnt_has_parent(p)) {
1514 mnt_add_count(p->mnt_parent, -1);
1515 if (!disconnect) {
1516 /* Don't forget about p */
1517 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1518 } else {
1519 umount_mnt(p);
1520 }
1521 }
1522 change_mnt_propagation(p, MS_PRIVATE);
1523 }
1524 }
1525
1526 static void shrink_submounts(struct mount *mnt);
1527
1528 static int do_umount(struct mount *mnt, int flags)
1529 {
1530 struct super_block *sb = mnt->mnt.mnt_sb;
1531 int retval;
1532
1533 retval = security_sb_umount(&mnt->mnt, flags);
1534 if (retval)
1535 return retval;
1536
1537 /*
1538 * Allow userspace to request a mountpoint be expired rather than
1539 * unmounting unconditionally. Unmount only happens if:
1540 * (1) the mark is already set (the mark is cleared by mntput())
1541 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1542 */
1543 if (flags & MNT_EXPIRE) {
1544 if (&mnt->mnt == current->fs->root.mnt ||
1545 flags & (MNT_FORCE | MNT_DETACH))
1546 return -EINVAL;
1547
1548 /*
1549 * probably don't strictly need the lock here if we examined
1550 * all race cases, but it's a slowpath.
1551 */
1552 lock_mount_hash();
1553 if (mnt_get_count(mnt) != 2) {
1554 unlock_mount_hash();
1555 return -EBUSY;
1556 }
1557 unlock_mount_hash();
1558
1559 if (!xchg(&mnt->mnt_expiry_mark, 1))
1560 return -EAGAIN;
1561 }
1562
1563 /*
1564 * If we may have to abort operations to get out of this
1565 * mount, and they will themselves hold resources we must
1566 * allow the fs to do things. In the Unix tradition of
1567 * 'Gee thats tricky lets do it in userspace' the umount_begin
1568 * might fail to complete on the first run through as other tasks
1569 * must return, and the like. Thats for the mount program to worry
1570 * about for the moment.
1571 */
1572
1573 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1574 sb->s_op->umount_begin(sb);
1575 }
1576
1577 /*
1578 * No sense to grab the lock for this test, but test itself looks
1579 * somewhat bogus. Suggestions for better replacement?
1580 * Ho-hum... In principle, we might treat that as umount + switch
1581 * to rootfs. GC would eventually take care of the old vfsmount.
1582 * Actually it makes sense, especially if rootfs would contain a
1583 * /reboot - static binary that would close all descriptors and
1584 * call reboot(9). Then init(8) could umount root and exec /reboot.
1585 */
1586 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1587 /*
1588 * Special case for "unmounting" root ...
1589 * we just try to remount it readonly.
1590 */
1591 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1592 return -EPERM;
1593 down_write(&sb->s_umount);
1594 if (!(sb->s_flags & MS_RDONLY))
1595 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1596 up_write(&sb->s_umount);
1597 return retval;
1598 }
1599
1600 namespace_lock();
1601 lock_mount_hash();
1602 event++;
1603
1604 if (flags & MNT_DETACH) {
1605 if (!list_empty(&mnt->mnt_list))
1606 umount_tree(mnt, UMOUNT_PROPAGATE);
1607 retval = 0;
1608 } else {
1609 shrink_submounts(mnt);
1610 retval = -EBUSY;
1611 if (!propagate_mount_busy(mnt, 2)) {
1612 if (!list_empty(&mnt->mnt_list))
1613 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1614 retval = 0;
1615 }
1616 }
1617 unlock_mount_hash();
1618 namespace_unlock();
1619 return retval;
1620 }
1621
1622 /*
1623 * __detach_mounts - lazily unmount all mounts on the specified dentry
1624 *
1625 * During unlink, rmdir, and d_drop it is possible to loose the path
1626 * to an existing mountpoint, and wind up leaking the mount.
1627 * detach_mounts allows lazily unmounting those mounts instead of
1628 * leaking them.
1629 *
1630 * The caller may hold dentry->d_inode->i_mutex.
1631 */
1632 void __detach_mounts(struct dentry *dentry)
1633 {
1634 struct mountpoint *mp;
1635 struct mount *mnt;
1636
1637 namespace_lock();
1638 lock_mount_hash();
1639 mp = lookup_mountpoint(dentry);
1640 if (IS_ERR_OR_NULL(mp))
1641 goto out_unlock;
1642
1643 event++;
1644 while (!hlist_empty(&mp->m_list)) {
1645 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1646 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1647 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1648 umount_mnt(mnt);
1649 }
1650 else umount_tree(mnt, UMOUNT_CONNECTED);
1651 }
1652 put_mountpoint(mp);
1653 out_unlock:
1654 unlock_mount_hash();
1655 namespace_unlock();
1656 }
1657
1658 /*
1659 * Is the caller allowed to modify his namespace?
1660 */
1661 static inline bool may_mount(void)
1662 {
1663 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1664 }
1665
1666 static inline bool may_mandlock(void)
1667 {
1668 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1669 return false;
1670 #endif
1671 return capable(CAP_SYS_ADMIN);
1672 }
1673
1674 /*
1675 * Now umount can handle mount points as well as block devices.
1676 * This is important for filesystems which use unnamed block devices.
1677 *
1678 * We now support a flag for forced unmount like the other 'big iron'
1679 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1680 */
1681
1682 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1683 {
1684 struct path path;
1685 struct mount *mnt;
1686 int retval;
1687 int lookup_flags = 0;
1688
1689 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1690 return -EINVAL;
1691
1692 if (!may_mount())
1693 return -EPERM;
1694
1695 if (!(flags & UMOUNT_NOFOLLOW))
1696 lookup_flags |= LOOKUP_FOLLOW;
1697
1698 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1699 if (retval)
1700 goto out;
1701 mnt = real_mount(path.mnt);
1702 retval = -EINVAL;
1703 if (path.dentry != path.mnt->mnt_root)
1704 goto dput_and_out;
1705 if (!check_mnt(mnt))
1706 goto dput_and_out;
1707 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1708 goto dput_and_out;
1709 retval = -EPERM;
1710 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1711 goto dput_and_out;
1712
1713 retval = do_umount(mnt, flags);
1714 dput_and_out:
1715 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1716 dput(path.dentry);
1717 mntput_no_expire(mnt);
1718 out:
1719 return retval;
1720 }
1721
1722 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1723
1724 /*
1725 * The 2.0 compatible umount. No flags.
1726 */
1727 SYSCALL_DEFINE1(oldumount, char __user *, name)
1728 {
1729 return sys_umount(name, 0);
1730 }
1731
1732 #endif
1733
1734 static bool is_mnt_ns_file(struct dentry *dentry)
1735 {
1736 /* Is this a proxy for a mount namespace? */
1737 return dentry->d_op == &ns_dentry_operations &&
1738 dentry->d_fsdata == &mntns_operations;
1739 }
1740
1741 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1742 {
1743 return container_of(ns, struct mnt_namespace, ns);
1744 }
1745
1746 static bool mnt_ns_loop(struct dentry *dentry)
1747 {
1748 /* Could bind mounting the mount namespace inode cause a
1749 * mount namespace loop?
1750 */
1751 struct mnt_namespace *mnt_ns;
1752 if (!is_mnt_ns_file(dentry))
1753 return false;
1754
1755 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1756 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1757 }
1758
1759 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1760 int flag)
1761 {
1762 struct mount *res, *p, *q, *r, *parent;
1763
1764 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1765 return ERR_PTR(-EINVAL);
1766
1767 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1768 return ERR_PTR(-EINVAL);
1769
1770 res = q = clone_mnt(mnt, dentry, flag);
1771 if (IS_ERR(q))
1772 return q;
1773
1774 q->mnt_mountpoint = mnt->mnt_mountpoint;
1775
1776 p = mnt;
1777 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1778 struct mount *s;
1779 if (!is_subdir(r->mnt_mountpoint, dentry))
1780 continue;
1781
1782 for (s = r; s; s = next_mnt(s, r)) {
1783 struct mount *t = NULL;
1784 if (!(flag & CL_COPY_UNBINDABLE) &&
1785 IS_MNT_UNBINDABLE(s)) {
1786 s = skip_mnt_tree(s);
1787 continue;
1788 }
1789 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1790 is_mnt_ns_file(s->mnt.mnt_root)) {
1791 s = skip_mnt_tree(s);
1792 continue;
1793 }
1794 while (p != s->mnt_parent) {
1795 p = p->mnt_parent;
1796 q = q->mnt_parent;
1797 }
1798 p = s;
1799 parent = q;
1800 q = clone_mnt(p, p->mnt.mnt_root, flag);
1801 if (IS_ERR(q))
1802 goto out;
1803 lock_mount_hash();
1804 list_add_tail(&q->mnt_list, &res->mnt_list);
1805 mnt_set_mountpoint(parent, p->mnt_mp, q);
1806 if (!list_empty(&parent->mnt_mounts)) {
1807 t = list_last_entry(&parent->mnt_mounts,
1808 struct mount, mnt_child);
1809 if (t->mnt_mp != p->mnt_mp)
1810 t = NULL;
1811 }
1812 attach_shadowed(q, parent, t);
1813 unlock_mount_hash();
1814 }
1815 }
1816 return res;
1817 out:
1818 if (res) {
1819 lock_mount_hash();
1820 umount_tree(res, UMOUNT_SYNC);
1821 unlock_mount_hash();
1822 }
1823 return q;
1824 }
1825
1826 /* Caller should check returned pointer for errors */
1827
1828 struct vfsmount *collect_mounts(const struct path *path)
1829 {
1830 struct mount *tree;
1831 namespace_lock();
1832 if (!check_mnt(real_mount(path->mnt)))
1833 tree = ERR_PTR(-EINVAL);
1834 else
1835 tree = copy_tree(real_mount(path->mnt), path->dentry,
1836 CL_COPY_ALL | CL_PRIVATE);
1837 namespace_unlock();
1838 if (IS_ERR(tree))
1839 return ERR_CAST(tree);
1840 return &tree->mnt;
1841 }
1842
1843 void drop_collected_mounts(struct vfsmount *mnt)
1844 {
1845 namespace_lock();
1846 lock_mount_hash();
1847 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1848 unlock_mount_hash();
1849 namespace_unlock();
1850 }
1851
1852 /**
1853 * clone_private_mount - create a private clone of a path
1854 *
1855 * This creates a new vfsmount, which will be the clone of @path. The new will
1856 * not be attached anywhere in the namespace and will be private (i.e. changes
1857 * to the originating mount won't be propagated into this).
1858 *
1859 * Release with mntput().
1860 */
1861 struct vfsmount *clone_private_mount(const struct path *path)
1862 {
1863 struct mount *old_mnt = real_mount(path->mnt);
1864 struct mount *new_mnt;
1865
1866 if (IS_MNT_UNBINDABLE(old_mnt))
1867 return ERR_PTR(-EINVAL);
1868
1869 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1870 if (IS_ERR(new_mnt))
1871 return ERR_CAST(new_mnt);
1872
1873 return &new_mnt->mnt;
1874 }
1875 EXPORT_SYMBOL_GPL(clone_private_mount);
1876
1877 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1878 struct vfsmount *root)
1879 {
1880 struct mount *mnt;
1881 int res = f(root, arg);
1882 if (res)
1883 return res;
1884 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1885 res = f(&mnt->mnt, arg);
1886 if (res)
1887 return res;
1888 }
1889 return 0;
1890 }
1891 EXPORT_SYMBOL_GPL(iterate_mounts);
1892
1893 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1894 {
1895 struct mount *p;
1896
1897 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1898 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1899 mnt_release_group_id(p);
1900 }
1901 }
1902
1903 static int invent_group_ids(struct mount *mnt, bool recurse)
1904 {
1905 struct mount *p;
1906
1907 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1908 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1909 int err = mnt_alloc_group_id(p);
1910 if (err) {
1911 cleanup_group_ids(mnt, p);
1912 return err;
1913 }
1914 }
1915 }
1916
1917 return 0;
1918 }
1919
1920 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1921 {
1922 unsigned int max = READ_ONCE(sysctl_mount_max);
1923 unsigned int mounts = 0, old, pending, sum;
1924 struct mount *p;
1925
1926 for (p = mnt; p; p = next_mnt(p, mnt))
1927 mounts++;
1928
1929 old = ns->mounts;
1930 pending = ns->pending_mounts;
1931 sum = old + pending;
1932 if ((old > sum) ||
1933 (pending > sum) ||
1934 (max < sum) ||
1935 (mounts > (max - sum)))
1936 return -ENOSPC;
1937
1938 ns->pending_mounts = pending + mounts;
1939 return 0;
1940 }
1941
1942 /*
1943 * @source_mnt : mount tree to be attached
1944 * @nd : place the mount tree @source_mnt is attached
1945 * @parent_nd : if non-null, detach the source_mnt from its parent and
1946 * store the parent mount and mountpoint dentry.
1947 * (done when source_mnt is moved)
1948 *
1949 * NOTE: in the table below explains the semantics when a source mount
1950 * of a given type is attached to a destination mount of a given type.
1951 * ---------------------------------------------------------------------------
1952 * | BIND MOUNT OPERATION |
1953 * |**************************************************************************
1954 * | source-->| shared | private | slave | unbindable |
1955 * | dest | | | | |
1956 * | | | | | | |
1957 * | v | | | | |
1958 * |**************************************************************************
1959 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1960 * | | | | | |
1961 * |non-shared| shared (+) | private | slave (*) | invalid |
1962 * ***************************************************************************
1963 * A bind operation clones the source mount and mounts the clone on the
1964 * destination mount.
1965 *
1966 * (++) the cloned mount is propagated to all the mounts in the propagation
1967 * tree of the destination mount and the cloned mount is added to
1968 * the peer group of the source mount.
1969 * (+) the cloned mount is created under the destination mount and is marked
1970 * as shared. The cloned mount is added to the peer group of the source
1971 * mount.
1972 * (+++) the mount is propagated to all the mounts in the propagation tree
1973 * of the destination mount and the cloned mount is made slave
1974 * of the same master as that of the source mount. The cloned mount
1975 * is marked as 'shared and slave'.
1976 * (*) the cloned mount is made a slave of the same master as that of the
1977 * source mount.
1978 *
1979 * ---------------------------------------------------------------------------
1980 * | MOVE MOUNT OPERATION |
1981 * |**************************************************************************
1982 * | source-->| shared | private | slave | unbindable |
1983 * | dest | | | | |
1984 * | | | | | | |
1985 * | v | | | | |
1986 * |**************************************************************************
1987 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1988 * | | | | | |
1989 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1990 * ***************************************************************************
1991 *
1992 * (+) the mount is moved to the destination. And is then propagated to
1993 * all the mounts in the propagation tree of the destination mount.
1994 * (+*) the mount is moved to the destination.
1995 * (+++) the mount is moved to the destination and is then propagated to
1996 * all the mounts belonging to the destination mount's propagation tree.
1997 * the mount is marked as 'shared and slave'.
1998 * (*) the mount continues to be a slave at the new location.
1999 *
2000 * if the source mount is a tree, the operations explained above is
2001 * applied to each mount in the tree.
2002 * Must be called without spinlocks held, since this function can sleep
2003 * in allocations.
2004 */
2005 static int attach_recursive_mnt(struct mount *source_mnt,
2006 struct mount *dest_mnt,
2007 struct mountpoint *dest_mp,
2008 struct path *parent_path)
2009 {
2010 HLIST_HEAD(tree_list);
2011 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2012 struct mount *child, *p;
2013 struct hlist_node *n;
2014 int err;
2015
2016 /* Is there space to add these mounts to the mount namespace? */
2017 if (!parent_path) {
2018 err = count_mounts(ns, source_mnt);
2019 if (err)
2020 goto out;
2021 }
2022
2023 if (IS_MNT_SHARED(dest_mnt)) {
2024 err = invent_group_ids(source_mnt, true);
2025 if (err)
2026 goto out;
2027 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2028 lock_mount_hash();
2029 if (err)
2030 goto out_cleanup_ids;
2031 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2032 set_mnt_shared(p);
2033 } else {
2034 lock_mount_hash();
2035 }
2036 if (parent_path) {
2037 detach_mnt(source_mnt, parent_path);
2038 attach_mnt(source_mnt, dest_mnt, dest_mp);
2039 touch_mnt_namespace(source_mnt->mnt_ns);
2040 } else {
2041 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2042 commit_tree(source_mnt, NULL);
2043 }
2044
2045 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2046 struct mount *q;
2047 hlist_del_init(&child->mnt_hash);
2048 q = __lookup_mnt_last(&child->mnt_parent->mnt,
2049 child->mnt_mountpoint);
2050 commit_tree(child, q);
2051 }
2052 unlock_mount_hash();
2053
2054 return 0;
2055
2056 out_cleanup_ids:
2057 while (!hlist_empty(&tree_list)) {
2058 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2059 child->mnt_parent->mnt_ns->pending_mounts = 0;
2060 umount_tree(child, UMOUNT_SYNC);
2061 }
2062 unlock_mount_hash();
2063 cleanup_group_ids(source_mnt, NULL);
2064 out:
2065 ns->pending_mounts = 0;
2066 return err;
2067 }
2068
2069 static struct mountpoint *lock_mount(struct path *path)
2070 {
2071 struct vfsmount *mnt;
2072 struct dentry *dentry = path->dentry;
2073 retry:
2074 inode_lock(dentry->d_inode);
2075 if (unlikely(cant_mount(dentry))) {
2076 inode_unlock(dentry->d_inode);
2077 return ERR_PTR(-ENOENT);
2078 }
2079 namespace_lock();
2080 mnt = lookup_mnt(path);
2081 if (likely(!mnt)) {
2082 struct mountpoint *mp = get_mountpoint(dentry);
2083 if (IS_ERR(mp)) {
2084 namespace_unlock();
2085 inode_unlock(dentry->d_inode);
2086 return mp;
2087 }
2088 return mp;
2089 }
2090 namespace_unlock();
2091 inode_unlock(path->dentry->d_inode);
2092 path_put(path);
2093 path->mnt = mnt;
2094 dentry = path->dentry = dget(mnt->mnt_root);
2095 goto retry;
2096 }
2097
2098 static void unlock_mount(struct mountpoint *where)
2099 {
2100 struct dentry *dentry = where->m_dentry;
2101
2102 read_seqlock_excl(&mount_lock);
2103 put_mountpoint(where);
2104 read_sequnlock_excl(&mount_lock);
2105
2106 namespace_unlock();
2107 inode_unlock(dentry->d_inode);
2108 }
2109
2110 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2111 {
2112 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2113 return -EINVAL;
2114
2115 if (d_is_dir(mp->m_dentry) !=
2116 d_is_dir(mnt->mnt.mnt_root))
2117 return -ENOTDIR;
2118
2119 return attach_recursive_mnt(mnt, p, mp, NULL);
2120 }
2121
2122 /*
2123 * Sanity check the flags to change_mnt_propagation.
2124 */
2125
2126 static int flags_to_propagation_type(int flags)
2127 {
2128 int type = flags & ~(MS_REC | MS_SILENT);
2129
2130 /* Fail if any non-propagation flags are set */
2131 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2132 return 0;
2133 /* Only one propagation flag should be set */
2134 if (!is_power_of_2(type))
2135 return 0;
2136 return type;
2137 }
2138
2139 /*
2140 * recursively change the type of the mountpoint.
2141 */
2142 static int do_change_type(struct path *path, int flag)
2143 {
2144 struct mount *m;
2145 struct mount *mnt = real_mount(path->mnt);
2146 int recurse = flag & MS_REC;
2147 int type;
2148 int err = 0;
2149
2150 if (path->dentry != path->mnt->mnt_root)
2151 return -EINVAL;
2152
2153 type = flags_to_propagation_type(flag);
2154 if (!type)
2155 return -EINVAL;
2156
2157 namespace_lock();
2158 if (type == MS_SHARED) {
2159 err = invent_group_ids(mnt, recurse);
2160 if (err)
2161 goto out_unlock;
2162 }
2163
2164 lock_mount_hash();
2165 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2166 change_mnt_propagation(m, type);
2167 unlock_mount_hash();
2168
2169 out_unlock:
2170 namespace_unlock();
2171 return err;
2172 }
2173
2174 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2175 {
2176 struct mount *child;
2177 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2178 if (!is_subdir(child->mnt_mountpoint, dentry))
2179 continue;
2180
2181 if (child->mnt.mnt_flags & MNT_LOCKED)
2182 return true;
2183 }
2184 return false;
2185 }
2186
2187 /*
2188 * do loopback mount.
2189 */
2190 static int do_loopback(struct path *path, const char *old_name,
2191 int recurse)
2192 {
2193 struct path old_path;
2194 struct mount *mnt = NULL, *old, *parent;
2195 struct mountpoint *mp;
2196 int err;
2197 if (!old_name || !*old_name)
2198 return -EINVAL;
2199 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2200 if (err)
2201 return err;
2202
2203 err = -EINVAL;
2204 if (mnt_ns_loop(old_path.dentry))
2205 goto out;
2206
2207 mp = lock_mount(path);
2208 err = PTR_ERR(mp);
2209 if (IS_ERR(mp))
2210 goto out;
2211
2212 old = real_mount(old_path.mnt);
2213 parent = real_mount(path->mnt);
2214
2215 err = -EINVAL;
2216 if (IS_MNT_UNBINDABLE(old))
2217 goto out2;
2218
2219 if (!check_mnt(parent))
2220 goto out2;
2221
2222 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2223 goto out2;
2224
2225 if (!recurse && has_locked_children(old, old_path.dentry))
2226 goto out2;
2227
2228 if (recurse)
2229 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2230 else
2231 mnt = clone_mnt(old, old_path.dentry, 0);
2232
2233 if (IS_ERR(mnt)) {
2234 err = PTR_ERR(mnt);
2235 goto out2;
2236 }
2237
2238 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2239
2240 err = graft_tree(mnt, parent, mp);
2241 if (err) {
2242 lock_mount_hash();
2243 umount_tree(mnt, UMOUNT_SYNC);
2244 unlock_mount_hash();
2245 }
2246 out2:
2247 unlock_mount(mp);
2248 out:
2249 path_put(&old_path);
2250 return err;
2251 }
2252
2253 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2254 {
2255 int error = 0;
2256 int readonly_request = 0;
2257
2258 if (ms_flags & MS_RDONLY)
2259 readonly_request = 1;
2260 if (readonly_request == __mnt_is_readonly(mnt))
2261 return 0;
2262
2263 if (readonly_request)
2264 error = mnt_make_readonly(real_mount(mnt));
2265 else
2266 __mnt_unmake_readonly(real_mount(mnt));
2267 return error;
2268 }
2269
2270 /*
2271 * change filesystem flags. dir should be a physical root of filesystem.
2272 * If you've mounted a non-root directory somewhere and want to do remount
2273 * on it - tough luck.
2274 */
2275 static int do_remount(struct path *path, int flags, int mnt_flags,
2276 void *data)
2277 {
2278 int err;
2279 struct super_block *sb = path->mnt->mnt_sb;
2280 struct mount *mnt = real_mount(path->mnt);
2281
2282 if (!check_mnt(mnt))
2283 return -EINVAL;
2284
2285 if (path->dentry != path->mnt->mnt_root)
2286 return -EINVAL;
2287
2288 /* Don't allow changing of locked mnt flags.
2289 *
2290 * No locks need to be held here while testing the various
2291 * MNT_LOCK flags because those flags can never be cleared
2292 * once they are set.
2293 */
2294 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2295 !(mnt_flags & MNT_READONLY)) {
2296 return -EPERM;
2297 }
2298 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2299 !(mnt_flags & MNT_NODEV)) {
2300 return -EPERM;
2301 }
2302 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2303 !(mnt_flags & MNT_NOSUID)) {
2304 return -EPERM;
2305 }
2306 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2307 !(mnt_flags & MNT_NOEXEC)) {
2308 return -EPERM;
2309 }
2310 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2311 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2312 return -EPERM;
2313 }
2314
2315 err = security_sb_remount(sb, data);
2316 if (err)
2317 return err;
2318
2319 down_write(&sb->s_umount);
2320 if (flags & MS_BIND)
2321 err = change_mount_flags(path->mnt, flags);
2322 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2323 err = -EPERM;
2324 else
2325 err = do_remount_sb(sb, flags, data, 0);
2326 if (!err) {
2327 lock_mount_hash();
2328 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2329 mnt->mnt.mnt_flags = mnt_flags;
2330 touch_mnt_namespace(mnt->mnt_ns);
2331 unlock_mount_hash();
2332 }
2333 up_write(&sb->s_umount);
2334 return err;
2335 }
2336
2337 static inline int tree_contains_unbindable(struct mount *mnt)
2338 {
2339 struct mount *p;
2340 for (p = mnt; p; p = next_mnt(p, mnt)) {
2341 if (IS_MNT_UNBINDABLE(p))
2342 return 1;
2343 }
2344 return 0;
2345 }
2346
2347 static int do_move_mount(struct path *path, const char *old_name)
2348 {
2349 struct path old_path, parent_path;
2350 struct mount *p;
2351 struct mount *old;
2352 struct mountpoint *mp;
2353 int err;
2354 if (!old_name || !*old_name)
2355 return -EINVAL;
2356 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2357 if (err)
2358 return err;
2359
2360 mp = lock_mount(path);
2361 err = PTR_ERR(mp);
2362 if (IS_ERR(mp))
2363 goto out;
2364
2365 old = real_mount(old_path.mnt);
2366 p = real_mount(path->mnt);
2367
2368 err = -EINVAL;
2369 if (!check_mnt(p) || !check_mnt(old))
2370 goto out1;
2371
2372 if (old->mnt.mnt_flags & MNT_LOCKED)
2373 goto out1;
2374
2375 err = -EINVAL;
2376 if (old_path.dentry != old_path.mnt->mnt_root)
2377 goto out1;
2378
2379 if (!mnt_has_parent(old))
2380 goto out1;
2381
2382 if (d_is_dir(path->dentry) !=
2383 d_is_dir(old_path.dentry))
2384 goto out1;
2385 /*
2386 * Don't move a mount residing in a shared parent.
2387 */
2388 if (IS_MNT_SHARED(old->mnt_parent))
2389 goto out1;
2390 /*
2391 * Don't move a mount tree containing unbindable mounts to a destination
2392 * mount which is shared.
2393 */
2394 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2395 goto out1;
2396 err = -ELOOP;
2397 for (; mnt_has_parent(p); p = p->mnt_parent)
2398 if (p == old)
2399 goto out1;
2400
2401 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2402 if (err)
2403 goto out1;
2404
2405 /* if the mount is moved, it should no longer be expire
2406 * automatically */
2407 list_del_init(&old->mnt_expire);
2408 out1:
2409 unlock_mount(mp);
2410 out:
2411 if (!err)
2412 path_put(&parent_path);
2413 path_put(&old_path);
2414 return err;
2415 }
2416
2417 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2418 {
2419 int err;
2420 const char *subtype = strchr(fstype, '.');
2421 if (subtype) {
2422 subtype++;
2423 err = -EINVAL;
2424 if (!subtype[0])
2425 goto err;
2426 } else
2427 subtype = "";
2428
2429 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2430 err = -ENOMEM;
2431 if (!mnt->mnt_sb->s_subtype)
2432 goto err;
2433 return mnt;
2434
2435 err:
2436 mntput(mnt);
2437 return ERR_PTR(err);
2438 }
2439
2440 /*
2441 * add a mount into a namespace's mount tree
2442 */
2443 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2444 {
2445 struct mountpoint *mp;
2446 struct mount *parent;
2447 int err;
2448
2449 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2450
2451 mp = lock_mount(path);
2452 if (IS_ERR(mp))
2453 return PTR_ERR(mp);
2454
2455 parent = real_mount(path->mnt);
2456 err = -EINVAL;
2457 if (unlikely(!check_mnt(parent))) {
2458 /* that's acceptable only for automounts done in private ns */
2459 if (!(mnt_flags & MNT_SHRINKABLE))
2460 goto unlock;
2461 /* ... and for those we'd better have mountpoint still alive */
2462 if (!parent->mnt_ns)
2463 goto unlock;
2464 }
2465
2466 /* Refuse the same filesystem on the same mount point */
2467 err = -EBUSY;
2468 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2469 path->mnt->mnt_root == path->dentry)
2470 goto unlock;
2471
2472 err = -EINVAL;
2473 if (d_is_symlink(newmnt->mnt.mnt_root))
2474 goto unlock;
2475
2476 newmnt->mnt.mnt_flags = mnt_flags;
2477 err = graft_tree(newmnt, parent, mp);
2478
2479 unlock:
2480 unlock_mount(mp);
2481 return err;
2482 }
2483
2484 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2485
2486 /*
2487 * create a new mount for userspace and request it to be added into the
2488 * namespace's tree
2489 */
2490 static int do_new_mount(struct path *path, const char *fstype, int flags,
2491 int mnt_flags, const char *name, void *data)
2492 {
2493 struct file_system_type *type;
2494 struct vfsmount *mnt;
2495 int err;
2496
2497 if (!fstype)
2498 return -EINVAL;
2499
2500 type = get_fs_type(fstype);
2501 if (!type)
2502 return -ENODEV;
2503
2504 mnt = vfs_kern_mount(type, flags, name, data);
2505 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2506 !mnt->mnt_sb->s_subtype)
2507 mnt = fs_set_subtype(mnt, fstype);
2508
2509 put_filesystem(type);
2510 if (IS_ERR(mnt))
2511 return PTR_ERR(mnt);
2512
2513 if (mount_too_revealing(mnt, &mnt_flags)) {
2514 mntput(mnt);
2515 return -EPERM;
2516 }
2517
2518 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2519 if (err)
2520 mntput(mnt);
2521 return err;
2522 }
2523
2524 int finish_automount(struct vfsmount *m, struct path *path)
2525 {
2526 struct mount *mnt = real_mount(m);
2527 int err;
2528 /* The new mount record should have at least 2 refs to prevent it being
2529 * expired before we get a chance to add it
2530 */
2531 BUG_ON(mnt_get_count(mnt) < 2);
2532
2533 if (m->mnt_sb == path->mnt->mnt_sb &&
2534 m->mnt_root == path->dentry) {
2535 err = -ELOOP;
2536 goto fail;
2537 }
2538
2539 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2540 if (!err)
2541 return 0;
2542 fail:
2543 /* remove m from any expiration list it may be on */
2544 if (!list_empty(&mnt->mnt_expire)) {
2545 namespace_lock();
2546 list_del_init(&mnt->mnt_expire);
2547 namespace_unlock();
2548 }
2549 mntput(m);
2550 mntput(m);
2551 return err;
2552 }
2553
2554 /**
2555 * mnt_set_expiry - Put a mount on an expiration list
2556 * @mnt: The mount to list.
2557 * @expiry_list: The list to add the mount to.
2558 */
2559 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2560 {
2561 namespace_lock();
2562
2563 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2564
2565 namespace_unlock();
2566 }
2567 EXPORT_SYMBOL(mnt_set_expiry);
2568
2569 /*
2570 * process a list of expirable mountpoints with the intent of discarding any
2571 * mountpoints that aren't in use and haven't been touched since last we came
2572 * here
2573 */
2574 void mark_mounts_for_expiry(struct list_head *mounts)
2575 {
2576 struct mount *mnt, *next;
2577 LIST_HEAD(graveyard);
2578
2579 if (list_empty(mounts))
2580 return;
2581
2582 namespace_lock();
2583 lock_mount_hash();
2584
2585 /* extract from the expiration list every vfsmount that matches the
2586 * following criteria:
2587 * - only referenced by its parent vfsmount
2588 * - still marked for expiry (marked on the last call here; marks are
2589 * cleared by mntput())
2590 */
2591 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2592 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2593 propagate_mount_busy(mnt, 1))
2594 continue;
2595 list_move(&mnt->mnt_expire, &graveyard);
2596 }
2597 while (!list_empty(&graveyard)) {
2598 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2599 touch_mnt_namespace(mnt->mnt_ns);
2600 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2601 }
2602 unlock_mount_hash();
2603 namespace_unlock();
2604 }
2605
2606 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2607
2608 /*
2609 * Ripoff of 'select_parent()'
2610 *
2611 * search the list of submounts for a given mountpoint, and move any
2612 * shrinkable submounts to the 'graveyard' list.
2613 */
2614 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2615 {
2616 struct mount *this_parent = parent;
2617 struct list_head *next;
2618 int found = 0;
2619
2620 repeat:
2621 next = this_parent->mnt_mounts.next;
2622 resume:
2623 while (next != &this_parent->mnt_mounts) {
2624 struct list_head *tmp = next;
2625 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2626
2627 next = tmp->next;
2628 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2629 continue;
2630 /*
2631 * Descend a level if the d_mounts list is non-empty.
2632 */
2633 if (!list_empty(&mnt->mnt_mounts)) {
2634 this_parent = mnt;
2635 goto repeat;
2636 }
2637
2638 if (!propagate_mount_busy(mnt, 1)) {
2639 list_move_tail(&mnt->mnt_expire, graveyard);
2640 found++;
2641 }
2642 }
2643 /*
2644 * All done at this level ... ascend and resume the search
2645 */
2646 if (this_parent != parent) {
2647 next = this_parent->mnt_child.next;
2648 this_parent = this_parent->mnt_parent;
2649 goto resume;
2650 }
2651 return found;
2652 }
2653
2654 /*
2655 * process a list of expirable mountpoints with the intent of discarding any
2656 * submounts of a specific parent mountpoint
2657 *
2658 * mount_lock must be held for write
2659 */
2660 static void shrink_submounts(struct mount *mnt)
2661 {
2662 LIST_HEAD(graveyard);
2663 struct mount *m;
2664
2665 /* extract submounts of 'mountpoint' from the expiration list */
2666 while (select_submounts(mnt, &graveyard)) {
2667 while (!list_empty(&graveyard)) {
2668 m = list_first_entry(&graveyard, struct mount,
2669 mnt_expire);
2670 touch_mnt_namespace(m->mnt_ns);
2671 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2672 }
2673 }
2674 }
2675
2676 /*
2677 * Some copy_from_user() implementations do not return the exact number of
2678 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2679 * Note that this function differs from copy_from_user() in that it will oops
2680 * on bad values of `to', rather than returning a short copy.
2681 */
2682 static long exact_copy_from_user(void *to, const void __user * from,
2683 unsigned long n)
2684 {
2685 char *t = to;
2686 const char __user *f = from;
2687 char c;
2688
2689 if (!access_ok(VERIFY_READ, from, n))
2690 return n;
2691
2692 while (n) {
2693 if (__get_user(c, f)) {
2694 memset(t, 0, n);
2695 break;
2696 }
2697 *t++ = c;
2698 f++;
2699 n--;
2700 }
2701 return n;
2702 }
2703
2704 void *copy_mount_options(const void __user * data)
2705 {
2706 int i;
2707 unsigned long size;
2708 char *copy;
2709
2710 if (!data)
2711 return NULL;
2712
2713 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2714 if (!copy)
2715 return ERR_PTR(-ENOMEM);
2716
2717 /* We only care that *some* data at the address the user
2718 * gave us is valid. Just in case, we'll zero
2719 * the remainder of the page.
2720 */
2721 /* copy_from_user cannot cross TASK_SIZE ! */
2722 size = TASK_SIZE - (unsigned long)data;
2723 if (size > PAGE_SIZE)
2724 size = PAGE_SIZE;
2725
2726 i = size - exact_copy_from_user(copy, data, size);
2727 if (!i) {
2728 kfree(copy);
2729 return ERR_PTR(-EFAULT);
2730 }
2731 if (i != PAGE_SIZE)
2732 memset(copy + i, 0, PAGE_SIZE - i);
2733 return copy;
2734 }
2735
2736 char *copy_mount_string(const void __user *data)
2737 {
2738 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2739 }
2740
2741 /*
2742 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2743 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2744 *
2745 * data is a (void *) that can point to any structure up to
2746 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2747 * information (or be NULL).
2748 *
2749 * Pre-0.97 versions of mount() didn't have a flags word.
2750 * When the flags word was introduced its top half was required
2751 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2752 * Therefore, if this magic number is present, it carries no information
2753 * and must be discarded.
2754 */
2755 long do_mount(const char *dev_name, const char __user *dir_name,
2756 const char *type_page, unsigned long flags, void *data_page)
2757 {
2758 struct path path;
2759 int retval = 0;
2760 int mnt_flags = 0;
2761
2762 /* Discard magic */
2763 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2764 flags &= ~MS_MGC_MSK;
2765
2766 /* Basic sanity checks */
2767 if (data_page)
2768 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2769
2770 /* ... and get the mountpoint */
2771 retval = user_path(dir_name, &path);
2772 if (retval)
2773 return retval;
2774
2775 retval = security_sb_mount(dev_name, &path,
2776 type_page, flags, data_page);
2777 if (!retval && !may_mount())
2778 retval = -EPERM;
2779 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2780 retval = -EPERM;
2781 if (retval)
2782 goto dput_out;
2783
2784 /* Default to relatime unless overriden */
2785 if (!(flags & MS_NOATIME))
2786 mnt_flags |= MNT_RELATIME;
2787
2788 /* Separate the per-mountpoint flags */
2789 if (flags & MS_NOSUID)
2790 mnt_flags |= MNT_NOSUID;
2791 if (flags & MS_NODEV)
2792 mnt_flags |= MNT_NODEV;
2793 if (flags & MS_NOEXEC)
2794 mnt_flags |= MNT_NOEXEC;
2795 if (flags & MS_NOATIME)
2796 mnt_flags |= MNT_NOATIME;
2797 if (flags & MS_NODIRATIME)
2798 mnt_flags |= MNT_NODIRATIME;
2799 if (flags & MS_STRICTATIME)
2800 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2801 if (flags & MS_RDONLY)
2802 mnt_flags |= MNT_READONLY;
2803
2804 /* The default atime for remount is preservation */
2805 if ((flags & MS_REMOUNT) &&
2806 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2807 MS_STRICTATIME)) == 0)) {
2808 mnt_flags &= ~MNT_ATIME_MASK;
2809 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2810 }
2811
2812 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2813 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2814 MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT);
2815
2816 if (flags & MS_REMOUNT)
2817 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2818 data_page);
2819 else if (flags & MS_BIND)
2820 retval = do_loopback(&path, dev_name, flags & MS_REC);
2821 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2822 retval = do_change_type(&path, flags);
2823 else if (flags & MS_MOVE)
2824 retval = do_move_mount(&path, dev_name);
2825 else
2826 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2827 dev_name, data_page);
2828 dput_out:
2829 path_put(&path);
2830 return retval;
2831 }
2832
2833 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2834 {
2835 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2836 }
2837
2838 static void dec_mnt_namespaces(struct ucounts *ucounts)
2839 {
2840 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2841 }
2842
2843 static void free_mnt_ns(struct mnt_namespace *ns)
2844 {
2845 ns_free_inum(&ns->ns);
2846 dec_mnt_namespaces(ns->ucounts);
2847 put_user_ns(ns->user_ns);
2848 kfree(ns);
2849 }
2850
2851 /*
2852 * Assign a sequence number so we can detect when we attempt to bind
2853 * mount a reference to an older mount namespace into the current
2854 * mount namespace, preventing reference counting loops. A 64bit
2855 * number incrementing at 10Ghz will take 12,427 years to wrap which
2856 * is effectively never, so we can ignore the possibility.
2857 */
2858 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2859
2860 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2861 {
2862 struct mnt_namespace *new_ns;
2863 struct ucounts *ucounts;
2864 int ret;
2865
2866 ucounts = inc_mnt_namespaces(user_ns);
2867 if (!ucounts)
2868 return ERR_PTR(-ENOSPC);
2869
2870 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2871 if (!new_ns) {
2872 dec_mnt_namespaces(ucounts);
2873 return ERR_PTR(-ENOMEM);
2874 }
2875 ret = ns_alloc_inum(&new_ns->ns);
2876 if (ret) {
2877 kfree(new_ns);
2878 dec_mnt_namespaces(ucounts);
2879 return ERR_PTR(ret);
2880 }
2881 new_ns->ns.ops = &mntns_operations;
2882 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2883 atomic_set(&new_ns->count, 1);
2884 new_ns->root = NULL;
2885 INIT_LIST_HEAD(&new_ns->list);
2886 init_waitqueue_head(&new_ns->poll);
2887 new_ns->event = 0;
2888 new_ns->user_ns = get_user_ns(user_ns);
2889 new_ns->ucounts = ucounts;
2890 new_ns->mounts = 0;
2891 new_ns->pending_mounts = 0;
2892 return new_ns;
2893 }
2894
2895 __latent_entropy
2896 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2897 struct user_namespace *user_ns, struct fs_struct *new_fs)
2898 {
2899 struct mnt_namespace *new_ns;
2900 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2901 struct mount *p, *q;
2902 struct mount *old;
2903 struct mount *new;
2904 int copy_flags;
2905
2906 BUG_ON(!ns);
2907
2908 if (likely(!(flags & CLONE_NEWNS))) {
2909 get_mnt_ns(ns);
2910 return ns;
2911 }
2912
2913 old = ns->root;
2914
2915 new_ns = alloc_mnt_ns(user_ns);
2916 if (IS_ERR(new_ns))
2917 return new_ns;
2918
2919 namespace_lock();
2920 /* First pass: copy the tree topology */
2921 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2922 if (user_ns != ns->user_ns)
2923 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2924 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2925 if (IS_ERR(new)) {
2926 namespace_unlock();
2927 free_mnt_ns(new_ns);
2928 return ERR_CAST(new);
2929 }
2930 new_ns->root = new;
2931 list_add_tail(&new_ns->list, &new->mnt_list);
2932
2933 /*
2934 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2935 * as belonging to new namespace. We have already acquired a private
2936 * fs_struct, so tsk->fs->lock is not needed.
2937 */
2938 p = old;
2939 q = new;
2940 while (p) {
2941 q->mnt_ns = new_ns;
2942 new_ns->mounts++;
2943 if (new_fs) {
2944 if (&p->mnt == new_fs->root.mnt) {
2945 new_fs->root.mnt = mntget(&q->mnt);
2946 rootmnt = &p->mnt;
2947 }
2948 if (&p->mnt == new_fs->pwd.mnt) {
2949 new_fs->pwd.mnt = mntget(&q->mnt);
2950 pwdmnt = &p->mnt;
2951 }
2952 }
2953 p = next_mnt(p, old);
2954 q = next_mnt(q, new);
2955 if (!q)
2956 break;
2957 while (p->mnt.mnt_root != q->mnt.mnt_root)
2958 p = next_mnt(p, old);
2959 }
2960 namespace_unlock();
2961
2962 if (rootmnt)
2963 mntput(rootmnt);
2964 if (pwdmnt)
2965 mntput(pwdmnt);
2966
2967 return new_ns;
2968 }
2969
2970 /**
2971 * create_mnt_ns - creates a private namespace and adds a root filesystem
2972 * @mnt: pointer to the new root filesystem mountpoint
2973 */
2974 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2975 {
2976 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2977 if (!IS_ERR(new_ns)) {
2978 struct mount *mnt = real_mount(m);
2979 mnt->mnt_ns = new_ns;
2980 new_ns->root = mnt;
2981 new_ns->mounts++;
2982 list_add(&mnt->mnt_list, &new_ns->list);
2983 } else {
2984 mntput(m);
2985 }
2986 return new_ns;
2987 }
2988
2989 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2990 {
2991 struct mnt_namespace *ns;
2992 struct super_block *s;
2993 struct path path;
2994 int err;
2995
2996 ns = create_mnt_ns(mnt);
2997 if (IS_ERR(ns))
2998 return ERR_CAST(ns);
2999
3000 err = vfs_path_lookup(mnt->mnt_root, mnt,
3001 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3002
3003 put_mnt_ns(ns);
3004
3005 if (err)
3006 return ERR_PTR(err);
3007
3008 /* trade a vfsmount reference for active sb one */
3009 s = path.mnt->mnt_sb;
3010 atomic_inc(&s->s_active);
3011 mntput(path.mnt);
3012 /* lock the sucker */
3013 down_write(&s->s_umount);
3014 /* ... and return the root of (sub)tree on it */
3015 return path.dentry;
3016 }
3017 EXPORT_SYMBOL(mount_subtree);
3018
3019 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3020 char __user *, type, unsigned long, flags, void __user *, data)
3021 {
3022 int ret;
3023 char *kernel_type;
3024 char *kernel_dev;
3025 void *options;
3026
3027 kernel_type = copy_mount_string(type);
3028 ret = PTR_ERR(kernel_type);
3029 if (IS_ERR(kernel_type))
3030 goto out_type;
3031
3032 kernel_dev = copy_mount_string(dev_name);
3033 ret = PTR_ERR(kernel_dev);
3034 if (IS_ERR(kernel_dev))
3035 goto out_dev;
3036
3037 options = copy_mount_options(data);
3038 ret = PTR_ERR(options);
3039 if (IS_ERR(options))
3040 goto out_data;
3041
3042 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3043
3044 kfree(options);
3045 out_data:
3046 kfree(kernel_dev);
3047 out_dev:
3048 kfree(kernel_type);
3049 out_type:
3050 return ret;
3051 }
3052
3053 /*
3054 * Return true if path is reachable from root
3055 *
3056 * namespace_sem or mount_lock is held
3057 */
3058 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3059 const struct path *root)
3060 {
3061 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3062 dentry = mnt->mnt_mountpoint;
3063 mnt = mnt->mnt_parent;
3064 }
3065 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3066 }
3067
3068 bool path_is_under(const struct path *path1, const struct path *path2)
3069 {
3070 bool res;
3071 read_seqlock_excl(&mount_lock);
3072 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3073 read_sequnlock_excl(&mount_lock);
3074 return res;
3075 }
3076 EXPORT_SYMBOL(path_is_under);
3077
3078 /*
3079 * pivot_root Semantics:
3080 * Moves the root file system of the current process to the directory put_old,
3081 * makes new_root as the new root file system of the current process, and sets
3082 * root/cwd of all processes which had them on the current root to new_root.
3083 *
3084 * Restrictions:
3085 * The new_root and put_old must be directories, and must not be on the
3086 * same file system as the current process root. The put_old must be
3087 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3088 * pointed to by put_old must yield the same directory as new_root. No other
3089 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3090 *
3091 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3092 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3093 * in this situation.
3094 *
3095 * Notes:
3096 * - we don't move root/cwd if they are not at the root (reason: if something
3097 * cared enough to change them, it's probably wrong to force them elsewhere)
3098 * - it's okay to pick a root that isn't the root of a file system, e.g.
3099 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3100 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3101 * first.
3102 */
3103 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3104 const char __user *, put_old)
3105 {
3106 struct path new, old, parent_path, root_parent, root;
3107 struct mount *new_mnt, *root_mnt, *old_mnt;
3108 struct mountpoint *old_mp, *root_mp;
3109 int error;
3110
3111 if (!may_mount())
3112 return -EPERM;
3113
3114 error = user_path_dir(new_root, &new);
3115 if (error)
3116 goto out0;
3117
3118 error = user_path_dir(put_old, &old);
3119 if (error)
3120 goto out1;
3121
3122 error = security_sb_pivotroot(&old, &new);
3123 if (error)
3124 goto out2;
3125
3126 get_fs_root(current->fs, &root);
3127 old_mp = lock_mount(&old);
3128 error = PTR_ERR(old_mp);
3129 if (IS_ERR(old_mp))
3130 goto out3;
3131
3132 error = -EINVAL;
3133 new_mnt = real_mount(new.mnt);
3134 root_mnt = real_mount(root.mnt);
3135 old_mnt = real_mount(old.mnt);
3136 if (IS_MNT_SHARED(old_mnt) ||
3137 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3138 IS_MNT_SHARED(root_mnt->mnt_parent))
3139 goto out4;
3140 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3141 goto out4;
3142 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3143 goto out4;
3144 error = -ENOENT;
3145 if (d_unlinked(new.dentry))
3146 goto out4;
3147 error = -EBUSY;
3148 if (new_mnt == root_mnt || old_mnt == root_mnt)
3149 goto out4; /* loop, on the same file system */
3150 error = -EINVAL;
3151 if (root.mnt->mnt_root != root.dentry)
3152 goto out4; /* not a mountpoint */
3153 if (!mnt_has_parent(root_mnt))
3154 goto out4; /* not attached */
3155 root_mp = root_mnt->mnt_mp;
3156 if (new.mnt->mnt_root != new.dentry)
3157 goto out4; /* not a mountpoint */
3158 if (!mnt_has_parent(new_mnt))
3159 goto out4; /* not attached */
3160 /* make sure we can reach put_old from new_root */
3161 if (!is_path_reachable(old_mnt, old.dentry, &new))
3162 goto out4;
3163 /* make certain new is below the root */
3164 if (!is_path_reachable(new_mnt, new.dentry, &root))
3165 goto out4;
3166 root_mp->m_count++; /* pin it so it won't go away */
3167 lock_mount_hash();
3168 detach_mnt(new_mnt, &parent_path);
3169 detach_mnt(root_mnt, &root_parent);
3170 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3171 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3172 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3173 }
3174 /* mount old root on put_old */
3175 attach_mnt(root_mnt, old_mnt, old_mp);
3176 /* mount new_root on / */
3177 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3178 touch_mnt_namespace(current->nsproxy->mnt_ns);
3179 /* A moved mount should not expire automatically */
3180 list_del_init(&new_mnt->mnt_expire);
3181 put_mountpoint(root_mp);
3182 unlock_mount_hash();
3183 chroot_fs_refs(&root, &new);
3184 error = 0;
3185 out4:
3186 unlock_mount(old_mp);
3187 if (!error) {
3188 path_put(&root_parent);
3189 path_put(&parent_path);
3190 }
3191 out3:
3192 path_put(&root);
3193 out2:
3194 path_put(&old);
3195 out1:
3196 path_put(&new);
3197 out0:
3198 return error;
3199 }
3200
3201 static void __init init_mount_tree(void)
3202 {
3203 struct vfsmount *mnt;
3204 struct mnt_namespace *ns;
3205 struct path root;
3206 struct file_system_type *type;
3207
3208 type = get_fs_type("rootfs");
3209 if (!type)
3210 panic("Can't find rootfs type");
3211 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3212 put_filesystem(type);
3213 if (IS_ERR(mnt))
3214 panic("Can't create rootfs");
3215
3216 ns = create_mnt_ns(mnt);
3217 if (IS_ERR(ns))
3218 panic("Can't allocate initial namespace");
3219
3220 init_task.nsproxy->mnt_ns = ns;
3221 get_mnt_ns(ns);
3222
3223 root.mnt = mnt;
3224 root.dentry = mnt->mnt_root;
3225 mnt->mnt_flags |= MNT_LOCKED;
3226
3227 set_fs_pwd(current->fs, &root);
3228 set_fs_root(current->fs, &root);
3229 }
3230
3231 void __init mnt_init(void)
3232 {
3233 unsigned u;
3234 int err;
3235
3236 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3237 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3238
3239 mount_hashtable = alloc_large_system_hash("Mount-cache",
3240 sizeof(struct hlist_head),
3241 mhash_entries, 19,
3242 0,
3243 &m_hash_shift, &m_hash_mask, 0, 0);
3244 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3245 sizeof(struct hlist_head),
3246 mphash_entries, 19,
3247 0,
3248 &mp_hash_shift, &mp_hash_mask, 0, 0);
3249
3250 if (!mount_hashtable || !mountpoint_hashtable)
3251 panic("Failed to allocate mount hash table\n");
3252
3253 for (u = 0; u <= m_hash_mask; u++)
3254 INIT_HLIST_HEAD(&mount_hashtable[u]);
3255 for (u = 0; u <= mp_hash_mask; u++)
3256 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3257
3258 kernfs_init();
3259
3260 err = sysfs_init();
3261 if (err)
3262 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3263 __func__, err);
3264 fs_kobj = kobject_create_and_add("fs", NULL);
3265 if (!fs_kobj)
3266 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3267 init_rootfs();
3268 init_mount_tree();
3269 }
3270
3271 void put_mnt_ns(struct mnt_namespace *ns)
3272 {
3273 if (!atomic_dec_and_test(&ns->count))
3274 return;
3275 drop_collected_mounts(&ns->root->mnt);
3276 free_mnt_ns(ns);
3277 }
3278
3279 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3280 {
3281 struct vfsmount *mnt;
3282 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3283 if (!IS_ERR(mnt)) {
3284 /*
3285 * it is a longterm mount, don't release mnt until
3286 * we unmount before file sys is unregistered
3287 */
3288 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3289 }
3290 return mnt;
3291 }
3292 EXPORT_SYMBOL_GPL(kern_mount_data);
3293
3294 void kern_unmount(struct vfsmount *mnt)
3295 {
3296 /* release long term mount so mount point can be released */
3297 if (!IS_ERR_OR_NULL(mnt)) {
3298 real_mount(mnt)->mnt_ns = NULL;
3299 synchronize_rcu(); /* yecchhh... */
3300 mntput(mnt);
3301 }
3302 }
3303 EXPORT_SYMBOL(kern_unmount);
3304
3305 bool our_mnt(struct vfsmount *mnt)
3306 {
3307 return check_mnt(real_mount(mnt));
3308 }
3309
3310 bool current_chrooted(void)
3311 {
3312 /* Does the current process have a non-standard root */
3313 struct path ns_root;
3314 struct path fs_root;
3315 bool chrooted;
3316
3317 /* Find the namespace root */
3318 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3319 ns_root.dentry = ns_root.mnt->mnt_root;
3320 path_get(&ns_root);
3321 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3322 ;
3323
3324 get_fs_root(current->fs, &fs_root);
3325
3326 chrooted = !path_equal(&fs_root, &ns_root);
3327
3328 path_put(&fs_root);
3329 path_put(&ns_root);
3330
3331 return chrooted;
3332 }
3333
3334 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3335 int *new_mnt_flags)
3336 {
3337 int new_flags = *new_mnt_flags;
3338 struct mount *mnt;
3339 bool visible = false;
3340
3341 down_read(&namespace_sem);
3342 list_for_each_entry(mnt, &ns->list, mnt_list) {
3343 struct mount *child;
3344 int mnt_flags;
3345
3346 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3347 continue;
3348
3349 /* This mount is not fully visible if it's root directory
3350 * is not the root directory of the filesystem.
3351 */
3352 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3353 continue;
3354
3355 /* A local view of the mount flags */
3356 mnt_flags = mnt->mnt.mnt_flags;
3357
3358 /* Don't miss readonly hidden in the superblock flags */
3359 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3360 mnt_flags |= MNT_LOCK_READONLY;
3361
3362 /* Verify the mount flags are equal to or more permissive
3363 * than the proposed new mount.
3364 */
3365 if ((mnt_flags & MNT_LOCK_READONLY) &&
3366 !(new_flags & MNT_READONLY))
3367 continue;
3368 if ((mnt_flags & MNT_LOCK_ATIME) &&
3369 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3370 continue;
3371
3372 /* This mount is not fully visible if there are any
3373 * locked child mounts that cover anything except for
3374 * empty directories.
3375 */
3376 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3377 struct inode *inode = child->mnt_mountpoint->d_inode;
3378 /* Only worry about locked mounts */
3379 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3380 continue;
3381 /* Is the directory permanetly empty? */
3382 if (!is_empty_dir_inode(inode))
3383 goto next;
3384 }
3385 /* Preserve the locked attributes */
3386 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3387 MNT_LOCK_ATIME);
3388 visible = true;
3389 goto found;
3390 next: ;
3391 }
3392 found:
3393 up_read(&namespace_sem);
3394 return visible;
3395 }
3396
3397 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3398 {
3399 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3400 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3401 unsigned long s_iflags;
3402
3403 if (ns->user_ns == &init_user_ns)
3404 return false;
3405
3406 /* Can this filesystem be too revealing? */
3407 s_iflags = mnt->mnt_sb->s_iflags;
3408 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3409 return false;
3410
3411 if ((s_iflags & required_iflags) != required_iflags) {
3412 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3413 required_iflags);
3414 return true;
3415 }
3416
3417 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3418 }
3419
3420 bool mnt_may_suid(struct vfsmount *mnt)
3421 {
3422 /*
3423 * Foreign mounts (accessed via fchdir or through /proc
3424 * symlinks) are always treated as if they are nosuid. This
3425 * prevents namespaces from trusting potentially unsafe
3426 * suid/sgid bits, file caps, or security labels that originate
3427 * in other namespaces.
3428 */
3429 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3430 current_in_userns(mnt->mnt_sb->s_user_ns);
3431 }
3432
3433 static struct ns_common *mntns_get(struct task_struct *task)
3434 {
3435 struct ns_common *ns = NULL;
3436 struct nsproxy *nsproxy;
3437
3438 task_lock(task);
3439 nsproxy = task->nsproxy;
3440 if (nsproxy) {
3441 ns = &nsproxy->mnt_ns->ns;
3442 get_mnt_ns(to_mnt_ns(ns));
3443 }
3444 task_unlock(task);
3445
3446 return ns;
3447 }
3448
3449 static void mntns_put(struct ns_common *ns)
3450 {
3451 put_mnt_ns(to_mnt_ns(ns));
3452 }
3453
3454 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3455 {
3456 struct fs_struct *fs = current->fs;
3457 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3458 struct path root;
3459
3460 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3461 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3462 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3463 return -EPERM;
3464
3465 if (fs->users != 1)
3466 return -EINVAL;
3467
3468 get_mnt_ns(mnt_ns);
3469 put_mnt_ns(nsproxy->mnt_ns);
3470 nsproxy->mnt_ns = mnt_ns;
3471
3472 /* Find the root */
3473 root.mnt = &mnt_ns->root->mnt;
3474 root.dentry = mnt_ns->root->mnt.mnt_root;
3475 path_get(&root);
3476 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3477 ;
3478
3479 /* Update the pwd and root */
3480 set_fs_pwd(fs, &root);
3481 set_fs_root(fs, &root);
3482
3483 path_put(&root);
3484 return 0;
3485 }
3486
3487 static struct user_namespace *mntns_owner(struct ns_common *ns)
3488 {
3489 return to_mnt_ns(ns)->user_ns;
3490 }
3491
3492 const struct proc_ns_operations mntns_operations = {
3493 .name = "mnt",
3494 .type = CLONE_NEWNS,
3495 .get = mntns_get,
3496 .put = mntns_put,
3497 .install = mntns_install,
3498 .owner = mntns_owner,
3499 };