]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/namespace.c
crypto: s390 - fix aes,des ctr mode concurrency finding.
[mirror_ubuntu-bionic-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h> /* acct_auto_close_mnt */
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include "pnode.h"
28 #include "internal.h"
29
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
34
35 static __initdata unsigned long mhash_entries;
36 static int __init set_mhash_entries(char *str)
37 {
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42 }
43 __setup("mhash_entries=", set_mhash_entries);
44
45 static __initdata unsigned long mphash_entries;
46 static int __init set_mphash_entries(char *str)
47 {
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52 }
53 __setup("mphash_entries=", set_mphash_entries);
54
55 static int event;
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
61
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
66
67 /* /sys/fs */
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
70
71 /*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
80
81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
82 {
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87 }
88
89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
90 {
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
94 }
95
96 /*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
100 static int mnt_alloc_id(struct mount *mnt)
101 {
102 int res;
103
104 retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 spin_lock(&mnt_id_lock);
107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 if (!res)
109 mnt_id_start = mnt->mnt_id + 1;
110 spin_unlock(&mnt_id_lock);
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115 }
116
117 static void mnt_free_id(struct mount *mnt)
118 {
119 int id = mnt->mnt_id;
120 spin_lock(&mnt_id_lock);
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
124 spin_unlock(&mnt_id_lock);
125 }
126
127 /*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
132 static int mnt_alloc_group_id(struct mount *mnt)
133 {
134 int res;
135
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
141 &mnt->mnt_group_id);
142 if (!res)
143 mnt_group_start = mnt->mnt_group_id + 1;
144
145 return res;
146 }
147
148 /*
149 * Release a peer group ID
150 */
151 void mnt_release_group_id(struct mount *mnt)
152 {
153 int id = mnt->mnt_group_id;
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
157 mnt->mnt_group_id = 0;
158 }
159
160 /*
161 * vfsmount lock must be held for read
162 */
163 static inline void mnt_add_count(struct mount *mnt, int n)
164 {
165 #ifdef CONFIG_SMP
166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 preempt_disable();
169 mnt->mnt_count += n;
170 preempt_enable();
171 #endif
172 }
173
174 /*
175 * vfsmount lock must be held for write
176 */
177 unsigned int mnt_get_count(struct mount *mnt)
178 {
179 #ifdef CONFIG_SMP
180 unsigned int count = 0;
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185 }
186
187 return count;
188 #else
189 return mnt->mnt_count;
190 #endif
191 }
192
193 static struct mount *alloc_vfsmnt(const char *name)
194 {
195 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
196 if (mnt) {
197 int err;
198
199 err = mnt_alloc_id(mnt);
200 if (err)
201 goto out_free_cache;
202
203 if (name) {
204 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
205 if (!mnt->mnt_devname)
206 goto out_free_id;
207 }
208
209 #ifdef CONFIG_SMP
210 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
211 if (!mnt->mnt_pcp)
212 goto out_free_devname;
213
214 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
215 #else
216 mnt->mnt_count = 1;
217 mnt->mnt_writers = 0;
218 #endif
219
220 INIT_HLIST_NODE(&mnt->mnt_hash);
221 INIT_LIST_HEAD(&mnt->mnt_child);
222 INIT_LIST_HEAD(&mnt->mnt_mounts);
223 INIT_LIST_HEAD(&mnt->mnt_list);
224 INIT_LIST_HEAD(&mnt->mnt_expire);
225 INIT_LIST_HEAD(&mnt->mnt_share);
226 INIT_LIST_HEAD(&mnt->mnt_slave_list);
227 INIT_LIST_HEAD(&mnt->mnt_slave);
228 #ifdef CONFIG_FSNOTIFY
229 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
230 #endif
231 }
232 return mnt;
233
234 #ifdef CONFIG_SMP
235 out_free_devname:
236 kfree(mnt->mnt_devname);
237 #endif
238 out_free_id:
239 mnt_free_id(mnt);
240 out_free_cache:
241 kmem_cache_free(mnt_cache, mnt);
242 return NULL;
243 }
244
245 /*
246 * Most r/o checks on a fs are for operations that take
247 * discrete amounts of time, like a write() or unlink().
248 * We must keep track of when those operations start
249 * (for permission checks) and when they end, so that
250 * we can determine when writes are able to occur to
251 * a filesystem.
252 */
253 /*
254 * __mnt_is_readonly: check whether a mount is read-only
255 * @mnt: the mount to check for its write status
256 *
257 * This shouldn't be used directly ouside of the VFS.
258 * It does not guarantee that the filesystem will stay
259 * r/w, just that it is right *now*. This can not and
260 * should not be used in place of IS_RDONLY(inode).
261 * mnt_want/drop_write() will _keep_ the filesystem
262 * r/w.
263 */
264 int __mnt_is_readonly(struct vfsmount *mnt)
265 {
266 if (mnt->mnt_flags & MNT_READONLY)
267 return 1;
268 if (mnt->mnt_sb->s_flags & MS_RDONLY)
269 return 1;
270 return 0;
271 }
272 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
273
274 static inline void mnt_inc_writers(struct mount *mnt)
275 {
276 #ifdef CONFIG_SMP
277 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
278 #else
279 mnt->mnt_writers++;
280 #endif
281 }
282
283 static inline void mnt_dec_writers(struct mount *mnt)
284 {
285 #ifdef CONFIG_SMP
286 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
287 #else
288 mnt->mnt_writers--;
289 #endif
290 }
291
292 static unsigned int mnt_get_writers(struct mount *mnt)
293 {
294 #ifdef CONFIG_SMP
295 unsigned int count = 0;
296 int cpu;
297
298 for_each_possible_cpu(cpu) {
299 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
300 }
301
302 return count;
303 #else
304 return mnt->mnt_writers;
305 #endif
306 }
307
308 static int mnt_is_readonly(struct vfsmount *mnt)
309 {
310 if (mnt->mnt_sb->s_readonly_remount)
311 return 1;
312 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
313 smp_rmb();
314 return __mnt_is_readonly(mnt);
315 }
316
317 /*
318 * Most r/o & frozen checks on a fs are for operations that take discrete
319 * amounts of time, like a write() or unlink(). We must keep track of when
320 * those operations start (for permission checks) and when they end, so that we
321 * can determine when writes are able to occur to a filesystem.
322 */
323 /**
324 * __mnt_want_write - get write access to a mount without freeze protection
325 * @m: the mount on which to take a write
326 *
327 * This tells the low-level filesystem that a write is about to be performed to
328 * it, and makes sure that writes are allowed (mnt it read-write) before
329 * returning success. This operation does not protect against filesystem being
330 * frozen. When the write operation is finished, __mnt_drop_write() must be
331 * called. This is effectively a refcount.
332 */
333 int __mnt_want_write(struct vfsmount *m)
334 {
335 struct mount *mnt = real_mount(m);
336 int ret = 0;
337
338 preempt_disable();
339 mnt_inc_writers(mnt);
340 /*
341 * The store to mnt_inc_writers must be visible before we pass
342 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
343 * incremented count after it has set MNT_WRITE_HOLD.
344 */
345 smp_mb();
346 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
347 cpu_relax();
348 /*
349 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
350 * be set to match its requirements. So we must not load that until
351 * MNT_WRITE_HOLD is cleared.
352 */
353 smp_rmb();
354 if (mnt_is_readonly(m)) {
355 mnt_dec_writers(mnt);
356 ret = -EROFS;
357 }
358 preempt_enable();
359
360 return ret;
361 }
362
363 /**
364 * mnt_want_write - get write access to a mount
365 * @m: the mount on which to take a write
366 *
367 * This tells the low-level filesystem that a write is about to be performed to
368 * it, and makes sure that writes are allowed (mount is read-write, filesystem
369 * is not frozen) before returning success. When the write operation is
370 * finished, mnt_drop_write() must be called. This is effectively a refcount.
371 */
372 int mnt_want_write(struct vfsmount *m)
373 {
374 int ret;
375
376 sb_start_write(m->mnt_sb);
377 ret = __mnt_want_write(m);
378 if (ret)
379 sb_end_write(m->mnt_sb);
380 return ret;
381 }
382 EXPORT_SYMBOL_GPL(mnt_want_write);
383
384 /**
385 * mnt_clone_write - get write access to a mount
386 * @mnt: the mount on which to take a write
387 *
388 * This is effectively like mnt_want_write, except
389 * it must only be used to take an extra write reference
390 * on a mountpoint that we already know has a write reference
391 * on it. This allows some optimisation.
392 *
393 * After finished, mnt_drop_write must be called as usual to
394 * drop the reference.
395 */
396 int mnt_clone_write(struct vfsmount *mnt)
397 {
398 /* superblock may be r/o */
399 if (__mnt_is_readonly(mnt))
400 return -EROFS;
401 preempt_disable();
402 mnt_inc_writers(real_mount(mnt));
403 preempt_enable();
404 return 0;
405 }
406 EXPORT_SYMBOL_GPL(mnt_clone_write);
407
408 /**
409 * __mnt_want_write_file - get write access to a file's mount
410 * @file: the file who's mount on which to take a write
411 *
412 * This is like __mnt_want_write, but it takes a file and can
413 * do some optimisations if the file is open for write already
414 */
415 int __mnt_want_write_file(struct file *file)
416 {
417 struct inode *inode = file_inode(file);
418
419 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
420 return __mnt_want_write(file->f_path.mnt);
421 else
422 return mnt_clone_write(file->f_path.mnt);
423 }
424
425 /**
426 * mnt_want_write_file - get write access to a file's mount
427 * @file: the file who's mount on which to take a write
428 *
429 * This is like mnt_want_write, but it takes a file and can
430 * do some optimisations if the file is open for write already
431 */
432 int mnt_want_write_file(struct file *file)
433 {
434 int ret;
435
436 sb_start_write(file->f_path.mnt->mnt_sb);
437 ret = __mnt_want_write_file(file);
438 if (ret)
439 sb_end_write(file->f_path.mnt->mnt_sb);
440 return ret;
441 }
442 EXPORT_SYMBOL_GPL(mnt_want_write_file);
443
444 /**
445 * __mnt_drop_write - give up write access to a mount
446 * @mnt: the mount on which to give up write access
447 *
448 * Tells the low-level filesystem that we are done
449 * performing writes to it. Must be matched with
450 * __mnt_want_write() call above.
451 */
452 void __mnt_drop_write(struct vfsmount *mnt)
453 {
454 preempt_disable();
455 mnt_dec_writers(real_mount(mnt));
456 preempt_enable();
457 }
458
459 /**
460 * mnt_drop_write - give up write access to a mount
461 * @mnt: the mount on which to give up write access
462 *
463 * Tells the low-level filesystem that we are done performing writes to it and
464 * also allows filesystem to be frozen again. Must be matched with
465 * mnt_want_write() call above.
466 */
467 void mnt_drop_write(struct vfsmount *mnt)
468 {
469 __mnt_drop_write(mnt);
470 sb_end_write(mnt->mnt_sb);
471 }
472 EXPORT_SYMBOL_GPL(mnt_drop_write);
473
474 void __mnt_drop_write_file(struct file *file)
475 {
476 __mnt_drop_write(file->f_path.mnt);
477 }
478
479 void mnt_drop_write_file(struct file *file)
480 {
481 mnt_drop_write(file->f_path.mnt);
482 }
483 EXPORT_SYMBOL(mnt_drop_write_file);
484
485 static int mnt_make_readonly(struct mount *mnt)
486 {
487 int ret = 0;
488
489 lock_mount_hash();
490 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
491 /*
492 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
493 * should be visible before we do.
494 */
495 smp_mb();
496
497 /*
498 * With writers on hold, if this value is zero, then there are
499 * definitely no active writers (although held writers may subsequently
500 * increment the count, they'll have to wait, and decrement it after
501 * seeing MNT_READONLY).
502 *
503 * It is OK to have counter incremented on one CPU and decremented on
504 * another: the sum will add up correctly. The danger would be when we
505 * sum up each counter, if we read a counter before it is incremented,
506 * but then read another CPU's count which it has been subsequently
507 * decremented from -- we would see more decrements than we should.
508 * MNT_WRITE_HOLD protects against this scenario, because
509 * mnt_want_write first increments count, then smp_mb, then spins on
510 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
511 * we're counting up here.
512 */
513 if (mnt_get_writers(mnt) > 0)
514 ret = -EBUSY;
515 else
516 mnt->mnt.mnt_flags |= MNT_READONLY;
517 /*
518 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
519 * that become unheld will see MNT_READONLY.
520 */
521 smp_wmb();
522 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
523 unlock_mount_hash();
524 return ret;
525 }
526
527 static void __mnt_unmake_readonly(struct mount *mnt)
528 {
529 lock_mount_hash();
530 mnt->mnt.mnt_flags &= ~MNT_READONLY;
531 unlock_mount_hash();
532 }
533
534 int sb_prepare_remount_readonly(struct super_block *sb)
535 {
536 struct mount *mnt;
537 int err = 0;
538
539 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
540 if (atomic_long_read(&sb->s_remove_count))
541 return -EBUSY;
542
543 lock_mount_hash();
544 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
545 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
546 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
547 smp_mb();
548 if (mnt_get_writers(mnt) > 0) {
549 err = -EBUSY;
550 break;
551 }
552 }
553 }
554 if (!err && atomic_long_read(&sb->s_remove_count))
555 err = -EBUSY;
556
557 if (!err) {
558 sb->s_readonly_remount = 1;
559 smp_wmb();
560 }
561 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
562 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
563 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
564 }
565 unlock_mount_hash();
566
567 return err;
568 }
569
570 static void free_vfsmnt(struct mount *mnt)
571 {
572 kfree(mnt->mnt_devname);
573 mnt_free_id(mnt);
574 #ifdef CONFIG_SMP
575 free_percpu(mnt->mnt_pcp);
576 #endif
577 kmem_cache_free(mnt_cache, mnt);
578 }
579
580 /* call under rcu_read_lock */
581 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
582 {
583 struct mount *mnt;
584 if (read_seqretry(&mount_lock, seq))
585 return false;
586 if (bastard == NULL)
587 return true;
588 mnt = real_mount(bastard);
589 mnt_add_count(mnt, 1);
590 if (likely(!read_seqretry(&mount_lock, seq)))
591 return true;
592 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
593 mnt_add_count(mnt, -1);
594 return false;
595 }
596 rcu_read_unlock();
597 mntput(bastard);
598 rcu_read_lock();
599 return false;
600 }
601
602 /*
603 * find the first mount at @dentry on vfsmount @mnt.
604 * call under rcu_read_lock()
605 */
606 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
607 {
608 struct hlist_head *head = m_hash(mnt, dentry);
609 struct mount *p;
610
611 hlist_for_each_entry_rcu(p, head, mnt_hash)
612 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
613 return p;
614 return NULL;
615 }
616
617 /*
618 * find the last mount at @dentry on vfsmount @mnt.
619 * mount_lock must be held.
620 */
621 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
622 {
623 struct mount *p, *res;
624 res = p = __lookup_mnt(mnt, dentry);
625 if (!p)
626 goto out;
627 hlist_for_each_entry_continue(p, mnt_hash) {
628 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
629 break;
630 res = p;
631 }
632 out:
633 return res;
634 }
635
636 /*
637 * lookup_mnt - Return the first child mount mounted at path
638 *
639 * "First" means first mounted chronologically. If you create the
640 * following mounts:
641 *
642 * mount /dev/sda1 /mnt
643 * mount /dev/sda2 /mnt
644 * mount /dev/sda3 /mnt
645 *
646 * Then lookup_mnt() on the base /mnt dentry in the root mount will
647 * return successively the root dentry and vfsmount of /dev/sda1, then
648 * /dev/sda2, then /dev/sda3, then NULL.
649 *
650 * lookup_mnt takes a reference to the found vfsmount.
651 */
652 struct vfsmount *lookup_mnt(struct path *path)
653 {
654 struct mount *child_mnt;
655 struct vfsmount *m;
656 unsigned seq;
657
658 rcu_read_lock();
659 do {
660 seq = read_seqbegin(&mount_lock);
661 child_mnt = __lookup_mnt(path->mnt, path->dentry);
662 m = child_mnt ? &child_mnt->mnt : NULL;
663 } while (!legitimize_mnt(m, seq));
664 rcu_read_unlock();
665 return m;
666 }
667
668 static struct mountpoint *new_mountpoint(struct dentry *dentry)
669 {
670 struct hlist_head *chain = mp_hash(dentry);
671 struct mountpoint *mp;
672 int ret;
673
674 hlist_for_each_entry(mp, chain, m_hash) {
675 if (mp->m_dentry == dentry) {
676 /* might be worth a WARN_ON() */
677 if (d_unlinked(dentry))
678 return ERR_PTR(-ENOENT);
679 mp->m_count++;
680 return mp;
681 }
682 }
683
684 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
685 if (!mp)
686 return ERR_PTR(-ENOMEM);
687
688 ret = d_set_mounted(dentry);
689 if (ret) {
690 kfree(mp);
691 return ERR_PTR(ret);
692 }
693
694 mp->m_dentry = dentry;
695 mp->m_count = 1;
696 hlist_add_head(&mp->m_hash, chain);
697 return mp;
698 }
699
700 static void put_mountpoint(struct mountpoint *mp)
701 {
702 if (!--mp->m_count) {
703 struct dentry *dentry = mp->m_dentry;
704 spin_lock(&dentry->d_lock);
705 dentry->d_flags &= ~DCACHE_MOUNTED;
706 spin_unlock(&dentry->d_lock);
707 hlist_del(&mp->m_hash);
708 kfree(mp);
709 }
710 }
711
712 static inline int check_mnt(struct mount *mnt)
713 {
714 return mnt->mnt_ns == current->nsproxy->mnt_ns;
715 }
716
717 /*
718 * vfsmount lock must be held for write
719 */
720 static void touch_mnt_namespace(struct mnt_namespace *ns)
721 {
722 if (ns) {
723 ns->event = ++event;
724 wake_up_interruptible(&ns->poll);
725 }
726 }
727
728 /*
729 * vfsmount lock must be held for write
730 */
731 static void __touch_mnt_namespace(struct mnt_namespace *ns)
732 {
733 if (ns && ns->event != event) {
734 ns->event = event;
735 wake_up_interruptible(&ns->poll);
736 }
737 }
738
739 /*
740 * vfsmount lock must be held for write
741 */
742 static void detach_mnt(struct mount *mnt, struct path *old_path)
743 {
744 old_path->dentry = mnt->mnt_mountpoint;
745 old_path->mnt = &mnt->mnt_parent->mnt;
746 mnt->mnt_parent = mnt;
747 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
748 list_del_init(&mnt->mnt_child);
749 hlist_del_init_rcu(&mnt->mnt_hash);
750 put_mountpoint(mnt->mnt_mp);
751 mnt->mnt_mp = NULL;
752 }
753
754 /*
755 * vfsmount lock must be held for write
756 */
757 void mnt_set_mountpoint(struct mount *mnt,
758 struct mountpoint *mp,
759 struct mount *child_mnt)
760 {
761 mp->m_count++;
762 mnt_add_count(mnt, 1); /* essentially, that's mntget */
763 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
764 child_mnt->mnt_parent = mnt;
765 child_mnt->mnt_mp = mp;
766 }
767
768 /*
769 * vfsmount lock must be held for write
770 */
771 static void attach_mnt(struct mount *mnt,
772 struct mount *parent,
773 struct mountpoint *mp)
774 {
775 mnt_set_mountpoint(parent, mp, mnt);
776 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
777 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
778 }
779
780 /*
781 * vfsmount lock must be held for write
782 */
783 static void commit_tree(struct mount *mnt, struct mount *shadows)
784 {
785 struct mount *parent = mnt->mnt_parent;
786 struct mount *m;
787 LIST_HEAD(head);
788 struct mnt_namespace *n = parent->mnt_ns;
789
790 BUG_ON(parent == mnt);
791
792 list_add_tail(&head, &mnt->mnt_list);
793 list_for_each_entry(m, &head, mnt_list)
794 m->mnt_ns = n;
795
796 list_splice(&head, n->list.prev);
797
798 if (shadows)
799 hlist_add_after_rcu(&shadows->mnt_hash, &mnt->mnt_hash);
800 else
801 hlist_add_head_rcu(&mnt->mnt_hash,
802 m_hash(&parent->mnt, mnt->mnt_mountpoint));
803 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
804 touch_mnt_namespace(n);
805 }
806
807 static struct mount *next_mnt(struct mount *p, struct mount *root)
808 {
809 struct list_head *next = p->mnt_mounts.next;
810 if (next == &p->mnt_mounts) {
811 while (1) {
812 if (p == root)
813 return NULL;
814 next = p->mnt_child.next;
815 if (next != &p->mnt_parent->mnt_mounts)
816 break;
817 p = p->mnt_parent;
818 }
819 }
820 return list_entry(next, struct mount, mnt_child);
821 }
822
823 static struct mount *skip_mnt_tree(struct mount *p)
824 {
825 struct list_head *prev = p->mnt_mounts.prev;
826 while (prev != &p->mnt_mounts) {
827 p = list_entry(prev, struct mount, mnt_child);
828 prev = p->mnt_mounts.prev;
829 }
830 return p;
831 }
832
833 struct vfsmount *
834 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
835 {
836 struct mount *mnt;
837 struct dentry *root;
838
839 if (!type)
840 return ERR_PTR(-ENODEV);
841
842 mnt = alloc_vfsmnt(name);
843 if (!mnt)
844 return ERR_PTR(-ENOMEM);
845
846 if (flags & MS_KERNMOUNT)
847 mnt->mnt.mnt_flags = MNT_INTERNAL;
848
849 root = mount_fs(type, flags, name, data);
850 if (IS_ERR(root)) {
851 free_vfsmnt(mnt);
852 return ERR_CAST(root);
853 }
854
855 mnt->mnt.mnt_root = root;
856 mnt->mnt.mnt_sb = root->d_sb;
857 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
858 mnt->mnt_parent = mnt;
859 lock_mount_hash();
860 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
861 unlock_mount_hash();
862 return &mnt->mnt;
863 }
864 EXPORT_SYMBOL_GPL(vfs_kern_mount);
865
866 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
867 int flag)
868 {
869 struct super_block *sb = old->mnt.mnt_sb;
870 struct mount *mnt;
871 int err;
872
873 mnt = alloc_vfsmnt(old->mnt_devname);
874 if (!mnt)
875 return ERR_PTR(-ENOMEM);
876
877 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
878 mnt->mnt_group_id = 0; /* not a peer of original */
879 else
880 mnt->mnt_group_id = old->mnt_group_id;
881
882 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
883 err = mnt_alloc_group_id(mnt);
884 if (err)
885 goto out_free;
886 }
887
888 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
889 /* Don't allow unprivileged users to change mount flags */
890 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
891 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
892
893 /* Don't allow unprivileged users to reveal what is under a mount */
894 if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
895 mnt->mnt.mnt_flags |= MNT_LOCKED;
896
897 atomic_inc(&sb->s_active);
898 mnt->mnt.mnt_sb = sb;
899 mnt->mnt.mnt_root = dget(root);
900 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
901 mnt->mnt_parent = mnt;
902 lock_mount_hash();
903 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
904 unlock_mount_hash();
905
906 if ((flag & CL_SLAVE) ||
907 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
908 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
909 mnt->mnt_master = old;
910 CLEAR_MNT_SHARED(mnt);
911 } else if (!(flag & CL_PRIVATE)) {
912 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
913 list_add(&mnt->mnt_share, &old->mnt_share);
914 if (IS_MNT_SLAVE(old))
915 list_add(&mnt->mnt_slave, &old->mnt_slave);
916 mnt->mnt_master = old->mnt_master;
917 }
918 if (flag & CL_MAKE_SHARED)
919 set_mnt_shared(mnt);
920
921 /* stick the duplicate mount on the same expiry list
922 * as the original if that was on one */
923 if (flag & CL_EXPIRE) {
924 if (!list_empty(&old->mnt_expire))
925 list_add(&mnt->mnt_expire, &old->mnt_expire);
926 }
927
928 return mnt;
929
930 out_free:
931 free_vfsmnt(mnt);
932 return ERR_PTR(err);
933 }
934
935 static void delayed_free(struct rcu_head *head)
936 {
937 struct mount *mnt = container_of(head, struct mount, mnt_rcu);
938 kfree(mnt->mnt_devname);
939 #ifdef CONFIG_SMP
940 free_percpu(mnt->mnt_pcp);
941 #endif
942 kmem_cache_free(mnt_cache, mnt);
943 }
944
945 static void mntput_no_expire(struct mount *mnt)
946 {
947 put_again:
948 rcu_read_lock();
949 mnt_add_count(mnt, -1);
950 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
951 rcu_read_unlock();
952 return;
953 }
954 lock_mount_hash();
955 if (mnt_get_count(mnt)) {
956 rcu_read_unlock();
957 unlock_mount_hash();
958 return;
959 }
960 if (unlikely(mnt->mnt_pinned)) {
961 mnt_add_count(mnt, mnt->mnt_pinned + 1);
962 mnt->mnt_pinned = 0;
963 rcu_read_unlock();
964 unlock_mount_hash();
965 acct_auto_close_mnt(&mnt->mnt);
966 goto put_again;
967 }
968 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
969 rcu_read_unlock();
970 unlock_mount_hash();
971 return;
972 }
973 mnt->mnt.mnt_flags |= MNT_DOOMED;
974 rcu_read_unlock();
975
976 list_del(&mnt->mnt_instance);
977 unlock_mount_hash();
978
979 /*
980 * This probably indicates that somebody messed
981 * up a mnt_want/drop_write() pair. If this
982 * happens, the filesystem was probably unable
983 * to make r/w->r/o transitions.
984 */
985 /*
986 * The locking used to deal with mnt_count decrement provides barriers,
987 * so mnt_get_writers() below is safe.
988 */
989 WARN_ON(mnt_get_writers(mnt));
990 fsnotify_vfsmount_delete(&mnt->mnt);
991 dput(mnt->mnt.mnt_root);
992 deactivate_super(mnt->mnt.mnt_sb);
993 mnt_free_id(mnt);
994 call_rcu(&mnt->mnt_rcu, delayed_free);
995 }
996
997 void mntput(struct vfsmount *mnt)
998 {
999 if (mnt) {
1000 struct mount *m = real_mount(mnt);
1001 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1002 if (unlikely(m->mnt_expiry_mark))
1003 m->mnt_expiry_mark = 0;
1004 mntput_no_expire(m);
1005 }
1006 }
1007 EXPORT_SYMBOL(mntput);
1008
1009 struct vfsmount *mntget(struct vfsmount *mnt)
1010 {
1011 if (mnt)
1012 mnt_add_count(real_mount(mnt), 1);
1013 return mnt;
1014 }
1015 EXPORT_SYMBOL(mntget);
1016
1017 void mnt_pin(struct vfsmount *mnt)
1018 {
1019 lock_mount_hash();
1020 real_mount(mnt)->mnt_pinned++;
1021 unlock_mount_hash();
1022 }
1023 EXPORT_SYMBOL(mnt_pin);
1024
1025 void mnt_unpin(struct vfsmount *m)
1026 {
1027 struct mount *mnt = real_mount(m);
1028 lock_mount_hash();
1029 if (mnt->mnt_pinned) {
1030 mnt_add_count(mnt, 1);
1031 mnt->mnt_pinned--;
1032 }
1033 unlock_mount_hash();
1034 }
1035 EXPORT_SYMBOL(mnt_unpin);
1036
1037 static inline void mangle(struct seq_file *m, const char *s)
1038 {
1039 seq_escape(m, s, " \t\n\\");
1040 }
1041
1042 /*
1043 * Simple .show_options callback for filesystems which don't want to
1044 * implement more complex mount option showing.
1045 *
1046 * See also save_mount_options().
1047 */
1048 int generic_show_options(struct seq_file *m, struct dentry *root)
1049 {
1050 const char *options;
1051
1052 rcu_read_lock();
1053 options = rcu_dereference(root->d_sb->s_options);
1054
1055 if (options != NULL && options[0]) {
1056 seq_putc(m, ',');
1057 mangle(m, options);
1058 }
1059 rcu_read_unlock();
1060
1061 return 0;
1062 }
1063 EXPORT_SYMBOL(generic_show_options);
1064
1065 /*
1066 * If filesystem uses generic_show_options(), this function should be
1067 * called from the fill_super() callback.
1068 *
1069 * The .remount_fs callback usually needs to be handled in a special
1070 * way, to make sure, that previous options are not overwritten if the
1071 * remount fails.
1072 *
1073 * Also note, that if the filesystem's .remount_fs function doesn't
1074 * reset all options to their default value, but changes only newly
1075 * given options, then the displayed options will not reflect reality
1076 * any more.
1077 */
1078 void save_mount_options(struct super_block *sb, char *options)
1079 {
1080 BUG_ON(sb->s_options);
1081 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1082 }
1083 EXPORT_SYMBOL(save_mount_options);
1084
1085 void replace_mount_options(struct super_block *sb, char *options)
1086 {
1087 char *old = sb->s_options;
1088 rcu_assign_pointer(sb->s_options, options);
1089 if (old) {
1090 synchronize_rcu();
1091 kfree(old);
1092 }
1093 }
1094 EXPORT_SYMBOL(replace_mount_options);
1095
1096 #ifdef CONFIG_PROC_FS
1097 /* iterator; we want it to have access to namespace_sem, thus here... */
1098 static void *m_start(struct seq_file *m, loff_t *pos)
1099 {
1100 struct proc_mounts *p = proc_mounts(m);
1101
1102 down_read(&namespace_sem);
1103 return seq_list_start(&p->ns->list, *pos);
1104 }
1105
1106 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1107 {
1108 struct proc_mounts *p = proc_mounts(m);
1109
1110 return seq_list_next(v, &p->ns->list, pos);
1111 }
1112
1113 static void m_stop(struct seq_file *m, void *v)
1114 {
1115 up_read(&namespace_sem);
1116 }
1117
1118 static int m_show(struct seq_file *m, void *v)
1119 {
1120 struct proc_mounts *p = proc_mounts(m);
1121 struct mount *r = list_entry(v, struct mount, mnt_list);
1122 return p->show(m, &r->mnt);
1123 }
1124
1125 const struct seq_operations mounts_op = {
1126 .start = m_start,
1127 .next = m_next,
1128 .stop = m_stop,
1129 .show = m_show,
1130 };
1131 #endif /* CONFIG_PROC_FS */
1132
1133 /**
1134 * may_umount_tree - check if a mount tree is busy
1135 * @mnt: root of mount tree
1136 *
1137 * This is called to check if a tree of mounts has any
1138 * open files, pwds, chroots or sub mounts that are
1139 * busy.
1140 */
1141 int may_umount_tree(struct vfsmount *m)
1142 {
1143 struct mount *mnt = real_mount(m);
1144 int actual_refs = 0;
1145 int minimum_refs = 0;
1146 struct mount *p;
1147 BUG_ON(!m);
1148
1149 /* write lock needed for mnt_get_count */
1150 lock_mount_hash();
1151 for (p = mnt; p; p = next_mnt(p, mnt)) {
1152 actual_refs += mnt_get_count(p);
1153 minimum_refs += 2;
1154 }
1155 unlock_mount_hash();
1156
1157 if (actual_refs > minimum_refs)
1158 return 0;
1159
1160 return 1;
1161 }
1162
1163 EXPORT_SYMBOL(may_umount_tree);
1164
1165 /**
1166 * may_umount - check if a mount point is busy
1167 * @mnt: root of mount
1168 *
1169 * This is called to check if a mount point has any
1170 * open files, pwds, chroots or sub mounts. If the
1171 * mount has sub mounts this will return busy
1172 * regardless of whether the sub mounts are busy.
1173 *
1174 * Doesn't take quota and stuff into account. IOW, in some cases it will
1175 * give false negatives. The main reason why it's here is that we need
1176 * a non-destructive way to look for easily umountable filesystems.
1177 */
1178 int may_umount(struct vfsmount *mnt)
1179 {
1180 int ret = 1;
1181 down_read(&namespace_sem);
1182 lock_mount_hash();
1183 if (propagate_mount_busy(real_mount(mnt), 2))
1184 ret = 0;
1185 unlock_mount_hash();
1186 up_read(&namespace_sem);
1187 return ret;
1188 }
1189
1190 EXPORT_SYMBOL(may_umount);
1191
1192 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1193
1194 static void namespace_unlock(void)
1195 {
1196 struct mount *mnt;
1197 struct hlist_head head = unmounted;
1198
1199 if (likely(hlist_empty(&head))) {
1200 up_write(&namespace_sem);
1201 return;
1202 }
1203
1204 head.first->pprev = &head.first;
1205 INIT_HLIST_HEAD(&unmounted);
1206
1207 up_write(&namespace_sem);
1208
1209 synchronize_rcu();
1210
1211 while (!hlist_empty(&head)) {
1212 mnt = hlist_entry(head.first, struct mount, mnt_hash);
1213 hlist_del_init(&mnt->mnt_hash);
1214 if (mnt->mnt_ex_mountpoint.mnt)
1215 path_put(&mnt->mnt_ex_mountpoint);
1216 mntput(&mnt->mnt);
1217 }
1218 }
1219
1220 static inline void namespace_lock(void)
1221 {
1222 down_write(&namespace_sem);
1223 }
1224
1225 /*
1226 * mount_lock must be held
1227 * namespace_sem must be held for write
1228 * how = 0 => just this tree, don't propagate
1229 * how = 1 => propagate; we know that nobody else has reference to any victims
1230 * how = 2 => lazy umount
1231 */
1232 void umount_tree(struct mount *mnt, int how)
1233 {
1234 HLIST_HEAD(tmp_list);
1235 struct mount *p;
1236 struct mount *last = NULL;
1237
1238 for (p = mnt; p; p = next_mnt(p, mnt)) {
1239 hlist_del_init_rcu(&p->mnt_hash);
1240 hlist_add_head(&p->mnt_hash, &tmp_list);
1241 }
1242
1243 if (how)
1244 propagate_umount(&tmp_list);
1245
1246 hlist_for_each_entry(p, &tmp_list, mnt_hash) {
1247 list_del_init(&p->mnt_expire);
1248 list_del_init(&p->mnt_list);
1249 __touch_mnt_namespace(p->mnt_ns);
1250 p->mnt_ns = NULL;
1251 if (how < 2)
1252 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1253 list_del_init(&p->mnt_child);
1254 if (mnt_has_parent(p)) {
1255 put_mountpoint(p->mnt_mp);
1256 /* move the reference to mountpoint into ->mnt_ex_mountpoint */
1257 p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
1258 p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
1259 p->mnt_mountpoint = p->mnt.mnt_root;
1260 p->mnt_parent = p;
1261 p->mnt_mp = NULL;
1262 }
1263 change_mnt_propagation(p, MS_PRIVATE);
1264 last = p;
1265 }
1266 if (last) {
1267 last->mnt_hash.next = unmounted.first;
1268 unmounted.first = tmp_list.first;
1269 unmounted.first->pprev = &unmounted.first;
1270 }
1271 }
1272
1273 static void shrink_submounts(struct mount *mnt);
1274
1275 static int do_umount(struct mount *mnt, int flags)
1276 {
1277 struct super_block *sb = mnt->mnt.mnt_sb;
1278 int retval;
1279
1280 retval = security_sb_umount(&mnt->mnt, flags);
1281 if (retval)
1282 return retval;
1283
1284 /*
1285 * Allow userspace to request a mountpoint be expired rather than
1286 * unmounting unconditionally. Unmount only happens if:
1287 * (1) the mark is already set (the mark is cleared by mntput())
1288 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1289 */
1290 if (flags & MNT_EXPIRE) {
1291 if (&mnt->mnt == current->fs->root.mnt ||
1292 flags & (MNT_FORCE | MNT_DETACH))
1293 return -EINVAL;
1294
1295 /*
1296 * probably don't strictly need the lock here if we examined
1297 * all race cases, but it's a slowpath.
1298 */
1299 lock_mount_hash();
1300 if (mnt_get_count(mnt) != 2) {
1301 unlock_mount_hash();
1302 return -EBUSY;
1303 }
1304 unlock_mount_hash();
1305
1306 if (!xchg(&mnt->mnt_expiry_mark, 1))
1307 return -EAGAIN;
1308 }
1309
1310 /*
1311 * If we may have to abort operations to get out of this
1312 * mount, and they will themselves hold resources we must
1313 * allow the fs to do things. In the Unix tradition of
1314 * 'Gee thats tricky lets do it in userspace' the umount_begin
1315 * might fail to complete on the first run through as other tasks
1316 * must return, and the like. Thats for the mount program to worry
1317 * about for the moment.
1318 */
1319
1320 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1321 sb->s_op->umount_begin(sb);
1322 }
1323
1324 /*
1325 * No sense to grab the lock for this test, but test itself looks
1326 * somewhat bogus. Suggestions for better replacement?
1327 * Ho-hum... In principle, we might treat that as umount + switch
1328 * to rootfs. GC would eventually take care of the old vfsmount.
1329 * Actually it makes sense, especially if rootfs would contain a
1330 * /reboot - static binary that would close all descriptors and
1331 * call reboot(9). Then init(8) could umount root and exec /reboot.
1332 */
1333 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1334 /*
1335 * Special case for "unmounting" root ...
1336 * we just try to remount it readonly.
1337 */
1338 down_write(&sb->s_umount);
1339 if (!(sb->s_flags & MS_RDONLY))
1340 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1341 up_write(&sb->s_umount);
1342 return retval;
1343 }
1344
1345 namespace_lock();
1346 lock_mount_hash();
1347 event++;
1348
1349 if (flags & MNT_DETACH) {
1350 if (!list_empty(&mnt->mnt_list))
1351 umount_tree(mnt, 2);
1352 retval = 0;
1353 } else {
1354 shrink_submounts(mnt);
1355 retval = -EBUSY;
1356 if (!propagate_mount_busy(mnt, 2)) {
1357 if (!list_empty(&mnt->mnt_list))
1358 umount_tree(mnt, 1);
1359 retval = 0;
1360 }
1361 }
1362 unlock_mount_hash();
1363 namespace_unlock();
1364 return retval;
1365 }
1366
1367 /*
1368 * Is the caller allowed to modify his namespace?
1369 */
1370 static inline bool may_mount(void)
1371 {
1372 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1373 }
1374
1375 /*
1376 * Now umount can handle mount points as well as block devices.
1377 * This is important for filesystems which use unnamed block devices.
1378 *
1379 * We now support a flag for forced unmount like the other 'big iron'
1380 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1381 */
1382
1383 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1384 {
1385 struct path path;
1386 struct mount *mnt;
1387 int retval;
1388 int lookup_flags = 0;
1389
1390 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1391 return -EINVAL;
1392
1393 if (!may_mount())
1394 return -EPERM;
1395
1396 if (!(flags & UMOUNT_NOFOLLOW))
1397 lookup_flags |= LOOKUP_FOLLOW;
1398
1399 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1400 if (retval)
1401 goto out;
1402 mnt = real_mount(path.mnt);
1403 retval = -EINVAL;
1404 if (path.dentry != path.mnt->mnt_root)
1405 goto dput_and_out;
1406 if (!check_mnt(mnt))
1407 goto dput_and_out;
1408 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1409 goto dput_and_out;
1410
1411 retval = do_umount(mnt, flags);
1412 dput_and_out:
1413 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1414 dput(path.dentry);
1415 mntput_no_expire(mnt);
1416 out:
1417 return retval;
1418 }
1419
1420 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1421
1422 /*
1423 * The 2.0 compatible umount. No flags.
1424 */
1425 SYSCALL_DEFINE1(oldumount, char __user *, name)
1426 {
1427 return sys_umount(name, 0);
1428 }
1429
1430 #endif
1431
1432 static bool is_mnt_ns_file(struct dentry *dentry)
1433 {
1434 /* Is this a proxy for a mount namespace? */
1435 struct inode *inode = dentry->d_inode;
1436 struct proc_ns *ei;
1437
1438 if (!proc_ns_inode(inode))
1439 return false;
1440
1441 ei = get_proc_ns(inode);
1442 if (ei->ns_ops != &mntns_operations)
1443 return false;
1444
1445 return true;
1446 }
1447
1448 static bool mnt_ns_loop(struct dentry *dentry)
1449 {
1450 /* Could bind mounting the mount namespace inode cause a
1451 * mount namespace loop?
1452 */
1453 struct mnt_namespace *mnt_ns;
1454 if (!is_mnt_ns_file(dentry))
1455 return false;
1456
1457 mnt_ns = get_proc_ns(dentry->d_inode)->ns;
1458 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1459 }
1460
1461 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1462 int flag)
1463 {
1464 struct mount *res, *p, *q, *r, *parent;
1465
1466 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1467 return ERR_PTR(-EINVAL);
1468
1469 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1470 return ERR_PTR(-EINVAL);
1471
1472 res = q = clone_mnt(mnt, dentry, flag);
1473 if (IS_ERR(q))
1474 return q;
1475
1476 q->mnt.mnt_flags &= ~MNT_LOCKED;
1477 q->mnt_mountpoint = mnt->mnt_mountpoint;
1478
1479 p = mnt;
1480 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1481 struct mount *s;
1482 if (!is_subdir(r->mnt_mountpoint, dentry))
1483 continue;
1484
1485 for (s = r; s; s = next_mnt(s, r)) {
1486 if (!(flag & CL_COPY_UNBINDABLE) &&
1487 IS_MNT_UNBINDABLE(s)) {
1488 s = skip_mnt_tree(s);
1489 continue;
1490 }
1491 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1492 is_mnt_ns_file(s->mnt.mnt_root)) {
1493 s = skip_mnt_tree(s);
1494 continue;
1495 }
1496 while (p != s->mnt_parent) {
1497 p = p->mnt_parent;
1498 q = q->mnt_parent;
1499 }
1500 p = s;
1501 parent = q;
1502 q = clone_mnt(p, p->mnt.mnt_root, flag);
1503 if (IS_ERR(q))
1504 goto out;
1505 lock_mount_hash();
1506 list_add_tail(&q->mnt_list, &res->mnt_list);
1507 attach_mnt(q, parent, p->mnt_mp);
1508 unlock_mount_hash();
1509 }
1510 }
1511 return res;
1512 out:
1513 if (res) {
1514 lock_mount_hash();
1515 umount_tree(res, 0);
1516 unlock_mount_hash();
1517 }
1518 return q;
1519 }
1520
1521 /* Caller should check returned pointer for errors */
1522
1523 struct vfsmount *collect_mounts(struct path *path)
1524 {
1525 struct mount *tree;
1526 namespace_lock();
1527 tree = copy_tree(real_mount(path->mnt), path->dentry,
1528 CL_COPY_ALL | CL_PRIVATE);
1529 namespace_unlock();
1530 if (IS_ERR(tree))
1531 return ERR_CAST(tree);
1532 return &tree->mnt;
1533 }
1534
1535 void drop_collected_mounts(struct vfsmount *mnt)
1536 {
1537 namespace_lock();
1538 lock_mount_hash();
1539 umount_tree(real_mount(mnt), 0);
1540 unlock_mount_hash();
1541 namespace_unlock();
1542 }
1543
1544 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1545 struct vfsmount *root)
1546 {
1547 struct mount *mnt;
1548 int res = f(root, arg);
1549 if (res)
1550 return res;
1551 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1552 res = f(&mnt->mnt, arg);
1553 if (res)
1554 return res;
1555 }
1556 return 0;
1557 }
1558
1559 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1560 {
1561 struct mount *p;
1562
1563 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1564 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1565 mnt_release_group_id(p);
1566 }
1567 }
1568
1569 static int invent_group_ids(struct mount *mnt, bool recurse)
1570 {
1571 struct mount *p;
1572
1573 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1574 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1575 int err = mnt_alloc_group_id(p);
1576 if (err) {
1577 cleanup_group_ids(mnt, p);
1578 return err;
1579 }
1580 }
1581 }
1582
1583 return 0;
1584 }
1585
1586 /*
1587 * @source_mnt : mount tree to be attached
1588 * @nd : place the mount tree @source_mnt is attached
1589 * @parent_nd : if non-null, detach the source_mnt from its parent and
1590 * store the parent mount and mountpoint dentry.
1591 * (done when source_mnt is moved)
1592 *
1593 * NOTE: in the table below explains the semantics when a source mount
1594 * of a given type is attached to a destination mount of a given type.
1595 * ---------------------------------------------------------------------------
1596 * | BIND MOUNT OPERATION |
1597 * |**************************************************************************
1598 * | source-->| shared | private | slave | unbindable |
1599 * | dest | | | | |
1600 * | | | | | | |
1601 * | v | | | | |
1602 * |**************************************************************************
1603 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1604 * | | | | | |
1605 * |non-shared| shared (+) | private | slave (*) | invalid |
1606 * ***************************************************************************
1607 * A bind operation clones the source mount and mounts the clone on the
1608 * destination mount.
1609 *
1610 * (++) the cloned mount is propagated to all the mounts in the propagation
1611 * tree of the destination mount and the cloned mount is added to
1612 * the peer group of the source mount.
1613 * (+) the cloned mount is created under the destination mount and is marked
1614 * as shared. The cloned mount is added to the peer group of the source
1615 * mount.
1616 * (+++) the mount is propagated to all the mounts in the propagation tree
1617 * of the destination mount and the cloned mount is made slave
1618 * of the same master as that of the source mount. The cloned mount
1619 * is marked as 'shared and slave'.
1620 * (*) the cloned mount is made a slave of the same master as that of the
1621 * source mount.
1622 *
1623 * ---------------------------------------------------------------------------
1624 * | MOVE MOUNT OPERATION |
1625 * |**************************************************************************
1626 * | source-->| shared | private | slave | unbindable |
1627 * | dest | | | | |
1628 * | | | | | | |
1629 * | v | | | | |
1630 * |**************************************************************************
1631 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1632 * | | | | | |
1633 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1634 * ***************************************************************************
1635 *
1636 * (+) the mount is moved to the destination. And is then propagated to
1637 * all the mounts in the propagation tree of the destination mount.
1638 * (+*) the mount is moved to the destination.
1639 * (+++) the mount is moved to the destination and is then propagated to
1640 * all the mounts belonging to the destination mount's propagation tree.
1641 * the mount is marked as 'shared and slave'.
1642 * (*) the mount continues to be a slave at the new location.
1643 *
1644 * if the source mount is a tree, the operations explained above is
1645 * applied to each mount in the tree.
1646 * Must be called without spinlocks held, since this function can sleep
1647 * in allocations.
1648 */
1649 static int attach_recursive_mnt(struct mount *source_mnt,
1650 struct mount *dest_mnt,
1651 struct mountpoint *dest_mp,
1652 struct path *parent_path)
1653 {
1654 HLIST_HEAD(tree_list);
1655 struct mount *child, *p;
1656 struct hlist_node *n;
1657 int err;
1658
1659 if (IS_MNT_SHARED(dest_mnt)) {
1660 err = invent_group_ids(source_mnt, true);
1661 if (err)
1662 goto out;
1663 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1664 if (err)
1665 goto out_cleanup_ids;
1666 lock_mount_hash();
1667 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1668 set_mnt_shared(p);
1669 } else {
1670 lock_mount_hash();
1671 }
1672 if (parent_path) {
1673 detach_mnt(source_mnt, parent_path);
1674 attach_mnt(source_mnt, dest_mnt, dest_mp);
1675 touch_mnt_namespace(source_mnt->mnt_ns);
1676 } else {
1677 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1678 commit_tree(source_mnt, NULL);
1679 }
1680
1681 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1682 struct mount *q;
1683 hlist_del_init(&child->mnt_hash);
1684 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1685 child->mnt_mountpoint);
1686 commit_tree(child, q);
1687 }
1688 unlock_mount_hash();
1689
1690 return 0;
1691
1692 out_cleanup_ids:
1693 cleanup_group_ids(source_mnt, NULL);
1694 out:
1695 return err;
1696 }
1697
1698 static struct mountpoint *lock_mount(struct path *path)
1699 {
1700 struct vfsmount *mnt;
1701 struct dentry *dentry = path->dentry;
1702 retry:
1703 mutex_lock(&dentry->d_inode->i_mutex);
1704 if (unlikely(cant_mount(dentry))) {
1705 mutex_unlock(&dentry->d_inode->i_mutex);
1706 return ERR_PTR(-ENOENT);
1707 }
1708 namespace_lock();
1709 mnt = lookup_mnt(path);
1710 if (likely(!mnt)) {
1711 struct mountpoint *mp = new_mountpoint(dentry);
1712 if (IS_ERR(mp)) {
1713 namespace_unlock();
1714 mutex_unlock(&dentry->d_inode->i_mutex);
1715 return mp;
1716 }
1717 return mp;
1718 }
1719 namespace_unlock();
1720 mutex_unlock(&path->dentry->d_inode->i_mutex);
1721 path_put(path);
1722 path->mnt = mnt;
1723 dentry = path->dentry = dget(mnt->mnt_root);
1724 goto retry;
1725 }
1726
1727 static void unlock_mount(struct mountpoint *where)
1728 {
1729 struct dentry *dentry = where->m_dentry;
1730 put_mountpoint(where);
1731 namespace_unlock();
1732 mutex_unlock(&dentry->d_inode->i_mutex);
1733 }
1734
1735 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1736 {
1737 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1738 return -EINVAL;
1739
1740 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1741 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1742 return -ENOTDIR;
1743
1744 return attach_recursive_mnt(mnt, p, mp, NULL);
1745 }
1746
1747 /*
1748 * Sanity check the flags to change_mnt_propagation.
1749 */
1750
1751 static int flags_to_propagation_type(int flags)
1752 {
1753 int type = flags & ~(MS_REC | MS_SILENT);
1754
1755 /* Fail if any non-propagation flags are set */
1756 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1757 return 0;
1758 /* Only one propagation flag should be set */
1759 if (!is_power_of_2(type))
1760 return 0;
1761 return type;
1762 }
1763
1764 /*
1765 * recursively change the type of the mountpoint.
1766 */
1767 static int do_change_type(struct path *path, int flag)
1768 {
1769 struct mount *m;
1770 struct mount *mnt = real_mount(path->mnt);
1771 int recurse = flag & MS_REC;
1772 int type;
1773 int err = 0;
1774
1775 if (path->dentry != path->mnt->mnt_root)
1776 return -EINVAL;
1777
1778 type = flags_to_propagation_type(flag);
1779 if (!type)
1780 return -EINVAL;
1781
1782 namespace_lock();
1783 if (type == MS_SHARED) {
1784 err = invent_group_ids(mnt, recurse);
1785 if (err)
1786 goto out_unlock;
1787 }
1788
1789 lock_mount_hash();
1790 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1791 change_mnt_propagation(m, type);
1792 unlock_mount_hash();
1793
1794 out_unlock:
1795 namespace_unlock();
1796 return err;
1797 }
1798
1799 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1800 {
1801 struct mount *child;
1802 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1803 if (!is_subdir(child->mnt_mountpoint, dentry))
1804 continue;
1805
1806 if (child->mnt.mnt_flags & MNT_LOCKED)
1807 return true;
1808 }
1809 return false;
1810 }
1811
1812 /*
1813 * do loopback mount.
1814 */
1815 static int do_loopback(struct path *path, const char *old_name,
1816 int recurse)
1817 {
1818 struct path old_path;
1819 struct mount *mnt = NULL, *old, *parent;
1820 struct mountpoint *mp;
1821 int err;
1822 if (!old_name || !*old_name)
1823 return -EINVAL;
1824 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1825 if (err)
1826 return err;
1827
1828 err = -EINVAL;
1829 if (mnt_ns_loop(old_path.dentry))
1830 goto out;
1831
1832 mp = lock_mount(path);
1833 err = PTR_ERR(mp);
1834 if (IS_ERR(mp))
1835 goto out;
1836
1837 old = real_mount(old_path.mnt);
1838 parent = real_mount(path->mnt);
1839
1840 err = -EINVAL;
1841 if (IS_MNT_UNBINDABLE(old))
1842 goto out2;
1843
1844 if (!check_mnt(parent) || !check_mnt(old))
1845 goto out2;
1846
1847 if (!recurse && has_locked_children(old, old_path.dentry))
1848 goto out2;
1849
1850 if (recurse)
1851 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
1852 else
1853 mnt = clone_mnt(old, old_path.dentry, 0);
1854
1855 if (IS_ERR(mnt)) {
1856 err = PTR_ERR(mnt);
1857 goto out2;
1858 }
1859
1860 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
1861
1862 err = graft_tree(mnt, parent, mp);
1863 if (err) {
1864 lock_mount_hash();
1865 umount_tree(mnt, 0);
1866 unlock_mount_hash();
1867 }
1868 out2:
1869 unlock_mount(mp);
1870 out:
1871 path_put(&old_path);
1872 return err;
1873 }
1874
1875 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1876 {
1877 int error = 0;
1878 int readonly_request = 0;
1879
1880 if (ms_flags & MS_RDONLY)
1881 readonly_request = 1;
1882 if (readonly_request == __mnt_is_readonly(mnt))
1883 return 0;
1884
1885 if (mnt->mnt_flags & MNT_LOCK_READONLY)
1886 return -EPERM;
1887
1888 if (readonly_request)
1889 error = mnt_make_readonly(real_mount(mnt));
1890 else
1891 __mnt_unmake_readonly(real_mount(mnt));
1892 return error;
1893 }
1894
1895 /*
1896 * change filesystem flags. dir should be a physical root of filesystem.
1897 * If you've mounted a non-root directory somewhere and want to do remount
1898 * on it - tough luck.
1899 */
1900 static int do_remount(struct path *path, int flags, int mnt_flags,
1901 void *data)
1902 {
1903 int err;
1904 struct super_block *sb = path->mnt->mnt_sb;
1905 struct mount *mnt = real_mount(path->mnt);
1906
1907 if (!check_mnt(mnt))
1908 return -EINVAL;
1909
1910 if (path->dentry != path->mnt->mnt_root)
1911 return -EINVAL;
1912
1913 err = security_sb_remount(sb, data);
1914 if (err)
1915 return err;
1916
1917 down_write(&sb->s_umount);
1918 if (flags & MS_BIND)
1919 err = change_mount_flags(path->mnt, flags);
1920 else if (!capable(CAP_SYS_ADMIN))
1921 err = -EPERM;
1922 else
1923 err = do_remount_sb(sb, flags, data, 0);
1924 if (!err) {
1925 lock_mount_hash();
1926 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1927 mnt->mnt.mnt_flags = mnt_flags;
1928 touch_mnt_namespace(mnt->mnt_ns);
1929 unlock_mount_hash();
1930 }
1931 up_write(&sb->s_umount);
1932 return err;
1933 }
1934
1935 static inline int tree_contains_unbindable(struct mount *mnt)
1936 {
1937 struct mount *p;
1938 for (p = mnt; p; p = next_mnt(p, mnt)) {
1939 if (IS_MNT_UNBINDABLE(p))
1940 return 1;
1941 }
1942 return 0;
1943 }
1944
1945 static int do_move_mount(struct path *path, const char *old_name)
1946 {
1947 struct path old_path, parent_path;
1948 struct mount *p;
1949 struct mount *old;
1950 struct mountpoint *mp;
1951 int err;
1952 if (!old_name || !*old_name)
1953 return -EINVAL;
1954 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1955 if (err)
1956 return err;
1957
1958 mp = lock_mount(path);
1959 err = PTR_ERR(mp);
1960 if (IS_ERR(mp))
1961 goto out;
1962
1963 old = real_mount(old_path.mnt);
1964 p = real_mount(path->mnt);
1965
1966 err = -EINVAL;
1967 if (!check_mnt(p) || !check_mnt(old))
1968 goto out1;
1969
1970 if (old->mnt.mnt_flags & MNT_LOCKED)
1971 goto out1;
1972
1973 err = -EINVAL;
1974 if (old_path.dentry != old_path.mnt->mnt_root)
1975 goto out1;
1976
1977 if (!mnt_has_parent(old))
1978 goto out1;
1979
1980 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1981 S_ISDIR(old_path.dentry->d_inode->i_mode))
1982 goto out1;
1983 /*
1984 * Don't move a mount residing in a shared parent.
1985 */
1986 if (IS_MNT_SHARED(old->mnt_parent))
1987 goto out1;
1988 /*
1989 * Don't move a mount tree containing unbindable mounts to a destination
1990 * mount which is shared.
1991 */
1992 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1993 goto out1;
1994 err = -ELOOP;
1995 for (; mnt_has_parent(p); p = p->mnt_parent)
1996 if (p == old)
1997 goto out1;
1998
1999 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2000 if (err)
2001 goto out1;
2002
2003 /* if the mount is moved, it should no longer be expire
2004 * automatically */
2005 list_del_init(&old->mnt_expire);
2006 out1:
2007 unlock_mount(mp);
2008 out:
2009 if (!err)
2010 path_put(&parent_path);
2011 path_put(&old_path);
2012 return err;
2013 }
2014
2015 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2016 {
2017 int err;
2018 const char *subtype = strchr(fstype, '.');
2019 if (subtype) {
2020 subtype++;
2021 err = -EINVAL;
2022 if (!subtype[0])
2023 goto err;
2024 } else
2025 subtype = "";
2026
2027 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2028 err = -ENOMEM;
2029 if (!mnt->mnt_sb->s_subtype)
2030 goto err;
2031 return mnt;
2032
2033 err:
2034 mntput(mnt);
2035 return ERR_PTR(err);
2036 }
2037
2038 /*
2039 * add a mount into a namespace's mount tree
2040 */
2041 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2042 {
2043 struct mountpoint *mp;
2044 struct mount *parent;
2045 int err;
2046
2047 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL | MNT_DOOMED | MNT_SYNC_UMOUNT);
2048
2049 mp = lock_mount(path);
2050 if (IS_ERR(mp))
2051 return PTR_ERR(mp);
2052
2053 parent = real_mount(path->mnt);
2054 err = -EINVAL;
2055 if (unlikely(!check_mnt(parent))) {
2056 /* that's acceptable only for automounts done in private ns */
2057 if (!(mnt_flags & MNT_SHRINKABLE))
2058 goto unlock;
2059 /* ... and for those we'd better have mountpoint still alive */
2060 if (!parent->mnt_ns)
2061 goto unlock;
2062 }
2063
2064 /* Refuse the same filesystem on the same mount point */
2065 err = -EBUSY;
2066 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2067 path->mnt->mnt_root == path->dentry)
2068 goto unlock;
2069
2070 err = -EINVAL;
2071 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2072 goto unlock;
2073
2074 newmnt->mnt.mnt_flags = mnt_flags;
2075 err = graft_tree(newmnt, parent, mp);
2076
2077 unlock:
2078 unlock_mount(mp);
2079 return err;
2080 }
2081
2082 /*
2083 * create a new mount for userspace and request it to be added into the
2084 * namespace's tree
2085 */
2086 static int do_new_mount(struct path *path, const char *fstype, int flags,
2087 int mnt_flags, const char *name, void *data)
2088 {
2089 struct file_system_type *type;
2090 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2091 struct vfsmount *mnt;
2092 int err;
2093
2094 if (!fstype)
2095 return -EINVAL;
2096
2097 type = get_fs_type(fstype);
2098 if (!type)
2099 return -ENODEV;
2100
2101 if (user_ns != &init_user_ns) {
2102 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2103 put_filesystem(type);
2104 return -EPERM;
2105 }
2106 /* Only in special cases allow devices from mounts
2107 * created outside the initial user namespace.
2108 */
2109 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2110 flags |= MS_NODEV;
2111 mnt_flags |= MNT_NODEV;
2112 }
2113 }
2114
2115 mnt = vfs_kern_mount(type, flags, name, data);
2116 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2117 !mnt->mnt_sb->s_subtype)
2118 mnt = fs_set_subtype(mnt, fstype);
2119
2120 put_filesystem(type);
2121 if (IS_ERR(mnt))
2122 return PTR_ERR(mnt);
2123
2124 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2125 if (err)
2126 mntput(mnt);
2127 return err;
2128 }
2129
2130 int finish_automount(struct vfsmount *m, struct path *path)
2131 {
2132 struct mount *mnt = real_mount(m);
2133 int err;
2134 /* The new mount record should have at least 2 refs to prevent it being
2135 * expired before we get a chance to add it
2136 */
2137 BUG_ON(mnt_get_count(mnt) < 2);
2138
2139 if (m->mnt_sb == path->mnt->mnt_sb &&
2140 m->mnt_root == path->dentry) {
2141 err = -ELOOP;
2142 goto fail;
2143 }
2144
2145 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2146 if (!err)
2147 return 0;
2148 fail:
2149 /* remove m from any expiration list it may be on */
2150 if (!list_empty(&mnt->mnt_expire)) {
2151 namespace_lock();
2152 list_del_init(&mnt->mnt_expire);
2153 namespace_unlock();
2154 }
2155 mntput(m);
2156 mntput(m);
2157 return err;
2158 }
2159
2160 /**
2161 * mnt_set_expiry - Put a mount on an expiration list
2162 * @mnt: The mount to list.
2163 * @expiry_list: The list to add the mount to.
2164 */
2165 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2166 {
2167 namespace_lock();
2168
2169 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2170
2171 namespace_unlock();
2172 }
2173 EXPORT_SYMBOL(mnt_set_expiry);
2174
2175 /*
2176 * process a list of expirable mountpoints with the intent of discarding any
2177 * mountpoints that aren't in use and haven't been touched since last we came
2178 * here
2179 */
2180 void mark_mounts_for_expiry(struct list_head *mounts)
2181 {
2182 struct mount *mnt, *next;
2183 LIST_HEAD(graveyard);
2184
2185 if (list_empty(mounts))
2186 return;
2187
2188 namespace_lock();
2189 lock_mount_hash();
2190
2191 /* extract from the expiration list every vfsmount that matches the
2192 * following criteria:
2193 * - only referenced by its parent vfsmount
2194 * - still marked for expiry (marked on the last call here; marks are
2195 * cleared by mntput())
2196 */
2197 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2198 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2199 propagate_mount_busy(mnt, 1))
2200 continue;
2201 list_move(&mnt->mnt_expire, &graveyard);
2202 }
2203 while (!list_empty(&graveyard)) {
2204 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2205 touch_mnt_namespace(mnt->mnt_ns);
2206 umount_tree(mnt, 1);
2207 }
2208 unlock_mount_hash();
2209 namespace_unlock();
2210 }
2211
2212 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2213
2214 /*
2215 * Ripoff of 'select_parent()'
2216 *
2217 * search the list of submounts for a given mountpoint, and move any
2218 * shrinkable submounts to the 'graveyard' list.
2219 */
2220 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2221 {
2222 struct mount *this_parent = parent;
2223 struct list_head *next;
2224 int found = 0;
2225
2226 repeat:
2227 next = this_parent->mnt_mounts.next;
2228 resume:
2229 while (next != &this_parent->mnt_mounts) {
2230 struct list_head *tmp = next;
2231 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2232
2233 next = tmp->next;
2234 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2235 continue;
2236 /*
2237 * Descend a level if the d_mounts list is non-empty.
2238 */
2239 if (!list_empty(&mnt->mnt_mounts)) {
2240 this_parent = mnt;
2241 goto repeat;
2242 }
2243
2244 if (!propagate_mount_busy(mnt, 1)) {
2245 list_move_tail(&mnt->mnt_expire, graveyard);
2246 found++;
2247 }
2248 }
2249 /*
2250 * All done at this level ... ascend and resume the search
2251 */
2252 if (this_parent != parent) {
2253 next = this_parent->mnt_child.next;
2254 this_parent = this_parent->mnt_parent;
2255 goto resume;
2256 }
2257 return found;
2258 }
2259
2260 /*
2261 * process a list of expirable mountpoints with the intent of discarding any
2262 * submounts of a specific parent mountpoint
2263 *
2264 * mount_lock must be held for write
2265 */
2266 static void shrink_submounts(struct mount *mnt)
2267 {
2268 LIST_HEAD(graveyard);
2269 struct mount *m;
2270
2271 /* extract submounts of 'mountpoint' from the expiration list */
2272 while (select_submounts(mnt, &graveyard)) {
2273 while (!list_empty(&graveyard)) {
2274 m = list_first_entry(&graveyard, struct mount,
2275 mnt_expire);
2276 touch_mnt_namespace(m->mnt_ns);
2277 umount_tree(m, 1);
2278 }
2279 }
2280 }
2281
2282 /*
2283 * Some copy_from_user() implementations do not return the exact number of
2284 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2285 * Note that this function differs from copy_from_user() in that it will oops
2286 * on bad values of `to', rather than returning a short copy.
2287 */
2288 static long exact_copy_from_user(void *to, const void __user * from,
2289 unsigned long n)
2290 {
2291 char *t = to;
2292 const char __user *f = from;
2293 char c;
2294
2295 if (!access_ok(VERIFY_READ, from, n))
2296 return n;
2297
2298 while (n) {
2299 if (__get_user(c, f)) {
2300 memset(t, 0, n);
2301 break;
2302 }
2303 *t++ = c;
2304 f++;
2305 n--;
2306 }
2307 return n;
2308 }
2309
2310 int copy_mount_options(const void __user * data, unsigned long *where)
2311 {
2312 int i;
2313 unsigned long page;
2314 unsigned long size;
2315
2316 *where = 0;
2317 if (!data)
2318 return 0;
2319
2320 if (!(page = __get_free_page(GFP_KERNEL)))
2321 return -ENOMEM;
2322
2323 /* We only care that *some* data at the address the user
2324 * gave us is valid. Just in case, we'll zero
2325 * the remainder of the page.
2326 */
2327 /* copy_from_user cannot cross TASK_SIZE ! */
2328 size = TASK_SIZE - (unsigned long)data;
2329 if (size > PAGE_SIZE)
2330 size = PAGE_SIZE;
2331
2332 i = size - exact_copy_from_user((void *)page, data, size);
2333 if (!i) {
2334 free_page(page);
2335 return -EFAULT;
2336 }
2337 if (i != PAGE_SIZE)
2338 memset((char *)page + i, 0, PAGE_SIZE - i);
2339 *where = page;
2340 return 0;
2341 }
2342
2343 int copy_mount_string(const void __user *data, char **where)
2344 {
2345 char *tmp;
2346
2347 if (!data) {
2348 *where = NULL;
2349 return 0;
2350 }
2351
2352 tmp = strndup_user(data, PAGE_SIZE);
2353 if (IS_ERR(tmp))
2354 return PTR_ERR(tmp);
2355
2356 *where = tmp;
2357 return 0;
2358 }
2359
2360 /*
2361 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2362 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2363 *
2364 * data is a (void *) that can point to any structure up to
2365 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2366 * information (or be NULL).
2367 *
2368 * Pre-0.97 versions of mount() didn't have a flags word.
2369 * When the flags word was introduced its top half was required
2370 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2371 * Therefore, if this magic number is present, it carries no information
2372 * and must be discarded.
2373 */
2374 long do_mount(const char *dev_name, const char *dir_name,
2375 const char *type_page, unsigned long flags, void *data_page)
2376 {
2377 struct path path;
2378 int retval = 0;
2379 int mnt_flags = 0;
2380
2381 /* Discard magic */
2382 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2383 flags &= ~MS_MGC_MSK;
2384
2385 /* Basic sanity checks */
2386
2387 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2388 return -EINVAL;
2389
2390 if (data_page)
2391 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2392
2393 /* ... and get the mountpoint */
2394 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2395 if (retval)
2396 return retval;
2397
2398 retval = security_sb_mount(dev_name, &path,
2399 type_page, flags, data_page);
2400 if (!retval && !may_mount())
2401 retval = -EPERM;
2402 if (retval)
2403 goto dput_out;
2404
2405 /* Default to relatime unless overriden */
2406 if (!(flags & MS_NOATIME))
2407 mnt_flags |= MNT_RELATIME;
2408
2409 /* Separate the per-mountpoint flags */
2410 if (flags & MS_NOSUID)
2411 mnt_flags |= MNT_NOSUID;
2412 if (flags & MS_NODEV)
2413 mnt_flags |= MNT_NODEV;
2414 if (flags & MS_NOEXEC)
2415 mnt_flags |= MNT_NOEXEC;
2416 if (flags & MS_NOATIME)
2417 mnt_flags |= MNT_NOATIME;
2418 if (flags & MS_NODIRATIME)
2419 mnt_flags |= MNT_NODIRATIME;
2420 if (flags & MS_STRICTATIME)
2421 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2422 if (flags & MS_RDONLY)
2423 mnt_flags |= MNT_READONLY;
2424
2425 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2426 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2427 MS_STRICTATIME);
2428
2429 if (flags & MS_REMOUNT)
2430 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2431 data_page);
2432 else if (flags & MS_BIND)
2433 retval = do_loopback(&path, dev_name, flags & MS_REC);
2434 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2435 retval = do_change_type(&path, flags);
2436 else if (flags & MS_MOVE)
2437 retval = do_move_mount(&path, dev_name);
2438 else
2439 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2440 dev_name, data_page);
2441 dput_out:
2442 path_put(&path);
2443 return retval;
2444 }
2445
2446 static void free_mnt_ns(struct mnt_namespace *ns)
2447 {
2448 proc_free_inum(ns->proc_inum);
2449 put_user_ns(ns->user_ns);
2450 kfree(ns);
2451 }
2452
2453 /*
2454 * Assign a sequence number so we can detect when we attempt to bind
2455 * mount a reference to an older mount namespace into the current
2456 * mount namespace, preventing reference counting loops. A 64bit
2457 * number incrementing at 10Ghz will take 12,427 years to wrap which
2458 * is effectively never, so we can ignore the possibility.
2459 */
2460 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2461
2462 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2463 {
2464 struct mnt_namespace *new_ns;
2465 int ret;
2466
2467 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2468 if (!new_ns)
2469 return ERR_PTR(-ENOMEM);
2470 ret = proc_alloc_inum(&new_ns->proc_inum);
2471 if (ret) {
2472 kfree(new_ns);
2473 return ERR_PTR(ret);
2474 }
2475 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2476 atomic_set(&new_ns->count, 1);
2477 new_ns->root = NULL;
2478 INIT_LIST_HEAD(&new_ns->list);
2479 init_waitqueue_head(&new_ns->poll);
2480 new_ns->event = 0;
2481 new_ns->user_ns = get_user_ns(user_ns);
2482 return new_ns;
2483 }
2484
2485 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2486 struct user_namespace *user_ns, struct fs_struct *new_fs)
2487 {
2488 struct mnt_namespace *new_ns;
2489 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2490 struct mount *p, *q;
2491 struct mount *old;
2492 struct mount *new;
2493 int copy_flags;
2494
2495 BUG_ON(!ns);
2496
2497 if (likely(!(flags & CLONE_NEWNS))) {
2498 get_mnt_ns(ns);
2499 return ns;
2500 }
2501
2502 old = ns->root;
2503
2504 new_ns = alloc_mnt_ns(user_ns);
2505 if (IS_ERR(new_ns))
2506 return new_ns;
2507
2508 namespace_lock();
2509 /* First pass: copy the tree topology */
2510 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2511 if (user_ns != ns->user_ns)
2512 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2513 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2514 if (IS_ERR(new)) {
2515 namespace_unlock();
2516 free_mnt_ns(new_ns);
2517 return ERR_CAST(new);
2518 }
2519 new_ns->root = new;
2520 list_add_tail(&new_ns->list, &new->mnt_list);
2521
2522 /*
2523 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2524 * as belonging to new namespace. We have already acquired a private
2525 * fs_struct, so tsk->fs->lock is not needed.
2526 */
2527 p = old;
2528 q = new;
2529 while (p) {
2530 q->mnt_ns = new_ns;
2531 if (new_fs) {
2532 if (&p->mnt == new_fs->root.mnt) {
2533 new_fs->root.mnt = mntget(&q->mnt);
2534 rootmnt = &p->mnt;
2535 }
2536 if (&p->mnt == new_fs->pwd.mnt) {
2537 new_fs->pwd.mnt = mntget(&q->mnt);
2538 pwdmnt = &p->mnt;
2539 }
2540 }
2541 p = next_mnt(p, old);
2542 q = next_mnt(q, new);
2543 if (!q)
2544 break;
2545 while (p->mnt.mnt_root != q->mnt.mnt_root)
2546 p = next_mnt(p, old);
2547 }
2548 namespace_unlock();
2549
2550 if (rootmnt)
2551 mntput(rootmnt);
2552 if (pwdmnt)
2553 mntput(pwdmnt);
2554
2555 return new_ns;
2556 }
2557
2558 /**
2559 * create_mnt_ns - creates a private namespace and adds a root filesystem
2560 * @mnt: pointer to the new root filesystem mountpoint
2561 */
2562 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2563 {
2564 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2565 if (!IS_ERR(new_ns)) {
2566 struct mount *mnt = real_mount(m);
2567 mnt->mnt_ns = new_ns;
2568 new_ns->root = mnt;
2569 list_add(&mnt->mnt_list, &new_ns->list);
2570 } else {
2571 mntput(m);
2572 }
2573 return new_ns;
2574 }
2575
2576 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2577 {
2578 struct mnt_namespace *ns;
2579 struct super_block *s;
2580 struct path path;
2581 int err;
2582
2583 ns = create_mnt_ns(mnt);
2584 if (IS_ERR(ns))
2585 return ERR_CAST(ns);
2586
2587 err = vfs_path_lookup(mnt->mnt_root, mnt,
2588 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2589
2590 put_mnt_ns(ns);
2591
2592 if (err)
2593 return ERR_PTR(err);
2594
2595 /* trade a vfsmount reference for active sb one */
2596 s = path.mnt->mnt_sb;
2597 atomic_inc(&s->s_active);
2598 mntput(path.mnt);
2599 /* lock the sucker */
2600 down_write(&s->s_umount);
2601 /* ... and return the root of (sub)tree on it */
2602 return path.dentry;
2603 }
2604 EXPORT_SYMBOL(mount_subtree);
2605
2606 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2607 char __user *, type, unsigned long, flags, void __user *, data)
2608 {
2609 int ret;
2610 char *kernel_type;
2611 struct filename *kernel_dir;
2612 char *kernel_dev;
2613 unsigned long data_page;
2614
2615 ret = copy_mount_string(type, &kernel_type);
2616 if (ret < 0)
2617 goto out_type;
2618
2619 kernel_dir = getname(dir_name);
2620 if (IS_ERR(kernel_dir)) {
2621 ret = PTR_ERR(kernel_dir);
2622 goto out_dir;
2623 }
2624
2625 ret = copy_mount_string(dev_name, &kernel_dev);
2626 if (ret < 0)
2627 goto out_dev;
2628
2629 ret = copy_mount_options(data, &data_page);
2630 if (ret < 0)
2631 goto out_data;
2632
2633 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2634 (void *) data_page);
2635
2636 free_page(data_page);
2637 out_data:
2638 kfree(kernel_dev);
2639 out_dev:
2640 putname(kernel_dir);
2641 out_dir:
2642 kfree(kernel_type);
2643 out_type:
2644 return ret;
2645 }
2646
2647 /*
2648 * Return true if path is reachable from root
2649 *
2650 * namespace_sem or mount_lock is held
2651 */
2652 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2653 const struct path *root)
2654 {
2655 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2656 dentry = mnt->mnt_mountpoint;
2657 mnt = mnt->mnt_parent;
2658 }
2659 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2660 }
2661
2662 int path_is_under(struct path *path1, struct path *path2)
2663 {
2664 int res;
2665 read_seqlock_excl(&mount_lock);
2666 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2667 read_sequnlock_excl(&mount_lock);
2668 return res;
2669 }
2670 EXPORT_SYMBOL(path_is_under);
2671
2672 /*
2673 * pivot_root Semantics:
2674 * Moves the root file system of the current process to the directory put_old,
2675 * makes new_root as the new root file system of the current process, and sets
2676 * root/cwd of all processes which had them on the current root to new_root.
2677 *
2678 * Restrictions:
2679 * The new_root and put_old must be directories, and must not be on the
2680 * same file system as the current process root. The put_old must be
2681 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2682 * pointed to by put_old must yield the same directory as new_root. No other
2683 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2684 *
2685 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2686 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2687 * in this situation.
2688 *
2689 * Notes:
2690 * - we don't move root/cwd if they are not at the root (reason: if something
2691 * cared enough to change them, it's probably wrong to force them elsewhere)
2692 * - it's okay to pick a root that isn't the root of a file system, e.g.
2693 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2694 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2695 * first.
2696 */
2697 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2698 const char __user *, put_old)
2699 {
2700 struct path new, old, parent_path, root_parent, root;
2701 struct mount *new_mnt, *root_mnt, *old_mnt;
2702 struct mountpoint *old_mp, *root_mp;
2703 int error;
2704
2705 if (!may_mount())
2706 return -EPERM;
2707
2708 error = user_path_dir(new_root, &new);
2709 if (error)
2710 goto out0;
2711
2712 error = user_path_dir(put_old, &old);
2713 if (error)
2714 goto out1;
2715
2716 error = security_sb_pivotroot(&old, &new);
2717 if (error)
2718 goto out2;
2719
2720 get_fs_root(current->fs, &root);
2721 old_mp = lock_mount(&old);
2722 error = PTR_ERR(old_mp);
2723 if (IS_ERR(old_mp))
2724 goto out3;
2725
2726 error = -EINVAL;
2727 new_mnt = real_mount(new.mnt);
2728 root_mnt = real_mount(root.mnt);
2729 old_mnt = real_mount(old.mnt);
2730 if (IS_MNT_SHARED(old_mnt) ||
2731 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2732 IS_MNT_SHARED(root_mnt->mnt_parent))
2733 goto out4;
2734 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2735 goto out4;
2736 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2737 goto out4;
2738 error = -ENOENT;
2739 if (d_unlinked(new.dentry))
2740 goto out4;
2741 error = -EBUSY;
2742 if (new_mnt == root_mnt || old_mnt == root_mnt)
2743 goto out4; /* loop, on the same file system */
2744 error = -EINVAL;
2745 if (root.mnt->mnt_root != root.dentry)
2746 goto out4; /* not a mountpoint */
2747 if (!mnt_has_parent(root_mnt))
2748 goto out4; /* not attached */
2749 root_mp = root_mnt->mnt_mp;
2750 if (new.mnt->mnt_root != new.dentry)
2751 goto out4; /* not a mountpoint */
2752 if (!mnt_has_parent(new_mnt))
2753 goto out4; /* not attached */
2754 /* make sure we can reach put_old from new_root */
2755 if (!is_path_reachable(old_mnt, old.dentry, &new))
2756 goto out4;
2757 root_mp->m_count++; /* pin it so it won't go away */
2758 lock_mount_hash();
2759 detach_mnt(new_mnt, &parent_path);
2760 detach_mnt(root_mnt, &root_parent);
2761 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2762 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2763 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2764 }
2765 /* mount old root on put_old */
2766 attach_mnt(root_mnt, old_mnt, old_mp);
2767 /* mount new_root on / */
2768 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2769 touch_mnt_namespace(current->nsproxy->mnt_ns);
2770 unlock_mount_hash();
2771 chroot_fs_refs(&root, &new);
2772 put_mountpoint(root_mp);
2773 error = 0;
2774 out4:
2775 unlock_mount(old_mp);
2776 if (!error) {
2777 path_put(&root_parent);
2778 path_put(&parent_path);
2779 }
2780 out3:
2781 path_put(&root);
2782 out2:
2783 path_put(&old);
2784 out1:
2785 path_put(&new);
2786 out0:
2787 return error;
2788 }
2789
2790 static void __init init_mount_tree(void)
2791 {
2792 struct vfsmount *mnt;
2793 struct mnt_namespace *ns;
2794 struct path root;
2795 struct file_system_type *type;
2796
2797 type = get_fs_type("rootfs");
2798 if (!type)
2799 panic("Can't find rootfs type");
2800 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2801 put_filesystem(type);
2802 if (IS_ERR(mnt))
2803 panic("Can't create rootfs");
2804
2805 ns = create_mnt_ns(mnt);
2806 if (IS_ERR(ns))
2807 panic("Can't allocate initial namespace");
2808
2809 init_task.nsproxy->mnt_ns = ns;
2810 get_mnt_ns(ns);
2811
2812 root.mnt = mnt;
2813 root.dentry = mnt->mnt_root;
2814
2815 set_fs_pwd(current->fs, &root);
2816 set_fs_root(current->fs, &root);
2817 }
2818
2819 void __init mnt_init(void)
2820 {
2821 unsigned u;
2822 int err;
2823
2824 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2825 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2826
2827 mount_hashtable = alloc_large_system_hash("Mount-cache",
2828 sizeof(struct hlist_head),
2829 mhash_entries, 19,
2830 0,
2831 &m_hash_shift, &m_hash_mask, 0, 0);
2832 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
2833 sizeof(struct hlist_head),
2834 mphash_entries, 19,
2835 0,
2836 &mp_hash_shift, &mp_hash_mask, 0, 0);
2837
2838 if (!mount_hashtable || !mountpoint_hashtable)
2839 panic("Failed to allocate mount hash table\n");
2840
2841 for (u = 0; u <= m_hash_mask; u++)
2842 INIT_HLIST_HEAD(&mount_hashtable[u]);
2843 for (u = 0; u <= mp_hash_mask; u++)
2844 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
2845
2846 kernfs_init();
2847
2848 err = sysfs_init();
2849 if (err)
2850 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2851 __func__, err);
2852 fs_kobj = kobject_create_and_add("fs", NULL);
2853 if (!fs_kobj)
2854 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2855 init_rootfs();
2856 init_mount_tree();
2857 }
2858
2859 void put_mnt_ns(struct mnt_namespace *ns)
2860 {
2861 if (!atomic_dec_and_test(&ns->count))
2862 return;
2863 drop_collected_mounts(&ns->root->mnt);
2864 free_mnt_ns(ns);
2865 }
2866
2867 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2868 {
2869 struct vfsmount *mnt;
2870 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2871 if (!IS_ERR(mnt)) {
2872 /*
2873 * it is a longterm mount, don't release mnt until
2874 * we unmount before file sys is unregistered
2875 */
2876 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2877 }
2878 return mnt;
2879 }
2880 EXPORT_SYMBOL_GPL(kern_mount_data);
2881
2882 void kern_unmount(struct vfsmount *mnt)
2883 {
2884 /* release long term mount so mount point can be released */
2885 if (!IS_ERR_OR_NULL(mnt)) {
2886 real_mount(mnt)->mnt_ns = NULL;
2887 synchronize_rcu(); /* yecchhh... */
2888 mntput(mnt);
2889 }
2890 }
2891 EXPORT_SYMBOL(kern_unmount);
2892
2893 bool our_mnt(struct vfsmount *mnt)
2894 {
2895 return check_mnt(real_mount(mnt));
2896 }
2897
2898 bool current_chrooted(void)
2899 {
2900 /* Does the current process have a non-standard root */
2901 struct path ns_root;
2902 struct path fs_root;
2903 bool chrooted;
2904
2905 /* Find the namespace root */
2906 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2907 ns_root.dentry = ns_root.mnt->mnt_root;
2908 path_get(&ns_root);
2909 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2910 ;
2911
2912 get_fs_root(current->fs, &fs_root);
2913
2914 chrooted = !path_equal(&fs_root, &ns_root);
2915
2916 path_put(&fs_root);
2917 path_put(&ns_root);
2918
2919 return chrooted;
2920 }
2921
2922 bool fs_fully_visible(struct file_system_type *type)
2923 {
2924 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2925 struct mount *mnt;
2926 bool visible = false;
2927
2928 if (unlikely(!ns))
2929 return false;
2930
2931 down_read(&namespace_sem);
2932 list_for_each_entry(mnt, &ns->list, mnt_list) {
2933 struct mount *child;
2934 if (mnt->mnt.mnt_sb->s_type != type)
2935 continue;
2936
2937 /* This mount is not fully visible if there are any child mounts
2938 * that cover anything except for empty directories.
2939 */
2940 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2941 struct inode *inode = child->mnt_mountpoint->d_inode;
2942 if (!S_ISDIR(inode->i_mode))
2943 goto next;
2944 if (inode->i_nlink > 2)
2945 goto next;
2946 }
2947 visible = true;
2948 goto found;
2949 next: ;
2950 }
2951 found:
2952 up_read(&namespace_sem);
2953 return visible;
2954 }
2955
2956 static void *mntns_get(struct task_struct *task)
2957 {
2958 struct mnt_namespace *ns = NULL;
2959 struct nsproxy *nsproxy;
2960
2961 rcu_read_lock();
2962 nsproxy = task_nsproxy(task);
2963 if (nsproxy) {
2964 ns = nsproxy->mnt_ns;
2965 get_mnt_ns(ns);
2966 }
2967 rcu_read_unlock();
2968
2969 return ns;
2970 }
2971
2972 static void mntns_put(void *ns)
2973 {
2974 put_mnt_ns(ns);
2975 }
2976
2977 static int mntns_install(struct nsproxy *nsproxy, void *ns)
2978 {
2979 struct fs_struct *fs = current->fs;
2980 struct mnt_namespace *mnt_ns = ns;
2981 struct path root;
2982
2983 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2984 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
2985 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
2986 return -EPERM;
2987
2988 if (fs->users != 1)
2989 return -EINVAL;
2990
2991 get_mnt_ns(mnt_ns);
2992 put_mnt_ns(nsproxy->mnt_ns);
2993 nsproxy->mnt_ns = mnt_ns;
2994
2995 /* Find the root */
2996 root.mnt = &mnt_ns->root->mnt;
2997 root.dentry = mnt_ns->root->mnt.mnt_root;
2998 path_get(&root);
2999 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3000 ;
3001
3002 /* Update the pwd and root */
3003 set_fs_pwd(fs, &root);
3004 set_fs_root(fs, &root);
3005
3006 path_put(&root);
3007 return 0;
3008 }
3009
3010 static unsigned int mntns_inum(void *ns)
3011 {
3012 struct mnt_namespace *mnt_ns = ns;
3013 return mnt_ns->proc_inum;
3014 }
3015
3016 const struct proc_ns_operations mntns_operations = {
3017 .name = "mnt",
3018 .type = CLONE_NEWNS,
3019 .get = mntns_get,
3020 .put = mntns_put,
3021 .install = mntns_install,
3022 .inum = mntns_inum,
3023 };