]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/namespace.c
net: hns: add the code for cleaning pkt in chip
[mirror_ubuntu-bionic-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
29
30 #include "pnode.h"
31 #include "internal.h"
32
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly = 100000;
35
36 static unsigned int m_hash_mask __read_mostly;
37 static unsigned int m_hash_shift __read_mostly;
38 static unsigned int mp_hash_mask __read_mostly;
39 static unsigned int mp_hash_shift __read_mostly;
40
41 static __initdata unsigned long mhash_entries;
42 static int __init set_mhash_entries(char *str)
43 {
44 if (!str)
45 return 0;
46 mhash_entries = simple_strtoul(str, &str, 0);
47 return 1;
48 }
49 __setup("mhash_entries=", set_mhash_entries);
50
51 static __initdata unsigned long mphash_entries;
52 static int __init set_mphash_entries(char *str)
53 {
54 if (!str)
55 return 0;
56 mphash_entries = simple_strtoul(str, &str, 0);
57 return 1;
58 }
59 __setup("mphash_entries=", set_mphash_entries);
60
61 static u64 event;
62 static DEFINE_IDA(mnt_id_ida);
63 static DEFINE_IDA(mnt_group_ida);
64 static DEFINE_SPINLOCK(mnt_id_lock);
65 static int mnt_id_start = 0;
66 static int mnt_group_start = 1;
67
68 static struct hlist_head *mount_hashtable __read_mostly;
69 static struct hlist_head *mountpoint_hashtable __read_mostly;
70 static struct kmem_cache *mnt_cache __read_mostly;
71 static DECLARE_RWSEM(namespace_sem);
72
73 /* /sys/fs */
74 struct kobject *fs_kobj;
75 EXPORT_SYMBOL_GPL(fs_kobj);
76
77 /*
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
80 * up the tree.
81 *
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
84 */
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
86
87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
88 {
89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
91 tmp = tmp + (tmp >> m_hash_shift);
92 return &mount_hashtable[tmp & m_hash_mask];
93 }
94
95 static inline struct hlist_head *mp_hash(struct dentry *dentry)
96 {
97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 tmp = tmp + (tmp >> mp_hash_shift);
99 return &mountpoint_hashtable[tmp & mp_hash_mask];
100 }
101
102 static int mnt_alloc_id(struct mount *mnt)
103 {
104 int res;
105
106 retry:
107 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
108 spin_lock(&mnt_id_lock);
109 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
110 if (!res)
111 mnt_id_start = mnt->mnt_id + 1;
112 spin_unlock(&mnt_id_lock);
113 if (res == -EAGAIN)
114 goto retry;
115
116 return res;
117 }
118
119 static void mnt_free_id(struct mount *mnt)
120 {
121 int id = mnt->mnt_id;
122 spin_lock(&mnt_id_lock);
123 ida_remove(&mnt_id_ida, id);
124 if (mnt_id_start > id)
125 mnt_id_start = id;
126 spin_unlock(&mnt_id_lock);
127 }
128
129 /*
130 * Allocate a new peer group ID
131 *
132 * mnt_group_ida is protected by namespace_sem
133 */
134 static int mnt_alloc_group_id(struct mount *mnt)
135 {
136 int res;
137
138 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
139 return -ENOMEM;
140
141 res = ida_get_new_above(&mnt_group_ida,
142 mnt_group_start,
143 &mnt->mnt_group_id);
144 if (!res)
145 mnt_group_start = mnt->mnt_group_id + 1;
146
147 return res;
148 }
149
150 /*
151 * Release a peer group ID
152 */
153 void mnt_release_group_id(struct mount *mnt)
154 {
155 int id = mnt->mnt_group_id;
156 ida_remove(&mnt_group_ida, id);
157 if (mnt_group_start > id)
158 mnt_group_start = id;
159 mnt->mnt_group_id = 0;
160 }
161
162 /*
163 * vfsmount lock must be held for read
164 */
165 static inline void mnt_add_count(struct mount *mnt, int n)
166 {
167 #ifdef CONFIG_SMP
168 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
169 #else
170 preempt_disable();
171 mnt->mnt_count += n;
172 preempt_enable();
173 #endif
174 }
175
176 /*
177 * vfsmount lock must be held for write
178 */
179 unsigned int mnt_get_count(struct mount *mnt)
180 {
181 #ifdef CONFIG_SMP
182 unsigned int count = 0;
183 int cpu;
184
185 for_each_possible_cpu(cpu) {
186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 }
188
189 return count;
190 #else
191 return mnt->mnt_count;
192 #endif
193 }
194
195 static void drop_mountpoint(struct fs_pin *p)
196 {
197 struct mount *m = container_of(p, struct mount, mnt_umount);
198 dput(m->mnt_ex_mountpoint);
199 pin_remove(p);
200 mntput(&m->mnt);
201 }
202
203 static struct mount *alloc_vfsmnt(const char *name)
204 {
205 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
206 if (mnt) {
207 int err;
208
209 err = mnt_alloc_id(mnt);
210 if (err)
211 goto out_free_cache;
212
213 if (name) {
214 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
215 if (!mnt->mnt_devname)
216 goto out_free_id;
217 }
218
219 #ifdef CONFIG_SMP
220 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
221 if (!mnt->mnt_pcp)
222 goto out_free_devname;
223
224 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
225 #else
226 mnt->mnt_count = 1;
227 mnt->mnt_writers = 0;
228 #endif
229
230 INIT_HLIST_NODE(&mnt->mnt_hash);
231 INIT_LIST_HEAD(&mnt->mnt_child);
232 INIT_LIST_HEAD(&mnt->mnt_mounts);
233 INIT_LIST_HEAD(&mnt->mnt_list);
234 INIT_LIST_HEAD(&mnt->mnt_expire);
235 INIT_LIST_HEAD(&mnt->mnt_share);
236 INIT_LIST_HEAD(&mnt->mnt_slave_list);
237 INIT_LIST_HEAD(&mnt->mnt_slave);
238 INIT_HLIST_NODE(&mnt->mnt_mp_list);
239 INIT_LIST_HEAD(&mnt->mnt_umounting);
240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
241 }
242 return mnt;
243
244 #ifdef CONFIG_SMP
245 out_free_devname:
246 kfree_const(mnt->mnt_devname);
247 #endif
248 out_free_id:
249 mnt_free_id(mnt);
250 out_free_cache:
251 kmem_cache_free(mnt_cache, mnt);
252 return NULL;
253 }
254
255 /*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263 /*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274 int __mnt_is_readonly(struct vfsmount *mnt)
275 {
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (sb_rdonly(mnt->mnt_sb))
279 return 1;
280 return 0;
281 }
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
284 static inline void mnt_inc_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288 #else
289 mnt->mnt_writers++;
290 #endif
291 }
292
293 static inline void mnt_dec_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297 #else
298 mnt->mnt_writers--;
299 #endif
300 }
301
302 static unsigned int mnt_get_writers(struct mount *mnt)
303 {
304 #ifdef CONFIG_SMP
305 unsigned int count = 0;
306 int cpu;
307
308 for_each_possible_cpu(cpu) {
309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
310 }
311
312 return count;
313 #else
314 return mnt->mnt_writers;
315 #endif
316 }
317
318 static int mnt_is_readonly(struct vfsmount *mnt)
319 {
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325 }
326
327 /*
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
332 */
333 /**
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
342 */
343 int __mnt_want_write(struct vfsmount *m)
344 {
345 struct mount *mnt = real_mount(m);
346 int ret = 0;
347
348 preempt_disable();
349 mnt_inc_writers(mnt);
350 /*
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
356 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
364 if (mnt_is_readonly(m)) {
365 mnt_dec_writers(mnt);
366 ret = -EROFS;
367 }
368 preempt_enable();
369
370 return ret;
371 }
372
373 /**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382 int mnt_want_write(struct vfsmount *m)
383 {
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
390 return ret;
391 }
392 EXPORT_SYMBOL_GPL(mnt_want_write);
393
394 /**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406 int mnt_clone_write(struct vfsmount *mnt)
407 {
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
412 mnt_inc_writers(real_mount(mnt));
413 preempt_enable();
414 return 0;
415 }
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418 /**
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
421 *
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
424 */
425 int __mnt_want_write_file(struct file *file)
426 {
427 if (!(file->f_mode & FMODE_WRITER))
428 return __mnt_want_write(file->f_path.mnt);
429 else
430 return mnt_clone_write(file->f_path.mnt);
431 }
432
433 /**
434 * mnt_want_write_file_path - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 *
440 * Called by the vfs for cases when we have an open file at hand, but will do an
441 * inode operation on it (important distinction for files opened on overlayfs,
442 * since the file operations will come from the real underlying file, while
443 * inode operations come from the overlay).
444 */
445 int mnt_want_write_file_path(struct file *file)
446 {
447 int ret;
448
449 sb_start_write(file->f_path.mnt->mnt_sb);
450 ret = __mnt_want_write_file(file);
451 if (ret)
452 sb_end_write(file->f_path.mnt->mnt_sb);
453 return ret;
454 }
455
456 static inline int may_write_real(struct file *file)
457 {
458 struct dentry *dentry = file->f_path.dentry;
459 struct dentry *upperdentry;
460
461 /* Writable file? */
462 if (file->f_mode & FMODE_WRITER)
463 return 0;
464
465 /* Not overlayfs? */
466 if (likely(!(dentry->d_flags & DCACHE_OP_REAL)))
467 return 0;
468
469 /* File refers to upper, writable layer? */
470 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
471 if (upperdentry &&
472 (file_inode(file) == d_inode(upperdentry) ||
473 file_inode(file) == d_inode(dentry)))
474 return 0;
475
476 /* Lower layer: can't write to real file, sorry... */
477 return -EPERM;
478 }
479
480 /**
481 * mnt_want_write_file - get write access to a file's mount
482 * @file: the file who's mount on which to take a write
483 *
484 * This is like mnt_want_write, but it takes a file and can
485 * do some optimisations if the file is open for write already
486 *
487 * Mostly called by filesystems from their ioctl operation before performing
488 * modification. On overlayfs this needs to check if the file is on a read-only
489 * lower layer and deny access in that case.
490 */
491 int mnt_want_write_file(struct file *file)
492 {
493 int ret;
494
495 ret = may_write_real(file);
496 if (!ret) {
497 sb_start_write(file_inode(file)->i_sb);
498 ret = __mnt_want_write_file(file);
499 if (ret)
500 sb_end_write(file_inode(file)->i_sb);
501 }
502 return ret;
503 }
504 EXPORT_SYMBOL_GPL(mnt_want_write_file);
505
506 /**
507 * __mnt_drop_write - give up write access to a mount
508 * @mnt: the mount on which to give up write access
509 *
510 * Tells the low-level filesystem that we are done
511 * performing writes to it. Must be matched with
512 * __mnt_want_write() call above.
513 */
514 void __mnt_drop_write(struct vfsmount *mnt)
515 {
516 preempt_disable();
517 mnt_dec_writers(real_mount(mnt));
518 preempt_enable();
519 }
520 EXPORT_SYMBOL_GPL(__mnt_drop_write);
521
522 /**
523 * mnt_drop_write - give up write access to a mount
524 * @mnt: the mount on which to give up write access
525 *
526 * Tells the low-level filesystem that we are done performing writes to it and
527 * also allows filesystem to be frozen again. Must be matched with
528 * mnt_want_write() call above.
529 */
530 void mnt_drop_write(struct vfsmount *mnt)
531 {
532 __mnt_drop_write(mnt);
533 sb_end_write(mnt->mnt_sb);
534 }
535 EXPORT_SYMBOL_GPL(mnt_drop_write);
536
537 void __mnt_drop_write_file(struct file *file)
538 {
539 __mnt_drop_write(file->f_path.mnt);
540 }
541
542 void mnt_drop_write_file_path(struct file *file)
543 {
544 mnt_drop_write(file->f_path.mnt);
545 }
546
547 void mnt_drop_write_file(struct file *file)
548 {
549 __mnt_drop_write(file->f_path.mnt);
550 sb_end_write(file_inode(file)->i_sb);
551 }
552 EXPORT_SYMBOL(mnt_drop_write_file);
553
554 static int mnt_make_readonly(struct mount *mnt)
555 {
556 int ret = 0;
557
558 lock_mount_hash();
559 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
560 /*
561 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
562 * should be visible before we do.
563 */
564 smp_mb();
565
566 /*
567 * With writers on hold, if this value is zero, then there are
568 * definitely no active writers (although held writers may subsequently
569 * increment the count, they'll have to wait, and decrement it after
570 * seeing MNT_READONLY).
571 *
572 * It is OK to have counter incremented on one CPU and decremented on
573 * another: the sum will add up correctly. The danger would be when we
574 * sum up each counter, if we read a counter before it is incremented,
575 * but then read another CPU's count which it has been subsequently
576 * decremented from -- we would see more decrements than we should.
577 * MNT_WRITE_HOLD protects against this scenario, because
578 * mnt_want_write first increments count, then smp_mb, then spins on
579 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
580 * we're counting up here.
581 */
582 if (mnt_get_writers(mnt) > 0)
583 ret = -EBUSY;
584 else
585 mnt->mnt.mnt_flags |= MNT_READONLY;
586 /*
587 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
588 * that become unheld will see MNT_READONLY.
589 */
590 smp_wmb();
591 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
592 unlock_mount_hash();
593 return ret;
594 }
595
596 static void __mnt_unmake_readonly(struct mount *mnt)
597 {
598 lock_mount_hash();
599 mnt->mnt.mnt_flags &= ~MNT_READONLY;
600 unlock_mount_hash();
601 }
602
603 int sb_prepare_remount_readonly(struct super_block *sb)
604 {
605 struct mount *mnt;
606 int err = 0;
607
608 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
609 if (atomic_long_read(&sb->s_remove_count))
610 return -EBUSY;
611
612 lock_mount_hash();
613 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
614 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
615 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
616 smp_mb();
617 if (mnt_get_writers(mnt) > 0) {
618 err = -EBUSY;
619 break;
620 }
621 }
622 }
623 if (!err && atomic_long_read(&sb->s_remove_count))
624 err = -EBUSY;
625
626 if (!err) {
627 sb->s_readonly_remount = 1;
628 smp_wmb();
629 }
630 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
631 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
632 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
633 }
634 unlock_mount_hash();
635
636 return err;
637 }
638
639 static void free_vfsmnt(struct mount *mnt)
640 {
641 kfree_const(mnt->mnt_devname);
642 #ifdef CONFIG_SMP
643 free_percpu(mnt->mnt_pcp);
644 #endif
645 kmem_cache_free(mnt_cache, mnt);
646 }
647
648 static void delayed_free_vfsmnt(struct rcu_head *head)
649 {
650 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
651 }
652
653 /* call under rcu_read_lock */
654 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
655 {
656 struct mount *mnt;
657 if (read_seqretry(&mount_lock, seq))
658 return 1;
659 if (bastard == NULL)
660 return 0;
661 mnt = real_mount(bastard);
662 mnt_add_count(mnt, 1);
663 if (likely(!read_seqretry(&mount_lock, seq)))
664 return 0;
665 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
666 mnt_add_count(mnt, -1);
667 return 1;
668 }
669 return -1;
670 }
671
672 /* call under rcu_read_lock */
673 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
674 {
675 int res = __legitimize_mnt(bastard, seq);
676 if (likely(!res))
677 return true;
678 if (unlikely(res < 0)) {
679 rcu_read_unlock();
680 mntput(bastard);
681 rcu_read_lock();
682 }
683 return false;
684 }
685
686 /*
687 * find the first mount at @dentry on vfsmount @mnt.
688 * call under rcu_read_lock()
689 */
690 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
691 {
692 struct hlist_head *head = m_hash(mnt, dentry);
693 struct mount *p;
694
695 hlist_for_each_entry_rcu(p, head, mnt_hash)
696 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
697 return p;
698 return NULL;
699 }
700
701 /*
702 * lookup_mnt - Return the first child mount mounted at path
703 *
704 * "First" means first mounted chronologically. If you create the
705 * following mounts:
706 *
707 * mount /dev/sda1 /mnt
708 * mount /dev/sda2 /mnt
709 * mount /dev/sda3 /mnt
710 *
711 * Then lookup_mnt() on the base /mnt dentry in the root mount will
712 * return successively the root dentry and vfsmount of /dev/sda1, then
713 * /dev/sda2, then /dev/sda3, then NULL.
714 *
715 * lookup_mnt takes a reference to the found vfsmount.
716 */
717 struct vfsmount *lookup_mnt(const struct path *path)
718 {
719 struct mount *child_mnt;
720 struct vfsmount *m;
721 unsigned seq;
722
723 rcu_read_lock();
724 do {
725 seq = read_seqbegin(&mount_lock);
726 child_mnt = __lookup_mnt(path->mnt, path->dentry);
727 m = child_mnt ? &child_mnt->mnt : NULL;
728 } while (!legitimize_mnt(m, seq));
729 rcu_read_unlock();
730 return m;
731 }
732
733 /*
734 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
735 * current mount namespace.
736 *
737 * The common case is dentries are not mountpoints at all and that
738 * test is handled inline. For the slow case when we are actually
739 * dealing with a mountpoint of some kind, walk through all of the
740 * mounts in the current mount namespace and test to see if the dentry
741 * is a mountpoint.
742 *
743 * The mount_hashtable is not usable in the context because we
744 * need to identify all mounts that may be in the current mount
745 * namespace not just a mount that happens to have some specified
746 * parent mount.
747 */
748 bool __is_local_mountpoint(struct dentry *dentry)
749 {
750 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
751 struct mount *mnt;
752 bool is_covered = false;
753
754 if (!d_mountpoint(dentry))
755 goto out;
756
757 down_read(&namespace_sem);
758 list_for_each_entry(mnt, &ns->list, mnt_list) {
759 is_covered = (mnt->mnt_mountpoint == dentry);
760 if (is_covered)
761 break;
762 }
763 up_read(&namespace_sem);
764 out:
765 return is_covered;
766 }
767
768 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
769 {
770 struct hlist_head *chain = mp_hash(dentry);
771 struct mountpoint *mp;
772
773 hlist_for_each_entry(mp, chain, m_hash) {
774 if (mp->m_dentry == dentry) {
775 /* might be worth a WARN_ON() */
776 if (d_unlinked(dentry))
777 return ERR_PTR(-ENOENT);
778 mp->m_count++;
779 return mp;
780 }
781 }
782 return NULL;
783 }
784
785 static struct mountpoint *get_mountpoint(struct dentry *dentry)
786 {
787 struct mountpoint *mp, *new = NULL;
788 int ret;
789
790 if (d_mountpoint(dentry)) {
791 mountpoint:
792 read_seqlock_excl(&mount_lock);
793 mp = lookup_mountpoint(dentry);
794 read_sequnlock_excl(&mount_lock);
795 if (mp)
796 goto done;
797 }
798
799 if (!new)
800 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
801 if (!new)
802 return ERR_PTR(-ENOMEM);
803
804
805 /* Exactly one processes may set d_mounted */
806 ret = d_set_mounted(dentry);
807
808 /* Someone else set d_mounted? */
809 if (ret == -EBUSY)
810 goto mountpoint;
811
812 /* The dentry is not available as a mountpoint? */
813 mp = ERR_PTR(ret);
814 if (ret)
815 goto done;
816
817 /* Add the new mountpoint to the hash table */
818 read_seqlock_excl(&mount_lock);
819 new->m_dentry = dentry;
820 new->m_count = 1;
821 hlist_add_head(&new->m_hash, mp_hash(dentry));
822 INIT_HLIST_HEAD(&new->m_list);
823 read_sequnlock_excl(&mount_lock);
824
825 mp = new;
826 new = NULL;
827 done:
828 kfree(new);
829 return mp;
830 }
831
832 static void put_mountpoint(struct mountpoint *mp)
833 {
834 if (!--mp->m_count) {
835 struct dentry *dentry = mp->m_dentry;
836 BUG_ON(!hlist_empty(&mp->m_list));
837 spin_lock(&dentry->d_lock);
838 dentry->d_flags &= ~DCACHE_MOUNTED;
839 spin_unlock(&dentry->d_lock);
840 hlist_del(&mp->m_hash);
841 kfree(mp);
842 }
843 }
844
845 static inline int check_mnt(struct mount *mnt)
846 {
847 return mnt->mnt_ns == current->nsproxy->mnt_ns;
848 }
849
850 /* for aufs, CONFIG_AUFS_BR_FUSE */
851 int is_current_mnt_ns(struct vfsmount *mnt)
852 {
853 return check_mnt(real_mount(mnt));
854 }
855 EXPORT_SYMBOL_GPL(is_current_mnt_ns);
856
857 /*
858 * vfsmount lock must be held for write
859 */
860 static void touch_mnt_namespace(struct mnt_namespace *ns)
861 {
862 if (ns) {
863 ns->event = ++event;
864 wake_up_interruptible(&ns->poll);
865 }
866 }
867
868 /*
869 * vfsmount lock must be held for write
870 */
871 static void __touch_mnt_namespace(struct mnt_namespace *ns)
872 {
873 if (ns && ns->event != event) {
874 ns->event = event;
875 wake_up_interruptible(&ns->poll);
876 }
877 }
878
879 /*
880 * vfsmount lock must be held for write
881 */
882 static void unhash_mnt(struct mount *mnt)
883 {
884 mnt->mnt_parent = mnt;
885 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
886 list_del_init(&mnt->mnt_child);
887 hlist_del_init_rcu(&mnt->mnt_hash);
888 hlist_del_init(&mnt->mnt_mp_list);
889 put_mountpoint(mnt->mnt_mp);
890 mnt->mnt_mp = NULL;
891 }
892
893 /*
894 * vfsmount lock must be held for write
895 */
896 static void detach_mnt(struct mount *mnt, struct path *old_path)
897 {
898 old_path->dentry = mnt->mnt_mountpoint;
899 old_path->mnt = &mnt->mnt_parent->mnt;
900 unhash_mnt(mnt);
901 }
902
903 /*
904 * vfsmount lock must be held for write
905 */
906 static void umount_mnt(struct mount *mnt)
907 {
908 /* old mountpoint will be dropped when we can do that */
909 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
910 unhash_mnt(mnt);
911 }
912
913 /*
914 * vfsmount lock must be held for write
915 */
916 void mnt_set_mountpoint(struct mount *mnt,
917 struct mountpoint *mp,
918 struct mount *child_mnt)
919 {
920 mp->m_count++;
921 mnt_add_count(mnt, 1); /* essentially, that's mntget */
922 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
923 child_mnt->mnt_parent = mnt;
924 child_mnt->mnt_mp = mp;
925 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
926 }
927
928 static void __attach_mnt(struct mount *mnt, struct mount *parent)
929 {
930 hlist_add_head_rcu(&mnt->mnt_hash,
931 m_hash(&parent->mnt, mnt->mnt_mountpoint));
932 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
933 }
934
935 /*
936 * vfsmount lock must be held for write
937 */
938 static void attach_mnt(struct mount *mnt,
939 struct mount *parent,
940 struct mountpoint *mp)
941 {
942 mnt_set_mountpoint(parent, mp, mnt);
943 __attach_mnt(mnt, parent);
944 }
945
946 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
947 {
948 struct mountpoint *old_mp = mnt->mnt_mp;
949 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
950 struct mount *old_parent = mnt->mnt_parent;
951
952 list_del_init(&mnt->mnt_child);
953 hlist_del_init(&mnt->mnt_mp_list);
954 hlist_del_init_rcu(&mnt->mnt_hash);
955
956 attach_mnt(mnt, parent, mp);
957
958 put_mountpoint(old_mp);
959
960 /*
961 * Safely avoid even the suggestion this code might sleep or
962 * lock the mount hash by taking advantage of the knowledge that
963 * mnt_change_mountpoint will not release the final reference
964 * to a mountpoint.
965 *
966 * During mounting, the mount passed in as the parent mount will
967 * continue to use the old mountpoint and during unmounting, the
968 * old mountpoint will continue to exist until namespace_unlock,
969 * which happens well after mnt_change_mountpoint.
970 */
971 spin_lock(&old_mountpoint->d_lock);
972 old_mountpoint->d_lockref.count--;
973 spin_unlock(&old_mountpoint->d_lock);
974
975 mnt_add_count(old_parent, -1);
976 }
977
978 /*
979 * vfsmount lock must be held for write
980 */
981 static void commit_tree(struct mount *mnt)
982 {
983 struct mount *parent = mnt->mnt_parent;
984 struct mount *m;
985 LIST_HEAD(head);
986 struct mnt_namespace *n = parent->mnt_ns;
987
988 BUG_ON(parent == mnt);
989
990 list_add_tail(&head, &mnt->mnt_list);
991 list_for_each_entry(m, &head, mnt_list)
992 m->mnt_ns = n;
993
994 list_splice(&head, n->list.prev);
995
996 n->mounts += n->pending_mounts;
997 n->pending_mounts = 0;
998
999 __attach_mnt(mnt, parent);
1000 touch_mnt_namespace(n);
1001 }
1002
1003 static struct mount *next_mnt(struct mount *p, struct mount *root)
1004 {
1005 struct list_head *next = p->mnt_mounts.next;
1006 if (next == &p->mnt_mounts) {
1007 while (1) {
1008 if (p == root)
1009 return NULL;
1010 next = p->mnt_child.next;
1011 if (next != &p->mnt_parent->mnt_mounts)
1012 break;
1013 p = p->mnt_parent;
1014 }
1015 }
1016 return list_entry(next, struct mount, mnt_child);
1017 }
1018
1019 static struct mount *skip_mnt_tree(struct mount *p)
1020 {
1021 struct list_head *prev = p->mnt_mounts.prev;
1022 while (prev != &p->mnt_mounts) {
1023 p = list_entry(prev, struct mount, mnt_child);
1024 prev = p->mnt_mounts.prev;
1025 }
1026 return p;
1027 }
1028
1029 struct vfsmount *
1030 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
1031 {
1032 struct mount *mnt;
1033 struct dentry *root;
1034
1035 if (!type)
1036 return ERR_PTR(-ENODEV);
1037
1038 mnt = alloc_vfsmnt(name);
1039 if (!mnt)
1040 return ERR_PTR(-ENOMEM);
1041
1042 if (flags & SB_KERNMOUNT)
1043 mnt->mnt.mnt_flags = MNT_INTERNAL;
1044
1045 root = mount_fs(type, flags, name, data);
1046 if (IS_ERR(root)) {
1047 mnt_free_id(mnt);
1048 free_vfsmnt(mnt);
1049 return ERR_CAST(root);
1050 }
1051
1052 mnt->mnt.mnt_root = root;
1053 mnt->mnt.mnt_sb = root->d_sb;
1054 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1055 mnt->mnt_parent = mnt;
1056 lock_mount_hash();
1057 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1058 unlock_mount_hash();
1059 return &mnt->mnt;
1060 }
1061 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1062
1063 struct vfsmount *
1064 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1065 const char *name, void *data)
1066 {
1067 /* Until it is worked out how to pass the user namespace
1068 * through from the parent mount to the submount don't support
1069 * unprivileged mounts with submounts.
1070 */
1071 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1072 return ERR_PTR(-EPERM);
1073
1074 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1075 }
1076 EXPORT_SYMBOL_GPL(vfs_submount);
1077
1078 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1079 int flag)
1080 {
1081 struct super_block *sb = old->mnt.mnt_sb;
1082 struct mount *mnt;
1083 int err;
1084
1085 mnt = alloc_vfsmnt(old->mnt_devname);
1086 if (!mnt)
1087 return ERR_PTR(-ENOMEM);
1088
1089 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1090 mnt->mnt_group_id = 0; /* not a peer of original */
1091 else
1092 mnt->mnt_group_id = old->mnt_group_id;
1093
1094 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1095 err = mnt_alloc_group_id(mnt);
1096 if (err)
1097 goto out_free;
1098 }
1099
1100 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1101 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1102 /* Don't allow unprivileged users to change mount flags */
1103 if (flag & CL_UNPRIVILEGED) {
1104 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1105
1106 if (mnt->mnt.mnt_flags & MNT_READONLY)
1107 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1108
1109 if (mnt->mnt.mnt_flags & MNT_NODEV)
1110 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1111
1112 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1113 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1114
1115 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1116 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1117 }
1118
1119 /* Don't allow unprivileged users to reveal what is under a mount */
1120 if ((flag & CL_UNPRIVILEGED) &&
1121 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1122 mnt->mnt.mnt_flags |= MNT_LOCKED;
1123
1124 atomic_inc(&sb->s_active);
1125 mnt->mnt.mnt_sb = sb;
1126 mnt->mnt.mnt_root = dget(root);
1127 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1128 mnt->mnt_parent = mnt;
1129 lock_mount_hash();
1130 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1131 unlock_mount_hash();
1132
1133 if ((flag & CL_SLAVE) ||
1134 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1135 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1136 mnt->mnt_master = old;
1137 CLEAR_MNT_SHARED(mnt);
1138 } else if (!(flag & CL_PRIVATE)) {
1139 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1140 list_add(&mnt->mnt_share, &old->mnt_share);
1141 if (IS_MNT_SLAVE(old))
1142 list_add(&mnt->mnt_slave, &old->mnt_slave);
1143 mnt->mnt_master = old->mnt_master;
1144 } else {
1145 CLEAR_MNT_SHARED(mnt);
1146 }
1147 if (flag & CL_MAKE_SHARED)
1148 set_mnt_shared(mnt);
1149
1150 /* stick the duplicate mount on the same expiry list
1151 * as the original if that was on one */
1152 if (flag & CL_EXPIRE) {
1153 if (!list_empty(&old->mnt_expire))
1154 list_add(&mnt->mnt_expire, &old->mnt_expire);
1155 }
1156
1157 return mnt;
1158
1159 out_free:
1160 mnt_free_id(mnt);
1161 free_vfsmnt(mnt);
1162 return ERR_PTR(err);
1163 }
1164
1165 static void cleanup_mnt(struct mount *mnt)
1166 {
1167 /*
1168 * This probably indicates that somebody messed
1169 * up a mnt_want/drop_write() pair. If this
1170 * happens, the filesystem was probably unable
1171 * to make r/w->r/o transitions.
1172 */
1173 /*
1174 * The locking used to deal with mnt_count decrement provides barriers,
1175 * so mnt_get_writers() below is safe.
1176 */
1177 WARN_ON(mnt_get_writers(mnt));
1178 if (unlikely(mnt->mnt_pins.first))
1179 mnt_pin_kill(mnt);
1180 fsnotify_vfsmount_delete(&mnt->mnt);
1181 dput(mnt->mnt.mnt_root);
1182 deactivate_super(mnt->mnt.mnt_sb);
1183 mnt_free_id(mnt);
1184 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1185 }
1186
1187 static void __cleanup_mnt(struct rcu_head *head)
1188 {
1189 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1190 }
1191
1192 static LLIST_HEAD(delayed_mntput_list);
1193 static void delayed_mntput(struct work_struct *unused)
1194 {
1195 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1196 struct mount *m, *t;
1197
1198 llist_for_each_entry_safe(m, t, node, mnt_llist)
1199 cleanup_mnt(m);
1200 }
1201 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1202
1203 static void mntput_no_expire(struct mount *mnt)
1204 {
1205 rcu_read_lock();
1206 mnt_add_count(mnt, -1);
1207 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1208 rcu_read_unlock();
1209 return;
1210 }
1211 lock_mount_hash();
1212 if (mnt_get_count(mnt)) {
1213 rcu_read_unlock();
1214 unlock_mount_hash();
1215 return;
1216 }
1217 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1218 rcu_read_unlock();
1219 unlock_mount_hash();
1220 return;
1221 }
1222 mnt->mnt.mnt_flags |= MNT_DOOMED;
1223 rcu_read_unlock();
1224
1225 list_del(&mnt->mnt_instance);
1226
1227 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1228 struct mount *p, *tmp;
1229 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1230 umount_mnt(p);
1231 }
1232 }
1233 unlock_mount_hash();
1234
1235 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1236 struct task_struct *task = current;
1237 if (likely(!(task->flags & PF_KTHREAD))) {
1238 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1239 if (!task_work_add(task, &mnt->mnt_rcu, true))
1240 return;
1241 }
1242 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1243 schedule_delayed_work(&delayed_mntput_work, 1);
1244 return;
1245 }
1246 cleanup_mnt(mnt);
1247 }
1248
1249 void mntput(struct vfsmount *mnt)
1250 {
1251 if (mnt) {
1252 struct mount *m = real_mount(mnt);
1253 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1254 if (unlikely(m->mnt_expiry_mark))
1255 m->mnt_expiry_mark = 0;
1256 mntput_no_expire(m);
1257 }
1258 }
1259 EXPORT_SYMBOL(mntput);
1260
1261 struct vfsmount *mntget(struct vfsmount *mnt)
1262 {
1263 if (mnt)
1264 mnt_add_count(real_mount(mnt), 1);
1265 return mnt;
1266 }
1267 EXPORT_SYMBOL(mntget);
1268
1269 /* path_is_mountpoint() - Check if path is a mount in the current
1270 * namespace.
1271 *
1272 * d_mountpoint() can only be used reliably to establish if a dentry is
1273 * not mounted in any namespace and that common case is handled inline.
1274 * d_mountpoint() isn't aware of the possibility there may be multiple
1275 * mounts using a given dentry in a different namespace. This function
1276 * checks if the passed in path is a mountpoint rather than the dentry
1277 * alone.
1278 */
1279 bool path_is_mountpoint(const struct path *path)
1280 {
1281 unsigned seq;
1282 bool res;
1283
1284 if (!d_mountpoint(path->dentry))
1285 return false;
1286
1287 rcu_read_lock();
1288 do {
1289 seq = read_seqbegin(&mount_lock);
1290 res = __path_is_mountpoint(path);
1291 } while (read_seqretry(&mount_lock, seq));
1292 rcu_read_unlock();
1293
1294 return res;
1295 }
1296 EXPORT_SYMBOL(path_is_mountpoint);
1297
1298 struct vfsmount *mnt_clone_internal(const struct path *path)
1299 {
1300 struct mount *p;
1301 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1302 if (IS_ERR(p))
1303 return ERR_CAST(p);
1304 p->mnt.mnt_flags |= MNT_INTERNAL;
1305 return &p->mnt;
1306 }
1307
1308 #ifdef CONFIG_PROC_FS
1309 /* iterator; we want it to have access to namespace_sem, thus here... */
1310 static void *m_start(struct seq_file *m, loff_t *pos)
1311 {
1312 struct proc_mounts *p = m->private;
1313
1314 down_read(&namespace_sem);
1315 if (p->cached_event == p->ns->event) {
1316 void *v = p->cached_mount;
1317 if (*pos == p->cached_index)
1318 return v;
1319 if (*pos == p->cached_index + 1) {
1320 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1321 return p->cached_mount = v;
1322 }
1323 }
1324
1325 p->cached_event = p->ns->event;
1326 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1327 p->cached_index = *pos;
1328 return p->cached_mount;
1329 }
1330
1331 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1332 {
1333 struct proc_mounts *p = m->private;
1334
1335 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1336 p->cached_index = *pos;
1337 return p->cached_mount;
1338 }
1339
1340 static void m_stop(struct seq_file *m, void *v)
1341 {
1342 up_read(&namespace_sem);
1343 }
1344
1345 static int m_show(struct seq_file *m, void *v)
1346 {
1347 struct proc_mounts *p = m->private;
1348 struct mount *r = list_entry(v, struct mount, mnt_list);
1349 return p->show(m, &r->mnt);
1350 }
1351
1352 const struct seq_operations mounts_op = {
1353 .start = m_start,
1354 .next = m_next,
1355 .stop = m_stop,
1356 .show = m_show,
1357 };
1358 #endif /* CONFIG_PROC_FS */
1359
1360 /**
1361 * may_umount_tree - check if a mount tree is busy
1362 * @mnt: root of mount tree
1363 *
1364 * This is called to check if a tree of mounts has any
1365 * open files, pwds, chroots or sub mounts that are
1366 * busy.
1367 */
1368 int may_umount_tree(struct vfsmount *m)
1369 {
1370 struct mount *mnt = real_mount(m);
1371 int actual_refs = 0;
1372 int minimum_refs = 0;
1373 struct mount *p;
1374 BUG_ON(!m);
1375
1376 /* write lock needed for mnt_get_count */
1377 lock_mount_hash();
1378 for (p = mnt; p; p = next_mnt(p, mnt)) {
1379 actual_refs += mnt_get_count(p);
1380 minimum_refs += 2;
1381 }
1382 unlock_mount_hash();
1383
1384 if (actual_refs > minimum_refs)
1385 return 0;
1386
1387 return 1;
1388 }
1389
1390 EXPORT_SYMBOL(may_umount_tree);
1391
1392 /**
1393 * may_umount - check if a mount point is busy
1394 * @mnt: root of mount
1395 *
1396 * This is called to check if a mount point has any
1397 * open files, pwds, chroots or sub mounts. If the
1398 * mount has sub mounts this will return busy
1399 * regardless of whether the sub mounts are busy.
1400 *
1401 * Doesn't take quota and stuff into account. IOW, in some cases it will
1402 * give false negatives. The main reason why it's here is that we need
1403 * a non-destructive way to look for easily umountable filesystems.
1404 */
1405 int may_umount(struct vfsmount *mnt)
1406 {
1407 int ret = 1;
1408 down_read(&namespace_sem);
1409 lock_mount_hash();
1410 if (propagate_mount_busy(real_mount(mnt), 2))
1411 ret = 0;
1412 unlock_mount_hash();
1413 up_read(&namespace_sem);
1414 return ret;
1415 }
1416
1417 EXPORT_SYMBOL(may_umount);
1418
1419 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1420
1421 static void namespace_unlock(void)
1422 {
1423 struct hlist_head head;
1424
1425 hlist_move_list(&unmounted, &head);
1426
1427 up_write(&namespace_sem);
1428
1429 if (likely(hlist_empty(&head)))
1430 return;
1431
1432 synchronize_rcu();
1433
1434 group_pin_kill(&head);
1435 }
1436
1437 static inline void namespace_lock(void)
1438 {
1439 down_write(&namespace_sem);
1440 }
1441
1442 enum umount_tree_flags {
1443 UMOUNT_SYNC = 1,
1444 UMOUNT_PROPAGATE = 2,
1445 UMOUNT_CONNECTED = 4,
1446 };
1447
1448 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1449 {
1450 /* Leaving mounts connected is only valid for lazy umounts */
1451 if (how & UMOUNT_SYNC)
1452 return true;
1453
1454 /* A mount without a parent has nothing to be connected to */
1455 if (!mnt_has_parent(mnt))
1456 return true;
1457
1458 /* Because the reference counting rules change when mounts are
1459 * unmounted and connected, umounted mounts may not be
1460 * connected to mounted mounts.
1461 */
1462 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1463 return true;
1464
1465 /* Has it been requested that the mount remain connected? */
1466 if (how & UMOUNT_CONNECTED)
1467 return false;
1468
1469 /* Is the mount locked such that it needs to remain connected? */
1470 if (IS_MNT_LOCKED(mnt))
1471 return false;
1472
1473 /* By default disconnect the mount */
1474 return true;
1475 }
1476
1477 /*
1478 * mount_lock must be held
1479 * namespace_sem must be held for write
1480 */
1481 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1482 {
1483 LIST_HEAD(tmp_list);
1484 struct mount *p;
1485
1486 if (how & UMOUNT_PROPAGATE)
1487 propagate_mount_unlock(mnt);
1488
1489 /* Gather the mounts to umount */
1490 for (p = mnt; p; p = next_mnt(p, mnt)) {
1491 p->mnt.mnt_flags |= MNT_UMOUNT;
1492 list_move(&p->mnt_list, &tmp_list);
1493 }
1494
1495 /* Hide the mounts from mnt_mounts */
1496 list_for_each_entry(p, &tmp_list, mnt_list) {
1497 list_del_init(&p->mnt_child);
1498 }
1499
1500 /* Add propogated mounts to the tmp_list */
1501 if (how & UMOUNT_PROPAGATE)
1502 propagate_umount(&tmp_list);
1503
1504 while (!list_empty(&tmp_list)) {
1505 struct mnt_namespace *ns;
1506 bool disconnect;
1507 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1508 list_del_init(&p->mnt_expire);
1509 list_del_init(&p->mnt_list);
1510 ns = p->mnt_ns;
1511 if (ns) {
1512 ns->mounts--;
1513 __touch_mnt_namespace(ns);
1514 }
1515 p->mnt_ns = NULL;
1516 if (how & UMOUNT_SYNC)
1517 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1518
1519 disconnect = disconnect_mount(p, how);
1520
1521 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1522 disconnect ? &unmounted : NULL);
1523 if (mnt_has_parent(p)) {
1524 mnt_add_count(p->mnt_parent, -1);
1525 if (!disconnect) {
1526 /* Don't forget about p */
1527 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1528 } else {
1529 umount_mnt(p);
1530 }
1531 }
1532 change_mnt_propagation(p, MS_PRIVATE);
1533 }
1534 }
1535
1536 static void shrink_submounts(struct mount *mnt);
1537
1538 static int do_umount(struct mount *mnt, int flags)
1539 {
1540 struct super_block *sb = mnt->mnt.mnt_sb;
1541 int retval;
1542
1543 retval = security_sb_umount(&mnt->mnt, flags);
1544 if (retval)
1545 return retval;
1546
1547 /*
1548 * Allow userspace to request a mountpoint be expired rather than
1549 * unmounting unconditionally. Unmount only happens if:
1550 * (1) the mark is already set (the mark is cleared by mntput())
1551 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1552 */
1553 if (flags & MNT_EXPIRE) {
1554 if (&mnt->mnt == current->fs->root.mnt ||
1555 flags & (MNT_FORCE | MNT_DETACH))
1556 return -EINVAL;
1557
1558 /*
1559 * probably don't strictly need the lock here if we examined
1560 * all race cases, but it's a slowpath.
1561 */
1562 lock_mount_hash();
1563 if (mnt_get_count(mnt) != 2) {
1564 unlock_mount_hash();
1565 return -EBUSY;
1566 }
1567 unlock_mount_hash();
1568
1569 if (!xchg(&mnt->mnt_expiry_mark, 1))
1570 return -EAGAIN;
1571 }
1572
1573 /*
1574 * If we may have to abort operations to get out of this
1575 * mount, and they will themselves hold resources we must
1576 * allow the fs to do things. In the Unix tradition of
1577 * 'Gee thats tricky lets do it in userspace' the umount_begin
1578 * might fail to complete on the first run through as other tasks
1579 * must return, and the like. Thats for the mount program to worry
1580 * about for the moment.
1581 */
1582
1583 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1584 sb->s_op->umount_begin(sb);
1585 }
1586
1587 /*
1588 * No sense to grab the lock for this test, but test itself looks
1589 * somewhat bogus. Suggestions for better replacement?
1590 * Ho-hum... In principle, we might treat that as umount + switch
1591 * to rootfs. GC would eventually take care of the old vfsmount.
1592 * Actually it makes sense, especially if rootfs would contain a
1593 * /reboot - static binary that would close all descriptors and
1594 * call reboot(9). Then init(8) could umount root and exec /reboot.
1595 */
1596 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1597 /*
1598 * Special case for "unmounting" root ...
1599 * we just try to remount it readonly.
1600 */
1601 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1602 return -EPERM;
1603 down_write(&sb->s_umount);
1604 if (!sb_rdonly(sb))
1605 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1606 up_write(&sb->s_umount);
1607 return retval;
1608 }
1609
1610 namespace_lock();
1611 lock_mount_hash();
1612 event++;
1613
1614 if (flags & MNT_DETACH) {
1615 if (!list_empty(&mnt->mnt_list))
1616 umount_tree(mnt, UMOUNT_PROPAGATE);
1617 retval = 0;
1618 } else {
1619 shrink_submounts(mnt);
1620 retval = -EBUSY;
1621 if (!propagate_mount_busy(mnt, 2)) {
1622 if (!list_empty(&mnt->mnt_list))
1623 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1624 retval = 0;
1625 }
1626 }
1627 unlock_mount_hash();
1628 namespace_unlock();
1629 return retval;
1630 }
1631
1632 /*
1633 * __detach_mounts - lazily unmount all mounts on the specified dentry
1634 *
1635 * During unlink, rmdir, and d_drop it is possible to loose the path
1636 * to an existing mountpoint, and wind up leaking the mount.
1637 * detach_mounts allows lazily unmounting those mounts instead of
1638 * leaking them.
1639 *
1640 * The caller may hold dentry->d_inode->i_mutex.
1641 */
1642 void __detach_mounts(struct dentry *dentry)
1643 {
1644 struct mountpoint *mp;
1645 struct mount *mnt;
1646
1647 namespace_lock();
1648 lock_mount_hash();
1649 mp = lookup_mountpoint(dentry);
1650 if (IS_ERR_OR_NULL(mp))
1651 goto out_unlock;
1652
1653 event++;
1654 while (!hlist_empty(&mp->m_list)) {
1655 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1656 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1657 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1658 umount_mnt(mnt);
1659 }
1660 else umount_tree(mnt, UMOUNT_CONNECTED);
1661 }
1662 put_mountpoint(mp);
1663 out_unlock:
1664 unlock_mount_hash();
1665 namespace_unlock();
1666 }
1667
1668 /*
1669 * Is the caller allowed to modify his namespace?
1670 */
1671 static inline bool may_mount(void)
1672 {
1673 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1674 }
1675
1676 static inline bool may_mandlock(void)
1677 {
1678 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1679 return false;
1680 #endif
1681 return capable(CAP_SYS_ADMIN);
1682 }
1683
1684 /*
1685 * Now umount can handle mount points as well as block devices.
1686 * This is important for filesystems which use unnamed block devices.
1687 *
1688 * We now support a flag for forced unmount like the other 'big iron'
1689 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1690 */
1691
1692 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1693 {
1694 struct path path;
1695 struct mount *mnt;
1696 int retval;
1697 int lookup_flags = 0;
1698
1699 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1700 return -EINVAL;
1701
1702 if (!may_mount())
1703 return -EPERM;
1704
1705 if (!(flags & UMOUNT_NOFOLLOW))
1706 lookup_flags |= LOOKUP_FOLLOW;
1707
1708 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1709 if (retval)
1710 goto out;
1711 mnt = real_mount(path.mnt);
1712 retval = -EINVAL;
1713 if (path.dentry != path.mnt->mnt_root)
1714 goto dput_and_out;
1715 if (!check_mnt(mnt))
1716 goto dput_and_out;
1717 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1718 goto dput_and_out;
1719 retval = -EPERM;
1720 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1721 goto dput_and_out;
1722
1723 retval = do_umount(mnt, flags);
1724 dput_and_out:
1725 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1726 dput(path.dentry);
1727 mntput_no_expire(mnt);
1728 out:
1729 return retval;
1730 }
1731
1732 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1733
1734 /*
1735 * The 2.0 compatible umount. No flags.
1736 */
1737 SYSCALL_DEFINE1(oldumount, char __user *, name)
1738 {
1739 return sys_umount(name, 0);
1740 }
1741
1742 #endif
1743
1744 static bool is_mnt_ns_file(struct dentry *dentry)
1745 {
1746 /* Is this a proxy for a mount namespace? */
1747 return dentry->d_op == &ns_dentry_operations &&
1748 dentry->d_fsdata == &mntns_operations;
1749 }
1750
1751 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1752 {
1753 return container_of(ns, struct mnt_namespace, ns);
1754 }
1755
1756 static bool mnt_ns_loop(struct dentry *dentry)
1757 {
1758 /* Could bind mounting the mount namespace inode cause a
1759 * mount namespace loop?
1760 */
1761 struct mnt_namespace *mnt_ns;
1762 if (!is_mnt_ns_file(dentry))
1763 return false;
1764
1765 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1766 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1767 }
1768
1769 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1770 int flag)
1771 {
1772 struct mount *res, *p, *q, *r, *parent;
1773
1774 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1775 return ERR_PTR(-EINVAL);
1776
1777 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1778 return ERR_PTR(-EINVAL);
1779
1780 res = q = clone_mnt(mnt, dentry, flag);
1781 if (IS_ERR(q))
1782 return q;
1783
1784 q->mnt_mountpoint = mnt->mnt_mountpoint;
1785
1786 p = mnt;
1787 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1788 struct mount *s;
1789 if (!is_subdir(r->mnt_mountpoint, dentry))
1790 continue;
1791
1792 for (s = r; s; s = next_mnt(s, r)) {
1793 if (!(flag & CL_COPY_UNBINDABLE) &&
1794 IS_MNT_UNBINDABLE(s)) {
1795 s = skip_mnt_tree(s);
1796 continue;
1797 }
1798 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1799 is_mnt_ns_file(s->mnt.mnt_root)) {
1800 s = skip_mnt_tree(s);
1801 continue;
1802 }
1803 while (p != s->mnt_parent) {
1804 p = p->mnt_parent;
1805 q = q->mnt_parent;
1806 }
1807 p = s;
1808 parent = q;
1809 q = clone_mnt(p, p->mnt.mnt_root, flag);
1810 if (IS_ERR(q))
1811 goto out;
1812 lock_mount_hash();
1813 list_add_tail(&q->mnt_list, &res->mnt_list);
1814 attach_mnt(q, parent, p->mnt_mp);
1815 unlock_mount_hash();
1816 }
1817 }
1818 return res;
1819 out:
1820 if (res) {
1821 lock_mount_hash();
1822 umount_tree(res, UMOUNT_SYNC);
1823 unlock_mount_hash();
1824 }
1825 return q;
1826 }
1827
1828 /* Caller should check returned pointer for errors */
1829
1830 struct vfsmount *collect_mounts(const struct path *path)
1831 {
1832 struct mount *tree;
1833 namespace_lock();
1834 if (!check_mnt(real_mount(path->mnt)))
1835 tree = ERR_PTR(-EINVAL);
1836 else
1837 tree = copy_tree(real_mount(path->mnt), path->dentry,
1838 CL_COPY_ALL | CL_PRIVATE);
1839 namespace_unlock();
1840 if (IS_ERR(tree))
1841 return ERR_CAST(tree);
1842 return &tree->mnt;
1843 }
1844
1845 void drop_collected_mounts(struct vfsmount *mnt)
1846 {
1847 namespace_lock();
1848 lock_mount_hash();
1849 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1850 unlock_mount_hash();
1851 namespace_unlock();
1852 }
1853
1854 /**
1855 * clone_private_mount - create a private clone of a path
1856 *
1857 * This creates a new vfsmount, which will be the clone of @path. The new will
1858 * not be attached anywhere in the namespace and will be private (i.e. changes
1859 * to the originating mount won't be propagated into this).
1860 *
1861 * Release with mntput().
1862 */
1863 struct vfsmount *clone_private_mount(const struct path *path)
1864 {
1865 struct mount *old_mnt = real_mount(path->mnt);
1866 struct mount *new_mnt;
1867
1868 if (IS_MNT_UNBINDABLE(old_mnt))
1869 return ERR_PTR(-EINVAL);
1870
1871 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1872 if (IS_ERR(new_mnt))
1873 return ERR_CAST(new_mnt);
1874
1875 return &new_mnt->mnt;
1876 }
1877 EXPORT_SYMBOL_GPL(clone_private_mount);
1878
1879 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1880 struct vfsmount *root)
1881 {
1882 struct mount *mnt;
1883 int res = f(root, arg);
1884 if (res)
1885 return res;
1886 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1887 res = f(&mnt->mnt, arg);
1888 if (res)
1889 return res;
1890 }
1891 return 0;
1892 }
1893 EXPORT_SYMBOL_GPL(iterate_mounts);
1894
1895 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1896 {
1897 struct mount *p;
1898
1899 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1900 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1901 mnt_release_group_id(p);
1902 }
1903 }
1904
1905 static int invent_group_ids(struct mount *mnt, bool recurse)
1906 {
1907 struct mount *p;
1908
1909 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1910 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1911 int err = mnt_alloc_group_id(p);
1912 if (err) {
1913 cleanup_group_ids(mnt, p);
1914 return err;
1915 }
1916 }
1917 }
1918
1919 return 0;
1920 }
1921
1922 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1923 {
1924 unsigned int max = READ_ONCE(sysctl_mount_max);
1925 unsigned int mounts = 0, old, pending, sum;
1926 struct mount *p;
1927
1928 for (p = mnt; p; p = next_mnt(p, mnt))
1929 mounts++;
1930
1931 old = ns->mounts;
1932 pending = ns->pending_mounts;
1933 sum = old + pending;
1934 if ((old > sum) ||
1935 (pending > sum) ||
1936 (max < sum) ||
1937 (mounts > (max - sum)))
1938 return -ENOSPC;
1939
1940 ns->pending_mounts = pending + mounts;
1941 return 0;
1942 }
1943
1944 /*
1945 * @source_mnt : mount tree to be attached
1946 * @nd : place the mount tree @source_mnt is attached
1947 * @parent_nd : if non-null, detach the source_mnt from its parent and
1948 * store the parent mount and mountpoint dentry.
1949 * (done when source_mnt is moved)
1950 *
1951 * NOTE: in the table below explains the semantics when a source mount
1952 * of a given type is attached to a destination mount of a given type.
1953 * ---------------------------------------------------------------------------
1954 * | BIND MOUNT OPERATION |
1955 * |**************************************************************************
1956 * | source-->| shared | private | slave | unbindable |
1957 * | dest | | | | |
1958 * | | | | | | |
1959 * | v | | | | |
1960 * |**************************************************************************
1961 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1962 * | | | | | |
1963 * |non-shared| shared (+) | private | slave (*) | invalid |
1964 * ***************************************************************************
1965 * A bind operation clones the source mount and mounts the clone on the
1966 * destination mount.
1967 *
1968 * (++) the cloned mount is propagated to all the mounts in the propagation
1969 * tree of the destination mount and the cloned mount is added to
1970 * the peer group of the source mount.
1971 * (+) the cloned mount is created under the destination mount and is marked
1972 * as shared. The cloned mount is added to the peer group of the source
1973 * mount.
1974 * (+++) the mount is propagated to all the mounts in the propagation tree
1975 * of the destination mount and the cloned mount is made slave
1976 * of the same master as that of the source mount. The cloned mount
1977 * is marked as 'shared and slave'.
1978 * (*) the cloned mount is made a slave of the same master as that of the
1979 * source mount.
1980 *
1981 * ---------------------------------------------------------------------------
1982 * | MOVE MOUNT OPERATION |
1983 * |**************************************************************************
1984 * | source-->| shared | private | slave | unbindable |
1985 * | dest | | | | |
1986 * | | | | | | |
1987 * | v | | | | |
1988 * |**************************************************************************
1989 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1990 * | | | | | |
1991 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1992 * ***************************************************************************
1993 *
1994 * (+) the mount is moved to the destination. And is then propagated to
1995 * all the mounts in the propagation tree of the destination mount.
1996 * (+*) the mount is moved to the destination.
1997 * (+++) the mount is moved to the destination and is then propagated to
1998 * all the mounts belonging to the destination mount's propagation tree.
1999 * the mount is marked as 'shared and slave'.
2000 * (*) the mount continues to be a slave at the new location.
2001 *
2002 * if the source mount is a tree, the operations explained above is
2003 * applied to each mount in the tree.
2004 * Must be called without spinlocks held, since this function can sleep
2005 * in allocations.
2006 */
2007 static int attach_recursive_mnt(struct mount *source_mnt,
2008 struct mount *dest_mnt,
2009 struct mountpoint *dest_mp,
2010 struct path *parent_path)
2011 {
2012 HLIST_HEAD(tree_list);
2013 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2014 struct mountpoint *smp;
2015 struct mount *child, *p;
2016 struct hlist_node *n;
2017 int err;
2018
2019 /* Preallocate a mountpoint in case the new mounts need
2020 * to be tucked under other mounts.
2021 */
2022 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2023 if (IS_ERR(smp))
2024 return PTR_ERR(smp);
2025
2026 /* Is there space to add these mounts to the mount namespace? */
2027 if (!parent_path) {
2028 err = count_mounts(ns, source_mnt);
2029 if (err)
2030 goto out;
2031 }
2032
2033 if (IS_MNT_SHARED(dest_mnt)) {
2034 err = invent_group_ids(source_mnt, true);
2035 if (err)
2036 goto out;
2037 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2038 lock_mount_hash();
2039 if (err)
2040 goto out_cleanup_ids;
2041 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2042 set_mnt_shared(p);
2043 } else {
2044 lock_mount_hash();
2045 }
2046 if (parent_path) {
2047 detach_mnt(source_mnt, parent_path);
2048 attach_mnt(source_mnt, dest_mnt, dest_mp);
2049 touch_mnt_namespace(source_mnt->mnt_ns);
2050 } else {
2051 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2052 commit_tree(source_mnt);
2053 }
2054
2055 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2056 struct mount *q;
2057 hlist_del_init(&child->mnt_hash);
2058 q = __lookup_mnt(&child->mnt_parent->mnt,
2059 child->mnt_mountpoint);
2060 if (q)
2061 mnt_change_mountpoint(child, smp, q);
2062 commit_tree(child);
2063 }
2064 put_mountpoint(smp);
2065 unlock_mount_hash();
2066
2067 return 0;
2068
2069 out_cleanup_ids:
2070 while (!hlist_empty(&tree_list)) {
2071 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2072 child->mnt_parent->mnt_ns->pending_mounts = 0;
2073 umount_tree(child, UMOUNT_SYNC);
2074 }
2075 unlock_mount_hash();
2076 cleanup_group_ids(source_mnt, NULL);
2077 out:
2078 ns->pending_mounts = 0;
2079
2080 read_seqlock_excl(&mount_lock);
2081 put_mountpoint(smp);
2082 read_sequnlock_excl(&mount_lock);
2083
2084 return err;
2085 }
2086
2087 static struct mountpoint *lock_mount(struct path *path)
2088 {
2089 struct vfsmount *mnt;
2090 struct dentry *dentry = path->dentry;
2091 retry:
2092 inode_lock(dentry->d_inode);
2093 if (unlikely(cant_mount(dentry))) {
2094 inode_unlock(dentry->d_inode);
2095 return ERR_PTR(-ENOENT);
2096 }
2097 namespace_lock();
2098 mnt = lookup_mnt(path);
2099 if (likely(!mnt)) {
2100 struct mountpoint *mp = get_mountpoint(dentry);
2101 if (IS_ERR(mp)) {
2102 namespace_unlock();
2103 inode_unlock(dentry->d_inode);
2104 return mp;
2105 }
2106 return mp;
2107 }
2108 namespace_unlock();
2109 inode_unlock(path->dentry->d_inode);
2110 path_put(path);
2111 path->mnt = mnt;
2112 dentry = path->dentry = dget(mnt->mnt_root);
2113 goto retry;
2114 }
2115
2116 static void unlock_mount(struct mountpoint *where)
2117 {
2118 struct dentry *dentry = where->m_dentry;
2119
2120 read_seqlock_excl(&mount_lock);
2121 put_mountpoint(where);
2122 read_sequnlock_excl(&mount_lock);
2123
2124 namespace_unlock();
2125 inode_unlock(dentry->d_inode);
2126 }
2127
2128 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2129 {
2130 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2131 return -EINVAL;
2132
2133 if (d_is_dir(mp->m_dentry) !=
2134 d_is_dir(mnt->mnt.mnt_root))
2135 return -ENOTDIR;
2136
2137 return attach_recursive_mnt(mnt, p, mp, NULL);
2138 }
2139
2140 /*
2141 * Sanity check the flags to change_mnt_propagation.
2142 */
2143
2144 static int flags_to_propagation_type(int ms_flags)
2145 {
2146 int type = ms_flags & ~(MS_REC | MS_SILENT);
2147
2148 /* Fail if any non-propagation flags are set */
2149 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2150 return 0;
2151 /* Only one propagation flag should be set */
2152 if (!is_power_of_2(type))
2153 return 0;
2154 return type;
2155 }
2156
2157 /*
2158 * recursively change the type of the mountpoint.
2159 */
2160 static int do_change_type(struct path *path, int ms_flags)
2161 {
2162 struct mount *m;
2163 struct mount *mnt = real_mount(path->mnt);
2164 int recurse = ms_flags & MS_REC;
2165 int type;
2166 int err = 0;
2167
2168 if (path->dentry != path->mnt->mnt_root)
2169 return -EINVAL;
2170
2171 type = flags_to_propagation_type(ms_flags);
2172 if (!type)
2173 return -EINVAL;
2174
2175 namespace_lock();
2176 if (type == MS_SHARED) {
2177 err = invent_group_ids(mnt, recurse);
2178 if (err)
2179 goto out_unlock;
2180 }
2181
2182 lock_mount_hash();
2183 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2184 change_mnt_propagation(m, type);
2185 unlock_mount_hash();
2186
2187 out_unlock:
2188 namespace_unlock();
2189 return err;
2190 }
2191
2192 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2193 {
2194 struct mount *child;
2195 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2196 if (!is_subdir(child->mnt_mountpoint, dentry))
2197 continue;
2198
2199 if (child->mnt.mnt_flags & MNT_LOCKED)
2200 return true;
2201 }
2202 return false;
2203 }
2204
2205 /*
2206 * do loopback mount.
2207 */
2208 static int do_loopback(struct path *path, const char *old_name,
2209 int recurse)
2210 {
2211 struct path old_path;
2212 struct mount *mnt = NULL, *old, *parent;
2213 struct mountpoint *mp;
2214 int err;
2215 if (!old_name || !*old_name)
2216 return -EINVAL;
2217 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2218 if (err)
2219 return err;
2220
2221 err = -EINVAL;
2222 if (mnt_ns_loop(old_path.dentry))
2223 goto out;
2224
2225 mp = lock_mount(path);
2226 err = PTR_ERR(mp);
2227 if (IS_ERR(mp))
2228 goto out;
2229
2230 old = real_mount(old_path.mnt);
2231 parent = real_mount(path->mnt);
2232
2233 err = -EINVAL;
2234 if (IS_MNT_UNBINDABLE(old))
2235 goto out2;
2236
2237 if (!check_mnt(parent))
2238 goto out2;
2239
2240 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2241 goto out2;
2242
2243 if (!recurse && has_locked_children(old, old_path.dentry))
2244 goto out2;
2245
2246 if (recurse)
2247 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2248 else
2249 mnt = clone_mnt(old, old_path.dentry, 0);
2250
2251 if (IS_ERR(mnt)) {
2252 err = PTR_ERR(mnt);
2253 goto out2;
2254 }
2255
2256 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2257
2258 err = graft_tree(mnt, parent, mp);
2259 if (err) {
2260 lock_mount_hash();
2261 umount_tree(mnt, UMOUNT_SYNC);
2262 unlock_mount_hash();
2263 }
2264 out2:
2265 unlock_mount(mp);
2266 out:
2267 path_put(&old_path);
2268 return err;
2269 }
2270
2271 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2272 {
2273 int error = 0;
2274 int readonly_request = 0;
2275
2276 if (ms_flags & MS_RDONLY)
2277 readonly_request = 1;
2278 if (readonly_request == __mnt_is_readonly(mnt))
2279 return 0;
2280
2281 if (readonly_request)
2282 error = mnt_make_readonly(real_mount(mnt));
2283 else
2284 __mnt_unmake_readonly(real_mount(mnt));
2285 return error;
2286 }
2287
2288 /*
2289 * change filesystem flags. dir should be a physical root of filesystem.
2290 * If you've mounted a non-root directory somewhere and want to do remount
2291 * on it - tough luck.
2292 */
2293 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2294 int mnt_flags, void *data)
2295 {
2296 int err;
2297 struct super_block *sb = path->mnt->mnt_sb;
2298 struct mount *mnt = real_mount(path->mnt);
2299
2300 if (!check_mnt(mnt))
2301 return -EINVAL;
2302
2303 if (path->dentry != path->mnt->mnt_root)
2304 return -EINVAL;
2305
2306 /* Don't allow changing of locked mnt flags.
2307 *
2308 * No locks need to be held here while testing the various
2309 * MNT_LOCK flags because those flags can never be cleared
2310 * once they are set.
2311 */
2312 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2313 !(mnt_flags & MNT_READONLY)) {
2314 return -EPERM;
2315 }
2316 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2317 !(mnt_flags & MNT_NODEV)) {
2318 return -EPERM;
2319 }
2320 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2321 !(mnt_flags & MNT_NOSUID)) {
2322 return -EPERM;
2323 }
2324 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2325 !(mnt_flags & MNT_NOEXEC)) {
2326 return -EPERM;
2327 }
2328 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2329 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2330 return -EPERM;
2331 }
2332
2333 err = security_sb_remount(sb, data);
2334 if (err)
2335 return err;
2336
2337 down_write(&sb->s_umount);
2338 if (ms_flags & MS_BIND)
2339 err = change_mount_flags(path->mnt, ms_flags);
2340 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2341 err = -EPERM;
2342 else
2343 err = do_remount_sb(sb, sb_flags, data, 0);
2344 if (!err) {
2345 lock_mount_hash();
2346 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2347 mnt->mnt.mnt_flags = mnt_flags;
2348 touch_mnt_namespace(mnt->mnt_ns);
2349 unlock_mount_hash();
2350 }
2351 up_write(&sb->s_umount);
2352 return err;
2353 }
2354
2355 static inline int tree_contains_unbindable(struct mount *mnt)
2356 {
2357 struct mount *p;
2358 for (p = mnt; p; p = next_mnt(p, mnt)) {
2359 if (IS_MNT_UNBINDABLE(p))
2360 return 1;
2361 }
2362 return 0;
2363 }
2364
2365 static int do_move_mount(struct path *path, const char *old_name)
2366 {
2367 struct path old_path, parent_path;
2368 struct mount *p;
2369 struct mount *old;
2370 struct mountpoint *mp;
2371 int err;
2372 if (!old_name || !*old_name)
2373 return -EINVAL;
2374 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2375 if (err)
2376 return err;
2377
2378 mp = lock_mount(path);
2379 err = PTR_ERR(mp);
2380 if (IS_ERR(mp))
2381 goto out;
2382
2383 old = real_mount(old_path.mnt);
2384 p = real_mount(path->mnt);
2385
2386 err = -EINVAL;
2387 if (!check_mnt(p) || !check_mnt(old))
2388 goto out1;
2389
2390 if (old->mnt.mnt_flags & MNT_LOCKED)
2391 goto out1;
2392
2393 err = -EINVAL;
2394 if (old_path.dentry != old_path.mnt->mnt_root)
2395 goto out1;
2396
2397 if (!mnt_has_parent(old))
2398 goto out1;
2399
2400 if (d_is_dir(path->dentry) !=
2401 d_is_dir(old_path.dentry))
2402 goto out1;
2403 /*
2404 * Don't move a mount residing in a shared parent.
2405 */
2406 if (IS_MNT_SHARED(old->mnt_parent))
2407 goto out1;
2408 /*
2409 * Don't move a mount tree containing unbindable mounts to a destination
2410 * mount which is shared.
2411 */
2412 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2413 goto out1;
2414 err = -ELOOP;
2415 for (; mnt_has_parent(p); p = p->mnt_parent)
2416 if (p == old)
2417 goto out1;
2418
2419 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2420 if (err)
2421 goto out1;
2422
2423 /* if the mount is moved, it should no longer be expire
2424 * automatically */
2425 list_del_init(&old->mnt_expire);
2426 out1:
2427 unlock_mount(mp);
2428 out:
2429 if (!err)
2430 path_put(&parent_path);
2431 path_put(&old_path);
2432 return err;
2433 }
2434
2435 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2436 {
2437 int err;
2438 const char *subtype = strchr(fstype, '.');
2439 if (subtype) {
2440 subtype++;
2441 err = -EINVAL;
2442 if (!subtype[0])
2443 goto err;
2444 } else
2445 subtype = "";
2446
2447 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2448 err = -ENOMEM;
2449 if (!mnt->mnt_sb->s_subtype)
2450 goto err;
2451 return mnt;
2452
2453 err:
2454 mntput(mnt);
2455 return ERR_PTR(err);
2456 }
2457
2458 /*
2459 * add a mount into a namespace's mount tree
2460 */
2461 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2462 {
2463 struct mountpoint *mp;
2464 struct mount *parent;
2465 int err;
2466
2467 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2468
2469 mp = lock_mount(path);
2470 if (IS_ERR(mp))
2471 return PTR_ERR(mp);
2472
2473 parent = real_mount(path->mnt);
2474 err = -EINVAL;
2475 if (unlikely(!check_mnt(parent))) {
2476 /* that's acceptable only for automounts done in private ns */
2477 if (!(mnt_flags & MNT_SHRINKABLE))
2478 goto unlock;
2479 /* ... and for those we'd better have mountpoint still alive */
2480 if (!parent->mnt_ns)
2481 goto unlock;
2482 }
2483
2484 /* Refuse the same filesystem on the same mount point */
2485 err = -EBUSY;
2486 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2487 path->mnt->mnt_root == path->dentry)
2488 goto unlock;
2489
2490 err = -EINVAL;
2491 if (d_is_symlink(newmnt->mnt.mnt_root))
2492 goto unlock;
2493
2494 newmnt->mnt.mnt_flags = mnt_flags;
2495 err = graft_tree(newmnt, parent, mp);
2496
2497 unlock:
2498 unlock_mount(mp);
2499 return err;
2500 }
2501
2502 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2503
2504 /*
2505 * create a new mount for userspace and request it to be added into the
2506 * namespace's tree
2507 */
2508 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2509 int mnt_flags, const char *name, void *data)
2510 {
2511 struct file_system_type *type;
2512 struct vfsmount *mnt;
2513 int err;
2514
2515 if (!fstype)
2516 return -EINVAL;
2517
2518 type = get_fs_type(fstype);
2519 if (!type)
2520 return -ENODEV;
2521
2522 mnt = vfs_kern_mount(type, sb_flags, name, data);
2523 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2524 !mnt->mnt_sb->s_subtype)
2525 mnt = fs_set_subtype(mnt, fstype);
2526
2527 put_filesystem(type);
2528 if (IS_ERR(mnt))
2529 return PTR_ERR(mnt);
2530
2531 if (mount_too_revealing(mnt, &mnt_flags)) {
2532 mntput(mnt);
2533 return -EPERM;
2534 }
2535
2536 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2537 if (err)
2538 mntput(mnt);
2539 return err;
2540 }
2541
2542 int finish_automount(struct vfsmount *m, struct path *path)
2543 {
2544 struct mount *mnt = real_mount(m);
2545 int err;
2546 /* The new mount record should have at least 2 refs to prevent it being
2547 * expired before we get a chance to add it
2548 */
2549 BUG_ON(mnt_get_count(mnt) < 2);
2550
2551 if (m->mnt_sb == path->mnt->mnt_sb &&
2552 m->mnt_root == path->dentry) {
2553 err = -ELOOP;
2554 goto fail;
2555 }
2556
2557 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2558 if (!err)
2559 return 0;
2560 fail:
2561 /* remove m from any expiration list it may be on */
2562 if (!list_empty(&mnt->mnt_expire)) {
2563 namespace_lock();
2564 list_del_init(&mnt->mnt_expire);
2565 namespace_unlock();
2566 }
2567 mntput(m);
2568 mntput(m);
2569 return err;
2570 }
2571
2572 /**
2573 * mnt_set_expiry - Put a mount on an expiration list
2574 * @mnt: The mount to list.
2575 * @expiry_list: The list to add the mount to.
2576 */
2577 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2578 {
2579 namespace_lock();
2580
2581 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2582
2583 namespace_unlock();
2584 }
2585 EXPORT_SYMBOL(mnt_set_expiry);
2586
2587 /*
2588 * process a list of expirable mountpoints with the intent of discarding any
2589 * mountpoints that aren't in use and haven't been touched since last we came
2590 * here
2591 */
2592 void mark_mounts_for_expiry(struct list_head *mounts)
2593 {
2594 struct mount *mnt, *next;
2595 LIST_HEAD(graveyard);
2596
2597 if (list_empty(mounts))
2598 return;
2599
2600 namespace_lock();
2601 lock_mount_hash();
2602
2603 /* extract from the expiration list every vfsmount that matches the
2604 * following criteria:
2605 * - only referenced by its parent vfsmount
2606 * - still marked for expiry (marked on the last call here; marks are
2607 * cleared by mntput())
2608 */
2609 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2610 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2611 propagate_mount_busy(mnt, 1))
2612 continue;
2613 list_move(&mnt->mnt_expire, &graveyard);
2614 }
2615 while (!list_empty(&graveyard)) {
2616 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2617 touch_mnt_namespace(mnt->mnt_ns);
2618 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2619 }
2620 unlock_mount_hash();
2621 namespace_unlock();
2622 }
2623
2624 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2625
2626 /*
2627 * Ripoff of 'select_parent()'
2628 *
2629 * search the list of submounts for a given mountpoint, and move any
2630 * shrinkable submounts to the 'graveyard' list.
2631 */
2632 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2633 {
2634 struct mount *this_parent = parent;
2635 struct list_head *next;
2636 int found = 0;
2637
2638 repeat:
2639 next = this_parent->mnt_mounts.next;
2640 resume:
2641 while (next != &this_parent->mnt_mounts) {
2642 struct list_head *tmp = next;
2643 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2644
2645 next = tmp->next;
2646 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2647 continue;
2648 /*
2649 * Descend a level if the d_mounts list is non-empty.
2650 */
2651 if (!list_empty(&mnt->mnt_mounts)) {
2652 this_parent = mnt;
2653 goto repeat;
2654 }
2655
2656 if (!propagate_mount_busy(mnt, 1)) {
2657 list_move_tail(&mnt->mnt_expire, graveyard);
2658 found++;
2659 }
2660 }
2661 /*
2662 * All done at this level ... ascend and resume the search
2663 */
2664 if (this_parent != parent) {
2665 next = this_parent->mnt_child.next;
2666 this_parent = this_parent->mnt_parent;
2667 goto resume;
2668 }
2669 return found;
2670 }
2671
2672 /*
2673 * process a list of expirable mountpoints with the intent of discarding any
2674 * submounts of a specific parent mountpoint
2675 *
2676 * mount_lock must be held for write
2677 */
2678 static void shrink_submounts(struct mount *mnt)
2679 {
2680 LIST_HEAD(graveyard);
2681 struct mount *m;
2682
2683 /* extract submounts of 'mountpoint' from the expiration list */
2684 while (select_submounts(mnt, &graveyard)) {
2685 while (!list_empty(&graveyard)) {
2686 m = list_first_entry(&graveyard, struct mount,
2687 mnt_expire);
2688 touch_mnt_namespace(m->mnt_ns);
2689 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2690 }
2691 }
2692 }
2693
2694 /*
2695 * Some copy_from_user() implementations do not return the exact number of
2696 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2697 * Note that this function differs from copy_from_user() in that it will oops
2698 * on bad values of `to', rather than returning a short copy.
2699 */
2700 static long exact_copy_from_user(void *to, const void __user * from,
2701 unsigned long n)
2702 {
2703 char *t = to;
2704 const char __user *f = from;
2705 char c;
2706
2707 if (!access_ok(VERIFY_READ, from, n))
2708 return n;
2709
2710 while (n) {
2711 if (__get_user(c, f)) {
2712 memset(t, 0, n);
2713 break;
2714 }
2715 *t++ = c;
2716 f++;
2717 n--;
2718 }
2719 return n;
2720 }
2721
2722 void *copy_mount_options(const void __user * data)
2723 {
2724 int i;
2725 unsigned long size;
2726 char *copy;
2727
2728 if (!data)
2729 return NULL;
2730
2731 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2732 if (!copy)
2733 return ERR_PTR(-ENOMEM);
2734
2735 /* We only care that *some* data at the address the user
2736 * gave us is valid. Just in case, we'll zero
2737 * the remainder of the page.
2738 */
2739 /* copy_from_user cannot cross TASK_SIZE ! */
2740 size = TASK_SIZE - (unsigned long)data;
2741 if (size > PAGE_SIZE)
2742 size = PAGE_SIZE;
2743
2744 i = size - exact_copy_from_user(copy, data, size);
2745 if (!i) {
2746 kfree(copy);
2747 return ERR_PTR(-EFAULT);
2748 }
2749 if (i != PAGE_SIZE)
2750 memset(copy + i, 0, PAGE_SIZE - i);
2751 return copy;
2752 }
2753
2754 char *copy_mount_string(const void __user *data)
2755 {
2756 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2757 }
2758
2759 /*
2760 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2761 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2762 *
2763 * data is a (void *) that can point to any structure up to
2764 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2765 * information (or be NULL).
2766 *
2767 * Pre-0.97 versions of mount() didn't have a flags word.
2768 * When the flags word was introduced its top half was required
2769 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2770 * Therefore, if this magic number is present, it carries no information
2771 * and must be discarded.
2772 */
2773 long do_mount(const char *dev_name, const char __user *dir_name,
2774 const char *type_page, unsigned long flags, void *data_page)
2775 {
2776 struct path path;
2777 unsigned int mnt_flags = 0, sb_flags;
2778 int retval = 0;
2779
2780 /* Discard magic */
2781 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2782 flags &= ~MS_MGC_MSK;
2783
2784 /* Basic sanity checks */
2785 if (data_page)
2786 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2787
2788 if (flags & MS_NOUSER)
2789 return -EINVAL;
2790
2791 /* ... and get the mountpoint */
2792 retval = user_path(dir_name, &path);
2793 if (retval)
2794 return retval;
2795
2796 retval = security_sb_mount(dev_name, &path,
2797 type_page, flags, data_page);
2798 if (!retval && !may_mount())
2799 retval = -EPERM;
2800 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2801 retval = -EPERM;
2802 if (retval)
2803 goto dput_out;
2804
2805 /* Default to relatime unless overriden */
2806 if (!(flags & MS_NOATIME))
2807 mnt_flags |= MNT_RELATIME;
2808
2809 /* Separate the per-mountpoint flags */
2810 if (flags & MS_NOSUID)
2811 mnt_flags |= MNT_NOSUID;
2812 if (flags & MS_NODEV)
2813 mnt_flags |= MNT_NODEV;
2814 if (flags & MS_NOEXEC)
2815 mnt_flags |= MNT_NOEXEC;
2816 if (flags & MS_NOATIME)
2817 mnt_flags |= MNT_NOATIME;
2818 if (flags & MS_NODIRATIME)
2819 mnt_flags |= MNT_NODIRATIME;
2820 if (flags & MS_STRICTATIME)
2821 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2822 if (flags & MS_RDONLY)
2823 mnt_flags |= MNT_READONLY;
2824
2825 /* The default atime for remount is preservation */
2826 if ((flags & MS_REMOUNT) &&
2827 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2828 MS_STRICTATIME)) == 0)) {
2829 mnt_flags &= ~MNT_ATIME_MASK;
2830 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2831 }
2832
2833 sb_flags = flags & (SB_RDONLY |
2834 SB_SYNCHRONOUS |
2835 SB_MANDLOCK |
2836 SB_DIRSYNC |
2837 SB_SILENT |
2838 SB_POSIXACL |
2839 SB_LAZYTIME |
2840 SB_I_VERSION);
2841
2842 if (flags & MS_REMOUNT)
2843 retval = do_remount(&path, flags, sb_flags, mnt_flags,
2844 data_page);
2845 else if (flags & MS_BIND)
2846 retval = do_loopback(&path, dev_name, flags & MS_REC);
2847 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2848 retval = do_change_type(&path, flags);
2849 else if (flags & MS_MOVE)
2850 retval = do_move_mount(&path, dev_name);
2851 else
2852 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2853 dev_name, data_page);
2854 dput_out:
2855 path_put(&path);
2856 return retval;
2857 }
2858
2859 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2860 {
2861 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2862 }
2863
2864 static void dec_mnt_namespaces(struct ucounts *ucounts)
2865 {
2866 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2867 }
2868
2869 static void free_mnt_ns(struct mnt_namespace *ns)
2870 {
2871 ns_free_inum(&ns->ns);
2872 dec_mnt_namespaces(ns->ucounts);
2873 put_user_ns(ns->user_ns);
2874 kfree(ns);
2875 }
2876
2877 /*
2878 * Assign a sequence number so we can detect when we attempt to bind
2879 * mount a reference to an older mount namespace into the current
2880 * mount namespace, preventing reference counting loops. A 64bit
2881 * number incrementing at 10Ghz will take 12,427 years to wrap which
2882 * is effectively never, so we can ignore the possibility.
2883 */
2884 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2885
2886 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2887 {
2888 struct mnt_namespace *new_ns;
2889 struct ucounts *ucounts;
2890 int ret;
2891
2892 ucounts = inc_mnt_namespaces(user_ns);
2893 if (!ucounts)
2894 return ERR_PTR(-ENOSPC);
2895
2896 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2897 if (!new_ns) {
2898 dec_mnt_namespaces(ucounts);
2899 return ERR_PTR(-ENOMEM);
2900 }
2901 ret = ns_alloc_inum(&new_ns->ns);
2902 if (ret) {
2903 kfree(new_ns);
2904 dec_mnt_namespaces(ucounts);
2905 return ERR_PTR(ret);
2906 }
2907 new_ns->ns.ops = &mntns_operations;
2908 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2909 atomic_set(&new_ns->count, 1);
2910 new_ns->root = NULL;
2911 INIT_LIST_HEAD(&new_ns->list);
2912 init_waitqueue_head(&new_ns->poll);
2913 new_ns->event = 0;
2914 new_ns->user_ns = get_user_ns(user_ns);
2915 new_ns->ucounts = ucounts;
2916 new_ns->mounts = 0;
2917 new_ns->pending_mounts = 0;
2918 return new_ns;
2919 }
2920
2921 __latent_entropy
2922 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2923 struct user_namespace *user_ns, struct fs_struct *new_fs)
2924 {
2925 struct mnt_namespace *new_ns;
2926 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2927 struct mount *p, *q;
2928 struct mount *old;
2929 struct mount *new;
2930 int copy_flags;
2931
2932 BUG_ON(!ns);
2933
2934 if (likely(!(flags & CLONE_NEWNS))) {
2935 get_mnt_ns(ns);
2936 return ns;
2937 }
2938
2939 old = ns->root;
2940
2941 new_ns = alloc_mnt_ns(user_ns);
2942 if (IS_ERR(new_ns))
2943 return new_ns;
2944
2945 namespace_lock();
2946 /* First pass: copy the tree topology */
2947 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2948 if (user_ns != ns->user_ns)
2949 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2950 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2951 if (IS_ERR(new)) {
2952 namespace_unlock();
2953 free_mnt_ns(new_ns);
2954 return ERR_CAST(new);
2955 }
2956 new_ns->root = new;
2957 list_add_tail(&new_ns->list, &new->mnt_list);
2958
2959 /*
2960 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2961 * as belonging to new namespace. We have already acquired a private
2962 * fs_struct, so tsk->fs->lock is not needed.
2963 */
2964 p = old;
2965 q = new;
2966 while (p) {
2967 q->mnt_ns = new_ns;
2968 new_ns->mounts++;
2969 if (new_fs) {
2970 if (&p->mnt == new_fs->root.mnt) {
2971 new_fs->root.mnt = mntget(&q->mnt);
2972 rootmnt = &p->mnt;
2973 }
2974 if (&p->mnt == new_fs->pwd.mnt) {
2975 new_fs->pwd.mnt = mntget(&q->mnt);
2976 pwdmnt = &p->mnt;
2977 }
2978 }
2979 p = next_mnt(p, old);
2980 q = next_mnt(q, new);
2981 if (!q)
2982 break;
2983 while (p->mnt.mnt_root != q->mnt.mnt_root)
2984 p = next_mnt(p, old);
2985 }
2986 namespace_unlock();
2987
2988 if (rootmnt)
2989 mntput(rootmnt);
2990 if (pwdmnt)
2991 mntput(pwdmnt);
2992
2993 return new_ns;
2994 }
2995
2996 /**
2997 * create_mnt_ns - creates a private namespace and adds a root filesystem
2998 * @mnt: pointer to the new root filesystem mountpoint
2999 */
3000 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
3001 {
3002 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
3003 if (!IS_ERR(new_ns)) {
3004 struct mount *mnt = real_mount(m);
3005 mnt->mnt_ns = new_ns;
3006 new_ns->root = mnt;
3007 new_ns->mounts++;
3008 list_add(&mnt->mnt_list, &new_ns->list);
3009 } else {
3010 mntput(m);
3011 }
3012 return new_ns;
3013 }
3014
3015 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3016 {
3017 struct mnt_namespace *ns;
3018 struct super_block *s;
3019 struct path path;
3020 int err;
3021
3022 ns = create_mnt_ns(mnt);
3023 if (IS_ERR(ns))
3024 return ERR_CAST(ns);
3025
3026 err = vfs_path_lookup(mnt->mnt_root, mnt,
3027 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3028
3029 put_mnt_ns(ns);
3030
3031 if (err)
3032 return ERR_PTR(err);
3033
3034 /* trade a vfsmount reference for active sb one */
3035 s = path.mnt->mnt_sb;
3036 atomic_inc(&s->s_active);
3037 mntput(path.mnt);
3038 /* lock the sucker */
3039 down_write(&s->s_umount);
3040 /* ... and return the root of (sub)tree on it */
3041 return path.dentry;
3042 }
3043 EXPORT_SYMBOL(mount_subtree);
3044
3045 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3046 char __user *, type, unsigned long, flags, void __user *, data)
3047 {
3048 int ret;
3049 char *kernel_type;
3050 char *kernel_dev;
3051 void *options;
3052
3053 kernel_type = copy_mount_string(type);
3054 ret = PTR_ERR(kernel_type);
3055 if (IS_ERR(kernel_type))
3056 goto out_type;
3057
3058 kernel_dev = copy_mount_string(dev_name);
3059 ret = PTR_ERR(kernel_dev);
3060 if (IS_ERR(kernel_dev))
3061 goto out_dev;
3062
3063 options = copy_mount_options(data);
3064 ret = PTR_ERR(options);
3065 if (IS_ERR(options))
3066 goto out_data;
3067
3068 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3069
3070 kfree(options);
3071 out_data:
3072 kfree(kernel_dev);
3073 out_dev:
3074 kfree(kernel_type);
3075 out_type:
3076 return ret;
3077 }
3078
3079 /*
3080 * Return true if path is reachable from root
3081 *
3082 * namespace_sem or mount_lock is held
3083 */
3084 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3085 const struct path *root)
3086 {
3087 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3088 dentry = mnt->mnt_mountpoint;
3089 mnt = mnt->mnt_parent;
3090 }
3091 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3092 }
3093
3094 bool path_is_under(const struct path *path1, const struct path *path2)
3095 {
3096 bool res;
3097 read_seqlock_excl(&mount_lock);
3098 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3099 read_sequnlock_excl(&mount_lock);
3100 return res;
3101 }
3102 EXPORT_SYMBOL(path_is_under);
3103
3104 /*
3105 * pivot_root Semantics:
3106 * Moves the root file system of the current process to the directory put_old,
3107 * makes new_root as the new root file system of the current process, and sets
3108 * root/cwd of all processes which had them on the current root to new_root.
3109 *
3110 * Restrictions:
3111 * The new_root and put_old must be directories, and must not be on the
3112 * same file system as the current process root. The put_old must be
3113 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3114 * pointed to by put_old must yield the same directory as new_root. No other
3115 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3116 *
3117 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3118 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3119 * in this situation.
3120 *
3121 * Notes:
3122 * - we don't move root/cwd if they are not at the root (reason: if something
3123 * cared enough to change them, it's probably wrong to force them elsewhere)
3124 * - it's okay to pick a root that isn't the root of a file system, e.g.
3125 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3126 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3127 * first.
3128 */
3129 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3130 const char __user *, put_old)
3131 {
3132 struct path new, old, parent_path, root_parent, root;
3133 struct mount *new_mnt, *root_mnt, *old_mnt;
3134 struct mountpoint *old_mp, *root_mp;
3135 int error;
3136
3137 if (!may_mount())
3138 return -EPERM;
3139
3140 error = user_path_dir(new_root, &new);
3141 if (error)
3142 goto out0;
3143
3144 error = user_path_dir(put_old, &old);
3145 if (error)
3146 goto out1;
3147
3148 error = security_sb_pivotroot(&old, &new);
3149 if (error)
3150 goto out2;
3151
3152 get_fs_root(current->fs, &root);
3153 old_mp = lock_mount(&old);
3154 error = PTR_ERR(old_mp);
3155 if (IS_ERR(old_mp))
3156 goto out3;
3157
3158 error = -EINVAL;
3159 new_mnt = real_mount(new.mnt);
3160 root_mnt = real_mount(root.mnt);
3161 old_mnt = real_mount(old.mnt);
3162 if (IS_MNT_SHARED(old_mnt) ||
3163 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3164 IS_MNT_SHARED(root_mnt->mnt_parent))
3165 goto out4;
3166 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3167 goto out4;
3168 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3169 goto out4;
3170 error = -ENOENT;
3171 if (d_unlinked(new.dentry))
3172 goto out4;
3173 error = -EBUSY;
3174 if (new_mnt == root_mnt || old_mnt == root_mnt)
3175 goto out4; /* loop, on the same file system */
3176 error = -EINVAL;
3177 if (root.mnt->mnt_root != root.dentry)
3178 goto out4; /* not a mountpoint */
3179 if (!mnt_has_parent(root_mnt))
3180 goto out4; /* not attached */
3181 root_mp = root_mnt->mnt_mp;
3182 if (new.mnt->mnt_root != new.dentry)
3183 goto out4; /* not a mountpoint */
3184 if (!mnt_has_parent(new_mnt))
3185 goto out4; /* not attached */
3186 /* make sure we can reach put_old from new_root */
3187 if (!is_path_reachable(old_mnt, old.dentry, &new))
3188 goto out4;
3189 /* make certain new is below the root */
3190 if (!is_path_reachable(new_mnt, new.dentry, &root))
3191 goto out4;
3192 root_mp->m_count++; /* pin it so it won't go away */
3193 lock_mount_hash();
3194 detach_mnt(new_mnt, &parent_path);
3195 detach_mnt(root_mnt, &root_parent);
3196 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3197 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3198 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3199 }
3200 /* mount old root on put_old */
3201 attach_mnt(root_mnt, old_mnt, old_mp);
3202 /* mount new_root on / */
3203 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3204 touch_mnt_namespace(current->nsproxy->mnt_ns);
3205 /* A moved mount should not expire automatically */
3206 list_del_init(&new_mnt->mnt_expire);
3207 put_mountpoint(root_mp);
3208 unlock_mount_hash();
3209 chroot_fs_refs(&root, &new);
3210 error = 0;
3211 out4:
3212 unlock_mount(old_mp);
3213 if (!error) {
3214 path_put(&root_parent);
3215 path_put(&parent_path);
3216 }
3217 out3:
3218 path_put(&root);
3219 out2:
3220 path_put(&old);
3221 out1:
3222 path_put(&new);
3223 out0:
3224 return error;
3225 }
3226
3227 static void __init init_mount_tree(void)
3228 {
3229 struct vfsmount *mnt;
3230 struct mnt_namespace *ns;
3231 struct path root;
3232 struct file_system_type *type;
3233
3234 type = get_fs_type("rootfs");
3235 if (!type)
3236 panic("Can't find rootfs type");
3237 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3238 put_filesystem(type);
3239 if (IS_ERR(mnt))
3240 panic("Can't create rootfs");
3241
3242 ns = create_mnt_ns(mnt);
3243 if (IS_ERR(ns))
3244 panic("Can't allocate initial namespace");
3245
3246 init_task.nsproxy->mnt_ns = ns;
3247 get_mnt_ns(ns);
3248
3249 root.mnt = mnt;
3250 root.dentry = mnt->mnt_root;
3251 mnt->mnt_flags |= MNT_LOCKED;
3252
3253 set_fs_pwd(current->fs, &root);
3254 set_fs_root(current->fs, &root);
3255 }
3256
3257 void __init mnt_init(void)
3258 {
3259 int err;
3260
3261 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3262 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3263
3264 mount_hashtable = alloc_large_system_hash("Mount-cache",
3265 sizeof(struct hlist_head),
3266 mhash_entries, 19,
3267 HASH_ZERO,
3268 &m_hash_shift, &m_hash_mask, 0, 0);
3269 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3270 sizeof(struct hlist_head),
3271 mphash_entries, 19,
3272 HASH_ZERO,
3273 &mp_hash_shift, &mp_hash_mask, 0, 0);
3274
3275 if (!mount_hashtable || !mountpoint_hashtable)
3276 panic("Failed to allocate mount hash table\n");
3277
3278 kernfs_init();
3279
3280 err = sysfs_init();
3281 if (err)
3282 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3283 __func__, err);
3284 fs_kobj = kobject_create_and_add("fs", NULL);
3285 if (!fs_kobj)
3286 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3287 init_rootfs();
3288 init_mount_tree();
3289 }
3290
3291 void put_mnt_ns(struct mnt_namespace *ns)
3292 {
3293 if (!atomic_dec_and_test(&ns->count))
3294 return;
3295 drop_collected_mounts(&ns->root->mnt);
3296 free_mnt_ns(ns);
3297 }
3298
3299 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3300 {
3301 struct vfsmount *mnt;
3302 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3303 if (!IS_ERR(mnt)) {
3304 /*
3305 * it is a longterm mount, don't release mnt until
3306 * we unmount before file sys is unregistered
3307 */
3308 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3309 }
3310 return mnt;
3311 }
3312 EXPORT_SYMBOL_GPL(kern_mount_data);
3313
3314 void kern_unmount(struct vfsmount *mnt)
3315 {
3316 /* release long term mount so mount point can be released */
3317 if (!IS_ERR_OR_NULL(mnt)) {
3318 real_mount(mnt)->mnt_ns = NULL;
3319 synchronize_rcu(); /* yecchhh... */
3320 mntput(mnt);
3321 }
3322 }
3323 EXPORT_SYMBOL(kern_unmount);
3324
3325 bool our_mnt(struct vfsmount *mnt)
3326 {
3327 return check_mnt(real_mount(mnt));
3328 }
3329
3330 bool current_chrooted(void)
3331 {
3332 /* Does the current process have a non-standard root */
3333 struct path ns_root;
3334 struct path fs_root;
3335 bool chrooted;
3336
3337 /* Find the namespace root */
3338 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3339 ns_root.dentry = ns_root.mnt->mnt_root;
3340 path_get(&ns_root);
3341 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3342 ;
3343
3344 get_fs_root(current->fs, &fs_root);
3345
3346 chrooted = !path_equal(&fs_root, &ns_root);
3347
3348 path_put(&fs_root);
3349 path_put(&ns_root);
3350
3351 return chrooted;
3352 }
3353
3354 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3355 int *new_mnt_flags)
3356 {
3357 int new_flags = *new_mnt_flags;
3358 struct mount *mnt;
3359 bool visible = false;
3360
3361 down_read(&namespace_sem);
3362 list_for_each_entry(mnt, &ns->list, mnt_list) {
3363 struct mount *child;
3364 int mnt_flags;
3365
3366 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3367 continue;
3368
3369 /* This mount is not fully visible if it's root directory
3370 * is not the root directory of the filesystem.
3371 */
3372 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3373 continue;
3374
3375 /* A local view of the mount flags */
3376 mnt_flags = mnt->mnt.mnt_flags;
3377
3378 /* Don't miss readonly hidden in the superblock flags */
3379 if (sb_rdonly(mnt->mnt.mnt_sb))
3380 mnt_flags |= MNT_LOCK_READONLY;
3381
3382 /* Verify the mount flags are equal to or more permissive
3383 * than the proposed new mount.
3384 */
3385 if ((mnt_flags & MNT_LOCK_READONLY) &&
3386 !(new_flags & MNT_READONLY))
3387 continue;
3388 if ((mnt_flags & MNT_LOCK_ATIME) &&
3389 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3390 continue;
3391
3392 /* This mount is not fully visible if there are any
3393 * locked child mounts that cover anything except for
3394 * empty directories.
3395 */
3396 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3397 struct inode *inode = child->mnt_mountpoint->d_inode;
3398 /* Only worry about locked mounts */
3399 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3400 continue;
3401 /* Is the directory permanetly empty? */
3402 if (!is_empty_dir_inode(inode))
3403 goto next;
3404 }
3405 /* Preserve the locked attributes */
3406 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3407 MNT_LOCK_ATIME);
3408 visible = true;
3409 goto found;
3410 next: ;
3411 }
3412 found:
3413 up_read(&namespace_sem);
3414 return visible;
3415 }
3416
3417 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3418 {
3419 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3420 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3421 unsigned long s_iflags;
3422
3423 if (ns->user_ns == &init_user_ns)
3424 return false;
3425
3426 /* Can this filesystem be too revealing? */
3427 s_iflags = mnt->mnt_sb->s_iflags;
3428 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3429 return false;
3430
3431 if ((s_iflags & required_iflags) != required_iflags) {
3432 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3433 required_iflags);
3434 return true;
3435 }
3436
3437 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3438 }
3439
3440 bool mnt_may_suid(struct vfsmount *mnt)
3441 {
3442 /*
3443 * Foreign mounts (accessed via fchdir or through /proc
3444 * symlinks) are always treated as if they are nosuid. This
3445 * prevents namespaces from trusting potentially unsafe
3446 * suid/sgid bits, file caps, or security labels that originate
3447 * in other namespaces.
3448 */
3449 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3450 current_in_userns(mnt->mnt_sb->s_user_ns);
3451 }
3452
3453 static struct ns_common *mntns_get(struct task_struct *task)
3454 {
3455 struct ns_common *ns = NULL;
3456 struct nsproxy *nsproxy;
3457
3458 task_lock(task);
3459 nsproxy = task->nsproxy;
3460 if (nsproxy) {
3461 ns = &nsproxy->mnt_ns->ns;
3462 get_mnt_ns(to_mnt_ns(ns));
3463 }
3464 task_unlock(task);
3465
3466 return ns;
3467 }
3468
3469 static void mntns_put(struct ns_common *ns)
3470 {
3471 put_mnt_ns(to_mnt_ns(ns));
3472 }
3473
3474 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3475 {
3476 struct fs_struct *fs = current->fs;
3477 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3478 struct path root;
3479 int err;
3480
3481 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3482 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3483 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3484 return -EPERM;
3485
3486 if (fs->users != 1)
3487 return -EINVAL;
3488
3489 get_mnt_ns(mnt_ns);
3490 old_mnt_ns = nsproxy->mnt_ns;
3491 nsproxy->mnt_ns = mnt_ns;
3492
3493 /* Find the root */
3494 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3495 "/", LOOKUP_DOWN, &root);
3496 if (err) {
3497 /* revert to old namespace */
3498 nsproxy->mnt_ns = old_mnt_ns;
3499 put_mnt_ns(mnt_ns);
3500 return err;
3501 }
3502
3503 put_mnt_ns(old_mnt_ns);
3504
3505 /* Update the pwd and root */
3506 set_fs_pwd(fs, &root);
3507 set_fs_root(fs, &root);
3508
3509 path_put(&root);
3510 return 0;
3511 }
3512
3513 static struct user_namespace *mntns_owner(struct ns_common *ns)
3514 {
3515 return to_mnt_ns(ns)->user_ns;
3516 }
3517
3518 const struct proc_ns_operations mntns_operations = {
3519 .name = "mnt",
3520 .type = CLONE_NEWNS,
3521 .get = mntns_get,
3522 .put = mntns_put,
3523 .install = mntns_install,
3524 .owner = mntns_owner,
3525 };