]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namespace.c
vfs: now it can be done - make mnt_parent point to struct mount
[mirror_ubuntu-artful-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/percpu.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/cpumask.h>
21 #include <linux/module.h>
22 #include <linux/sysfs.h>
23 #include <linux/seq_file.h>
24 #include <linux/mnt_namespace.h>
25 #include <linux/namei.h>
26 #include <linux/nsproxy.h>
27 #include <linux/security.h>
28 #include <linux/mount.h>
29 #include <linux/ramfs.h>
30 #include <linux/log2.h>
31 #include <linux/idr.h>
32 #include <linux/fs_struct.h>
33 #include <linux/fsnotify.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include "pnode.h"
37 #include "internal.h"
38
39 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40 #define HASH_SIZE (1UL << HASH_SHIFT)
41
42 static int event;
43 static DEFINE_IDA(mnt_id_ida);
44 static DEFINE_IDA(mnt_group_ida);
45 static DEFINE_SPINLOCK(mnt_id_lock);
46 static int mnt_id_start = 0;
47 static int mnt_group_start = 1;
48
49 static struct list_head *mount_hashtable __read_mostly;
50 static struct kmem_cache *mnt_cache __read_mostly;
51 static struct rw_semaphore namespace_sem;
52
53 /* /sys/fs */
54 struct kobject *fs_kobj;
55 EXPORT_SYMBOL_GPL(fs_kobj);
56
57 /*
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
61 *
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
64 */
65 DEFINE_BRLOCK(vfsmount_lock);
66
67 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68 {
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
73 }
74
75 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76
77 /*
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
80 */
81 static int mnt_alloc_id(struct mount *mnt)
82 {
83 int res;
84
85 retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
87 spin_lock(&mnt_id_lock);
88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt.mnt_id);
89 if (!res)
90 mnt_id_start = mnt->mnt.mnt_id + 1;
91 spin_unlock(&mnt_id_lock);
92 if (res == -EAGAIN)
93 goto retry;
94
95 return res;
96 }
97
98 static void mnt_free_id(struct mount *mnt)
99 {
100 int id = mnt->mnt.mnt_id;
101 spin_lock(&mnt_id_lock);
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
105 spin_unlock(&mnt_id_lock);
106 }
107
108 /*
109 * Allocate a new peer group ID
110 *
111 * mnt_group_ida is protected by namespace_sem
112 */
113 static int mnt_alloc_group_id(struct mount *mnt)
114 {
115 int res;
116
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
119
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
122 &mnt->mnt.mnt_group_id);
123 if (!res)
124 mnt_group_start = mnt->mnt.mnt_group_id + 1;
125
126 return res;
127 }
128
129 /*
130 * Release a peer group ID
131 */
132 void mnt_release_group_id(struct mount *mnt)
133 {
134 int id = mnt->mnt.mnt_group_id;
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
138 mnt->mnt.mnt_group_id = 0;
139 }
140
141 /*
142 * vfsmount lock must be held for read
143 */
144 static inline void mnt_add_count(struct vfsmount *mnt, int n)
145 {
146 #ifdef CONFIG_SMP
147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
148 #else
149 preempt_disable();
150 mnt->mnt_count += n;
151 preempt_enable();
152 #endif
153 }
154
155 /*
156 * vfsmount lock must be held for write
157 */
158 unsigned int mnt_get_count(struct vfsmount *mnt)
159 {
160 #ifdef CONFIG_SMP
161 unsigned int count = 0;
162 int cpu;
163
164 for_each_possible_cpu(cpu) {
165 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
166 }
167
168 return count;
169 #else
170 return mnt->mnt_count;
171 #endif
172 }
173
174 static struct mount *alloc_vfsmnt(const char *name)
175 {
176 struct mount *p = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
177 if (p) {
178 struct vfsmount *mnt = &p->mnt;
179 int err;
180
181 err = mnt_alloc_id(p);
182 if (err)
183 goto out_free_cache;
184
185 if (name) {
186 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
187 if (!mnt->mnt_devname)
188 goto out_free_id;
189 }
190
191 #ifdef CONFIG_SMP
192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 if (!mnt->mnt_pcp)
194 goto out_free_devname;
195
196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
197 #else
198 mnt->mnt_count = 1;
199 mnt->mnt_writers = 0;
200 #endif
201
202 INIT_LIST_HEAD(&p->mnt_hash);
203 INIT_LIST_HEAD(&mnt->mnt_child);
204 INIT_LIST_HEAD(&mnt->mnt_mounts);
205 INIT_LIST_HEAD(&mnt->mnt_list);
206 INIT_LIST_HEAD(&mnt->mnt_expire);
207 INIT_LIST_HEAD(&mnt->mnt_share);
208 INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 INIT_LIST_HEAD(&mnt->mnt_slave);
210 #ifdef CONFIG_FSNOTIFY
211 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
212 #endif
213 }
214 return p;
215
216 #ifdef CONFIG_SMP
217 out_free_devname:
218 kfree(p->mnt.mnt_devname);
219 #endif
220 out_free_id:
221 mnt_free_id(p);
222 out_free_cache:
223 kmem_cache_free(mnt_cache, p);
224 return NULL;
225 }
226
227 /*
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
233 * a filesystem.
234 */
235 /*
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
238 *
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
244 * r/w.
245 */
246 int __mnt_is_readonly(struct vfsmount *mnt)
247 {
248 if (mnt->mnt_flags & MNT_READONLY)
249 return 1;
250 if (mnt->mnt_sb->s_flags & MS_RDONLY)
251 return 1;
252 return 0;
253 }
254 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
255
256 static inline void mnt_inc_writers(struct vfsmount *mnt)
257 {
258 #ifdef CONFIG_SMP
259 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
260 #else
261 mnt->mnt_writers++;
262 #endif
263 }
264
265 static inline void mnt_dec_writers(struct vfsmount *mnt)
266 {
267 #ifdef CONFIG_SMP
268 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
269 #else
270 mnt->mnt_writers--;
271 #endif
272 }
273
274 static unsigned int mnt_get_writers(struct vfsmount *mnt)
275 {
276 #ifdef CONFIG_SMP
277 unsigned int count = 0;
278 int cpu;
279
280 for_each_possible_cpu(cpu) {
281 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
282 }
283
284 return count;
285 #else
286 return mnt->mnt_writers;
287 #endif
288 }
289
290 /*
291 * Most r/o checks on a fs are for operations that take
292 * discrete amounts of time, like a write() or unlink().
293 * We must keep track of when those operations start
294 * (for permission checks) and when they end, so that
295 * we can determine when writes are able to occur to
296 * a filesystem.
297 */
298 /**
299 * mnt_want_write - get write access to a mount
300 * @mnt: the mount on which to take a write
301 *
302 * This tells the low-level filesystem that a write is
303 * about to be performed to it, and makes sure that
304 * writes are allowed before returning success. When
305 * the write operation is finished, mnt_drop_write()
306 * must be called. This is effectively a refcount.
307 */
308 int mnt_want_write(struct vfsmount *mnt)
309 {
310 int ret = 0;
311
312 preempt_disable();
313 mnt_inc_writers(mnt);
314 /*
315 * The store to mnt_inc_writers must be visible before we pass
316 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
317 * incremented count after it has set MNT_WRITE_HOLD.
318 */
319 smp_mb();
320 while (mnt->mnt_flags & MNT_WRITE_HOLD)
321 cpu_relax();
322 /*
323 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
324 * be set to match its requirements. So we must not load that until
325 * MNT_WRITE_HOLD is cleared.
326 */
327 smp_rmb();
328 if (__mnt_is_readonly(mnt)) {
329 mnt_dec_writers(mnt);
330 ret = -EROFS;
331 goto out;
332 }
333 out:
334 preempt_enable();
335 return ret;
336 }
337 EXPORT_SYMBOL_GPL(mnt_want_write);
338
339 /**
340 * mnt_clone_write - get write access to a mount
341 * @mnt: the mount on which to take a write
342 *
343 * This is effectively like mnt_want_write, except
344 * it must only be used to take an extra write reference
345 * on a mountpoint that we already know has a write reference
346 * on it. This allows some optimisation.
347 *
348 * After finished, mnt_drop_write must be called as usual to
349 * drop the reference.
350 */
351 int mnt_clone_write(struct vfsmount *mnt)
352 {
353 /* superblock may be r/o */
354 if (__mnt_is_readonly(mnt))
355 return -EROFS;
356 preempt_disable();
357 mnt_inc_writers(mnt);
358 preempt_enable();
359 return 0;
360 }
361 EXPORT_SYMBOL_GPL(mnt_clone_write);
362
363 /**
364 * mnt_want_write_file - get write access to a file's mount
365 * @file: the file who's mount on which to take a write
366 *
367 * This is like mnt_want_write, but it takes a file and can
368 * do some optimisations if the file is open for write already
369 */
370 int mnt_want_write_file(struct file *file)
371 {
372 struct inode *inode = file->f_dentry->d_inode;
373 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
374 return mnt_want_write(file->f_path.mnt);
375 else
376 return mnt_clone_write(file->f_path.mnt);
377 }
378 EXPORT_SYMBOL_GPL(mnt_want_write_file);
379
380 /**
381 * mnt_drop_write - give up write access to a mount
382 * @mnt: the mount on which to give up write access
383 *
384 * Tells the low-level filesystem that we are done
385 * performing writes to it. Must be matched with
386 * mnt_want_write() call above.
387 */
388 void mnt_drop_write(struct vfsmount *mnt)
389 {
390 preempt_disable();
391 mnt_dec_writers(mnt);
392 preempt_enable();
393 }
394 EXPORT_SYMBOL_GPL(mnt_drop_write);
395
396 void mnt_drop_write_file(struct file *file)
397 {
398 mnt_drop_write(file->f_path.mnt);
399 }
400 EXPORT_SYMBOL(mnt_drop_write_file);
401
402 static int mnt_make_readonly(struct vfsmount *mnt)
403 {
404 int ret = 0;
405
406 br_write_lock(vfsmount_lock);
407 mnt->mnt_flags |= MNT_WRITE_HOLD;
408 /*
409 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
410 * should be visible before we do.
411 */
412 smp_mb();
413
414 /*
415 * With writers on hold, if this value is zero, then there are
416 * definitely no active writers (although held writers may subsequently
417 * increment the count, they'll have to wait, and decrement it after
418 * seeing MNT_READONLY).
419 *
420 * It is OK to have counter incremented on one CPU and decremented on
421 * another: the sum will add up correctly. The danger would be when we
422 * sum up each counter, if we read a counter before it is incremented,
423 * but then read another CPU's count which it has been subsequently
424 * decremented from -- we would see more decrements than we should.
425 * MNT_WRITE_HOLD protects against this scenario, because
426 * mnt_want_write first increments count, then smp_mb, then spins on
427 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
428 * we're counting up here.
429 */
430 if (mnt_get_writers(mnt) > 0)
431 ret = -EBUSY;
432 else
433 mnt->mnt_flags |= MNT_READONLY;
434 /*
435 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
436 * that become unheld will see MNT_READONLY.
437 */
438 smp_wmb();
439 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
440 br_write_unlock(vfsmount_lock);
441 return ret;
442 }
443
444 static void __mnt_unmake_readonly(struct vfsmount *mnt)
445 {
446 br_write_lock(vfsmount_lock);
447 mnt->mnt_flags &= ~MNT_READONLY;
448 br_write_unlock(vfsmount_lock);
449 }
450
451 static void free_vfsmnt(struct mount *mnt)
452 {
453 kfree(mnt->mnt.mnt_devname);
454 mnt_free_id(mnt);
455 #ifdef CONFIG_SMP
456 free_percpu(mnt->mnt.mnt_pcp);
457 #endif
458 kmem_cache_free(mnt_cache, mnt);
459 }
460
461 /*
462 * find the first or last mount at @dentry on vfsmount @mnt depending on
463 * @dir. If @dir is set return the first mount else return the last mount.
464 * vfsmount_lock must be held for read or write.
465 */
466 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
467 int dir)
468 {
469 struct list_head *head = mount_hashtable + hash(mnt, dentry);
470 struct list_head *tmp = head;
471 struct mount *p, *found = NULL;
472
473 for (;;) {
474 tmp = dir ? tmp->next : tmp->prev;
475 p = NULL;
476 if (tmp == head)
477 break;
478 p = list_entry(tmp, struct mount, mnt_hash);
479 if (&p->mnt_parent->mnt == mnt && p->mnt.mnt_mountpoint == dentry) {
480 found = p;
481 break;
482 }
483 }
484 return found;
485 }
486
487 /*
488 * lookup_mnt increments the ref count before returning
489 * the vfsmount struct.
490 */
491 struct vfsmount *lookup_mnt(struct path *path)
492 {
493 struct mount *child_mnt;
494
495 br_read_lock(vfsmount_lock);
496 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
497 if (child_mnt) {
498 mnt_add_count(child_mnt, 1);
499 br_read_unlock(vfsmount_lock);
500 return &child_mnt->mnt;
501 } else {
502 br_read_unlock(vfsmount_lock);
503 return NULL;
504 }
505 }
506
507 static inline int check_mnt(struct vfsmount *mnt)
508 {
509 return mnt->mnt_ns == current->nsproxy->mnt_ns;
510 }
511
512 /*
513 * vfsmount lock must be held for write
514 */
515 static void touch_mnt_namespace(struct mnt_namespace *ns)
516 {
517 if (ns) {
518 ns->event = ++event;
519 wake_up_interruptible(&ns->poll);
520 }
521 }
522
523 /*
524 * vfsmount lock must be held for write
525 */
526 static void __touch_mnt_namespace(struct mnt_namespace *ns)
527 {
528 if (ns && ns->event != event) {
529 ns->event = event;
530 wake_up_interruptible(&ns->poll);
531 }
532 }
533
534 /*
535 * Clear dentry's mounted state if it has no remaining mounts.
536 * vfsmount_lock must be held for write.
537 */
538 static void dentry_reset_mounted(struct dentry *dentry)
539 {
540 unsigned u;
541
542 for (u = 0; u < HASH_SIZE; u++) {
543 struct mount *p;
544
545 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
546 if (p->mnt.mnt_mountpoint == dentry)
547 return;
548 }
549 }
550 spin_lock(&dentry->d_lock);
551 dentry->d_flags &= ~DCACHE_MOUNTED;
552 spin_unlock(&dentry->d_lock);
553 }
554
555 /*
556 * vfsmount lock must be held for write
557 */
558 static void detach_mnt(struct mount *mnt, struct path *old_path)
559 {
560 old_path->dentry = mnt->mnt.mnt_mountpoint;
561 old_path->mnt = &mnt->mnt_parent->mnt;
562 mnt->mnt_parent = mnt;
563 mnt->mnt.mnt_mountpoint = mnt->mnt.mnt_root;
564 list_del_init(&mnt->mnt.mnt_child);
565 list_del_init(&mnt->mnt_hash);
566 dentry_reset_mounted(old_path->dentry);
567 }
568
569 /*
570 * vfsmount lock must be held for write
571 */
572 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
573 struct mount *child_mnt)
574 {
575 child_mnt->mnt_parent = real_mount(mntget(mnt));
576 child_mnt->mnt.mnt_mountpoint = dget(dentry);
577 spin_lock(&dentry->d_lock);
578 dentry->d_flags |= DCACHE_MOUNTED;
579 spin_unlock(&dentry->d_lock);
580 }
581
582 /*
583 * vfsmount lock must be held for write
584 */
585 static void attach_mnt(struct mount *mnt, struct path *path)
586 {
587 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
588 list_add_tail(&mnt->mnt_hash, mount_hashtable +
589 hash(path->mnt, path->dentry));
590 list_add_tail(&mnt->mnt.mnt_child, &path->mnt->mnt_mounts);
591 }
592
593 static inline void __mnt_make_longterm(struct vfsmount *mnt)
594 {
595 #ifdef CONFIG_SMP
596 atomic_inc(&mnt->mnt_longterm);
597 #endif
598 }
599
600 /* needs vfsmount lock for write */
601 static inline void __mnt_make_shortterm(struct vfsmount *mnt)
602 {
603 #ifdef CONFIG_SMP
604 atomic_dec(&mnt->mnt_longterm);
605 #endif
606 }
607
608 /*
609 * vfsmount lock must be held for write
610 */
611 static void commit_tree(struct mount *mnt)
612 {
613 struct mount *parent = mnt->mnt_parent;
614 struct vfsmount *m;
615 LIST_HEAD(head);
616 struct mnt_namespace *n = parent->mnt.mnt_ns;
617
618 BUG_ON(parent == mnt);
619
620 list_add_tail(&head, &mnt->mnt.mnt_list);
621 list_for_each_entry(m, &head, mnt_list) {
622 m->mnt_ns = n;
623 __mnt_make_longterm(m);
624 }
625
626 list_splice(&head, n->list.prev);
627
628 list_add_tail(&mnt->mnt_hash, mount_hashtable +
629 hash(&parent->mnt, mnt->mnt.mnt_mountpoint));
630 list_add_tail(&mnt->mnt.mnt_child, &parent->mnt.mnt_mounts);
631 touch_mnt_namespace(n);
632 }
633
634 static struct mount *next_mnt(struct mount *p, struct vfsmount *root)
635 {
636 struct list_head *next = p->mnt.mnt_mounts.next;
637 if (next == &p->mnt.mnt_mounts) {
638 while (1) {
639 if (&p->mnt == root)
640 return NULL;
641 next = p->mnt.mnt_child.next;
642 if (next != &p->mnt_parent->mnt.mnt_mounts)
643 break;
644 p = p->mnt_parent;
645 }
646 }
647 return list_entry(next, struct mount, mnt.mnt_child);
648 }
649
650 static struct mount *skip_mnt_tree(struct mount *p)
651 {
652 struct list_head *prev = p->mnt.mnt_mounts.prev;
653 while (prev != &p->mnt.mnt_mounts) {
654 p = list_entry(prev, struct mount, mnt.mnt_child);
655 prev = p->mnt.mnt_mounts.prev;
656 }
657 return p;
658 }
659
660 struct vfsmount *
661 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
662 {
663 struct mount *mnt;
664 struct dentry *root;
665
666 if (!type)
667 return ERR_PTR(-ENODEV);
668
669 mnt = alloc_vfsmnt(name);
670 if (!mnt)
671 return ERR_PTR(-ENOMEM);
672
673 if (flags & MS_KERNMOUNT)
674 mnt->mnt.mnt_flags = MNT_INTERNAL;
675
676 root = mount_fs(type, flags, name, data);
677 if (IS_ERR(root)) {
678 free_vfsmnt(mnt);
679 return ERR_CAST(root);
680 }
681
682 mnt->mnt.mnt_root = root;
683 mnt->mnt.mnt_sb = root->d_sb;
684 mnt->mnt.mnt_mountpoint = mnt->mnt.mnt_root;
685 mnt->mnt_parent = mnt;
686 return &mnt->mnt;
687 }
688 EXPORT_SYMBOL_GPL(vfs_kern_mount);
689
690 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
691 int flag)
692 {
693 struct super_block *sb = old->mnt.mnt_sb;
694 struct mount *mnt = alloc_vfsmnt(old->mnt.mnt_devname);
695
696 if (mnt) {
697 if (flag & (CL_SLAVE | CL_PRIVATE))
698 mnt->mnt.mnt_group_id = 0; /* not a peer of original */
699 else
700 mnt->mnt.mnt_group_id = old->mnt.mnt_group_id;
701
702 if ((flag & CL_MAKE_SHARED) && !mnt->mnt.mnt_group_id) {
703 int err = mnt_alloc_group_id(mnt);
704 if (err)
705 goto out_free;
706 }
707
708 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
709 atomic_inc(&sb->s_active);
710 mnt->mnt.mnt_sb = sb;
711 mnt->mnt.mnt_root = dget(root);
712 mnt->mnt.mnt_mountpoint = mnt->mnt.mnt_root;
713 mnt->mnt_parent = mnt;
714
715 if (flag & CL_SLAVE) {
716 list_add(&mnt->mnt.mnt_slave, &old->mnt.mnt_slave_list);
717 mnt->mnt.mnt_master = &old->mnt;
718 CLEAR_MNT_SHARED(&mnt->mnt);
719 } else if (!(flag & CL_PRIVATE)) {
720 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(&old->mnt))
721 list_add(&mnt->mnt.mnt_share, &old->mnt.mnt_share);
722 if (IS_MNT_SLAVE(&old->mnt))
723 list_add(&mnt->mnt.mnt_slave, &old->mnt.mnt_slave);
724 mnt->mnt.mnt_master = old->mnt.mnt_master;
725 }
726 if (flag & CL_MAKE_SHARED)
727 set_mnt_shared(mnt);
728
729 /* stick the duplicate mount on the same expiry list
730 * as the original if that was on one */
731 if (flag & CL_EXPIRE) {
732 if (!list_empty(&old->mnt.mnt_expire))
733 list_add(&mnt->mnt.mnt_expire, &old->mnt.mnt_expire);
734 }
735 }
736 return mnt;
737
738 out_free:
739 free_vfsmnt(mnt);
740 return NULL;
741 }
742
743 static inline void mntfree(struct vfsmount *mnt)
744 {
745 struct super_block *sb = mnt->mnt_sb;
746
747 /*
748 * This probably indicates that somebody messed
749 * up a mnt_want/drop_write() pair. If this
750 * happens, the filesystem was probably unable
751 * to make r/w->r/o transitions.
752 */
753 /*
754 * The locking used to deal with mnt_count decrement provides barriers,
755 * so mnt_get_writers() below is safe.
756 */
757 WARN_ON(mnt_get_writers(mnt));
758 fsnotify_vfsmount_delete(mnt);
759 dput(mnt->mnt_root);
760 free_vfsmnt(real_mount(mnt));
761 deactivate_super(sb);
762 }
763
764 static void mntput_no_expire(struct vfsmount *mnt)
765 {
766 put_again:
767 #ifdef CONFIG_SMP
768 br_read_lock(vfsmount_lock);
769 if (likely(atomic_read(&mnt->mnt_longterm))) {
770 mnt_add_count(mnt, -1);
771 br_read_unlock(vfsmount_lock);
772 return;
773 }
774 br_read_unlock(vfsmount_lock);
775
776 br_write_lock(vfsmount_lock);
777 mnt_add_count(mnt, -1);
778 if (mnt_get_count(mnt)) {
779 br_write_unlock(vfsmount_lock);
780 return;
781 }
782 #else
783 mnt_add_count(mnt, -1);
784 if (likely(mnt_get_count(mnt)))
785 return;
786 br_write_lock(vfsmount_lock);
787 #endif
788 if (unlikely(mnt->mnt_pinned)) {
789 mnt_add_count(mnt, mnt->mnt_pinned + 1);
790 mnt->mnt_pinned = 0;
791 br_write_unlock(vfsmount_lock);
792 acct_auto_close_mnt(mnt);
793 goto put_again;
794 }
795 br_write_unlock(vfsmount_lock);
796 mntfree(mnt);
797 }
798
799 void mntput(struct vfsmount *mnt)
800 {
801 if (mnt) {
802 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
803 if (unlikely(mnt->mnt_expiry_mark))
804 mnt->mnt_expiry_mark = 0;
805 mntput_no_expire(mnt);
806 }
807 }
808 EXPORT_SYMBOL(mntput);
809
810 struct vfsmount *mntget(struct vfsmount *mnt)
811 {
812 if (mnt)
813 mnt_add_count(mnt, 1);
814 return mnt;
815 }
816 EXPORT_SYMBOL(mntget);
817
818 void mnt_pin(struct vfsmount *mnt)
819 {
820 br_write_lock(vfsmount_lock);
821 mnt->mnt_pinned++;
822 br_write_unlock(vfsmount_lock);
823 }
824 EXPORT_SYMBOL(mnt_pin);
825
826 void mnt_unpin(struct vfsmount *mnt)
827 {
828 br_write_lock(vfsmount_lock);
829 if (mnt->mnt_pinned) {
830 mnt_add_count(mnt, 1);
831 mnt->mnt_pinned--;
832 }
833 br_write_unlock(vfsmount_lock);
834 }
835 EXPORT_SYMBOL(mnt_unpin);
836
837 static inline void mangle(struct seq_file *m, const char *s)
838 {
839 seq_escape(m, s, " \t\n\\");
840 }
841
842 /*
843 * Simple .show_options callback for filesystems which don't want to
844 * implement more complex mount option showing.
845 *
846 * See also save_mount_options().
847 */
848 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
849 {
850 const char *options;
851
852 rcu_read_lock();
853 options = rcu_dereference(mnt->mnt_sb->s_options);
854
855 if (options != NULL && options[0]) {
856 seq_putc(m, ',');
857 mangle(m, options);
858 }
859 rcu_read_unlock();
860
861 return 0;
862 }
863 EXPORT_SYMBOL(generic_show_options);
864
865 /*
866 * If filesystem uses generic_show_options(), this function should be
867 * called from the fill_super() callback.
868 *
869 * The .remount_fs callback usually needs to be handled in a special
870 * way, to make sure, that previous options are not overwritten if the
871 * remount fails.
872 *
873 * Also note, that if the filesystem's .remount_fs function doesn't
874 * reset all options to their default value, but changes only newly
875 * given options, then the displayed options will not reflect reality
876 * any more.
877 */
878 void save_mount_options(struct super_block *sb, char *options)
879 {
880 BUG_ON(sb->s_options);
881 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
882 }
883 EXPORT_SYMBOL(save_mount_options);
884
885 void replace_mount_options(struct super_block *sb, char *options)
886 {
887 char *old = sb->s_options;
888 rcu_assign_pointer(sb->s_options, options);
889 if (old) {
890 synchronize_rcu();
891 kfree(old);
892 }
893 }
894 EXPORT_SYMBOL(replace_mount_options);
895
896 #ifdef CONFIG_PROC_FS
897 /* iterator */
898 static void *m_start(struct seq_file *m, loff_t *pos)
899 {
900 struct proc_mounts *p = m->private;
901
902 down_read(&namespace_sem);
903 return seq_list_start(&p->ns->list, *pos);
904 }
905
906 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
907 {
908 struct proc_mounts *p = m->private;
909
910 return seq_list_next(v, &p->ns->list, pos);
911 }
912
913 static void m_stop(struct seq_file *m, void *v)
914 {
915 up_read(&namespace_sem);
916 }
917
918 int mnt_had_events(struct proc_mounts *p)
919 {
920 struct mnt_namespace *ns = p->ns;
921 int res = 0;
922
923 br_read_lock(vfsmount_lock);
924 if (p->m.poll_event != ns->event) {
925 p->m.poll_event = ns->event;
926 res = 1;
927 }
928 br_read_unlock(vfsmount_lock);
929
930 return res;
931 }
932
933 struct proc_fs_info {
934 int flag;
935 const char *str;
936 };
937
938 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
939 {
940 static const struct proc_fs_info fs_info[] = {
941 { MS_SYNCHRONOUS, ",sync" },
942 { MS_DIRSYNC, ",dirsync" },
943 { MS_MANDLOCK, ",mand" },
944 { 0, NULL }
945 };
946 const struct proc_fs_info *fs_infop;
947
948 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
949 if (sb->s_flags & fs_infop->flag)
950 seq_puts(m, fs_infop->str);
951 }
952
953 return security_sb_show_options(m, sb);
954 }
955
956 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
957 {
958 static const struct proc_fs_info mnt_info[] = {
959 { MNT_NOSUID, ",nosuid" },
960 { MNT_NODEV, ",nodev" },
961 { MNT_NOEXEC, ",noexec" },
962 { MNT_NOATIME, ",noatime" },
963 { MNT_NODIRATIME, ",nodiratime" },
964 { MNT_RELATIME, ",relatime" },
965 { 0, NULL }
966 };
967 const struct proc_fs_info *fs_infop;
968
969 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
970 if (mnt->mnt_flags & fs_infop->flag)
971 seq_puts(m, fs_infop->str);
972 }
973 }
974
975 static void show_type(struct seq_file *m, struct super_block *sb)
976 {
977 mangle(m, sb->s_type->name);
978 if (sb->s_subtype && sb->s_subtype[0]) {
979 seq_putc(m, '.');
980 mangle(m, sb->s_subtype);
981 }
982 }
983
984 static int show_vfsmnt(struct seq_file *m, void *v)
985 {
986 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
987 int err = 0;
988 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
989
990 if (mnt->mnt_sb->s_op->show_devname) {
991 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
992 if (err)
993 goto out;
994 } else {
995 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
996 }
997 seq_putc(m, ' ');
998 seq_path(m, &mnt_path, " \t\n\\");
999 seq_putc(m, ' ');
1000 show_type(m, mnt->mnt_sb);
1001 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
1002 err = show_sb_opts(m, mnt->mnt_sb);
1003 if (err)
1004 goto out;
1005 show_mnt_opts(m, mnt);
1006 if (mnt->mnt_sb->s_op->show_options)
1007 err = mnt->mnt_sb->s_op->show_options(m, mnt);
1008 seq_puts(m, " 0 0\n");
1009 out:
1010 return err;
1011 }
1012
1013 const struct seq_operations mounts_op = {
1014 .start = m_start,
1015 .next = m_next,
1016 .stop = m_stop,
1017 .show = show_vfsmnt
1018 };
1019
1020 static int show_mountinfo(struct seq_file *m, void *v)
1021 {
1022 struct proc_mounts *p = m->private;
1023 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1024 struct mount *r = real_mount(mnt);
1025 struct super_block *sb = mnt->mnt_sb;
1026 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1027 struct path root = p->root;
1028 int err = 0;
1029
1030 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, r->mnt_parent->mnt.mnt_id,
1031 MAJOR(sb->s_dev), MINOR(sb->s_dev));
1032 if (sb->s_op->show_path)
1033 err = sb->s_op->show_path(m, mnt);
1034 else
1035 seq_dentry(m, mnt->mnt_root, " \t\n\\");
1036 if (err)
1037 goto out;
1038 seq_putc(m, ' ');
1039
1040 /* mountpoints outside of chroot jail will give SEQ_SKIP on this */
1041 err = seq_path_root(m, &mnt_path, &root, " \t\n\\");
1042 if (err)
1043 goto out;
1044
1045 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1046 show_mnt_opts(m, mnt);
1047
1048 /* Tagged fields ("foo:X" or "bar") */
1049 if (IS_MNT_SHARED(mnt))
1050 seq_printf(m, " shared:%i", mnt->mnt_group_id);
1051 if (IS_MNT_SLAVE(mnt)) {
1052 int master = mnt->mnt_master->mnt_group_id;
1053 int dom = get_dominating_id(mnt, &p->root);
1054 seq_printf(m, " master:%i", master);
1055 if (dom && dom != master)
1056 seq_printf(m, " propagate_from:%i", dom);
1057 }
1058 if (IS_MNT_UNBINDABLE(mnt))
1059 seq_puts(m, " unbindable");
1060
1061 /* Filesystem specific data */
1062 seq_puts(m, " - ");
1063 show_type(m, sb);
1064 seq_putc(m, ' ');
1065 if (sb->s_op->show_devname)
1066 err = sb->s_op->show_devname(m, mnt);
1067 else
1068 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1069 if (err)
1070 goto out;
1071 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
1072 err = show_sb_opts(m, sb);
1073 if (err)
1074 goto out;
1075 if (sb->s_op->show_options)
1076 err = sb->s_op->show_options(m, mnt);
1077 seq_putc(m, '\n');
1078 out:
1079 return err;
1080 }
1081
1082 const struct seq_operations mountinfo_op = {
1083 .start = m_start,
1084 .next = m_next,
1085 .stop = m_stop,
1086 .show = show_mountinfo,
1087 };
1088
1089 static int show_vfsstat(struct seq_file *m, void *v)
1090 {
1091 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1092 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1093 int err = 0;
1094
1095 /* device */
1096 if (mnt->mnt_sb->s_op->show_devname) {
1097 seq_puts(m, "device ");
1098 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
1099 } else {
1100 if (mnt->mnt_devname) {
1101 seq_puts(m, "device ");
1102 mangle(m, mnt->mnt_devname);
1103 } else
1104 seq_puts(m, "no device");
1105 }
1106
1107 /* mount point */
1108 seq_puts(m, " mounted on ");
1109 seq_path(m, &mnt_path, " \t\n\\");
1110 seq_putc(m, ' ');
1111
1112 /* file system type */
1113 seq_puts(m, "with fstype ");
1114 show_type(m, mnt->mnt_sb);
1115
1116 /* optional statistics */
1117 if (mnt->mnt_sb->s_op->show_stats) {
1118 seq_putc(m, ' ');
1119 if (!err)
1120 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
1121 }
1122
1123 seq_putc(m, '\n');
1124 return err;
1125 }
1126
1127 const struct seq_operations mountstats_op = {
1128 .start = m_start,
1129 .next = m_next,
1130 .stop = m_stop,
1131 .show = show_vfsstat,
1132 };
1133 #endif /* CONFIG_PROC_FS */
1134
1135 /**
1136 * may_umount_tree - check if a mount tree is busy
1137 * @mnt: root of mount tree
1138 *
1139 * This is called to check if a tree of mounts has any
1140 * open files, pwds, chroots or sub mounts that are
1141 * busy.
1142 */
1143 int may_umount_tree(struct vfsmount *mnt)
1144 {
1145 int actual_refs = 0;
1146 int minimum_refs = 0;
1147 struct mount *p;
1148 BUG_ON(!mnt);
1149
1150 /* write lock needed for mnt_get_count */
1151 br_write_lock(vfsmount_lock);
1152 for (p = real_mount(mnt); p; p = next_mnt(p, mnt)) {
1153 actual_refs += mnt_get_count(&p->mnt);
1154 minimum_refs += 2;
1155 }
1156 br_write_unlock(vfsmount_lock);
1157
1158 if (actual_refs > minimum_refs)
1159 return 0;
1160
1161 return 1;
1162 }
1163
1164 EXPORT_SYMBOL(may_umount_tree);
1165
1166 /**
1167 * may_umount - check if a mount point is busy
1168 * @mnt: root of mount
1169 *
1170 * This is called to check if a mount point has any
1171 * open files, pwds, chroots or sub mounts. If the
1172 * mount has sub mounts this will return busy
1173 * regardless of whether the sub mounts are busy.
1174 *
1175 * Doesn't take quota and stuff into account. IOW, in some cases it will
1176 * give false negatives. The main reason why it's here is that we need
1177 * a non-destructive way to look for easily umountable filesystems.
1178 */
1179 int may_umount(struct vfsmount *mnt)
1180 {
1181 int ret = 1;
1182 down_read(&namespace_sem);
1183 br_write_lock(vfsmount_lock);
1184 if (propagate_mount_busy(real_mount(mnt), 2))
1185 ret = 0;
1186 br_write_unlock(vfsmount_lock);
1187 up_read(&namespace_sem);
1188 return ret;
1189 }
1190
1191 EXPORT_SYMBOL(may_umount);
1192
1193 void release_mounts(struct list_head *head)
1194 {
1195 struct mount *mnt;
1196 while (!list_empty(head)) {
1197 mnt = list_first_entry(head, struct mount, mnt_hash);
1198 list_del_init(&mnt->mnt_hash);
1199 if (mnt_has_parent(mnt)) {
1200 struct dentry *dentry;
1201 struct vfsmount *m;
1202
1203 br_write_lock(vfsmount_lock);
1204 dentry = mnt->mnt.mnt_mountpoint;
1205 m = &mnt->mnt_parent->mnt;
1206 mnt->mnt.mnt_mountpoint = mnt->mnt.mnt_root;
1207 mnt->mnt_parent = mnt;
1208 m->mnt_ghosts--;
1209 br_write_unlock(vfsmount_lock);
1210 dput(dentry);
1211 mntput(m);
1212 }
1213 mntput(&mnt->mnt);
1214 }
1215 }
1216
1217 /*
1218 * vfsmount lock must be held for write
1219 * namespace_sem must be held for write
1220 */
1221 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1222 {
1223 LIST_HEAD(tmp_list);
1224 struct mount *p;
1225
1226 for (p = mnt; p; p = next_mnt(p, &mnt->mnt))
1227 list_move(&p->mnt_hash, &tmp_list);
1228
1229 if (propagate)
1230 propagate_umount(&tmp_list);
1231
1232 list_for_each_entry(p, &tmp_list, mnt_hash) {
1233 list_del_init(&p->mnt.mnt_expire);
1234 list_del_init(&p->mnt.mnt_list);
1235 __touch_mnt_namespace(p->mnt.mnt_ns);
1236 p->mnt.mnt_ns = NULL;
1237 __mnt_make_shortterm(&p->mnt);
1238 list_del_init(&p->mnt.mnt_child);
1239 if (mnt_has_parent(p)) {
1240 p->mnt_parent->mnt.mnt_ghosts++;
1241 dentry_reset_mounted(p->mnt.mnt_mountpoint);
1242 }
1243 change_mnt_propagation(p, MS_PRIVATE);
1244 }
1245 list_splice(&tmp_list, kill);
1246 }
1247
1248 static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
1249
1250 static int do_umount(struct mount *mnt, int flags)
1251 {
1252 struct super_block *sb = mnt->mnt.mnt_sb;
1253 int retval;
1254 LIST_HEAD(umount_list);
1255
1256 retval = security_sb_umount(&mnt->mnt, flags);
1257 if (retval)
1258 return retval;
1259
1260 /*
1261 * Allow userspace to request a mountpoint be expired rather than
1262 * unmounting unconditionally. Unmount only happens if:
1263 * (1) the mark is already set (the mark is cleared by mntput())
1264 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1265 */
1266 if (flags & MNT_EXPIRE) {
1267 if (&mnt->mnt == current->fs->root.mnt ||
1268 flags & (MNT_FORCE | MNT_DETACH))
1269 return -EINVAL;
1270
1271 /*
1272 * probably don't strictly need the lock here if we examined
1273 * all race cases, but it's a slowpath.
1274 */
1275 br_write_lock(vfsmount_lock);
1276 if (mnt_get_count(&mnt->mnt) != 2) {
1277 br_write_unlock(vfsmount_lock);
1278 return -EBUSY;
1279 }
1280 br_write_unlock(vfsmount_lock);
1281
1282 if (!xchg(&mnt->mnt.mnt_expiry_mark, 1))
1283 return -EAGAIN;
1284 }
1285
1286 /*
1287 * If we may have to abort operations to get out of this
1288 * mount, and they will themselves hold resources we must
1289 * allow the fs to do things. In the Unix tradition of
1290 * 'Gee thats tricky lets do it in userspace' the umount_begin
1291 * might fail to complete on the first run through as other tasks
1292 * must return, and the like. Thats for the mount program to worry
1293 * about for the moment.
1294 */
1295
1296 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1297 sb->s_op->umount_begin(sb);
1298 }
1299
1300 /*
1301 * No sense to grab the lock for this test, but test itself looks
1302 * somewhat bogus. Suggestions for better replacement?
1303 * Ho-hum... In principle, we might treat that as umount + switch
1304 * to rootfs. GC would eventually take care of the old vfsmount.
1305 * Actually it makes sense, especially if rootfs would contain a
1306 * /reboot - static binary that would close all descriptors and
1307 * call reboot(9). Then init(8) could umount root and exec /reboot.
1308 */
1309 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1310 /*
1311 * Special case for "unmounting" root ...
1312 * we just try to remount it readonly.
1313 */
1314 down_write(&sb->s_umount);
1315 if (!(sb->s_flags & MS_RDONLY))
1316 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1317 up_write(&sb->s_umount);
1318 return retval;
1319 }
1320
1321 down_write(&namespace_sem);
1322 br_write_lock(vfsmount_lock);
1323 event++;
1324
1325 if (!(flags & MNT_DETACH))
1326 shrink_submounts(mnt, &umount_list);
1327
1328 retval = -EBUSY;
1329 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1330 if (!list_empty(&mnt->mnt.mnt_list))
1331 umount_tree(mnt, 1, &umount_list);
1332 retval = 0;
1333 }
1334 br_write_unlock(vfsmount_lock);
1335 up_write(&namespace_sem);
1336 release_mounts(&umount_list);
1337 return retval;
1338 }
1339
1340 /*
1341 * Now umount can handle mount points as well as block devices.
1342 * This is important for filesystems which use unnamed block devices.
1343 *
1344 * We now support a flag for forced unmount like the other 'big iron'
1345 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1346 */
1347
1348 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1349 {
1350 struct path path;
1351 int retval;
1352 int lookup_flags = 0;
1353
1354 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1355 return -EINVAL;
1356
1357 if (!(flags & UMOUNT_NOFOLLOW))
1358 lookup_flags |= LOOKUP_FOLLOW;
1359
1360 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1361 if (retval)
1362 goto out;
1363 retval = -EINVAL;
1364 if (path.dentry != path.mnt->mnt_root)
1365 goto dput_and_out;
1366 if (!check_mnt(path.mnt))
1367 goto dput_and_out;
1368
1369 retval = -EPERM;
1370 if (!capable(CAP_SYS_ADMIN))
1371 goto dput_and_out;
1372
1373 retval = do_umount(real_mount(path.mnt), flags);
1374 dput_and_out:
1375 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1376 dput(path.dentry);
1377 mntput_no_expire(path.mnt);
1378 out:
1379 return retval;
1380 }
1381
1382 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1383
1384 /*
1385 * The 2.0 compatible umount. No flags.
1386 */
1387 SYSCALL_DEFINE1(oldumount, char __user *, name)
1388 {
1389 return sys_umount(name, 0);
1390 }
1391
1392 #endif
1393
1394 static int mount_is_safe(struct path *path)
1395 {
1396 if (capable(CAP_SYS_ADMIN))
1397 return 0;
1398 return -EPERM;
1399 #ifdef notyet
1400 if (S_ISLNK(path->dentry->d_inode->i_mode))
1401 return -EPERM;
1402 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1403 if (current_uid() != path->dentry->d_inode->i_uid)
1404 return -EPERM;
1405 }
1406 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1407 return -EPERM;
1408 return 0;
1409 #endif
1410 }
1411
1412 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1413 int flag)
1414 {
1415 struct mount *res, *p, *q;
1416 struct vfsmount *r;
1417 struct path path;
1418
1419 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(&mnt->mnt))
1420 return NULL;
1421
1422 res = q = clone_mnt(mnt, dentry, flag);
1423 if (!q)
1424 goto Enomem;
1425 q->mnt.mnt_mountpoint = mnt->mnt.mnt_mountpoint;
1426
1427 p = mnt;
1428 list_for_each_entry(r, &mnt->mnt.mnt_mounts, mnt_child) {
1429 struct mount *s;
1430 if (!is_subdir(r->mnt_mountpoint, dentry))
1431 continue;
1432
1433 for (s = real_mount(r); s; s = next_mnt(s, r)) {
1434 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(&s->mnt)) {
1435 s = skip_mnt_tree(s);
1436 continue;
1437 }
1438 while (p != s->mnt_parent) {
1439 p = p->mnt_parent;
1440 q = q->mnt_parent;
1441 }
1442 p = s;
1443 path.mnt = &q->mnt;
1444 path.dentry = p->mnt.mnt_mountpoint;
1445 q = clone_mnt(p, p->mnt.mnt_root, flag);
1446 if (!q)
1447 goto Enomem;
1448 br_write_lock(vfsmount_lock);
1449 list_add_tail(&q->mnt.mnt_list, &res->mnt.mnt_list);
1450 attach_mnt(q, &path);
1451 br_write_unlock(vfsmount_lock);
1452 }
1453 }
1454 return res;
1455 Enomem:
1456 if (res) {
1457 LIST_HEAD(umount_list);
1458 br_write_lock(vfsmount_lock);
1459 umount_tree(res, 0, &umount_list);
1460 br_write_unlock(vfsmount_lock);
1461 release_mounts(&umount_list);
1462 }
1463 return NULL;
1464 }
1465
1466 struct vfsmount *collect_mounts(struct path *path)
1467 {
1468 struct mount *tree;
1469 down_write(&namespace_sem);
1470 tree = copy_tree(real_mount(path->mnt), path->dentry,
1471 CL_COPY_ALL | CL_PRIVATE);
1472 up_write(&namespace_sem);
1473 return tree ? &tree->mnt : NULL;
1474 }
1475
1476 void drop_collected_mounts(struct vfsmount *mnt)
1477 {
1478 LIST_HEAD(umount_list);
1479 down_write(&namespace_sem);
1480 br_write_lock(vfsmount_lock);
1481 umount_tree(real_mount(mnt), 0, &umount_list);
1482 br_write_unlock(vfsmount_lock);
1483 up_write(&namespace_sem);
1484 release_mounts(&umount_list);
1485 }
1486
1487 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1488 struct vfsmount *root)
1489 {
1490 struct vfsmount *mnt;
1491 int res = f(root, arg);
1492 if (res)
1493 return res;
1494 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1495 res = f(mnt, arg);
1496 if (res)
1497 return res;
1498 }
1499 return 0;
1500 }
1501
1502 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1503 {
1504 struct mount *p;
1505
1506 for (p = mnt; p != end; p = next_mnt(p, &mnt->mnt)) {
1507 if (p->mnt.mnt_group_id && !IS_MNT_SHARED(&p->mnt))
1508 mnt_release_group_id(p);
1509 }
1510 }
1511
1512 static int invent_group_ids(struct mount *mnt, bool recurse)
1513 {
1514 struct mount *p;
1515
1516 for (p = mnt; p; p = recurse ? next_mnt(p, &mnt->mnt) : NULL) {
1517 if (!p->mnt.mnt_group_id && !IS_MNT_SHARED(&p->mnt)) {
1518 int err = mnt_alloc_group_id(p);
1519 if (err) {
1520 cleanup_group_ids(mnt, p);
1521 return err;
1522 }
1523 }
1524 }
1525
1526 return 0;
1527 }
1528
1529 /*
1530 * @source_mnt : mount tree to be attached
1531 * @nd : place the mount tree @source_mnt is attached
1532 * @parent_nd : if non-null, detach the source_mnt from its parent and
1533 * store the parent mount and mountpoint dentry.
1534 * (done when source_mnt is moved)
1535 *
1536 * NOTE: in the table below explains the semantics when a source mount
1537 * of a given type is attached to a destination mount of a given type.
1538 * ---------------------------------------------------------------------------
1539 * | BIND MOUNT OPERATION |
1540 * |**************************************************************************
1541 * | source-->| shared | private | slave | unbindable |
1542 * | dest | | | | |
1543 * | | | | | | |
1544 * | v | | | | |
1545 * |**************************************************************************
1546 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1547 * | | | | | |
1548 * |non-shared| shared (+) | private | slave (*) | invalid |
1549 * ***************************************************************************
1550 * A bind operation clones the source mount and mounts the clone on the
1551 * destination mount.
1552 *
1553 * (++) the cloned mount is propagated to all the mounts in the propagation
1554 * tree of the destination mount and the cloned mount is added to
1555 * the peer group of the source mount.
1556 * (+) the cloned mount is created under the destination mount and is marked
1557 * as shared. The cloned mount is added to the peer group of the source
1558 * mount.
1559 * (+++) the mount is propagated to all the mounts in the propagation tree
1560 * of the destination mount and the cloned mount is made slave
1561 * of the same master as that of the source mount. The cloned mount
1562 * is marked as 'shared and slave'.
1563 * (*) the cloned mount is made a slave of the same master as that of the
1564 * source mount.
1565 *
1566 * ---------------------------------------------------------------------------
1567 * | MOVE MOUNT OPERATION |
1568 * |**************************************************************************
1569 * | source-->| shared | private | slave | unbindable |
1570 * | dest | | | | |
1571 * | | | | | | |
1572 * | v | | | | |
1573 * |**************************************************************************
1574 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1575 * | | | | | |
1576 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1577 * ***************************************************************************
1578 *
1579 * (+) the mount is moved to the destination. And is then propagated to
1580 * all the mounts in the propagation tree of the destination mount.
1581 * (+*) the mount is moved to the destination.
1582 * (+++) the mount is moved to the destination and is then propagated to
1583 * all the mounts belonging to the destination mount's propagation tree.
1584 * the mount is marked as 'shared and slave'.
1585 * (*) the mount continues to be a slave at the new location.
1586 *
1587 * if the source mount is a tree, the operations explained above is
1588 * applied to each mount in the tree.
1589 * Must be called without spinlocks held, since this function can sleep
1590 * in allocations.
1591 */
1592 static int attach_recursive_mnt(struct mount *source_mnt,
1593 struct path *path, struct path *parent_path)
1594 {
1595 LIST_HEAD(tree_list);
1596 struct vfsmount *dest_mnt = path->mnt;
1597 struct dentry *dest_dentry = path->dentry;
1598 struct mount *child, *p;
1599 int err;
1600
1601 if (IS_MNT_SHARED(dest_mnt)) {
1602 err = invent_group_ids(source_mnt, true);
1603 if (err)
1604 goto out;
1605 }
1606 err = propagate_mnt(dest_mnt, dest_dentry, &source_mnt->mnt, &tree_list);
1607 if (err)
1608 goto out_cleanup_ids;
1609
1610 br_write_lock(vfsmount_lock);
1611
1612 if (IS_MNT_SHARED(dest_mnt)) {
1613 for (p = source_mnt; p; p = next_mnt(p, &source_mnt->mnt))
1614 set_mnt_shared(p);
1615 }
1616 if (parent_path) {
1617 detach_mnt(source_mnt, parent_path);
1618 attach_mnt(source_mnt, path);
1619 touch_mnt_namespace(parent_path->mnt->mnt_ns);
1620 } else {
1621 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1622 commit_tree(source_mnt);
1623 }
1624
1625 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1626 list_del_init(&child->mnt_hash);
1627 commit_tree(child);
1628 }
1629 br_write_unlock(vfsmount_lock);
1630
1631 return 0;
1632
1633 out_cleanup_ids:
1634 if (IS_MNT_SHARED(dest_mnt))
1635 cleanup_group_ids(source_mnt, NULL);
1636 out:
1637 return err;
1638 }
1639
1640 static int lock_mount(struct path *path)
1641 {
1642 struct vfsmount *mnt;
1643 retry:
1644 mutex_lock(&path->dentry->d_inode->i_mutex);
1645 if (unlikely(cant_mount(path->dentry))) {
1646 mutex_unlock(&path->dentry->d_inode->i_mutex);
1647 return -ENOENT;
1648 }
1649 down_write(&namespace_sem);
1650 mnt = lookup_mnt(path);
1651 if (likely(!mnt))
1652 return 0;
1653 up_write(&namespace_sem);
1654 mutex_unlock(&path->dentry->d_inode->i_mutex);
1655 path_put(path);
1656 path->mnt = mnt;
1657 path->dentry = dget(mnt->mnt_root);
1658 goto retry;
1659 }
1660
1661 static void unlock_mount(struct path *path)
1662 {
1663 up_write(&namespace_sem);
1664 mutex_unlock(&path->dentry->d_inode->i_mutex);
1665 }
1666
1667 static int graft_tree(struct vfsmount *mnt, struct path *path)
1668 {
1669 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1670 return -EINVAL;
1671
1672 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1673 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1674 return -ENOTDIR;
1675
1676 if (d_unlinked(path->dentry))
1677 return -ENOENT;
1678
1679 return attach_recursive_mnt(real_mount(mnt), path, NULL);
1680 }
1681
1682 /*
1683 * Sanity check the flags to change_mnt_propagation.
1684 */
1685
1686 static int flags_to_propagation_type(int flags)
1687 {
1688 int type = flags & ~(MS_REC | MS_SILENT);
1689
1690 /* Fail if any non-propagation flags are set */
1691 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1692 return 0;
1693 /* Only one propagation flag should be set */
1694 if (!is_power_of_2(type))
1695 return 0;
1696 return type;
1697 }
1698
1699 /*
1700 * recursively change the type of the mountpoint.
1701 */
1702 static int do_change_type(struct path *path, int flag)
1703 {
1704 struct mount *m;
1705 struct mount *mnt = real_mount(path->mnt);
1706 int recurse = flag & MS_REC;
1707 int type;
1708 int err = 0;
1709
1710 if (!capable(CAP_SYS_ADMIN))
1711 return -EPERM;
1712
1713 if (path->dentry != path->mnt->mnt_root)
1714 return -EINVAL;
1715
1716 type = flags_to_propagation_type(flag);
1717 if (!type)
1718 return -EINVAL;
1719
1720 down_write(&namespace_sem);
1721 if (type == MS_SHARED) {
1722 err = invent_group_ids(mnt, recurse);
1723 if (err)
1724 goto out_unlock;
1725 }
1726
1727 br_write_lock(vfsmount_lock);
1728 for (m = mnt; m; m = (recurse ? next_mnt(m, &mnt->mnt) : NULL))
1729 change_mnt_propagation(m, type);
1730 br_write_unlock(vfsmount_lock);
1731
1732 out_unlock:
1733 up_write(&namespace_sem);
1734 return err;
1735 }
1736
1737 /*
1738 * do loopback mount.
1739 */
1740 static int do_loopback(struct path *path, char *old_name,
1741 int recurse)
1742 {
1743 LIST_HEAD(umount_list);
1744 struct path old_path;
1745 struct mount *mnt = NULL, *old;
1746 int err = mount_is_safe(path);
1747 if (err)
1748 return err;
1749 if (!old_name || !*old_name)
1750 return -EINVAL;
1751 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1752 if (err)
1753 return err;
1754
1755 err = lock_mount(path);
1756 if (err)
1757 goto out;
1758
1759 old = real_mount(old_path.mnt);
1760
1761 err = -EINVAL;
1762 if (IS_MNT_UNBINDABLE(old_path.mnt))
1763 goto out2;
1764
1765 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1766 goto out2;
1767
1768 err = -ENOMEM;
1769 if (recurse)
1770 mnt = copy_tree(old, old_path.dentry, 0);
1771 else
1772 mnt = clone_mnt(old, old_path.dentry, 0);
1773
1774 if (!mnt)
1775 goto out2;
1776
1777 err = graft_tree(&mnt->mnt, path);
1778 if (err) {
1779 br_write_lock(vfsmount_lock);
1780 umount_tree(mnt, 0, &umount_list);
1781 br_write_unlock(vfsmount_lock);
1782 }
1783 out2:
1784 unlock_mount(path);
1785 release_mounts(&umount_list);
1786 out:
1787 path_put(&old_path);
1788 return err;
1789 }
1790
1791 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1792 {
1793 int error = 0;
1794 int readonly_request = 0;
1795
1796 if (ms_flags & MS_RDONLY)
1797 readonly_request = 1;
1798 if (readonly_request == __mnt_is_readonly(mnt))
1799 return 0;
1800
1801 if (readonly_request)
1802 error = mnt_make_readonly(mnt);
1803 else
1804 __mnt_unmake_readonly(mnt);
1805 return error;
1806 }
1807
1808 /*
1809 * change filesystem flags. dir should be a physical root of filesystem.
1810 * If you've mounted a non-root directory somewhere and want to do remount
1811 * on it - tough luck.
1812 */
1813 static int do_remount(struct path *path, int flags, int mnt_flags,
1814 void *data)
1815 {
1816 int err;
1817 struct super_block *sb = path->mnt->mnt_sb;
1818
1819 if (!capable(CAP_SYS_ADMIN))
1820 return -EPERM;
1821
1822 if (!check_mnt(path->mnt))
1823 return -EINVAL;
1824
1825 if (path->dentry != path->mnt->mnt_root)
1826 return -EINVAL;
1827
1828 err = security_sb_remount(sb, data);
1829 if (err)
1830 return err;
1831
1832 down_write(&sb->s_umount);
1833 if (flags & MS_BIND)
1834 err = change_mount_flags(path->mnt, flags);
1835 else
1836 err = do_remount_sb(sb, flags, data, 0);
1837 if (!err) {
1838 br_write_lock(vfsmount_lock);
1839 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
1840 path->mnt->mnt_flags = mnt_flags;
1841 br_write_unlock(vfsmount_lock);
1842 }
1843 up_write(&sb->s_umount);
1844 if (!err) {
1845 br_write_lock(vfsmount_lock);
1846 touch_mnt_namespace(path->mnt->mnt_ns);
1847 br_write_unlock(vfsmount_lock);
1848 }
1849 return err;
1850 }
1851
1852 static inline int tree_contains_unbindable(struct mount *mnt)
1853 {
1854 struct mount *p;
1855 for (p = mnt; p; p = next_mnt(p, &mnt->mnt)) {
1856 if (IS_MNT_UNBINDABLE(&p->mnt))
1857 return 1;
1858 }
1859 return 0;
1860 }
1861
1862 static int do_move_mount(struct path *path, char *old_name)
1863 {
1864 struct path old_path, parent_path;
1865 struct mount *p;
1866 struct mount *old;
1867 int err = 0;
1868 if (!capable(CAP_SYS_ADMIN))
1869 return -EPERM;
1870 if (!old_name || !*old_name)
1871 return -EINVAL;
1872 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1873 if (err)
1874 return err;
1875
1876 err = lock_mount(path);
1877 if (err < 0)
1878 goto out;
1879
1880 err = -EINVAL;
1881 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1882 goto out1;
1883
1884 if (d_unlinked(path->dentry))
1885 goto out1;
1886
1887 err = -EINVAL;
1888 if (old_path.dentry != old_path.mnt->mnt_root)
1889 goto out1;
1890
1891 old = real_mount(old_path.mnt);
1892
1893 if (!mnt_has_parent(old))
1894 goto out1;
1895
1896 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1897 S_ISDIR(old_path.dentry->d_inode->i_mode))
1898 goto out1;
1899 /*
1900 * Don't move a mount residing in a shared parent.
1901 */
1902 if (IS_MNT_SHARED(&old->mnt_parent->mnt))
1903 goto out1;
1904 /*
1905 * Don't move a mount tree containing unbindable mounts to a destination
1906 * mount which is shared.
1907 */
1908 if (IS_MNT_SHARED(path->mnt) &&
1909 tree_contains_unbindable(old))
1910 goto out1;
1911 err = -ELOOP;
1912 for (p = real_mount(path->mnt); mnt_has_parent(p); p = p->mnt_parent)
1913 if (p == old)
1914 goto out1;
1915
1916 err = attach_recursive_mnt(old, path, &parent_path);
1917 if (err)
1918 goto out1;
1919
1920 /* if the mount is moved, it should no longer be expire
1921 * automatically */
1922 list_del_init(&old_path.mnt->mnt_expire);
1923 out1:
1924 unlock_mount(path);
1925 out:
1926 if (!err)
1927 path_put(&parent_path);
1928 path_put(&old_path);
1929 return err;
1930 }
1931
1932 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1933 {
1934 int err;
1935 const char *subtype = strchr(fstype, '.');
1936 if (subtype) {
1937 subtype++;
1938 err = -EINVAL;
1939 if (!subtype[0])
1940 goto err;
1941 } else
1942 subtype = "";
1943
1944 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1945 err = -ENOMEM;
1946 if (!mnt->mnt_sb->s_subtype)
1947 goto err;
1948 return mnt;
1949
1950 err:
1951 mntput(mnt);
1952 return ERR_PTR(err);
1953 }
1954
1955 static struct vfsmount *
1956 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1957 {
1958 struct file_system_type *type = get_fs_type(fstype);
1959 struct vfsmount *mnt;
1960 if (!type)
1961 return ERR_PTR(-ENODEV);
1962 mnt = vfs_kern_mount(type, flags, name, data);
1963 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1964 !mnt->mnt_sb->s_subtype)
1965 mnt = fs_set_subtype(mnt, fstype);
1966 put_filesystem(type);
1967 return mnt;
1968 }
1969
1970 /*
1971 * add a mount into a namespace's mount tree
1972 */
1973 static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
1974 {
1975 int err;
1976
1977 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1978
1979 err = lock_mount(path);
1980 if (err)
1981 return err;
1982
1983 err = -EINVAL;
1984 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1985 goto unlock;
1986
1987 /* Refuse the same filesystem on the same mount point */
1988 err = -EBUSY;
1989 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1990 path->mnt->mnt_root == path->dentry)
1991 goto unlock;
1992
1993 err = -EINVAL;
1994 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1995 goto unlock;
1996
1997 newmnt->mnt_flags = mnt_flags;
1998 err = graft_tree(newmnt, path);
1999
2000 unlock:
2001 unlock_mount(path);
2002 return err;
2003 }
2004
2005 /*
2006 * create a new mount for userspace and request it to be added into the
2007 * namespace's tree
2008 */
2009 static int do_new_mount(struct path *path, char *type, int flags,
2010 int mnt_flags, char *name, void *data)
2011 {
2012 struct vfsmount *mnt;
2013 int err;
2014
2015 if (!type)
2016 return -EINVAL;
2017
2018 /* we need capabilities... */
2019 if (!capable(CAP_SYS_ADMIN))
2020 return -EPERM;
2021
2022 mnt = do_kern_mount(type, flags, name, data);
2023 if (IS_ERR(mnt))
2024 return PTR_ERR(mnt);
2025
2026 err = do_add_mount(mnt, path, mnt_flags);
2027 if (err)
2028 mntput(mnt);
2029 return err;
2030 }
2031
2032 int finish_automount(struct vfsmount *m, struct path *path)
2033 {
2034 int err;
2035 /* The new mount record should have at least 2 refs to prevent it being
2036 * expired before we get a chance to add it
2037 */
2038 BUG_ON(mnt_get_count(m) < 2);
2039
2040 if (m->mnt_sb == path->mnt->mnt_sb &&
2041 m->mnt_root == path->dentry) {
2042 err = -ELOOP;
2043 goto fail;
2044 }
2045
2046 err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2047 if (!err)
2048 return 0;
2049 fail:
2050 /* remove m from any expiration list it may be on */
2051 if (!list_empty(&m->mnt_expire)) {
2052 down_write(&namespace_sem);
2053 br_write_lock(vfsmount_lock);
2054 list_del_init(&m->mnt_expire);
2055 br_write_unlock(vfsmount_lock);
2056 up_write(&namespace_sem);
2057 }
2058 mntput(m);
2059 mntput(m);
2060 return err;
2061 }
2062
2063 /**
2064 * mnt_set_expiry - Put a mount on an expiration list
2065 * @mnt: The mount to list.
2066 * @expiry_list: The list to add the mount to.
2067 */
2068 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2069 {
2070 down_write(&namespace_sem);
2071 br_write_lock(vfsmount_lock);
2072
2073 list_add_tail(&mnt->mnt_expire, expiry_list);
2074
2075 br_write_unlock(vfsmount_lock);
2076 up_write(&namespace_sem);
2077 }
2078 EXPORT_SYMBOL(mnt_set_expiry);
2079
2080 /*
2081 * process a list of expirable mountpoints with the intent of discarding any
2082 * mountpoints that aren't in use and haven't been touched since last we came
2083 * here
2084 */
2085 void mark_mounts_for_expiry(struct list_head *mounts)
2086 {
2087 struct mount *mnt, *next;
2088 LIST_HEAD(graveyard);
2089 LIST_HEAD(umounts);
2090
2091 if (list_empty(mounts))
2092 return;
2093
2094 down_write(&namespace_sem);
2095 br_write_lock(vfsmount_lock);
2096
2097 /* extract from the expiration list every vfsmount that matches the
2098 * following criteria:
2099 * - only referenced by its parent vfsmount
2100 * - still marked for expiry (marked on the last call here; marks are
2101 * cleared by mntput())
2102 */
2103 list_for_each_entry_safe(mnt, next, mounts, mnt.mnt_expire) {
2104 if (!xchg(&mnt->mnt.mnt_expiry_mark, 1) ||
2105 propagate_mount_busy(mnt, 1))
2106 continue;
2107 list_move(&mnt->mnt.mnt_expire, &graveyard);
2108 }
2109 while (!list_empty(&graveyard)) {
2110 mnt = list_first_entry(&graveyard, struct mount, mnt.mnt_expire);
2111 touch_mnt_namespace(mnt->mnt.mnt_ns);
2112 umount_tree(mnt, 1, &umounts);
2113 }
2114 br_write_unlock(vfsmount_lock);
2115 up_write(&namespace_sem);
2116
2117 release_mounts(&umounts);
2118 }
2119
2120 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2121
2122 /*
2123 * Ripoff of 'select_parent()'
2124 *
2125 * search the list of submounts for a given mountpoint, and move any
2126 * shrinkable submounts to the 'graveyard' list.
2127 */
2128 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2129 {
2130 struct mount *this_parent = parent;
2131 struct list_head *next;
2132 int found = 0;
2133
2134 repeat:
2135 next = this_parent->mnt.mnt_mounts.next;
2136 resume:
2137 while (next != &this_parent->mnt.mnt_mounts) {
2138 struct list_head *tmp = next;
2139 struct mount *mnt = list_entry(tmp, struct mount, mnt.mnt_child);
2140
2141 next = tmp->next;
2142 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2143 continue;
2144 /*
2145 * Descend a level if the d_mounts list is non-empty.
2146 */
2147 if (!list_empty(&mnt->mnt.mnt_mounts)) {
2148 this_parent = mnt;
2149 goto repeat;
2150 }
2151
2152 if (!propagate_mount_busy(mnt, 1)) {
2153 list_move_tail(&mnt->mnt.mnt_expire, graveyard);
2154 found++;
2155 }
2156 }
2157 /*
2158 * All done at this level ... ascend and resume the search
2159 */
2160 if (this_parent != parent) {
2161 next = this_parent->mnt.mnt_child.next;
2162 this_parent = this_parent->mnt_parent;
2163 goto resume;
2164 }
2165 return found;
2166 }
2167
2168 /*
2169 * process a list of expirable mountpoints with the intent of discarding any
2170 * submounts of a specific parent mountpoint
2171 *
2172 * vfsmount_lock must be held for write
2173 */
2174 static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
2175 {
2176 LIST_HEAD(graveyard);
2177 struct mount *m;
2178
2179 /* extract submounts of 'mountpoint' from the expiration list */
2180 while (select_submounts(mnt, &graveyard)) {
2181 while (!list_empty(&graveyard)) {
2182 m = list_first_entry(&graveyard, struct mount,
2183 mnt.mnt_expire);
2184 touch_mnt_namespace(m->mnt.mnt_ns);
2185 umount_tree(m, 1, umounts);
2186 }
2187 }
2188 }
2189
2190 /*
2191 * Some copy_from_user() implementations do not return the exact number of
2192 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2193 * Note that this function differs from copy_from_user() in that it will oops
2194 * on bad values of `to', rather than returning a short copy.
2195 */
2196 static long exact_copy_from_user(void *to, const void __user * from,
2197 unsigned long n)
2198 {
2199 char *t = to;
2200 const char __user *f = from;
2201 char c;
2202
2203 if (!access_ok(VERIFY_READ, from, n))
2204 return n;
2205
2206 while (n) {
2207 if (__get_user(c, f)) {
2208 memset(t, 0, n);
2209 break;
2210 }
2211 *t++ = c;
2212 f++;
2213 n--;
2214 }
2215 return n;
2216 }
2217
2218 int copy_mount_options(const void __user * data, unsigned long *where)
2219 {
2220 int i;
2221 unsigned long page;
2222 unsigned long size;
2223
2224 *where = 0;
2225 if (!data)
2226 return 0;
2227
2228 if (!(page = __get_free_page(GFP_KERNEL)))
2229 return -ENOMEM;
2230
2231 /* We only care that *some* data at the address the user
2232 * gave us is valid. Just in case, we'll zero
2233 * the remainder of the page.
2234 */
2235 /* copy_from_user cannot cross TASK_SIZE ! */
2236 size = TASK_SIZE - (unsigned long)data;
2237 if (size > PAGE_SIZE)
2238 size = PAGE_SIZE;
2239
2240 i = size - exact_copy_from_user((void *)page, data, size);
2241 if (!i) {
2242 free_page(page);
2243 return -EFAULT;
2244 }
2245 if (i != PAGE_SIZE)
2246 memset((char *)page + i, 0, PAGE_SIZE - i);
2247 *where = page;
2248 return 0;
2249 }
2250
2251 int copy_mount_string(const void __user *data, char **where)
2252 {
2253 char *tmp;
2254
2255 if (!data) {
2256 *where = NULL;
2257 return 0;
2258 }
2259
2260 tmp = strndup_user(data, PAGE_SIZE);
2261 if (IS_ERR(tmp))
2262 return PTR_ERR(tmp);
2263
2264 *where = tmp;
2265 return 0;
2266 }
2267
2268 /*
2269 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2270 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2271 *
2272 * data is a (void *) that can point to any structure up to
2273 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2274 * information (or be NULL).
2275 *
2276 * Pre-0.97 versions of mount() didn't have a flags word.
2277 * When the flags word was introduced its top half was required
2278 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2279 * Therefore, if this magic number is present, it carries no information
2280 * and must be discarded.
2281 */
2282 long do_mount(char *dev_name, char *dir_name, char *type_page,
2283 unsigned long flags, void *data_page)
2284 {
2285 struct path path;
2286 int retval = 0;
2287 int mnt_flags = 0;
2288
2289 /* Discard magic */
2290 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2291 flags &= ~MS_MGC_MSK;
2292
2293 /* Basic sanity checks */
2294
2295 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2296 return -EINVAL;
2297
2298 if (data_page)
2299 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2300
2301 /* ... and get the mountpoint */
2302 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2303 if (retval)
2304 return retval;
2305
2306 retval = security_sb_mount(dev_name, &path,
2307 type_page, flags, data_page);
2308 if (retval)
2309 goto dput_out;
2310
2311 /* Default to relatime unless overriden */
2312 if (!(flags & MS_NOATIME))
2313 mnt_flags |= MNT_RELATIME;
2314
2315 /* Separate the per-mountpoint flags */
2316 if (flags & MS_NOSUID)
2317 mnt_flags |= MNT_NOSUID;
2318 if (flags & MS_NODEV)
2319 mnt_flags |= MNT_NODEV;
2320 if (flags & MS_NOEXEC)
2321 mnt_flags |= MNT_NOEXEC;
2322 if (flags & MS_NOATIME)
2323 mnt_flags |= MNT_NOATIME;
2324 if (flags & MS_NODIRATIME)
2325 mnt_flags |= MNT_NODIRATIME;
2326 if (flags & MS_STRICTATIME)
2327 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2328 if (flags & MS_RDONLY)
2329 mnt_flags |= MNT_READONLY;
2330
2331 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2332 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2333 MS_STRICTATIME);
2334
2335 if (flags & MS_REMOUNT)
2336 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2337 data_page);
2338 else if (flags & MS_BIND)
2339 retval = do_loopback(&path, dev_name, flags & MS_REC);
2340 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2341 retval = do_change_type(&path, flags);
2342 else if (flags & MS_MOVE)
2343 retval = do_move_mount(&path, dev_name);
2344 else
2345 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2346 dev_name, data_page);
2347 dput_out:
2348 path_put(&path);
2349 return retval;
2350 }
2351
2352 static struct mnt_namespace *alloc_mnt_ns(void)
2353 {
2354 struct mnt_namespace *new_ns;
2355
2356 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2357 if (!new_ns)
2358 return ERR_PTR(-ENOMEM);
2359 atomic_set(&new_ns->count, 1);
2360 new_ns->root = NULL;
2361 INIT_LIST_HEAD(&new_ns->list);
2362 init_waitqueue_head(&new_ns->poll);
2363 new_ns->event = 0;
2364 return new_ns;
2365 }
2366
2367 void mnt_make_longterm(struct vfsmount *mnt)
2368 {
2369 __mnt_make_longterm(mnt);
2370 }
2371
2372 void mnt_make_shortterm(struct vfsmount *mnt)
2373 {
2374 #ifdef CONFIG_SMP
2375 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2376 return;
2377 br_write_lock(vfsmount_lock);
2378 atomic_dec(&mnt->mnt_longterm);
2379 br_write_unlock(vfsmount_lock);
2380 #endif
2381 }
2382
2383 /*
2384 * Allocate a new namespace structure and populate it with contents
2385 * copied from the namespace of the passed in task structure.
2386 */
2387 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2388 struct fs_struct *fs)
2389 {
2390 struct mnt_namespace *new_ns;
2391 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2392 struct mount *p, *q;
2393 struct mount *new;
2394
2395 new_ns = alloc_mnt_ns();
2396 if (IS_ERR(new_ns))
2397 return new_ns;
2398
2399 down_write(&namespace_sem);
2400 /* First pass: copy the tree topology */
2401 new = copy_tree(real_mount(mnt_ns->root), mnt_ns->root->mnt_root,
2402 CL_COPY_ALL | CL_EXPIRE);
2403 if (!new) {
2404 up_write(&namespace_sem);
2405 kfree(new_ns);
2406 return ERR_PTR(-ENOMEM);
2407 }
2408 new_ns->root = &new->mnt;
2409 br_write_lock(vfsmount_lock);
2410 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2411 br_write_unlock(vfsmount_lock);
2412
2413 /*
2414 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2415 * as belonging to new namespace. We have already acquired a private
2416 * fs_struct, so tsk->fs->lock is not needed.
2417 */
2418 p = real_mount(mnt_ns->root);
2419 q = new;
2420 while (p) {
2421 q->mnt.mnt_ns = new_ns;
2422 __mnt_make_longterm(&q->mnt);
2423 if (fs) {
2424 if (&p->mnt == fs->root.mnt) {
2425 fs->root.mnt = mntget(&q->mnt);
2426 __mnt_make_longterm(&q->mnt);
2427 mnt_make_shortterm(&p->mnt);
2428 rootmnt = &p->mnt;
2429 }
2430 if (&p->mnt == fs->pwd.mnt) {
2431 fs->pwd.mnt = mntget(&q->mnt);
2432 __mnt_make_longterm(&q->mnt);
2433 mnt_make_shortterm(&p->mnt);
2434 pwdmnt = &p->mnt;
2435 }
2436 }
2437 p = next_mnt(p, mnt_ns->root);
2438 q = next_mnt(q, new_ns->root);
2439 }
2440 up_write(&namespace_sem);
2441
2442 if (rootmnt)
2443 mntput(rootmnt);
2444 if (pwdmnt)
2445 mntput(pwdmnt);
2446
2447 return new_ns;
2448 }
2449
2450 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2451 struct fs_struct *new_fs)
2452 {
2453 struct mnt_namespace *new_ns;
2454
2455 BUG_ON(!ns);
2456 get_mnt_ns(ns);
2457
2458 if (!(flags & CLONE_NEWNS))
2459 return ns;
2460
2461 new_ns = dup_mnt_ns(ns, new_fs);
2462
2463 put_mnt_ns(ns);
2464 return new_ns;
2465 }
2466
2467 /**
2468 * create_mnt_ns - creates a private namespace and adds a root filesystem
2469 * @mnt: pointer to the new root filesystem mountpoint
2470 */
2471 static struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2472 {
2473 struct mnt_namespace *new_ns;
2474
2475 new_ns = alloc_mnt_ns();
2476 if (!IS_ERR(new_ns)) {
2477 mnt->mnt_ns = new_ns;
2478 __mnt_make_longterm(mnt);
2479 new_ns->root = mnt;
2480 list_add(&new_ns->list, &new_ns->root->mnt_list);
2481 } else {
2482 mntput(mnt);
2483 }
2484 return new_ns;
2485 }
2486
2487 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2488 {
2489 struct mnt_namespace *ns;
2490 struct super_block *s;
2491 struct path path;
2492 int err;
2493
2494 ns = create_mnt_ns(mnt);
2495 if (IS_ERR(ns))
2496 return ERR_CAST(ns);
2497
2498 err = vfs_path_lookup(mnt->mnt_root, mnt,
2499 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2500
2501 put_mnt_ns(ns);
2502
2503 if (err)
2504 return ERR_PTR(err);
2505
2506 /* trade a vfsmount reference for active sb one */
2507 s = path.mnt->mnt_sb;
2508 atomic_inc(&s->s_active);
2509 mntput(path.mnt);
2510 /* lock the sucker */
2511 down_write(&s->s_umount);
2512 /* ... and return the root of (sub)tree on it */
2513 return path.dentry;
2514 }
2515 EXPORT_SYMBOL(mount_subtree);
2516
2517 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2518 char __user *, type, unsigned long, flags, void __user *, data)
2519 {
2520 int ret;
2521 char *kernel_type;
2522 char *kernel_dir;
2523 char *kernel_dev;
2524 unsigned long data_page;
2525
2526 ret = copy_mount_string(type, &kernel_type);
2527 if (ret < 0)
2528 goto out_type;
2529
2530 kernel_dir = getname(dir_name);
2531 if (IS_ERR(kernel_dir)) {
2532 ret = PTR_ERR(kernel_dir);
2533 goto out_dir;
2534 }
2535
2536 ret = copy_mount_string(dev_name, &kernel_dev);
2537 if (ret < 0)
2538 goto out_dev;
2539
2540 ret = copy_mount_options(data, &data_page);
2541 if (ret < 0)
2542 goto out_data;
2543
2544 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2545 (void *) data_page);
2546
2547 free_page(data_page);
2548 out_data:
2549 kfree(kernel_dev);
2550 out_dev:
2551 putname(kernel_dir);
2552 out_dir:
2553 kfree(kernel_type);
2554 out_type:
2555 return ret;
2556 }
2557
2558 /*
2559 * Return true if path is reachable from root
2560 *
2561 * namespace_sem or vfsmount_lock is held
2562 */
2563 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2564 const struct path *root)
2565 {
2566 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2567 dentry = mnt->mnt.mnt_mountpoint;
2568 mnt = mnt->mnt_parent;
2569 }
2570 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2571 }
2572
2573 int path_is_under(struct path *path1, struct path *path2)
2574 {
2575 int res;
2576 br_read_lock(vfsmount_lock);
2577 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2578 br_read_unlock(vfsmount_lock);
2579 return res;
2580 }
2581 EXPORT_SYMBOL(path_is_under);
2582
2583 /*
2584 * pivot_root Semantics:
2585 * Moves the root file system of the current process to the directory put_old,
2586 * makes new_root as the new root file system of the current process, and sets
2587 * root/cwd of all processes which had them on the current root to new_root.
2588 *
2589 * Restrictions:
2590 * The new_root and put_old must be directories, and must not be on the
2591 * same file system as the current process root. The put_old must be
2592 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2593 * pointed to by put_old must yield the same directory as new_root. No other
2594 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2595 *
2596 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2597 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2598 * in this situation.
2599 *
2600 * Notes:
2601 * - we don't move root/cwd if they are not at the root (reason: if something
2602 * cared enough to change them, it's probably wrong to force them elsewhere)
2603 * - it's okay to pick a root that isn't the root of a file system, e.g.
2604 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2605 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2606 * first.
2607 */
2608 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2609 const char __user *, put_old)
2610 {
2611 struct path new, old, parent_path, root_parent, root;
2612 struct mount *new_mnt, *root_mnt;
2613 int error;
2614
2615 if (!capable(CAP_SYS_ADMIN))
2616 return -EPERM;
2617
2618 error = user_path_dir(new_root, &new);
2619 if (error)
2620 goto out0;
2621
2622 error = user_path_dir(put_old, &old);
2623 if (error)
2624 goto out1;
2625
2626 error = security_sb_pivotroot(&old, &new);
2627 if (error)
2628 goto out2;
2629
2630 get_fs_root(current->fs, &root);
2631 error = lock_mount(&old);
2632 if (error)
2633 goto out3;
2634
2635 error = -EINVAL;
2636 new_mnt = real_mount(new.mnt);
2637 root_mnt = real_mount(root.mnt);
2638 if (IS_MNT_SHARED(old.mnt) ||
2639 IS_MNT_SHARED(&new_mnt->mnt_parent->mnt) ||
2640 IS_MNT_SHARED(&root_mnt->mnt_parent->mnt))
2641 goto out4;
2642 if (!check_mnt(root.mnt) || !check_mnt(new.mnt))
2643 goto out4;
2644 error = -ENOENT;
2645 if (d_unlinked(new.dentry))
2646 goto out4;
2647 if (d_unlinked(old.dentry))
2648 goto out4;
2649 error = -EBUSY;
2650 if (new.mnt == root.mnt ||
2651 old.mnt == root.mnt)
2652 goto out4; /* loop, on the same file system */
2653 error = -EINVAL;
2654 if (root.mnt->mnt_root != root.dentry)
2655 goto out4; /* not a mountpoint */
2656 if (!mnt_has_parent(root_mnt))
2657 goto out4; /* not attached */
2658 if (new.mnt->mnt_root != new.dentry)
2659 goto out4; /* not a mountpoint */
2660 if (!mnt_has_parent(new_mnt))
2661 goto out4; /* not attached */
2662 /* make sure we can reach put_old from new_root */
2663 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
2664 goto out4;
2665 br_write_lock(vfsmount_lock);
2666 detach_mnt(new_mnt, &parent_path);
2667 detach_mnt(root_mnt, &root_parent);
2668 /* mount old root on put_old */
2669 attach_mnt(root_mnt, &old);
2670 /* mount new_root on / */
2671 attach_mnt(new_mnt, &root_parent);
2672 touch_mnt_namespace(current->nsproxy->mnt_ns);
2673 br_write_unlock(vfsmount_lock);
2674 chroot_fs_refs(&root, &new);
2675 error = 0;
2676 out4:
2677 unlock_mount(&old);
2678 if (!error) {
2679 path_put(&root_parent);
2680 path_put(&parent_path);
2681 }
2682 out3:
2683 path_put(&root);
2684 out2:
2685 path_put(&old);
2686 out1:
2687 path_put(&new);
2688 out0:
2689 return error;
2690 }
2691
2692 static void __init init_mount_tree(void)
2693 {
2694 struct vfsmount *mnt;
2695 struct mnt_namespace *ns;
2696 struct path root;
2697
2698 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2699 if (IS_ERR(mnt))
2700 panic("Can't create rootfs");
2701
2702 ns = create_mnt_ns(mnt);
2703 if (IS_ERR(ns))
2704 panic("Can't allocate initial namespace");
2705
2706 init_task.nsproxy->mnt_ns = ns;
2707 get_mnt_ns(ns);
2708
2709 root.mnt = ns->root;
2710 root.dentry = ns->root->mnt_root;
2711
2712 set_fs_pwd(current->fs, &root);
2713 set_fs_root(current->fs, &root);
2714 }
2715
2716 void __init mnt_init(void)
2717 {
2718 unsigned u;
2719 int err;
2720
2721 init_rwsem(&namespace_sem);
2722
2723 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2724 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2725
2726 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2727
2728 if (!mount_hashtable)
2729 panic("Failed to allocate mount hash table\n");
2730
2731 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2732
2733 for (u = 0; u < HASH_SIZE; u++)
2734 INIT_LIST_HEAD(&mount_hashtable[u]);
2735
2736 br_lock_init(vfsmount_lock);
2737
2738 err = sysfs_init();
2739 if (err)
2740 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2741 __func__, err);
2742 fs_kobj = kobject_create_and_add("fs", NULL);
2743 if (!fs_kobj)
2744 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2745 init_rootfs();
2746 init_mount_tree();
2747 }
2748
2749 void put_mnt_ns(struct mnt_namespace *ns)
2750 {
2751 LIST_HEAD(umount_list);
2752
2753 if (!atomic_dec_and_test(&ns->count))
2754 return;
2755 down_write(&namespace_sem);
2756 br_write_lock(vfsmount_lock);
2757 umount_tree(real_mount(ns->root), 0, &umount_list);
2758 br_write_unlock(vfsmount_lock);
2759 up_write(&namespace_sem);
2760 release_mounts(&umount_list);
2761 kfree(ns);
2762 }
2763
2764 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2765 {
2766 struct vfsmount *mnt;
2767 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2768 if (!IS_ERR(mnt)) {
2769 /*
2770 * it is a longterm mount, don't release mnt until
2771 * we unmount before file sys is unregistered
2772 */
2773 mnt_make_longterm(mnt);
2774 }
2775 return mnt;
2776 }
2777 EXPORT_SYMBOL_GPL(kern_mount_data);
2778
2779 void kern_unmount(struct vfsmount *mnt)
2780 {
2781 /* release long term mount so mount point can be released */
2782 if (!IS_ERR_OR_NULL(mnt)) {
2783 mnt_make_shortterm(mnt);
2784 mntput(mnt);
2785 }
2786 }
2787 EXPORT_SYMBOL(kern_unmount);
2788
2789 bool our_mnt(struct vfsmount *mnt)
2790 {
2791 return check_mnt(mnt);
2792 }