]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/namespace.c
UBUNTU: SAUCE: Import aufs driver
[mirror_ubuntu-hirsute-kernel.git] / fs / namespace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/task_work.h>
29 #include <linux/sched/task.h>
30 #include <uapi/linux/mount.h>
31 #include <linux/fs_context.h>
32 #include <linux/shmem_fs.h>
33
34 #include "pnode.h"
35 #include "internal.h"
36
37 /* Maximum number of mounts in a mount namespace */
38 unsigned int sysctl_mount_max __read_mostly = 100000;
39
40 static unsigned int m_hash_mask __read_mostly;
41 static unsigned int m_hash_shift __read_mostly;
42 static unsigned int mp_hash_mask __read_mostly;
43 static unsigned int mp_hash_shift __read_mostly;
44
45 static __initdata unsigned long mhash_entries;
46 static int __init set_mhash_entries(char *str)
47 {
48 if (!str)
49 return 0;
50 mhash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52 }
53 __setup("mhash_entries=", set_mhash_entries);
54
55 static __initdata unsigned long mphash_entries;
56 static int __init set_mphash_entries(char *str)
57 {
58 if (!str)
59 return 0;
60 mphash_entries = simple_strtoul(str, &str, 0);
61 return 1;
62 }
63 __setup("mphash_entries=", set_mphash_entries);
64
65 static u64 event;
66 static DEFINE_IDA(mnt_id_ida);
67 static DEFINE_IDA(mnt_group_ida);
68
69 static struct hlist_head *mount_hashtable __read_mostly;
70 static struct hlist_head *mountpoint_hashtable __read_mostly;
71 static struct kmem_cache *mnt_cache __read_mostly;
72 static DECLARE_RWSEM(namespace_sem);
73 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
74 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
75
76 /* /sys/fs */
77 struct kobject *fs_kobj;
78 EXPORT_SYMBOL_GPL(fs_kobj);
79
80 /*
81 * vfsmount lock may be taken for read to prevent changes to the
82 * vfsmount hash, ie. during mountpoint lookups or walking back
83 * up the tree.
84 *
85 * It should be taken for write in all cases where the vfsmount
86 * tree or hash is modified or when a vfsmount structure is modified.
87 */
88 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
89
90 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
91 {
92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
94 tmp = tmp + (tmp >> m_hash_shift);
95 return &mount_hashtable[tmp & m_hash_mask];
96 }
97
98 static inline struct hlist_head *mp_hash(struct dentry *dentry)
99 {
100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
101 tmp = tmp + (tmp >> mp_hash_shift);
102 return &mountpoint_hashtable[tmp & mp_hash_mask];
103 }
104
105 static int mnt_alloc_id(struct mount *mnt)
106 {
107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
108
109 if (res < 0)
110 return res;
111 mnt->mnt_id = res;
112 return 0;
113 }
114
115 static void mnt_free_id(struct mount *mnt)
116 {
117 ida_free(&mnt_id_ida, mnt->mnt_id);
118 }
119
120 /*
121 * Allocate a new peer group ID
122 */
123 static int mnt_alloc_group_id(struct mount *mnt)
124 {
125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
126
127 if (res < 0)
128 return res;
129 mnt->mnt_group_id = res;
130 return 0;
131 }
132
133 /*
134 * Release a peer group ID
135 */
136 void mnt_release_group_id(struct mount *mnt)
137 {
138 ida_free(&mnt_group_ida, mnt->mnt_group_id);
139 mnt->mnt_group_id = 0;
140 }
141
142 /*
143 * vfsmount lock must be held for read
144 */
145 static inline void mnt_add_count(struct mount *mnt, int n)
146 {
147 #ifdef CONFIG_SMP
148 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
149 #else
150 preempt_disable();
151 mnt->mnt_count += n;
152 preempt_enable();
153 #endif
154 }
155
156 /*
157 * vfsmount lock must be held for write
158 */
159 int mnt_get_count(struct mount *mnt)
160 {
161 #ifdef CONFIG_SMP
162 int count = 0;
163 int cpu;
164
165 for_each_possible_cpu(cpu) {
166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
167 }
168
169 return count;
170 #else
171 return mnt->mnt_count;
172 #endif
173 }
174
175 static struct mount *alloc_vfsmnt(const char *name)
176 {
177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
178 if (mnt) {
179 int err;
180
181 err = mnt_alloc_id(mnt);
182 if (err)
183 goto out_free_cache;
184
185 if (name) {
186 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
187 if (!mnt->mnt_devname)
188 goto out_free_id;
189 }
190
191 #ifdef CONFIG_SMP
192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 if (!mnt->mnt_pcp)
194 goto out_free_devname;
195
196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
197 #else
198 mnt->mnt_count = 1;
199 mnt->mnt_writers = 0;
200 #endif
201
202 INIT_HLIST_NODE(&mnt->mnt_hash);
203 INIT_LIST_HEAD(&mnt->mnt_child);
204 INIT_LIST_HEAD(&mnt->mnt_mounts);
205 INIT_LIST_HEAD(&mnt->mnt_list);
206 INIT_LIST_HEAD(&mnt->mnt_expire);
207 INIT_LIST_HEAD(&mnt->mnt_share);
208 INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 INIT_LIST_HEAD(&mnt->mnt_slave);
210 INIT_HLIST_NODE(&mnt->mnt_mp_list);
211 INIT_LIST_HEAD(&mnt->mnt_umounting);
212 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
213 }
214 return mnt;
215
216 #ifdef CONFIG_SMP
217 out_free_devname:
218 kfree_const(mnt->mnt_devname);
219 #endif
220 out_free_id:
221 mnt_free_id(mnt);
222 out_free_cache:
223 kmem_cache_free(mnt_cache, mnt);
224 return NULL;
225 }
226
227 /*
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
233 * a filesystem.
234 */
235 /*
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
238 *
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
244 * r/w.
245 */
246 bool __mnt_is_readonly(struct vfsmount *mnt)
247 {
248 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
249 }
250 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
251
252 static inline void mnt_inc_writers(struct mount *mnt)
253 {
254 #ifdef CONFIG_SMP
255 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
256 #else
257 mnt->mnt_writers++;
258 #endif
259 }
260
261 static inline void mnt_dec_writers(struct mount *mnt)
262 {
263 #ifdef CONFIG_SMP
264 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
265 #else
266 mnt->mnt_writers--;
267 #endif
268 }
269
270 static unsigned int mnt_get_writers(struct mount *mnt)
271 {
272 #ifdef CONFIG_SMP
273 unsigned int count = 0;
274 int cpu;
275
276 for_each_possible_cpu(cpu) {
277 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
278 }
279
280 return count;
281 #else
282 return mnt->mnt_writers;
283 #endif
284 }
285
286 static int mnt_is_readonly(struct vfsmount *mnt)
287 {
288 if (mnt->mnt_sb->s_readonly_remount)
289 return 1;
290 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
291 smp_rmb();
292 return __mnt_is_readonly(mnt);
293 }
294
295 /*
296 * Most r/o & frozen checks on a fs are for operations that take discrete
297 * amounts of time, like a write() or unlink(). We must keep track of when
298 * those operations start (for permission checks) and when they end, so that we
299 * can determine when writes are able to occur to a filesystem.
300 */
301 /**
302 * __mnt_want_write - get write access to a mount without freeze protection
303 * @m: the mount on which to take a write
304 *
305 * This tells the low-level filesystem that a write is about to be performed to
306 * it, and makes sure that writes are allowed (mnt it read-write) before
307 * returning success. This operation does not protect against filesystem being
308 * frozen. When the write operation is finished, __mnt_drop_write() must be
309 * called. This is effectively a refcount.
310 */
311 int __mnt_want_write(struct vfsmount *m)
312 {
313 struct mount *mnt = real_mount(m);
314 int ret = 0;
315
316 preempt_disable();
317 mnt_inc_writers(mnt);
318 /*
319 * The store to mnt_inc_writers must be visible before we pass
320 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
321 * incremented count after it has set MNT_WRITE_HOLD.
322 */
323 smp_mb();
324 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
325 cpu_relax();
326 /*
327 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
328 * be set to match its requirements. So we must not load that until
329 * MNT_WRITE_HOLD is cleared.
330 */
331 smp_rmb();
332 if (mnt_is_readonly(m)) {
333 mnt_dec_writers(mnt);
334 ret = -EROFS;
335 }
336 preempt_enable();
337
338 return ret;
339 }
340
341 /**
342 * mnt_want_write - get write access to a mount
343 * @m: the mount on which to take a write
344 *
345 * This tells the low-level filesystem that a write is about to be performed to
346 * it, and makes sure that writes are allowed (mount is read-write, filesystem
347 * is not frozen) before returning success. When the write operation is
348 * finished, mnt_drop_write() must be called. This is effectively a refcount.
349 */
350 int mnt_want_write(struct vfsmount *m)
351 {
352 int ret;
353
354 sb_start_write(m->mnt_sb);
355 ret = __mnt_want_write(m);
356 if (ret)
357 sb_end_write(m->mnt_sb);
358 return ret;
359 }
360 EXPORT_SYMBOL_GPL(mnt_want_write);
361
362 /**
363 * mnt_clone_write - get write access to a mount
364 * @mnt: the mount on which to take a write
365 *
366 * This is effectively like mnt_want_write, except
367 * it must only be used to take an extra write reference
368 * on a mountpoint that we already know has a write reference
369 * on it. This allows some optimisation.
370 *
371 * After finished, mnt_drop_write must be called as usual to
372 * drop the reference.
373 */
374 int mnt_clone_write(struct vfsmount *mnt)
375 {
376 /* superblock may be r/o */
377 if (__mnt_is_readonly(mnt))
378 return -EROFS;
379 preempt_disable();
380 mnt_inc_writers(real_mount(mnt));
381 preempt_enable();
382 return 0;
383 }
384 EXPORT_SYMBOL_GPL(mnt_clone_write);
385
386 /**
387 * __mnt_want_write_file - get write access to a file's mount
388 * @file: the file who's mount on which to take a write
389 *
390 * This is like __mnt_want_write, but it takes a file and can
391 * do some optimisations if the file is open for write already
392 */
393 int __mnt_want_write_file(struct file *file)
394 {
395 if (!(file->f_mode & FMODE_WRITER))
396 return __mnt_want_write(file->f_path.mnt);
397 else
398 return mnt_clone_write(file->f_path.mnt);
399 }
400
401 /**
402 * mnt_want_write_file - get write access to a file's mount
403 * @file: the file who's mount on which to take a write
404 *
405 * This is like mnt_want_write, but it takes a file and can
406 * do some optimisations if the file is open for write already
407 */
408 int mnt_want_write_file(struct file *file)
409 {
410 int ret;
411
412 sb_start_write(file_inode(file)->i_sb);
413 ret = __mnt_want_write_file(file);
414 if (ret)
415 sb_end_write(file_inode(file)->i_sb);
416 return ret;
417 }
418 EXPORT_SYMBOL_GPL(mnt_want_write_file);
419
420 /**
421 * __mnt_drop_write - give up write access to a mount
422 * @mnt: the mount on which to give up write access
423 *
424 * Tells the low-level filesystem that we are done
425 * performing writes to it. Must be matched with
426 * __mnt_want_write() call above.
427 */
428 void __mnt_drop_write(struct vfsmount *mnt)
429 {
430 preempt_disable();
431 mnt_dec_writers(real_mount(mnt));
432 preempt_enable();
433 }
434 EXPORT_SYMBOL_GPL(__mnt_drop_write);
435
436 /**
437 * mnt_drop_write - give up write access to a mount
438 * @mnt: the mount on which to give up write access
439 *
440 * Tells the low-level filesystem that we are done performing writes to it and
441 * also allows filesystem to be frozen again. Must be matched with
442 * mnt_want_write() call above.
443 */
444 void mnt_drop_write(struct vfsmount *mnt)
445 {
446 __mnt_drop_write(mnt);
447 sb_end_write(mnt->mnt_sb);
448 }
449 EXPORT_SYMBOL_GPL(mnt_drop_write);
450
451 void __mnt_drop_write_file(struct file *file)
452 {
453 __mnt_drop_write(file->f_path.mnt);
454 }
455
456 void mnt_drop_write_file(struct file *file)
457 {
458 __mnt_drop_write_file(file);
459 sb_end_write(file_inode(file)->i_sb);
460 }
461 EXPORT_SYMBOL(mnt_drop_write_file);
462
463 static int mnt_make_readonly(struct mount *mnt)
464 {
465 int ret = 0;
466
467 lock_mount_hash();
468 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
469 /*
470 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
471 * should be visible before we do.
472 */
473 smp_mb();
474
475 /*
476 * With writers on hold, if this value is zero, then there are
477 * definitely no active writers (although held writers may subsequently
478 * increment the count, they'll have to wait, and decrement it after
479 * seeing MNT_READONLY).
480 *
481 * It is OK to have counter incremented on one CPU and decremented on
482 * another: the sum will add up correctly. The danger would be when we
483 * sum up each counter, if we read a counter before it is incremented,
484 * but then read another CPU's count which it has been subsequently
485 * decremented from -- we would see more decrements than we should.
486 * MNT_WRITE_HOLD protects against this scenario, because
487 * mnt_want_write first increments count, then smp_mb, then spins on
488 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
489 * we're counting up here.
490 */
491 if (mnt_get_writers(mnt) > 0)
492 ret = -EBUSY;
493 else
494 mnt->mnt.mnt_flags |= MNT_READONLY;
495 /*
496 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
497 * that become unheld will see MNT_READONLY.
498 */
499 smp_wmb();
500 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
501 unlock_mount_hash();
502 return ret;
503 }
504
505 static int __mnt_unmake_readonly(struct mount *mnt)
506 {
507 lock_mount_hash();
508 mnt->mnt.mnt_flags &= ~MNT_READONLY;
509 unlock_mount_hash();
510 return 0;
511 }
512
513 int sb_prepare_remount_readonly(struct super_block *sb)
514 {
515 struct mount *mnt;
516 int err = 0;
517
518 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
519 if (atomic_long_read(&sb->s_remove_count))
520 return -EBUSY;
521
522 lock_mount_hash();
523 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
524 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
525 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
526 smp_mb();
527 if (mnt_get_writers(mnt) > 0) {
528 err = -EBUSY;
529 break;
530 }
531 }
532 }
533 if (!err && atomic_long_read(&sb->s_remove_count))
534 err = -EBUSY;
535
536 if (!err) {
537 sb->s_readonly_remount = 1;
538 smp_wmb();
539 }
540 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
541 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
542 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
543 }
544 unlock_mount_hash();
545
546 return err;
547 }
548
549 static void free_vfsmnt(struct mount *mnt)
550 {
551 kfree_const(mnt->mnt_devname);
552 #ifdef CONFIG_SMP
553 free_percpu(mnt->mnt_pcp);
554 #endif
555 kmem_cache_free(mnt_cache, mnt);
556 }
557
558 static void delayed_free_vfsmnt(struct rcu_head *head)
559 {
560 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
561 }
562
563 /* call under rcu_read_lock */
564 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
565 {
566 struct mount *mnt;
567 if (read_seqretry(&mount_lock, seq))
568 return 1;
569 if (bastard == NULL)
570 return 0;
571 mnt = real_mount(bastard);
572 mnt_add_count(mnt, 1);
573 smp_mb(); // see mntput_no_expire()
574 if (likely(!read_seqretry(&mount_lock, seq)))
575 return 0;
576 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
577 mnt_add_count(mnt, -1);
578 return 1;
579 }
580 lock_mount_hash();
581 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
582 mnt_add_count(mnt, -1);
583 unlock_mount_hash();
584 return 1;
585 }
586 unlock_mount_hash();
587 /* caller will mntput() */
588 return -1;
589 }
590
591 /* call under rcu_read_lock */
592 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
593 {
594 int res = __legitimize_mnt(bastard, seq);
595 if (likely(!res))
596 return true;
597 if (unlikely(res < 0)) {
598 rcu_read_unlock();
599 mntput(bastard);
600 rcu_read_lock();
601 }
602 return false;
603 }
604
605 /*
606 * find the first mount at @dentry on vfsmount @mnt.
607 * call under rcu_read_lock()
608 */
609 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
610 {
611 struct hlist_head *head = m_hash(mnt, dentry);
612 struct mount *p;
613
614 hlist_for_each_entry_rcu(p, head, mnt_hash)
615 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
616 return p;
617 return NULL;
618 }
619
620 /*
621 * lookup_mnt - Return the first child mount mounted at path
622 *
623 * "First" means first mounted chronologically. If you create the
624 * following mounts:
625 *
626 * mount /dev/sda1 /mnt
627 * mount /dev/sda2 /mnt
628 * mount /dev/sda3 /mnt
629 *
630 * Then lookup_mnt() on the base /mnt dentry in the root mount will
631 * return successively the root dentry and vfsmount of /dev/sda1, then
632 * /dev/sda2, then /dev/sda3, then NULL.
633 *
634 * lookup_mnt takes a reference to the found vfsmount.
635 */
636 struct vfsmount *lookup_mnt(const struct path *path)
637 {
638 struct mount *child_mnt;
639 struct vfsmount *m;
640 unsigned seq;
641
642 rcu_read_lock();
643 do {
644 seq = read_seqbegin(&mount_lock);
645 child_mnt = __lookup_mnt(path->mnt, path->dentry);
646 m = child_mnt ? &child_mnt->mnt : NULL;
647 } while (!legitimize_mnt(m, seq));
648 rcu_read_unlock();
649 return m;
650 }
651
652 static inline void lock_ns_list(struct mnt_namespace *ns)
653 {
654 spin_lock(&ns->ns_lock);
655 }
656
657 static inline void unlock_ns_list(struct mnt_namespace *ns)
658 {
659 spin_unlock(&ns->ns_lock);
660 }
661
662 static inline bool mnt_is_cursor(struct mount *mnt)
663 {
664 return mnt->mnt.mnt_flags & MNT_CURSOR;
665 }
666
667 /*
668 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
669 * current mount namespace.
670 *
671 * The common case is dentries are not mountpoints at all and that
672 * test is handled inline. For the slow case when we are actually
673 * dealing with a mountpoint of some kind, walk through all of the
674 * mounts in the current mount namespace and test to see if the dentry
675 * is a mountpoint.
676 *
677 * The mount_hashtable is not usable in the context because we
678 * need to identify all mounts that may be in the current mount
679 * namespace not just a mount that happens to have some specified
680 * parent mount.
681 */
682 bool __is_local_mountpoint(struct dentry *dentry)
683 {
684 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
685 struct mount *mnt;
686 bool is_covered = false;
687
688 down_read(&namespace_sem);
689 lock_ns_list(ns);
690 list_for_each_entry(mnt, &ns->list, mnt_list) {
691 if (mnt_is_cursor(mnt))
692 continue;
693 is_covered = (mnt->mnt_mountpoint == dentry);
694 if (is_covered)
695 break;
696 }
697 unlock_ns_list(ns);
698 up_read(&namespace_sem);
699
700 return is_covered;
701 }
702
703 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
704 {
705 struct hlist_head *chain = mp_hash(dentry);
706 struct mountpoint *mp;
707
708 hlist_for_each_entry(mp, chain, m_hash) {
709 if (mp->m_dentry == dentry) {
710 mp->m_count++;
711 return mp;
712 }
713 }
714 return NULL;
715 }
716
717 static struct mountpoint *get_mountpoint(struct dentry *dentry)
718 {
719 struct mountpoint *mp, *new = NULL;
720 int ret;
721
722 if (d_mountpoint(dentry)) {
723 /* might be worth a WARN_ON() */
724 if (d_unlinked(dentry))
725 return ERR_PTR(-ENOENT);
726 mountpoint:
727 read_seqlock_excl(&mount_lock);
728 mp = lookup_mountpoint(dentry);
729 read_sequnlock_excl(&mount_lock);
730 if (mp)
731 goto done;
732 }
733
734 if (!new)
735 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
736 if (!new)
737 return ERR_PTR(-ENOMEM);
738
739
740 /* Exactly one processes may set d_mounted */
741 ret = d_set_mounted(dentry);
742
743 /* Someone else set d_mounted? */
744 if (ret == -EBUSY)
745 goto mountpoint;
746
747 /* The dentry is not available as a mountpoint? */
748 mp = ERR_PTR(ret);
749 if (ret)
750 goto done;
751
752 /* Add the new mountpoint to the hash table */
753 read_seqlock_excl(&mount_lock);
754 new->m_dentry = dget(dentry);
755 new->m_count = 1;
756 hlist_add_head(&new->m_hash, mp_hash(dentry));
757 INIT_HLIST_HEAD(&new->m_list);
758 read_sequnlock_excl(&mount_lock);
759
760 mp = new;
761 new = NULL;
762 done:
763 kfree(new);
764 return mp;
765 }
766
767 /*
768 * vfsmount lock must be held. Additionally, the caller is responsible
769 * for serializing calls for given disposal list.
770 */
771 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
772 {
773 if (!--mp->m_count) {
774 struct dentry *dentry = mp->m_dentry;
775 BUG_ON(!hlist_empty(&mp->m_list));
776 spin_lock(&dentry->d_lock);
777 dentry->d_flags &= ~DCACHE_MOUNTED;
778 spin_unlock(&dentry->d_lock);
779 dput_to_list(dentry, list);
780 hlist_del(&mp->m_hash);
781 kfree(mp);
782 }
783 }
784
785 /* called with namespace_lock and vfsmount lock */
786 static void put_mountpoint(struct mountpoint *mp)
787 {
788 __put_mountpoint(mp, &ex_mountpoints);
789 }
790
791 static inline int check_mnt(struct mount *mnt)
792 {
793 return mnt->mnt_ns == current->nsproxy->mnt_ns;
794 }
795
796 /* for aufs, CONFIG_AUFS_BR_FUSE */
797 int is_current_mnt_ns(struct vfsmount *mnt)
798 {
799 return check_mnt(real_mount(mnt));
800 }
801 EXPORT_SYMBOL_GPL(is_current_mnt_ns);
802
803 /*
804 * vfsmount lock must be held for write
805 */
806 static void touch_mnt_namespace(struct mnt_namespace *ns)
807 {
808 if (ns) {
809 ns->event = ++event;
810 wake_up_interruptible(&ns->poll);
811 }
812 }
813
814 /*
815 * vfsmount lock must be held for write
816 */
817 static void __touch_mnt_namespace(struct mnt_namespace *ns)
818 {
819 if (ns && ns->event != event) {
820 ns->event = event;
821 wake_up_interruptible(&ns->poll);
822 }
823 }
824
825 /*
826 * vfsmount lock must be held for write
827 */
828 static struct mountpoint *unhash_mnt(struct mount *mnt)
829 {
830 struct mountpoint *mp;
831 mnt->mnt_parent = mnt;
832 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
833 list_del_init(&mnt->mnt_child);
834 hlist_del_init_rcu(&mnt->mnt_hash);
835 hlist_del_init(&mnt->mnt_mp_list);
836 mp = mnt->mnt_mp;
837 mnt->mnt_mp = NULL;
838 return mp;
839 }
840
841 /*
842 * vfsmount lock must be held for write
843 */
844 static void umount_mnt(struct mount *mnt)
845 {
846 put_mountpoint(unhash_mnt(mnt));
847 }
848
849 /*
850 * vfsmount lock must be held for write
851 */
852 void mnt_set_mountpoint(struct mount *mnt,
853 struct mountpoint *mp,
854 struct mount *child_mnt)
855 {
856 mp->m_count++;
857 mnt_add_count(mnt, 1); /* essentially, that's mntget */
858 child_mnt->mnt_mountpoint = mp->m_dentry;
859 child_mnt->mnt_parent = mnt;
860 child_mnt->mnt_mp = mp;
861 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
862 }
863
864 static void __attach_mnt(struct mount *mnt, struct mount *parent)
865 {
866 hlist_add_head_rcu(&mnt->mnt_hash,
867 m_hash(&parent->mnt, mnt->mnt_mountpoint));
868 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
869 }
870
871 /*
872 * vfsmount lock must be held for write
873 */
874 static void attach_mnt(struct mount *mnt,
875 struct mount *parent,
876 struct mountpoint *mp)
877 {
878 mnt_set_mountpoint(parent, mp, mnt);
879 __attach_mnt(mnt, parent);
880 }
881
882 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
883 {
884 struct mountpoint *old_mp = mnt->mnt_mp;
885 struct mount *old_parent = mnt->mnt_parent;
886
887 list_del_init(&mnt->mnt_child);
888 hlist_del_init(&mnt->mnt_mp_list);
889 hlist_del_init_rcu(&mnt->mnt_hash);
890
891 attach_mnt(mnt, parent, mp);
892
893 put_mountpoint(old_mp);
894 mnt_add_count(old_parent, -1);
895 }
896
897 /*
898 * vfsmount lock must be held for write
899 */
900 static void commit_tree(struct mount *mnt)
901 {
902 struct mount *parent = mnt->mnt_parent;
903 struct mount *m;
904 LIST_HEAD(head);
905 struct mnt_namespace *n = parent->mnt_ns;
906
907 BUG_ON(parent == mnt);
908
909 list_add_tail(&head, &mnt->mnt_list);
910 list_for_each_entry(m, &head, mnt_list)
911 m->mnt_ns = n;
912
913 list_splice(&head, n->list.prev);
914
915 n->mounts += n->pending_mounts;
916 n->pending_mounts = 0;
917
918 __attach_mnt(mnt, parent);
919 touch_mnt_namespace(n);
920 }
921
922 static struct mount *next_mnt(struct mount *p, struct mount *root)
923 {
924 struct list_head *next = p->mnt_mounts.next;
925 if (next == &p->mnt_mounts) {
926 while (1) {
927 if (p == root)
928 return NULL;
929 next = p->mnt_child.next;
930 if (next != &p->mnt_parent->mnt_mounts)
931 break;
932 p = p->mnt_parent;
933 }
934 }
935 return list_entry(next, struct mount, mnt_child);
936 }
937
938 static struct mount *skip_mnt_tree(struct mount *p)
939 {
940 struct list_head *prev = p->mnt_mounts.prev;
941 while (prev != &p->mnt_mounts) {
942 p = list_entry(prev, struct mount, mnt_child);
943 prev = p->mnt_mounts.prev;
944 }
945 return p;
946 }
947
948 /**
949 * vfs_create_mount - Create a mount for a configured superblock
950 * @fc: The configuration context with the superblock attached
951 *
952 * Create a mount to an already configured superblock. If necessary, the
953 * caller should invoke vfs_get_tree() before calling this.
954 *
955 * Note that this does not attach the mount to anything.
956 */
957 struct vfsmount *vfs_create_mount(struct fs_context *fc)
958 {
959 struct mount *mnt;
960
961 if (!fc->root)
962 return ERR_PTR(-EINVAL);
963
964 mnt = alloc_vfsmnt(fc->source ?: "none");
965 if (!mnt)
966 return ERR_PTR(-ENOMEM);
967
968 if (fc->sb_flags & SB_KERNMOUNT)
969 mnt->mnt.mnt_flags = MNT_INTERNAL;
970
971 atomic_inc(&fc->root->d_sb->s_active);
972 mnt->mnt.mnt_sb = fc->root->d_sb;
973 mnt->mnt.mnt_root = dget(fc->root);
974 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
975 mnt->mnt_parent = mnt;
976
977 lock_mount_hash();
978 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
979 unlock_mount_hash();
980 return &mnt->mnt;
981 }
982 EXPORT_SYMBOL(vfs_create_mount);
983
984 struct vfsmount *fc_mount(struct fs_context *fc)
985 {
986 int err = vfs_get_tree(fc);
987 if (!err) {
988 up_write(&fc->root->d_sb->s_umount);
989 return vfs_create_mount(fc);
990 }
991 return ERR_PTR(err);
992 }
993 EXPORT_SYMBOL(fc_mount);
994
995 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
996 int flags, const char *name,
997 void *data)
998 {
999 struct fs_context *fc;
1000 struct vfsmount *mnt;
1001 int ret = 0;
1002
1003 if (!type)
1004 return ERR_PTR(-EINVAL);
1005
1006 fc = fs_context_for_mount(type, flags);
1007 if (IS_ERR(fc))
1008 return ERR_CAST(fc);
1009
1010 if (name)
1011 ret = vfs_parse_fs_string(fc, "source",
1012 name, strlen(name));
1013 if (!ret)
1014 ret = parse_monolithic_mount_data(fc, data);
1015 if (!ret)
1016 mnt = fc_mount(fc);
1017 else
1018 mnt = ERR_PTR(ret);
1019
1020 put_fs_context(fc);
1021 return mnt;
1022 }
1023 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1024
1025 struct vfsmount *
1026 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1027 const char *name, void *data)
1028 {
1029 /* Until it is worked out how to pass the user namespace
1030 * through from the parent mount to the submount don't support
1031 * unprivileged mounts with submounts.
1032 */
1033 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1034 return ERR_PTR(-EPERM);
1035
1036 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1037 }
1038 EXPORT_SYMBOL_GPL(vfs_submount);
1039
1040 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1041 int flag)
1042 {
1043 struct super_block *sb = old->mnt.mnt_sb;
1044 struct mount *mnt;
1045 int err;
1046
1047 mnt = alloc_vfsmnt(old->mnt_devname);
1048 if (!mnt)
1049 return ERR_PTR(-ENOMEM);
1050
1051 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1052 mnt->mnt_group_id = 0; /* not a peer of original */
1053 else
1054 mnt->mnt_group_id = old->mnt_group_id;
1055
1056 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1057 err = mnt_alloc_group_id(mnt);
1058 if (err)
1059 goto out_free;
1060 }
1061
1062 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1063 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1064
1065 atomic_inc(&sb->s_active);
1066 mnt->mnt.mnt_sb = sb;
1067 mnt->mnt.mnt_root = dget(root);
1068 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1069 mnt->mnt_parent = mnt;
1070 lock_mount_hash();
1071 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1072 unlock_mount_hash();
1073
1074 if ((flag & CL_SLAVE) ||
1075 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1076 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1077 mnt->mnt_master = old;
1078 CLEAR_MNT_SHARED(mnt);
1079 } else if (!(flag & CL_PRIVATE)) {
1080 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1081 list_add(&mnt->mnt_share, &old->mnt_share);
1082 if (IS_MNT_SLAVE(old))
1083 list_add(&mnt->mnt_slave, &old->mnt_slave);
1084 mnt->mnt_master = old->mnt_master;
1085 } else {
1086 CLEAR_MNT_SHARED(mnt);
1087 }
1088 if (flag & CL_MAKE_SHARED)
1089 set_mnt_shared(mnt);
1090
1091 /* stick the duplicate mount on the same expiry list
1092 * as the original if that was on one */
1093 if (flag & CL_EXPIRE) {
1094 if (!list_empty(&old->mnt_expire))
1095 list_add(&mnt->mnt_expire, &old->mnt_expire);
1096 }
1097
1098 return mnt;
1099
1100 out_free:
1101 mnt_free_id(mnt);
1102 free_vfsmnt(mnt);
1103 return ERR_PTR(err);
1104 }
1105
1106 static void cleanup_mnt(struct mount *mnt)
1107 {
1108 struct hlist_node *p;
1109 struct mount *m;
1110 /*
1111 * The warning here probably indicates that somebody messed
1112 * up a mnt_want/drop_write() pair. If this happens, the
1113 * filesystem was probably unable to make r/w->r/o transitions.
1114 * The locking used to deal with mnt_count decrement provides barriers,
1115 * so mnt_get_writers() below is safe.
1116 */
1117 WARN_ON(mnt_get_writers(mnt));
1118 if (unlikely(mnt->mnt_pins.first))
1119 mnt_pin_kill(mnt);
1120 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1121 hlist_del(&m->mnt_umount);
1122 mntput(&m->mnt);
1123 }
1124 fsnotify_vfsmount_delete(&mnt->mnt);
1125 dput(mnt->mnt.mnt_root);
1126 deactivate_super(mnt->mnt.mnt_sb);
1127 mnt_free_id(mnt);
1128 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1129 }
1130
1131 static void __cleanup_mnt(struct rcu_head *head)
1132 {
1133 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1134 }
1135
1136 static LLIST_HEAD(delayed_mntput_list);
1137 static void delayed_mntput(struct work_struct *unused)
1138 {
1139 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1140 struct mount *m, *t;
1141
1142 llist_for_each_entry_safe(m, t, node, mnt_llist)
1143 cleanup_mnt(m);
1144 }
1145 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1146
1147 static void mntput_no_expire(struct mount *mnt)
1148 {
1149 LIST_HEAD(list);
1150 int count;
1151
1152 rcu_read_lock();
1153 if (likely(READ_ONCE(mnt->mnt_ns))) {
1154 /*
1155 * Since we don't do lock_mount_hash() here,
1156 * ->mnt_ns can change under us. However, if it's
1157 * non-NULL, then there's a reference that won't
1158 * be dropped until after an RCU delay done after
1159 * turning ->mnt_ns NULL. So if we observe it
1160 * non-NULL under rcu_read_lock(), the reference
1161 * we are dropping is not the final one.
1162 */
1163 mnt_add_count(mnt, -1);
1164 rcu_read_unlock();
1165 return;
1166 }
1167 lock_mount_hash();
1168 /*
1169 * make sure that if __legitimize_mnt() has not seen us grab
1170 * mount_lock, we'll see their refcount increment here.
1171 */
1172 smp_mb();
1173 mnt_add_count(mnt, -1);
1174 count = mnt_get_count(mnt);
1175 if (count != 0) {
1176 WARN_ON(count < 0);
1177 rcu_read_unlock();
1178 unlock_mount_hash();
1179 return;
1180 }
1181 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1182 rcu_read_unlock();
1183 unlock_mount_hash();
1184 return;
1185 }
1186 mnt->mnt.mnt_flags |= MNT_DOOMED;
1187 rcu_read_unlock();
1188
1189 list_del(&mnt->mnt_instance);
1190
1191 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1192 struct mount *p, *tmp;
1193 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1194 __put_mountpoint(unhash_mnt(p), &list);
1195 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1196 }
1197 }
1198 unlock_mount_hash();
1199 shrink_dentry_list(&list);
1200
1201 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1202 struct task_struct *task = current;
1203 if (likely(!(task->flags & PF_KTHREAD))) {
1204 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1205 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1206 return;
1207 }
1208 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1209 schedule_delayed_work(&delayed_mntput_work, 1);
1210 return;
1211 }
1212 cleanup_mnt(mnt);
1213 }
1214
1215 void mntput(struct vfsmount *mnt)
1216 {
1217 if (mnt) {
1218 struct mount *m = real_mount(mnt);
1219 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1220 if (unlikely(m->mnt_expiry_mark))
1221 m->mnt_expiry_mark = 0;
1222 mntput_no_expire(m);
1223 }
1224 }
1225 EXPORT_SYMBOL(mntput);
1226
1227 struct vfsmount *mntget(struct vfsmount *mnt)
1228 {
1229 if (mnt)
1230 mnt_add_count(real_mount(mnt), 1);
1231 return mnt;
1232 }
1233 EXPORT_SYMBOL(mntget);
1234
1235 /* path_is_mountpoint() - Check if path is a mount in the current
1236 * namespace.
1237 *
1238 * d_mountpoint() can only be used reliably to establish if a dentry is
1239 * not mounted in any namespace and that common case is handled inline.
1240 * d_mountpoint() isn't aware of the possibility there may be multiple
1241 * mounts using a given dentry in a different namespace. This function
1242 * checks if the passed in path is a mountpoint rather than the dentry
1243 * alone.
1244 */
1245 bool path_is_mountpoint(const struct path *path)
1246 {
1247 unsigned seq;
1248 bool res;
1249
1250 if (!d_mountpoint(path->dentry))
1251 return false;
1252
1253 rcu_read_lock();
1254 do {
1255 seq = read_seqbegin(&mount_lock);
1256 res = __path_is_mountpoint(path);
1257 } while (read_seqretry(&mount_lock, seq));
1258 rcu_read_unlock();
1259
1260 return res;
1261 }
1262 EXPORT_SYMBOL(path_is_mountpoint);
1263
1264 struct vfsmount *mnt_clone_internal(const struct path *path)
1265 {
1266 struct mount *p;
1267 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1268 if (IS_ERR(p))
1269 return ERR_CAST(p);
1270 p->mnt.mnt_flags |= MNT_INTERNAL;
1271 return &p->mnt;
1272 }
1273
1274 #ifdef CONFIG_PROC_FS
1275 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1276 struct list_head *p)
1277 {
1278 struct mount *mnt, *ret = NULL;
1279
1280 lock_ns_list(ns);
1281 list_for_each_continue(p, &ns->list) {
1282 mnt = list_entry(p, typeof(*mnt), mnt_list);
1283 if (!mnt_is_cursor(mnt)) {
1284 ret = mnt;
1285 break;
1286 }
1287 }
1288 unlock_ns_list(ns);
1289
1290 return ret;
1291 }
1292
1293 /* iterator; we want it to have access to namespace_sem, thus here... */
1294 static void *m_start(struct seq_file *m, loff_t *pos)
1295 {
1296 struct proc_mounts *p = m->private;
1297 struct list_head *prev;
1298
1299 down_read(&namespace_sem);
1300 if (!*pos) {
1301 prev = &p->ns->list;
1302 } else {
1303 prev = &p->cursor.mnt_list;
1304
1305 /* Read after we'd reached the end? */
1306 if (list_empty(prev))
1307 return NULL;
1308 }
1309
1310 return mnt_list_next(p->ns, prev);
1311 }
1312
1313 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1314 {
1315 struct proc_mounts *p = m->private;
1316 struct mount *mnt = v;
1317
1318 ++*pos;
1319 return mnt_list_next(p->ns, &mnt->mnt_list);
1320 }
1321
1322 static void m_stop(struct seq_file *m, void *v)
1323 {
1324 struct proc_mounts *p = m->private;
1325 struct mount *mnt = v;
1326
1327 lock_ns_list(p->ns);
1328 if (mnt)
1329 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1330 else
1331 list_del_init(&p->cursor.mnt_list);
1332 unlock_ns_list(p->ns);
1333 up_read(&namespace_sem);
1334 }
1335
1336 static int m_show(struct seq_file *m, void *v)
1337 {
1338 struct proc_mounts *p = m->private;
1339 struct mount *r = v;
1340 return p->show(m, &r->mnt);
1341 }
1342
1343 const struct seq_operations mounts_op = {
1344 .start = m_start,
1345 .next = m_next,
1346 .stop = m_stop,
1347 .show = m_show,
1348 };
1349
1350 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1351 {
1352 down_read(&namespace_sem);
1353 lock_ns_list(ns);
1354 list_del(&cursor->mnt_list);
1355 unlock_ns_list(ns);
1356 up_read(&namespace_sem);
1357 }
1358 #endif /* CONFIG_PROC_FS */
1359
1360 /**
1361 * may_umount_tree - check if a mount tree is busy
1362 * @mnt: root of mount tree
1363 *
1364 * This is called to check if a tree of mounts has any
1365 * open files, pwds, chroots or sub mounts that are
1366 * busy.
1367 */
1368 int may_umount_tree(struct vfsmount *m)
1369 {
1370 struct mount *mnt = real_mount(m);
1371 int actual_refs = 0;
1372 int minimum_refs = 0;
1373 struct mount *p;
1374 BUG_ON(!m);
1375
1376 /* write lock needed for mnt_get_count */
1377 lock_mount_hash();
1378 for (p = mnt; p; p = next_mnt(p, mnt)) {
1379 actual_refs += mnt_get_count(p);
1380 minimum_refs += 2;
1381 }
1382 unlock_mount_hash();
1383
1384 if (actual_refs > minimum_refs)
1385 return 0;
1386
1387 return 1;
1388 }
1389
1390 EXPORT_SYMBOL(may_umount_tree);
1391
1392 /**
1393 * may_umount - check if a mount point is busy
1394 * @mnt: root of mount
1395 *
1396 * This is called to check if a mount point has any
1397 * open files, pwds, chroots or sub mounts. If the
1398 * mount has sub mounts this will return busy
1399 * regardless of whether the sub mounts are busy.
1400 *
1401 * Doesn't take quota and stuff into account. IOW, in some cases it will
1402 * give false negatives. The main reason why it's here is that we need
1403 * a non-destructive way to look for easily umountable filesystems.
1404 */
1405 int may_umount(struct vfsmount *mnt)
1406 {
1407 int ret = 1;
1408 down_read(&namespace_sem);
1409 lock_mount_hash();
1410 if (propagate_mount_busy(real_mount(mnt), 2))
1411 ret = 0;
1412 unlock_mount_hash();
1413 up_read(&namespace_sem);
1414 return ret;
1415 }
1416
1417 EXPORT_SYMBOL(may_umount);
1418
1419 static void namespace_unlock(void)
1420 {
1421 struct hlist_head head;
1422 struct hlist_node *p;
1423 struct mount *m;
1424 LIST_HEAD(list);
1425
1426 hlist_move_list(&unmounted, &head);
1427 list_splice_init(&ex_mountpoints, &list);
1428
1429 up_write(&namespace_sem);
1430
1431 shrink_dentry_list(&list);
1432
1433 if (likely(hlist_empty(&head)))
1434 return;
1435
1436 synchronize_rcu_expedited();
1437
1438 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1439 hlist_del(&m->mnt_umount);
1440 mntput(&m->mnt);
1441 }
1442 }
1443
1444 static inline void namespace_lock(void)
1445 {
1446 down_write(&namespace_sem);
1447 }
1448
1449 enum umount_tree_flags {
1450 UMOUNT_SYNC = 1,
1451 UMOUNT_PROPAGATE = 2,
1452 UMOUNT_CONNECTED = 4,
1453 };
1454
1455 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1456 {
1457 /* Leaving mounts connected is only valid for lazy umounts */
1458 if (how & UMOUNT_SYNC)
1459 return true;
1460
1461 /* A mount without a parent has nothing to be connected to */
1462 if (!mnt_has_parent(mnt))
1463 return true;
1464
1465 /* Because the reference counting rules change when mounts are
1466 * unmounted and connected, umounted mounts may not be
1467 * connected to mounted mounts.
1468 */
1469 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1470 return true;
1471
1472 /* Has it been requested that the mount remain connected? */
1473 if (how & UMOUNT_CONNECTED)
1474 return false;
1475
1476 /* Is the mount locked such that it needs to remain connected? */
1477 if (IS_MNT_LOCKED(mnt))
1478 return false;
1479
1480 /* By default disconnect the mount */
1481 return true;
1482 }
1483
1484 /*
1485 * mount_lock must be held
1486 * namespace_sem must be held for write
1487 */
1488 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1489 {
1490 LIST_HEAD(tmp_list);
1491 struct mount *p;
1492
1493 if (how & UMOUNT_PROPAGATE)
1494 propagate_mount_unlock(mnt);
1495
1496 /* Gather the mounts to umount */
1497 for (p = mnt; p; p = next_mnt(p, mnt)) {
1498 p->mnt.mnt_flags |= MNT_UMOUNT;
1499 list_move(&p->mnt_list, &tmp_list);
1500 }
1501
1502 /* Hide the mounts from mnt_mounts */
1503 list_for_each_entry(p, &tmp_list, mnt_list) {
1504 list_del_init(&p->mnt_child);
1505 }
1506
1507 /* Add propogated mounts to the tmp_list */
1508 if (how & UMOUNT_PROPAGATE)
1509 propagate_umount(&tmp_list);
1510
1511 while (!list_empty(&tmp_list)) {
1512 struct mnt_namespace *ns;
1513 bool disconnect;
1514 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1515 list_del_init(&p->mnt_expire);
1516 list_del_init(&p->mnt_list);
1517 ns = p->mnt_ns;
1518 if (ns) {
1519 ns->mounts--;
1520 __touch_mnt_namespace(ns);
1521 }
1522 p->mnt_ns = NULL;
1523 if (how & UMOUNT_SYNC)
1524 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1525
1526 disconnect = disconnect_mount(p, how);
1527 if (mnt_has_parent(p)) {
1528 mnt_add_count(p->mnt_parent, -1);
1529 if (!disconnect) {
1530 /* Don't forget about p */
1531 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1532 } else {
1533 umount_mnt(p);
1534 }
1535 }
1536 change_mnt_propagation(p, MS_PRIVATE);
1537 if (disconnect)
1538 hlist_add_head(&p->mnt_umount, &unmounted);
1539 }
1540 }
1541
1542 static void shrink_submounts(struct mount *mnt);
1543
1544 static int do_umount_root(struct super_block *sb)
1545 {
1546 int ret = 0;
1547
1548 down_write(&sb->s_umount);
1549 if (!sb_rdonly(sb)) {
1550 struct fs_context *fc;
1551
1552 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1553 SB_RDONLY);
1554 if (IS_ERR(fc)) {
1555 ret = PTR_ERR(fc);
1556 } else {
1557 ret = parse_monolithic_mount_data(fc, NULL);
1558 if (!ret)
1559 ret = reconfigure_super(fc);
1560 put_fs_context(fc);
1561 }
1562 }
1563 up_write(&sb->s_umount);
1564 return ret;
1565 }
1566
1567 static int do_umount(struct mount *mnt, int flags)
1568 {
1569 struct super_block *sb = mnt->mnt.mnt_sb;
1570 int retval;
1571
1572 retval = security_sb_umount(&mnt->mnt, flags);
1573 if (retval)
1574 return retval;
1575
1576 /*
1577 * Allow userspace to request a mountpoint be expired rather than
1578 * unmounting unconditionally. Unmount only happens if:
1579 * (1) the mark is already set (the mark is cleared by mntput())
1580 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1581 */
1582 if (flags & MNT_EXPIRE) {
1583 if (&mnt->mnt == current->fs->root.mnt ||
1584 flags & (MNT_FORCE | MNT_DETACH))
1585 return -EINVAL;
1586
1587 /*
1588 * probably don't strictly need the lock here if we examined
1589 * all race cases, but it's a slowpath.
1590 */
1591 lock_mount_hash();
1592 if (mnt_get_count(mnt) != 2) {
1593 unlock_mount_hash();
1594 return -EBUSY;
1595 }
1596 unlock_mount_hash();
1597
1598 if (!xchg(&mnt->mnt_expiry_mark, 1))
1599 return -EAGAIN;
1600 }
1601
1602 /*
1603 * If we may have to abort operations to get out of this
1604 * mount, and they will themselves hold resources we must
1605 * allow the fs to do things. In the Unix tradition of
1606 * 'Gee thats tricky lets do it in userspace' the umount_begin
1607 * might fail to complete on the first run through as other tasks
1608 * must return, and the like. Thats for the mount program to worry
1609 * about for the moment.
1610 */
1611
1612 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1613 sb->s_op->umount_begin(sb);
1614 }
1615
1616 /*
1617 * No sense to grab the lock for this test, but test itself looks
1618 * somewhat bogus. Suggestions for better replacement?
1619 * Ho-hum... In principle, we might treat that as umount + switch
1620 * to rootfs. GC would eventually take care of the old vfsmount.
1621 * Actually it makes sense, especially if rootfs would contain a
1622 * /reboot - static binary that would close all descriptors and
1623 * call reboot(9). Then init(8) could umount root and exec /reboot.
1624 */
1625 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1626 /*
1627 * Special case for "unmounting" root ...
1628 * we just try to remount it readonly.
1629 */
1630 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1631 return -EPERM;
1632 return do_umount_root(sb);
1633 }
1634
1635 namespace_lock();
1636 lock_mount_hash();
1637
1638 /* Recheck MNT_LOCKED with the locks held */
1639 retval = -EINVAL;
1640 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1641 goto out;
1642
1643 event++;
1644 if (flags & MNT_DETACH) {
1645 if (!list_empty(&mnt->mnt_list))
1646 umount_tree(mnt, UMOUNT_PROPAGATE);
1647 retval = 0;
1648 } else {
1649 shrink_submounts(mnt);
1650 retval = -EBUSY;
1651 if (!propagate_mount_busy(mnt, 2)) {
1652 if (!list_empty(&mnt->mnt_list))
1653 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1654 retval = 0;
1655 }
1656 }
1657 out:
1658 unlock_mount_hash();
1659 namespace_unlock();
1660 return retval;
1661 }
1662
1663 /*
1664 * __detach_mounts - lazily unmount all mounts on the specified dentry
1665 *
1666 * During unlink, rmdir, and d_drop it is possible to loose the path
1667 * to an existing mountpoint, and wind up leaking the mount.
1668 * detach_mounts allows lazily unmounting those mounts instead of
1669 * leaking them.
1670 *
1671 * The caller may hold dentry->d_inode->i_mutex.
1672 */
1673 void __detach_mounts(struct dentry *dentry)
1674 {
1675 struct mountpoint *mp;
1676 struct mount *mnt;
1677
1678 namespace_lock();
1679 lock_mount_hash();
1680 mp = lookup_mountpoint(dentry);
1681 if (!mp)
1682 goto out_unlock;
1683
1684 event++;
1685 while (!hlist_empty(&mp->m_list)) {
1686 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1687 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1688 umount_mnt(mnt);
1689 hlist_add_head(&mnt->mnt_umount, &unmounted);
1690 }
1691 else umount_tree(mnt, UMOUNT_CONNECTED);
1692 }
1693 put_mountpoint(mp);
1694 out_unlock:
1695 unlock_mount_hash();
1696 namespace_unlock();
1697 }
1698
1699 /*
1700 * Is the caller allowed to modify his namespace?
1701 */
1702 static inline bool may_mount(void)
1703 {
1704 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1705 }
1706
1707 #ifdef CONFIG_MANDATORY_FILE_LOCKING
1708 static inline bool may_mandlock(void)
1709 {
1710 return capable(CAP_SYS_ADMIN);
1711 }
1712 #else
1713 static inline bool may_mandlock(void)
1714 {
1715 pr_warn("VFS: \"mand\" mount option not supported");
1716 return false;
1717 }
1718 #endif
1719
1720 static int can_umount(const struct path *path, int flags)
1721 {
1722 struct mount *mnt = real_mount(path->mnt);
1723
1724 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1725 return -EINVAL;
1726 if (!may_mount())
1727 return -EPERM;
1728 if (path->dentry != path->mnt->mnt_root)
1729 return -EINVAL;
1730 if (!check_mnt(mnt))
1731 return -EINVAL;
1732 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1733 return -EINVAL;
1734 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1735 return -EPERM;
1736 return 0;
1737 }
1738
1739 int path_umount(struct path *path, int flags)
1740 {
1741 struct mount *mnt = real_mount(path->mnt);
1742 int ret;
1743
1744 ret = can_umount(path, flags);
1745 if (!ret)
1746 ret = do_umount(mnt, flags);
1747
1748 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1749 dput(path->dentry);
1750 mntput_no_expire(mnt);
1751 return ret;
1752 }
1753
1754 static int ksys_umount(char __user *name, int flags)
1755 {
1756 int lookup_flags = LOOKUP_MOUNTPOINT;
1757 struct path path;
1758 int ret;
1759
1760 if (!(flags & UMOUNT_NOFOLLOW))
1761 lookup_flags |= LOOKUP_FOLLOW;
1762 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1763 if (ret)
1764 return ret;
1765 return path_umount(&path, flags);
1766 }
1767
1768 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1769 {
1770 return ksys_umount(name, flags);
1771 }
1772
1773 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1774
1775 /*
1776 * The 2.0 compatible umount. No flags.
1777 */
1778 SYSCALL_DEFINE1(oldumount, char __user *, name)
1779 {
1780 return ksys_umount(name, 0);
1781 }
1782
1783 #endif
1784
1785 static bool is_mnt_ns_file(struct dentry *dentry)
1786 {
1787 /* Is this a proxy for a mount namespace? */
1788 return dentry->d_op == &ns_dentry_operations &&
1789 dentry->d_fsdata == &mntns_operations;
1790 }
1791
1792 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1793 {
1794 return container_of(ns, struct mnt_namespace, ns);
1795 }
1796
1797 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1798 {
1799 return &mnt->ns;
1800 }
1801
1802 static bool mnt_ns_loop(struct dentry *dentry)
1803 {
1804 /* Could bind mounting the mount namespace inode cause a
1805 * mount namespace loop?
1806 */
1807 struct mnt_namespace *mnt_ns;
1808 if (!is_mnt_ns_file(dentry))
1809 return false;
1810
1811 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1812 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1813 }
1814
1815 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1816 int flag)
1817 {
1818 struct mount *res, *p, *q, *r, *parent;
1819
1820 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1821 return ERR_PTR(-EINVAL);
1822
1823 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1824 return ERR_PTR(-EINVAL);
1825
1826 res = q = clone_mnt(mnt, dentry, flag);
1827 if (IS_ERR(q))
1828 return q;
1829
1830 q->mnt_mountpoint = mnt->mnt_mountpoint;
1831
1832 p = mnt;
1833 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1834 struct mount *s;
1835 if (!is_subdir(r->mnt_mountpoint, dentry))
1836 continue;
1837
1838 for (s = r; s; s = next_mnt(s, r)) {
1839 if (!(flag & CL_COPY_UNBINDABLE) &&
1840 IS_MNT_UNBINDABLE(s)) {
1841 if (s->mnt.mnt_flags & MNT_LOCKED) {
1842 /* Both unbindable and locked. */
1843 q = ERR_PTR(-EPERM);
1844 goto out;
1845 } else {
1846 s = skip_mnt_tree(s);
1847 continue;
1848 }
1849 }
1850 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1851 is_mnt_ns_file(s->mnt.mnt_root)) {
1852 s = skip_mnt_tree(s);
1853 continue;
1854 }
1855 while (p != s->mnt_parent) {
1856 p = p->mnt_parent;
1857 q = q->mnt_parent;
1858 }
1859 p = s;
1860 parent = q;
1861 q = clone_mnt(p, p->mnt.mnt_root, flag);
1862 if (IS_ERR(q))
1863 goto out;
1864 lock_mount_hash();
1865 list_add_tail(&q->mnt_list, &res->mnt_list);
1866 attach_mnt(q, parent, p->mnt_mp);
1867 unlock_mount_hash();
1868 }
1869 }
1870 return res;
1871 out:
1872 if (res) {
1873 lock_mount_hash();
1874 umount_tree(res, UMOUNT_SYNC);
1875 unlock_mount_hash();
1876 }
1877 return q;
1878 }
1879
1880 /* Caller should check returned pointer for errors */
1881
1882 struct vfsmount *collect_mounts(const struct path *path)
1883 {
1884 struct mount *tree;
1885 namespace_lock();
1886 if (!check_mnt(real_mount(path->mnt)))
1887 tree = ERR_PTR(-EINVAL);
1888 else
1889 tree = copy_tree(real_mount(path->mnt), path->dentry,
1890 CL_COPY_ALL | CL_PRIVATE);
1891 namespace_unlock();
1892 if (IS_ERR(tree))
1893 return ERR_CAST(tree);
1894 return &tree->mnt;
1895 }
1896
1897 static void free_mnt_ns(struct mnt_namespace *);
1898 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1899
1900 void dissolve_on_fput(struct vfsmount *mnt)
1901 {
1902 struct mnt_namespace *ns;
1903 namespace_lock();
1904 lock_mount_hash();
1905 ns = real_mount(mnt)->mnt_ns;
1906 if (ns) {
1907 if (is_anon_ns(ns))
1908 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1909 else
1910 ns = NULL;
1911 }
1912 unlock_mount_hash();
1913 namespace_unlock();
1914 if (ns)
1915 free_mnt_ns(ns);
1916 }
1917
1918 void drop_collected_mounts(struct vfsmount *mnt)
1919 {
1920 namespace_lock();
1921 lock_mount_hash();
1922 umount_tree(real_mount(mnt), 0);
1923 unlock_mount_hash();
1924 namespace_unlock();
1925 }
1926
1927 /**
1928 * clone_private_mount - create a private clone of a path
1929 *
1930 * This creates a new vfsmount, which will be the clone of @path. The new will
1931 * not be attached anywhere in the namespace and will be private (i.e. changes
1932 * to the originating mount won't be propagated into this).
1933 *
1934 * Release with mntput().
1935 */
1936 struct vfsmount *clone_private_mount(const struct path *path)
1937 {
1938 struct mount *old_mnt = real_mount(path->mnt);
1939 struct mount *new_mnt;
1940
1941 if (IS_MNT_UNBINDABLE(old_mnt))
1942 return ERR_PTR(-EINVAL);
1943
1944 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1945 if (IS_ERR(new_mnt))
1946 return ERR_CAST(new_mnt);
1947
1948 /* Longterm mount to be removed by kern_unmount*() */
1949 new_mnt->mnt_ns = MNT_NS_INTERNAL;
1950
1951 return &new_mnt->mnt;
1952 }
1953 EXPORT_SYMBOL_GPL(clone_private_mount);
1954
1955 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1956 struct vfsmount *root)
1957 {
1958 struct mount *mnt;
1959 int res = f(root, arg);
1960 if (res)
1961 return res;
1962 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1963 res = f(&mnt->mnt, arg);
1964 if (res)
1965 return res;
1966 }
1967 return 0;
1968 }
1969 EXPORT_SYMBOL_GPL(iterate_mounts);
1970
1971 static void lock_mnt_tree(struct mount *mnt)
1972 {
1973 struct mount *p;
1974
1975 for (p = mnt; p; p = next_mnt(p, mnt)) {
1976 int flags = p->mnt.mnt_flags;
1977 /* Don't allow unprivileged users to change mount flags */
1978 flags |= MNT_LOCK_ATIME;
1979
1980 if (flags & MNT_READONLY)
1981 flags |= MNT_LOCK_READONLY;
1982
1983 if (flags & MNT_NODEV)
1984 flags |= MNT_LOCK_NODEV;
1985
1986 if (flags & MNT_NOSUID)
1987 flags |= MNT_LOCK_NOSUID;
1988
1989 if (flags & MNT_NOEXEC)
1990 flags |= MNT_LOCK_NOEXEC;
1991 /* Don't allow unprivileged users to reveal what is under a mount */
1992 if (list_empty(&p->mnt_expire))
1993 flags |= MNT_LOCKED;
1994 p->mnt.mnt_flags = flags;
1995 }
1996 }
1997
1998 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1999 {
2000 struct mount *p;
2001
2002 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2003 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2004 mnt_release_group_id(p);
2005 }
2006 }
2007
2008 static int invent_group_ids(struct mount *mnt, bool recurse)
2009 {
2010 struct mount *p;
2011
2012 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2013 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2014 int err = mnt_alloc_group_id(p);
2015 if (err) {
2016 cleanup_group_ids(mnt, p);
2017 return err;
2018 }
2019 }
2020 }
2021
2022 return 0;
2023 }
2024
2025 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2026 {
2027 unsigned int max = READ_ONCE(sysctl_mount_max);
2028 unsigned int mounts = 0, old, pending, sum;
2029 struct mount *p;
2030
2031 for (p = mnt; p; p = next_mnt(p, mnt))
2032 mounts++;
2033
2034 old = ns->mounts;
2035 pending = ns->pending_mounts;
2036 sum = old + pending;
2037 if ((old > sum) ||
2038 (pending > sum) ||
2039 (max < sum) ||
2040 (mounts > (max - sum)))
2041 return -ENOSPC;
2042
2043 ns->pending_mounts = pending + mounts;
2044 return 0;
2045 }
2046
2047 /*
2048 * @source_mnt : mount tree to be attached
2049 * @nd : place the mount tree @source_mnt is attached
2050 * @parent_nd : if non-null, detach the source_mnt from its parent and
2051 * store the parent mount and mountpoint dentry.
2052 * (done when source_mnt is moved)
2053 *
2054 * NOTE: in the table below explains the semantics when a source mount
2055 * of a given type is attached to a destination mount of a given type.
2056 * ---------------------------------------------------------------------------
2057 * | BIND MOUNT OPERATION |
2058 * |**************************************************************************
2059 * | source-->| shared | private | slave | unbindable |
2060 * | dest | | | | |
2061 * | | | | | | |
2062 * | v | | | | |
2063 * |**************************************************************************
2064 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2065 * | | | | | |
2066 * |non-shared| shared (+) | private | slave (*) | invalid |
2067 * ***************************************************************************
2068 * A bind operation clones the source mount and mounts the clone on the
2069 * destination mount.
2070 *
2071 * (++) the cloned mount is propagated to all the mounts in the propagation
2072 * tree of the destination mount and the cloned mount is added to
2073 * the peer group of the source mount.
2074 * (+) the cloned mount is created under the destination mount and is marked
2075 * as shared. The cloned mount is added to the peer group of the source
2076 * mount.
2077 * (+++) the mount is propagated to all the mounts in the propagation tree
2078 * of the destination mount and the cloned mount is made slave
2079 * of the same master as that of the source mount. The cloned mount
2080 * is marked as 'shared and slave'.
2081 * (*) the cloned mount is made a slave of the same master as that of the
2082 * source mount.
2083 *
2084 * ---------------------------------------------------------------------------
2085 * | MOVE MOUNT OPERATION |
2086 * |**************************************************************************
2087 * | source-->| shared | private | slave | unbindable |
2088 * | dest | | | | |
2089 * | | | | | | |
2090 * | v | | | | |
2091 * |**************************************************************************
2092 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2093 * | | | | | |
2094 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2095 * ***************************************************************************
2096 *
2097 * (+) the mount is moved to the destination. And is then propagated to
2098 * all the mounts in the propagation tree of the destination mount.
2099 * (+*) the mount is moved to the destination.
2100 * (+++) the mount is moved to the destination and is then propagated to
2101 * all the mounts belonging to the destination mount's propagation tree.
2102 * the mount is marked as 'shared and slave'.
2103 * (*) the mount continues to be a slave at the new location.
2104 *
2105 * if the source mount is a tree, the operations explained above is
2106 * applied to each mount in the tree.
2107 * Must be called without spinlocks held, since this function can sleep
2108 * in allocations.
2109 */
2110 static int attach_recursive_mnt(struct mount *source_mnt,
2111 struct mount *dest_mnt,
2112 struct mountpoint *dest_mp,
2113 bool moving)
2114 {
2115 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2116 HLIST_HEAD(tree_list);
2117 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2118 struct mountpoint *smp;
2119 struct mount *child, *p;
2120 struct hlist_node *n;
2121 int err;
2122
2123 /* Preallocate a mountpoint in case the new mounts need
2124 * to be tucked under other mounts.
2125 */
2126 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2127 if (IS_ERR(smp))
2128 return PTR_ERR(smp);
2129
2130 /* Is there space to add these mounts to the mount namespace? */
2131 if (!moving) {
2132 err = count_mounts(ns, source_mnt);
2133 if (err)
2134 goto out;
2135 }
2136
2137 if (IS_MNT_SHARED(dest_mnt)) {
2138 err = invent_group_ids(source_mnt, true);
2139 if (err)
2140 goto out;
2141 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2142 lock_mount_hash();
2143 if (err)
2144 goto out_cleanup_ids;
2145 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2146 set_mnt_shared(p);
2147 } else {
2148 lock_mount_hash();
2149 }
2150 if (moving) {
2151 unhash_mnt(source_mnt);
2152 attach_mnt(source_mnt, dest_mnt, dest_mp);
2153 touch_mnt_namespace(source_mnt->mnt_ns);
2154 } else {
2155 if (source_mnt->mnt_ns) {
2156 /* move from anon - the caller will destroy */
2157 list_del_init(&source_mnt->mnt_ns->list);
2158 }
2159 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2160 commit_tree(source_mnt);
2161 }
2162
2163 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2164 struct mount *q;
2165 hlist_del_init(&child->mnt_hash);
2166 q = __lookup_mnt(&child->mnt_parent->mnt,
2167 child->mnt_mountpoint);
2168 if (q)
2169 mnt_change_mountpoint(child, smp, q);
2170 /* Notice when we are propagating across user namespaces */
2171 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2172 lock_mnt_tree(child);
2173 child->mnt.mnt_flags &= ~MNT_LOCKED;
2174 commit_tree(child);
2175 }
2176 put_mountpoint(smp);
2177 unlock_mount_hash();
2178
2179 return 0;
2180
2181 out_cleanup_ids:
2182 while (!hlist_empty(&tree_list)) {
2183 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2184 child->mnt_parent->mnt_ns->pending_mounts = 0;
2185 umount_tree(child, UMOUNT_SYNC);
2186 }
2187 unlock_mount_hash();
2188 cleanup_group_ids(source_mnt, NULL);
2189 out:
2190 ns->pending_mounts = 0;
2191
2192 read_seqlock_excl(&mount_lock);
2193 put_mountpoint(smp);
2194 read_sequnlock_excl(&mount_lock);
2195
2196 return err;
2197 }
2198
2199 static struct mountpoint *lock_mount(struct path *path)
2200 {
2201 struct vfsmount *mnt;
2202 struct dentry *dentry = path->dentry;
2203 retry:
2204 inode_lock(dentry->d_inode);
2205 if (unlikely(cant_mount(dentry))) {
2206 inode_unlock(dentry->d_inode);
2207 return ERR_PTR(-ENOENT);
2208 }
2209 namespace_lock();
2210 mnt = lookup_mnt(path);
2211 if (likely(!mnt)) {
2212 struct mountpoint *mp = get_mountpoint(dentry);
2213 if (IS_ERR(mp)) {
2214 namespace_unlock();
2215 inode_unlock(dentry->d_inode);
2216 return mp;
2217 }
2218 return mp;
2219 }
2220 namespace_unlock();
2221 inode_unlock(path->dentry->d_inode);
2222 path_put(path);
2223 path->mnt = mnt;
2224 dentry = path->dentry = dget(mnt->mnt_root);
2225 goto retry;
2226 }
2227
2228 static void unlock_mount(struct mountpoint *where)
2229 {
2230 struct dentry *dentry = where->m_dentry;
2231
2232 read_seqlock_excl(&mount_lock);
2233 put_mountpoint(where);
2234 read_sequnlock_excl(&mount_lock);
2235
2236 namespace_unlock();
2237 inode_unlock(dentry->d_inode);
2238 }
2239
2240 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2241 {
2242 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2243 return -EINVAL;
2244
2245 if (d_is_dir(mp->m_dentry) !=
2246 d_is_dir(mnt->mnt.mnt_root))
2247 return -ENOTDIR;
2248
2249 return attach_recursive_mnt(mnt, p, mp, false);
2250 }
2251
2252 /*
2253 * Sanity check the flags to change_mnt_propagation.
2254 */
2255
2256 static int flags_to_propagation_type(int ms_flags)
2257 {
2258 int type = ms_flags & ~(MS_REC | MS_SILENT);
2259
2260 /* Fail if any non-propagation flags are set */
2261 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2262 return 0;
2263 /* Only one propagation flag should be set */
2264 if (!is_power_of_2(type))
2265 return 0;
2266 return type;
2267 }
2268
2269 /*
2270 * recursively change the type of the mountpoint.
2271 */
2272 static int do_change_type(struct path *path, int ms_flags)
2273 {
2274 struct mount *m;
2275 struct mount *mnt = real_mount(path->mnt);
2276 int recurse = ms_flags & MS_REC;
2277 int type;
2278 int err = 0;
2279
2280 if (path->dentry != path->mnt->mnt_root)
2281 return -EINVAL;
2282
2283 type = flags_to_propagation_type(ms_flags);
2284 if (!type)
2285 return -EINVAL;
2286
2287 namespace_lock();
2288 if (type == MS_SHARED) {
2289 err = invent_group_ids(mnt, recurse);
2290 if (err)
2291 goto out_unlock;
2292 }
2293
2294 lock_mount_hash();
2295 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2296 change_mnt_propagation(m, type);
2297 unlock_mount_hash();
2298
2299 out_unlock:
2300 namespace_unlock();
2301 return err;
2302 }
2303
2304 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2305 {
2306 struct mount *child;
2307 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2308 if (!is_subdir(child->mnt_mountpoint, dentry))
2309 continue;
2310
2311 if (child->mnt.mnt_flags & MNT_LOCKED)
2312 return true;
2313 }
2314 return false;
2315 }
2316
2317 static struct mount *__do_loopback(struct path *old_path, int recurse)
2318 {
2319 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2320
2321 if (IS_MNT_UNBINDABLE(old))
2322 return mnt;
2323
2324 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2325 return mnt;
2326
2327 if (!recurse && has_locked_children(old, old_path->dentry))
2328 return mnt;
2329
2330 if (recurse)
2331 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2332 else
2333 mnt = clone_mnt(old, old_path->dentry, 0);
2334
2335 if (!IS_ERR(mnt))
2336 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2337
2338 return mnt;
2339 }
2340
2341 /*
2342 * do loopback mount.
2343 */
2344 static int do_loopback(struct path *path, const char *old_name,
2345 int recurse)
2346 {
2347 struct path old_path;
2348 struct mount *mnt = NULL, *parent;
2349 struct mountpoint *mp;
2350 int err;
2351 if (!old_name || !*old_name)
2352 return -EINVAL;
2353 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2354 if (err)
2355 return err;
2356
2357 err = -EINVAL;
2358 if (mnt_ns_loop(old_path.dentry))
2359 goto out;
2360
2361 mp = lock_mount(path);
2362 if (IS_ERR(mp)) {
2363 err = PTR_ERR(mp);
2364 goto out;
2365 }
2366
2367 parent = real_mount(path->mnt);
2368 if (!check_mnt(parent))
2369 goto out2;
2370
2371 mnt = __do_loopback(&old_path, recurse);
2372 if (IS_ERR(mnt)) {
2373 err = PTR_ERR(mnt);
2374 goto out2;
2375 }
2376
2377 err = graft_tree(mnt, parent, mp);
2378 if (err) {
2379 lock_mount_hash();
2380 umount_tree(mnt, UMOUNT_SYNC);
2381 unlock_mount_hash();
2382 }
2383 out2:
2384 unlock_mount(mp);
2385 out:
2386 path_put(&old_path);
2387 return err;
2388 }
2389
2390 static struct file *open_detached_copy(struct path *path, bool recursive)
2391 {
2392 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2393 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2394 struct mount *mnt, *p;
2395 struct file *file;
2396
2397 if (IS_ERR(ns))
2398 return ERR_CAST(ns);
2399
2400 namespace_lock();
2401 mnt = __do_loopback(path, recursive);
2402 if (IS_ERR(mnt)) {
2403 namespace_unlock();
2404 free_mnt_ns(ns);
2405 return ERR_CAST(mnt);
2406 }
2407
2408 lock_mount_hash();
2409 for (p = mnt; p; p = next_mnt(p, mnt)) {
2410 p->mnt_ns = ns;
2411 ns->mounts++;
2412 }
2413 ns->root = mnt;
2414 list_add_tail(&ns->list, &mnt->mnt_list);
2415 mntget(&mnt->mnt);
2416 unlock_mount_hash();
2417 namespace_unlock();
2418
2419 mntput(path->mnt);
2420 path->mnt = &mnt->mnt;
2421 file = dentry_open(path, O_PATH, current_cred());
2422 if (IS_ERR(file))
2423 dissolve_on_fput(path->mnt);
2424 else
2425 file->f_mode |= FMODE_NEED_UNMOUNT;
2426 return file;
2427 }
2428
2429 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2430 {
2431 struct file *file;
2432 struct path path;
2433 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2434 bool detached = flags & OPEN_TREE_CLONE;
2435 int error;
2436 int fd;
2437
2438 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2439
2440 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2441 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2442 OPEN_TREE_CLOEXEC))
2443 return -EINVAL;
2444
2445 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2446 return -EINVAL;
2447
2448 if (flags & AT_NO_AUTOMOUNT)
2449 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2450 if (flags & AT_SYMLINK_NOFOLLOW)
2451 lookup_flags &= ~LOOKUP_FOLLOW;
2452 if (flags & AT_EMPTY_PATH)
2453 lookup_flags |= LOOKUP_EMPTY;
2454
2455 if (detached && !may_mount())
2456 return -EPERM;
2457
2458 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2459 if (fd < 0)
2460 return fd;
2461
2462 error = user_path_at(dfd, filename, lookup_flags, &path);
2463 if (unlikely(error)) {
2464 file = ERR_PTR(error);
2465 } else {
2466 if (detached)
2467 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2468 else
2469 file = dentry_open(&path, O_PATH, current_cred());
2470 path_put(&path);
2471 }
2472 if (IS_ERR(file)) {
2473 put_unused_fd(fd);
2474 return PTR_ERR(file);
2475 }
2476 fd_install(fd, file);
2477 return fd;
2478 }
2479
2480 /*
2481 * Don't allow locked mount flags to be cleared.
2482 *
2483 * No locks need to be held here while testing the various MNT_LOCK
2484 * flags because those flags can never be cleared once they are set.
2485 */
2486 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2487 {
2488 unsigned int fl = mnt->mnt.mnt_flags;
2489
2490 if ((fl & MNT_LOCK_READONLY) &&
2491 !(mnt_flags & MNT_READONLY))
2492 return false;
2493
2494 if ((fl & MNT_LOCK_NODEV) &&
2495 !(mnt_flags & MNT_NODEV))
2496 return false;
2497
2498 if ((fl & MNT_LOCK_NOSUID) &&
2499 !(mnt_flags & MNT_NOSUID))
2500 return false;
2501
2502 if ((fl & MNT_LOCK_NOEXEC) &&
2503 !(mnt_flags & MNT_NOEXEC))
2504 return false;
2505
2506 if ((fl & MNT_LOCK_ATIME) &&
2507 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2508 return false;
2509
2510 return true;
2511 }
2512
2513 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2514 {
2515 bool readonly_request = (mnt_flags & MNT_READONLY);
2516
2517 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2518 return 0;
2519
2520 if (readonly_request)
2521 return mnt_make_readonly(mnt);
2522
2523 return __mnt_unmake_readonly(mnt);
2524 }
2525
2526 /*
2527 * Update the user-settable attributes on a mount. The caller must hold
2528 * sb->s_umount for writing.
2529 */
2530 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2531 {
2532 lock_mount_hash();
2533 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2534 mnt->mnt.mnt_flags = mnt_flags;
2535 touch_mnt_namespace(mnt->mnt_ns);
2536 unlock_mount_hash();
2537 }
2538
2539 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2540 {
2541 struct super_block *sb = mnt->mnt_sb;
2542
2543 if (!__mnt_is_readonly(mnt) &&
2544 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2545 char *buf = (char *)__get_free_page(GFP_KERNEL);
2546 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2547 struct tm tm;
2548
2549 time64_to_tm(sb->s_time_max, 0, &tm);
2550
2551 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2552 sb->s_type->name,
2553 is_mounted(mnt) ? "remounted" : "mounted",
2554 mntpath,
2555 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2556
2557 free_page((unsigned long)buf);
2558 }
2559 }
2560
2561 /*
2562 * Handle reconfiguration of the mountpoint only without alteration of the
2563 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2564 * to mount(2).
2565 */
2566 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2567 {
2568 struct super_block *sb = path->mnt->mnt_sb;
2569 struct mount *mnt = real_mount(path->mnt);
2570 int ret;
2571
2572 if (!check_mnt(mnt))
2573 return -EINVAL;
2574
2575 if (path->dentry != mnt->mnt.mnt_root)
2576 return -EINVAL;
2577
2578 if (!can_change_locked_flags(mnt, mnt_flags))
2579 return -EPERM;
2580
2581 down_write(&sb->s_umount);
2582 ret = change_mount_ro_state(mnt, mnt_flags);
2583 if (ret == 0)
2584 set_mount_attributes(mnt, mnt_flags);
2585 up_write(&sb->s_umount);
2586
2587 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2588
2589 return ret;
2590 }
2591
2592 /*
2593 * change filesystem flags. dir should be a physical root of filesystem.
2594 * If you've mounted a non-root directory somewhere and want to do remount
2595 * on it - tough luck.
2596 */
2597 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2598 int mnt_flags, void *data)
2599 {
2600 int err;
2601 struct super_block *sb = path->mnt->mnt_sb;
2602 struct mount *mnt = real_mount(path->mnt);
2603 struct fs_context *fc;
2604
2605 if (!check_mnt(mnt))
2606 return -EINVAL;
2607
2608 if (path->dentry != path->mnt->mnt_root)
2609 return -EINVAL;
2610
2611 if (!can_change_locked_flags(mnt, mnt_flags))
2612 return -EPERM;
2613
2614 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2615 if (IS_ERR(fc))
2616 return PTR_ERR(fc);
2617
2618 fc->oldapi = true;
2619 err = parse_monolithic_mount_data(fc, data);
2620 if (!err) {
2621 down_write(&sb->s_umount);
2622 err = -EPERM;
2623 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2624 err = reconfigure_super(fc);
2625 if (!err)
2626 set_mount_attributes(mnt, mnt_flags);
2627 }
2628 up_write(&sb->s_umount);
2629 }
2630
2631 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2632
2633 put_fs_context(fc);
2634 return err;
2635 }
2636
2637 static inline int tree_contains_unbindable(struct mount *mnt)
2638 {
2639 struct mount *p;
2640 for (p = mnt; p; p = next_mnt(p, mnt)) {
2641 if (IS_MNT_UNBINDABLE(p))
2642 return 1;
2643 }
2644 return 0;
2645 }
2646
2647 /*
2648 * Check that there aren't references to earlier/same mount namespaces in the
2649 * specified subtree. Such references can act as pins for mount namespaces
2650 * that aren't checked by the mount-cycle checking code, thereby allowing
2651 * cycles to be made.
2652 */
2653 static bool check_for_nsfs_mounts(struct mount *subtree)
2654 {
2655 struct mount *p;
2656 bool ret = false;
2657
2658 lock_mount_hash();
2659 for (p = subtree; p; p = next_mnt(p, subtree))
2660 if (mnt_ns_loop(p->mnt.mnt_root))
2661 goto out;
2662
2663 ret = true;
2664 out:
2665 unlock_mount_hash();
2666 return ret;
2667 }
2668
2669 static int do_move_mount(struct path *old_path, struct path *new_path)
2670 {
2671 struct mnt_namespace *ns;
2672 struct mount *p;
2673 struct mount *old;
2674 struct mount *parent;
2675 struct mountpoint *mp, *old_mp;
2676 int err;
2677 bool attached;
2678
2679 mp = lock_mount(new_path);
2680 if (IS_ERR(mp))
2681 return PTR_ERR(mp);
2682
2683 old = real_mount(old_path->mnt);
2684 p = real_mount(new_path->mnt);
2685 parent = old->mnt_parent;
2686 attached = mnt_has_parent(old);
2687 old_mp = old->mnt_mp;
2688 ns = old->mnt_ns;
2689
2690 err = -EINVAL;
2691 /* The mountpoint must be in our namespace. */
2692 if (!check_mnt(p))
2693 goto out;
2694
2695 /* The thing moved must be mounted... */
2696 if (!is_mounted(&old->mnt))
2697 goto out;
2698
2699 /* ... and either ours or the root of anon namespace */
2700 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2701 goto out;
2702
2703 if (old->mnt.mnt_flags & MNT_LOCKED)
2704 goto out;
2705
2706 if (old_path->dentry != old_path->mnt->mnt_root)
2707 goto out;
2708
2709 if (d_is_dir(new_path->dentry) !=
2710 d_is_dir(old_path->dentry))
2711 goto out;
2712 /*
2713 * Don't move a mount residing in a shared parent.
2714 */
2715 if (attached && IS_MNT_SHARED(parent))
2716 goto out;
2717 /*
2718 * Don't move a mount tree containing unbindable mounts to a destination
2719 * mount which is shared.
2720 */
2721 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2722 goto out;
2723 err = -ELOOP;
2724 if (!check_for_nsfs_mounts(old))
2725 goto out;
2726 for (; mnt_has_parent(p); p = p->mnt_parent)
2727 if (p == old)
2728 goto out;
2729
2730 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2731 attached);
2732 if (err)
2733 goto out;
2734
2735 /* if the mount is moved, it should no longer be expire
2736 * automatically */
2737 list_del_init(&old->mnt_expire);
2738 if (attached)
2739 put_mountpoint(old_mp);
2740 out:
2741 unlock_mount(mp);
2742 if (!err) {
2743 if (attached)
2744 mntput_no_expire(parent);
2745 else
2746 free_mnt_ns(ns);
2747 }
2748 return err;
2749 }
2750
2751 static int do_move_mount_old(struct path *path, const char *old_name)
2752 {
2753 struct path old_path;
2754 int err;
2755
2756 if (!old_name || !*old_name)
2757 return -EINVAL;
2758
2759 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2760 if (err)
2761 return err;
2762
2763 err = do_move_mount(&old_path, path);
2764 path_put(&old_path);
2765 return err;
2766 }
2767
2768 /*
2769 * add a mount into a namespace's mount tree
2770 */
2771 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2772 struct path *path, int mnt_flags)
2773 {
2774 struct mount *parent = real_mount(path->mnt);
2775
2776 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2777
2778 if (unlikely(!check_mnt(parent))) {
2779 /* that's acceptable only for automounts done in private ns */
2780 if (!(mnt_flags & MNT_SHRINKABLE))
2781 return -EINVAL;
2782 /* ... and for those we'd better have mountpoint still alive */
2783 if (!parent->mnt_ns)
2784 return -EINVAL;
2785 }
2786
2787 /* Refuse the same filesystem on the same mount point */
2788 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2789 path->mnt->mnt_root == path->dentry)
2790 return -EBUSY;
2791
2792 if (d_is_symlink(newmnt->mnt.mnt_root))
2793 return -EINVAL;
2794
2795 newmnt->mnt.mnt_flags = mnt_flags;
2796 return graft_tree(newmnt, parent, mp);
2797 }
2798
2799 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2800
2801 /*
2802 * Create a new mount using a superblock configuration and request it
2803 * be added to the namespace tree.
2804 */
2805 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2806 unsigned int mnt_flags)
2807 {
2808 struct vfsmount *mnt;
2809 struct mountpoint *mp;
2810 struct super_block *sb = fc->root->d_sb;
2811 int error;
2812
2813 error = security_sb_kern_mount(sb);
2814 if (!error && mount_too_revealing(sb, &mnt_flags))
2815 error = -EPERM;
2816
2817 if (unlikely(error)) {
2818 fc_drop_locked(fc);
2819 return error;
2820 }
2821
2822 up_write(&sb->s_umount);
2823
2824 mnt = vfs_create_mount(fc);
2825 if (IS_ERR(mnt))
2826 return PTR_ERR(mnt);
2827
2828 mnt_warn_timestamp_expiry(mountpoint, mnt);
2829
2830 mp = lock_mount(mountpoint);
2831 if (IS_ERR(mp)) {
2832 mntput(mnt);
2833 return PTR_ERR(mp);
2834 }
2835 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2836 unlock_mount(mp);
2837 if (error < 0)
2838 mntput(mnt);
2839 return error;
2840 }
2841
2842 /*
2843 * create a new mount for userspace and request it to be added into the
2844 * namespace's tree
2845 */
2846 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2847 int mnt_flags, const char *name, void *data)
2848 {
2849 struct file_system_type *type;
2850 struct fs_context *fc;
2851 const char *subtype = NULL;
2852 int err = 0;
2853
2854 if (!fstype)
2855 return -EINVAL;
2856
2857 type = get_fs_type(fstype);
2858 if (!type)
2859 return -ENODEV;
2860
2861 if (type->fs_flags & FS_HAS_SUBTYPE) {
2862 subtype = strchr(fstype, '.');
2863 if (subtype) {
2864 subtype++;
2865 if (!*subtype) {
2866 put_filesystem(type);
2867 return -EINVAL;
2868 }
2869 }
2870 }
2871
2872 fc = fs_context_for_mount(type, sb_flags);
2873 put_filesystem(type);
2874 if (IS_ERR(fc))
2875 return PTR_ERR(fc);
2876
2877 if (subtype)
2878 err = vfs_parse_fs_string(fc, "subtype",
2879 subtype, strlen(subtype));
2880 if (!err && name)
2881 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2882 if (!err)
2883 err = parse_monolithic_mount_data(fc, data);
2884 if (!err && !mount_capable(fc))
2885 err = -EPERM;
2886 if (!err)
2887 err = vfs_get_tree(fc);
2888 if (!err)
2889 err = do_new_mount_fc(fc, path, mnt_flags);
2890
2891 put_fs_context(fc);
2892 return err;
2893 }
2894
2895 int finish_automount(struct vfsmount *m, struct path *path)
2896 {
2897 struct dentry *dentry = path->dentry;
2898 struct mountpoint *mp;
2899 struct mount *mnt;
2900 int err;
2901
2902 if (!m)
2903 return 0;
2904 if (IS_ERR(m))
2905 return PTR_ERR(m);
2906
2907 mnt = real_mount(m);
2908 /* The new mount record should have at least 2 refs to prevent it being
2909 * expired before we get a chance to add it
2910 */
2911 BUG_ON(mnt_get_count(mnt) < 2);
2912
2913 if (m->mnt_sb == path->mnt->mnt_sb &&
2914 m->mnt_root == dentry) {
2915 err = -ELOOP;
2916 goto discard;
2917 }
2918
2919 /*
2920 * we don't want to use lock_mount() - in this case finding something
2921 * that overmounts our mountpoint to be means "quitely drop what we've
2922 * got", not "try to mount it on top".
2923 */
2924 inode_lock(dentry->d_inode);
2925 namespace_lock();
2926 if (unlikely(cant_mount(dentry))) {
2927 err = -ENOENT;
2928 goto discard_locked;
2929 }
2930 rcu_read_lock();
2931 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2932 rcu_read_unlock();
2933 err = 0;
2934 goto discard_locked;
2935 }
2936 rcu_read_unlock();
2937 mp = get_mountpoint(dentry);
2938 if (IS_ERR(mp)) {
2939 err = PTR_ERR(mp);
2940 goto discard_locked;
2941 }
2942
2943 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2944 unlock_mount(mp);
2945 if (unlikely(err))
2946 goto discard;
2947 mntput(m);
2948 return 0;
2949
2950 discard_locked:
2951 namespace_unlock();
2952 inode_unlock(dentry->d_inode);
2953 discard:
2954 /* remove m from any expiration list it may be on */
2955 if (!list_empty(&mnt->mnt_expire)) {
2956 namespace_lock();
2957 list_del_init(&mnt->mnt_expire);
2958 namespace_unlock();
2959 }
2960 mntput(m);
2961 mntput(m);
2962 return err;
2963 }
2964
2965 /**
2966 * mnt_set_expiry - Put a mount on an expiration list
2967 * @mnt: The mount to list.
2968 * @expiry_list: The list to add the mount to.
2969 */
2970 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2971 {
2972 namespace_lock();
2973
2974 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2975
2976 namespace_unlock();
2977 }
2978 EXPORT_SYMBOL(mnt_set_expiry);
2979
2980 /*
2981 * process a list of expirable mountpoints with the intent of discarding any
2982 * mountpoints that aren't in use and haven't been touched since last we came
2983 * here
2984 */
2985 void mark_mounts_for_expiry(struct list_head *mounts)
2986 {
2987 struct mount *mnt, *next;
2988 LIST_HEAD(graveyard);
2989
2990 if (list_empty(mounts))
2991 return;
2992
2993 namespace_lock();
2994 lock_mount_hash();
2995
2996 /* extract from the expiration list every vfsmount that matches the
2997 * following criteria:
2998 * - only referenced by its parent vfsmount
2999 * - still marked for expiry (marked on the last call here; marks are
3000 * cleared by mntput())
3001 */
3002 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3003 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3004 propagate_mount_busy(mnt, 1))
3005 continue;
3006 list_move(&mnt->mnt_expire, &graveyard);
3007 }
3008 while (!list_empty(&graveyard)) {
3009 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3010 touch_mnt_namespace(mnt->mnt_ns);
3011 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3012 }
3013 unlock_mount_hash();
3014 namespace_unlock();
3015 }
3016
3017 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3018
3019 /*
3020 * Ripoff of 'select_parent()'
3021 *
3022 * search the list of submounts for a given mountpoint, and move any
3023 * shrinkable submounts to the 'graveyard' list.
3024 */
3025 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3026 {
3027 struct mount *this_parent = parent;
3028 struct list_head *next;
3029 int found = 0;
3030
3031 repeat:
3032 next = this_parent->mnt_mounts.next;
3033 resume:
3034 while (next != &this_parent->mnt_mounts) {
3035 struct list_head *tmp = next;
3036 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3037
3038 next = tmp->next;
3039 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3040 continue;
3041 /*
3042 * Descend a level if the d_mounts list is non-empty.
3043 */
3044 if (!list_empty(&mnt->mnt_mounts)) {
3045 this_parent = mnt;
3046 goto repeat;
3047 }
3048
3049 if (!propagate_mount_busy(mnt, 1)) {
3050 list_move_tail(&mnt->mnt_expire, graveyard);
3051 found++;
3052 }
3053 }
3054 /*
3055 * All done at this level ... ascend and resume the search
3056 */
3057 if (this_parent != parent) {
3058 next = this_parent->mnt_child.next;
3059 this_parent = this_parent->mnt_parent;
3060 goto resume;
3061 }
3062 return found;
3063 }
3064
3065 /*
3066 * process a list of expirable mountpoints with the intent of discarding any
3067 * submounts of a specific parent mountpoint
3068 *
3069 * mount_lock must be held for write
3070 */
3071 static void shrink_submounts(struct mount *mnt)
3072 {
3073 LIST_HEAD(graveyard);
3074 struct mount *m;
3075
3076 /* extract submounts of 'mountpoint' from the expiration list */
3077 while (select_submounts(mnt, &graveyard)) {
3078 while (!list_empty(&graveyard)) {
3079 m = list_first_entry(&graveyard, struct mount,
3080 mnt_expire);
3081 touch_mnt_namespace(m->mnt_ns);
3082 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3083 }
3084 }
3085 }
3086
3087 static void *copy_mount_options(const void __user * data)
3088 {
3089 char *copy;
3090 unsigned left, offset;
3091
3092 if (!data)
3093 return NULL;
3094
3095 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3096 if (!copy)
3097 return ERR_PTR(-ENOMEM);
3098
3099 left = copy_from_user(copy, data, PAGE_SIZE);
3100
3101 /*
3102 * Not all architectures have an exact copy_from_user(). Resort to
3103 * byte at a time.
3104 */
3105 offset = PAGE_SIZE - left;
3106 while (left) {
3107 char c;
3108 if (get_user(c, (const char __user *)data + offset))
3109 break;
3110 copy[offset] = c;
3111 left--;
3112 offset++;
3113 }
3114
3115 if (left == PAGE_SIZE) {
3116 kfree(copy);
3117 return ERR_PTR(-EFAULT);
3118 }
3119
3120 return copy;
3121 }
3122
3123 static char *copy_mount_string(const void __user *data)
3124 {
3125 return data ? strndup_user(data, PATH_MAX) : NULL;
3126 }
3127
3128 /*
3129 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3130 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3131 *
3132 * data is a (void *) that can point to any structure up to
3133 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3134 * information (or be NULL).
3135 *
3136 * Pre-0.97 versions of mount() didn't have a flags word.
3137 * When the flags word was introduced its top half was required
3138 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3139 * Therefore, if this magic number is present, it carries no information
3140 * and must be discarded.
3141 */
3142 int path_mount(const char *dev_name, struct path *path,
3143 const char *type_page, unsigned long flags, void *data_page)
3144 {
3145 unsigned int mnt_flags = 0, sb_flags;
3146 int ret;
3147
3148 /* Discard magic */
3149 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3150 flags &= ~MS_MGC_MSK;
3151
3152 /* Basic sanity checks */
3153 if (data_page)
3154 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3155
3156 if (flags & MS_NOUSER)
3157 return -EINVAL;
3158
3159 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3160 if (ret)
3161 return ret;
3162 if (!may_mount())
3163 return -EPERM;
3164 if ((flags & SB_MANDLOCK) && !may_mandlock())
3165 return -EPERM;
3166
3167 /* Default to relatime unless overriden */
3168 if (!(flags & MS_NOATIME))
3169 mnt_flags |= MNT_RELATIME;
3170
3171 /* Separate the per-mountpoint flags */
3172 if (flags & MS_NOSUID)
3173 mnt_flags |= MNT_NOSUID;
3174 if (flags & MS_NODEV)
3175 mnt_flags |= MNT_NODEV;
3176 if (flags & MS_NOEXEC)
3177 mnt_flags |= MNT_NOEXEC;
3178 if (flags & MS_NOATIME)
3179 mnt_flags |= MNT_NOATIME;
3180 if (flags & MS_NODIRATIME)
3181 mnt_flags |= MNT_NODIRATIME;
3182 if (flags & MS_STRICTATIME)
3183 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3184 if (flags & MS_RDONLY)
3185 mnt_flags |= MNT_READONLY;
3186 if (flags & MS_NOSYMFOLLOW)
3187 mnt_flags |= MNT_NOSYMFOLLOW;
3188
3189 /* The default atime for remount is preservation */
3190 if ((flags & MS_REMOUNT) &&
3191 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3192 MS_STRICTATIME)) == 0)) {
3193 mnt_flags &= ~MNT_ATIME_MASK;
3194 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3195 }
3196
3197 sb_flags = flags & (SB_RDONLY |
3198 SB_SYNCHRONOUS |
3199 SB_MANDLOCK |
3200 SB_DIRSYNC |
3201 SB_SILENT |
3202 SB_POSIXACL |
3203 SB_LAZYTIME |
3204 SB_I_VERSION);
3205
3206 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3207 return do_reconfigure_mnt(path, mnt_flags);
3208 if (flags & MS_REMOUNT)
3209 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3210 if (flags & MS_BIND)
3211 return do_loopback(path, dev_name, flags & MS_REC);
3212 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3213 return do_change_type(path, flags);
3214 if (flags & MS_MOVE)
3215 return do_move_mount_old(path, dev_name);
3216
3217 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3218 data_page);
3219 }
3220
3221 long do_mount(const char *dev_name, const char __user *dir_name,
3222 const char *type_page, unsigned long flags, void *data_page)
3223 {
3224 struct path path;
3225 int ret;
3226
3227 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3228 if (ret)
3229 return ret;
3230 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3231 path_put(&path);
3232 return ret;
3233 }
3234
3235 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3236 {
3237 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3238 }
3239
3240 static void dec_mnt_namespaces(struct ucounts *ucounts)
3241 {
3242 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3243 }
3244
3245 static void free_mnt_ns(struct mnt_namespace *ns)
3246 {
3247 if (!is_anon_ns(ns))
3248 ns_free_inum(&ns->ns);
3249 dec_mnt_namespaces(ns->ucounts);
3250 put_user_ns(ns->user_ns);
3251 kfree(ns);
3252 }
3253
3254 /*
3255 * Assign a sequence number so we can detect when we attempt to bind
3256 * mount a reference to an older mount namespace into the current
3257 * mount namespace, preventing reference counting loops. A 64bit
3258 * number incrementing at 10Ghz will take 12,427 years to wrap which
3259 * is effectively never, so we can ignore the possibility.
3260 */
3261 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3262
3263 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3264 {
3265 struct mnt_namespace *new_ns;
3266 struct ucounts *ucounts;
3267 int ret;
3268
3269 ucounts = inc_mnt_namespaces(user_ns);
3270 if (!ucounts)
3271 return ERR_PTR(-ENOSPC);
3272
3273 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3274 if (!new_ns) {
3275 dec_mnt_namespaces(ucounts);
3276 return ERR_PTR(-ENOMEM);
3277 }
3278 if (!anon) {
3279 ret = ns_alloc_inum(&new_ns->ns);
3280 if (ret) {
3281 kfree(new_ns);
3282 dec_mnt_namespaces(ucounts);
3283 return ERR_PTR(ret);
3284 }
3285 }
3286 new_ns->ns.ops = &mntns_operations;
3287 if (!anon)
3288 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3289 atomic_set(&new_ns->count, 1);
3290 INIT_LIST_HEAD(&new_ns->list);
3291 init_waitqueue_head(&new_ns->poll);
3292 spin_lock_init(&new_ns->ns_lock);
3293 new_ns->user_ns = get_user_ns(user_ns);
3294 new_ns->ucounts = ucounts;
3295 return new_ns;
3296 }
3297
3298 __latent_entropy
3299 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3300 struct user_namespace *user_ns, struct fs_struct *new_fs)
3301 {
3302 struct mnt_namespace *new_ns;
3303 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3304 struct mount *p, *q;
3305 struct mount *old;
3306 struct mount *new;
3307 int copy_flags;
3308
3309 BUG_ON(!ns);
3310
3311 if (likely(!(flags & CLONE_NEWNS))) {
3312 get_mnt_ns(ns);
3313 return ns;
3314 }
3315
3316 old = ns->root;
3317
3318 new_ns = alloc_mnt_ns(user_ns, false);
3319 if (IS_ERR(new_ns))
3320 return new_ns;
3321
3322 namespace_lock();
3323 /* First pass: copy the tree topology */
3324 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3325 if (user_ns != ns->user_ns)
3326 copy_flags |= CL_SHARED_TO_SLAVE;
3327 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3328 if (IS_ERR(new)) {
3329 namespace_unlock();
3330 free_mnt_ns(new_ns);
3331 return ERR_CAST(new);
3332 }
3333 if (user_ns != ns->user_ns) {
3334 lock_mount_hash();
3335 lock_mnt_tree(new);
3336 unlock_mount_hash();
3337 }
3338 new_ns->root = new;
3339 list_add_tail(&new_ns->list, &new->mnt_list);
3340
3341 /*
3342 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3343 * as belonging to new namespace. We have already acquired a private
3344 * fs_struct, so tsk->fs->lock is not needed.
3345 */
3346 p = old;
3347 q = new;
3348 while (p) {
3349 q->mnt_ns = new_ns;
3350 new_ns->mounts++;
3351 if (new_fs) {
3352 if (&p->mnt == new_fs->root.mnt) {
3353 new_fs->root.mnt = mntget(&q->mnt);
3354 rootmnt = &p->mnt;
3355 }
3356 if (&p->mnt == new_fs->pwd.mnt) {
3357 new_fs->pwd.mnt = mntget(&q->mnt);
3358 pwdmnt = &p->mnt;
3359 }
3360 }
3361 p = next_mnt(p, old);
3362 q = next_mnt(q, new);
3363 if (!q)
3364 break;
3365 while (p->mnt.mnt_root != q->mnt.mnt_root)
3366 p = next_mnt(p, old);
3367 }
3368 namespace_unlock();
3369
3370 if (rootmnt)
3371 mntput(rootmnt);
3372 if (pwdmnt)
3373 mntput(pwdmnt);
3374
3375 return new_ns;
3376 }
3377
3378 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3379 {
3380 struct mount *mnt = real_mount(m);
3381 struct mnt_namespace *ns;
3382 struct super_block *s;
3383 struct path path;
3384 int err;
3385
3386 ns = alloc_mnt_ns(&init_user_ns, true);
3387 if (IS_ERR(ns)) {
3388 mntput(m);
3389 return ERR_CAST(ns);
3390 }
3391 mnt->mnt_ns = ns;
3392 ns->root = mnt;
3393 ns->mounts++;
3394 list_add(&mnt->mnt_list, &ns->list);
3395
3396 err = vfs_path_lookup(m->mnt_root, m,
3397 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3398
3399 put_mnt_ns(ns);
3400
3401 if (err)
3402 return ERR_PTR(err);
3403
3404 /* trade a vfsmount reference for active sb one */
3405 s = path.mnt->mnt_sb;
3406 atomic_inc(&s->s_active);
3407 mntput(path.mnt);
3408 /* lock the sucker */
3409 down_write(&s->s_umount);
3410 /* ... and return the root of (sub)tree on it */
3411 return path.dentry;
3412 }
3413 EXPORT_SYMBOL(mount_subtree);
3414
3415 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3416 char __user *, type, unsigned long, flags, void __user *, data)
3417 {
3418 int ret;
3419 char *kernel_type;
3420 char *kernel_dev;
3421 void *options;
3422
3423 kernel_type = copy_mount_string(type);
3424 ret = PTR_ERR(kernel_type);
3425 if (IS_ERR(kernel_type))
3426 goto out_type;
3427
3428 kernel_dev = copy_mount_string(dev_name);
3429 ret = PTR_ERR(kernel_dev);
3430 if (IS_ERR(kernel_dev))
3431 goto out_dev;
3432
3433 options = copy_mount_options(data);
3434 ret = PTR_ERR(options);
3435 if (IS_ERR(options))
3436 goto out_data;
3437
3438 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3439
3440 kfree(options);
3441 out_data:
3442 kfree(kernel_dev);
3443 out_dev:
3444 kfree(kernel_type);
3445 out_type:
3446 return ret;
3447 }
3448
3449 /*
3450 * Create a kernel mount representation for a new, prepared superblock
3451 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3452 */
3453 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3454 unsigned int, attr_flags)
3455 {
3456 struct mnt_namespace *ns;
3457 struct fs_context *fc;
3458 struct file *file;
3459 struct path newmount;
3460 struct mount *mnt;
3461 struct fd f;
3462 unsigned int mnt_flags = 0;
3463 long ret;
3464
3465 if (!may_mount())
3466 return -EPERM;
3467
3468 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3469 return -EINVAL;
3470
3471 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3472 MOUNT_ATTR_NOSUID |
3473 MOUNT_ATTR_NODEV |
3474 MOUNT_ATTR_NOEXEC |
3475 MOUNT_ATTR__ATIME |
3476 MOUNT_ATTR_NODIRATIME))
3477 return -EINVAL;
3478
3479 if (attr_flags & MOUNT_ATTR_RDONLY)
3480 mnt_flags |= MNT_READONLY;
3481 if (attr_flags & MOUNT_ATTR_NOSUID)
3482 mnt_flags |= MNT_NOSUID;
3483 if (attr_flags & MOUNT_ATTR_NODEV)
3484 mnt_flags |= MNT_NODEV;
3485 if (attr_flags & MOUNT_ATTR_NOEXEC)
3486 mnt_flags |= MNT_NOEXEC;
3487 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3488 mnt_flags |= MNT_NODIRATIME;
3489
3490 switch (attr_flags & MOUNT_ATTR__ATIME) {
3491 case MOUNT_ATTR_STRICTATIME:
3492 break;
3493 case MOUNT_ATTR_NOATIME:
3494 mnt_flags |= MNT_NOATIME;
3495 break;
3496 case MOUNT_ATTR_RELATIME:
3497 mnt_flags |= MNT_RELATIME;
3498 break;
3499 default:
3500 return -EINVAL;
3501 }
3502
3503 f = fdget(fs_fd);
3504 if (!f.file)
3505 return -EBADF;
3506
3507 ret = -EINVAL;
3508 if (f.file->f_op != &fscontext_fops)
3509 goto err_fsfd;
3510
3511 fc = f.file->private_data;
3512
3513 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3514 if (ret < 0)
3515 goto err_fsfd;
3516
3517 /* There must be a valid superblock or we can't mount it */
3518 ret = -EINVAL;
3519 if (!fc->root)
3520 goto err_unlock;
3521
3522 ret = -EPERM;
3523 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3524 pr_warn("VFS: Mount too revealing\n");
3525 goto err_unlock;
3526 }
3527
3528 ret = -EBUSY;
3529 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3530 goto err_unlock;
3531
3532 ret = -EPERM;
3533 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3534 goto err_unlock;
3535
3536 newmount.mnt = vfs_create_mount(fc);
3537 if (IS_ERR(newmount.mnt)) {
3538 ret = PTR_ERR(newmount.mnt);
3539 goto err_unlock;
3540 }
3541 newmount.dentry = dget(fc->root);
3542 newmount.mnt->mnt_flags = mnt_flags;
3543
3544 /* We've done the mount bit - now move the file context into more or
3545 * less the same state as if we'd done an fspick(). We don't want to
3546 * do any memory allocation or anything like that at this point as we
3547 * don't want to have to handle any errors incurred.
3548 */
3549 vfs_clean_context(fc);
3550
3551 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3552 if (IS_ERR(ns)) {
3553 ret = PTR_ERR(ns);
3554 goto err_path;
3555 }
3556 mnt = real_mount(newmount.mnt);
3557 mnt->mnt_ns = ns;
3558 ns->root = mnt;
3559 ns->mounts = 1;
3560 list_add(&mnt->mnt_list, &ns->list);
3561 mntget(newmount.mnt);
3562
3563 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3564 * it, not just simply put it.
3565 */
3566 file = dentry_open(&newmount, O_PATH, fc->cred);
3567 if (IS_ERR(file)) {
3568 dissolve_on_fput(newmount.mnt);
3569 ret = PTR_ERR(file);
3570 goto err_path;
3571 }
3572 file->f_mode |= FMODE_NEED_UNMOUNT;
3573
3574 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3575 if (ret >= 0)
3576 fd_install(ret, file);
3577 else
3578 fput(file);
3579
3580 err_path:
3581 path_put(&newmount);
3582 err_unlock:
3583 mutex_unlock(&fc->uapi_mutex);
3584 err_fsfd:
3585 fdput(f);
3586 return ret;
3587 }
3588
3589 /*
3590 * Move a mount from one place to another. In combination with
3591 * fsopen()/fsmount() this is used to install a new mount and in combination
3592 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3593 * a mount subtree.
3594 *
3595 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3596 */
3597 SYSCALL_DEFINE5(move_mount,
3598 int, from_dfd, const char __user *, from_pathname,
3599 int, to_dfd, const char __user *, to_pathname,
3600 unsigned int, flags)
3601 {
3602 struct path from_path, to_path;
3603 unsigned int lflags;
3604 int ret = 0;
3605
3606 if (!may_mount())
3607 return -EPERM;
3608
3609 if (flags & ~MOVE_MOUNT__MASK)
3610 return -EINVAL;
3611
3612 /* If someone gives a pathname, they aren't permitted to move
3613 * from an fd that requires unmount as we can't get at the flag
3614 * to clear it afterwards.
3615 */
3616 lflags = 0;
3617 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3618 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3619 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3620
3621 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3622 if (ret < 0)
3623 return ret;
3624
3625 lflags = 0;
3626 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3627 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3628 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3629
3630 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3631 if (ret < 0)
3632 goto out_from;
3633
3634 ret = security_move_mount(&from_path, &to_path);
3635 if (ret < 0)
3636 goto out_to;
3637
3638 ret = do_move_mount(&from_path, &to_path);
3639
3640 out_to:
3641 path_put(&to_path);
3642 out_from:
3643 path_put(&from_path);
3644 return ret;
3645 }
3646
3647 /*
3648 * Return true if path is reachable from root
3649 *
3650 * namespace_sem or mount_lock is held
3651 */
3652 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3653 const struct path *root)
3654 {
3655 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3656 dentry = mnt->mnt_mountpoint;
3657 mnt = mnt->mnt_parent;
3658 }
3659 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3660 }
3661
3662 bool path_is_under(const struct path *path1, const struct path *path2)
3663 {
3664 bool res;
3665 read_seqlock_excl(&mount_lock);
3666 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3667 read_sequnlock_excl(&mount_lock);
3668 return res;
3669 }
3670 EXPORT_SYMBOL(path_is_under);
3671
3672 /*
3673 * pivot_root Semantics:
3674 * Moves the root file system of the current process to the directory put_old,
3675 * makes new_root as the new root file system of the current process, and sets
3676 * root/cwd of all processes which had them on the current root to new_root.
3677 *
3678 * Restrictions:
3679 * The new_root and put_old must be directories, and must not be on the
3680 * same file system as the current process root. The put_old must be
3681 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3682 * pointed to by put_old must yield the same directory as new_root. No other
3683 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3684 *
3685 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3686 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3687 * in this situation.
3688 *
3689 * Notes:
3690 * - we don't move root/cwd if they are not at the root (reason: if something
3691 * cared enough to change them, it's probably wrong to force them elsewhere)
3692 * - it's okay to pick a root that isn't the root of a file system, e.g.
3693 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3694 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3695 * first.
3696 */
3697 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3698 const char __user *, put_old)
3699 {
3700 struct path new, old, root;
3701 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3702 struct mountpoint *old_mp, *root_mp;
3703 int error;
3704
3705 if (!may_mount())
3706 return -EPERM;
3707
3708 error = user_path_at(AT_FDCWD, new_root,
3709 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3710 if (error)
3711 goto out0;
3712
3713 error = user_path_at(AT_FDCWD, put_old,
3714 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3715 if (error)
3716 goto out1;
3717
3718 error = security_sb_pivotroot(&old, &new);
3719 if (error)
3720 goto out2;
3721
3722 get_fs_root(current->fs, &root);
3723 old_mp = lock_mount(&old);
3724 error = PTR_ERR(old_mp);
3725 if (IS_ERR(old_mp))
3726 goto out3;
3727
3728 error = -EINVAL;
3729 new_mnt = real_mount(new.mnt);
3730 root_mnt = real_mount(root.mnt);
3731 old_mnt = real_mount(old.mnt);
3732 ex_parent = new_mnt->mnt_parent;
3733 root_parent = root_mnt->mnt_parent;
3734 if (IS_MNT_SHARED(old_mnt) ||
3735 IS_MNT_SHARED(ex_parent) ||
3736 IS_MNT_SHARED(root_parent))
3737 goto out4;
3738 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3739 goto out4;
3740 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3741 goto out4;
3742 error = -ENOENT;
3743 if (d_unlinked(new.dentry))
3744 goto out4;
3745 error = -EBUSY;
3746 if (new_mnt == root_mnt || old_mnt == root_mnt)
3747 goto out4; /* loop, on the same file system */
3748 error = -EINVAL;
3749 if (root.mnt->mnt_root != root.dentry)
3750 goto out4; /* not a mountpoint */
3751 if (!mnt_has_parent(root_mnt))
3752 goto out4; /* not attached */
3753 if (new.mnt->mnt_root != new.dentry)
3754 goto out4; /* not a mountpoint */
3755 if (!mnt_has_parent(new_mnt))
3756 goto out4; /* not attached */
3757 /* make sure we can reach put_old from new_root */
3758 if (!is_path_reachable(old_mnt, old.dentry, &new))
3759 goto out4;
3760 /* make certain new is below the root */
3761 if (!is_path_reachable(new_mnt, new.dentry, &root))
3762 goto out4;
3763 lock_mount_hash();
3764 umount_mnt(new_mnt);
3765 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
3766 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3767 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3768 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3769 }
3770 /* mount old root on put_old */
3771 attach_mnt(root_mnt, old_mnt, old_mp);
3772 /* mount new_root on / */
3773 attach_mnt(new_mnt, root_parent, root_mp);
3774 mnt_add_count(root_parent, -1);
3775 touch_mnt_namespace(current->nsproxy->mnt_ns);
3776 /* A moved mount should not expire automatically */
3777 list_del_init(&new_mnt->mnt_expire);
3778 put_mountpoint(root_mp);
3779 unlock_mount_hash();
3780 chroot_fs_refs(&root, &new);
3781 error = 0;
3782 out4:
3783 unlock_mount(old_mp);
3784 if (!error)
3785 mntput_no_expire(ex_parent);
3786 out3:
3787 path_put(&root);
3788 out2:
3789 path_put(&old);
3790 out1:
3791 path_put(&new);
3792 out0:
3793 return error;
3794 }
3795
3796 static void __init init_mount_tree(void)
3797 {
3798 struct vfsmount *mnt;
3799 struct mount *m;
3800 struct mnt_namespace *ns;
3801 struct path root;
3802
3803 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
3804 if (IS_ERR(mnt))
3805 panic("Can't create rootfs");
3806
3807 ns = alloc_mnt_ns(&init_user_ns, false);
3808 if (IS_ERR(ns))
3809 panic("Can't allocate initial namespace");
3810 m = real_mount(mnt);
3811 m->mnt_ns = ns;
3812 ns->root = m;
3813 ns->mounts = 1;
3814 list_add(&m->mnt_list, &ns->list);
3815 init_task.nsproxy->mnt_ns = ns;
3816 get_mnt_ns(ns);
3817
3818 root.mnt = mnt;
3819 root.dentry = mnt->mnt_root;
3820 mnt->mnt_flags |= MNT_LOCKED;
3821
3822 set_fs_pwd(current->fs, &root);
3823 set_fs_root(current->fs, &root);
3824 }
3825
3826 void __init mnt_init(void)
3827 {
3828 int err;
3829
3830 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3831 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3832
3833 mount_hashtable = alloc_large_system_hash("Mount-cache",
3834 sizeof(struct hlist_head),
3835 mhash_entries, 19,
3836 HASH_ZERO,
3837 &m_hash_shift, &m_hash_mask, 0, 0);
3838 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3839 sizeof(struct hlist_head),
3840 mphash_entries, 19,
3841 HASH_ZERO,
3842 &mp_hash_shift, &mp_hash_mask, 0, 0);
3843
3844 if (!mount_hashtable || !mountpoint_hashtable)
3845 panic("Failed to allocate mount hash table\n");
3846
3847 kernfs_init();
3848
3849 err = sysfs_init();
3850 if (err)
3851 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3852 __func__, err);
3853 fs_kobj = kobject_create_and_add("fs", NULL);
3854 if (!fs_kobj)
3855 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3856 shmem_init();
3857 init_rootfs();
3858 init_mount_tree();
3859 }
3860
3861 void put_mnt_ns(struct mnt_namespace *ns)
3862 {
3863 if (!atomic_dec_and_test(&ns->count))
3864 return;
3865 drop_collected_mounts(&ns->root->mnt);
3866 free_mnt_ns(ns);
3867 }
3868
3869 struct vfsmount *kern_mount(struct file_system_type *type)
3870 {
3871 struct vfsmount *mnt;
3872 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3873 if (!IS_ERR(mnt)) {
3874 /*
3875 * it is a longterm mount, don't release mnt until
3876 * we unmount before file sys is unregistered
3877 */
3878 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3879 }
3880 return mnt;
3881 }
3882 EXPORT_SYMBOL_GPL(kern_mount);
3883
3884 void kern_unmount(struct vfsmount *mnt)
3885 {
3886 /* release long term mount so mount point can be released */
3887 if (!IS_ERR_OR_NULL(mnt)) {
3888 real_mount(mnt)->mnt_ns = NULL;
3889 synchronize_rcu(); /* yecchhh... */
3890 mntput(mnt);
3891 }
3892 }
3893 EXPORT_SYMBOL(kern_unmount);
3894
3895 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
3896 {
3897 unsigned int i;
3898
3899 for (i = 0; i < num; i++)
3900 if (mnt[i])
3901 real_mount(mnt[i])->mnt_ns = NULL;
3902 synchronize_rcu_expedited();
3903 for (i = 0; i < num; i++)
3904 mntput(mnt[i]);
3905 }
3906 EXPORT_SYMBOL(kern_unmount_array);
3907
3908 bool our_mnt(struct vfsmount *mnt)
3909 {
3910 return check_mnt(real_mount(mnt));
3911 }
3912
3913 bool current_chrooted(void)
3914 {
3915 /* Does the current process have a non-standard root */
3916 struct path ns_root;
3917 struct path fs_root;
3918 bool chrooted;
3919
3920 /* Find the namespace root */
3921 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3922 ns_root.dentry = ns_root.mnt->mnt_root;
3923 path_get(&ns_root);
3924 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3925 ;
3926
3927 get_fs_root(current->fs, &fs_root);
3928
3929 chrooted = !path_equal(&fs_root, &ns_root);
3930
3931 path_put(&fs_root);
3932 path_put(&ns_root);
3933
3934 return chrooted;
3935 }
3936
3937 static bool mnt_already_visible(struct mnt_namespace *ns,
3938 const struct super_block *sb,
3939 int *new_mnt_flags)
3940 {
3941 int new_flags = *new_mnt_flags;
3942 struct mount *mnt;
3943 bool visible = false;
3944
3945 down_read(&namespace_sem);
3946 lock_ns_list(ns);
3947 list_for_each_entry(mnt, &ns->list, mnt_list) {
3948 struct mount *child;
3949 int mnt_flags;
3950
3951 if (mnt_is_cursor(mnt))
3952 continue;
3953
3954 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3955 continue;
3956
3957 /* This mount is not fully visible if it's root directory
3958 * is not the root directory of the filesystem.
3959 */
3960 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3961 continue;
3962
3963 /* A local view of the mount flags */
3964 mnt_flags = mnt->mnt.mnt_flags;
3965
3966 /* Don't miss readonly hidden in the superblock flags */
3967 if (sb_rdonly(mnt->mnt.mnt_sb))
3968 mnt_flags |= MNT_LOCK_READONLY;
3969
3970 /* Verify the mount flags are equal to or more permissive
3971 * than the proposed new mount.
3972 */
3973 if ((mnt_flags & MNT_LOCK_READONLY) &&
3974 !(new_flags & MNT_READONLY))
3975 continue;
3976 if ((mnt_flags & MNT_LOCK_ATIME) &&
3977 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3978 continue;
3979
3980 /* This mount is not fully visible if there are any
3981 * locked child mounts that cover anything except for
3982 * empty directories.
3983 */
3984 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3985 struct inode *inode = child->mnt_mountpoint->d_inode;
3986 /* Only worry about locked mounts */
3987 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3988 continue;
3989 /* Is the directory permanetly empty? */
3990 if (!is_empty_dir_inode(inode))
3991 goto next;
3992 }
3993 /* Preserve the locked attributes */
3994 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3995 MNT_LOCK_ATIME);
3996 visible = true;
3997 goto found;
3998 next: ;
3999 }
4000 found:
4001 unlock_ns_list(ns);
4002 up_read(&namespace_sem);
4003 return visible;
4004 }
4005
4006 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4007 {
4008 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4009 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4010 unsigned long s_iflags;
4011
4012 if (ns->user_ns == &init_user_ns)
4013 return false;
4014
4015 /* Can this filesystem be too revealing? */
4016 s_iflags = sb->s_iflags;
4017 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4018 return false;
4019
4020 if ((s_iflags & required_iflags) != required_iflags) {
4021 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4022 required_iflags);
4023 return true;
4024 }
4025
4026 return !mnt_already_visible(ns, sb, new_mnt_flags);
4027 }
4028
4029 bool mnt_may_suid(struct vfsmount *mnt)
4030 {
4031 /*
4032 * Foreign mounts (accessed via fchdir or through /proc
4033 * symlinks) are always treated as if they are nosuid. This
4034 * prevents namespaces from trusting potentially unsafe
4035 * suid/sgid bits, file caps, or security labels that originate
4036 * in other namespaces.
4037 */
4038 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4039 current_in_userns(mnt->mnt_sb->s_user_ns);
4040 }
4041
4042 static struct ns_common *mntns_get(struct task_struct *task)
4043 {
4044 struct ns_common *ns = NULL;
4045 struct nsproxy *nsproxy;
4046
4047 task_lock(task);
4048 nsproxy = task->nsproxy;
4049 if (nsproxy) {
4050 ns = &nsproxy->mnt_ns->ns;
4051 get_mnt_ns(to_mnt_ns(ns));
4052 }
4053 task_unlock(task);
4054
4055 return ns;
4056 }
4057
4058 static void mntns_put(struct ns_common *ns)
4059 {
4060 put_mnt_ns(to_mnt_ns(ns));
4061 }
4062
4063 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4064 {
4065 struct nsproxy *nsproxy = nsset->nsproxy;
4066 struct fs_struct *fs = nsset->fs;
4067 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4068 struct user_namespace *user_ns = nsset->cred->user_ns;
4069 struct path root;
4070 int err;
4071
4072 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4073 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4074 !ns_capable(user_ns, CAP_SYS_ADMIN))
4075 return -EPERM;
4076
4077 if (is_anon_ns(mnt_ns))
4078 return -EINVAL;
4079
4080 if (fs->users != 1)
4081 return -EINVAL;
4082
4083 get_mnt_ns(mnt_ns);
4084 old_mnt_ns = nsproxy->mnt_ns;
4085 nsproxy->mnt_ns = mnt_ns;
4086
4087 /* Find the root */
4088 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4089 "/", LOOKUP_DOWN, &root);
4090 if (err) {
4091 /* revert to old namespace */
4092 nsproxy->mnt_ns = old_mnt_ns;
4093 put_mnt_ns(mnt_ns);
4094 return err;
4095 }
4096
4097 put_mnt_ns(old_mnt_ns);
4098
4099 /* Update the pwd and root */
4100 set_fs_pwd(fs, &root);
4101 set_fs_root(fs, &root);
4102
4103 path_put(&root);
4104 return 0;
4105 }
4106
4107 static struct user_namespace *mntns_owner(struct ns_common *ns)
4108 {
4109 return to_mnt_ns(ns)->user_ns;
4110 }
4111
4112 const struct proc_ns_operations mntns_operations = {
4113 .name = "mnt",
4114 .type = CLONE_NEWNS,
4115 .get = mntns_get,
4116 .put = mntns_put,
4117 .install = mntns_install,
4118 .owner = mntns_owner,
4119 };