]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/namespace.c
autofs - dont hold spin lock over direct mount expire
[mirror_ubuntu-artful-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
32
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
37
38 static __initdata unsigned long mhash_entries;
39 static int __init set_mhash_entries(char *str)
40 {
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
45 }
46 __setup("mhash_entries=", set_mhash_entries);
47
48 static __initdata unsigned long mphash_entries;
49 static int __init set_mphash_entries(char *str)
50 {
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
55 }
56 __setup("mphash_entries=", set_mphash_entries);
57
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
64
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
69
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
73
74 /*
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
78 *
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
81 */
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
83
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
85 {
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
90 }
91
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
93 {
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
97 }
98
99 /*
100 * allocation is serialized by namespace_sem, but we need the spinlock to
101 * serialize with freeing.
102 */
103 static int mnt_alloc_id(struct mount *mnt)
104 {
105 int res;
106
107 retry:
108 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
109 spin_lock(&mnt_id_lock);
110 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
111 if (!res)
112 mnt_id_start = mnt->mnt_id + 1;
113 spin_unlock(&mnt_id_lock);
114 if (res == -EAGAIN)
115 goto retry;
116
117 return res;
118 }
119
120 static void mnt_free_id(struct mount *mnt)
121 {
122 int id = mnt->mnt_id;
123 spin_lock(&mnt_id_lock);
124 ida_remove(&mnt_id_ida, id);
125 if (mnt_id_start > id)
126 mnt_id_start = id;
127 spin_unlock(&mnt_id_lock);
128 }
129
130 /*
131 * Allocate a new peer group ID
132 *
133 * mnt_group_ida is protected by namespace_sem
134 */
135 static int mnt_alloc_group_id(struct mount *mnt)
136 {
137 int res;
138
139 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
140 return -ENOMEM;
141
142 res = ida_get_new_above(&mnt_group_ida,
143 mnt_group_start,
144 &mnt->mnt_group_id);
145 if (!res)
146 mnt_group_start = mnt->mnt_group_id + 1;
147
148 return res;
149 }
150
151 /*
152 * Release a peer group ID
153 */
154 void mnt_release_group_id(struct mount *mnt)
155 {
156 int id = mnt->mnt_group_id;
157 ida_remove(&mnt_group_ida, id);
158 if (mnt_group_start > id)
159 mnt_group_start = id;
160 mnt->mnt_group_id = 0;
161 }
162
163 /*
164 * vfsmount lock must be held for read
165 */
166 static inline void mnt_add_count(struct mount *mnt, int n)
167 {
168 #ifdef CONFIG_SMP
169 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
170 #else
171 preempt_disable();
172 mnt->mnt_count += n;
173 preempt_enable();
174 #endif
175 }
176
177 /*
178 * vfsmount lock must be held for write
179 */
180 unsigned int mnt_get_count(struct mount *mnt)
181 {
182 #ifdef CONFIG_SMP
183 unsigned int count = 0;
184 int cpu;
185
186 for_each_possible_cpu(cpu) {
187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
188 }
189
190 return count;
191 #else
192 return mnt->mnt_count;
193 #endif
194 }
195
196 static void drop_mountpoint(struct fs_pin *p)
197 {
198 struct mount *m = container_of(p, struct mount, mnt_umount);
199 dput(m->mnt_ex_mountpoint);
200 pin_remove(p);
201 mntput(&m->mnt);
202 }
203
204 static struct mount *alloc_vfsmnt(const char *name)
205 {
206 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
207 if (mnt) {
208 int err;
209
210 err = mnt_alloc_id(mnt);
211 if (err)
212 goto out_free_cache;
213
214 if (name) {
215 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
216 if (!mnt->mnt_devname)
217 goto out_free_id;
218 }
219
220 #ifdef CONFIG_SMP
221 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
222 if (!mnt->mnt_pcp)
223 goto out_free_devname;
224
225 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
226 #else
227 mnt->mnt_count = 1;
228 mnt->mnt_writers = 0;
229 #endif
230
231 INIT_HLIST_NODE(&mnt->mnt_hash);
232 INIT_LIST_HEAD(&mnt->mnt_child);
233 INIT_LIST_HEAD(&mnt->mnt_mounts);
234 INIT_LIST_HEAD(&mnt->mnt_list);
235 INIT_LIST_HEAD(&mnt->mnt_expire);
236 INIT_LIST_HEAD(&mnt->mnt_share);
237 INIT_LIST_HEAD(&mnt->mnt_slave_list);
238 INIT_LIST_HEAD(&mnt->mnt_slave);
239 INIT_HLIST_NODE(&mnt->mnt_mp_list);
240 #ifdef CONFIG_FSNOTIFY
241 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
242 #endif
243 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
244 }
245 return mnt;
246
247 #ifdef CONFIG_SMP
248 out_free_devname:
249 kfree_const(mnt->mnt_devname);
250 #endif
251 out_free_id:
252 mnt_free_id(mnt);
253 out_free_cache:
254 kmem_cache_free(mnt_cache, mnt);
255 return NULL;
256 }
257
258 /*
259 * Most r/o checks on a fs are for operations that take
260 * discrete amounts of time, like a write() or unlink().
261 * We must keep track of when those operations start
262 * (for permission checks) and when they end, so that
263 * we can determine when writes are able to occur to
264 * a filesystem.
265 */
266 /*
267 * __mnt_is_readonly: check whether a mount is read-only
268 * @mnt: the mount to check for its write status
269 *
270 * This shouldn't be used directly ouside of the VFS.
271 * It does not guarantee that the filesystem will stay
272 * r/w, just that it is right *now*. This can not and
273 * should not be used in place of IS_RDONLY(inode).
274 * mnt_want/drop_write() will _keep_ the filesystem
275 * r/w.
276 */
277 int __mnt_is_readonly(struct vfsmount *mnt)
278 {
279 if (mnt->mnt_flags & MNT_READONLY)
280 return 1;
281 if (mnt->mnt_sb->s_flags & MS_RDONLY)
282 return 1;
283 return 0;
284 }
285 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
286
287 static inline void mnt_inc_writers(struct mount *mnt)
288 {
289 #ifdef CONFIG_SMP
290 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
291 #else
292 mnt->mnt_writers++;
293 #endif
294 }
295
296 static inline void mnt_dec_writers(struct mount *mnt)
297 {
298 #ifdef CONFIG_SMP
299 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
300 #else
301 mnt->mnt_writers--;
302 #endif
303 }
304
305 static unsigned int mnt_get_writers(struct mount *mnt)
306 {
307 #ifdef CONFIG_SMP
308 unsigned int count = 0;
309 int cpu;
310
311 for_each_possible_cpu(cpu) {
312 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
313 }
314
315 return count;
316 #else
317 return mnt->mnt_writers;
318 #endif
319 }
320
321 static int mnt_is_readonly(struct vfsmount *mnt)
322 {
323 if (mnt->mnt_sb->s_readonly_remount)
324 return 1;
325 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
326 smp_rmb();
327 return __mnt_is_readonly(mnt);
328 }
329
330 /*
331 * Most r/o & frozen checks on a fs are for operations that take discrete
332 * amounts of time, like a write() or unlink(). We must keep track of when
333 * those operations start (for permission checks) and when they end, so that we
334 * can determine when writes are able to occur to a filesystem.
335 */
336 /**
337 * __mnt_want_write - get write access to a mount without freeze protection
338 * @m: the mount on which to take a write
339 *
340 * This tells the low-level filesystem that a write is about to be performed to
341 * it, and makes sure that writes are allowed (mnt it read-write) before
342 * returning success. This operation does not protect against filesystem being
343 * frozen. When the write operation is finished, __mnt_drop_write() must be
344 * called. This is effectively a refcount.
345 */
346 int __mnt_want_write(struct vfsmount *m)
347 {
348 struct mount *mnt = real_mount(m);
349 int ret = 0;
350
351 preempt_disable();
352 mnt_inc_writers(mnt);
353 /*
354 * The store to mnt_inc_writers must be visible before we pass
355 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
356 * incremented count after it has set MNT_WRITE_HOLD.
357 */
358 smp_mb();
359 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
360 cpu_relax();
361 /*
362 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
363 * be set to match its requirements. So we must not load that until
364 * MNT_WRITE_HOLD is cleared.
365 */
366 smp_rmb();
367 if (mnt_is_readonly(m)) {
368 mnt_dec_writers(mnt);
369 ret = -EROFS;
370 }
371 preempt_enable();
372
373 return ret;
374 }
375
376 /**
377 * mnt_want_write - get write access to a mount
378 * @m: the mount on which to take a write
379 *
380 * This tells the low-level filesystem that a write is about to be performed to
381 * it, and makes sure that writes are allowed (mount is read-write, filesystem
382 * is not frozen) before returning success. When the write operation is
383 * finished, mnt_drop_write() must be called. This is effectively a refcount.
384 */
385 int mnt_want_write(struct vfsmount *m)
386 {
387 int ret;
388
389 sb_start_write(m->mnt_sb);
390 ret = __mnt_want_write(m);
391 if (ret)
392 sb_end_write(m->mnt_sb);
393 return ret;
394 }
395 EXPORT_SYMBOL_GPL(mnt_want_write);
396
397 /**
398 * mnt_clone_write - get write access to a mount
399 * @mnt: the mount on which to take a write
400 *
401 * This is effectively like mnt_want_write, except
402 * it must only be used to take an extra write reference
403 * on a mountpoint that we already know has a write reference
404 * on it. This allows some optimisation.
405 *
406 * After finished, mnt_drop_write must be called as usual to
407 * drop the reference.
408 */
409 int mnt_clone_write(struct vfsmount *mnt)
410 {
411 /* superblock may be r/o */
412 if (__mnt_is_readonly(mnt))
413 return -EROFS;
414 preempt_disable();
415 mnt_inc_writers(real_mount(mnt));
416 preempt_enable();
417 return 0;
418 }
419 EXPORT_SYMBOL_GPL(mnt_clone_write);
420
421 /**
422 * __mnt_want_write_file - get write access to a file's mount
423 * @file: the file who's mount on which to take a write
424 *
425 * This is like __mnt_want_write, but it takes a file and can
426 * do some optimisations if the file is open for write already
427 */
428 int __mnt_want_write_file(struct file *file)
429 {
430 if (!(file->f_mode & FMODE_WRITER))
431 return __mnt_want_write(file->f_path.mnt);
432 else
433 return mnt_clone_write(file->f_path.mnt);
434 }
435
436 /**
437 * mnt_want_write_file - get write access to a file's mount
438 * @file: the file who's mount on which to take a write
439 *
440 * This is like mnt_want_write, but it takes a file and can
441 * do some optimisations if the file is open for write already
442 */
443 int mnt_want_write_file(struct file *file)
444 {
445 int ret;
446
447 sb_start_write(file->f_path.mnt->mnt_sb);
448 ret = __mnt_want_write_file(file);
449 if (ret)
450 sb_end_write(file->f_path.mnt->mnt_sb);
451 return ret;
452 }
453 EXPORT_SYMBOL_GPL(mnt_want_write_file);
454
455 /**
456 * __mnt_drop_write - give up write access to a mount
457 * @mnt: the mount on which to give up write access
458 *
459 * Tells the low-level filesystem that we are done
460 * performing writes to it. Must be matched with
461 * __mnt_want_write() call above.
462 */
463 void __mnt_drop_write(struct vfsmount *mnt)
464 {
465 preempt_disable();
466 mnt_dec_writers(real_mount(mnt));
467 preempt_enable();
468 }
469
470 /**
471 * mnt_drop_write - give up write access to a mount
472 * @mnt: the mount on which to give up write access
473 *
474 * Tells the low-level filesystem that we are done performing writes to it and
475 * also allows filesystem to be frozen again. Must be matched with
476 * mnt_want_write() call above.
477 */
478 void mnt_drop_write(struct vfsmount *mnt)
479 {
480 __mnt_drop_write(mnt);
481 sb_end_write(mnt->mnt_sb);
482 }
483 EXPORT_SYMBOL_GPL(mnt_drop_write);
484
485 void __mnt_drop_write_file(struct file *file)
486 {
487 __mnt_drop_write(file->f_path.mnt);
488 }
489
490 void mnt_drop_write_file(struct file *file)
491 {
492 mnt_drop_write(file->f_path.mnt);
493 }
494 EXPORT_SYMBOL(mnt_drop_write_file);
495
496 static int mnt_make_readonly(struct mount *mnt)
497 {
498 int ret = 0;
499
500 lock_mount_hash();
501 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
502 /*
503 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
504 * should be visible before we do.
505 */
506 smp_mb();
507
508 /*
509 * With writers on hold, if this value is zero, then there are
510 * definitely no active writers (although held writers may subsequently
511 * increment the count, they'll have to wait, and decrement it after
512 * seeing MNT_READONLY).
513 *
514 * It is OK to have counter incremented on one CPU and decremented on
515 * another: the sum will add up correctly. The danger would be when we
516 * sum up each counter, if we read a counter before it is incremented,
517 * but then read another CPU's count which it has been subsequently
518 * decremented from -- we would see more decrements than we should.
519 * MNT_WRITE_HOLD protects against this scenario, because
520 * mnt_want_write first increments count, then smp_mb, then spins on
521 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
522 * we're counting up here.
523 */
524 if (mnt_get_writers(mnt) > 0)
525 ret = -EBUSY;
526 else
527 mnt->mnt.mnt_flags |= MNT_READONLY;
528 /*
529 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
530 * that become unheld will see MNT_READONLY.
531 */
532 smp_wmb();
533 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
534 unlock_mount_hash();
535 return ret;
536 }
537
538 static void __mnt_unmake_readonly(struct mount *mnt)
539 {
540 lock_mount_hash();
541 mnt->mnt.mnt_flags &= ~MNT_READONLY;
542 unlock_mount_hash();
543 }
544
545 int sb_prepare_remount_readonly(struct super_block *sb)
546 {
547 struct mount *mnt;
548 int err = 0;
549
550 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
551 if (atomic_long_read(&sb->s_remove_count))
552 return -EBUSY;
553
554 lock_mount_hash();
555 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
556 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
557 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
558 smp_mb();
559 if (mnt_get_writers(mnt) > 0) {
560 err = -EBUSY;
561 break;
562 }
563 }
564 }
565 if (!err && atomic_long_read(&sb->s_remove_count))
566 err = -EBUSY;
567
568 if (!err) {
569 sb->s_readonly_remount = 1;
570 smp_wmb();
571 }
572 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
573 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
574 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
575 }
576 unlock_mount_hash();
577
578 return err;
579 }
580
581 static void free_vfsmnt(struct mount *mnt)
582 {
583 kfree_const(mnt->mnt_devname);
584 #ifdef CONFIG_SMP
585 free_percpu(mnt->mnt_pcp);
586 #endif
587 kmem_cache_free(mnt_cache, mnt);
588 }
589
590 static void delayed_free_vfsmnt(struct rcu_head *head)
591 {
592 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
593 }
594
595 /* call under rcu_read_lock */
596 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
597 {
598 struct mount *mnt;
599 if (read_seqretry(&mount_lock, seq))
600 return 1;
601 if (bastard == NULL)
602 return 0;
603 mnt = real_mount(bastard);
604 mnt_add_count(mnt, 1);
605 if (likely(!read_seqretry(&mount_lock, seq)))
606 return 0;
607 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
608 mnt_add_count(mnt, -1);
609 return 1;
610 }
611 return -1;
612 }
613
614 /* call under rcu_read_lock */
615 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
616 {
617 int res = __legitimize_mnt(bastard, seq);
618 if (likely(!res))
619 return true;
620 if (unlikely(res < 0)) {
621 rcu_read_unlock();
622 mntput(bastard);
623 rcu_read_lock();
624 }
625 return false;
626 }
627
628 /*
629 * find the first mount at @dentry on vfsmount @mnt.
630 * call under rcu_read_lock()
631 */
632 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
633 {
634 struct hlist_head *head = m_hash(mnt, dentry);
635 struct mount *p;
636
637 hlist_for_each_entry_rcu(p, head, mnt_hash)
638 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
639 return p;
640 return NULL;
641 }
642
643 /*
644 * find the last mount at @dentry on vfsmount @mnt.
645 * mount_lock must be held.
646 */
647 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
648 {
649 struct mount *p, *res = NULL;
650 p = __lookup_mnt(mnt, dentry);
651 if (!p)
652 goto out;
653 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
654 res = p;
655 hlist_for_each_entry_continue(p, mnt_hash) {
656 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
657 break;
658 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
659 res = p;
660 }
661 out:
662 return res;
663 }
664
665 /*
666 * lookup_mnt - Return the first child mount mounted at path
667 *
668 * "First" means first mounted chronologically. If you create the
669 * following mounts:
670 *
671 * mount /dev/sda1 /mnt
672 * mount /dev/sda2 /mnt
673 * mount /dev/sda3 /mnt
674 *
675 * Then lookup_mnt() on the base /mnt dentry in the root mount will
676 * return successively the root dentry and vfsmount of /dev/sda1, then
677 * /dev/sda2, then /dev/sda3, then NULL.
678 *
679 * lookup_mnt takes a reference to the found vfsmount.
680 */
681 struct vfsmount *lookup_mnt(struct path *path)
682 {
683 struct mount *child_mnt;
684 struct vfsmount *m;
685 unsigned seq;
686
687 rcu_read_lock();
688 do {
689 seq = read_seqbegin(&mount_lock);
690 child_mnt = __lookup_mnt(path->mnt, path->dentry);
691 m = child_mnt ? &child_mnt->mnt : NULL;
692 } while (!legitimize_mnt(m, seq));
693 rcu_read_unlock();
694 return m;
695 }
696
697 /*
698 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
699 * current mount namespace.
700 *
701 * The common case is dentries are not mountpoints at all and that
702 * test is handled inline. For the slow case when we are actually
703 * dealing with a mountpoint of some kind, walk through all of the
704 * mounts in the current mount namespace and test to see if the dentry
705 * is a mountpoint.
706 *
707 * The mount_hashtable is not usable in the context because we
708 * need to identify all mounts that may be in the current mount
709 * namespace not just a mount that happens to have some specified
710 * parent mount.
711 */
712 bool __is_local_mountpoint(struct dentry *dentry)
713 {
714 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
715 struct mount *mnt;
716 bool is_covered = false;
717
718 if (!d_mountpoint(dentry))
719 goto out;
720
721 down_read(&namespace_sem);
722 list_for_each_entry(mnt, &ns->list, mnt_list) {
723 is_covered = (mnt->mnt_mountpoint == dentry);
724 if (is_covered)
725 break;
726 }
727 up_read(&namespace_sem);
728 out:
729 return is_covered;
730 }
731
732 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
733 {
734 struct hlist_head *chain = mp_hash(dentry);
735 struct mountpoint *mp;
736
737 hlist_for_each_entry(mp, chain, m_hash) {
738 if (mp->m_dentry == dentry) {
739 /* might be worth a WARN_ON() */
740 if (d_unlinked(dentry))
741 return ERR_PTR(-ENOENT);
742 mp->m_count++;
743 return mp;
744 }
745 }
746 return NULL;
747 }
748
749 static struct mountpoint *new_mountpoint(struct dentry *dentry)
750 {
751 struct hlist_head *chain = mp_hash(dentry);
752 struct mountpoint *mp;
753 int ret;
754
755 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
756 if (!mp)
757 return ERR_PTR(-ENOMEM);
758
759 ret = d_set_mounted(dentry);
760 if (ret) {
761 kfree(mp);
762 return ERR_PTR(ret);
763 }
764
765 mp->m_dentry = dentry;
766 mp->m_count = 1;
767 hlist_add_head(&mp->m_hash, chain);
768 INIT_HLIST_HEAD(&mp->m_list);
769 return mp;
770 }
771
772 static void put_mountpoint(struct mountpoint *mp)
773 {
774 if (!--mp->m_count) {
775 struct dentry *dentry = mp->m_dentry;
776 BUG_ON(!hlist_empty(&mp->m_list));
777 spin_lock(&dentry->d_lock);
778 dentry->d_flags &= ~DCACHE_MOUNTED;
779 spin_unlock(&dentry->d_lock);
780 hlist_del(&mp->m_hash);
781 kfree(mp);
782 }
783 }
784
785 static inline int check_mnt(struct mount *mnt)
786 {
787 return mnt->mnt_ns == current->nsproxy->mnt_ns;
788 }
789
790 /*
791 * vfsmount lock must be held for write
792 */
793 static void touch_mnt_namespace(struct mnt_namespace *ns)
794 {
795 if (ns) {
796 ns->event = ++event;
797 wake_up_interruptible(&ns->poll);
798 }
799 }
800
801 /*
802 * vfsmount lock must be held for write
803 */
804 static void __touch_mnt_namespace(struct mnt_namespace *ns)
805 {
806 if (ns && ns->event != event) {
807 ns->event = event;
808 wake_up_interruptible(&ns->poll);
809 }
810 }
811
812 /*
813 * vfsmount lock must be held for write
814 */
815 static void unhash_mnt(struct mount *mnt)
816 {
817 mnt->mnt_parent = mnt;
818 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
819 list_del_init(&mnt->mnt_child);
820 hlist_del_init_rcu(&mnt->mnt_hash);
821 hlist_del_init(&mnt->mnt_mp_list);
822 put_mountpoint(mnt->mnt_mp);
823 mnt->mnt_mp = NULL;
824 }
825
826 /*
827 * vfsmount lock must be held for write
828 */
829 static void detach_mnt(struct mount *mnt, struct path *old_path)
830 {
831 old_path->dentry = mnt->mnt_mountpoint;
832 old_path->mnt = &mnt->mnt_parent->mnt;
833 unhash_mnt(mnt);
834 }
835
836 /*
837 * vfsmount lock must be held for write
838 */
839 static void umount_mnt(struct mount *mnt)
840 {
841 /* old mountpoint will be dropped when we can do that */
842 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
843 unhash_mnt(mnt);
844 }
845
846 /*
847 * vfsmount lock must be held for write
848 */
849 void mnt_set_mountpoint(struct mount *mnt,
850 struct mountpoint *mp,
851 struct mount *child_mnt)
852 {
853 mp->m_count++;
854 mnt_add_count(mnt, 1); /* essentially, that's mntget */
855 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
856 child_mnt->mnt_parent = mnt;
857 child_mnt->mnt_mp = mp;
858 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
859 }
860
861 /*
862 * vfsmount lock must be held for write
863 */
864 static void attach_mnt(struct mount *mnt,
865 struct mount *parent,
866 struct mountpoint *mp)
867 {
868 mnt_set_mountpoint(parent, mp, mnt);
869 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
870 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
871 }
872
873 static void attach_shadowed(struct mount *mnt,
874 struct mount *parent,
875 struct mount *shadows)
876 {
877 if (shadows) {
878 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
879 list_add(&mnt->mnt_child, &shadows->mnt_child);
880 } else {
881 hlist_add_head_rcu(&mnt->mnt_hash,
882 m_hash(&parent->mnt, mnt->mnt_mountpoint));
883 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
884 }
885 }
886
887 /*
888 * vfsmount lock must be held for write
889 */
890 static void commit_tree(struct mount *mnt, struct mount *shadows)
891 {
892 struct mount *parent = mnt->mnt_parent;
893 struct mount *m;
894 LIST_HEAD(head);
895 struct mnt_namespace *n = parent->mnt_ns;
896
897 BUG_ON(parent == mnt);
898
899 list_add_tail(&head, &mnt->mnt_list);
900 list_for_each_entry(m, &head, mnt_list)
901 m->mnt_ns = n;
902
903 list_splice(&head, n->list.prev);
904
905 n->mounts += n->pending_mounts;
906 n->pending_mounts = 0;
907
908 attach_shadowed(mnt, parent, shadows);
909 touch_mnt_namespace(n);
910 }
911
912 static struct mount *next_mnt(struct mount *p, struct mount *root)
913 {
914 struct list_head *next = p->mnt_mounts.next;
915 if (next == &p->mnt_mounts) {
916 while (1) {
917 if (p == root)
918 return NULL;
919 next = p->mnt_child.next;
920 if (next != &p->mnt_parent->mnt_mounts)
921 break;
922 p = p->mnt_parent;
923 }
924 }
925 return list_entry(next, struct mount, mnt_child);
926 }
927
928 static struct mount *skip_mnt_tree(struct mount *p)
929 {
930 struct list_head *prev = p->mnt_mounts.prev;
931 while (prev != &p->mnt_mounts) {
932 p = list_entry(prev, struct mount, mnt_child);
933 prev = p->mnt_mounts.prev;
934 }
935 return p;
936 }
937
938 struct vfsmount *
939 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
940 {
941 struct mount *mnt;
942 struct dentry *root;
943
944 if (!type)
945 return ERR_PTR(-ENODEV);
946
947 mnt = alloc_vfsmnt(name);
948 if (!mnt)
949 return ERR_PTR(-ENOMEM);
950
951 if (flags & MS_KERNMOUNT)
952 mnt->mnt.mnt_flags = MNT_INTERNAL;
953
954 root = mount_fs(type, flags, name, data);
955 if (IS_ERR(root)) {
956 mnt_free_id(mnt);
957 free_vfsmnt(mnt);
958 return ERR_CAST(root);
959 }
960
961 mnt->mnt.mnt_root = root;
962 mnt->mnt.mnt_sb = root->d_sb;
963 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
964 mnt->mnt_parent = mnt;
965 lock_mount_hash();
966 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
967 unlock_mount_hash();
968 return &mnt->mnt;
969 }
970 EXPORT_SYMBOL_GPL(vfs_kern_mount);
971
972 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
973 int flag)
974 {
975 struct super_block *sb = old->mnt.mnt_sb;
976 struct mount *mnt;
977 int err;
978
979 mnt = alloc_vfsmnt(old->mnt_devname);
980 if (!mnt)
981 return ERR_PTR(-ENOMEM);
982
983 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
984 mnt->mnt_group_id = 0; /* not a peer of original */
985 else
986 mnt->mnt_group_id = old->mnt_group_id;
987
988 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
989 err = mnt_alloc_group_id(mnt);
990 if (err)
991 goto out_free;
992 }
993
994 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
995 /* Don't allow unprivileged users to change mount flags */
996 if (flag & CL_UNPRIVILEGED) {
997 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
998
999 if (mnt->mnt.mnt_flags & MNT_READONLY)
1000 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1001
1002 if (mnt->mnt.mnt_flags & MNT_NODEV)
1003 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1004
1005 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1006 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1007
1008 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1009 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1010 }
1011
1012 /* Don't allow unprivileged users to reveal what is under a mount */
1013 if ((flag & CL_UNPRIVILEGED) &&
1014 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1015 mnt->mnt.mnt_flags |= MNT_LOCKED;
1016
1017 atomic_inc(&sb->s_active);
1018 mnt->mnt.mnt_sb = sb;
1019 mnt->mnt.mnt_root = dget(root);
1020 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1021 mnt->mnt_parent = mnt;
1022 lock_mount_hash();
1023 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1024 unlock_mount_hash();
1025
1026 if ((flag & CL_SLAVE) ||
1027 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1028 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1029 mnt->mnt_master = old;
1030 CLEAR_MNT_SHARED(mnt);
1031 } else if (!(flag & CL_PRIVATE)) {
1032 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1033 list_add(&mnt->mnt_share, &old->mnt_share);
1034 if (IS_MNT_SLAVE(old))
1035 list_add(&mnt->mnt_slave, &old->mnt_slave);
1036 mnt->mnt_master = old->mnt_master;
1037 }
1038 if (flag & CL_MAKE_SHARED)
1039 set_mnt_shared(mnt);
1040
1041 /* stick the duplicate mount on the same expiry list
1042 * as the original if that was on one */
1043 if (flag & CL_EXPIRE) {
1044 if (!list_empty(&old->mnt_expire))
1045 list_add(&mnt->mnt_expire, &old->mnt_expire);
1046 }
1047
1048 return mnt;
1049
1050 out_free:
1051 mnt_free_id(mnt);
1052 free_vfsmnt(mnt);
1053 return ERR_PTR(err);
1054 }
1055
1056 static void cleanup_mnt(struct mount *mnt)
1057 {
1058 /*
1059 * This probably indicates that somebody messed
1060 * up a mnt_want/drop_write() pair. If this
1061 * happens, the filesystem was probably unable
1062 * to make r/w->r/o transitions.
1063 */
1064 /*
1065 * The locking used to deal with mnt_count decrement provides barriers,
1066 * so mnt_get_writers() below is safe.
1067 */
1068 WARN_ON(mnt_get_writers(mnt));
1069 if (unlikely(mnt->mnt_pins.first))
1070 mnt_pin_kill(mnt);
1071 fsnotify_vfsmount_delete(&mnt->mnt);
1072 dput(mnt->mnt.mnt_root);
1073 deactivate_super(mnt->mnt.mnt_sb);
1074 mnt_free_id(mnt);
1075 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1076 }
1077
1078 static void __cleanup_mnt(struct rcu_head *head)
1079 {
1080 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1081 }
1082
1083 static LLIST_HEAD(delayed_mntput_list);
1084 static void delayed_mntput(struct work_struct *unused)
1085 {
1086 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1087 struct llist_node *next;
1088
1089 for (; node; node = next) {
1090 next = llist_next(node);
1091 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1092 }
1093 }
1094 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1095
1096 static void mntput_no_expire(struct mount *mnt)
1097 {
1098 rcu_read_lock();
1099 mnt_add_count(mnt, -1);
1100 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1101 rcu_read_unlock();
1102 return;
1103 }
1104 lock_mount_hash();
1105 if (mnt_get_count(mnt)) {
1106 rcu_read_unlock();
1107 unlock_mount_hash();
1108 return;
1109 }
1110 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1111 rcu_read_unlock();
1112 unlock_mount_hash();
1113 return;
1114 }
1115 mnt->mnt.mnt_flags |= MNT_DOOMED;
1116 rcu_read_unlock();
1117
1118 list_del(&mnt->mnt_instance);
1119
1120 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1121 struct mount *p, *tmp;
1122 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1123 umount_mnt(p);
1124 }
1125 }
1126 unlock_mount_hash();
1127
1128 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1129 struct task_struct *task = current;
1130 if (likely(!(task->flags & PF_KTHREAD))) {
1131 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1132 if (!task_work_add(task, &mnt->mnt_rcu, true))
1133 return;
1134 }
1135 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1136 schedule_delayed_work(&delayed_mntput_work, 1);
1137 return;
1138 }
1139 cleanup_mnt(mnt);
1140 }
1141
1142 void mntput(struct vfsmount *mnt)
1143 {
1144 if (mnt) {
1145 struct mount *m = real_mount(mnt);
1146 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1147 if (unlikely(m->mnt_expiry_mark))
1148 m->mnt_expiry_mark = 0;
1149 mntput_no_expire(m);
1150 }
1151 }
1152 EXPORT_SYMBOL(mntput);
1153
1154 struct vfsmount *mntget(struct vfsmount *mnt)
1155 {
1156 if (mnt)
1157 mnt_add_count(real_mount(mnt), 1);
1158 return mnt;
1159 }
1160 EXPORT_SYMBOL(mntget);
1161
1162 /* path_is_mountpoint() - Check if path is a mount in the current
1163 * namespace.
1164 *
1165 * d_mountpoint() can only be used reliably to establish if a dentry is
1166 * not mounted in any namespace and that common case is handled inline.
1167 * d_mountpoint() isn't aware of the possibility there may be multiple
1168 * mounts using a given dentry in a different namespace. This function
1169 * checks if the passed in path is a mountpoint rather than the dentry
1170 * alone.
1171 */
1172 bool path_is_mountpoint(const struct path *path)
1173 {
1174 unsigned seq;
1175 bool res;
1176
1177 if (!d_mountpoint(path->dentry))
1178 return false;
1179
1180 rcu_read_lock();
1181 do {
1182 seq = read_seqbegin(&mount_lock);
1183 res = __path_is_mountpoint(path);
1184 } while (read_seqretry(&mount_lock, seq));
1185 rcu_read_unlock();
1186
1187 return res;
1188 }
1189 EXPORT_SYMBOL(path_is_mountpoint);
1190
1191 struct vfsmount *mnt_clone_internal(struct path *path)
1192 {
1193 struct mount *p;
1194 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1195 if (IS_ERR(p))
1196 return ERR_CAST(p);
1197 p->mnt.mnt_flags |= MNT_INTERNAL;
1198 return &p->mnt;
1199 }
1200
1201 static inline void mangle(struct seq_file *m, const char *s)
1202 {
1203 seq_escape(m, s, " \t\n\\");
1204 }
1205
1206 /*
1207 * Simple .show_options callback for filesystems which don't want to
1208 * implement more complex mount option showing.
1209 *
1210 * See also save_mount_options().
1211 */
1212 int generic_show_options(struct seq_file *m, struct dentry *root)
1213 {
1214 const char *options;
1215
1216 rcu_read_lock();
1217 options = rcu_dereference(root->d_sb->s_options);
1218
1219 if (options != NULL && options[0]) {
1220 seq_putc(m, ',');
1221 mangle(m, options);
1222 }
1223 rcu_read_unlock();
1224
1225 return 0;
1226 }
1227 EXPORT_SYMBOL(generic_show_options);
1228
1229 /*
1230 * If filesystem uses generic_show_options(), this function should be
1231 * called from the fill_super() callback.
1232 *
1233 * The .remount_fs callback usually needs to be handled in a special
1234 * way, to make sure, that previous options are not overwritten if the
1235 * remount fails.
1236 *
1237 * Also note, that if the filesystem's .remount_fs function doesn't
1238 * reset all options to their default value, but changes only newly
1239 * given options, then the displayed options will not reflect reality
1240 * any more.
1241 */
1242 void save_mount_options(struct super_block *sb, char *options)
1243 {
1244 BUG_ON(sb->s_options);
1245 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1246 }
1247 EXPORT_SYMBOL(save_mount_options);
1248
1249 void replace_mount_options(struct super_block *sb, char *options)
1250 {
1251 char *old = sb->s_options;
1252 rcu_assign_pointer(sb->s_options, options);
1253 if (old) {
1254 synchronize_rcu();
1255 kfree(old);
1256 }
1257 }
1258 EXPORT_SYMBOL(replace_mount_options);
1259
1260 #ifdef CONFIG_PROC_FS
1261 /* iterator; we want it to have access to namespace_sem, thus here... */
1262 static void *m_start(struct seq_file *m, loff_t *pos)
1263 {
1264 struct proc_mounts *p = m->private;
1265
1266 down_read(&namespace_sem);
1267 if (p->cached_event == p->ns->event) {
1268 void *v = p->cached_mount;
1269 if (*pos == p->cached_index)
1270 return v;
1271 if (*pos == p->cached_index + 1) {
1272 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1273 return p->cached_mount = v;
1274 }
1275 }
1276
1277 p->cached_event = p->ns->event;
1278 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1279 p->cached_index = *pos;
1280 return p->cached_mount;
1281 }
1282
1283 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1284 {
1285 struct proc_mounts *p = m->private;
1286
1287 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1288 p->cached_index = *pos;
1289 return p->cached_mount;
1290 }
1291
1292 static void m_stop(struct seq_file *m, void *v)
1293 {
1294 up_read(&namespace_sem);
1295 }
1296
1297 static int m_show(struct seq_file *m, void *v)
1298 {
1299 struct proc_mounts *p = m->private;
1300 struct mount *r = list_entry(v, struct mount, mnt_list);
1301 return p->show(m, &r->mnt);
1302 }
1303
1304 const struct seq_operations mounts_op = {
1305 .start = m_start,
1306 .next = m_next,
1307 .stop = m_stop,
1308 .show = m_show,
1309 };
1310 #endif /* CONFIG_PROC_FS */
1311
1312 /**
1313 * may_umount_tree - check if a mount tree is busy
1314 * @mnt: root of mount tree
1315 *
1316 * This is called to check if a tree of mounts has any
1317 * open files, pwds, chroots or sub mounts that are
1318 * busy.
1319 */
1320 int may_umount_tree(struct vfsmount *m)
1321 {
1322 struct mount *mnt = real_mount(m);
1323 int actual_refs = 0;
1324 int minimum_refs = 0;
1325 struct mount *p;
1326 BUG_ON(!m);
1327
1328 /* write lock needed for mnt_get_count */
1329 lock_mount_hash();
1330 for (p = mnt; p; p = next_mnt(p, mnt)) {
1331 actual_refs += mnt_get_count(p);
1332 minimum_refs += 2;
1333 }
1334 unlock_mount_hash();
1335
1336 if (actual_refs > minimum_refs)
1337 return 0;
1338
1339 return 1;
1340 }
1341
1342 EXPORT_SYMBOL(may_umount_tree);
1343
1344 /**
1345 * may_umount - check if a mount point is busy
1346 * @mnt: root of mount
1347 *
1348 * This is called to check if a mount point has any
1349 * open files, pwds, chroots or sub mounts. If the
1350 * mount has sub mounts this will return busy
1351 * regardless of whether the sub mounts are busy.
1352 *
1353 * Doesn't take quota and stuff into account. IOW, in some cases it will
1354 * give false negatives. The main reason why it's here is that we need
1355 * a non-destructive way to look for easily umountable filesystems.
1356 */
1357 int may_umount(struct vfsmount *mnt)
1358 {
1359 int ret = 1;
1360 down_read(&namespace_sem);
1361 lock_mount_hash();
1362 if (propagate_mount_busy(real_mount(mnt), 2))
1363 ret = 0;
1364 unlock_mount_hash();
1365 up_read(&namespace_sem);
1366 return ret;
1367 }
1368
1369 EXPORT_SYMBOL(may_umount);
1370
1371 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1372
1373 static void namespace_unlock(void)
1374 {
1375 struct hlist_head head;
1376
1377 hlist_move_list(&unmounted, &head);
1378
1379 up_write(&namespace_sem);
1380
1381 if (likely(hlist_empty(&head)))
1382 return;
1383
1384 synchronize_rcu();
1385
1386 group_pin_kill(&head);
1387 }
1388
1389 static inline void namespace_lock(void)
1390 {
1391 down_write(&namespace_sem);
1392 }
1393
1394 enum umount_tree_flags {
1395 UMOUNT_SYNC = 1,
1396 UMOUNT_PROPAGATE = 2,
1397 UMOUNT_CONNECTED = 4,
1398 };
1399
1400 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1401 {
1402 /* Leaving mounts connected is only valid for lazy umounts */
1403 if (how & UMOUNT_SYNC)
1404 return true;
1405
1406 /* A mount without a parent has nothing to be connected to */
1407 if (!mnt_has_parent(mnt))
1408 return true;
1409
1410 /* Because the reference counting rules change when mounts are
1411 * unmounted and connected, umounted mounts may not be
1412 * connected to mounted mounts.
1413 */
1414 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1415 return true;
1416
1417 /* Has it been requested that the mount remain connected? */
1418 if (how & UMOUNT_CONNECTED)
1419 return false;
1420
1421 /* Is the mount locked such that it needs to remain connected? */
1422 if (IS_MNT_LOCKED(mnt))
1423 return false;
1424
1425 /* By default disconnect the mount */
1426 return true;
1427 }
1428
1429 /*
1430 * mount_lock must be held
1431 * namespace_sem must be held for write
1432 */
1433 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1434 {
1435 LIST_HEAD(tmp_list);
1436 struct mount *p;
1437
1438 if (how & UMOUNT_PROPAGATE)
1439 propagate_mount_unlock(mnt);
1440
1441 /* Gather the mounts to umount */
1442 for (p = mnt; p; p = next_mnt(p, mnt)) {
1443 p->mnt.mnt_flags |= MNT_UMOUNT;
1444 list_move(&p->mnt_list, &tmp_list);
1445 }
1446
1447 /* Hide the mounts from mnt_mounts */
1448 list_for_each_entry(p, &tmp_list, mnt_list) {
1449 list_del_init(&p->mnt_child);
1450 }
1451
1452 /* Add propogated mounts to the tmp_list */
1453 if (how & UMOUNT_PROPAGATE)
1454 propagate_umount(&tmp_list);
1455
1456 while (!list_empty(&tmp_list)) {
1457 struct mnt_namespace *ns;
1458 bool disconnect;
1459 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1460 list_del_init(&p->mnt_expire);
1461 list_del_init(&p->mnt_list);
1462 ns = p->mnt_ns;
1463 if (ns) {
1464 ns->mounts--;
1465 __touch_mnt_namespace(ns);
1466 }
1467 p->mnt_ns = NULL;
1468 if (how & UMOUNT_SYNC)
1469 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1470
1471 disconnect = disconnect_mount(p, how);
1472
1473 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1474 disconnect ? &unmounted : NULL);
1475 if (mnt_has_parent(p)) {
1476 mnt_add_count(p->mnt_parent, -1);
1477 if (!disconnect) {
1478 /* Don't forget about p */
1479 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1480 } else {
1481 umount_mnt(p);
1482 }
1483 }
1484 change_mnt_propagation(p, MS_PRIVATE);
1485 }
1486 }
1487
1488 static void shrink_submounts(struct mount *mnt);
1489
1490 static int do_umount(struct mount *mnt, int flags)
1491 {
1492 struct super_block *sb = mnt->mnt.mnt_sb;
1493 int retval;
1494
1495 retval = security_sb_umount(&mnt->mnt, flags);
1496 if (retval)
1497 return retval;
1498
1499 /*
1500 * Allow userspace to request a mountpoint be expired rather than
1501 * unmounting unconditionally. Unmount only happens if:
1502 * (1) the mark is already set (the mark is cleared by mntput())
1503 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1504 */
1505 if (flags & MNT_EXPIRE) {
1506 if (&mnt->mnt == current->fs->root.mnt ||
1507 flags & (MNT_FORCE | MNT_DETACH))
1508 return -EINVAL;
1509
1510 /*
1511 * probably don't strictly need the lock here if we examined
1512 * all race cases, but it's a slowpath.
1513 */
1514 lock_mount_hash();
1515 if (mnt_get_count(mnt) != 2) {
1516 unlock_mount_hash();
1517 return -EBUSY;
1518 }
1519 unlock_mount_hash();
1520
1521 if (!xchg(&mnt->mnt_expiry_mark, 1))
1522 return -EAGAIN;
1523 }
1524
1525 /*
1526 * If we may have to abort operations to get out of this
1527 * mount, and they will themselves hold resources we must
1528 * allow the fs to do things. In the Unix tradition of
1529 * 'Gee thats tricky lets do it in userspace' the umount_begin
1530 * might fail to complete on the first run through as other tasks
1531 * must return, and the like. Thats for the mount program to worry
1532 * about for the moment.
1533 */
1534
1535 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1536 sb->s_op->umount_begin(sb);
1537 }
1538
1539 /*
1540 * No sense to grab the lock for this test, but test itself looks
1541 * somewhat bogus. Suggestions for better replacement?
1542 * Ho-hum... In principle, we might treat that as umount + switch
1543 * to rootfs. GC would eventually take care of the old vfsmount.
1544 * Actually it makes sense, especially if rootfs would contain a
1545 * /reboot - static binary that would close all descriptors and
1546 * call reboot(9). Then init(8) could umount root and exec /reboot.
1547 */
1548 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1549 /*
1550 * Special case for "unmounting" root ...
1551 * we just try to remount it readonly.
1552 */
1553 if (!capable(CAP_SYS_ADMIN))
1554 return -EPERM;
1555 down_write(&sb->s_umount);
1556 if (!(sb->s_flags & MS_RDONLY))
1557 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1558 up_write(&sb->s_umount);
1559 return retval;
1560 }
1561
1562 namespace_lock();
1563 lock_mount_hash();
1564 event++;
1565
1566 if (flags & MNT_DETACH) {
1567 if (!list_empty(&mnt->mnt_list))
1568 umount_tree(mnt, UMOUNT_PROPAGATE);
1569 retval = 0;
1570 } else {
1571 shrink_submounts(mnt);
1572 retval = -EBUSY;
1573 if (!propagate_mount_busy(mnt, 2)) {
1574 if (!list_empty(&mnt->mnt_list))
1575 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1576 retval = 0;
1577 }
1578 }
1579 unlock_mount_hash();
1580 namespace_unlock();
1581 return retval;
1582 }
1583
1584 /*
1585 * __detach_mounts - lazily unmount all mounts on the specified dentry
1586 *
1587 * During unlink, rmdir, and d_drop it is possible to loose the path
1588 * to an existing mountpoint, and wind up leaking the mount.
1589 * detach_mounts allows lazily unmounting those mounts instead of
1590 * leaking them.
1591 *
1592 * The caller may hold dentry->d_inode->i_mutex.
1593 */
1594 void __detach_mounts(struct dentry *dentry)
1595 {
1596 struct mountpoint *mp;
1597 struct mount *mnt;
1598
1599 namespace_lock();
1600 mp = lookup_mountpoint(dentry);
1601 if (IS_ERR_OR_NULL(mp))
1602 goto out_unlock;
1603
1604 lock_mount_hash();
1605 event++;
1606 while (!hlist_empty(&mp->m_list)) {
1607 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1608 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1609 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1610 umount_mnt(mnt);
1611 }
1612 else umount_tree(mnt, UMOUNT_CONNECTED);
1613 }
1614 unlock_mount_hash();
1615 put_mountpoint(mp);
1616 out_unlock:
1617 namespace_unlock();
1618 }
1619
1620 /*
1621 * Is the caller allowed to modify his namespace?
1622 */
1623 static inline bool may_mount(void)
1624 {
1625 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1626 }
1627
1628 static inline bool may_mandlock(void)
1629 {
1630 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1631 return false;
1632 #endif
1633 return capable(CAP_SYS_ADMIN);
1634 }
1635
1636 /*
1637 * Now umount can handle mount points as well as block devices.
1638 * This is important for filesystems which use unnamed block devices.
1639 *
1640 * We now support a flag for forced unmount like the other 'big iron'
1641 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1642 */
1643
1644 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1645 {
1646 struct path path;
1647 struct mount *mnt;
1648 int retval;
1649 int lookup_flags = 0;
1650
1651 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1652 return -EINVAL;
1653
1654 if (!may_mount())
1655 return -EPERM;
1656
1657 if (!(flags & UMOUNT_NOFOLLOW))
1658 lookup_flags |= LOOKUP_FOLLOW;
1659
1660 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1661 if (retval)
1662 goto out;
1663 mnt = real_mount(path.mnt);
1664 retval = -EINVAL;
1665 if (path.dentry != path.mnt->mnt_root)
1666 goto dput_and_out;
1667 if (!check_mnt(mnt))
1668 goto dput_and_out;
1669 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1670 goto dput_and_out;
1671 retval = -EPERM;
1672 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1673 goto dput_and_out;
1674
1675 retval = do_umount(mnt, flags);
1676 dput_and_out:
1677 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1678 dput(path.dentry);
1679 mntput_no_expire(mnt);
1680 out:
1681 return retval;
1682 }
1683
1684 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1685
1686 /*
1687 * The 2.0 compatible umount. No flags.
1688 */
1689 SYSCALL_DEFINE1(oldumount, char __user *, name)
1690 {
1691 return sys_umount(name, 0);
1692 }
1693
1694 #endif
1695
1696 static bool is_mnt_ns_file(struct dentry *dentry)
1697 {
1698 /* Is this a proxy for a mount namespace? */
1699 return dentry->d_op == &ns_dentry_operations &&
1700 dentry->d_fsdata == &mntns_operations;
1701 }
1702
1703 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1704 {
1705 return container_of(ns, struct mnt_namespace, ns);
1706 }
1707
1708 static bool mnt_ns_loop(struct dentry *dentry)
1709 {
1710 /* Could bind mounting the mount namespace inode cause a
1711 * mount namespace loop?
1712 */
1713 struct mnt_namespace *mnt_ns;
1714 if (!is_mnt_ns_file(dentry))
1715 return false;
1716
1717 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1718 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1719 }
1720
1721 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1722 int flag)
1723 {
1724 struct mount *res, *p, *q, *r, *parent;
1725
1726 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1727 return ERR_PTR(-EINVAL);
1728
1729 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1730 return ERR_PTR(-EINVAL);
1731
1732 res = q = clone_mnt(mnt, dentry, flag);
1733 if (IS_ERR(q))
1734 return q;
1735
1736 q->mnt_mountpoint = mnt->mnt_mountpoint;
1737
1738 p = mnt;
1739 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1740 struct mount *s;
1741 if (!is_subdir(r->mnt_mountpoint, dentry))
1742 continue;
1743
1744 for (s = r; s; s = next_mnt(s, r)) {
1745 struct mount *t = NULL;
1746 if (!(flag & CL_COPY_UNBINDABLE) &&
1747 IS_MNT_UNBINDABLE(s)) {
1748 s = skip_mnt_tree(s);
1749 continue;
1750 }
1751 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1752 is_mnt_ns_file(s->mnt.mnt_root)) {
1753 s = skip_mnt_tree(s);
1754 continue;
1755 }
1756 while (p != s->mnt_parent) {
1757 p = p->mnt_parent;
1758 q = q->mnt_parent;
1759 }
1760 p = s;
1761 parent = q;
1762 q = clone_mnt(p, p->mnt.mnt_root, flag);
1763 if (IS_ERR(q))
1764 goto out;
1765 lock_mount_hash();
1766 list_add_tail(&q->mnt_list, &res->mnt_list);
1767 mnt_set_mountpoint(parent, p->mnt_mp, q);
1768 if (!list_empty(&parent->mnt_mounts)) {
1769 t = list_last_entry(&parent->mnt_mounts,
1770 struct mount, mnt_child);
1771 if (t->mnt_mp != p->mnt_mp)
1772 t = NULL;
1773 }
1774 attach_shadowed(q, parent, t);
1775 unlock_mount_hash();
1776 }
1777 }
1778 return res;
1779 out:
1780 if (res) {
1781 lock_mount_hash();
1782 umount_tree(res, UMOUNT_SYNC);
1783 unlock_mount_hash();
1784 }
1785 return q;
1786 }
1787
1788 /* Caller should check returned pointer for errors */
1789
1790 struct vfsmount *collect_mounts(struct path *path)
1791 {
1792 struct mount *tree;
1793 namespace_lock();
1794 if (!check_mnt(real_mount(path->mnt)))
1795 tree = ERR_PTR(-EINVAL);
1796 else
1797 tree = copy_tree(real_mount(path->mnt), path->dentry,
1798 CL_COPY_ALL | CL_PRIVATE);
1799 namespace_unlock();
1800 if (IS_ERR(tree))
1801 return ERR_CAST(tree);
1802 return &tree->mnt;
1803 }
1804
1805 void drop_collected_mounts(struct vfsmount *mnt)
1806 {
1807 namespace_lock();
1808 lock_mount_hash();
1809 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1810 unlock_mount_hash();
1811 namespace_unlock();
1812 }
1813
1814 /**
1815 * clone_private_mount - create a private clone of a path
1816 *
1817 * This creates a new vfsmount, which will be the clone of @path. The new will
1818 * not be attached anywhere in the namespace and will be private (i.e. changes
1819 * to the originating mount won't be propagated into this).
1820 *
1821 * Release with mntput().
1822 */
1823 struct vfsmount *clone_private_mount(struct path *path)
1824 {
1825 struct mount *old_mnt = real_mount(path->mnt);
1826 struct mount *new_mnt;
1827
1828 if (IS_MNT_UNBINDABLE(old_mnt))
1829 return ERR_PTR(-EINVAL);
1830
1831 down_read(&namespace_sem);
1832 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1833 up_read(&namespace_sem);
1834 if (IS_ERR(new_mnt))
1835 return ERR_CAST(new_mnt);
1836
1837 return &new_mnt->mnt;
1838 }
1839 EXPORT_SYMBOL_GPL(clone_private_mount);
1840
1841 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1842 struct vfsmount *root)
1843 {
1844 struct mount *mnt;
1845 int res = f(root, arg);
1846 if (res)
1847 return res;
1848 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1849 res = f(&mnt->mnt, arg);
1850 if (res)
1851 return res;
1852 }
1853 return 0;
1854 }
1855
1856 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1857 {
1858 struct mount *p;
1859
1860 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1861 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1862 mnt_release_group_id(p);
1863 }
1864 }
1865
1866 static int invent_group_ids(struct mount *mnt, bool recurse)
1867 {
1868 struct mount *p;
1869
1870 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1871 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1872 int err = mnt_alloc_group_id(p);
1873 if (err) {
1874 cleanup_group_ids(mnt, p);
1875 return err;
1876 }
1877 }
1878 }
1879
1880 return 0;
1881 }
1882
1883 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1884 {
1885 unsigned int max = READ_ONCE(sysctl_mount_max);
1886 unsigned int mounts = 0, old, pending, sum;
1887 struct mount *p;
1888
1889 for (p = mnt; p; p = next_mnt(p, mnt))
1890 mounts++;
1891
1892 old = ns->mounts;
1893 pending = ns->pending_mounts;
1894 sum = old + pending;
1895 if ((old > sum) ||
1896 (pending > sum) ||
1897 (max < sum) ||
1898 (mounts > (max - sum)))
1899 return -ENOSPC;
1900
1901 ns->pending_mounts = pending + mounts;
1902 return 0;
1903 }
1904
1905 /*
1906 * @source_mnt : mount tree to be attached
1907 * @nd : place the mount tree @source_mnt is attached
1908 * @parent_nd : if non-null, detach the source_mnt from its parent and
1909 * store the parent mount and mountpoint dentry.
1910 * (done when source_mnt is moved)
1911 *
1912 * NOTE: in the table below explains the semantics when a source mount
1913 * of a given type is attached to a destination mount of a given type.
1914 * ---------------------------------------------------------------------------
1915 * | BIND MOUNT OPERATION |
1916 * |**************************************************************************
1917 * | source-->| shared | private | slave | unbindable |
1918 * | dest | | | | |
1919 * | | | | | | |
1920 * | v | | | | |
1921 * |**************************************************************************
1922 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1923 * | | | | | |
1924 * |non-shared| shared (+) | private | slave (*) | invalid |
1925 * ***************************************************************************
1926 * A bind operation clones the source mount and mounts the clone on the
1927 * destination mount.
1928 *
1929 * (++) the cloned mount is propagated to all the mounts in the propagation
1930 * tree of the destination mount and the cloned mount is added to
1931 * the peer group of the source mount.
1932 * (+) the cloned mount is created under the destination mount and is marked
1933 * as shared. The cloned mount is added to the peer group of the source
1934 * mount.
1935 * (+++) the mount is propagated to all the mounts in the propagation tree
1936 * of the destination mount and the cloned mount is made slave
1937 * of the same master as that of the source mount. The cloned mount
1938 * is marked as 'shared and slave'.
1939 * (*) the cloned mount is made a slave of the same master as that of the
1940 * source mount.
1941 *
1942 * ---------------------------------------------------------------------------
1943 * | MOVE MOUNT OPERATION |
1944 * |**************************************************************************
1945 * | source-->| shared | private | slave | unbindable |
1946 * | dest | | | | |
1947 * | | | | | | |
1948 * | v | | | | |
1949 * |**************************************************************************
1950 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1951 * | | | | | |
1952 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1953 * ***************************************************************************
1954 *
1955 * (+) the mount is moved to the destination. And is then propagated to
1956 * all the mounts in the propagation tree of the destination mount.
1957 * (+*) the mount is moved to the destination.
1958 * (+++) the mount is moved to the destination and is then propagated to
1959 * all the mounts belonging to the destination mount's propagation tree.
1960 * the mount is marked as 'shared and slave'.
1961 * (*) the mount continues to be a slave at the new location.
1962 *
1963 * if the source mount is a tree, the operations explained above is
1964 * applied to each mount in the tree.
1965 * Must be called without spinlocks held, since this function can sleep
1966 * in allocations.
1967 */
1968 static int attach_recursive_mnt(struct mount *source_mnt,
1969 struct mount *dest_mnt,
1970 struct mountpoint *dest_mp,
1971 struct path *parent_path)
1972 {
1973 HLIST_HEAD(tree_list);
1974 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1975 struct mount *child, *p;
1976 struct hlist_node *n;
1977 int err;
1978
1979 /* Is there space to add these mounts to the mount namespace? */
1980 if (!parent_path) {
1981 err = count_mounts(ns, source_mnt);
1982 if (err)
1983 goto out;
1984 }
1985
1986 if (IS_MNT_SHARED(dest_mnt)) {
1987 err = invent_group_ids(source_mnt, true);
1988 if (err)
1989 goto out;
1990 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1991 lock_mount_hash();
1992 if (err)
1993 goto out_cleanup_ids;
1994 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1995 set_mnt_shared(p);
1996 } else {
1997 lock_mount_hash();
1998 }
1999 if (parent_path) {
2000 detach_mnt(source_mnt, parent_path);
2001 attach_mnt(source_mnt, dest_mnt, dest_mp);
2002 touch_mnt_namespace(source_mnt->mnt_ns);
2003 } else {
2004 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2005 commit_tree(source_mnt, NULL);
2006 }
2007
2008 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2009 struct mount *q;
2010 hlist_del_init(&child->mnt_hash);
2011 q = __lookup_mnt_last(&child->mnt_parent->mnt,
2012 child->mnt_mountpoint);
2013 commit_tree(child, q);
2014 }
2015 unlock_mount_hash();
2016
2017 return 0;
2018
2019 out_cleanup_ids:
2020 while (!hlist_empty(&tree_list)) {
2021 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2022 child->mnt_parent->mnt_ns->pending_mounts = 0;
2023 umount_tree(child, UMOUNT_SYNC);
2024 }
2025 unlock_mount_hash();
2026 cleanup_group_ids(source_mnt, NULL);
2027 out:
2028 ns->pending_mounts = 0;
2029 return err;
2030 }
2031
2032 static struct mountpoint *lock_mount(struct path *path)
2033 {
2034 struct vfsmount *mnt;
2035 struct dentry *dentry = path->dentry;
2036 retry:
2037 inode_lock(dentry->d_inode);
2038 if (unlikely(cant_mount(dentry))) {
2039 inode_unlock(dentry->d_inode);
2040 return ERR_PTR(-ENOENT);
2041 }
2042 namespace_lock();
2043 mnt = lookup_mnt(path);
2044 if (likely(!mnt)) {
2045 struct mountpoint *mp = lookup_mountpoint(dentry);
2046 if (!mp)
2047 mp = new_mountpoint(dentry);
2048 if (IS_ERR(mp)) {
2049 namespace_unlock();
2050 inode_unlock(dentry->d_inode);
2051 return mp;
2052 }
2053 return mp;
2054 }
2055 namespace_unlock();
2056 inode_unlock(path->dentry->d_inode);
2057 path_put(path);
2058 path->mnt = mnt;
2059 dentry = path->dentry = dget(mnt->mnt_root);
2060 goto retry;
2061 }
2062
2063 static void unlock_mount(struct mountpoint *where)
2064 {
2065 struct dentry *dentry = where->m_dentry;
2066 put_mountpoint(where);
2067 namespace_unlock();
2068 inode_unlock(dentry->d_inode);
2069 }
2070
2071 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2072 {
2073 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2074 return -EINVAL;
2075
2076 if (d_is_dir(mp->m_dentry) !=
2077 d_is_dir(mnt->mnt.mnt_root))
2078 return -ENOTDIR;
2079
2080 return attach_recursive_mnt(mnt, p, mp, NULL);
2081 }
2082
2083 /*
2084 * Sanity check the flags to change_mnt_propagation.
2085 */
2086
2087 static int flags_to_propagation_type(int flags)
2088 {
2089 int type = flags & ~(MS_REC | MS_SILENT);
2090
2091 /* Fail if any non-propagation flags are set */
2092 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2093 return 0;
2094 /* Only one propagation flag should be set */
2095 if (!is_power_of_2(type))
2096 return 0;
2097 return type;
2098 }
2099
2100 /*
2101 * recursively change the type of the mountpoint.
2102 */
2103 static int do_change_type(struct path *path, int flag)
2104 {
2105 struct mount *m;
2106 struct mount *mnt = real_mount(path->mnt);
2107 int recurse = flag & MS_REC;
2108 int type;
2109 int err = 0;
2110
2111 if (path->dentry != path->mnt->mnt_root)
2112 return -EINVAL;
2113
2114 type = flags_to_propagation_type(flag);
2115 if (!type)
2116 return -EINVAL;
2117
2118 namespace_lock();
2119 if (type == MS_SHARED) {
2120 err = invent_group_ids(mnt, recurse);
2121 if (err)
2122 goto out_unlock;
2123 }
2124
2125 lock_mount_hash();
2126 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2127 change_mnt_propagation(m, type);
2128 unlock_mount_hash();
2129
2130 out_unlock:
2131 namespace_unlock();
2132 return err;
2133 }
2134
2135 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2136 {
2137 struct mount *child;
2138 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2139 if (!is_subdir(child->mnt_mountpoint, dentry))
2140 continue;
2141
2142 if (child->mnt.mnt_flags & MNT_LOCKED)
2143 return true;
2144 }
2145 return false;
2146 }
2147
2148 /*
2149 * do loopback mount.
2150 */
2151 static int do_loopback(struct path *path, const char *old_name,
2152 int recurse)
2153 {
2154 struct path old_path;
2155 struct mount *mnt = NULL, *old, *parent;
2156 struct mountpoint *mp;
2157 int err;
2158 if (!old_name || !*old_name)
2159 return -EINVAL;
2160 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2161 if (err)
2162 return err;
2163
2164 err = -EINVAL;
2165 if (mnt_ns_loop(old_path.dentry))
2166 goto out;
2167
2168 mp = lock_mount(path);
2169 err = PTR_ERR(mp);
2170 if (IS_ERR(mp))
2171 goto out;
2172
2173 old = real_mount(old_path.mnt);
2174 parent = real_mount(path->mnt);
2175
2176 err = -EINVAL;
2177 if (IS_MNT_UNBINDABLE(old))
2178 goto out2;
2179
2180 if (!check_mnt(parent))
2181 goto out2;
2182
2183 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2184 goto out2;
2185
2186 if (!recurse && has_locked_children(old, old_path.dentry))
2187 goto out2;
2188
2189 if (recurse)
2190 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2191 else
2192 mnt = clone_mnt(old, old_path.dentry, 0);
2193
2194 if (IS_ERR(mnt)) {
2195 err = PTR_ERR(mnt);
2196 goto out2;
2197 }
2198
2199 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2200
2201 err = graft_tree(mnt, parent, mp);
2202 if (err) {
2203 lock_mount_hash();
2204 umount_tree(mnt, UMOUNT_SYNC);
2205 unlock_mount_hash();
2206 }
2207 out2:
2208 unlock_mount(mp);
2209 out:
2210 path_put(&old_path);
2211 return err;
2212 }
2213
2214 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2215 {
2216 int error = 0;
2217 int readonly_request = 0;
2218
2219 if (ms_flags & MS_RDONLY)
2220 readonly_request = 1;
2221 if (readonly_request == __mnt_is_readonly(mnt))
2222 return 0;
2223
2224 if (readonly_request)
2225 error = mnt_make_readonly(real_mount(mnt));
2226 else
2227 __mnt_unmake_readonly(real_mount(mnt));
2228 return error;
2229 }
2230
2231 /*
2232 * change filesystem flags. dir should be a physical root of filesystem.
2233 * If you've mounted a non-root directory somewhere and want to do remount
2234 * on it - tough luck.
2235 */
2236 static int do_remount(struct path *path, int flags, int mnt_flags,
2237 void *data)
2238 {
2239 int err;
2240 struct super_block *sb = path->mnt->mnt_sb;
2241 struct mount *mnt = real_mount(path->mnt);
2242
2243 if (!check_mnt(mnt))
2244 return -EINVAL;
2245
2246 if (path->dentry != path->mnt->mnt_root)
2247 return -EINVAL;
2248
2249 /* Don't allow changing of locked mnt flags.
2250 *
2251 * No locks need to be held here while testing the various
2252 * MNT_LOCK flags because those flags can never be cleared
2253 * once they are set.
2254 */
2255 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2256 !(mnt_flags & MNT_READONLY)) {
2257 return -EPERM;
2258 }
2259 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2260 !(mnt_flags & MNT_NODEV)) {
2261 return -EPERM;
2262 }
2263 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2264 !(mnt_flags & MNT_NOSUID)) {
2265 return -EPERM;
2266 }
2267 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2268 !(mnt_flags & MNT_NOEXEC)) {
2269 return -EPERM;
2270 }
2271 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2272 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2273 return -EPERM;
2274 }
2275
2276 err = security_sb_remount(sb, data);
2277 if (err)
2278 return err;
2279
2280 down_write(&sb->s_umount);
2281 if (flags & MS_BIND)
2282 err = change_mount_flags(path->mnt, flags);
2283 else if (!capable(CAP_SYS_ADMIN))
2284 err = -EPERM;
2285 else
2286 err = do_remount_sb(sb, flags, data, 0);
2287 if (!err) {
2288 lock_mount_hash();
2289 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2290 mnt->mnt.mnt_flags = mnt_flags;
2291 touch_mnt_namespace(mnt->mnt_ns);
2292 unlock_mount_hash();
2293 }
2294 up_write(&sb->s_umount);
2295 return err;
2296 }
2297
2298 static inline int tree_contains_unbindable(struct mount *mnt)
2299 {
2300 struct mount *p;
2301 for (p = mnt; p; p = next_mnt(p, mnt)) {
2302 if (IS_MNT_UNBINDABLE(p))
2303 return 1;
2304 }
2305 return 0;
2306 }
2307
2308 static int do_move_mount(struct path *path, const char *old_name)
2309 {
2310 struct path old_path, parent_path;
2311 struct mount *p;
2312 struct mount *old;
2313 struct mountpoint *mp;
2314 int err;
2315 if (!old_name || !*old_name)
2316 return -EINVAL;
2317 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2318 if (err)
2319 return err;
2320
2321 mp = lock_mount(path);
2322 err = PTR_ERR(mp);
2323 if (IS_ERR(mp))
2324 goto out;
2325
2326 old = real_mount(old_path.mnt);
2327 p = real_mount(path->mnt);
2328
2329 err = -EINVAL;
2330 if (!check_mnt(p) || !check_mnt(old))
2331 goto out1;
2332
2333 if (old->mnt.mnt_flags & MNT_LOCKED)
2334 goto out1;
2335
2336 err = -EINVAL;
2337 if (old_path.dentry != old_path.mnt->mnt_root)
2338 goto out1;
2339
2340 if (!mnt_has_parent(old))
2341 goto out1;
2342
2343 if (d_is_dir(path->dentry) !=
2344 d_is_dir(old_path.dentry))
2345 goto out1;
2346 /*
2347 * Don't move a mount residing in a shared parent.
2348 */
2349 if (IS_MNT_SHARED(old->mnt_parent))
2350 goto out1;
2351 /*
2352 * Don't move a mount tree containing unbindable mounts to a destination
2353 * mount which is shared.
2354 */
2355 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2356 goto out1;
2357 err = -ELOOP;
2358 for (; mnt_has_parent(p); p = p->mnt_parent)
2359 if (p == old)
2360 goto out1;
2361
2362 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2363 if (err)
2364 goto out1;
2365
2366 /* if the mount is moved, it should no longer be expire
2367 * automatically */
2368 list_del_init(&old->mnt_expire);
2369 out1:
2370 unlock_mount(mp);
2371 out:
2372 if (!err)
2373 path_put(&parent_path);
2374 path_put(&old_path);
2375 return err;
2376 }
2377
2378 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2379 {
2380 int err;
2381 const char *subtype = strchr(fstype, '.');
2382 if (subtype) {
2383 subtype++;
2384 err = -EINVAL;
2385 if (!subtype[0])
2386 goto err;
2387 } else
2388 subtype = "";
2389
2390 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2391 err = -ENOMEM;
2392 if (!mnt->mnt_sb->s_subtype)
2393 goto err;
2394 return mnt;
2395
2396 err:
2397 mntput(mnt);
2398 return ERR_PTR(err);
2399 }
2400
2401 /*
2402 * add a mount into a namespace's mount tree
2403 */
2404 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2405 {
2406 struct mountpoint *mp;
2407 struct mount *parent;
2408 int err;
2409
2410 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2411
2412 mp = lock_mount(path);
2413 if (IS_ERR(mp))
2414 return PTR_ERR(mp);
2415
2416 parent = real_mount(path->mnt);
2417 err = -EINVAL;
2418 if (unlikely(!check_mnt(parent))) {
2419 /* that's acceptable only for automounts done in private ns */
2420 if (!(mnt_flags & MNT_SHRINKABLE))
2421 goto unlock;
2422 /* ... and for those we'd better have mountpoint still alive */
2423 if (!parent->mnt_ns)
2424 goto unlock;
2425 }
2426
2427 /* Refuse the same filesystem on the same mount point */
2428 err = -EBUSY;
2429 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2430 path->mnt->mnt_root == path->dentry)
2431 goto unlock;
2432
2433 err = -EINVAL;
2434 if (d_is_symlink(newmnt->mnt.mnt_root))
2435 goto unlock;
2436
2437 newmnt->mnt.mnt_flags = mnt_flags;
2438 err = graft_tree(newmnt, parent, mp);
2439
2440 unlock:
2441 unlock_mount(mp);
2442 return err;
2443 }
2444
2445 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2446
2447 /*
2448 * create a new mount for userspace and request it to be added into the
2449 * namespace's tree
2450 */
2451 static int do_new_mount(struct path *path, const char *fstype, int flags,
2452 int mnt_flags, const char *name, void *data)
2453 {
2454 struct file_system_type *type;
2455 struct vfsmount *mnt;
2456 int err;
2457
2458 if (!fstype)
2459 return -EINVAL;
2460
2461 type = get_fs_type(fstype);
2462 if (!type)
2463 return -ENODEV;
2464
2465 mnt = vfs_kern_mount(type, flags, name, data);
2466 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2467 !mnt->mnt_sb->s_subtype)
2468 mnt = fs_set_subtype(mnt, fstype);
2469
2470 put_filesystem(type);
2471 if (IS_ERR(mnt))
2472 return PTR_ERR(mnt);
2473
2474 if (mount_too_revealing(mnt, &mnt_flags)) {
2475 mntput(mnt);
2476 return -EPERM;
2477 }
2478
2479 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2480 if (err)
2481 mntput(mnt);
2482 return err;
2483 }
2484
2485 int finish_automount(struct vfsmount *m, struct path *path)
2486 {
2487 struct mount *mnt = real_mount(m);
2488 int err;
2489 /* The new mount record should have at least 2 refs to prevent it being
2490 * expired before we get a chance to add it
2491 */
2492 BUG_ON(mnt_get_count(mnt) < 2);
2493
2494 if (m->mnt_sb == path->mnt->mnt_sb &&
2495 m->mnt_root == path->dentry) {
2496 err = -ELOOP;
2497 goto fail;
2498 }
2499
2500 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2501 if (!err)
2502 return 0;
2503 fail:
2504 /* remove m from any expiration list it may be on */
2505 if (!list_empty(&mnt->mnt_expire)) {
2506 namespace_lock();
2507 list_del_init(&mnt->mnt_expire);
2508 namespace_unlock();
2509 }
2510 mntput(m);
2511 mntput(m);
2512 return err;
2513 }
2514
2515 /**
2516 * mnt_set_expiry - Put a mount on an expiration list
2517 * @mnt: The mount to list.
2518 * @expiry_list: The list to add the mount to.
2519 */
2520 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2521 {
2522 namespace_lock();
2523
2524 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2525
2526 namespace_unlock();
2527 }
2528 EXPORT_SYMBOL(mnt_set_expiry);
2529
2530 /*
2531 * process a list of expirable mountpoints with the intent of discarding any
2532 * mountpoints that aren't in use and haven't been touched since last we came
2533 * here
2534 */
2535 void mark_mounts_for_expiry(struct list_head *mounts)
2536 {
2537 struct mount *mnt, *next;
2538 LIST_HEAD(graveyard);
2539
2540 if (list_empty(mounts))
2541 return;
2542
2543 namespace_lock();
2544 lock_mount_hash();
2545
2546 /* extract from the expiration list every vfsmount that matches the
2547 * following criteria:
2548 * - only referenced by its parent vfsmount
2549 * - still marked for expiry (marked on the last call here; marks are
2550 * cleared by mntput())
2551 */
2552 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2553 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2554 propagate_mount_busy(mnt, 1))
2555 continue;
2556 list_move(&mnt->mnt_expire, &graveyard);
2557 }
2558 while (!list_empty(&graveyard)) {
2559 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2560 touch_mnt_namespace(mnt->mnt_ns);
2561 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2562 }
2563 unlock_mount_hash();
2564 namespace_unlock();
2565 }
2566
2567 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2568
2569 /*
2570 * Ripoff of 'select_parent()'
2571 *
2572 * search the list of submounts for a given mountpoint, and move any
2573 * shrinkable submounts to the 'graveyard' list.
2574 */
2575 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2576 {
2577 struct mount *this_parent = parent;
2578 struct list_head *next;
2579 int found = 0;
2580
2581 repeat:
2582 next = this_parent->mnt_mounts.next;
2583 resume:
2584 while (next != &this_parent->mnt_mounts) {
2585 struct list_head *tmp = next;
2586 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2587
2588 next = tmp->next;
2589 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2590 continue;
2591 /*
2592 * Descend a level if the d_mounts list is non-empty.
2593 */
2594 if (!list_empty(&mnt->mnt_mounts)) {
2595 this_parent = mnt;
2596 goto repeat;
2597 }
2598
2599 if (!propagate_mount_busy(mnt, 1)) {
2600 list_move_tail(&mnt->mnt_expire, graveyard);
2601 found++;
2602 }
2603 }
2604 /*
2605 * All done at this level ... ascend and resume the search
2606 */
2607 if (this_parent != parent) {
2608 next = this_parent->mnt_child.next;
2609 this_parent = this_parent->mnt_parent;
2610 goto resume;
2611 }
2612 return found;
2613 }
2614
2615 /*
2616 * process a list of expirable mountpoints with the intent of discarding any
2617 * submounts of a specific parent mountpoint
2618 *
2619 * mount_lock must be held for write
2620 */
2621 static void shrink_submounts(struct mount *mnt)
2622 {
2623 LIST_HEAD(graveyard);
2624 struct mount *m;
2625
2626 /* extract submounts of 'mountpoint' from the expiration list */
2627 while (select_submounts(mnt, &graveyard)) {
2628 while (!list_empty(&graveyard)) {
2629 m = list_first_entry(&graveyard, struct mount,
2630 mnt_expire);
2631 touch_mnt_namespace(m->mnt_ns);
2632 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2633 }
2634 }
2635 }
2636
2637 /*
2638 * Some copy_from_user() implementations do not return the exact number of
2639 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2640 * Note that this function differs from copy_from_user() in that it will oops
2641 * on bad values of `to', rather than returning a short copy.
2642 */
2643 static long exact_copy_from_user(void *to, const void __user * from,
2644 unsigned long n)
2645 {
2646 char *t = to;
2647 const char __user *f = from;
2648 char c;
2649
2650 if (!access_ok(VERIFY_READ, from, n))
2651 return n;
2652
2653 while (n) {
2654 if (__get_user(c, f)) {
2655 memset(t, 0, n);
2656 break;
2657 }
2658 *t++ = c;
2659 f++;
2660 n--;
2661 }
2662 return n;
2663 }
2664
2665 void *copy_mount_options(const void __user * data)
2666 {
2667 int i;
2668 unsigned long size;
2669 char *copy;
2670
2671 if (!data)
2672 return NULL;
2673
2674 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2675 if (!copy)
2676 return ERR_PTR(-ENOMEM);
2677
2678 /* We only care that *some* data at the address the user
2679 * gave us is valid. Just in case, we'll zero
2680 * the remainder of the page.
2681 */
2682 /* copy_from_user cannot cross TASK_SIZE ! */
2683 size = TASK_SIZE - (unsigned long)data;
2684 if (size > PAGE_SIZE)
2685 size = PAGE_SIZE;
2686
2687 i = size - exact_copy_from_user(copy, data, size);
2688 if (!i) {
2689 kfree(copy);
2690 return ERR_PTR(-EFAULT);
2691 }
2692 if (i != PAGE_SIZE)
2693 memset(copy + i, 0, PAGE_SIZE - i);
2694 return copy;
2695 }
2696
2697 char *copy_mount_string(const void __user *data)
2698 {
2699 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2700 }
2701
2702 /*
2703 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2704 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2705 *
2706 * data is a (void *) that can point to any structure up to
2707 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2708 * information (or be NULL).
2709 *
2710 * Pre-0.97 versions of mount() didn't have a flags word.
2711 * When the flags word was introduced its top half was required
2712 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2713 * Therefore, if this magic number is present, it carries no information
2714 * and must be discarded.
2715 */
2716 long do_mount(const char *dev_name, const char __user *dir_name,
2717 const char *type_page, unsigned long flags, void *data_page)
2718 {
2719 struct path path;
2720 int retval = 0;
2721 int mnt_flags = 0;
2722
2723 /* Discard magic */
2724 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2725 flags &= ~MS_MGC_MSK;
2726
2727 /* Basic sanity checks */
2728 if (data_page)
2729 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2730
2731 /* ... and get the mountpoint */
2732 retval = user_path(dir_name, &path);
2733 if (retval)
2734 return retval;
2735
2736 retval = security_sb_mount(dev_name, &path,
2737 type_page, flags, data_page);
2738 if (!retval && !may_mount())
2739 retval = -EPERM;
2740 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2741 retval = -EPERM;
2742 if (retval)
2743 goto dput_out;
2744
2745 /* Default to relatime unless overriden */
2746 if (!(flags & MS_NOATIME))
2747 mnt_flags |= MNT_RELATIME;
2748
2749 /* Separate the per-mountpoint flags */
2750 if (flags & MS_NOSUID)
2751 mnt_flags |= MNT_NOSUID;
2752 if (flags & MS_NODEV)
2753 mnt_flags |= MNT_NODEV;
2754 if (flags & MS_NOEXEC)
2755 mnt_flags |= MNT_NOEXEC;
2756 if (flags & MS_NOATIME)
2757 mnt_flags |= MNT_NOATIME;
2758 if (flags & MS_NODIRATIME)
2759 mnt_flags |= MNT_NODIRATIME;
2760 if (flags & MS_STRICTATIME)
2761 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2762 if (flags & MS_RDONLY)
2763 mnt_flags |= MNT_READONLY;
2764
2765 /* The default atime for remount is preservation */
2766 if ((flags & MS_REMOUNT) &&
2767 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2768 MS_STRICTATIME)) == 0)) {
2769 mnt_flags &= ~MNT_ATIME_MASK;
2770 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2771 }
2772
2773 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2774 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2775 MS_STRICTATIME | MS_NOREMOTELOCK);
2776
2777 if (flags & MS_REMOUNT)
2778 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2779 data_page);
2780 else if (flags & MS_BIND)
2781 retval = do_loopback(&path, dev_name, flags & MS_REC);
2782 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2783 retval = do_change_type(&path, flags);
2784 else if (flags & MS_MOVE)
2785 retval = do_move_mount(&path, dev_name);
2786 else
2787 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2788 dev_name, data_page);
2789 dput_out:
2790 path_put(&path);
2791 return retval;
2792 }
2793
2794 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2795 {
2796 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2797 }
2798
2799 static void dec_mnt_namespaces(struct ucounts *ucounts)
2800 {
2801 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2802 }
2803
2804 static void free_mnt_ns(struct mnt_namespace *ns)
2805 {
2806 ns_free_inum(&ns->ns);
2807 dec_mnt_namespaces(ns->ucounts);
2808 put_user_ns(ns->user_ns);
2809 kfree(ns);
2810 }
2811
2812 /*
2813 * Assign a sequence number so we can detect when we attempt to bind
2814 * mount a reference to an older mount namespace into the current
2815 * mount namespace, preventing reference counting loops. A 64bit
2816 * number incrementing at 10Ghz will take 12,427 years to wrap which
2817 * is effectively never, so we can ignore the possibility.
2818 */
2819 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2820
2821 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2822 {
2823 struct mnt_namespace *new_ns;
2824 struct ucounts *ucounts;
2825 int ret;
2826
2827 ucounts = inc_mnt_namespaces(user_ns);
2828 if (!ucounts)
2829 return ERR_PTR(-ENOSPC);
2830
2831 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2832 if (!new_ns) {
2833 dec_mnt_namespaces(ucounts);
2834 return ERR_PTR(-ENOMEM);
2835 }
2836 ret = ns_alloc_inum(&new_ns->ns);
2837 if (ret) {
2838 kfree(new_ns);
2839 dec_mnt_namespaces(ucounts);
2840 return ERR_PTR(ret);
2841 }
2842 new_ns->ns.ops = &mntns_operations;
2843 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2844 atomic_set(&new_ns->count, 1);
2845 new_ns->root = NULL;
2846 INIT_LIST_HEAD(&new_ns->list);
2847 init_waitqueue_head(&new_ns->poll);
2848 new_ns->event = 0;
2849 new_ns->user_ns = get_user_ns(user_ns);
2850 new_ns->ucounts = ucounts;
2851 new_ns->mounts = 0;
2852 new_ns->pending_mounts = 0;
2853 return new_ns;
2854 }
2855
2856 __latent_entropy
2857 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2858 struct user_namespace *user_ns, struct fs_struct *new_fs)
2859 {
2860 struct mnt_namespace *new_ns;
2861 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2862 struct mount *p, *q;
2863 struct mount *old;
2864 struct mount *new;
2865 int copy_flags;
2866
2867 BUG_ON(!ns);
2868
2869 if (likely(!(flags & CLONE_NEWNS))) {
2870 get_mnt_ns(ns);
2871 return ns;
2872 }
2873
2874 old = ns->root;
2875
2876 new_ns = alloc_mnt_ns(user_ns);
2877 if (IS_ERR(new_ns))
2878 return new_ns;
2879
2880 namespace_lock();
2881 /* First pass: copy the tree topology */
2882 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2883 if (user_ns != ns->user_ns)
2884 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2885 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2886 if (IS_ERR(new)) {
2887 namespace_unlock();
2888 free_mnt_ns(new_ns);
2889 return ERR_CAST(new);
2890 }
2891 new_ns->root = new;
2892 list_add_tail(&new_ns->list, &new->mnt_list);
2893
2894 /*
2895 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2896 * as belonging to new namespace. We have already acquired a private
2897 * fs_struct, so tsk->fs->lock is not needed.
2898 */
2899 p = old;
2900 q = new;
2901 while (p) {
2902 q->mnt_ns = new_ns;
2903 new_ns->mounts++;
2904 if (new_fs) {
2905 if (&p->mnt == new_fs->root.mnt) {
2906 new_fs->root.mnt = mntget(&q->mnt);
2907 rootmnt = &p->mnt;
2908 }
2909 if (&p->mnt == new_fs->pwd.mnt) {
2910 new_fs->pwd.mnt = mntget(&q->mnt);
2911 pwdmnt = &p->mnt;
2912 }
2913 }
2914 p = next_mnt(p, old);
2915 q = next_mnt(q, new);
2916 if (!q)
2917 break;
2918 while (p->mnt.mnt_root != q->mnt.mnt_root)
2919 p = next_mnt(p, old);
2920 }
2921 namespace_unlock();
2922
2923 if (rootmnt)
2924 mntput(rootmnt);
2925 if (pwdmnt)
2926 mntput(pwdmnt);
2927
2928 return new_ns;
2929 }
2930
2931 /**
2932 * create_mnt_ns - creates a private namespace and adds a root filesystem
2933 * @mnt: pointer to the new root filesystem mountpoint
2934 */
2935 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2936 {
2937 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2938 if (!IS_ERR(new_ns)) {
2939 struct mount *mnt = real_mount(m);
2940 mnt->mnt_ns = new_ns;
2941 new_ns->root = mnt;
2942 new_ns->mounts++;
2943 list_add(&mnt->mnt_list, &new_ns->list);
2944 } else {
2945 mntput(m);
2946 }
2947 return new_ns;
2948 }
2949
2950 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2951 {
2952 struct mnt_namespace *ns;
2953 struct super_block *s;
2954 struct path path;
2955 int err;
2956
2957 ns = create_mnt_ns(mnt);
2958 if (IS_ERR(ns))
2959 return ERR_CAST(ns);
2960
2961 err = vfs_path_lookup(mnt->mnt_root, mnt,
2962 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2963
2964 put_mnt_ns(ns);
2965
2966 if (err)
2967 return ERR_PTR(err);
2968
2969 /* trade a vfsmount reference for active sb one */
2970 s = path.mnt->mnt_sb;
2971 atomic_inc(&s->s_active);
2972 mntput(path.mnt);
2973 /* lock the sucker */
2974 down_write(&s->s_umount);
2975 /* ... and return the root of (sub)tree on it */
2976 return path.dentry;
2977 }
2978 EXPORT_SYMBOL(mount_subtree);
2979
2980 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2981 char __user *, type, unsigned long, flags, void __user *, data)
2982 {
2983 int ret;
2984 char *kernel_type;
2985 char *kernel_dev;
2986 void *options;
2987
2988 kernel_type = copy_mount_string(type);
2989 ret = PTR_ERR(kernel_type);
2990 if (IS_ERR(kernel_type))
2991 goto out_type;
2992
2993 kernel_dev = copy_mount_string(dev_name);
2994 ret = PTR_ERR(kernel_dev);
2995 if (IS_ERR(kernel_dev))
2996 goto out_dev;
2997
2998 options = copy_mount_options(data);
2999 ret = PTR_ERR(options);
3000 if (IS_ERR(options))
3001 goto out_data;
3002
3003 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3004
3005 kfree(options);
3006 out_data:
3007 kfree(kernel_dev);
3008 out_dev:
3009 kfree(kernel_type);
3010 out_type:
3011 return ret;
3012 }
3013
3014 /*
3015 * Return true if path is reachable from root
3016 *
3017 * namespace_sem or mount_lock is held
3018 */
3019 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3020 const struct path *root)
3021 {
3022 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3023 dentry = mnt->mnt_mountpoint;
3024 mnt = mnt->mnt_parent;
3025 }
3026 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3027 }
3028
3029 bool path_is_under(struct path *path1, struct path *path2)
3030 {
3031 bool res;
3032 read_seqlock_excl(&mount_lock);
3033 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3034 read_sequnlock_excl(&mount_lock);
3035 return res;
3036 }
3037 EXPORT_SYMBOL(path_is_under);
3038
3039 /*
3040 * pivot_root Semantics:
3041 * Moves the root file system of the current process to the directory put_old,
3042 * makes new_root as the new root file system of the current process, and sets
3043 * root/cwd of all processes which had them on the current root to new_root.
3044 *
3045 * Restrictions:
3046 * The new_root and put_old must be directories, and must not be on the
3047 * same file system as the current process root. The put_old must be
3048 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3049 * pointed to by put_old must yield the same directory as new_root. No other
3050 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3051 *
3052 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3053 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3054 * in this situation.
3055 *
3056 * Notes:
3057 * - we don't move root/cwd if they are not at the root (reason: if something
3058 * cared enough to change them, it's probably wrong to force them elsewhere)
3059 * - it's okay to pick a root that isn't the root of a file system, e.g.
3060 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3061 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3062 * first.
3063 */
3064 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3065 const char __user *, put_old)
3066 {
3067 struct path new, old, parent_path, root_parent, root;
3068 struct mount *new_mnt, *root_mnt, *old_mnt;
3069 struct mountpoint *old_mp, *root_mp;
3070 int error;
3071
3072 if (!may_mount())
3073 return -EPERM;
3074
3075 error = user_path_dir(new_root, &new);
3076 if (error)
3077 goto out0;
3078
3079 error = user_path_dir(put_old, &old);
3080 if (error)
3081 goto out1;
3082
3083 error = security_sb_pivotroot(&old, &new);
3084 if (error)
3085 goto out2;
3086
3087 get_fs_root(current->fs, &root);
3088 old_mp = lock_mount(&old);
3089 error = PTR_ERR(old_mp);
3090 if (IS_ERR(old_mp))
3091 goto out3;
3092
3093 error = -EINVAL;
3094 new_mnt = real_mount(new.mnt);
3095 root_mnt = real_mount(root.mnt);
3096 old_mnt = real_mount(old.mnt);
3097 if (IS_MNT_SHARED(old_mnt) ||
3098 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3099 IS_MNT_SHARED(root_mnt->mnt_parent))
3100 goto out4;
3101 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3102 goto out4;
3103 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3104 goto out4;
3105 error = -ENOENT;
3106 if (d_unlinked(new.dentry))
3107 goto out4;
3108 error = -EBUSY;
3109 if (new_mnt == root_mnt || old_mnt == root_mnt)
3110 goto out4; /* loop, on the same file system */
3111 error = -EINVAL;
3112 if (root.mnt->mnt_root != root.dentry)
3113 goto out4; /* not a mountpoint */
3114 if (!mnt_has_parent(root_mnt))
3115 goto out4; /* not attached */
3116 root_mp = root_mnt->mnt_mp;
3117 if (new.mnt->mnt_root != new.dentry)
3118 goto out4; /* not a mountpoint */
3119 if (!mnt_has_parent(new_mnt))
3120 goto out4; /* not attached */
3121 /* make sure we can reach put_old from new_root */
3122 if (!is_path_reachable(old_mnt, old.dentry, &new))
3123 goto out4;
3124 /* make certain new is below the root */
3125 if (!is_path_reachable(new_mnt, new.dentry, &root))
3126 goto out4;
3127 root_mp->m_count++; /* pin it so it won't go away */
3128 lock_mount_hash();
3129 detach_mnt(new_mnt, &parent_path);
3130 detach_mnt(root_mnt, &root_parent);
3131 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3132 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3133 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3134 }
3135 /* mount old root on put_old */
3136 attach_mnt(root_mnt, old_mnt, old_mp);
3137 /* mount new_root on / */
3138 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3139 touch_mnt_namespace(current->nsproxy->mnt_ns);
3140 /* A moved mount should not expire automatically */
3141 list_del_init(&new_mnt->mnt_expire);
3142 unlock_mount_hash();
3143 chroot_fs_refs(&root, &new);
3144 put_mountpoint(root_mp);
3145 error = 0;
3146 out4:
3147 unlock_mount(old_mp);
3148 if (!error) {
3149 path_put(&root_parent);
3150 path_put(&parent_path);
3151 }
3152 out3:
3153 path_put(&root);
3154 out2:
3155 path_put(&old);
3156 out1:
3157 path_put(&new);
3158 out0:
3159 return error;
3160 }
3161
3162 static void __init init_mount_tree(void)
3163 {
3164 struct vfsmount *mnt;
3165 struct mnt_namespace *ns;
3166 struct path root;
3167 struct file_system_type *type;
3168
3169 type = get_fs_type("rootfs");
3170 if (!type)
3171 panic("Can't find rootfs type");
3172 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3173 put_filesystem(type);
3174 if (IS_ERR(mnt))
3175 panic("Can't create rootfs");
3176
3177 ns = create_mnt_ns(mnt);
3178 if (IS_ERR(ns))
3179 panic("Can't allocate initial namespace");
3180
3181 init_task.nsproxy->mnt_ns = ns;
3182 get_mnt_ns(ns);
3183
3184 root.mnt = mnt;
3185 root.dentry = mnt->mnt_root;
3186 mnt->mnt_flags |= MNT_LOCKED;
3187
3188 set_fs_pwd(current->fs, &root);
3189 set_fs_root(current->fs, &root);
3190 }
3191
3192 void __init mnt_init(void)
3193 {
3194 unsigned u;
3195 int err;
3196
3197 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3198 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3199
3200 mount_hashtable = alloc_large_system_hash("Mount-cache",
3201 sizeof(struct hlist_head),
3202 mhash_entries, 19,
3203 0,
3204 &m_hash_shift, &m_hash_mask, 0, 0);
3205 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3206 sizeof(struct hlist_head),
3207 mphash_entries, 19,
3208 0,
3209 &mp_hash_shift, &mp_hash_mask, 0, 0);
3210
3211 if (!mount_hashtable || !mountpoint_hashtable)
3212 panic("Failed to allocate mount hash table\n");
3213
3214 for (u = 0; u <= m_hash_mask; u++)
3215 INIT_HLIST_HEAD(&mount_hashtable[u]);
3216 for (u = 0; u <= mp_hash_mask; u++)
3217 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3218
3219 kernfs_init();
3220
3221 err = sysfs_init();
3222 if (err)
3223 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3224 __func__, err);
3225 fs_kobj = kobject_create_and_add("fs", NULL);
3226 if (!fs_kobj)
3227 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3228 init_rootfs();
3229 init_mount_tree();
3230 }
3231
3232 void put_mnt_ns(struct mnt_namespace *ns)
3233 {
3234 if (!atomic_dec_and_test(&ns->count))
3235 return;
3236 drop_collected_mounts(&ns->root->mnt);
3237 free_mnt_ns(ns);
3238 }
3239
3240 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3241 {
3242 struct vfsmount *mnt;
3243 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3244 if (!IS_ERR(mnt)) {
3245 /*
3246 * it is a longterm mount, don't release mnt until
3247 * we unmount before file sys is unregistered
3248 */
3249 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3250 }
3251 return mnt;
3252 }
3253 EXPORT_SYMBOL_GPL(kern_mount_data);
3254
3255 void kern_unmount(struct vfsmount *mnt)
3256 {
3257 /* release long term mount so mount point can be released */
3258 if (!IS_ERR_OR_NULL(mnt)) {
3259 real_mount(mnt)->mnt_ns = NULL;
3260 synchronize_rcu(); /* yecchhh... */
3261 mntput(mnt);
3262 }
3263 }
3264 EXPORT_SYMBOL(kern_unmount);
3265
3266 bool our_mnt(struct vfsmount *mnt)
3267 {
3268 return check_mnt(real_mount(mnt));
3269 }
3270
3271 bool current_chrooted(void)
3272 {
3273 /* Does the current process have a non-standard root */
3274 struct path ns_root;
3275 struct path fs_root;
3276 bool chrooted;
3277
3278 /* Find the namespace root */
3279 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3280 ns_root.dentry = ns_root.mnt->mnt_root;
3281 path_get(&ns_root);
3282 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3283 ;
3284
3285 get_fs_root(current->fs, &fs_root);
3286
3287 chrooted = !path_equal(&fs_root, &ns_root);
3288
3289 path_put(&fs_root);
3290 path_put(&ns_root);
3291
3292 return chrooted;
3293 }
3294
3295 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3296 int *new_mnt_flags)
3297 {
3298 int new_flags = *new_mnt_flags;
3299 struct mount *mnt;
3300 bool visible = false;
3301
3302 down_read(&namespace_sem);
3303 list_for_each_entry(mnt, &ns->list, mnt_list) {
3304 struct mount *child;
3305 int mnt_flags;
3306
3307 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3308 continue;
3309
3310 /* This mount is not fully visible if it's root directory
3311 * is not the root directory of the filesystem.
3312 */
3313 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3314 continue;
3315
3316 /* A local view of the mount flags */
3317 mnt_flags = mnt->mnt.mnt_flags;
3318
3319 /* Don't miss readonly hidden in the superblock flags */
3320 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3321 mnt_flags |= MNT_LOCK_READONLY;
3322
3323 /* Verify the mount flags are equal to or more permissive
3324 * than the proposed new mount.
3325 */
3326 if ((mnt_flags & MNT_LOCK_READONLY) &&
3327 !(new_flags & MNT_READONLY))
3328 continue;
3329 if ((mnt_flags & MNT_LOCK_ATIME) &&
3330 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3331 continue;
3332
3333 /* This mount is not fully visible if there are any
3334 * locked child mounts that cover anything except for
3335 * empty directories.
3336 */
3337 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3338 struct inode *inode = child->mnt_mountpoint->d_inode;
3339 /* Only worry about locked mounts */
3340 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3341 continue;
3342 /* Is the directory permanetly empty? */
3343 if (!is_empty_dir_inode(inode))
3344 goto next;
3345 }
3346 /* Preserve the locked attributes */
3347 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3348 MNT_LOCK_ATIME);
3349 visible = true;
3350 goto found;
3351 next: ;
3352 }
3353 found:
3354 up_read(&namespace_sem);
3355 return visible;
3356 }
3357
3358 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3359 {
3360 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3361 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3362 unsigned long s_iflags;
3363
3364 if (ns->user_ns == &init_user_ns)
3365 return false;
3366
3367 /* Can this filesystem be too revealing? */
3368 s_iflags = mnt->mnt_sb->s_iflags;
3369 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3370 return false;
3371
3372 if ((s_iflags & required_iflags) != required_iflags) {
3373 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3374 required_iflags);
3375 return true;
3376 }
3377
3378 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3379 }
3380
3381 bool mnt_may_suid(struct vfsmount *mnt)
3382 {
3383 /*
3384 * Foreign mounts (accessed via fchdir or through /proc
3385 * symlinks) are always treated as if they are nosuid. This
3386 * prevents namespaces from trusting potentially unsafe
3387 * suid/sgid bits, file caps, or security labels that originate
3388 * in other namespaces.
3389 */
3390 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3391 current_in_userns(mnt->mnt_sb->s_user_ns);
3392 }
3393
3394 static struct ns_common *mntns_get(struct task_struct *task)
3395 {
3396 struct ns_common *ns = NULL;
3397 struct nsproxy *nsproxy;
3398
3399 task_lock(task);
3400 nsproxy = task->nsproxy;
3401 if (nsproxy) {
3402 ns = &nsproxy->mnt_ns->ns;
3403 get_mnt_ns(to_mnt_ns(ns));
3404 }
3405 task_unlock(task);
3406
3407 return ns;
3408 }
3409
3410 static void mntns_put(struct ns_common *ns)
3411 {
3412 put_mnt_ns(to_mnt_ns(ns));
3413 }
3414
3415 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3416 {
3417 struct fs_struct *fs = current->fs;
3418 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3419 struct path root;
3420
3421 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3422 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3423 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3424 return -EPERM;
3425
3426 if (fs->users != 1)
3427 return -EINVAL;
3428
3429 get_mnt_ns(mnt_ns);
3430 put_mnt_ns(nsproxy->mnt_ns);
3431 nsproxy->mnt_ns = mnt_ns;
3432
3433 /* Find the root */
3434 root.mnt = &mnt_ns->root->mnt;
3435 root.dentry = mnt_ns->root->mnt.mnt_root;
3436 path_get(&root);
3437 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3438 ;
3439
3440 /* Update the pwd and root */
3441 set_fs_pwd(fs, &root);
3442 set_fs_root(fs, &root);
3443
3444 path_put(&root);
3445 return 0;
3446 }
3447
3448 static struct user_namespace *mntns_owner(struct ns_common *ns)
3449 {
3450 return to_mnt_ns(ns)->user_ns;
3451 }
3452
3453 const struct proc_ns_operations mntns_operations = {
3454 .name = "mnt",
3455 .type = CLONE_NEWNS,
3456 .get = mntns_get,
3457 .put = mntns_put,
3458 .install = mntns_install,
3459 .owner = mntns_owner,
3460 };