]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/namespace.c
vfs: mnt_drop_write_file()
[mirror_ubuntu-hirsute-kernel.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/percpu.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/cpumask.h>
21 #include <linux/module.h>
22 #include <linux/sysfs.h>
23 #include <linux/seq_file.h>
24 #include <linux/mnt_namespace.h>
25 #include <linux/namei.h>
26 #include <linux/nsproxy.h>
27 #include <linux/security.h>
28 #include <linux/mount.h>
29 #include <linux/ramfs.h>
30 #include <linux/log2.h>
31 #include <linux/idr.h>
32 #include <linux/fs_struct.h>
33 #include <linux/fsnotify.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include "pnode.h"
37 #include "internal.h"
38
39 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40 #define HASH_SIZE (1UL << HASH_SHIFT)
41
42 static int event;
43 static DEFINE_IDA(mnt_id_ida);
44 static DEFINE_IDA(mnt_group_ida);
45 static DEFINE_SPINLOCK(mnt_id_lock);
46 static int mnt_id_start = 0;
47 static int mnt_group_start = 1;
48
49 static struct list_head *mount_hashtable __read_mostly;
50 static struct kmem_cache *mnt_cache __read_mostly;
51 static struct rw_semaphore namespace_sem;
52
53 /* /sys/fs */
54 struct kobject *fs_kobj;
55 EXPORT_SYMBOL_GPL(fs_kobj);
56
57 /*
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
61 *
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
64 */
65 DEFINE_BRLOCK(vfsmount_lock);
66
67 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68 {
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
73 }
74
75 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76
77 /*
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
80 */
81 static int mnt_alloc_id(struct vfsmount *mnt)
82 {
83 int res;
84
85 retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
87 spin_lock(&mnt_id_lock);
88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
89 if (!res)
90 mnt_id_start = mnt->mnt_id + 1;
91 spin_unlock(&mnt_id_lock);
92 if (res == -EAGAIN)
93 goto retry;
94
95 return res;
96 }
97
98 static void mnt_free_id(struct vfsmount *mnt)
99 {
100 int id = mnt->mnt_id;
101 spin_lock(&mnt_id_lock);
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
105 spin_unlock(&mnt_id_lock);
106 }
107
108 /*
109 * Allocate a new peer group ID
110 *
111 * mnt_group_ida is protected by namespace_sem
112 */
113 static int mnt_alloc_group_id(struct vfsmount *mnt)
114 {
115 int res;
116
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
119
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
122 &mnt->mnt_group_id);
123 if (!res)
124 mnt_group_start = mnt->mnt_group_id + 1;
125
126 return res;
127 }
128
129 /*
130 * Release a peer group ID
131 */
132 void mnt_release_group_id(struct vfsmount *mnt)
133 {
134 int id = mnt->mnt_group_id;
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
138 mnt->mnt_group_id = 0;
139 }
140
141 /*
142 * vfsmount lock must be held for read
143 */
144 static inline void mnt_add_count(struct vfsmount *mnt, int n)
145 {
146 #ifdef CONFIG_SMP
147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
148 #else
149 preempt_disable();
150 mnt->mnt_count += n;
151 preempt_enable();
152 #endif
153 }
154
155 /*
156 * vfsmount lock must be held for write
157 */
158 unsigned int mnt_get_count(struct vfsmount *mnt)
159 {
160 #ifdef CONFIG_SMP
161 unsigned int count = 0;
162 int cpu;
163
164 for_each_possible_cpu(cpu) {
165 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
166 }
167
168 return count;
169 #else
170 return mnt->mnt_count;
171 #endif
172 }
173
174 static struct vfsmount *alloc_vfsmnt(const char *name)
175 {
176 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
177 if (mnt) {
178 int err;
179
180 err = mnt_alloc_id(mnt);
181 if (err)
182 goto out_free_cache;
183
184 if (name) {
185 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
186 if (!mnt->mnt_devname)
187 goto out_free_id;
188 }
189
190 #ifdef CONFIG_SMP
191 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
192 if (!mnt->mnt_pcp)
193 goto out_free_devname;
194
195 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
196 #else
197 mnt->mnt_count = 1;
198 mnt->mnt_writers = 0;
199 #endif
200
201 INIT_LIST_HEAD(&mnt->mnt_hash);
202 INIT_LIST_HEAD(&mnt->mnt_child);
203 INIT_LIST_HEAD(&mnt->mnt_mounts);
204 INIT_LIST_HEAD(&mnt->mnt_list);
205 INIT_LIST_HEAD(&mnt->mnt_expire);
206 INIT_LIST_HEAD(&mnt->mnt_share);
207 INIT_LIST_HEAD(&mnt->mnt_slave_list);
208 INIT_LIST_HEAD(&mnt->mnt_slave);
209 #ifdef CONFIG_FSNOTIFY
210 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
211 #endif
212 }
213 return mnt;
214
215 #ifdef CONFIG_SMP
216 out_free_devname:
217 kfree(mnt->mnt_devname);
218 #endif
219 out_free_id:
220 mnt_free_id(mnt);
221 out_free_cache:
222 kmem_cache_free(mnt_cache, mnt);
223 return NULL;
224 }
225
226 /*
227 * Most r/o checks on a fs are for operations that take
228 * discrete amounts of time, like a write() or unlink().
229 * We must keep track of when those operations start
230 * (for permission checks) and when they end, so that
231 * we can determine when writes are able to occur to
232 * a filesystem.
233 */
234 /*
235 * __mnt_is_readonly: check whether a mount is read-only
236 * @mnt: the mount to check for its write status
237 *
238 * This shouldn't be used directly ouside of the VFS.
239 * It does not guarantee that the filesystem will stay
240 * r/w, just that it is right *now*. This can not and
241 * should not be used in place of IS_RDONLY(inode).
242 * mnt_want/drop_write() will _keep_ the filesystem
243 * r/w.
244 */
245 int __mnt_is_readonly(struct vfsmount *mnt)
246 {
247 if (mnt->mnt_flags & MNT_READONLY)
248 return 1;
249 if (mnt->mnt_sb->s_flags & MS_RDONLY)
250 return 1;
251 return 0;
252 }
253 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
254
255 static inline void mnt_inc_writers(struct vfsmount *mnt)
256 {
257 #ifdef CONFIG_SMP
258 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
259 #else
260 mnt->mnt_writers++;
261 #endif
262 }
263
264 static inline void mnt_dec_writers(struct vfsmount *mnt)
265 {
266 #ifdef CONFIG_SMP
267 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
268 #else
269 mnt->mnt_writers--;
270 #endif
271 }
272
273 static unsigned int mnt_get_writers(struct vfsmount *mnt)
274 {
275 #ifdef CONFIG_SMP
276 unsigned int count = 0;
277 int cpu;
278
279 for_each_possible_cpu(cpu) {
280 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
281 }
282
283 return count;
284 #else
285 return mnt->mnt_writers;
286 #endif
287 }
288
289 /*
290 * Most r/o checks on a fs are for operations that take
291 * discrete amounts of time, like a write() or unlink().
292 * We must keep track of when those operations start
293 * (for permission checks) and when they end, so that
294 * we can determine when writes are able to occur to
295 * a filesystem.
296 */
297 /**
298 * mnt_want_write - get write access to a mount
299 * @mnt: the mount on which to take a write
300 *
301 * This tells the low-level filesystem that a write is
302 * about to be performed to it, and makes sure that
303 * writes are allowed before returning success. When
304 * the write operation is finished, mnt_drop_write()
305 * must be called. This is effectively a refcount.
306 */
307 int mnt_want_write(struct vfsmount *mnt)
308 {
309 int ret = 0;
310
311 preempt_disable();
312 mnt_inc_writers(mnt);
313 /*
314 * The store to mnt_inc_writers must be visible before we pass
315 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
316 * incremented count after it has set MNT_WRITE_HOLD.
317 */
318 smp_mb();
319 while (mnt->mnt_flags & MNT_WRITE_HOLD)
320 cpu_relax();
321 /*
322 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
323 * be set to match its requirements. So we must not load that until
324 * MNT_WRITE_HOLD is cleared.
325 */
326 smp_rmb();
327 if (__mnt_is_readonly(mnt)) {
328 mnt_dec_writers(mnt);
329 ret = -EROFS;
330 goto out;
331 }
332 out:
333 preempt_enable();
334 return ret;
335 }
336 EXPORT_SYMBOL_GPL(mnt_want_write);
337
338 /**
339 * mnt_clone_write - get write access to a mount
340 * @mnt: the mount on which to take a write
341 *
342 * This is effectively like mnt_want_write, except
343 * it must only be used to take an extra write reference
344 * on a mountpoint that we already know has a write reference
345 * on it. This allows some optimisation.
346 *
347 * After finished, mnt_drop_write must be called as usual to
348 * drop the reference.
349 */
350 int mnt_clone_write(struct vfsmount *mnt)
351 {
352 /* superblock may be r/o */
353 if (__mnt_is_readonly(mnt))
354 return -EROFS;
355 preempt_disable();
356 mnt_inc_writers(mnt);
357 preempt_enable();
358 return 0;
359 }
360 EXPORT_SYMBOL_GPL(mnt_clone_write);
361
362 /**
363 * mnt_want_write_file - get write access to a file's mount
364 * @file: the file who's mount on which to take a write
365 *
366 * This is like mnt_want_write, but it takes a file and can
367 * do some optimisations if the file is open for write already
368 */
369 int mnt_want_write_file(struct file *file)
370 {
371 struct inode *inode = file->f_dentry->d_inode;
372 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
373 return mnt_want_write(file->f_path.mnt);
374 else
375 return mnt_clone_write(file->f_path.mnt);
376 }
377 EXPORT_SYMBOL_GPL(mnt_want_write_file);
378
379 /**
380 * mnt_drop_write - give up write access to a mount
381 * @mnt: the mount on which to give up write access
382 *
383 * Tells the low-level filesystem that we are done
384 * performing writes to it. Must be matched with
385 * mnt_want_write() call above.
386 */
387 void mnt_drop_write(struct vfsmount *mnt)
388 {
389 preempt_disable();
390 mnt_dec_writers(mnt);
391 preempt_enable();
392 }
393 EXPORT_SYMBOL_GPL(mnt_drop_write);
394
395 void mnt_drop_write_file(struct file *file)
396 {
397 mnt_drop_write(file->f_path.mnt);
398 }
399 EXPORT_SYMBOL(mnt_drop_write_file);
400
401 static int mnt_make_readonly(struct vfsmount *mnt)
402 {
403 int ret = 0;
404
405 br_write_lock(vfsmount_lock);
406 mnt->mnt_flags |= MNT_WRITE_HOLD;
407 /*
408 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
409 * should be visible before we do.
410 */
411 smp_mb();
412
413 /*
414 * With writers on hold, if this value is zero, then there are
415 * definitely no active writers (although held writers may subsequently
416 * increment the count, they'll have to wait, and decrement it after
417 * seeing MNT_READONLY).
418 *
419 * It is OK to have counter incremented on one CPU and decremented on
420 * another: the sum will add up correctly. The danger would be when we
421 * sum up each counter, if we read a counter before it is incremented,
422 * but then read another CPU's count which it has been subsequently
423 * decremented from -- we would see more decrements than we should.
424 * MNT_WRITE_HOLD protects against this scenario, because
425 * mnt_want_write first increments count, then smp_mb, then spins on
426 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
427 * we're counting up here.
428 */
429 if (mnt_get_writers(mnt) > 0)
430 ret = -EBUSY;
431 else
432 mnt->mnt_flags |= MNT_READONLY;
433 /*
434 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
435 * that become unheld will see MNT_READONLY.
436 */
437 smp_wmb();
438 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
439 br_write_unlock(vfsmount_lock);
440 return ret;
441 }
442
443 static void __mnt_unmake_readonly(struct vfsmount *mnt)
444 {
445 br_write_lock(vfsmount_lock);
446 mnt->mnt_flags &= ~MNT_READONLY;
447 br_write_unlock(vfsmount_lock);
448 }
449
450 static void free_vfsmnt(struct vfsmount *mnt)
451 {
452 kfree(mnt->mnt_devname);
453 mnt_free_id(mnt);
454 #ifdef CONFIG_SMP
455 free_percpu(mnt->mnt_pcp);
456 #endif
457 kmem_cache_free(mnt_cache, mnt);
458 }
459
460 /*
461 * find the first or last mount at @dentry on vfsmount @mnt depending on
462 * @dir. If @dir is set return the first mount else return the last mount.
463 * vfsmount_lock must be held for read or write.
464 */
465 struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
466 int dir)
467 {
468 struct list_head *head = mount_hashtable + hash(mnt, dentry);
469 struct list_head *tmp = head;
470 struct vfsmount *p, *found = NULL;
471
472 for (;;) {
473 tmp = dir ? tmp->next : tmp->prev;
474 p = NULL;
475 if (tmp == head)
476 break;
477 p = list_entry(tmp, struct vfsmount, mnt_hash);
478 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
479 found = p;
480 break;
481 }
482 }
483 return found;
484 }
485
486 /*
487 * lookup_mnt increments the ref count before returning
488 * the vfsmount struct.
489 */
490 struct vfsmount *lookup_mnt(struct path *path)
491 {
492 struct vfsmount *child_mnt;
493
494 br_read_lock(vfsmount_lock);
495 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
496 mntget(child_mnt);
497 br_read_unlock(vfsmount_lock);
498 return child_mnt;
499 }
500
501 static inline int check_mnt(struct vfsmount *mnt)
502 {
503 return mnt->mnt_ns == current->nsproxy->mnt_ns;
504 }
505
506 /*
507 * vfsmount lock must be held for write
508 */
509 static void touch_mnt_namespace(struct mnt_namespace *ns)
510 {
511 if (ns) {
512 ns->event = ++event;
513 wake_up_interruptible(&ns->poll);
514 }
515 }
516
517 /*
518 * vfsmount lock must be held for write
519 */
520 static void __touch_mnt_namespace(struct mnt_namespace *ns)
521 {
522 if (ns && ns->event != event) {
523 ns->event = event;
524 wake_up_interruptible(&ns->poll);
525 }
526 }
527
528 /*
529 * Clear dentry's mounted state if it has no remaining mounts.
530 * vfsmount_lock must be held for write.
531 */
532 static void dentry_reset_mounted(struct dentry *dentry)
533 {
534 unsigned u;
535
536 for (u = 0; u < HASH_SIZE; u++) {
537 struct vfsmount *p;
538
539 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
540 if (p->mnt_mountpoint == dentry)
541 return;
542 }
543 }
544 spin_lock(&dentry->d_lock);
545 dentry->d_flags &= ~DCACHE_MOUNTED;
546 spin_unlock(&dentry->d_lock);
547 }
548
549 /*
550 * vfsmount lock must be held for write
551 */
552 static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
553 {
554 old_path->dentry = mnt->mnt_mountpoint;
555 old_path->mnt = mnt->mnt_parent;
556 mnt->mnt_parent = mnt;
557 mnt->mnt_mountpoint = mnt->mnt_root;
558 list_del_init(&mnt->mnt_child);
559 list_del_init(&mnt->mnt_hash);
560 dentry_reset_mounted(old_path->dentry);
561 }
562
563 /*
564 * vfsmount lock must be held for write
565 */
566 void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
567 struct vfsmount *child_mnt)
568 {
569 child_mnt->mnt_parent = mntget(mnt);
570 child_mnt->mnt_mountpoint = dget(dentry);
571 spin_lock(&dentry->d_lock);
572 dentry->d_flags |= DCACHE_MOUNTED;
573 spin_unlock(&dentry->d_lock);
574 }
575
576 /*
577 * vfsmount lock must be held for write
578 */
579 static void attach_mnt(struct vfsmount *mnt, struct path *path)
580 {
581 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
582 list_add_tail(&mnt->mnt_hash, mount_hashtable +
583 hash(path->mnt, path->dentry));
584 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
585 }
586
587 static inline void __mnt_make_longterm(struct vfsmount *mnt)
588 {
589 #ifdef CONFIG_SMP
590 atomic_inc(&mnt->mnt_longterm);
591 #endif
592 }
593
594 /* needs vfsmount lock for write */
595 static inline void __mnt_make_shortterm(struct vfsmount *mnt)
596 {
597 #ifdef CONFIG_SMP
598 atomic_dec(&mnt->mnt_longterm);
599 #endif
600 }
601
602 /*
603 * vfsmount lock must be held for write
604 */
605 static void commit_tree(struct vfsmount *mnt)
606 {
607 struct vfsmount *parent = mnt->mnt_parent;
608 struct vfsmount *m;
609 LIST_HEAD(head);
610 struct mnt_namespace *n = parent->mnt_ns;
611
612 BUG_ON(parent == mnt);
613
614 list_add_tail(&head, &mnt->mnt_list);
615 list_for_each_entry(m, &head, mnt_list) {
616 m->mnt_ns = n;
617 __mnt_make_longterm(m);
618 }
619
620 list_splice(&head, n->list.prev);
621
622 list_add_tail(&mnt->mnt_hash, mount_hashtable +
623 hash(parent, mnt->mnt_mountpoint));
624 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
625 touch_mnt_namespace(n);
626 }
627
628 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
629 {
630 struct list_head *next = p->mnt_mounts.next;
631 if (next == &p->mnt_mounts) {
632 while (1) {
633 if (p == root)
634 return NULL;
635 next = p->mnt_child.next;
636 if (next != &p->mnt_parent->mnt_mounts)
637 break;
638 p = p->mnt_parent;
639 }
640 }
641 return list_entry(next, struct vfsmount, mnt_child);
642 }
643
644 static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
645 {
646 struct list_head *prev = p->mnt_mounts.prev;
647 while (prev != &p->mnt_mounts) {
648 p = list_entry(prev, struct vfsmount, mnt_child);
649 prev = p->mnt_mounts.prev;
650 }
651 return p;
652 }
653
654 struct vfsmount *
655 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
656 {
657 struct vfsmount *mnt;
658 struct dentry *root;
659
660 if (!type)
661 return ERR_PTR(-ENODEV);
662
663 mnt = alloc_vfsmnt(name);
664 if (!mnt)
665 return ERR_PTR(-ENOMEM);
666
667 if (flags & MS_KERNMOUNT)
668 mnt->mnt_flags = MNT_INTERNAL;
669
670 root = mount_fs(type, flags, name, data);
671 if (IS_ERR(root)) {
672 free_vfsmnt(mnt);
673 return ERR_CAST(root);
674 }
675
676 mnt->mnt_root = root;
677 mnt->mnt_sb = root->d_sb;
678 mnt->mnt_mountpoint = mnt->mnt_root;
679 mnt->mnt_parent = mnt;
680 return mnt;
681 }
682 EXPORT_SYMBOL_GPL(vfs_kern_mount);
683
684 static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
685 int flag)
686 {
687 struct super_block *sb = old->mnt_sb;
688 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
689
690 if (mnt) {
691 if (flag & (CL_SLAVE | CL_PRIVATE))
692 mnt->mnt_group_id = 0; /* not a peer of original */
693 else
694 mnt->mnt_group_id = old->mnt_group_id;
695
696 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
697 int err = mnt_alloc_group_id(mnt);
698 if (err)
699 goto out_free;
700 }
701
702 mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
703 atomic_inc(&sb->s_active);
704 mnt->mnt_sb = sb;
705 mnt->mnt_root = dget(root);
706 mnt->mnt_mountpoint = mnt->mnt_root;
707 mnt->mnt_parent = mnt;
708
709 if (flag & CL_SLAVE) {
710 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
711 mnt->mnt_master = old;
712 CLEAR_MNT_SHARED(mnt);
713 } else if (!(flag & CL_PRIVATE)) {
714 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
715 list_add(&mnt->mnt_share, &old->mnt_share);
716 if (IS_MNT_SLAVE(old))
717 list_add(&mnt->mnt_slave, &old->mnt_slave);
718 mnt->mnt_master = old->mnt_master;
719 }
720 if (flag & CL_MAKE_SHARED)
721 set_mnt_shared(mnt);
722
723 /* stick the duplicate mount on the same expiry list
724 * as the original if that was on one */
725 if (flag & CL_EXPIRE) {
726 if (!list_empty(&old->mnt_expire))
727 list_add(&mnt->mnt_expire, &old->mnt_expire);
728 }
729 }
730 return mnt;
731
732 out_free:
733 free_vfsmnt(mnt);
734 return NULL;
735 }
736
737 static inline void mntfree(struct vfsmount *mnt)
738 {
739 struct super_block *sb = mnt->mnt_sb;
740
741 /*
742 * This probably indicates that somebody messed
743 * up a mnt_want/drop_write() pair. If this
744 * happens, the filesystem was probably unable
745 * to make r/w->r/o transitions.
746 */
747 /*
748 * The locking used to deal with mnt_count decrement provides barriers,
749 * so mnt_get_writers() below is safe.
750 */
751 WARN_ON(mnt_get_writers(mnt));
752 fsnotify_vfsmount_delete(mnt);
753 dput(mnt->mnt_root);
754 free_vfsmnt(mnt);
755 deactivate_super(sb);
756 }
757
758 static void mntput_no_expire(struct vfsmount *mnt)
759 {
760 put_again:
761 #ifdef CONFIG_SMP
762 br_read_lock(vfsmount_lock);
763 if (likely(atomic_read(&mnt->mnt_longterm))) {
764 mnt_add_count(mnt, -1);
765 br_read_unlock(vfsmount_lock);
766 return;
767 }
768 br_read_unlock(vfsmount_lock);
769
770 br_write_lock(vfsmount_lock);
771 mnt_add_count(mnt, -1);
772 if (mnt_get_count(mnt)) {
773 br_write_unlock(vfsmount_lock);
774 return;
775 }
776 #else
777 mnt_add_count(mnt, -1);
778 if (likely(mnt_get_count(mnt)))
779 return;
780 br_write_lock(vfsmount_lock);
781 #endif
782 if (unlikely(mnt->mnt_pinned)) {
783 mnt_add_count(mnt, mnt->mnt_pinned + 1);
784 mnt->mnt_pinned = 0;
785 br_write_unlock(vfsmount_lock);
786 acct_auto_close_mnt(mnt);
787 goto put_again;
788 }
789 br_write_unlock(vfsmount_lock);
790 mntfree(mnt);
791 }
792
793 void mntput(struct vfsmount *mnt)
794 {
795 if (mnt) {
796 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
797 if (unlikely(mnt->mnt_expiry_mark))
798 mnt->mnt_expiry_mark = 0;
799 mntput_no_expire(mnt);
800 }
801 }
802 EXPORT_SYMBOL(mntput);
803
804 struct vfsmount *mntget(struct vfsmount *mnt)
805 {
806 if (mnt)
807 mnt_add_count(mnt, 1);
808 return mnt;
809 }
810 EXPORT_SYMBOL(mntget);
811
812 void mnt_pin(struct vfsmount *mnt)
813 {
814 br_write_lock(vfsmount_lock);
815 mnt->mnt_pinned++;
816 br_write_unlock(vfsmount_lock);
817 }
818 EXPORT_SYMBOL(mnt_pin);
819
820 void mnt_unpin(struct vfsmount *mnt)
821 {
822 br_write_lock(vfsmount_lock);
823 if (mnt->mnt_pinned) {
824 mnt_add_count(mnt, 1);
825 mnt->mnt_pinned--;
826 }
827 br_write_unlock(vfsmount_lock);
828 }
829 EXPORT_SYMBOL(mnt_unpin);
830
831 static inline void mangle(struct seq_file *m, const char *s)
832 {
833 seq_escape(m, s, " \t\n\\");
834 }
835
836 /*
837 * Simple .show_options callback for filesystems which don't want to
838 * implement more complex mount option showing.
839 *
840 * See also save_mount_options().
841 */
842 int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
843 {
844 const char *options;
845
846 rcu_read_lock();
847 options = rcu_dereference(mnt->mnt_sb->s_options);
848
849 if (options != NULL && options[0]) {
850 seq_putc(m, ',');
851 mangle(m, options);
852 }
853 rcu_read_unlock();
854
855 return 0;
856 }
857 EXPORT_SYMBOL(generic_show_options);
858
859 /*
860 * If filesystem uses generic_show_options(), this function should be
861 * called from the fill_super() callback.
862 *
863 * The .remount_fs callback usually needs to be handled in a special
864 * way, to make sure, that previous options are not overwritten if the
865 * remount fails.
866 *
867 * Also note, that if the filesystem's .remount_fs function doesn't
868 * reset all options to their default value, but changes only newly
869 * given options, then the displayed options will not reflect reality
870 * any more.
871 */
872 void save_mount_options(struct super_block *sb, char *options)
873 {
874 BUG_ON(sb->s_options);
875 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
876 }
877 EXPORT_SYMBOL(save_mount_options);
878
879 void replace_mount_options(struct super_block *sb, char *options)
880 {
881 char *old = sb->s_options;
882 rcu_assign_pointer(sb->s_options, options);
883 if (old) {
884 synchronize_rcu();
885 kfree(old);
886 }
887 }
888 EXPORT_SYMBOL(replace_mount_options);
889
890 #ifdef CONFIG_PROC_FS
891 /* iterator */
892 static void *m_start(struct seq_file *m, loff_t *pos)
893 {
894 struct proc_mounts *p = m->private;
895
896 down_read(&namespace_sem);
897 return seq_list_start(&p->ns->list, *pos);
898 }
899
900 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
901 {
902 struct proc_mounts *p = m->private;
903
904 return seq_list_next(v, &p->ns->list, pos);
905 }
906
907 static void m_stop(struct seq_file *m, void *v)
908 {
909 up_read(&namespace_sem);
910 }
911
912 int mnt_had_events(struct proc_mounts *p)
913 {
914 struct mnt_namespace *ns = p->ns;
915 int res = 0;
916
917 br_read_lock(vfsmount_lock);
918 if (p->m.poll_event != ns->event) {
919 p->m.poll_event = ns->event;
920 res = 1;
921 }
922 br_read_unlock(vfsmount_lock);
923
924 return res;
925 }
926
927 struct proc_fs_info {
928 int flag;
929 const char *str;
930 };
931
932 static int show_sb_opts(struct seq_file *m, struct super_block *sb)
933 {
934 static const struct proc_fs_info fs_info[] = {
935 { MS_SYNCHRONOUS, ",sync" },
936 { MS_DIRSYNC, ",dirsync" },
937 { MS_MANDLOCK, ",mand" },
938 { 0, NULL }
939 };
940 const struct proc_fs_info *fs_infop;
941
942 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
943 if (sb->s_flags & fs_infop->flag)
944 seq_puts(m, fs_infop->str);
945 }
946
947 return security_sb_show_options(m, sb);
948 }
949
950 static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
951 {
952 static const struct proc_fs_info mnt_info[] = {
953 { MNT_NOSUID, ",nosuid" },
954 { MNT_NODEV, ",nodev" },
955 { MNT_NOEXEC, ",noexec" },
956 { MNT_NOATIME, ",noatime" },
957 { MNT_NODIRATIME, ",nodiratime" },
958 { MNT_RELATIME, ",relatime" },
959 { 0, NULL }
960 };
961 const struct proc_fs_info *fs_infop;
962
963 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
964 if (mnt->mnt_flags & fs_infop->flag)
965 seq_puts(m, fs_infop->str);
966 }
967 }
968
969 static void show_type(struct seq_file *m, struct super_block *sb)
970 {
971 mangle(m, sb->s_type->name);
972 if (sb->s_subtype && sb->s_subtype[0]) {
973 seq_putc(m, '.');
974 mangle(m, sb->s_subtype);
975 }
976 }
977
978 static int show_vfsmnt(struct seq_file *m, void *v)
979 {
980 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
981 int err = 0;
982 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
983
984 if (mnt->mnt_sb->s_op->show_devname) {
985 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
986 if (err)
987 goto out;
988 } else {
989 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
990 }
991 seq_putc(m, ' ');
992 seq_path(m, &mnt_path, " \t\n\\");
993 seq_putc(m, ' ');
994 show_type(m, mnt->mnt_sb);
995 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
996 err = show_sb_opts(m, mnt->mnt_sb);
997 if (err)
998 goto out;
999 show_mnt_opts(m, mnt);
1000 if (mnt->mnt_sb->s_op->show_options)
1001 err = mnt->mnt_sb->s_op->show_options(m, mnt);
1002 seq_puts(m, " 0 0\n");
1003 out:
1004 return err;
1005 }
1006
1007 const struct seq_operations mounts_op = {
1008 .start = m_start,
1009 .next = m_next,
1010 .stop = m_stop,
1011 .show = show_vfsmnt
1012 };
1013
1014 static int show_mountinfo(struct seq_file *m, void *v)
1015 {
1016 struct proc_mounts *p = m->private;
1017 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1018 struct super_block *sb = mnt->mnt_sb;
1019 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1020 struct path root = p->root;
1021 int err = 0;
1022
1023 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
1024 MAJOR(sb->s_dev), MINOR(sb->s_dev));
1025 if (sb->s_op->show_path)
1026 err = sb->s_op->show_path(m, mnt);
1027 else
1028 seq_dentry(m, mnt->mnt_root, " \t\n\\");
1029 if (err)
1030 goto out;
1031 seq_putc(m, ' ');
1032
1033 /* mountpoints outside of chroot jail will give SEQ_SKIP on this */
1034 err = seq_path_root(m, &mnt_path, &root, " \t\n\\");
1035 if (err)
1036 goto out;
1037
1038 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1039 show_mnt_opts(m, mnt);
1040
1041 /* Tagged fields ("foo:X" or "bar") */
1042 if (IS_MNT_SHARED(mnt))
1043 seq_printf(m, " shared:%i", mnt->mnt_group_id);
1044 if (IS_MNT_SLAVE(mnt)) {
1045 int master = mnt->mnt_master->mnt_group_id;
1046 int dom = get_dominating_id(mnt, &p->root);
1047 seq_printf(m, " master:%i", master);
1048 if (dom && dom != master)
1049 seq_printf(m, " propagate_from:%i", dom);
1050 }
1051 if (IS_MNT_UNBINDABLE(mnt))
1052 seq_puts(m, " unbindable");
1053
1054 /* Filesystem specific data */
1055 seq_puts(m, " - ");
1056 show_type(m, sb);
1057 seq_putc(m, ' ');
1058 if (sb->s_op->show_devname)
1059 err = sb->s_op->show_devname(m, mnt);
1060 else
1061 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1062 if (err)
1063 goto out;
1064 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
1065 err = show_sb_opts(m, sb);
1066 if (err)
1067 goto out;
1068 if (sb->s_op->show_options)
1069 err = sb->s_op->show_options(m, mnt);
1070 seq_putc(m, '\n');
1071 out:
1072 return err;
1073 }
1074
1075 const struct seq_operations mountinfo_op = {
1076 .start = m_start,
1077 .next = m_next,
1078 .stop = m_stop,
1079 .show = show_mountinfo,
1080 };
1081
1082 static int show_vfsstat(struct seq_file *m, void *v)
1083 {
1084 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1085 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1086 int err = 0;
1087
1088 /* device */
1089 if (mnt->mnt_sb->s_op->show_devname) {
1090 seq_puts(m, "device ");
1091 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
1092 } else {
1093 if (mnt->mnt_devname) {
1094 seq_puts(m, "device ");
1095 mangle(m, mnt->mnt_devname);
1096 } else
1097 seq_puts(m, "no device");
1098 }
1099
1100 /* mount point */
1101 seq_puts(m, " mounted on ");
1102 seq_path(m, &mnt_path, " \t\n\\");
1103 seq_putc(m, ' ');
1104
1105 /* file system type */
1106 seq_puts(m, "with fstype ");
1107 show_type(m, mnt->mnt_sb);
1108
1109 /* optional statistics */
1110 if (mnt->mnt_sb->s_op->show_stats) {
1111 seq_putc(m, ' ');
1112 if (!err)
1113 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
1114 }
1115
1116 seq_putc(m, '\n');
1117 return err;
1118 }
1119
1120 const struct seq_operations mountstats_op = {
1121 .start = m_start,
1122 .next = m_next,
1123 .stop = m_stop,
1124 .show = show_vfsstat,
1125 };
1126 #endif /* CONFIG_PROC_FS */
1127
1128 /**
1129 * may_umount_tree - check if a mount tree is busy
1130 * @mnt: root of mount tree
1131 *
1132 * This is called to check if a tree of mounts has any
1133 * open files, pwds, chroots or sub mounts that are
1134 * busy.
1135 */
1136 int may_umount_tree(struct vfsmount *mnt)
1137 {
1138 int actual_refs = 0;
1139 int minimum_refs = 0;
1140 struct vfsmount *p;
1141
1142 /* write lock needed for mnt_get_count */
1143 br_write_lock(vfsmount_lock);
1144 for (p = mnt; p; p = next_mnt(p, mnt)) {
1145 actual_refs += mnt_get_count(p);
1146 minimum_refs += 2;
1147 }
1148 br_write_unlock(vfsmount_lock);
1149
1150 if (actual_refs > minimum_refs)
1151 return 0;
1152
1153 return 1;
1154 }
1155
1156 EXPORT_SYMBOL(may_umount_tree);
1157
1158 /**
1159 * may_umount - check if a mount point is busy
1160 * @mnt: root of mount
1161 *
1162 * This is called to check if a mount point has any
1163 * open files, pwds, chroots or sub mounts. If the
1164 * mount has sub mounts this will return busy
1165 * regardless of whether the sub mounts are busy.
1166 *
1167 * Doesn't take quota and stuff into account. IOW, in some cases it will
1168 * give false negatives. The main reason why it's here is that we need
1169 * a non-destructive way to look for easily umountable filesystems.
1170 */
1171 int may_umount(struct vfsmount *mnt)
1172 {
1173 int ret = 1;
1174 down_read(&namespace_sem);
1175 br_write_lock(vfsmount_lock);
1176 if (propagate_mount_busy(mnt, 2))
1177 ret = 0;
1178 br_write_unlock(vfsmount_lock);
1179 up_read(&namespace_sem);
1180 return ret;
1181 }
1182
1183 EXPORT_SYMBOL(may_umount);
1184
1185 void release_mounts(struct list_head *head)
1186 {
1187 struct vfsmount *mnt;
1188 while (!list_empty(head)) {
1189 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
1190 list_del_init(&mnt->mnt_hash);
1191 if (mnt_has_parent(mnt)) {
1192 struct dentry *dentry;
1193 struct vfsmount *m;
1194
1195 br_write_lock(vfsmount_lock);
1196 dentry = mnt->mnt_mountpoint;
1197 m = mnt->mnt_parent;
1198 mnt->mnt_mountpoint = mnt->mnt_root;
1199 mnt->mnt_parent = mnt;
1200 m->mnt_ghosts--;
1201 br_write_unlock(vfsmount_lock);
1202 dput(dentry);
1203 mntput(m);
1204 }
1205 mntput(mnt);
1206 }
1207 }
1208
1209 /*
1210 * vfsmount lock must be held for write
1211 * namespace_sem must be held for write
1212 */
1213 void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1214 {
1215 LIST_HEAD(tmp_list);
1216 struct vfsmount *p;
1217
1218 for (p = mnt; p; p = next_mnt(p, mnt))
1219 list_move(&p->mnt_hash, &tmp_list);
1220
1221 if (propagate)
1222 propagate_umount(&tmp_list);
1223
1224 list_for_each_entry(p, &tmp_list, mnt_hash) {
1225 list_del_init(&p->mnt_expire);
1226 list_del_init(&p->mnt_list);
1227 __touch_mnt_namespace(p->mnt_ns);
1228 p->mnt_ns = NULL;
1229 __mnt_make_shortterm(p);
1230 list_del_init(&p->mnt_child);
1231 if (mnt_has_parent(p)) {
1232 p->mnt_parent->mnt_ghosts++;
1233 dentry_reset_mounted(p->mnt_mountpoint);
1234 }
1235 change_mnt_propagation(p, MS_PRIVATE);
1236 }
1237 list_splice(&tmp_list, kill);
1238 }
1239
1240 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1241
1242 static int do_umount(struct vfsmount *mnt, int flags)
1243 {
1244 struct super_block *sb = mnt->mnt_sb;
1245 int retval;
1246 LIST_HEAD(umount_list);
1247
1248 retval = security_sb_umount(mnt, flags);
1249 if (retval)
1250 return retval;
1251
1252 /*
1253 * Allow userspace to request a mountpoint be expired rather than
1254 * unmounting unconditionally. Unmount only happens if:
1255 * (1) the mark is already set (the mark is cleared by mntput())
1256 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1257 */
1258 if (flags & MNT_EXPIRE) {
1259 if (mnt == current->fs->root.mnt ||
1260 flags & (MNT_FORCE | MNT_DETACH))
1261 return -EINVAL;
1262
1263 /*
1264 * probably don't strictly need the lock here if we examined
1265 * all race cases, but it's a slowpath.
1266 */
1267 br_write_lock(vfsmount_lock);
1268 if (mnt_get_count(mnt) != 2) {
1269 br_write_unlock(vfsmount_lock);
1270 return -EBUSY;
1271 }
1272 br_write_unlock(vfsmount_lock);
1273
1274 if (!xchg(&mnt->mnt_expiry_mark, 1))
1275 return -EAGAIN;
1276 }
1277
1278 /*
1279 * If we may have to abort operations to get out of this
1280 * mount, and they will themselves hold resources we must
1281 * allow the fs to do things. In the Unix tradition of
1282 * 'Gee thats tricky lets do it in userspace' the umount_begin
1283 * might fail to complete on the first run through as other tasks
1284 * must return, and the like. Thats for the mount program to worry
1285 * about for the moment.
1286 */
1287
1288 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1289 sb->s_op->umount_begin(sb);
1290 }
1291
1292 /*
1293 * No sense to grab the lock for this test, but test itself looks
1294 * somewhat bogus. Suggestions for better replacement?
1295 * Ho-hum... In principle, we might treat that as umount + switch
1296 * to rootfs. GC would eventually take care of the old vfsmount.
1297 * Actually it makes sense, especially if rootfs would contain a
1298 * /reboot - static binary that would close all descriptors and
1299 * call reboot(9). Then init(8) could umount root and exec /reboot.
1300 */
1301 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1302 /*
1303 * Special case for "unmounting" root ...
1304 * we just try to remount it readonly.
1305 */
1306 down_write(&sb->s_umount);
1307 if (!(sb->s_flags & MS_RDONLY))
1308 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1309 up_write(&sb->s_umount);
1310 return retval;
1311 }
1312
1313 down_write(&namespace_sem);
1314 br_write_lock(vfsmount_lock);
1315 event++;
1316
1317 if (!(flags & MNT_DETACH))
1318 shrink_submounts(mnt, &umount_list);
1319
1320 retval = -EBUSY;
1321 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1322 if (!list_empty(&mnt->mnt_list))
1323 umount_tree(mnt, 1, &umount_list);
1324 retval = 0;
1325 }
1326 br_write_unlock(vfsmount_lock);
1327 up_write(&namespace_sem);
1328 release_mounts(&umount_list);
1329 return retval;
1330 }
1331
1332 /*
1333 * Now umount can handle mount points as well as block devices.
1334 * This is important for filesystems which use unnamed block devices.
1335 *
1336 * We now support a flag for forced unmount like the other 'big iron'
1337 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1338 */
1339
1340 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1341 {
1342 struct path path;
1343 int retval;
1344 int lookup_flags = 0;
1345
1346 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1347 return -EINVAL;
1348
1349 if (!(flags & UMOUNT_NOFOLLOW))
1350 lookup_flags |= LOOKUP_FOLLOW;
1351
1352 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1353 if (retval)
1354 goto out;
1355 retval = -EINVAL;
1356 if (path.dentry != path.mnt->mnt_root)
1357 goto dput_and_out;
1358 if (!check_mnt(path.mnt))
1359 goto dput_and_out;
1360
1361 retval = -EPERM;
1362 if (!capable(CAP_SYS_ADMIN))
1363 goto dput_and_out;
1364
1365 retval = do_umount(path.mnt, flags);
1366 dput_and_out:
1367 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1368 dput(path.dentry);
1369 mntput_no_expire(path.mnt);
1370 out:
1371 return retval;
1372 }
1373
1374 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1375
1376 /*
1377 * The 2.0 compatible umount. No flags.
1378 */
1379 SYSCALL_DEFINE1(oldumount, char __user *, name)
1380 {
1381 return sys_umount(name, 0);
1382 }
1383
1384 #endif
1385
1386 static int mount_is_safe(struct path *path)
1387 {
1388 if (capable(CAP_SYS_ADMIN))
1389 return 0;
1390 return -EPERM;
1391 #ifdef notyet
1392 if (S_ISLNK(path->dentry->d_inode->i_mode))
1393 return -EPERM;
1394 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1395 if (current_uid() != path->dentry->d_inode->i_uid)
1396 return -EPERM;
1397 }
1398 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1399 return -EPERM;
1400 return 0;
1401 #endif
1402 }
1403
1404 struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
1405 int flag)
1406 {
1407 struct vfsmount *res, *p, *q, *r, *s;
1408 struct path path;
1409
1410 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1411 return NULL;
1412
1413 res = q = clone_mnt(mnt, dentry, flag);
1414 if (!q)
1415 goto Enomem;
1416 q->mnt_mountpoint = mnt->mnt_mountpoint;
1417
1418 p = mnt;
1419 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1420 if (!is_subdir(r->mnt_mountpoint, dentry))
1421 continue;
1422
1423 for (s = r; s; s = next_mnt(s, r)) {
1424 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1425 s = skip_mnt_tree(s);
1426 continue;
1427 }
1428 while (p != s->mnt_parent) {
1429 p = p->mnt_parent;
1430 q = q->mnt_parent;
1431 }
1432 p = s;
1433 path.mnt = q;
1434 path.dentry = p->mnt_mountpoint;
1435 q = clone_mnt(p, p->mnt_root, flag);
1436 if (!q)
1437 goto Enomem;
1438 br_write_lock(vfsmount_lock);
1439 list_add_tail(&q->mnt_list, &res->mnt_list);
1440 attach_mnt(q, &path);
1441 br_write_unlock(vfsmount_lock);
1442 }
1443 }
1444 return res;
1445 Enomem:
1446 if (res) {
1447 LIST_HEAD(umount_list);
1448 br_write_lock(vfsmount_lock);
1449 umount_tree(res, 0, &umount_list);
1450 br_write_unlock(vfsmount_lock);
1451 release_mounts(&umount_list);
1452 }
1453 return NULL;
1454 }
1455
1456 struct vfsmount *collect_mounts(struct path *path)
1457 {
1458 struct vfsmount *tree;
1459 down_write(&namespace_sem);
1460 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1461 up_write(&namespace_sem);
1462 return tree;
1463 }
1464
1465 void drop_collected_mounts(struct vfsmount *mnt)
1466 {
1467 LIST_HEAD(umount_list);
1468 down_write(&namespace_sem);
1469 br_write_lock(vfsmount_lock);
1470 umount_tree(mnt, 0, &umount_list);
1471 br_write_unlock(vfsmount_lock);
1472 up_write(&namespace_sem);
1473 release_mounts(&umount_list);
1474 }
1475
1476 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1477 struct vfsmount *root)
1478 {
1479 struct vfsmount *mnt;
1480 int res = f(root, arg);
1481 if (res)
1482 return res;
1483 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1484 res = f(mnt, arg);
1485 if (res)
1486 return res;
1487 }
1488 return 0;
1489 }
1490
1491 static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1492 {
1493 struct vfsmount *p;
1494
1495 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1496 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1497 mnt_release_group_id(p);
1498 }
1499 }
1500
1501 static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1502 {
1503 struct vfsmount *p;
1504
1505 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1506 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1507 int err = mnt_alloc_group_id(p);
1508 if (err) {
1509 cleanup_group_ids(mnt, p);
1510 return err;
1511 }
1512 }
1513 }
1514
1515 return 0;
1516 }
1517
1518 /*
1519 * @source_mnt : mount tree to be attached
1520 * @nd : place the mount tree @source_mnt is attached
1521 * @parent_nd : if non-null, detach the source_mnt from its parent and
1522 * store the parent mount and mountpoint dentry.
1523 * (done when source_mnt is moved)
1524 *
1525 * NOTE: in the table below explains the semantics when a source mount
1526 * of a given type is attached to a destination mount of a given type.
1527 * ---------------------------------------------------------------------------
1528 * | BIND MOUNT OPERATION |
1529 * |**************************************************************************
1530 * | source-->| shared | private | slave | unbindable |
1531 * | dest | | | | |
1532 * | | | | | | |
1533 * | v | | | | |
1534 * |**************************************************************************
1535 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1536 * | | | | | |
1537 * |non-shared| shared (+) | private | slave (*) | invalid |
1538 * ***************************************************************************
1539 * A bind operation clones the source mount and mounts the clone on the
1540 * destination mount.
1541 *
1542 * (++) the cloned mount is propagated to all the mounts in the propagation
1543 * tree of the destination mount and the cloned mount is added to
1544 * the peer group of the source mount.
1545 * (+) the cloned mount is created under the destination mount and is marked
1546 * as shared. The cloned mount is added to the peer group of the source
1547 * mount.
1548 * (+++) the mount is propagated to all the mounts in the propagation tree
1549 * of the destination mount and the cloned mount is made slave
1550 * of the same master as that of the source mount. The cloned mount
1551 * is marked as 'shared and slave'.
1552 * (*) the cloned mount is made a slave of the same master as that of the
1553 * source mount.
1554 *
1555 * ---------------------------------------------------------------------------
1556 * | MOVE MOUNT OPERATION |
1557 * |**************************************************************************
1558 * | source-->| shared | private | slave | unbindable |
1559 * | dest | | | | |
1560 * | | | | | | |
1561 * | v | | | | |
1562 * |**************************************************************************
1563 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1564 * | | | | | |
1565 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1566 * ***************************************************************************
1567 *
1568 * (+) the mount is moved to the destination. And is then propagated to
1569 * all the mounts in the propagation tree of the destination mount.
1570 * (+*) the mount is moved to the destination.
1571 * (+++) the mount is moved to the destination and is then propagated to
1572 * all the mounts belonging to the destination mount's propagation tree.
1573 * the mount is marked as 'shared and slave'.
1574 * (*) the mount continues to be a slave at the new location.
1575 *
1576 * if the source mount is a tree, the operations explained above is
1577 * applied to each mount in the tree.
1578 * Must be called without spinlocks held, since this function can sleep
1579 * in allocations.
1580 */
1581 static int attach_recursive_mnt(struct vfsmount *source_mnt,
1582 struct path *path, struct path *parent_path)
1583 {
1584 LIST_HEAD(tree_list);
1585 struct vfsmount *dest_mnt = path->mnt;
1586 struct dentry *dest_dentry = path->dentry;
1587 struct vfsmount *child, *p;
1588 int err;
1589
1590 if (IS_MNT_SHARED(dest_mnt)) {
1591 err = invent_group_ids(source_mnt, true);
1592 if (err)
1593 goto out;
1594 }
1595 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1596 if (err)
1597 goto out_cleanup_ids;
1598
1599 br_write_lock(vfsmount_lock);
1600
1601 if (IS_MNT_SHARED(dest_mnt)) {
1602 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1603 set_mnt_shared(p);
1604 }
1605 if (parent_path) {
1606 detach_mnt(source_mnt, parent_path);
1607 attach_mnt(source_mnt, path);
1608 touch_mnt_namespace(parent_path->mnt->mnt_ns);
1609 } else {
1610 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1611 commit_tree(source_mnt);
1612 }
1613
1614 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1615 list_del_init(&child->mnt_hash);
1616 commit_tree(child);
1617 }
1618 br_write_unlock(vfsmount_lock);
1619
1620 return 0;
1621
1622 out_cleanup_ids:
1623 if (IS_MNT_SHARED(dest_mnt))
1624 cleanup_group_ids(source_mnt, NULL);
1625 out:
1626 return err;
1627 }
1628
1629 static int lock_mount(struct path *path)
1630 {
1631 struct vfsmount *mnt;
1632 retry:
1633 mutex_lock(&path->dentry->d_inode->i_mutex);
1634 if (unlikely(cant_mount(path->dentry))) {
1635 mutex_unlock(&path->dentry->d_inode->i_mutex);
1636 return -ENOENT;
1637 }
1638 down_write(&namespace_sem);
1639 mnt = lookup_mnt(path);
1640 if (likely(!mnt))
1641 return 0;
1642 up_write(&namespace_sem);
1643 mutex_unlock(&path->dentry->d_inode->i_mutex);
1644 path_put(path);
1645 path->mnt = mnt;
1646 path->dentry = dget(mnt->mnt_root);
1647 goto retry;
1648 }
1649
1650 static void unlock_mount(struct path *path)
1651 {
1652 up_write(&namespace_sem);
1653 mutex_unlock(&path->dentry->d_inode->i_mutex);
1654 }
1655
1656 static int graft_tree(struct vfsmount *mnt, struct path *path)
1657 {
1658 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1659 return -EINVAL;
1660
1661 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1662 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1663 return -ENOTDIR;
1664
1665 if (d_unlinked(path->dentry))
1666 return -ENOENT;
1667
1668 return attach_recursive_mnt(mnt, path, NULL);
1669 }
1670
1671 /*
1672 * Sanity check the flags to change_mnt_propagation.
1673 */
1674
1675 static int flags_to_propagation_type(int flags)
1676 {
1677 int type = flags & ~(MS_REC | MS_SILENT);
1678
1679 /* Fail if any non-propagation flags are set */
1680 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1681 return 0;
1682 /* Only one propagation flag should be set */
1683 if (!is_power_of_2(type))
1684 return 0;
1685 return type;
1686 }
1687
1688 /*
1689 * recursively change the type of the mountpoint.
1690 */
1691 static int do_change_type(struct path *path, int flag)
1692 {
1693 struct vfsmount *m, *mnt = path->mnt;
1694 int recurse = flag & MS_REC;
1695 int type;
1696 int err = 0;
1697
1698 if (!capable(CAP_SYS_ADMIN))
1699 return -EPERM;
1700
1701 if (path->dentry != path->mnt->mnt_root)
1702 return -EINVAL;
1703
1704 type = flags_to_propagation_type(flag);
1705 if (!type)
1706 return -EINVAL;
1707
1708 down_write(&namespace_sem);
1709 if (type == MS_SHARED) {
1710 err = invent_group_ids(mnt, recurse);
1711 if (err)
1712 goto out_unlock;
1713 }
1714
1715 br_write_lock(vfsmount_lock);
1716 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1717 change_mnt_propagation(m, type);
1718 br_write_unlock(vfsmount_lock);
1719
1720 out_unlock:
1721 up_write(&namespace_sem);
1722 return err;
1723 }
1724
1725 /*
1726 * do loopback mount.
1727 */
1728 static int do_loopback(struct path *path, char *old_name,
1729 int recurse)
1730 {
1731 LIST_HEAD(umount_list);
1732 struct path old_path;
1733 struct vfsmount *mnt = NULL;
1734 int err = mount_is_safe(path);
1735 if (err)
1736 return err;
1737 if (!old_name || !*old_name)
1738 return -EINVAL;
1739 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1740 if (err)
1741 return err;
1742
1743 err = lock_mount(path);
1744 if (err)
1745 goto out;
1746
1747 err = -EINVAL;
1748 if (IS_MNT_UNBINDABLE(old_path.mnt))
1749 goto out2;
1750
1751 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1752 goto out2;
1753
1754 err = -ENOMEM;
1755 if (recurse)
1756 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
1757 else
1758 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
1759
1760 if (!mnt)
1761 goto out2;
1762
1763 err = graft_tree(mnt, path);
1764 if (err) {
1765 br_write_lock(vfsmount_lock);
1766 umount_tree(mnt, 0, &umount_list);
1767 br_write_unlock(vfsmount_lock);
1768 }
1769 out2:
1770 unlock_mount(path);
1771 release_mounts(&umount_list);
1772 out:
1773 path_put(&old_path);
1774 return err;
1775 }
1776
1777 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1778 {
1779 int error = 0;
1780 int readonly_request = 0;
1781
1782 if (ms_flags & MS_RDONLY)
1783 readonly_request = 1;
1784 if (readonly_request == __mnt_is_readonly(mnt))
1785 return 0;
1786
1787 if (readonly_request)
1788 error = mnt_make_readonly(mnt);
1789 else
1790 __mnt_unmake_readonly(mnt);
1791 return error;
1792 }
1793
1794 /*
1795 * change filesystem flags. dir should be a physical root of filesystem.
1796 * If you've mounted a non-root directory somewhere and want to do remount
1797 * on it - tough luck.
1798 */
1799 static int do_remount(struct path *path, int flags, int mnt_flags,
1800 void *data)
1801 {
1802 int err;
1803 struct super_block *sb = path->mnt->mnt_sb;
1804
1805 if (!capable(CAP_SYS_ADMIN))
1806 return -EPERM;
1807
1808 if (!check_mnt(path->mnt))
1809 return -EINVAL;
1810
1811 if (path->dentry != path->mnt->mnt_root)
1812 return -EINVAL;
1813
1814 err = security_sb_remount(sb, data);
1815 if (err)
1816 return err;
1817
1818 down_write(&sb->s_umount);
1819 if (flags & MS_BIND)
1820 err = change_mount_flags(path->mnt, flags);
1821 else
1822 err = do_remount_sb(sb, flags, data, 0);
1823 if (!err) {
1824 br_write_lock(vfsmount_lock);
1825 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
1826 path->mnt->mnt_flags = mnt_flags;
1827 br_write_unlock(vfsmount_lock);
1828 }
1829 up_write(&sb->s_umount);
1830 if (!err) {
1831 br_write_lock(vfsmount_lock);
1832 touch_mnt_namespace(path->mnt->mnt_ns);
1833 br_write_unlock(vfsmount_lock);
1834 }
1835 return err;
1836 }
1837
1838 static inline int tree_contains_unbindable(struct vfsmount *mnt)
1839 {
1840 struct vfsmount *p;
1841 for (p = mnt; p; p = next_mnt(p, mnt)) {
1842 if (IS_MNT_UNBINDABLE(p))
1843 return 1;
1844 }
1845 return 0;
1846 }
1847
1848 static int do_move_mount(struct path *path, char *old_name)
1849 {
1850 struct path old_path, parent_path;
1851 struct vfsmount *p;
1852 int err = 0;
1853 if (!capable(CAP_SYS_ADMIN))
1854 return -EPERM;
1855 if (!old_name || !*old_name)
1856 return -EINVAL;
1857 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1858 if (err)
1859 return err;
1860
1861 err = lock_mount(path);
1862 if (err < 0)
1863 goto out;
1864
1865 err = -EINVAL;
1866 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1867 goto out1;
1868
1869 if (d_unlinked(path->dentry))
1870 goto out1;
1871
1872 err = -EINVAL;
1873 if (old_path.dentry != old_path.mnt->mnt_root)
1874 goto out1;
1875
1876 if (!mnt_has_parent(old_path.mnt))
1877 goto out1;
1878
1879 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1880 S_ISDIR(old_path.dentry->d_inode->i_mode))
1881 goto out1;
1882 /*
1883 * Don't move a mount residing in a shared parent.
1884 */
1885 if (IS_MNT_SHARED(old_path.mnt->mnt_parent))
1886 goto out1;
1887 /*
1888 * Don't move a mount tree containing unbindable mounts to a destination
1889 * mount which is shared.
1890 */
1891 if (IS_MNT_SHARED(path->mnt) &&
1892 tree_contains_unbindable(old_path.mnt))
1893 goto out1;
1894 err = -ELOOP;
1895 for (p = path->mnt; mnt_has_parent(p); p = p->mnt_parent)
1896 if (p == old_path.mnt)
1897 goto out1;
1898
1899 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
1900 if (err)
1901 goto out1;
1902
1903 /* if the mount is moved, it should no longer be expire
1904 * automatically */
1905 list_del_init(&old_path.mnt->mnt_expire);
1906 out1:
1907 unlock_mount(path);
1908 out:
1909 if (!err)
1910 path_put(&parent_path);
1911 path_put(&old_path);
1912 return err;
1913 }
1914
1915 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1916 {
1917 int err;
1918 const char *subtype = strchr(fstype, '.');
1919 if (subtype) {
1920 subtype++;
1921 err = -EINVAL;
1922 if (!subtype[0])
1923 goto err;
1924 } else
1925 subtype = "";
1926
1927 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1928 err = -ENOMEM;
1929 if (!mnt->mnt_sb->s_subtype)
1930 goto err;
1931 return mnt;
1932
1933 err:
1934 mntput(mnt);
1935 return ERR_PTR(err);
1936 }
1937
1938 static struct vfsmount *
1939 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1940 {
1941 struct file_system_type *type = get_fs_type(fstype);
1942 struct vfsmount *mnt;
1943 if (!type)
1944 return ERR_PTR(-ENODEV);
1945 mnt = vfs_kern_mount(type, flags, name, data);
1946 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1947 !mnt->mnt_sb->s_subtype)
1948 mnt = fs_set_subtype(mnt, fstype);
1949 put_filesystem(type);
1950 return mnt;
1951 }
1952
1953 /*
1954 * add a mount into a namespace's mount tree
1955 */
1956 static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
1957 {
1958 int err;
1959
1960 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1961
1962 err = lock_mount(path);
1963 if (err)
1964 return err;
1965
1966 err = -EINVAL;
1967 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1968 goto unlock;
1969
1970 /* Refuse the same filesystem on the same mount point */
1971 err = -EBUSY;
1972 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1973 path->mnt->mnt_root == path->dentry)
1974 goto unlock;
1975
1976 err = -EINVAL;
1977 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1978 goto unlock;
1979
1980 newmnt->mnt_flags = mnt_flags;
1981 err = graft_tree(newmnt, path);
1982
1983 unlock:
1984 unlock_mount(path);
1985 return err;
1986 }
1987
1988 /*
1989 * create a new mount for userspace and request it to be added into the
1990 * namespace's tree
1991 */
1992 static int do_new_mount(struct path *path, char *type, int flags,
1993 int mnt_flags, char *name, void *data)
1994 {
1995 struct vfsmount *mnt;
1996 int err;
1997
1998 if (!type)
1999 return -EINVAL;
2000
2001 /* we need capabilities... */
2002 if (!capable(CAP_SYS_ADMIN))
2003 return -EPERM;
2004
2005 mnt = do_kern_mount(type, flags, name, data);
2006 if (IS_ERR(mnt))
2007 return PTR_ERR(mnt);
2008
2009 err = do_add_mount(mnt, path, mnt_flags);
2010 if (err)
2011 mntput(mnt);
2012 return err;
2013 }
2014
2015 int finish_automount(struct vfsmount *m, struct path *path)
2016 {
2017 int err;
2018 /* The new mount record should have at least 2 refs to prevent it being
2019 * expired before we get a chance to add it
2020 */
2021 BUG_ON(mnt_get_count(m) < 2);
2022
2023 if (m->mnt_sb == path->mnt->mnt_sb &&
2024 m->mnt_root == path->dentry) {
2025 err = -ELOOP;
2026 goto fail;
2027 }
2028
2029 err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2030 if (!err)
2031 return 0;
2032 fail:
2033 /* remove m from any expiration list it may be on */
2034 if (!list_empty(&m->mnt_expire)) {
2035 down_write(&namespace_sem);
2036 br_write_lock(vfsmount_lock);
2037 list_del_init(&m->mnt_expire);
2038 br_write_unlock(vfsmount_lock);
2039 up_write(&namespace_sem);
2040 }
2041 mntput(m);
2042 mntput(m);
2043 return err;
2044 }
2045
2046 /**
2047 * mnt_set_expiry - Put a mount on an expiration list
2048 * @mnt: The mount to list.
2049 * @expiry_list: The list to add the mount to.
2050 */
2051 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2052 {
2053 down_write(&namespace_sem);
2054 br_write_lock(vfsmount_lock);
2055
2056 list_add_tail(&mnt->mnt_expire, expiry_list);
2057
2058 br_write_unlock(vfsmount_lock);
2059 up_write(&namespace_sem);
2060 }
2061 EXPORT_SYMBOL(mnt_set_expiry);
2062
2063 /*
2064 * process a list of expirable mountpoints with the intent of discarding any
2065 * mountpoints that aren't in use and haven't been touched since last we came
2066 * here
2067 */
2068 void mark_mounts_for_expiry(struct list_head *mounts)
2069 {
2070 struct vfsmount *mnt, *next;
2071 LIST_HEAD(graveyard);
2072 LIST_HEAD(umounts);
2073
2074 if (list_empty(mounts))
2075 return;
2076
2077 down_write(&namespace_sem);
2078 br_write_lock(vfsmount_lock);
2079
2080 /* extract from the expiration list every vfsmount that matches the
2081 * following criteria:
2082 * - only referenced by its parent vfsmount
2083 * - still marked for expiry (marked on the last call here; marks are
2084 * cleared by mntput())
2085 */
2086 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2087 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2088 propagate_mount_busy(mnt, 1))
2089 continue;
2090 list_move(&mnt->mnt_expire, &graveyard);
2091 }
2092 while (!list_empty(&graveyard)) {
2093 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
2094 touch_mnt_namespace(mnt->mnt_ns);
2095 umount_tree(mnt, 1, &umounts);
2096 }
2097 br_write_unlock(vfsmount_lock);
2098 up_write(&namespace_sem);
2099
2100 release_mounts(&umounts);
2101 }
2102
2103 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2104
2105 /*
2106 * Ripoff of 'select_parent()'
2107 *
2108 * search the list of submounts for a given mountpoint, and move any
2109 * shrinkable submounts to the 'graveyard' list.
2110 */
2111 static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
2112 {
2113 struct vfsmount *this_parent = parent;
2114 struct list_head *next;
2115 int found = 0;
2116
2117 repeat:
2118 next = this_parent->mnt_mounts.next;
2119 resume:
2120 while (next != &this_parent->mnt_mounts) {
2121 struct list_head *tmp = next;
2122 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
2123
2124 next = tmp->next;
2125 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
2126 continue;
2127 /*
2128 * Descend a level if the d_mounts list is non-empty.
2129 */
2130 if (!list_empty(&mnt->mnt_mounts)) {
2131 this_parent = mnt;
2132 goto repeat;
2133 }
2134
2135 if (!propagate_mount_busy(mnt, 1)) {
2136 list_move_tail(&mnt->mnt_expire, graveyard);
2137 found++;
2138 }
2139 }
2140 /*
2141 * All done at this level ... ascend and resume the search
2142 */
2143 if (this_parent != parent) {
2144 next = this_parent->mnt_child.next;
2145 this_parent = this_parent->mnt_parent;
2146 goto resume;
2147 }
2148 return found;
2149 }
2150
2151 /*
2152 * process a list of expirable mountpoints with the intent of discarding any
2153 * submounts of a specific parent mountpoint
2154 *
2155 * vfsmount_lock must be held for write
2156 */
2157 static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
2158 {
2159 LIST_HEAD(graveyard);
2160 struct vfsmount *m;
2161
2162 /* extract submounts of 'mountpoint' from the expiration list */
2163 while (select_submounts(mnt, &graveyard)) {
2164 while (!list_empty(&graveyard)) {
2165 m = list_first_entry(&graveyard, struct vfsmount,
2166 mnt_expire);
2167 touch_mnt_namespace(m->mnt_ns);
2168 umount_tree(m, 1, umounts);
2169 }
2170 }
2171 }
2172
2173 /*
2174 * Some copy_from_user() implementations do not return the exact number of
2175 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2176 * Note that this function differs from copy_from_user() in that it will oops
2177 * on bad values of `to', rather than returning a short copy.
2178 */
2179 static long exact_copy_from_user(void *to, const void __user * from,
2180 unsigned long n)
2181 {
2182 char *t = to;
2183 const char __user *f = from;
2184 char c;
2185
2186 if (!access_ok(VERIFY_READ, from, n))
2187 return n;
2188
2189 while (n) {
2190 if (__get_user(c, f)) {
2191 memset(t, 0, n);
2192 break;
2193 }
2194 *t++ = c;
2195 f++;
2196 n--;
2197 }
2198 return n;
2199 }
2200
2201 int copy_mount_options(const void __user * data, unsigned long *where)
2202 {
2203 int i;
2204 unsigned long page;
2205 unsigned long size;
2206
2207 *where = 0;
2208 if (!data)
2209 return 0;
2210
2211 if (!(page = __get_free_page(GFP_KERNEL)))
2212 return -ENOMEM;
2213
2214 /* We only care that *some* data at the address the user
2215 * gave us is valid. Just in case, we'll zero
2216 * the remainder of the page.
2217 */
2218 /* copy_from_user cannot cross TASK_SIZE ! */
2219 size = TASK_SIZE - (unsigned long)data;
2220 if (size > PAGE_SIZE)
2221 size = PAGE_SIZE;
2222
2223 i = size - exact_copy_from_user((void *)page, data, size);
2224 if (!i) {
2225 free_page(page);
2226 return -EFAULT;
2227 }
2228 if (i != PAGE_SIZE)
2229 memset((char *)page + i, 0, PAGE_SIZE - i);
2230 *where = page;
2231 return 0;
2232 }
2233
2234 int copy_mount_string(const void __user *data, char **where)
2235 {
2236 char *tmp;
2237
2238 if (!data) {
2239 *where = NULL;
2240 return 0;
2241 }
2242
2243 tmp = strndup_user(data, PAGE_SIZE);
2244 if (IS_ERR(tmp))
2245 return PTR_ERR(tmp);
2246
2247 *where = tmp;
2248 return 0;
2249 }
2250
2251 /*
2252 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2253 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2254 *
2255 * data is a (void *) that can point to any structure up to
2256 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2257 * information (or be NULL).
2258 *
2259 * Pre-0.97 versions of mount() didn't have a flags word.
2260 * When the flags word was introduced its top half was required
2261 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2262 * Therefore, if this magic number is present, it carries no information
2263 * and must be discarded.
2264 */
2265 long do_mount(char *dev_name, char *dir_name, char *type_page,
2266 unsigned long flags, void *data_page)
2267 {
2268 struct path path;
2269 int retval = 0;
2270 int mnt_flags = 0;
2271
2272 /* Discard magic */
2273 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2274 flags &= ~MS_MGC_MSK;
2275
2276 /* Basic sanity checks */
2277
2278 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2279 return -EINVAL;
2280
2281 if (data_page)
2282 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2283
2284 /* ... and get the mountpoint */
2285 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2286 if (retval)
2287 return retval;
2288
2289 retval = security_sb_mount(dev_name, &path,
2290 type_page, flags, data_page);
2291 if (retval)
2292 goto dput_out;
2293
2294 /* Default to relatime unless overriden */
2295 if (!(flags & MS_NOATIME))
2296 mnt_flags |= MNT_RELATIME;
2297
2298 /* Separate the per-mountpoint flags */
2299 if (flags & MS_NOSUID)
2300 mnt_flags |= MNT_NOSUID;
2301 if (flags & MS_NODEV)
2302 mnt_flags |= MNT_NODEV;
2303 if (flags & MS_NOEXEC)
2304 mnt_flags |= MNT_NOEXEC;
2305 if (flags & MS_NOATIME)
2306 mnt_flags |= MNT_NOATIME;
2307 if (flags & MS_NODIRATIME)
2308 mnt_flags |= MNT_NODIRATIME;
2309 if (flags & MS_STRICTATIME)
2310 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2311 if (flags & MS_RDONLY)
2312 mnt_flags |= MNT_READONLY;
2313
2314 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2315 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2316 MS_STRICTATIME);
2317
2318 if (flags & MS_REMOUNT)
2319 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2320 data_page);
2321 else if (flags & MS_BIND)
2322 retval = do_loopback(&path, dev_name, flags & MS_REC);
2323 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2324 retval = do_change_type(&path, flags);
2325 else if (flags & MS_MOVE)
2326 retval = do_move_mount(&path, dev_name);
2327 else
2328 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2329 dev_name, data_page);
2330 dput_out:
2331 path_put(&path);
2332 return retval;
2333 }
2334
2335 static struct mnt_namespace *alloc_mnt_ns(void)
2336 {
2337 struct mnt_namespace *new_ns;
2338
2339 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2340 if (!new_ns)
2341 return ERR_PTR(-ENOMEM);
2342 atomic_set(&new_ns->count, 1);
2343 new_ns->root = NULL;
2344 INIT_LIST_HEAD(&new_ns->list);
2345 init_waitqueue_head(&new_ns->poll);
2346 new_ns->event = 0;
2347 return new_ns;
2348 }
2349
2350 void mnt_make_longterm(struct vfsmount *mnt)
2351 {
2352 __mnt_make_longterm(mnt);
2353 }
2354
2355 void mnt_make_shortterm(struct vfsmount *mnt)
2356 {
2357 #ifdef CONFIG_SMP
2358 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2359 return;
2360 br_write_lock(vfsmount_lock);
2361 atomic_dec(&mnt->mnt_longterm);
2362 br_write_unlock(vfsmount_lock);
2363 #endif
2364 }
2365
2366 /*
2367 * Allocate a new namespace structure and populate it with contents
2368 * copied from the namespace of the passed in task structure.
2369 */
2370 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2371 struct fs_struct *fs)
2372 {
2373 struct mnt_namespace *new_ns;
2374 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2375 struct vfsmount *p, *q;
2376
2377 new_ns = alloc_mnt_ns();
2378 if (IS_ERR(new_ns))
2379 return new_ns;
2380
2381 down_write(&namespace_sem);
2382 /* First pass: copy the tree topology */
2383 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
2384 CL_COPY_ALL | CL_EXPIRE);
2385 if (!new_ns->root) {
2386 up_write(&namespace_sem);
2387 kfree(new_ns);
2388 return ERR_PTR(-ENOMEM);
2389 }
2390 br_write_lock(vfsmount_lock);
2391 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
2392 br_write_unlock(vfsmount_lock);
2393
2394 /*
2395 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2396 * as belonging to new namespace. We have already acquired a private
2397 * fs_struct, so tsk->fs->lock is not needed.
2398 */
2399 p = mnt_ns->root;
2400 q = new_ns->root;
2401 while (p) {
2402 q->mnt_ns = new_ns;
2403 __mnt_make_longterm(q);
2404 if (fs) {
2405 if (p == fs->root.mnt) {
2406 fs->root.mnt = mntget(q);
2407 __mnt_make_longterm(q);
2408 mnt_make_shortterm(p);
2409 rootmnt = p;
2410 }
2411 if (p == fs->pwd.mnt) {
2412 fs->pwd.mnt = mntget(q);
2413 __mnt_make_longterm(q);
2414 mnt_make_shortterm(p);
2415 pwdmnt = p;
2416 }
2417 }
2418 p = next_mnt(p, mnt_ns->root);
2419 q = next_mnt(q, new_ns->root);
2420 }
2421 up_write(&namespace_sem);
2422
2423 if (rootmnt)
2424 mntput(rootmnt);
2425 if (pwdmnt)
2426 mntput(pwdmnt);
2427
2428 return new_ns;
2429 }
2430
2431 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2432 struct fs_struct *new_fs)
2433 {
2434 struct mnt_namespace *new_ns;
2435
2436 BUG_ON(!ns);
2437 get_mnt_ns(ns);
2438
2439 if (!(flags & CLONE_NEWNS))
2440 return ns;
2441
2442 new_ns = dup_mnt_ns(ns, new_fs);
2443
2444 put_mnt_ns(ns);
2445 return new_ns;
2446 }
2447
2448 /**
2449 * create_mnt_ns - creates a private namespace and adds a root filesystem
2450 * @mnt: pointer to the new root filesystem mountpoint
2451 */
2452 static struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
2453 {
2454 struct mnt_namespace *new_ns;
2455
2456 new_ns = alloc_mnt_ns();
2457 if (!IS_ERR(new_ns)) {
2458 mnt->mnt_ns = new_ns;
2459 __mnt_make_longterm(mnt);
2460 new_ns->root = mnt;
2461 list_add(&new_ns->list, &new_ns->root->mnt_list);
2462 } else {
2463 mntput(mnt);
2464 }
2465 return new_ns;
2466 }
2467
2468 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2469 {
2470 struct mnt_namespace *ns;
2471 struct super_block *s;
2472 struct path path;
2473 int err;
2474
2475 ns = create_mnt_ns(mnt);
2476 if (IS_ERR(ns))
2477 return ERR_CAST(ns);
2478
2479 err = vfs_path_lookup(mnt->mnt_root, mnt,
2480 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2481
2482 put_mnt_ns(ns);
2483
2484 if (err)
2485 return ERR_PTR(err);
2486
2487 /* trade a vfsmount reference for active sb one */
2488 s = path.mnt->mnt_sb;
2489 atomic_inc(&s->s_active);
2490 mntput(path.mnt);
2491 /* lock the sucker */
2492 down_write(&s->s_umount);
2493 /* ... and return the root of (sub)tree on it */
2494 return path.dentry;
2495 }
2496 EXPORT_SYMBOL(mount_subtree);
2497
2498 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2499 char __user *, type, unsigned long, flags, void __user *, data)
2500 {
2501 int ret;
2502 char *kernel_type;
2503 char *kernel_dir;
2504 char *kernel_dev;
2505 unsigned long data_page;
2506
2507 ret = copy_mount_string(type, &kernel_type);
2508 if (ret < 0)
2509 goto out_type;
2510
2511 kernel_dir = getname(dir_name);
2512 if (IS_ERR(kernel_dir)) {
2513 ret = PTR_ERR(kernel_dir);
2514 goto out_dir;
2515 }
2516
2517 ret = copy_mount_string(dev_name, &kernel_dev);
2518 if (ret < 0)
2519 goto out_dev;
2520
2521 ret = copy_mount_options(data, &data_page);
2522 if (ret < 0)
2523 goto out_data;
2524
2525 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2526 (void *) data_page);
2527
2528 free_page(data_page);
2529 out_data:
2530 kfree(kernel_dev);
2531 out_dev:
2532 putname(kernel_dir);
2533 out_dir:
2534 kfree(kernel_type);
2535 out_type:
2536 return ret;
2537 }
2538
2539 /*
2540 * Return true if path is reachable from root
2541 *
2542 * namespace_sem or vfsmount_lock is held
2543 */
2544 bool is_path_reachable(struct vfsmount *mnt, struct dentry *dentry,
2545 const struct path *root)
2546 {
2547 while (mnt != root->mnt && mnt_has_parent(mnt)) {
2548 dentry = mnt->mnt_mountpoint;
2549 mnt = mnt->mnt_parent;
2550 }
2551 return mnt == root->mnt && is_subdir(dentry, root->dentry);
2552 }
2553
2554 int path_is_under(struct path *path1, struct path *path2)
2555 {
2556 int res;
2557 br_read_lock(vfsmount_lock);
2558 res = is_path_reachable(path1->mnt, path1->dentry, path2);
2559 br_read_unlock(vfsmount_lock);
2560 return res;
2561 }
2562 EXPORT_SYMBOL(path_is_under);
2563
2564 /*
2565 * pivot_root Semantics:
2566 * Moves the root file system of the current process to the directory put_old,
2567 * makes new_root as the new root file system of the current process, and sets
2568 * root/cwd of all processes which had them on the current root to new_root.
2569 *
2570 * Restrictions:
2571 * The new_root and put_old must be directories, and must not be on the
2572 * same file system as the current process root. The put_old must be
2573 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2574 * pointed to by put_old must yield the same directory as new_root. No other
2575 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2576 *
2577 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2578 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2579 * in this situation.
2580 *
2581 * Notes:
2582 * - we don't move root/cwd if they are not at the root (reason: if something
2583 * cared enough to change them, it's probably wrong to force them elsewhere)
2584 * - it's okay to pick a root that isn't the root of a file system, e.g.
2585 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2586 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2587 * first.
2588 */
2589 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2590 const char __user *, put_old)
2591 {
2592 struct path new, old, parent_path, root_parent, root;
2593 int error;
2594
2595 if (!capable(CAP_SYS_ADMIN))
2596 return -EPERM;
2597
2598 error = user_path_dir(new_root, &new);
2599 if (error)
2600 goto out0;
2601
2602 error = user_path_dir(put_old, &old);
2603 if (error)
2604 goto out1;
2605
2606 error = security_sb_pivotroot(&old, &new);
2607 if (error)
2608 goto out2;
2609
2610 get_fs_root(current->fs, &root);
2611 error = lock_mount(&old);
2612 if (error)
2613 goto out3;
2614
2615 error = -EINVAL;
2616 if (IS_MNT_SHARED(old.mnt) ||
2617 IS_MNT_SHARED(new.mnt->mnt_parent) ||
2618 IS_MNT_SHARED(root.mnt->mnt_parent))
2619 goto out4;
2620 if (!check_mnt(root.mnt) || !check_mnt(new.mnt))
2621 goto out4;
2622 error = -ENOENT;
2623 if (d_unlinked(new.dentry))
2624 goto out4;
2625 if (d_unlinked(old.dentry))
2626 goto out4;
2627 error = -EBUSY;
2628 if (new.mnt == root.mnt ||
2629 old.mnt == root.mnt)
2630 goto out4; /* loop, on the same file system */
2631 error = -EINVAL;
2632 if (root.mnt->mnt_root != root.dentry)
2633 goto out4; /* not a mountpoint */
2634 if (!mnt_has_parent(root.mnt))
2635 goto out4; /* not attached */
2636 if (new.mnt->mnt_root != new.dentry)
2637 goto out4; /* not a mountpoint */
2638 if (!mnt_has_parent(new.mnt))
2639 goto out4; /* not attached */
2640 /* make sure we can reach put_old from new_root */
2641 if (!is_path_reachable(old.mnt, old.dentry, &new))
2642 goto out4;
2643 br_write_lock(vfsmount_lock);
2644 detach_mnt(new.mnt, &parent_path);
2645 detach_mnt(root.mnt, &root_parent);
2646 /* mount old root on put_old */
2647 attach_mnt(root.mnt, &old);
2648 /* mount new_root on / */
2649 attach_mnt(new.mnt, &root_parent);
2650 touch_mnt_namespace(current->nsproxy->mnt_ns);
2651 br_write_unlock(vfsmount_lock);
2652 chroot_fs_refs(&root, &new);
2653 error = 0;
2654 out4:
2655 unlock_mount(&old);
2656 if (!error) {
2657 path_put(&root_parent);
2658 path_put(&parent_path);
2659 }
2660 out3:
2661 path_put(&root);
2662 out2:
2663 path_put(&old);
2664 out1:
2665 path_put(&new);
2666 out0:
2667 return error;
2668 }
2669
2670 static void __init init_mount_tree(void)
2671 {
2672 struct vfsmount *mnt;
2673 struct mnt_namespace *ns;
2674 struct path root;
2675
2676 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2677 if (IS_ERR(mnt))
2678 panic("Can't create rootfs");
2679
2680 ns = create_mnt_ns(mnt);
2681 if (IS_ERR(ns))
2682 panic("Can't allocate initial namespace");
2683
2684 init_task.nsproxy->mnt_ns = ns;
2685 get_mnt_ns(ns);
2686
2687 root.mnt = ns->root;
2688 root.dentry = ns->root->mnt_root;
2689
2690 set_fs_pwd(current->fs, &root);
2691 set_fs_root(current->fs, &root);
2692 }
2693
2694 void __init mnt_init(void)
2695 {
2696 unsigned u;
2697 int err;
2698
2699 init_rwsem(&namespace_sem);
2700
2701 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
2702 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2703
2704 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2705
2706 if (!mount_hashtable)
2707 panic("Failed to allocate mount hash table\n");
2708
2709 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2710
2711 for (u = 0; u < HASH_SIZE; u++)
2712 INIT_LIST_HEAD(&mount_hashtable[u]);
2713
2714 br_lock_init(vfsmount_lock);
2715
2716 err = sysfs_init();
2717 if (err)
2718 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2719 __func__, err);
2720 fs_kobj = kobject_create_and_add("fs", NULL);
2721 if (!fs_kobj)
2722 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2723 init_rootfs();
2724 init_mount_tree();
2725 }
2726
2727 void put_mnt_ns(struct mnt_namespace *ns)
2728 {
2729 LIST_HEAD(umount_list);
2730
2731 if (!atomic_dec_and_test(&ns->count))
2732 return;
2733 down_write(&namespace_sem);
2734 br_write_lock(vfsmount_lock);
2735 umount_tree(ns->root, 0, &umount_list);
2736 br_write_unlock(vfsmount_lock);
2737 up_write(&namespace_sem);
2738 release_mounts(&umount_list);
2739 kfree(ns);
2740 }
2741
2742 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2743 {
2744 struct vfsmount *mnt;
2745 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2746 if (!IS_ERR(mnt)) {
2747 /*
2748 * it is a longterm mount, don't release mnt until
2749 * we unmount before file sys is unregistered
2750 */
2751 mnt_make_longterm(mnt);
2752 }
2753 return mnt;
2754 }
2755 EXPORT_SYMBOL_GPL(kern_mount_data);
2756
2757 void kern_unmount(struct vfsmount *mnt)
2758 {
2759 /* release long term mount so mount point can be released */
2760 if (!IS_ERR_OR_NULL(mnt)) {
2761 mnt_make_shortterm(mnt);
2762 mntput(mnt);
2763 }
2764 }
2765 EXPORT_SYMBOL(kern_unmount);
2766
2767 bool our_mnt(struct vfsmount *mnt)
2768 {
2769 return check_mnt(mnt);
2770 }